././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1644445976.2530913 tifffile-2022.2.9/0000777000000000000000000000000000000000000010433 5ustar00././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1562777007.0 tifffile-2022.2.9/ACKNOWLEDGEMENTS.rst0000666000000000000000000000050400000000000013516 0ustar00Acknowledgements ---------------- * Egor Zindy, for lsm_scan_info specifics. * Wim Lewis for a bug fix and some LSM functions. * Hadrien Mary for help on reading MicroManager files. * Christian Kliche for help writing tiled and color-mapped files. * Grzegorz Bokota, for reporting and fixing OME-XML handling issues. ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1644445975.0 tifffile-2022.2.9/CHANGES.rst0000666000000000000000000007055200000000000012246 0ustar00Revisions --------- 2022.2.9 Pass 4734 tests. Fix ValueError using multiscale ZarrStore with zarr >= 2.11.0. Raise KeyError if ZarrStore does not contain key. Limit number of warnings for missing files in multifile series. Allow to save colormap to 32-bit ImageJ files (#115). 2022.2.2 Fix TypeError when second ImageDescription tag contains non-ASCII (#112). Fix parsing IJMetadata with many IJMetadataByteCounts (#111). Detect MicroManager NDTiffv2 header (not tested). Remove cache from ZarrFileSequenceStore (use zarr.LRUStoreCache). Raise limit on maximum number of pages. Use J2K format when encoding JPEG2000 segments. Formally deprecate imsave and TiffWriter.save. Drop support for Python 3.7 and numpy < 1.19 (NEP29). 2021.11.2 Lazy-load non-essential tag values (breaking). Warn when reading from closed file. Support ImageJ 'prop' metadata type (#103). Support writing indexed ImageJ format. Fix multi-threaded access of multi-page Zarr stores with chunkmode 2. Raise error if truncate is used with compression, packints, or tile. Read STK metadata without UIC2tag. Improve log and warning messages (WIP). Improve string representation of large tag values. 2021.10.12 Revert renaming of 'file' parameter in FileSequence.asarray (breaking). Deprecate 'file' parameter in FileSequence.asarray. 2021.10.10 Disallow letters as indices in FileSequence; use categories (breaking). Do not warn of missing files in FileSequence; use files_missing property. Support predictors in ZarrTiffStore.write_fsspec. Add option to specify zarr group name in write_fsspec. Add option to specify categories for FileSequence patterns (#76). Add option to specify chunk shape and dtype for ZarrFileSequenceStore. Add option to tile ZarrFileSequenceStore and FileSequence.asarray. Add option to pass additional zattrs to Zarr stores. Detect Roche BIF files. 2021.8.30 Fix horizontal differencing with non-native byte order. Fix multi-threaded access of memory-mappable, multi-page Zarr stores (#67). 2021.8.8 Fix tag offset and valueoffset for NDPI > 4 GB (#96). 2021.7.30 Deprecate first parameter to TiffTag.overwrite (no longer required). TiffTag init API change (breaking). Detect Ventana BIF series and warn that tiles are not stitched. Enable reading PreviewImage from RAW formats (#93, #94). Work around numpy.ndarray.tofile is very slow for non-contiguous arrays. Fix issues with PackBits compression (requires imagecodecs 2021.7.30). 2021.7.2 Decode complex integer images found in SAR GeoTIFF. Support reading NDPI with JPEG-XR compression. Deprecate TiffWriter RGB auto-detection, except for RGB24/48 and RGBA32/64. 2021.6.14 Set stacklevel for deprecation warnings (#89). Fix svs_description_metadata for SVS with double header (#88, breaking). Fix reading JPEG compressed CMYK images. Support ALT_JPEG and JPEG_2000_LOSSY compression found in Bio-Formats. Log warning if TiffWriter auto-detects RGB mode (specify photometric). 2021.6.6 Fix TIFF.COMPESSOR typo (#85). Round resolution numbers that do not fit in 64-bit rationals (#81). Add support for JPEG XL compression. Add numcodecs compatible TIFF codec. Rename ZarrFileStore to ZarrFileSequenceStore (breaking). Add method to export fsspec ReferenceFileSystem from ZarrFileStore. Fix fsspec ReferenceFileSystem v1 for multifile series. Fix creating OME-TIFF with micron character in OME-XML. 2021.4.8 Fix reading OJPEG with wrong photometric or samplesperpixel tags (#75). Fix fsspec ReferenceFileSystem v1 and JPEG compression. Use TiffTagRegistry for NDPI_TAGS, EXIF_TAGS, GPS_TAGS, IOP_TAGS constants. Make TIFF.GEO_KEYS an Enum (breaking). 2021.3.31 Use JPEG restart markers as tile offsets in NDPI. Support version 1 and more codecs in fsspec ReferenceFileSystem (untested). 2021.3.17 Fix regression reading multi-file OME-TIFF with missing files (#72). Fix fsspec ReferenceFileSystem with non-native byte order (#56). 2021.3.16 TIFF is no longer a defended trademark. Add method to export fsspec ReferenceFileSystem from ZarrTiffStore (#56). 2021.3.5 Preliminary support for EER format (#68). Do not warn about unknown compression (#68). 2021.3.4 Fix reading multi-file, multi-series OME-TIFF (#67). Detect ScanImage 2021 files (#46). Shape new version ScanImage series according to metadata (breaking). Remove Description key from TiffFile.scanimage_metadata dict (breaking). Also return ScanImage version from read_scanimage_metadata (breaking). Fix docstrings. 2021.2.26 Squeeze axes of LSM series by default (breaking). Add option to preserve single dimensions when reading from series (WIP). Do not allow appending to OME-TIFF files. Fix reading STK files without name attribute in metadata. Make TIFF constants multi-thread safe and pickleable (#64). Add detection of NDTiffStorage MajorVersion to read_micromanager_metadata. Support ScanImage v4 files in read_scanimage_metadata. 2021.2.1 Fix multi-threaded access of ZarrTiffStores using same TiffFile instance. Use fallback zlib and lzma codecs with imagecodecs lite builds. Open Olympus and Panasonic RAW files for parsing, albeit not supported. Support X2 and X4 differencing found in DNG. Support reading JPEG_LOSSY compression found in DNG. 2021.1.14 Try ImageJ series if OME series fails (#54) Add option to use pages as chunks in ZarrFileStore (experimental). Fix reading from file objects with no readinto function. 2021.1.11 Fix test errors on PyPy. Fix decoding bitorder with imagecodecs >= 2021.1.11. 2021.1.8 Decode float24 using imagecodecs >= 2021.1.8. Consolidate reading of segments if possible. 2020.12.8 Fix corrupted ImageDescription in multi shaped series if buffer too small. Fix libtiff warning that ImageDescription contains null byte in value. Fix reading invalid files using JPEG compression with palette colorspace. 2020.12.4 Fix reading some JPEG compressed CFA images. Make index of SubIFDs a tuple. Pass through FileSequence.imread arguments in imread. Do not apply regex flags to FileSequence axes patterns (breaking). 2020.11.26 Add option to pass axes metadata to ImageJ writer. Pad incomplete tiles passed to TiffWriter.write (#38). Split TiffTag constructor (breaking). Change TiffTag.dtype to TIFF.DATATYPES (breaking). Add TiffTag.overwrite method. Add script to change ImageDescription in files. Add TiffWriter.overwrite_description method (WIP). 2020.11.18 Support writing SEPARATED color space (#37). Use imagecodecs.deflate codec if available. Fix SCN and NDPI series with Z dimensions. Add TiffReader alias for TiffFile. TiffPage.is_volumetric returns True if ImageDepth > 1. Zarr store getitem returns numpy arrays instead of bytes. 2020.10.1 Formally deprecate unused TiffFile parameters (scikit-image #4996). 2020.9.30 Allow to pass additional arguments to compression codecs. Deprecate TiffWriter.save method (use TiffWriter.write). Deprecate TiffWriter.save compress parameter (use compression). Remove multifile parameter from TiffFile (breaking). Pass all is_flag arguments from imread to TiffFile. Do not byte-swap JPEG2000, WEBP, PNG, JPEGXR segments in TiffPage.decode. 2020.9.29 Fix reading files produced by ScanImage > 2015 (#29). 2020.9.28 Derive ZarrStore from MutableMapping. Support zero shape ZarrTiffStore. Fix ZarrFileStore with non-TIFF files. Fix ZarrFileStore with missing files. Cache one chunk in ZarrFileStore. Keep track of already opened files in FileCache. Change parse_filenames function to return zero-based indices. Remove reopen parameter from asarray (breaking). Rename FileSequence.fromfile to imread (breaking). 2020.9.22 Add experimental zarr storage interface (WIP). Remove unused first dimension from TiffPage.shaped (breaking). Move reading of STK planes to series interface (breaking). Always use virtual frames for ScanImage files. Use DimensionOrder to determine axes order in OmeXml. Enable writing striped volumetric images. Keep complete dataoffsets and databytecounts for TiffFrames. Return full size tiles from Tiffpage.segments. Rename TiffPage.is_sgi property to is_volumetric (breaking). Rename TiffPageSeries.is_pyramid to is_pyramidal (breaking). Fix TypeError when passing jpegtables to non-JPEG decode method (#25). 2020.9.3 Do not write contiguous series by default (breaking). Allow to write to SubIFDs (WIP). Fix writing F-contiguous numpy arrays (#24). 2020.8.25 Do not convert EPICS timeStamp to datetime object. Read incompletely written Micro-Manager image file stack header (#23). Remove tag 51123 values from TiffFile.micromanager_metadata (breaking). 2020.8.13 Use tifffile metadata over OME and ImageJ for TiffFile.series (breaking). Fix writing iterable of pages with compression (#20). Expand error checking of TiffWriter data, dtype, shape, and tile arguments. 2020.7.24 Parse nested OmeXml metadata argument (WIP). Do not lazy load TiffFrame JPEGTables. Fix conditionally skipping some tests. 2020.7.22 Do not auto-enable OME-TIFF if description is passed to TiffWriter.save. Raise error writing empty bilevel or tiled images. Allow to write tiled bilevel images. Allow to write multi-page TIFF from iterable of single page images (WIP). Add function to validate OME-XML. Correct Philips slide width and length. 2020.7.17 Initial support for writing OME-TIFF (WIP). Return samples as separate dimension in OME series (breaking). Fix modulo dimensions for multiple OME series. Fix some test errors on big endian systems (#18). Fix BytesWarning. Allow to pass TIFF.PREDICTOR values to TiffWriter.save. 2020.7.4 Deprecate support for Python 3.6 (NEP 29). Move pyramidal subresolution series to TiffPageSeries.levels (breaking). Add parser for SVS, SCN, NDPI, and QPI pyramidal series. Read single-file OME-TIFF pyramids. Read NDPI files > 4 GB (#15). Include SubIFDs in generic series. Preliminary support for writing packed integer arrays (#11, WIP). Read more LSM info subrecords. Fix missing ReferenceBlackWhite tag for YCbCr photometrics. Fix reading lossless JPEG compressed DNG files. 2020.6.3 Support os.PathLike file names (#9). 2020.5.30 Re-add pure Python PackBits decoder. 2020.5.25 Make imagecodecs an optional dependency again. Disable multi-threaded decoding of small LZW compressed segments. Fix caching of TiffPage.decode method. Fix xml.etree.cElementTree ImportError on Python 3.9. Fix tostring DeprecationWarning. 2020.5.11 Fix reading ImageJ grayscale mode RGB images (#6). Remove napari reader plugin. 2020.5.7 Add napari reader plugin (tentative). Fix writing single tiles larger than image data (#3). Always store ExtraSamples values in tuple (breaking). 2020.5.5 Allow to write tiled TIFF from iterable of tiles (WIP). Add method to iterate over decoded segments of TiffPage (WIP). Pass chunks of segments to ThreadPoolExecutor.map to reduce memory usage. Fix reading invalid files with too many strips. Fix writing over-aligned image data. Detect OME-XML without declaration (#2). Support LERC compression (WIP). Delay load imagecodecs functions. Remove maxsize parameter from asarray (breaking). Deprecate ijmetadata parameter from TiffWriter.save (use metadata). 2020.2.16 Add method to decode individual strips or tiles. Read strips and tiles in order of their offsets. Enable multi-threading when decompressing multiple strips. Replace TiffPage.tags dictionary with TiffTags (breaking). Replace TIFF.TAGS dictionary with TiffTagRegistry. Remove TIFF.TAG_NAMES (breaking). Improve handling of TiffSequence parameters in imread. Match last uncommon parts of file paths to FileSequence pattern (breaking). Allow letters in FileSequence pattern for indexing well plate rows. Allow to reorder axes in FileSequence. Allow to write > 4 GB arrays to plain TIFF when using compression. Allow to write zero size numpy arrays to nonconformant TIFF (tentative). Fix xml2dict. Require imagecodecs >= 2020.1.31. Remove support for imagecodecs-lite (breaking). Remove verify parameter to asarray method (breaking). Remove deprecated lzw_decode functions (breaking). Remove support for Python 2.7 and 3.5 (breaking). 2019.7.26 Fix infinite loop reading more than two tags of same code in IFD. Delay import of logging module. 2019.7.20 Fix OME-XML detection for files created by Imaris. Remove or replace assert statements. 2019.7.2 Do not write SampleFormat tag for unsigned data types. Write ByteCount tag values as SHORT or LONG if possible. Allow to specify axes in FileSequence pattern via group names. Add option to concurrently read FileSequence using threads. Derive TiffSequence from FileSequence. Use str(datetime.timedelta) to format Timer duration. Use perf_counter for Timer if possible. 2019.6.18 Fix reading planar RGB ImageJ files created by Bio-Formats. Fix reading single-file, multi-image OME-TIFF without UUID. Presume LSM stores uncompressed images contiguously per page. Reformat some complex expressions. 2019.5.30 Ignore invalid frames in OME-TIFF. Set default subsampling to (2, 2) for RGB JPEG compression. Fix reading and writing planar RGB JPEG compression. Replace buffered_read with FileHandle.read_segments. Include page or frame numbers in exceptions and warnings. Add Timer class. 2019.5.22 Add optional chroma subsampling for JPEG compression. Enable writing PNG, JPEG, JPEGXR, and JPEG2K compression (WIP). Fix writing tiled images with WebP compression. Improve handling GeoTIFF sparse files. 2019.3.18 Fix regression decoding JPEG with RGB photometrics. Fix reading OME-TIFF files with corrupted but unused pages. Allow to load TiffFrame without specifying keyframe. Calculate virtual TiffFrames for non-BigTIFF ScanImage files > 2GB. Rename property is_chroma_subsampled to is_subsampled (breaking). Make more attributes and methods private (WIP). 2019.3.8 Fix MemoryError when RowsPerStrip > ImageLength. Fix SyntaxWarning on Python 3.8. Fail to decode JPEG to planar RGB (tentative). Separate public from private test files (WIP). Allow testing without data files or imagecodecs. 2019.2.22 Use imagecodecs-lite as a fallback for imagecodecs. Simplify reading numpy arrays from file. Use TiffFrames when reading arrays from page sequences. Support slices and iterators in TiffPageSeries sequence interface. Auto-detect uniform series. Use page hash to determine generic series. Turn off TiffPages cache (tentative). Pass through more parameters in imread. Discontinue movie parameter in imread and TiffFile (breaking). Discontinue bigsize parameter in imwrite (breaking). Raise TiffFileError in case of issues with TIFF structure. Return TiffFile.ome_metadata as XML (breaking). Ignore OME series when last dimensions are not stored in TIFF pages. 2019.2.10 Assemble IFDs in memory to speed-up writing on some slow media. Handle discontinued arguments fastij, multifile_close, and pages. 2019.1.30 Use black background in imshow. Do not write datetime tag by default (breaking). Fix OME-TIFF with SamplesPerPixel > 1. Allow 64-bit IFD offsets for NDPI (files > 4GB still not supported). 2019.1.4 Fix decoding deflate without imagecodecs. 2019.1.1 Update copyright year. Require imagecodecs >= 2018.12.16. Do not use JPEG tables from keyframe. Enable decoding large JPEG in NDPI. Decode some old-style JPEG. Reorder OME channel axis to match PlanarConfiguration storage. Return tiled images as contiguous arrays. Add decode_lzw proxy function for compatibility with old czifile module. Use dedicated logger. 2018.11.28 Make SubIFDs accessible as TiffPage.pages. Make parsing of TiffSequence axes pattern optional (breaking). Limit parsing of TiffSequence axes pattern to file names, not path names. Do not interpolate in imshow if image dimensions <= 512, else use bilinear. Use logging.warning instead of warnings.warn in many cases. Fix numpy FutureWarning for out == 'memmap'. Adjust ZSTD and WebP compression to libtiff-4.0.10 (WIP). Decode old-style LZW with imagecodecs >= 2018.11.8. Remove TiffFile.qptiff_metadata (QPI metadata are per page). Do not use keyword arguments before variable positional arguments. Make either all or none return statements in a function return expression. Use pytest parametrize to generate tests. Replace test classes with functions. 2018.11.6 Rename imsave function to imwrite. Readd Python implementations of packints, delta, and bitorder codecs. Fix TiffFrame.compression AttributeError. 2018.10.18 Rename tiffile package to tifffile. 2018.10.10 Read ZIF, the Zoomable Image Format (WIP). Decode YCbCr JPEG as RGB (tentative). Improve restoration of incomplete tiles. Allow to write grayscale with extrasamples without specifying planarconfig. Enable decoding of PNG and JXR via imagecodecs. Deprecate 32-bit platforms (too many memory errors during tests). 2018.9.27 Read Olympus SIS (WIP). Allow to write non-BigTIFF files up to ~4 GB (fix). Fix parsing date and time fields in SEM metadata. Detect some circular IFD references. Enable WebP codecs via imagecodecs. Add option to read TiffSequence from ZIP containers. Remove TiffFile.isnative. Move TIFF struct format constants out of TiffFile namespace. 2018.8.31 Fix wrong TiffTag.valueoffset. Towards reading Hamamatsu NDPI (WIP). Enable PackBits compression of byte and bool arrays. Fix parsing NULL terminated CZ_SEM strings. 2018.8.24 Move tifffile.py and related modules into tiffile package. Move usage examples to module docstring. Enable multi-threading for compressed tiles and pages by default. Add option to concurrently decode image tiles using threads. Do not skip empty tiles (fix). Read JPEG and J2K compressed strips and tiles. Allow floating-point predictor on write. Add option to specify subfiletype on write. Depend on imagecodecs package instead of _tifffile, lzma, etc modules. Remove reverse_bitorder, unpack_ints, and decode functions. Use pytest instead of unittest. 2018.6.20 Save RGBA with unassociated extrasample by default (breaking). Add option to specify ExtraSamples values. 2018.6.17 (included with 0.15.1) Towards reading JPEG and other compressions via imagecodecs package (WIP). Read SampleFormat VOID as UINT. Add function to validate TIFF using 'jhove -m TIFF-hul'. Save bool arrays as bilevel TIFF. Accept pathlib.Path as filenames. Move 'software' argument from TiffWriter __init__ to save. Raise DOS limit to 16 TB. Lazy load LZMA and ZSTD compressors and decompressors. Add option to save IJMetadata tags. Return correct number of pages for truncated series (fix). Move EXIF tags to TIFF.TAG as per TIFF/EP standard. 2018.2.18 Always save RowsPerStrip and Resolution tags as required by TIFF standard. Do not use badly typed ImageDescription. Coerce bad ASCII string tags to bytes. Tuning of __str__ functions. Fix reading 'undefined' tag values. Read and write ZSTD compressed data. Use hexdump to print bytes. Determine TIFF byte order from data dtype in imsave. Add option to specify RowsPerStrip for compressed strips. Allow memory-map of arrays with non-native byte order. Attempt to handle ScanImage <= 5.1 files. Restore TiffPageSeries.pages sequence interface. Use numpy.frombuffer instead of fromstring to read from binary data. Parse GeoTIFF metadata. Add option to apply horizontal differencing before compression. Towards reading PerkinElmer QPI (QPTIFF, no test files). Do not index out of bounds data in tifffile.c unpackbits and decodelzw. 2017.9.29 Many backward incompatible changes improving speed and resource usage: Add detail argument to __str__ function. Remove info functions. Fix potential issue correcting offsets of large LSM files with positions. Remove TiffFile sequence interface; use TiffFile.pages instead. Do not make tag values available as TiffPage attributes. Use str (not bytes) type for tag and metadata strings (WIP). Use documented standard tag and value names (WIP). Use enums for some documented TIFF tag values. Remove 'memmap' and 'tmpfile' options; use out='memmap' instead. Add option to specify output in asarray functions. Add option to concurrently decode pages using threads. Add TiffPage.asrgb function (WIP). Do not apply colormap in asarray. Remove 'colormapped', 'rgbonly', and 'scale_mdgel' options from asarray. Consolidate metadata in TiffFile _metadata functions. Remove non-tag metadata properties from TiffPage. Add function to convert LSM to tiled BIN files. Align image data in file. Make TiffPage.dtype a numpy.dtype. Add 'ndim' and 'size' properties to TiffPage and TiffPageSeries. Allow imsave to write non-BigTIFF files up to ~4 GB. Only read one page for shaped series if possible. Add memmap function to create memory-mapped array stored in TIFF file. Add option to save empty arrays to TIFF files. Add option to save truncated TIFF files. Allow single tile images to be saved contiguously. Add optional movie mode for files with uniform pages. Lazy load pages. Use lightweight TiffFrame for IFDs sharing properties with key TiffPage. Move module constants to 'TIFF' namespace (speed up module import). Remove 'fastij' option from TiffFile. Remove 'pages' parameter from TiffFile. Remove TIFFfile alias. Deprecate Python 2. Require enum34 and futures packages on Python 2.7. Remove Record class and return all metadata as dict instead. Add functions to parse STK, MetaSeries, ScanImage, SVS, Pilatus metadata. Read tags from EXIF and GPS IFDs. Use pformat for tag and metadata values. Fix reading some UIC tags. Do not modify input array in imshow (fix). Fix Python implementation of unpack_ints. 2017.5.23 Write correct number of SampleFormat values (fix). Use Adobe deflate code to write ZIP compressed files. Add option to pass tag values as packed binary data for writing. Defer tag validation to attribute access. Use property instead of lazyattr decorator for simple expressions. 2017.3.17 Write IFDs and tag values on word boundaries. Read ScanImage metadata. Remove is_rgb and is_indexed attributes from TiffFile. Create files used by doctests. 2017.1.12 (included with scikit-image 0.14.x) Read Zeiss SEM metadata. Read OME-TIFF with invalid references to external files. Rewrite C LZW decoder (5x faster). Read corrupted LSM files missing EOI code in LZW stream. 2017.1.1 Add option to append images to existing TIFF files. Read files without pages. Read S-FEG and Helios NanoLab tags created by FEI software. Allow saving Color Filter Array (CFA) images. Add info functions returning more information about TiffFile and TiffPage. Add option to read specific pages only. Remove maxpages argument (breaking). Remove test_tifffile function. 2016.10.28 Improve detection of ImageJ hyperstacks. Read TVIPS metadata created by EM-MENU (by Marco Oster). Add option to disable using OME-XML metadata. Allow non-integer range attributes in modulo tags (by Stuart Berg). 2016.6.21 Do not always memmap contiguous data in page series. 2016.5.13 Add option to specify resolution unit. Write grayscale images with extra samples when planarconfig is specified. Do not write RGB color images with 2 samples. Reorder TiffWriter.save keyword arguments (breaking). 2016.4.18 TiffWriter, imread, and imsave accept open binary file streams. 2016.04.13 Fix reversed fill order in 2 and 4 bps images. Implement reverse_bitorder in C. 2016.03.18 Fix saving additional ImageJ metadata. 2016.2.22 Write 8 bytes double tag values using offset if necessary (bug fix). Add option to disable writing second image description tag. Detect tags with incorrect counts. Disable color mapping for LSM. 2015.11.13 Read LSM 6 mosaics. Add option to specify directory of memory-mapped files. Add command line options to specify vmin and vmax values for colormapping. 2015.10.06 New helper function to apply colormaps. Renamed is_palette attributes to is_indexed (breaking). Color-mapped samples are now contiguous (breaking). Do not color-map ImageJ hyperstacks (breaking). Towards reading Leica SCN. 2015.9.25 Read images with reversed bit order (FillOrder is LSB2MSB). 2015.9.21 Read RGB OME-TIFF. Warn about malformed OME-XML. 2015.9.16 Detect some corrupted ImageJ metadata. Better axes labels for 'shaped' files. Do not create TiffTag for default values. Chroma subsampling is not supported. Memory-map data in TiffPageSeries if possible (optional). 2015.8.17 Write ImageJ hyperstacks (optional). Read and write LZMA compressed data. Specify datetime when saving (optional). Save tiled and color-mapped images (optional). Ignore void bytecounts and offsets if possible. Ignore bogus image_depth tag created by ISS Vista software. Decode floating-point horizontal differencing (not tiled). Save image data contiguously if possible. Only read first IFD from ImageJ files if possible. Read ImageJ 'raw' format (files larger than 4 GB). TiffPageSeries class for pages with compatible shape and data type. Try to read incomplete tiles. Open file dialog if no filename is passed on command line. Ignore errors when decoding OME-XML. Rename decoder functions (breaking). 2014.8.24 TiffWriter class for incremental writing images. Simplify examples. 2014.8.19 Add memmap function to FileHandle. Add function to determine if image data in TiffPage is memory-mappable. Do not close files if multifile_close parameter is False. 2014.8.10 Return all extrasamples by default (breaking). Read data from series of pages into memory-mapped array (optional). Squeeze OME dimensions (breaking). Workaround missing EOI code in strips. Support image and tile depth tags (SGI extension). Better handling of STK/UIC tags (breaking). Disable color mapping for STK. Julian to datetime converter. TIFF ASCII type may be NULL separated. Unwrap strip offsets for LSM files greater than 4 GB. Correct strip byte counts in compressed LSM files. Skip missing files in OME series. Read embedded TIFF files. 2014.2.05 Save rational numbers as type 5 (bug fix). 2013.12.20 Keep other files in OME multi-file series closed. FileHandle class to abstract binary file handle. Disable color mapping for bad OME-TIFF produced by bio-formats. Read bad OME-XML produced by ImageJ when cropping. 2013.11.3 Allow zlib compress data in imsave function (optional). Memory-map contiguous image data (optional). 2013.10.28 Read MicroManager metadata and little-endian ImageJ tag. Save extra tags in imsave function. Save tags in ascending order by code (bug fix). 2012.10.18 Accept file like objects (read from OIB files). 2012.8.21 Rename TIFFfile to TiffFile and TIFFpage to TiffPage. TiffSequence class for reading sequence of TIFF files. Read UltraQuant tags. Allow float numbers as resolution in imsave function. 2012.8.3 Read MD GEL tags and NIH Image header. 2012.7.25 Read ImageJ tags. ...././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1644445975.0 tifffile-2022.2.9/LICENSE0000666000000000000000000000302700000000000011442 0ustar00BSD 3-Clause License Copyright (c) 2008-2022, Christoph Gohlke All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1633797410.0 tifffile-2022.2.9/MANIFEST.in0000666000000000000000000000060200000000000012167 0ustar00include LICENSE include README.rst include CHANGES.rst include ACKNOWLEDGEMENTS.rst # include tiffile.py # include setup_tiffile.py include tests/conftest.py include tests/test_tifffile.py include examples/earthbigdata.py recursive-exclude * __pycache__ recursive-exclude * *.py[co] recursive-exclude * *- recursive-exclude test/data * recursive-exclude test/_tmp * ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1644445976.2450676 tifffile-2022.2.9/PKG-INFO0000666000000000000000000007416200000000000011542 0ustar00Metadata-Version: 2.1 Name: tifffile Version: 2022.2.9 Summary: Read and write TIFF files Home-page: https://www.lfd.uci.edu/~gohlke/ Author: Christoph Gohlke Author-email: cgohlke@uci.edu License: BSD Project-URL: Bug Tracker, https://github.com/cgohlke/tifffile/issues Project-URL: Source Code, https://github.com/cgohlke/tifffile Platform: any Classifier: Development Status :: 4 - Beta Classifier: License :: OSI Approved :: BSD License Classifier: Intended Audience :: Science/Research Classifier: Intended Audience :: Developers Classifier: Operating System :: OS Independent Classifier: Programming Language :: Python :: 3 :: Only Classifier: Programming Language :: Python :: 3.8 Classifier: Programming Language :: Python :: 3.9 Classifier: Programming Language :: Python :: 3.10 Requires-Python: >=3.8 Provides-Extra: all License-File: LICENSE Read and write TIFF files ========================= Tifffile is a Python library to (1) store numpy arrays in TIFF (Tagged Image File Format) files, and (2) read image and metadata from TIFF-like files used in bioimaging. Image and metadata can be read from TIFF, BigTIFF, OME-TIFF, STK, LSM, SGI, NIHImage, ImageJ, MicroManager, FluoView, ScanImage, SEQ, GEL, SVS, SCN, SIS, BIF, ZIF (Zoomable Image File Format), QPTIFF (QPI), NDPI, and GeoTIFF files. Image data can be read as numpy arrays or zarr arrays/groups from strips, tiles, pages (IFDs), SubIFDs, higher order series, and pyramidal levels. Numpy arrays can be written to TIFF, BigTIFF, OME-TIFF, and ImageJ hyperstack compatible files in multi-page, volumetric, pyramidal, memory-mappable, tiled, predicted, or compressed form. A subset of the TIFF specification is supported, mainly 8, 16, 32 and 64-bit integer, 16, 32 and 64-bit float, grayscale and multi-sample images. Specifically, CCITT and OJPEG compression, chroma subsampling without JPEG compression, color space transformations, samples with differing types, or IPTC, ICC, and XMP metadata are not implemented. TIFF, the Tagged Image File Format, was created by the Aldus Corporation and Adobe Systems Incorporated. BigTIFF allows for files larger than 4 GB. STK, LSM, FluoView, SGI, SEQ, GEL, QPTIFF, NDPI, SCN, SVS, ZIF, BIF, and OME-TIFF, are custom extensions defined by Molecular Devices (Universal Imaging Corporation), Carl Zeiss MicroImaging, Olympus, Silicon Graphics International, Media Cybernetics, Molecular Dynamics, PerkinElmer, Hamamatsu, Leica, ObjectivePathology, Roche Digital Pathology, and the Open Microscopy Environment consortium, respectively. For command line usage run ``python -m tifffile --help`` :Author: `Christoph Gohlke `_ :Organization: Laboratory for Fluorescence Dynamics, University of California, Irvine :License: BSD 3-Clause :Version: 2022.2.9 Requirements ------------ This release has been tested with the following requirements and dependencies (other versions may work): * `CPython 3.8.10, 3.9.10, 3.10.2, 64-bit `_ * `Numpy 1.21.5 `_ * `Imagecodecs 2021.11.20 `_ (required only for encoding or decoding LZW, JPEG, etc.) * `Matplotlib 3.4.3 `_ (required only for plotting) * `Lxml 4.7.1 `_ (required only for validating and printing XML) * `Zarr 2.11.0 `_ (required only for opening zarr storage) Revisions --------- 2022.2.9 Pass 4734 tests. Fix ValueError using multiscale ZarrStore with zarr >= 2.11.0. Raise KeyError if ZarrStore does not contain key. Limit number of warnings for missing files in multifile series. Allow to save colormap to 32-bit ImageJ files (#115). 2022.2.2 Fix TypeError when second ImageDescription tag contains non-ASCII (#112). Fix parsing IJMetadata with many IJMetadataByteCounts (#111). Detect MicroManager NDTiffv2 header (not tested). Remove cache from ZarrFileSequenceStore (use zarr.LRUStoreCache). Raise limit on maximum number of pages. Use J2K format when encoding JPEG2000 segments. Formally deprecate imsave and TiffWriter.save. Drop support for Python 3.7 and numpy < 1.19 (NEP29). 2021.11.2 Lazy-load non-essential tag values (breaking). Warn when reading from closed file. Support ImageJ 'prop' metadata type (#103). Support writing indexed ImageJ format. Fix multi-threaded access of multi-page Zarr stores with chunkmode 2. Raise error if truncate is used with compression, packints, or tile. Read STK metadata without UIC2tag. Improve log and warning messages (WIP). Improve string representation of large tag values. 2021.10.12 Revert renaming of 'file' parameter in FileSequence.asarray (breaking). Deprecate 'file' parameter in FileSequence.asarray. 2021.10.10 Disallow letters as indices in FileSequence; use categories (breaking). Do not warn of missing files in FileSequence; use files_missing property. Support predictors in ZarrTiffStore.write_fsspec. Add option to specify zarr group name in write_fsspec. Add option to specify categories for FileSequence patterns (#76). Add option to specify chunk shape and dtype for ZarrFileSequenceStore. Add option to tile ZarrFileSequenceStore and FileSequence.asarray. Add option to pass additional zattrs to Zarr stores. Detect Roche BIF files. 2021.8.30 Fix horizontal differencing with non-native byte order. Fix multi-threaded access of memory-mappable, multi-page Zarr stores (#67). 2021.8.8 Fix tag offset and valueoffset for NDPI > 4 GB (#96). 2021.7.30 Deprecate first parameter to TiffTag.overwrite (no longer required). TiffTag init API change (breaking). Detect Ventana BIF series and warn that tiles are not stitched. Enable reading PreviewImage from RAW formats (#93, #94). Work around numpy.ndarray.tofile is very slow for non-contiguous arrays. Fix issues with PackBits compression (requires imagecodecs 2021.7.30). 2021.7.2 Decode complex integer images found in SAR GeoTIFF. Support reading NDPI with JPEG-XR compression. Deprecate TiffWriter RGB auto-detection, except for RGB24/48 and RGBA32/64. 2021.6.14 Set stacklevel for deprecation warnings (#89). Fix svs_description_metadata for SVS with double header (#88, breaking). Fix reading JPEG compressed CMYK images. Support ALT_JPEG and JPEG_2000_LOSSY compression found in Bio-Formats. Log warning if TiffWriter auto-detects RGB mode (specify photometric). 2021.6.6 Fix TIFF.COMPESSOR typo (#85). Round resolution numbers that do not fit in 64-bit rationals (#81). Add support for JPEG XL compression. Add numcodecs compatible TIFF codec. Rename ZarrFileStore to ZarrFileSequenceStore (breaking). Add method to export fsspec ReferenceFileSystem from ZarrFileStore. Fix fsspec ReferenceFileSystem v1 for multifile series. Fix creating OME-TIFF with micron character in OME-XML. 2021.4.8 Fix reading OJPEG with wrong photometric or samplesperpixel tags (#75). Fix fsspec ReferenceFileSystem v1 and JPEG compression. Use TiffTagRegistry for NDPI_TAGS, EXIF_TAGS, GPS_TAGS, IOP_TAGS constants. Make TIFF.GEO_KEYS an Enum (breaking). 2021.3.31 Use JPEG restart markers as tile offsets in NDPI. Support version 1 and more codecs in fsspec ReferenceFileSystem (untested). 2021.3.17 Fix regression reading multi-file OME-TIFF with missing files (#72). Fix fsspec ReferenceFileSystem with non-native byte order (#56). 2021.3.16 TIFF is no longer a defended trademark. Add method to export fsspec ReferenceFileSystem from ZarrTiffStore (#56). 2021.3.5 Preliminary support for EER format (#68). Do not warn about unknown compression (#68). 2021.3.4 Fix reading multi-file, multi-series OME-TIFF (#67). Detect ScanImage 2021 files (#46). Shape new version ScanImage series according to metadata (breaking). Remove Description key from TiffFile.scanimage_metadata dict (breaking). Also return ScanImage version from read_scanimage_metadata (breaking). Fix docstrings. 2021.2.26 Squeeze axes of LSM series by default (breaking). Add option to preserve single dimensions when reading from series (WIP). Do not allow appending to OME-TIFF files. Fix reading STK files without name attribute in metadata. Make TIFF constants multi-thread safe and pickleable (#64). Add detection of NDTiffStorage MajorVersion to read_micromanager_metadata. Support ScanImage v4 files in read_scanimage_metadata. 2021.2.1 Fix multi-threaded access of ZarrTiffStores using same TiffFile instance. Use fallback zlib and lzma codecs with imagecodecs lite builds. Open Olympus and Panasonic RAW files for parsing, albeit not supported. Support X2 and X4 differencing found in DNG. Support reading JPEG_LOSSY compression found in DNG. 2021.1.14 Try ImageJ series if OME series fails (#54) Add option to use pages as chunks in ZarrFileStore (experimental). Fix reading from file objects with no readinto function. 2021.1.11 Fix test errors on PyPy. Fix decoding bitorder with imagecodecs >= 2021.1.11. 2021.1.8 Decode float24 using imagecodecs >= 2021.1.8. Consolidate reading of segments if possible. 2020.12.8 Fix corrupted ImageDescription in multi shaped series if buffer too small. Fix libtiff warning that ImageDescription contains null byte in value. Fix reading invalid files using JPEG compression with palette colorspace. 2020.12.4 Fix reading some JPEG compressed CFA images. Make index of SubIFDs a tuple. Pass through FileSequence.imread arguments in imread. Do not apply regex flags to FileSequence axes patterns (breaking). 2020.11.26 Add option to pass axes metadata to ImageJ writer. Pad incomplete tiles passed to TiffWriter.write (#38). Split TiffTag constructor (breaking). Change TiffTag.dtype to TIFF.DATATYPES (breaking). Add TiffTag.overwrite method. Add script to change ImageDescription in files. Add TiffWriter.overwrite_description method (WIP). 2020.11.18 Support writing SEPARATED color space (#37). Use imagecodecs.deflate codec if available. Fix SCN and NDPI series with Z dimensions. Add TiffReader alias for TiffFile. TiffPage.is_volumetric returns True if ImageDepth > 1. Zarr store getitem returns numpy arrays instead of bytes. 2020.10.1 Formally deprecate unused TiffFile parameters (scikit-image #4996). 2020.9.30 Allow to pass additional arguments to compression codecs. Deprecate TiffWriter.save method (use TiffWriter.write). Deprecate TiffWriter.save compress parameter (use compression). Remove multifile parameter from TiffFile (breaking). Pass all is_flag arguments from imread to TiffFile. Do not byte-swap JPEG2000, WEBP, PNG, JPEGXR segments in TiffPage.decode. 2020.9.29 Fix reading files produced by ScanImage > 2015 (#29). 2020.9.28 Derive ZarrStore from MutableMapping. Support zero shape ZarrTiffStore. Fix ZarrFileStore with non-TIFF files. Fix ZarrFileStore with missing files. Cache one chunk in ZarrFileStore. Keep track of already opened files in FileCache. Change parse_filenames function to return zero-based indices. Remove reopen parameter from asarray (breaking). Rename FileSequence.fromfile to imread (breaking). 2020.9.22 Add experimental zarr storage interface (WIP). Remove unused first dimension from TiffPage.shaped (breaking). Move reading of STK planes to series interface (breaking). Always use virtual frames for ScanImage files. Use DimensionOrder to determine axes order in OmeXml. Enable writing striped volumetric images. Keep complete dataoffsets and databytecounts for TiffFrames. Return full size tiles from Tiffpage.segments. Rename TiffPage.is_sgi property to is_volumetric (breaking). Rename TiffPageSeries.is_pyramid to is_pyramidal (breaking). Fix TypeError when passing jpegtables to non-JPEG decode method (#25). 2020.9.3 Do not write contiguous series by default (breaking). Allow to write to SubIFDs (WIP). Fix writing F-contiguous numpy arrays (#24). 2020.8.25 Do not convert EPICS timeStamp to datetime object. Read incompletely written Micro-Manager image file stack header (#23). Remove tag 51123 values from TiffFile.micromanager_metadata (breaking). 2020.8.13 Use tifffile metadata over OME and ImageJ for TiffFile.series (breaking). Fix writing iterable of pages with compression (#20). Expand error checking of TiffWriter data, dtype, shape, and tile arguments. 2020.7.24 Parse nested OmeXml metadata argument (WIP). Do not lazy load TiffFrame JPEGTables. Fix conditionally skipping some tests. 2020.7.22 Do not auto-enable OME-TIFF if description is passed to TiffWriter.save. Raise error writing empty bilevel or tiled images. Allow to write tiled bilevel images. Allow to write multi-page TIFF from iterable of single page images (WIP). Add function to validate OME-XML. Correct Philips slide width and length. 2020.7.17 Initial support for writing OME-TIFF (WIP). Return samples as separate dimension in OME series (breaking). Fix modulo dimensions for multiple OME series. Fix some test errors on big endian systems (#18). Fix BytesWarning. Allow to pass TIFF.PREDICTOR values to TiffWriter.save. 2020.7.4 Deprecate support for Python 3.6 (NEP 29). Move pyramidal subresolution series to TiffPageSeries.levels (breaking). Add parser for SVS, SCN, NDPI, and QPI pyramidal series. Read single-file OME-TIFF pyramids. Read NDPI files > 4 GB (#15). Include SubIFDs in generic series. Preliminary support for writing packed integer arrays (#11, WIP). Read more LSM info subrecords. Fix missing ReferenceBlackWhite tag for YCbCr photometrics. Fix reading lossless JPEG compressed DNG files. 2020.6.3 ... Refer to the CHANGES file for older revisions. Notes ----- The API is not stable yet and might change between revisions. Tested on little-endian platforms only. Python 32-bit versions are deprecated. Python <= 3.7 are no longer supported. Tifffile relies on the `imagecodecs `_ package for encoding and decoding LZW, JPEG, and other compressed image segments. Several TIFF-like formats do not strictly adhere to the TIFF6 specification, some of which allow file or data sizes to exceed the 4 GB limit: * *BigTIFF* is identified by version number 43 and uses different file header, IFD, and tag structures with 64-bit offsets. It adds more data types. Tifffile can read and write BigTIFF files. * *ImageJ hyperstacks* store all image data, which may exceed 4 GB, contiguously after the first IFD. Files > 4 GB contain one IFD only. The size (shape and dtype) of the up to 6-dimensional image data can be determined from the ImageDescription tag of the first IFD, which is Latin-1 encoded. Tifffile can read and write ImageJ hyperstacks. * *OME-TIFF* stores up to 8-dimensional data in one or multiple TIFF of BigTIFF files. The 8-bit UTF-8 encoded OME-XML metadata found in the ImageDescription tag of the first IFD defines the position of TIFF IFDs in the high dimensional data. Tifffile can read OME-TIFF files, except when the OME-XML metadata are stored in a separate file. Tifffile can write numpy arrays to single-file OME-TIFF. * *LSM* stores all IFDs below 4 GB but wraps around 32-bit StripOffsets. The StripOffsets of each series and position require separate unwrapping. The StripByteCounts tag contains the number of bytes for the uncompressed data. Tifffile can read large LSM files. * *STK* (MetaMorph Stack) contains additional image planes stored contiguously after the image data of the first page. The total number of planes is equal to the counts of the UIC2tag. Tifffile can read STK files. * *Hamamatsu NDPI* uses some 64-bit offsets in the file header, IFD, and tag structures. Tag values/offsets can be corrected using high bits stored after IFD structures. Tifffile can read NDPI files > 4 GB. JPEG compressed segments with dimensions >65530 or missing restart markers are not decodable with libjpeg. Tifffile works around this limitation by separately decoding the MCUs between restart markers. BitsPerSample, SamplesPerPixel, and PhotometricInterpretation tags may contain wrong values, which can be corrected using the value of tag 65441. * *Philips TIFF* slides store wrong ImageWidth and ImageLength tag values for tiled pages. The values can be corrected using the DICOM_PIXEL_SPACING attributes of the XML formatted description of the first page. Tifffile can read Philips slides. * *Ventana/Roche BIF* slides store tiles and metadata in a BigTIFF container. Tiles may overlap and require stitching based on the TileJointInfo elements in the XMP tag. Volumetric scans are stored using the ImageDepth extension. Tifffile can read BIF and decode individual tiles, but does not perform stitching. * *ScanImage* optionally allows corrupted non-BigTIFF files > 2 GB. The values of StripOffsets and StripByteCounts can be recovered using the constant differences of the offsets of IFD and tag values throughout the file. Tifffile can read such files if the image data are stored contiguously in each page. * *GeoTIFF* sparse files allow strip or tile offsets and byte counts to be 0. Such segments are implicitly set to 0 or the NODATA value on reading. Tifffile can read GeoTIFF sparse files. Other libraries for reading scientific TIFF files from Python: * `Python-bioformats `_ * `Imread `_ * `GDAL `_ * `OpenSlide-python `_ * `Slideio `_ * `PyLibTiff `_ * `SimpleITK `_ * `PyLSM `_ * `PyMca.TiffIO.py `_ (same as fabio.TiffIO) * `BioImageXD.Readers `_ * `CellCognition `_ * `pymimage `_ * `pytiff `_ * `ScanImageTiffReaderPython `_ * `bigtiff `_ * `Large Image `_ * `tiffslide `_ * `opentile `_ Some libraries are using tifffile to write OME-TIFF files: * `Zeiss Apeer OME-TIFF library `_ * `Allen Institute for Cell Science imageio `_ * `xtiff `_ Other tools for inspecting and manipulating TIFF files: * `tifftools `_ * `Tyf `_ References ---------- * TIFF 6.0 Specification and Supplements. Adobe Systems Incorporated. https://www.adobe.io/open/standards/TIFF.html * TIFF File Format FAQ. https://www.awaresystems.be/imaging/tiff/faq.html * The BigTIFF File Format. https://www.awaresystems.be/imaging/tiff/bigtiff.html * MetaMorph Stack (STK) Image File Format. http://mdc.custhelp.com/app/answers/detail/a_id/18862 * Image File Format Description LSM 5/7 Release 6.0 (ZEN 2010). Carl Zeiss MicroImaging GmbH. BioSciences. May 10, 2011 * The OME-TIFF format. https://docs.openmicroscopy.org/ome-model/latest/ * UltraQuant(r) Version 6.0 for Windows Start-Up Guide. http://www.ultralum.com/images%20ultralum/pdf/UQStart%20Up%20Guide.pdf * Micro-Manager File Formats. https://micro-manager.org/wiki/Micro-Manager_File_Formats * ScanImage BigTiff Specification - ScanImage 2019. http://scanimage.vidriotechnologies.com/display/SI2019/ ScanImage+BigTiff+Specification * ZIF, the Zoomable Image File format. http://zif.photo/ * GeoTIFF File Format https://gdal.org/drivers/raster/gtiff.html * Cloud optimized GeoTIFF. https://github.com/cogeotiff/cog-spec/blob/master/spec.md * Tags for TIFF and Related Specifications. Digital Preservation. https://www.loc.gov/preservation/digital/formats/content/tiff_tags.shtml * CIPA DC-008-2016: Exchangeable image file format for digital still cameras: Exif Version 2.31. http://www.cipa.jp/std/documents/e/DC-008-Translation-2016-E.pdf * The EER (Electron Event Representation) file format. https://github.com/fei-company/EerReaderLib * Digital Negative (DNG) Specification. Version 1.5.0.0, June 2012. https://www.adobe.com/content/dam/acom/en/products/photoshop/pdfs/ dng_spec_1.5.0.0.pdf * Roche Digital Pathology. BIF image file format for digital pathology. https://diagnostics.roche.com/content/dam/diagnostics/Blueprint/en/pdf/rmd/ Roche-Digital-Pathology-BIF-Whitepaper.pdf Examples -------- Write a numpy array to a single-page RGB TIFF file: >>> data = numpy.random.randint(0, 255, (256, 256, 3), 'uint8') >>> imwrite('temp.tif', data, photometric='rgb') Read the image from the TIFF file as numpy array: >>> image = imread('temp.tif') >>> image.shape (256, 256, 3) Write a 3D numpy array to a multi-page, 16-bit grayscale TIFF file: >>> data = numpy.random.randint(0, 2**12, (64, 301, 219), 'uint16') >>> imwrite('temp.tif', data, photometric='minisblack') Read the whole image stack from the TIFF file as numpy array: >>> image_stack = imread('temp.tif') >>> image_stack.shape (64, 301, 219) >>> image_stack.dtype dtype('uint16') Read the image from the first page in the TIFF file as numpy array: >>> image = imread('temp.tif', key=0) >>> image.shape (301, 219) Read images from a selected range of pages: >>> images = imread('temp.tif', key=range(4, 40, 2)) >>> images.shape (18, 301, 219) Iterate over all pages in the TIFF file and successively read images: >>> with TiffFile('temp.tif') as tif: ... for page in tif.pages: ... image = page.asarray() Get information about the image stack in the TIFF file without reading the image data: >>> tif = TiffFile('temp.tif') >>> len(tif.pages) # number of pages in the file 64 >>> page = tif.pages[0] # get shape and dtype of the image in the first page >>> page.shape (301, 219) >>> page.dtype dtype('uint16') >>> page.axes 'YX' >>> series = tif.series[0] # get shape and dtype of the first image series >>> series.shape (64, 301, 219) >>> series.dtype dtype('uint16') >>> series.axes 'QYX' >>> tif.close() Inspect the "XResolution" tag from the first page in the TIFF file: >>> with TiffFile('temp.tif') as tif: ... tag = tif.pages[0].tags['XResolution'] >>> tag.value (1, 1) >>> tag.name 'XResolution' >>> tag.code 282 >>> tag.count 1 >>> tag.dtype Iterate over all tags in the TIFF file: >>> with TiffFile('temp.tif') as tif: ... for page in tif.pages: ... for tag in page.tags: ... tag_name, tag_value = tag.name, tag.value Overwrite the value of an existing tag, e.g. XResolution: >>> with TiffFile('temp.tif', mode='r+b') as tif: ... _ = tif.pages[0].tags['XResolution'].overwrite((96000, 1000)) Write a floating-point ndarray and metadata using BigTIFF format, tiling, compression, and planar storage: >>> data = numpy.random.rand(2, 5, 3, 301, 219).astype('float32') >>> imwrite('temp.tif', data, bigtiff=True, photometric='minisblack', ... compression='zlib', planarconfig='separate', tile=(32, 32), ... metadata={'axes': 'TZCYX'}) Write a 10 fps time series of volumes with xyz voxel size 2.6755x2.6755x3.9474 micron^3 to an ImageJ hyperstack formatted TIFF file: >>> volume = numpy.random.randn(6, 57, 256, 256).astype('float32') >>> imwrite('temp.tif', volume, imagej=True, resolution=(1./2.6755, 1./2.6755), ... metadata={'spacing': 3.947368, 'unit': 'um', 'finterval': 1/10, ... 'axes': 'TZYX'}) Read the volume and metadata from the ImageJ file: >>> with TiffFile('temp.tif') as tif: ... volume = tif.asarray() ... axes = tif.series[0].axes ... imagej_metadata = tif.imagej_metadata >>> volume.shape (6, 57, 256, 256) >>> axes 'TZYX' >>> imagej_metadata['slices'] 57 >>> imagej_metadata['frames'] 6 Create a TIFF file containing an empty image and write to the memory-mapped numpy array: >>> memmap_image = memmap( ... 'temp.tif', shape=(256, 256, 3), dtype='float32', photometric='rgb' ... ) >>> type(memmap_image) >>> memmap_image[255, 255, 1] = 1.0 >>> memmap_image.flush() >>> del memmap_image Memory-map and read contiguous image data in the TIFF file: >>> memmap_image = memmap('temp.tif') >>> memmap_image.shape (256, 256, 3) >>> memmap_image[255, 255, 1] 1.0 >>> del memmap_image Write two numpy arrays to a multi-series TIFF file: >>> series0 = numpy.random.randint(0, 255, (32, 32, 3), 'uint8') >>> series1 = numpy.random.randint(0, 1023, (4, 256, 256), 'uint16') >>> with TiffWriter('temp.tif') as tif: ... tif.write(series0, photometric='rgb') ... tif.write(series1, photometric='minisblack') Read the second image series from the TIFF file: >>> series1 = imread('temp.tif', series=1) >>> series1.shape (4, 256, 256) Successively write the frames of one contiguous series to a TIFF file: >>> data = numpy.random.randint(0, 255, (30, 301, 219), 'uint8') >>> with TiffWriter('temp.tif') as tif: ... for frame in data: ... tif.write(frame, contiguous=True) Append an image series to the existing TIFF file: >>> data = numpy.random.randint(0, 255, (301, 219, 3), 'uint8') >>> imwrite('temp.tif', data, photometric='rgb', append=True) Create a TIFF file from a generator of tiles: >>> data = numpy.random.randint(0, 2**12, (31, 33, 3), 'uint16') >>> def tiles(data, tileshape): ... for y in range(0, data.shape[0], tileshape[0]): ... for x in range(0, data.shape[1], tileshape[1]): ... yield data[y : y + tileshape[0], x : x + tileshape[1]] >>> imwrite('temp.tif', tiles(data, (16, 16)), tile=(16, 16), ... shape=data.shape, dtype=data.dtype, photometric='rgb') Write two numpy arrays to a multi-series OME-TIFF file: >>> series0 = numpy.random.randint(0, 255, (32, 32, 3), 'uint8') >>> series1 = numpy.random.randint(0, 1023, (4, 256, 256), 'uint16') >>> with TiffWriter('temp.ome.tif') as tif: ... tif.write(series0, photometric='rgb') ... tif.write(series1, photometric='minisblack', ... metadata={'axes': 'ZYX', 'SignificantBits': 10, ... 'Plane': {'PositionZ': [0.0, 1.0, 2.0, 3.0]}}) Write a tiled, multi-resolution, pyramidal, OME-TIFF file using JPEG compression. Sub-resolution images are written to SubIFDs: >>> data = numpy.arange(1024*1024*3, dtype='uint8').reshape((1024, 1024, 3)) >>> with TiffWriter('temp.ome.tif', bigtiff=True) as tif: ... options = dict(tile=(256, 256), photometric='rgb', compression='jpeg') ... tif.write(data, subifds=2, **options) ... # save pyramid levels to the two subifds ... # in production use resampling to generate sub-resolutions ... tif.write(data[::2, ::2], subfiletype=1, **options) ... tif.write(data[::4, ::4], subfiletype=1, **options) Access the image levels in the pyramidal OME-TIFF file: >>> baseimage = imread('temp.ome.tif') >>> second_level = imread('temp.ome.tif', series=0, level=1) >>> with TiffFile('temp.ome.tif') as tif: ... baseimage = tif.series[0].asarray() ... second_level = tif.series[0].levels[1].asarray() Iterate over and decode single JPEG compressed tiles in the TIFF file: >>> with TiffFile('temp.ome.tif') as tif: ... fh = tif.filehandle ... for page in tif.pages: ... for index, (offset, bytecount) in enumerate( ... zip(page.dataoffsets, page.databytecounts) ... ): ... _ = fh.seek(offset) ... data = fh.read(bytecount) ... tile, indices, shape = page.decode( ... data, index, jpegtables=page.jpegtables ... ) Use zarr to read parts of the tiled, pyramidal images in the TIFF file: >>> import zarr >>> store = imread('temp.ome.tif', aszarr=True) >>> z = zarr.open(store, mode='r') >>> z >>> z[0] # base layer >>> z[0][256:512, 512:768].shape # read a tile from the base layer (256, 256, 3) >>> store.close() Read images from a sequence of TIFF files as numpy array: >>> imwrite('temp_C001T001.tif', numpy.random.rand(64, 64)) >>> imwrite('temp_C001T002.tif', numpy.random.rand(64, 64)) >>> image_sequence = imread(['temp_C001T001.tif', 'temp_C001T002.tif']) >>> image_sequence.shape (2, 64, 64) >>> image_sequence.dtype dtype('float64') Read an image stack from a series of TIFF files with a file name pattern as numpy or zarr arrays: >>> image_sequence = TiffSequence('temp_C0*.tif', pattern=r'_(C)(\d+)(T)(\d+)') >>> image_sequence.shape (1, 2) >>> image_sequence.axes 'CT' >>> data = image_sequence.asarray() >>> data.shape (1, 2, 64, 64) >>> with image_sequence.aszarr() as store: ... zarr.open(store, mode='r') >>> image_sequence.close() Write the zarr store to a fsspec ReferenceFileSystem in JSON format: >>> with image_sequence.aszarr() as store: ... store.write_fsspec('temp.json', url='file://') Open the fsspec ReferenceFileSystem as a zarr array: >>> import fsspec >>> import tifffile.numcodecs >>> tifffile.numcodecs.register_codec() >>> mapper = fsspec.get_mapper( ... 'reference://', fo='temp.json', target_protocol='file') >>> zarr.open(mapper, mode='r') ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1644445975.0 tifffile-2022.2.9/README.rst0000666000000000000000000007237700000000000012142 0ustar00Read and write TIFF files ========================= Tifffile is a Python library to (1) store numpy arrays in TIFF (Tagged Image File Format) files, and (2) read image and metadata from TIFF-like files used in bioimaging. Image and metadata can be read from TIFF, BigTIFF, OME-TIFF, STK, LSM, SGI, NIHImage, ImageJ, MicroManager, FluoView, ScanImage, SEQ, GEL, SVS, SCN, SIS, BIF, ZIF (Zoomable Image File Format), QPTIFF (QPI), NDPI, and GeoTIFF files. Image data can be read as numpy arrays or zarr arrays/groups from strips, tiles, pages (IFDs), SubIFDs, higher order series, and pyramidal levels. Numpy arrays can be written to TIFF, BigTIFF, OME-TIFF, and ImageJ hyperstack compatible files in multi-page, volumetric, pyramidal, memory-mappable, tiled, predicted, or compressed form. A subset of the TIFF specification is supported, mainly 8, 16, 32 and 64-bit integer, 16, 32 and 64-bit float, grayscale and multi-sample images. Specifically, CCITT and OJPEG compression, chroma subsampling without JPEG compression, color space transformations, samples with differing types, or IPTC, ICC, and XMP metadata are not implemented. TIFF, the Tagged Image File Format, was created by the Aldus Corporation and Adobe Systems Incorporated. BigTIFF allows for files larger than 4 GB. STK, LSM, FluoView, SGI, SEQ, GEL, QPTIFF, NDPI, SCN, SVS, ZIF, BIF, and OME-TIFF, are custom extensions defined by Molecular Devices (Universal Imaging Corporation), Carl Zeiss MicroImaging, Olympus, Silicon Graphics International, Media Cybernetics, Molecular Dynamics, PerkinElmer, Hamamatsu, Leica, ObjectivePathology, Roche Digital Pathology, and the Open Microscopy Environment consortium, respectively. For command line usage run ``python -m tifffile --help`` :Author: `Christoph Gohlke `_ :Organization: Laboratory for Fluorescence Dynamics, University of California, Irvine :License: BSD 3-Clause :Version: 2022.2.9 Requirements ------------ This release has been tested with the following requirements and dependencies (other versions may work): * `CPython 3.8.10, 3.9.10, 3.10.2, 64-bit `_ * `Numpy 1.21.5 `_ * `Imagecodecs 2021.11.20 `_ (required only for encoding or decoding LZW, JPEG, etc.) * `Matplotlib 3.4.3 `_ (required only for plotting) * `Lxml 4.7.1 `_ (required only for validating and printing XML) * `Zarr 2.11.0 `_ (required only for opening zarr storage) Revisions --------- 2022.2.9 Pass 4734 tests. Fix ValueError using multiscale ZarrStore with zarr >= 2.11.0. Raise KeyError if ZarrStore does not contain key. Limit number of warnings for missing files in multifile series. Allow to save colormap to 32-bit ImageJ files (#115). 2022.2.2 Fix TypeError when second ImageDescription tag contains non-ASCII (#112). Fix parsing IJMetadata with many IJMetadataByteCounts (#111). Detect MicroManager NDTiffv2 header (not tested). Remove cache from ZarrFileSequenceStore (use zarr.LRUStoreCache). Raise limit on maximum number of pages. Use J2K format when encoding JPEG2000 segments. Formally deprecate imsave and TiffWriter.save. Drop support for Python 3.7 and numpy < 1.19 (NEP29). 2021.11.2 Lazy-load non-essential tag values (breaking). Warn when reading from closed file. Support ImageJ 'prop' metadata type (#103). Support writing indexed ImageJ format. Fix multi-threaded access of multi-page Zarr stores with chunkmode 2. Raise error if truncate is used with compression, packints, or tile. Read STK metadata without UIC2tag. Improve log and warning messages (WIP). Improve string representation of large tag values. 2021.10.12 Revert renaming of 'file' parameter in FileSequence.asarray (breaking). Deprecate 'file' parameter in FileSequence.asarray. 2021.10.10 Disallow letters as indices in FileSequence; use categories (breaking). Do not warn of missing files in FileSequence; use files_missing property. Support predictors in ZarrTiffStore.write_fsspec. Add option to specify zarr group name in write_fsspec. Add option to specify categories for FileSequence patterns (#76). Add option to specify chunk shape and dtype for ZarrFileSequenceStore. Add option to tile ZarrFileSequenceStore and FileSequence.asarray. Add option to pass additional zattrs to Zarr stores. Detect Roche BIF files. 2021.8.30 Fix horizontal differencing with non-native byte order. Fix multi-threaded access of memory-mappable, multi-page Zarr stores (#67). 2021.8.8 Fix tag offset and valueoffset for NDPI > 4 GB (#96). 2021.7.30 Deprecate first parameter to TiffTag.overwrite (no longer required). TiffTag init API change (breaking). Detect Ventana BIF series and warn that tiles are not stitched. Enable reading PreviewImage from RAW formats (#93, #94). Work around numpy.ndarray.tofile is very slow for non-contiguous arrays. Fix issues with PackBits compression (requires imagecodecs 2021.7.30). 2021.7.2 Decode complex integer images found in SAR GeoTIFF. Support reading NDPI with JPEG-XR compression. Deprecate TiffWriter RGB auto-detection, except for RGB24/48 and RGBA32/64. 2021.6.14 Set stacklevel for deprecation warnings (#89). Fix svs_description_metadata for SVS with double header (#88, breaking). Fix reading JPEG compressed CMYK images. Support ALT_JPEG and JPEG_2000_LOSSY compression found in Bio-Formats. Log warning if TiffWriter auto-detects RGB mode (specify photometric). 2021.6.6 Fix TIFF.COMPESSOR typo (#85). Round resolution numbers that do not fit in 64-bit rationals (#81). Add support for JPEG XL compression. Add numcodecs compatible TIFF codec. Rename ZarrFileStore to ZarrFileSequenceStore (breaking). Add method to export fsspec ReferenceFileSystem from ZarrFileStore. Fix fsspec ReferenceFileSystem v1 for multifile series. Fix creating OME-TIFF with micron character in OME-XML. 2021.4.8 Fix reading OJPEG with wrong photometric or samplesperpixel tags (#75). Fix fsspec ReferenceFileSystem v1 and JPEG compression. Use TiffTagRegistry for NDPI_TAGS, EXIF_TAGS, GPS_TAGS, IOP_TAGS constants. Make TIFF.GEO_KEYS an Enum (breaking). 2021.3.31 Use JPEG restart markers as tile offsets in NDPI. Support version 1 and more codecs in fsspec ReferenceFileSystem (untested). 2021.3.17 Fix regression reading multi-file OME-TIFF with missing files (#72). Fix fsspec ReferenceFileSystem with non-native byte order (#56). 2021.3.16 TIFF is no longer a defended trademark. Add method to export fsspec ReferenceFileSystem from ZarrTiffStore (#56). 2021.3.5 Preliminary support for EER format (#68). Do not warn about unknown compression (#68). 2021.3.4 Fix reading multi-file, multi-series OME-TIFF (#67). Detect ScanImage 2021 files (#46). Shape new version ScanImage series according to metadata (breaking). Remove Description key from TiffFile.scanimage_metadata dict (breaking). Also return ScanImage version from read_scanimage_metadata (breaking). Fix docstrings. 2021.2.26 Squeeze axes of LSM series by default (breaking). Add option to preserve single dimensions when reading from series (WIP). Do not allow appending to OME-TIFF files. Fix reading STK files without name attribute in metadata. Make TIFF constants multi-thread safe and pickleable (#64). Add detection of NDTiffStorage MajorVersion to read_micromanager_metadata. Support ScanImage v4 files in read_scanimage_metadata. 2021.2.1 Fix multi-threaded access of ZarrTiffStores using same TiffFile instance. Use fallback zlib and lzma codecs with imagecodecs lite builds. Open Olympus and Panasonic RAW files for parsing, albeit not supported. Support X2 and X4 differencing found in DNG. Support reading JPEG_LOSSY compression found in DNG. 2021.1.14 Try ImageJ series if OME series fails (#54) Add option to use pages as chunks in ZarrFileStore (experimental). Fix reading from file objects with no readinto function. 2021.1.11 Fix test errors on PyPy. Fix decoding bitorder with imagecodecs >= 2021.1.11. 2021.1.8 Decode float24 using imagecodecs >= 2021.1.8. Consolidate reading of segments if possible. 2020.12.8 Fix corrupted ImageDescription in multi shaped series if buffer too small. Fix libtiff warning that ImageDescription contains null byte in value. Fix reading invalid files using JPEG compression with palette colorspace. 2020.12.4 Fix reading some JPEG compressed CFA images. Make index of SubIFDs a tuple. Pass through FileSequence.imread arguments in imread. Do not apply regex flags to FileSequence axes patterns (breaking). 2020.11.26 Add option to pass axes metadata to ImageJ writer. Pad incomplete tiles passed to TiffWriter.write (#38). Split TiffTag constructor (breaking). Change TiffTag.dtype to TIFF.DATATYPES (breaking). Add TiffTag.overwrite method. Add script to change ImageDescription in files. Add TiffWriter.overwrite_description method (WIP). 2020.11.18 Support writing SEPARATED color space (#37). Use imagecodecs.deflate codec if available. Fix SCN and NDPI series with Z dimensions. Add TiffReader alias for TiffFile. TiffPage.is_volumetric returns True if ImageDepth > 1. Zarr store getitem returns numpy arrays instead of bytes. 2020.10.1 Formally deprecate unused TiffFile parameters (scikit-image #4996). 2020.9.30 Allow to pass additional arguments to compression codecs. Deprecate TiffWriter.save method (use TiffWriter.write). Deprecate TiffWriter.save compress parameter (use compression). Remove multifile parameter from TiffFile (breaking). Pass all is_flag arguments from imread to TiffFile. Do not byte-swap JPEG2000, WEBP, PNG, JPEGXR segments in TiffPage.decode. 2020.9.29 Fix reading files produced by ScanImage > 2015 (#29). 2020.9.28 Derive ZarrStore from MutableMapping. Support zero shape ZarrTiffStore. Fix ZarrFileStore with non-TIFF files. Fix ZarrFileStore with missing files. Cache one chunk in ZarrFileStore. Keep track of already opened files in FileCache. Change parse_filenames function to return zero-based indices. Remove reopen parameter from asarray (breaking). Rename FileSequence.fromfile to imread (breaking). 2020.9.22 Add experimental zarr storage interface (WIP). Remove unused first dimension from TiffPage.shaped (breaking). Move reading of STK planes to series interface (breaking). Always use virtual frames for ScanImage files. Use DimensionOrder to determine axes order in OmeXml. Enable writing striped volumetric images. Keep complete dataoffsets and databytecounts for TiffFrames. Return full size tiles from Tiffpage.segments. Rename TiffPage.is_sgi property to is_volumetric (breaking). Rename TiffPageSeries.is_pyramid to is_pyramidal (breaking). Fix TypeError when passing jpegtables to non-JPEG decode method (#25). 2020.9.3 Do not write contiguous series by default (breaking). Allow to write to SubIFDs (WIP). Fix writing F-contiguous numpy arrays (#24). 2020.8.25 Do not convert EPICS timeStamp to datetime object. Read incompletely written Micro-Manager image file stack header (#23). Remove tag 51123 values from TiffFile.micromanager_metadata (breaking). 2020.8.13 Use tifffile metadata over OME and ImageJ for TiffFile.series (breaking). Fix writing iterable of pages with compression (#20). Expand error checking of TiffWriter data, dtype, shape, and tile arguments. 2020.7.24 Parse nested OmeXml metadata argument (WIP). Do not lazy load TiffFrame JPEGTables. Fix conditionally skipping some tests. 2020.7.22 Do not auto-enable OME-TIFF if description is passed to TiffWriter.save. Raise error writing empty bilevel or tiled images. Allow to write tiled bilevel images. Allow to write multi-page TIFF from iterable of single page images (WIP). Add function to validate OME-XML. Correct Philips slide width and length. 2020.7.17 Initial support for writing OME-TIFF (WIP). Return samples as separate dimension in OME series (breaking). Fix modulo dimensions for multiple OME series. Fix some test errors on big endian systems (#18). Fix BytesWarning. Allow to pass TIFF.PREDICTOR values to TiffWriter.save. 2020.7.4 Deprecate support for Python 3.6 (NEP 29). Move pyramidal subresolution series to TiffPageSeries.levels (breaking). Add parser for SVS, SCN, NDPI, and QPI pyramidal series. Read single-file OME-TIFF pyramids. Read NDPI files > 4 GB (#15). Include SubIFDs in generic series. Preliminary support for writing packed integer arrays (#11, WIP). Read more LSM info subrecords. Fix missing ReferenceBlackWhite tag for YCbCr photometrics. Fix reading lossless JPEG compressed DNG files. 2020.6.3 ... Refer to the CHANGES file for older revisions. Notes ----- The API is not stable yet and might change between revisions. Tested on little-endian platforms only. Python 32-bit versions are deprecated. Python <= 3.7 are no longer supported. Tifffile relies on the `imagecodecs `_ package for encoding and decoding LZW, JPEG, and other compressed image segments. Several TIFF-like formats do not strictly adhere to the TIFF6 specification, some of which allow file or data sizes to exceed the 4 GB limit: * *BigTIFF* is identified by version number 43 and uses different file header, IFD, and tag structures with 64-bit offsets. It adds more data types. Tifffile can read and write BigTIFF files. * *ImageJ hyperstacks* store all image data, which may exceed 4 GB, contiguously after the first IFD. Files > 4 GB contain one IFD only. The size (shape and dtype) of the up to 6-dimensional image data can be determined from the ImageDescription tag of the first IFD, which is Latin-1 encoded. Tifffile can read and write ImageJ hyperstacks. * *OME-TIFF* stores up to 8-dimensional data in one or multiple TIFF of BigTIFF files. The 8-bit UTF-8 encoded OME-XML metadata found in the ImageDescription tag of the first IFD defines the position of TIFF IFDs in the high dimensional data. Tifffile can read OME-TIFF files, except when the OME-XML metadata are stored in a separate file. Tifffile can write numpy arrays to single-file OME-TIFF. * *LSM* stores all IFDs below 4 GB but wraps around 32-bit StripOffsets. The StripOffsets of each series and position require separate unwrapping. The StripByteCounts tag contains the number of bytes for the uncompressed data. Tifffile can read large LSM files. * *STK* (MetaMorph Stack) contains additional image planes stored contiguously after the image data of the first page. The total number of planes is equal to the counts of the UIC2tag. Tifffile can read STK files. * *Hamamatsu NDPI* uses some 64-bit offsets in the file header, IFD, and tag structures. Tag values/offsets can be corrected using high bits stored after IFD structures. Tifffile can read NDPI files > 4 GB. JPEG compressed segments with dimensions >65530 or missing restart markers are not decodable with libjpeg. Tifffile works around this limitation by separately decoding the MCUs between restart markers. BitsPerSample, SamplesPerPixel, and PhotometricInterpretation tags may contain wrong values, which can be corrected using the value of tag 65441. * *Philips TIFF* slides store wrong ImageWidth and ImageLength tag values for tiled pages. The values can be corrected using the DICOM_PIXEL_SPACING attributes of the XML formatted description of the first page. Tifffile can read Philips slides. * *Ventana/Roche BIF* slides store tiles and metadata in a BigTIFF container. Tiles may overlap and require stitching based on the TileJointInfo elements in the XMP tag. Volumetric scans are stored using the ImageDepth extension. Tifffile can read BIF and decode individual tiles, but does not perform stitching. * *ScanImage* optionally allows corrupted non-BigTIFF files > 2 GB. The values of StripOffsets and StripByteCounts can be recovered using the constant differences of the offsets of IFD and tag values throughout the file. Tifffile can read such files if the image data are stored contiguously in each page. * *GeoTIFF* sparse files allow strip or tile offsets and byte counts to be 0. Such segments are implicitly set to 0 or the NODATA value on reading. Tifffile can read GeoTIFF sparse files. Other libraries for reading scientific TIFF files from Python: * `Python-bioformats `_ * `Imread `_ * `GDAL `_ * `OpenSlide-python `_ * `Slideio `_ * `PyLibTiff `_ * `SimpleITK `_ * `PyLSM `_ * `PyMca.TiffIO.py `_ (same as fabio.TiffIO) * `BioImageXD.Readers `_ * `CellCognition `_ * `pymimage `_ * `pytiff `_ * `ScanImageTiffReaderPython `_ * `bigtiff `_ * `Large Image `_ * `tiffslide `_ * `opentile `_ Some libraries are using tifffile to write OME-TIFF files: * `Zeiss Apeer OME-TIFF library `_ * `Allen Institute for Cell Science imageio `_ * `xtiff `_ Other tools for inspecting and manipulating TIFF files: * `tifftools `_ * `Tyf `_ References ---------- * TIFF 6.0 Specification and Supplements. Adobe Systems Incorporated. https://www.adobe.io/open/standards/TIFF.html * TIFF File Format FAQ. https://www.awaresystems.be/imaging/tiff/faq.html * The BigTIFF File Format. https://www.awaresystems.be/imaging/tiff/bigtiff.html * MetaMorph Stack (STK) Image File Format. http://mdc.custhelp.com/app/answers/detail/a_id/18862 * Image File Format Description LSM 5/7 Release 6.0 (ZEN 2010). Carl Zeiss MicroImaging GmbH. BioSciences. May 10, 2011 * The OME-TIFF format. https://docs.openmicroscopy.org/ome-model/latest/ * UltraQuant(r) Version 6.0 for Windows Start-Up Guide. http://www.ultralum.com/images%20ultralum/pdf/UQStart%20Up%20Guide.pdf * Micro-Manager File Formats. https://micro-manager.org/wiki/Micro-Manager_File_Formats * ScanImage BigTiff Specification - ScanImage 2019. http://scanimage.vidriotechnologies.com/display/SI2019/ ScanImage+BigTiff+Specification * ZIF, the Zoomable Image File format. http://zif.photo/ * GeoTIFF File Format https://gdal.org/drivers/raster/gtiff.html * Cloud optimized GeoTIFF. https://github.com/cogeotiff/cog-spec/blob/master/spec.md * Tags for TIFF and Related Specifications. Digital Preservation. https://www.loc.gov/preservation/digital/formats/content/tiff_tags.shtml * CIPA DC-008-2016: Exchangeable image file format for digital still cameras: Exif Version 2.31. http://www.cipa.jp/std/documents/e/DC-008-Translation-2016-E.pdf * The EER (Electron Event Representation) file format. https://github.com/fei-company/EerReaderLib * Digital Negative (DNG) Specification. Version 1.5.0.0, June 2012. https://www.adobe.com/content/dam/acom/en/products/photoshop/pdfs/ dng_spec_1.5.0.0.pdf * Roche Digital Pathology. BIF image file format for digital pathology. https://diagnostics.roche.com/content/dam/diagnostics/Blueprint/en/pdf/rmd/ Roche-Digital-Pathology-BIF-Whitepaper.pdf Examples -------- Write a numpy array to a single-page RGB TIFF file: >>> data = numpy.random.randint(0, 255, (256, 256, 3), 'uint8') >>> imwrite('temp.tif', data, photometric='rgb') Read the image from the TIFF file as numpy array: >>> image = imread('temp.tif') >>> image.shape (256, 256, 3) Write a 3D numpy array to a multi-page, 16-bit grayscale TIFF file: >>> data = numpy.random.randint(0, 2**12, (64, 301, 219), 'uint16') >>> imwrite('temp.tif', data, photometric='minisblack') Read the whole image stack from the TIFF file as numpy array: >>> image_stack = imread('temp.tif') >>> image_stack.shape (64, 301, 219) >>> image_stack.dtype dtype('uint16') Read the image from the first page in the TIFF file as numpy array: >>> image = imread('temp.tif', key=0) >>> image.shape (301, 219) Read images from a selected range of pages: >>> images = imread('temp.tif', key=range(4, 40, 2)) >>> images.shape (18, 301, 219) Iterate over all pages in the TIFF file and successively read images: >>> with TiffFile('temp.tif') as tif: ... for page in tif.pages: ... image = page.asarray() Get information about the image stack in the TIFF file without reading the image data: >>> tif = TiffFile('temp.tif') >>> len(tif.pages) # number of pages in the file 64 >>> page = tif.pages[0] # get shape and dtype of the image in the first page >>> page.shape (301, 219) >>> page.dtype dtype('uint16') >>> page.axes 'YX' >>> series = tif.series[0] # get shape and dtype of the first image series >>> series.shape (64, 301, 219) >>> series.dtype dtype('uint16') >>> series.axes 'QYX' >>> tif.close() Inspect the "XResolution" tag from the first page in the TIFF file: >>> with TiffFile('temp.tif') as tif: ... tag = tif.pages[0].tags['XResolution'] >>> tag.value (1, 1) >>> tag.name 'XResolution' >>> tag.code 282 >>> tag.count 1 >>> tag.dtype Iterate over all tags in the TIFF file: >>> with TiffFile('temp.tif') as tif: ... for page in tif.pages: ... for tag in page.tags: ... tag_name, tag_value = tag.name, tag.value Overwrite the value of an existing tag, e.g. XResolution: >>> with TiffFile('temp.tif', mode='r+b') as tif: ... _ = tif.pages[0].tags['XResolution'].overwrite((96000, 1000)) Write a floating-point ndarray and metadata using BigTIFF format, tiling, compression, and planar storage: >>> data = numpy.random.rand(2, 5, 3, 301, 219).astype('float32') >>> imwrite('temp.tif', data, bigtiff=True, photometric='minisblack', ... compression='zlib', planarconfig='separate', tile=(32, 32), ... metadata={'axes': 'TZCYX'}) Write a 10 fps time series of volumes with xyz voxel size 2.6755x2.6755x3.9474 micron^3 to an ImageJ hyperstack formatted TIFF file: >>> volume = numpy.random.randn(6, 57, 256, 256).astype('float32') >>> imwrite('temp.tif', volume, imagej=True, resolution=(1./2.6755, 1./2.6755), ... metadata={'spacing': 3.947368, 'unit': 'um', 'finterval': 1/10, ... 'axes': 'TZYX'}) Read the volume and metadata from the ImageJ file: >>> with TiffFile('temp.tif') as tif: ... volume = tif.asarray() ... axes = tif.series[0].axes ... imagej_metadata = tif.imagej_metadata >>> volume.shape (6, 57, 256, 256) >>> axes 'TZYX' >>> imagej_metadata['slices'] 57 >>> imagej_metadata['frames'] 6 Create a TIFF file containing an empty image and write to the memory-mapped numpy array: >>> memmap_image = memmap( ... 'temp.tif', shape=(256, 256, 3), dtype='float32', photometric='rgb' ... ) >>> type(memmap_image) >>> memmap_image[255, 255, 1] = 1.0 >>> memmap_image.flush() >>> del memmap_image Memory-map and read contiguous image data in the TIFF file: >>> memmap_image = memmap('temp.tif') >>> memmap_image.shape (256, 256, 3) >>> memmap_image[255, 255, 1] 1.0 >>> del memmap_image Write two numpy arrays to a multi-series TIFF file: >>> series0 = numpy.random.randint(0, 255, (32, 32, 3), 'uint8') >>> series1 = numpy.random.randint(0, 1023, (4, 256, 256), 'uint16') >>> with TiffWriter('temp.tif') as tif: ... tif.write(series0, photometric='rgb') ... tif.write(series1, photometric='minisblack') Read the second image series from the TIFF file: >>> series1 = imread('temp.tif', series=1) >>> series1.shape (4, 256, 256) Successively write the frames of one contiguous series to a TIFF file: >>> data = numpy.random.randint(0, 255, (30, 301, 219), 'uint8') >>> with TiffWriter('temp.tif') as tif: ... for frame in data: ... tif.write(frame, contiguous=True) Append an image series to the existing TIFF file: >>> data = numpy.random.randint(0, 255, (301, 219, 3), 'uint8') >>> imwrite('temp.tif', data, photometric='rgb', append=True) Create a TIFF file from a generator of tiles: >>> data = numpy.random.randint(0, 2**12, (31, 33, 3), 'uint16') >>> def tiles(data, tileshape): ... for y in range(0, data.shape[0], tileshape[0]): ... for x in range(0, data.shape[1], tileshape[1]): ... yield data[y : y + tileshape[0], x : x + tileshape[1]] >>> imwrite('temp.tif', tiles(data, (16, 16)), tile=(16, 16), ... shape=data.shape, dtype=data.dtype, photometric='rgb') Write two numpy arrays to a multi-series OME-TIFF file: >>> series0 = numpy.random.randint(0, 255, (32, 32, 3), 'uint8') >>> series1 = numpy.random.randint(0, 1023, (4, 256, 256), 'uint16') >>> with TiffWriter('temp.ome.tif') as tif: ... tif.write(series0, photometric='rgb') ... tif.write(series1, photometric='minisblack', ... metadata={'axes': 'ZYX', 'SignificantBits': 10, ... 'Plane': {'PositionZ': [0.0, 1.0, 2.0, 3.0]}}) Write a tiled, multi-resolution, pyramidal, OME-TIFF file using JPEG compression. Sub-resolution images are written to SubIFDs: >>> data = numpy.arange(1024*1024*3, dtype='uint8').reshape((1024, 1024, 3)) >>> with TiffWriter('temp.ome.tif', bigtiff=True) as tif: ... options = dict(tile=(256, 256), photometric='rgb', compression='jpeg') ... tif.write(data, subifds=2, **options) ... # save pyramid levels to the two subifds ... # in production use resampling to generate sub-resolutions ... tif.write(data[::2, ::2], subfiletype=1, **options) ... tif.write(data[::4, ::4], subfiletype=1, **options) Access the image levels in the pyramidal OME-TIFF file: >>> baseimage = imread('temp.ome.tif') >>> second_level = imread('temp.ome.tif', series=0, level=1) >>> with TiffFile('temp.ome.tif') as tif: ... baseimage = tif.series[0].asarray() ... second_level = tif.series[0].levels[1].asarray() Iterate over and decode single JPEG compressed tiles in the TIFF file: >>> with TiffFile('temp.ome.tif') as tif: ... fh = tif.filehandle ... for page in tif.pages: ... for index, (offset, bytecount) in enumerate( ... zip(page.dataoffsets, page.databytecounts) ... ): ... _ = fh.seek(offset) ... data = fh.read(bytecount) ... tile, indices, shape = page.decode( ... data, index, jpegtables=page.jpegtables ... ) Use zarr to read parts of the tiled, pyramidal images in the TIFF file: >>> import zarr >>> store = imread('temp.ome.tif', aszarr=True) >>> z = zarr.open(store, mode='r') >>> z >>> z[0] # base layer >>> z[0][256:512, 512:768].shape # read a tile from the base layer (256, 256, 3) >>> store.close() Read images from a sequence of TIFF files as numpy array: >>> imwrite('temp_C001T001.tif', numpy.random.rand(64, 64)) >>> imwrite('temp_C001T002.tif', numpy.random.rand(64, 64)) >>> image_sequence = imread(['temp_C001T001.tif', 'temp_C001T002.tif']) >>> image_sequence.shape (2, 64, 64) >>> image_sequence.dtype dtype('float64') Read an image stack from a series of TIFF files with a file name pattern as numpy or zarr arrays: >>> image_sequence = TiffSequence('temp_C0*.tif', pattern=r'_(C)(\d+)(T)(\d+)') >>> image_sequence.shape (1, 2) >>> image_sequence.axes 'CT' >>> data = image_sequence.asarray() >>> data.shape (1, 2, 64, 64) >>> with image_sequence.aszarr() as store: ... zarr.open(store, mode='r') >>> image_sequence.close() Write the zarr store to a fsspec ReferenceFileSystem in JSON format: >>> with image_sequence.aszarr() as store: ... store.write_fsspec('temp.json', url='file://') Open the fsspec ReferenceFileSystem as a zarr array: >>> import fsspec >>> import tifffile.numcodecs >>> tifffile.numcodecs.register_codec() >>> mapper = fsspec.get_mapper( ... 'reference://', fo='temp.json', target_protocol='file') >>> zarr.open(mapper, mode='r') ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1644445976.2258768 tifffile-2022.2.9/examples/0000777000000000000000000000000000000000000012251 5ustar00././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1643862454.0 tifffile-2022.2.9/examples/earthbigdata.py0000666000000000000000000003512200000000000015245 0ustar00# tifffile/examples/earthbigdata.py # Copyright (c) 2021-2022, Christoph Gohlke # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # This file uses VSCode Jupyter-like code cells # https://code.visualstudio.com/docs/python/jupyter-support-py # %% [markdown] """ # Create a fsspec ReferenceFileSystem for a large set of remote GeoTIFF files by [Christoph Gohlke](https://www.lfd.uci.edu/~gohlke/), Laboratory for Fluorescence Dynamics, University of California, Irvine Updated on February, 2, 2022 This Python script uses the [tifffile](https://github.com/cgohlke/tifffile) and [imagecodecs](https://github.com/cgohlke/imagecodecs) packages to create a [fsspec ReferenceFileSystem](https://github.com/fsspec/kerchunk) file in JSON format for the [earthbigdata]( http://sentinel-1-global-coherence-earthbigdata.s3-website-us-west-2.amazonaws.com ) set, which consists of 1,033,422 GeoTIFF files stored on AWS. The ReferenceFileSystem is used to create a multi-dimensional xarray dataset. See discussion at [kerchunk/issues/78]( https://github.com/fsspec/kerchunk/issues/78). """ # %% import os import base64 import tifffile import imagecodecs.numcodecs import matplotlib.pyplot import numcodecs import fsspec import xarray import zarr # %% [markdown] """ ## Get a list of all remote TIFF files Call the aws command line app to recursively list all files in the earthbigdata set. Cache the output in a local file. Filter the list for TIFF files and remove the common path. """ # %% if not os.path.exists('earthbigdata.txt'): os.system( 'aws s3 ls sentinel-1-global-coherence-earthbigdata/data/tiles' ' --recursive > earthbigdata.txt' ) with open('earthbigdata.txt') as fh: tiff_files = [ line.split()[-1][11:] for line in fh.readlines() if '.tif' in line ] print('Number of TIFF files:', len(tiff_files)) # %% [markdown] """ ## Define metadata to describe the dataset Define labels, coordinate arrays, file name regex patterns, and categories for all dimensions in the earthbigdata set. """ # %% baseurl = ( 'https://' 'sentinel-1-global-coherence-earthbigdata.s3.us-west-2.amazonaws.com' '/data/tiles/' ) chunkshape = (1200, 1200) fillvalue = 0 latitude_label = 'latitude' latitude_pattern = rf'(?P<{latitude_label}>[NS]\d+)' latitude_coordinates = [ (j * -0.00083333333 - 0.000416666665 + i) for i in range(82, -79, -1) for j in range(1200) ] latitude_category = {} i = 0 for j in range(82, -1, -1): latitude_category[f'N{j:-02}'] = i i += 1 for j in range(1, 79): latitude_category[f'S{j:-02}'] = i i += 1 longitude_label = 'longitude' longitude_pattern = rf'(?P<{longitude_label}>[EW]\d+)' longitude_coordinates = [ (j * 0.00083333333 + 0.000416666665 + i) for i in range(-180, 180) for j in range(1200) ] longitude_category = {} i = 0 for j in range(180, 0, -1): longitude_category[f'W{j:-03}'] = i i += 1 for j in range(180): longitude_category[f'E{j:-03}'] = i i += 1 season_label = 'season' season_category = {'winter': 0, 'spring': 1, 'summer': 2, 'fall': 3} season_coordinates = list(season_category.keys()) season_pattern = rf'_(?P<{season_label}>{"|".join(season_category)})' polarization_label = 'polarization' polarization_category = {'vv': 0, 'vh': 1, 'hv': 2, 'hh': 3} polarization_coordinates = list(polarization_category.keys()) polarization_pattern = ( rf'_(?P<{polarization_label}>{"|".join(polarization_category)})' ) coherence_label = 'coherence' coherence_category = { '06': 0, '12': 1, '18': 2, '24': 3, '36': 4, '48': 5, } coherence_coordinates = list(int(i) for i in coherence_category.keys()) coherence_pattern = ( rf'_COH(?P<{coherence_label}>{"|".join(coherence_category)})' ) orbit_label = 'orbit' orbit_coordinates = list(range(1, 176)) orbit_pattern = rf'_(?P<{orbit_label}>\d+)' flightdirection_label = 'flightdirection' flightdirection_category = {'A': 0, 'D': 1} flightdirection_coordinates = list(flightdirection_category.keys()) flightdirection_pattern = ( rf'(?P<{flightdirection_label}>[{"|".join(flightdirection_category)}])_' ) # %% [markdown] """ ## Open a file for writing the fsspec ReferenceFileSystem in JSON format """ # %% jsonfile = open('earthbigdata.json', 'w', newline='\n') # %% [markdown] """ ## Write the coordinate arrays Add the coordinate arrays to a zarr group, convert it to a fsspec ReferenceFileSystem JSON string, and write it to the open file. """ # %% coordinates = {} zarrgroup = zarr.open_group(coordinates) zarrgroup.array( longitude_label, data=longitude_coordinates, dtype='float32' ).attrs['_ARRAY_DIMENSIONS'] = [longitude_label] zarrgroup.array( latitude_label, data=latitude_coordinates, dtype='float32' ).attrs['_ARRAY_DIMENSIONS'] = [latitude_label] zarrgroup.array( season_label, data=season_coordinates, dtype=object, object_codec=numcodecs.VLenUTF8(), compression=None, ).attrs['_ARRAY_DIMENSIONS'] = [season_label] zarrgroup.array( polarization_label, data=polarization_coordinates, dtype=object, object_codec=numcodecs.VLenUTF8(), compression=None, ).attrs['_ARRAY_DIMENSIONS'] = [polarization_label] zarrgroup.array( coherence_label, data=coherence_coordinates, dtype='uint8', compression=None, ).attrs['_ARRAY_DIMENSIONS'] = [coherence_label] zarrgroup.array(orbit_label, data=orbit_coordinates, dtype='int32').attrs[ '_ARRAY_DIMENSIONS' ] = [orbit_label] zarrgroup.array( flightdirection_label, data=flightdirection_coordinates, dtype=object, object_codec=numcodecs.VLenUTF8(), compression=None, ).attrs['_ARRAY_DIMENSIONS'] = [flightdirection_label] # base64 encode any values containing non-ascii characters for k, v in coordinates.items(): try: coordinates[k] = v.decode() except UnicodeDecodeError: coordinates[k] = 'base64:' + base64.b64encode(v).decode() coordinates_json = tifffile.ZarrStore._json(coordinates).decode() jsonfile.write(coordinates_json[:-2]) # skip the last newline and brace # %% [markdown] """ ## Create a TiffSequence from a list of file names Filter the list of GeoTIFF files for files containing coherence 'COH' data. The regex pattern and categories are used to parse the file names for chunk indices. Note: the created TiffSequence cannot be used to access any files. The file names do not refer to exising files. The baseurl is later used to get the real location of the files. """ # %% mode = 'COH' fileseq = tifffile.TiffSequence( [file for file in tiff_files if '_' + mode in file], pattern=( latitude_pattern + longitude_pattern + season_pattern + polarization_pattern + coherence_pattern ), categories={ latitude_label: latitude_category, longitude_label: longitude_category, season_label: season_category, polarization_label: polarization_category, coherence_label: coherence_category, }, ) assert len(fileseq.files) == 444821 assert fileseq.files_missing == 5119339 assert fileseq.shape == (161, 360, 4, 4, 6) assert fileseq.labels == ( 'latitude', 'longitude', 'season', 'polarization', 'coherence', ) print(fileseq) # %% [markdown] """ ## Create a ZarrTiffStore from the TiffSequence Define 'axestiled' to tile the latitude and longitude dimensions of the TiffSequence with the first and second image/chunk dimensions. Define extra 'zattrs' to create a xarray compatible store. """ # %% store = fileseq.aszarr( dtype='uint8', chunkshape=chunkshape, fillvalue=fillvalue, axestiled={0: 0, 1: 1}, zattrs={ '_ARRAY_DIMENSIONS': [ season_label, polarization_label, coherence_label, latitude_label, longitude_label, ] }, ) print(store) # %% [markdown] """ ## Append the ZarrTiffStore to the open ReferenceFileSystem file Use the mode name to create a zarr subgroup. Use the 'imagecodecs_tiff' numcodecs compatible codec for decoding TIFF files. """ # %% store.write_fsspec( jsonfile, baseurl, groupname=mode, codec_id='imagecodecs_tiff', _append=True, ) # %% [markdown] """ ## Repeat for the other modes Repeat the TiffSequence->aszarr->write_fsspec workflow for the other modes. """ # %% for mode in ( 'AMP', 'tau', 'rmse', 'rho', ): fileseq = tifffile.TiffSequence( [file for file in tiff_files if '_' + mode in file], pattern=( latitude_pattern + longitude_pattern + season_pattern + polarization_pattern ), categories={ latitude_label: latitude_category, longitude_label: longitude_category, season_label: season_category, polarization_label: polarization_category, }, ) print(fileseq) with fileseq.aszarr( dtype='uint16', chunkshape=chunkshape, fillvalue=fillvalue, axestiled={0: 0, 1: 1}, zattrs={ '_ARRAY_DIMENSIONS': [ season_label, polarization_label, latitude_label, longitude_label, ] }, ) as store: print(store) store.write_fsspec( jsonfile, baseurl, groupname=mode, codec_id='imagecodecs_tiff', _append=True, ) for mode in ('inc', 'lsmap'): fileseq = tifffile.TiffSequence( [file for file in tiff_files if '_' + mode in file], pattern=( latitude_pattern + longitude_pattern + orbit_pattern + flightdirection_pattern ), categories={ latitude_label: latitude_category, longitude_label: longitude_category, # orbit has no category flightdirection_label: flightdirection_category, }, ) print(fileseq) with fileseq.aszarr( dtype='uint8', chunkshape=chunkshape, fillvalue=fillvalue, axestiled={0: 0, 1: 1}, zattrs={ '_ARRAY_DIMENSIONS': [ orbit_label, flightdirection_label, latitude_label, longitude_label, ] }, ) as store: print(store) store.write_fsspec( jsonfile, baseurl, groupname=mode, codec_id='imagecodecs_tiff', _append=True, ) # %% [markdown] """ ## Close the JSON file """ # %% jsonfile.write('\n}') jsonfile.close() # %% [markdown] """ ## Use the fsspec ReferenceFileSystem file to create a xarray dataset Register imagecodecs.numcodecs before using the ReferenceFileSystem. """ # %% imagecodecs.numcodecs.register_codecs() # %% [markdown] """ ### Create a fsspec mapper instance from the ReferenceFileSystem file Specify the 'target_protocol' to load a local file. """ # %% mapper = fsspec.get_mapper( 'reference://', fo='earthbigdata.json', target_protocol='file', remote_protocol='http', ) # %% [markdown] """ ### Create a xarray dataset from the mapper Use 'mask_and_scale' to disable conversion to floating point. """ # %% dataset = xarray.open_dataset( mapper, engine='zarr', mask_and_scale=False, backend_kwargs={'consolidated': False}, ) print(dataset) # %% [markdown] """ ### Select the Southern California region in the dataset """ # %% socal = dataset.sel(latitude=slice(36, 32.5), longitude=slice(-121, -115)) print(socal) # %% [markdown] """ ### Plot a selection of the dataset The few GeoTIFF files comprising the selection are transparently downloaded, decoded, and stitched to an in-memory numpy array and plotted using matplotlib. """ # %% image = socal['COH'].loc['winter', 'vv', 12] assert image[100, 100] == 53 xarray.plot.imshow(image, size=6, aspect=1.8) matplotlib.pyplot.show() # %% [markdown] """ ## System information Print information about the software used to run this script. """ # %% def system_info(): import sys import datetime import numpy import matplotlib import tifffile import imagecodecs import numcodecs import fsspec import xarray import zarr return '\n'.join( ( sys.executable, f'Python {sys.version}', '', f'numpy {numpy.__version__}', f'matplotlib {matplotlib.__version__}', f'tifffile {tifffile.__version__}', f'imagecodecs {imagecodecs.__version__}', f'numcodecs {numcodecs.__version__}', f'fsspec {fsspec.__version__}', f'xarray {xarray.__version__}', f'zarr {zarr.__version__}', '', str(datetime.datetime.now()), ) ) print(system_info()) ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1644445976.2530913 tifffile-2022.2.9/setup.cfg0000666000000000000000000000005200000000000012251 0ustar00[egg_info] tag_build = tag_date = 0 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1643761319.0 tifffile-2022.2.9/setup.py0000666000000000000000000000662200000000000012153 0ustar00# tifffile/setup.py """Tifffile package setuptools script.""" import sys import re from setuptools import setup buildnumber = '' with open('tifffile/tifffile.py') as fh: code = fh.read() version = re.search(r"__version__ = '(.*?)'", code).groups()[0] version += ('.' + buildnumber) if buildnumber else '' description = re.search(r'"""(.*)\.(?:\r\n|\r|\n)', code).groups()[0] readme = re.search( r'(?:\r\n|\r|\n){2}r"""(.*)"""(?:\r\n|\r|\n){2}[__version__|from]', code, re.MULTILINE | re.DOTALL, ).groups()[0] readme = '\n'.join( [description, '=' * len(description)] + readme.splitlines()[1:] ) if 'sdist' in sys.argv: # update README, LICENSE, and CHANGES files with open('README.rst', 'w') as fh: fh.write(readme) license = re.search( r'(# Copyright.*?(?:\r\n|\r|\n))(?:\r\n|\r|\n)+r""', code, re.MULTILINE | re.DOTALL, ).groups()[0] license = license.replace('# ', '').replace('#', '') with open('LICENSE', 'w') as fh: fh.write('BSD 3-Clause License\n\n') fh.write(license) revisions = ( re.search( r'(?:\r\n|\r|\n){2}(Revisions.*) \.\.\.', readme, re.MULTILINE | re.DOTALL, ) .groups()[0] .strip() ) with open('CHANGES.rst', 'r') as fh: old = fh.read() d = revisions.splitlines()[-1] old = old.split(d)[-1] with open('CHANGES.rst', 'w') as fh: fh.write(revisions.strip()) fh.write(old) setup( name='tifffile', version=version, description=description, long_description=readme, author='Christoph Gohlke', author_email='cgohlke@uci.edu', license='BSD', url='https://www.lfd.uci.edu/~gohlke/', project_urls={ 'Bug Tracker': 'https://github.com/cgohlke/tifffile/issues', 'Source Code': 'https://github.com/cgohlke/tifffile', # 'Documentation': 'https://', }, packages=['tifffile'], python_requires='>=3.8', install_requires=[ 'numpy>=1.19.2', # 'imagecodecs>=2021.11.20', ], extras_require={ 'all': [ 'imagecodecs>=2021.11.20', 'matplotlib>=3.3', 'lxml', # 'zarr', # 'fsspec' ] }, tests_require=[ 'pytest', 'imagecodecs', 'czifile', 'cmapfile', 'oiffile', 'lfdfiles', 'roifile', 'lxml', 'zarr', 'dask', 'fsspec>=2021.5.0', ], entry_points={ 'console_scripts': [ 'tifffile = tifffile:main', 'tiffcomment = tifffile.tiffcomment:main', 'tiff2fsspec = tifffile.tiff2fsspec:main', 'lsm2bin = tifffile.lsm2bin:main', ], # 'napari.plugin': ['tifffile = tifffile.napari_tifffile'], }, platforms=['any'], classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: BSD License', 'Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', ], ) ././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1644445976.232933 tifffile-2022.2.9/tests/0000777000000000000000000000000000000000000011575 5ustar00././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1630364275.0 tifffile-2022.2.9/tests/conftest.py0000666000000000000000000000233600000000000014000 0ustar00# tifffile/tests/conftest.py import os import sys if os.environ.get('VSCODE_CWD'): # work around pytest not using PYTHONPATH in VSCode sys.path.insert( 0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) ) if os.environ.get('SKIP_CODECS', None): sys.modules['imagecodecs'] = None def pytest_report_header(config): try: from numpy import __version__ as numpy from tifffile import __version__ as tifffile from test_tifffile import config try: from imagecodecs import __version__ as imagecodecs except ImportError: imagecodecs = 'N/A' try: from zarr import __version__ as zarr except ImportError: zarr = 'N/A' try: from fsspec import __version__ as fsspec except ImportError: fsspec = 'N/A' return ( f'versions: tifffile-{tifffile}, ' f'imagecodecs-{imagecodecs}, ' f'numpy-{numpy}, ' f'zarr-{zarr}, ' f'fsspec-{fsspec}\n' f'test config: {config()}' ) except Exception: pass collect_ignore = ['_tmp', 'data'] ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1644436677.0 tifffile-2022.2.9/tests/test_tifffile.py0000666000000000000000000202555700000000000015016 0ustar00# test_tifffile.py # Copyright (c) 2008-2022, Christoph Gohlke # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Unittests for the tifffile package. Public data files can be requested from the author. Private data files are not available due to size and copyright restrictions. :Version: 2022.2.9 """ import binascii import datetime import glob import json import math import mmap import os import pathlib import random import re import struct import sys import tempfile import urllib.request import urllib.error from io import BytesIO import fsspec import numpy import pytest import tifffile from numpy.testing import ( assert_allclose, assert_array_almost_equal, assert_array_equal, ) try: from tifffile import * # noqa STAR_IMPORTED = ( TIFF, # noqa imwrite, # noqa imread, # noqa imshow, # noqa TiffWriter, # noqa TiffReader, # noqa TiffFile, # noqa TiffFileError, # noqa TiffSequence, # noqa TiffPage, # noqa TiffFrame, # noqa FileHandle, # noqa FileSequence, # noqa Timer, # noqa lazyattr, # noqa natural_sorted, # noqa stripnull, # noqa memmap, # noqa repeat_nd, # noqa format_size, # noqa product, # noqa create_output, # noqa askopenfilename, # noqa read_scanimage_metadata, # noqa read_micromanager_metadata, # noqa OmeXmlError, # noqa OmeXml, # noqa ) except NameError: STAR_IMPORTED = None # type: ignore from tifffile.tifffile import ( # noqa TIFF, FileCache, FileHandle, FileSequence, OmeXml, OmeXmlError, TiffFile, TiffFileError, TiffFrame, TiffPage, TiffPageSeries, TiffReader, TiffSequence, TiffTag, TiffTags, TiffWriter, ZarrFileSequenceStore, ZarrStore, ZarrTiffStore, apply_colormap, asbool, byteorder_compare, byteorder_isnative, bytes2str, create_output, enumarg, epics_datetime, excel_datetime, fluoview_description_metadata, format_size, hexdump, imagecodecs, imagej_description, imagej_description_metadata, imagej_shape, imread, imshow, imwrite, json_description, json_description_metadata, julian_datetime, lazyattr, lsm2bin, matlabstr2py, memmap, metaseries_description_metadata, natural_sorted, parse_filenames, pformat, pilatus_description_metadata, product, read_scanimage_metadata, repeat_nd, reshape_axes, reshape_nd, scanimage_artist_metadata, scanimage_description_metadata, sequence, snipstr, squeeze_axes, stripascii, stripnull, subresolution, svs_description_metadata, tiffcomment, transpose_axes, unpack_rgb, validate_jhove, xml2dict, ) # skip certain tests SKIP_LARGE = False # skip tests requiring large memory SKIP_EXTENDED = False SKIP_PUBLIC = False # skip public files SKIP_PRIVATE = False # skip private files SKIP_VALIDATE = True # skip validate written files with jhove SKIP_CODECS = False SKIP_ZARR = False SKIP_DASK = False SKIP_HTTP = False SKIP_PYPY = 'PyPy' in sys.version SKIP_WIN = sys.platform != 'win32' SKIP_BE = sys.byteorder == 'big' REASON = 'skipped' if sys.maxsize < 2**32: SKIP_LARGE = True MINISBLACK = TIFF.PHOTOMETRIC.MINISBLACK MINISWHITE = TIFF.PHOTOMETRIC.MINISWHITE RGB = TIFF.PHOTOMETRIC.RGB CFA = TIFF.PHOTOMETRIC.CFA SEPARATED = TIFF.PHOTOMETRIC.SEPARATED PALETTE = TIFF.PHOTOMETRIC.PALETTE YCBCR = TIFF.PHOTOMETRIC.YCBCR CONTIG = TIFF.PLANARCONFIG.CONTIG SEPARATE = TIFF.PLANARCONFIG.SEPARATE LZW = TIFF.COMPRESSION.LZW LZMA = TIFF.COMPRESSION.LZMA ZSTD = TIFF.COMPRESSION.ZSTD WEBP = TIFF.COMPRESSION.WEBP PNG = TIFF.COMPRESSION.PNG LERC = TIFF.COMPRESSION.LERC JPEGXL = TIFF.COMPRESSION.JPEGXL PACKBITS = TIFF.COMPRESSION.PACKBITS JPEG = TIFF.COMPRESSION.JPEG OJPEG = TIFF.COMPRESSION.OJPEG APERIO_JP2000_RGB = TIFF.COMPRESSION.APERIO_JP2000_RGB APERIO_JP2000_YCBC = TIFF.COMPRESSION.APERIO_JP2000_YCBC ADOBE_DEFLATE = TIFF.COMPRESSION.ADOBE_DEFLATE DEFLATE = TIFF.COMPRESSION.DEFLATE NONE = TIFF.COMPRESSION.NONE LSB2MSB = TIFF.FILLORDER.LSB2MSB ASSOCALPHA = TIFF.EXTRASAMPLE.ASSOCALPHA UNASSALPHA = TIFF.EXTRASAMPLE.UNASSALPHA UNSPECIFIED = TIFF.EXTRASAMPLE.UNSPECIFIED HORIZONTAL = TIFF.PREDICTOR.HORIZONTAL FILE_FLAGS = ['is_' + a for a in TIFF.FILE_FLAGS] FILE_FLAGS += [name for name in dir(TiffFile) if name.startswith('is_')] PAGE_FLAGS = [name for name in dir(TiffPage) if name.startswith('is_')] HERE = os.path.dirname(__file__) # HERE = os.path.join(HERE, 'tests') TEMP_DIR = os.path.join(HERE, '_tmp') PRIVATE_DIR = os.path.join(HERE, 'data', 'private') PUBLIC_DIR = os.path.join(HERE, 'data', 'public') URL = 'http://localhost:8181/' # TEMP_DIR if not SKIP_HTTP: try: urllib.request.urlopen(URL, timeout=0.2) except urllib.error.URLError: SKIP_HTTP = False if not os.path.exists(TEMP_DIR): TEMP_DIR = tempfile.gettempdir() if not os.path.exists(PUBLIC_DIR): SKIP_PUBLIC = True if not os.path.exists(PRIVATE_DIR): SKIP_PRIVATE = True if not SKIP_CODECS: SKIP_CODECS = imagecodecs is None if SKIP_PYPY: SKIP_ZARR = True SKIP_DASK = True SKIP_HTTP = True if SKIP_ZARR: zarr = None else: try: import zarr # type: ignore except ImportError: zarr = None SKIP_ZARR = True if SKIP_DASK: dask = None else: try: import dask # type: ignore except ImportError: dask = None SKIP_DASK = True def config(): """Return test configuration.""" this = sys.modules[__name__] return ' | '.join( a for a in dir(this) if a.startswith('SKIP_') and getattr(this, a) ) def data_file(pathname, base, expand=True): """Return path to test file(s).""" path = os.path.join(base, *pathname.split('/')) if expand and any(i in path for i in '*?'): return glob.glob(path) return path def private_file(pathname, base=PRIVATE_DIR, expand=True): """Return path to private test file(s).""" return data_file(pathname, base, expand=expand) def public_file(pathname, base=PUBLIC_DIR, expand=True): """Return path to public test file(s).""" return data_file(pathname, base, expand=expand) def random_data(dtype, shape): """Return random numpy array.""" # TODO: use nd noise if dtype == '?': return numpy.random.rand(*shape) < 0.5 data = numpy.random.rand(*shape) * 255 data = data.astype(dtype) return data def assert_file_flags(tiff_file): """Access all flags of TiffFile.""" for flag in FILE_FLAGS: getattr(tiff_file, flag) def assert_page_flags(tiff_page): """Access all flags of TiffPage.""" for flag in PAGE_FLAGS: getattr(tiff_page, flag) def assert__str__(tif, detail=3): """Call the TiffFile.__str__ function.""" for i in range(detail + 1): TiffFile.__str__(tif, detail=i) def assert_valid_omexml(omexml): """Validate OME-XML schema.""" OmeXml.validate(omexml, assert_=True) def assert_valid_tiff(filename, *args, **kwargs): """Validate TIFF file using jhove script.""" if SKIP_VALIDATE: return validate_jhove(filename, 'jhove.cmd', *args, **kwargs) def assert_decode_method(page, image=None): """Call TiffPage.decode on all segments and compare to TiffPage.asarray.""" fh = page.parent.filehandle if page.is_tiled: offsets = page.tags['TileOffsets'].value bytecounts = page.tags['TileByteCounts'].value else: offsets = page.tags['StripOffsets'].value bytecounts = page.tags['StripByteCounts'].value if image is None: image = page.asarray() for i, (o, b) in enumerate(zip(offsets, bytecounts)): fh.seek(o) strile = fh.read(b) strile, index, shape = page.decode(strile, i) assert image.reshape(page.shaped)[index] == strile[0, 0, 0, 0] def assert_aszarr_method(obj, image=None, chunkmode=None, **kwargs): """Assert aszarr returns same data as asarray.""" if SKIP_ZARR: return if image is None: image = obj.asarray(**kwargs) with obj.aszarr(chunkmode=chunkmode, **kwargs) as store: data = zarr.open(store, mode='r') if isinstance(data, zarr.Group): data = data[0] assert_array_equal(data, image) del data class TempFileName: """Temporary file name context manager.""" def __init__(self, name=None, ext='.tif', remove=False): self.remove = remove or TEMP_DIR == tempfile.gettempdir() if not name: fh = tempfile.NamedTemporaryFile(prefix='test_') self.name = fh.named fh.close() else: self.name = os.path.join(TEMP_DIR, f'test_{name}{ext}') def __enter__(self): return self.name def __exit__(self, exc_type, exc_value, traceback): if self.remove: try: os.remove(self.name) except Exception: pass numpy.set_printoptions(suppress=True, precision=5) ############################################################################### # Tests for specific issues def test_issue_star_import(): """Test from tifffile import *.""" assert STAR_IMPORTED is not None assert lsm2bin not in STAR_IMPORTED def test_issue_version_mismatch(): """Test 'tifffile.__version__' matches docstrings.""" ver = ':Version: ' + tifffile.__version__ assert ver in __doc__ assert ver in tifffile.__doc__ def test_issue_deprecated_import(): """Test deprecated functions can still be imported.""" from tifffile import imsave # noqa with TempFileName('issue_deprecated_import') as fname: with pytest.warns(DeprecationWarning): imsave(fname, [[0]]) imread(fname) with TiffWriter(fname) as tif: with pytest.warns(DeprecationWarning): tif.save([[0]]) imread(fname) # from tifffile import decodelzw # from tifffile import decode_lzw def test_issue_imread_kwargs(): """Test that is_flags are handled by imread.""" data = random_data(numpy.uint16, (5, 63, 95)) with TempFileName('issue_imread_kwargs') as fname: with TiffWriter(fname) as tif: for image in data: tif.write(image) # create 5 series assert_valid_tiff(fname) image = imread(fname, pattern=None) # reads first series assert_array_equal(image, data[0]) image = imread(fname, is_shaped=False) # reads all pages assert_array_equal(image, data) def test_issue_imread_kwargs_legacy(): """Test legacy arguments still work in some cases. Specifying 'fastij', 'movie', 'multifile', 'multifile_close', or 'pages' raises DeprecationWarning. Specifying 'key' and 'pages' raises TypeError. Specifying 'pages' in TiffFile constructor raises TypeError. """ data = random_data(numpy.uint8, (3, 21, 31)) with TempFileName('issue_imread_kwargs_legacy') as fname: imwrite(fname, data, photometric=MINISBLACK) with pytest.warns(DeprecationWarning): image = imread( fname, fastij=True, movie=True, multifile=True, multifile_close=True, ) assert_array_equal(image, data) with pytest.warns(DeprecationWarning): with TiffFile( fname, fastij=True, multifile=True, multifile_close=True ) as tif: assert_array_equal(tif.asarray(), data) with pytest.raises(TypeError): imread(fname, key=0, pages=[1, 2]) with pytest.raises(TypeError): with TiffFile(fname, pages=[1, 2]) as tif: pass @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_issue_infinite_loop(): """Test infinite loop reading more than two tags of same code in IFD.""" # Reported by D. Hughes on 2019.7.26 # the test file is corrupted but should not cause infinite loop fname = private_file('gdk-pixbuf/bug784903-overflow-dimensions.tiff') with TiffFile(fname) as tif: page = tif.pages[0] assert page.compression == 0 # invalid assert__str__(tif) @pytest.mark.skipif( SKIP_PRIVATE or SKIP_CODECS or not imagecodecs.JPEG, reason=REASON ) def test_issue_jpeg_ia(): """Test JPEG compressed intensity image with alpha channel.""" # no extrasamples! fname = private_file('issues/jpeg_ia.tiff') with TiffFile(fname) as tif: page = tif.pages[0] assert page.compression == JPEG assert_array_equal( page.asarray(), numpy.array([[[0, 0], [255, 255]]], dtype=numpy.uint8), ) assert__str__(tif) @pytest.mark.skipif( SKIP_PRIVATE or SKIP_CODECS or not imagecodecs.JPEG, reason=REASON ) def test_issue_jpeg_palette(): """Test invalid JPEG compressed intensity image with palette.""" # https://forum.image.sc/t/viv-and-avivator/45999/24 fname = private_file('issues/FL_cells.ome.tif') with TiffFile(fname) as tif: page = tif.pages[0] assert page.compression == JPEG assert page.colormap is not None data = tif.asarray() assert data.shape == (4, 1024, 1024) assert data.dtype == numpy.uint8 assert data[2, 512, 512] == 10 assert_aszarr_method(tif, data) assert__str__(tif) def test_issue_specific_pages(): """Test read second page.""" data = random_data(numpy.uint8, (3, 21, 31)) with TempFileName('specific_pages') as fname: imwrite(fname, data, photometric=MINISBLACK) image = imread(fname) assert image.shape == (3, 21, 31) # UserWarning: can not reshape (21, 31) to (3, 21, 31) image = imread(fname, key=1) assert image.shape == (21, 31) assert_array_equal(image, data[1]) with TempFileName('specific_pages_bigtiff') as fname: imwrite(fname, data, bigtiff=True, photometric=MINISBLACK) image = imread(fname) assert image.shape == (3, 21, 31) # UserWarning: can not reshape (21, 31) to (3, 21, 31) image = imread(fname, key=1) assert image.shape == (21, 31) assert_array_equal(image, data[1]) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_issue_circular_ifd(): """Test circular IFD raises error.""" fname = public_file('Tiff-Library-4J/IFD struct/Circular E.tif') with pytest.raises(TiffFileError): imread(fname) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_issue_bad_description(caplog): """Test page.description is empty when ImageDescription is not ASCII.""" # ImageDescription is not ASCII but bytes fname = private_file('stk/cells in the eye2.stk') with TiffFile(fname) as tif: page = tif.pages[0] assert page.description == '' assert__str__(tif) assert 'coercing invalid ASCII to bytes' in caplog.text @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_issue_bad_ascii(caplog): """Test coercing invalid ASCII to bytes.""" # ImageID is not ASCII but bytes # https://github.com/blink1073/tifffile/pull/38 fname = private_file('issues/tifffile_013_tagfail.tif') with TiffFile(fname) as tif: tags = tif.pages[0].tags assert tags['ImageID'].value[-8:] == b'rev 2893' assert__str__(tif) assert 'coercing invalid ASCII to bytes' in caplog.text def test_issue_sampleformat(): """Test write correct number of SampleFormat values.""" # https://github.com/ngageoint/geopackage-tiff-java/issues/5 data = random_data(numpy.int16, (256, 256, 4)) with TempFileName('sampleformat') as fname: imwrite(fname, data, photometric=RGB) with TiffFile(fname) as tif: tags = tif.pages[0].tags assert tags['SampleFormat'].value == (2, 2, 2, 2) assert tags['ExtraSamples'].value == (2,) assert__str__(tif) def test_issue_sampleformat_default(): """Test SampleFormat are not written for UINT.""" data = random_data(numpy.uint8, (256, 256, 4)) with TempFileName('sampleformat_default') as fname: imwrite(fname, data, photometric=RGB) with TiffFile(fname) as tif: tags = tif.pages[0].tags 'SampleFormat' not in tags assert tags['ExtraSamples'].value == (2,) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_issue_palette_with_extrasamples(): """Test read palette with extra samples.""" # https://github.com/python-pillow/Pillow/issues/1597 fname = private_file('issues/palette_with_extrasamples.tif') with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.photometric == PALETTE assert page.compression == LZW assert page.imagewidth == 518 assert page.imagelength == 556 assert page.bitspersample == 8 assert page.samplesperpixel == 2 # assert data image = page.asrgb() assert image.shape == (556, 518, 3) assert image.dtype == numpy.uint16 image = tif.asarray() # self.assertEqual(image.shape[-3:], (556, 518, 2)) assert image.shape == (556, 518, 2) assert image.dtype == numpy.uint8 assert_aszarr_method(tif, image) del image assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_issue_incorrect_rowsperstrip_count(): """Test read incorrect count for rowsperstrip; bitspersample = 4.""" # https://github.com/python-pillow/Pillow/issues/1544 fname = private_file('bad/incorrect_count.tiff') with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.photometric == PALETTE assert page.compression == ADOBE_DEFLATE assert page.imagewidth == 32 assert page.imagelength == 32 assert page.bitspersample == 4 assert page.samplesperpixel == 1 assert page.rowsperstrip == 32 assert page.dataoffsets[0] == 8 assert page.databytecounts[0] == 89 # assert data image = page.asrgb() assert image.shape == (32, 32, 3) assert_aszarr_method(page) del image assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_issue_extra_strips(caplog): """Test read extra strips.""" # https://github.com/opencv/opencv/issues/17054 with TiffFile(private_file('issues/extra_strips.tif')) as tif: assert not tif.is_bigtiff assert len(tif.pages) == 1 page = tif.pages[0] assert page.tags['StripOffsets'].value == (8, 0, 0) assert page.tags['StripByteCounts'].value == (55064448, 0, 0) assert page.dataoffsets[0] == 8 assert page.databytecounts[0] == 55064448 assert page.is_contiguous # assert data image = tif.asarray() assert image.shape == (2712, 3384, 3) assert_aszarr_method(page, image) assert 'incorrect StripOffsets count' in caplog.text assert 'incorrect StripByteCounts count' in caplog.text @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_issue_no_bytecounts(caplog): """Test read no bytecounts.""" with TiffFile(private_file('bad/img2_corrupt.tif')) as tif: assert not tif.is_bigtiff assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.dataoffsets[0] == 512 assert page.databytecounts[0] == 0 # assert data image = tif.asarray() assert image.shape == (800, 1200) # fails: assert_aszarr_method(tif, image) assert 'invalid value offset 0' in caplog.text assert 'invalid data type 31073' in caplog.text assert 'invalid page offset 808333686' in caplog.text @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_issue_missing_eoi_in_strips(): """Test read LZW strips without EOI.""" # 256x256 uint16, lzw, imagej # Strips do not contain an EOI code as required by the TIFF spec. # File generated by `tiffcp -c lzw Z*.tif stack.tif` from # Bars-G10-P15.zip # Failed with "series 0 failed: string size must be a multiple of # element size" # Reported by Kai Wohlfahrt on 3/7/2014 fname = private_file('issues/stack.tif') with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '<' assert len(tif.pages) == 128 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.imagewidth == 256 assert page.imagelength == 256 assert page.bitspersample == 16 # assert series properties series = tif.series[0] assert series.shape == (128, 256, 256) assert series.dtype == numpy.uint16 assert series.axes == 'IYX' # assert ImageJ tags ijtags = tif.imagej_metadata assert ijtags['ImageJ'] == '1.41e' # assert data data = tif.asarray() assert data.shape == (128, 256, 256) assert data.dtype == numpy.uint16 assert data[64, 128, 128] == 19226 assert_aszarr_method(tif, data) del data assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_issue_imagej_grascalemode(): """Test read ImageJ grayscale mode RGB image.""" # https://github.com/cgohlke/tifffile/issues/6 fname = private_file('issues/hela-cells.tif') with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == RGB assert page.imagewidth == 672 assert page.imagelength == 512 assert page.bitspersample == 16 assert page.is_contiguous # assert series properties series = tif.series[0] assert series.shape == (512, 672, 3) assert series.dtype == numpy.uint16 assert series.axes == 'YXS' # assert ImageJ tags ijtags = tif.imagej_metadata assert ijtags['ImageJ'] == '1.52p' assert ijtags['channels'] == 3 # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (512, 672, 3) assert data.dtype == numpy.uint16 assert tuple(data[255, 336]) == (440, 378, 298) assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.parametrize('byteorder', ['>', '<']) def test_issue_valueoffset(byteorder): """Test read TiffTag.valueoffsets.""" unpack = struct.unpack data = random_data(byteorder + 'u2', (2, 19, 31)) software = 'test_tifffile' bo = {'>': 'be', '<': 'le'}[byteorder] with TempFileName(f'valueoffset_{bo}') as fname: imwrite( fname, data, software=software, photometric=MINISBLACK, extratags=[(65535, 3, 2, (21, 22), True)], ) with TiffFile(fname, _useframes=True) as tif: with open(fname, 'rb') as fh: page = tif.pages[0] # inline value fh.seek(page.tags['ImageLength'].valueoffset) assert ( page.imagelength == unpack(tif.byteorder + 'I', fh.read(4))[0] ) # two inline values fh.seek(page.tags[65535].valueoffset) assert unpack(tif.byteorder + 'H', fh.read(2))[0] == 21 # separate value fh.seek(page.tags['Software'].valueoffset) assert page.software == bytes2str(fh.read(13)) # TiffFrame page = tif.pages[1].aspage() fh.seek(page.tags['StripOffsets'].valueoffset) assert ( page.dataoffsets[0] == unpack(tif.byteorder + 'I', fh.read(4))[0] ) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_issue_pages_number(): """Test number of pages.""" fname = public_file('tifffile/100000_pages.tif') with TiffFile(fname) as tif: assert len(tif.pages) == 100000 assert__str__(tif, 0) def test_issue_pages_iterator(): """Test iterating over pages in series.""" data = random_data(numpy.int8, (8, 219, 301)) with TempFileName('page_iterator') as fname: imwrite(fname, data[0]) imwrite( fname, data, photometric=MINISBLACK, append=True, metadata={'axes': 'ZYX'}, ) imwrite(fname, data[-1], append=True) with TiffFile(fname) as tif: assert len(tif.pages) == 10 assert len(tif.series) == 3 page = tif.pages[1] assert page.is_contiguous assert page.photometric == MINISBLACK assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 1 # test reading series 1 series = tif.series[1] assert len(series._pages) == 1 assert len(series.pages) == 8 image = series.asarray() assert_array_equal(data, image) for i, page in enumerate(series.pages): im = page.asarray() assert_array_equal(image[i], im) assert__str__(tif) def test_issue_tile_partial(): """Test writing single tiles larger than image data.""" # https://github.com/cgohlke/tifffile/issues/3 data = random_data(numpy.uint8, (3, 15, 15, 15)) with TempFileName('tile_partial_2d') as fname: imwrite(fname, data[0, 0], tile=(16, 16)) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert not page.is_contiguous assert page.is_tiled assert ( page.tags['TileOffsets'].value[0] + page.tags['TileByteCounts'].value[0] == tif.filehandle.size ) assert_array_equal(page.asarray(), data[0, 0]) assert_aszarr_method(page, data[0, 0]) assert__str__(tif) with TempFileName('tile_partial_3d') as fname: imwrite(fname, data[0], tile=(16, 16, 16)) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert not page.is_contiguous assert page.is_tiled assert page.is_volumetric assert ( page.tags['TileOffsets'].value[0] + page.tags['TileByteCounts'].value[0] == tif.filehandle.size ) assert_array_equal(page.asarray(), data[0]) assert_aszarr_method(page, data[0]) assert__str__(tif) with TempFileName('tile_partial_3d_separate') as fname: imwrite( fname, data, tile=(16, 16, 16), planarconfig=SEPARATE, photometric=RGB, ) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert not page.is_contiguous assert page.is_tiled assert ( page.tags['TileOffsets'].value[0] + page.tags['TileByteCounts'].value[0] * 3 == tif.filehandle.size ) assert_array_equal(page.asarray(), data) assert_aszarr_method(page, data) assert__str__(tif) # test complete tile is contiguous data = random_data(numpy.uint8, (16, 16)) with TempFileName('tile_partial_not') as fname: imwrite(fname, data, tile=(16, 16)) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.is_memmappable assert page.is_tiled assert ( page.tags['TileOffsets'].value[0] + page.tags['TileByteCounts'].value[0] == tif.filehandle.size ) assert_array_equal(page.asarray(), data) assert_aszarr_method(page, data) assert__str__(tif) @pytest.mark.parametrize('samples', [1, 3]) def test_issue_tiles_pad(samples): """Test tiles from iterator get padded.""" # https://github.com/cgohlke/tifffile/issues/38 if samples == 3: data = numpy.random.randint(0, 2**12, (31, 33, 3), numpy.uint16) photometric = 'rgb' else: data = numpy.random.randint(0, 2**12, (31, 33), numpy.uint16) photometric = None def tiles(data, tileshape, pad=False): for y in range(0, data.shape[0], tileshape[0]): for x in range(0, data.shape[1], tileshape[1]): tile = data[y : y + tileshape[0], x : x + tileshape[1]] if pad and tile.shape != tileshape: tile = numpy.pad( tile, ( (0, tileshape[0] - tile.shape[0]), (0, tileshape[1] - tile.shape[1]), ), ) yield tile with TempFileName(f'issue_tiles_pad_{samples}') as fname: imwrite( fname, tiles(data, (16, 16)), dtype=data.dtype, shape=data.shape, tile=(16, 16), photometric=photometric, ) assert_array_equal(imread(fname), data) assert_valid_tiff(fname) def test_issue_fcontiguous(): """Test writing F-contiguous arrays.""" # https://github.com/cgohlke/tifffile/issues/24 data = numpy.asarray(random_data(numpy.uint8, (31, 33)), order='F') with TempFileName('fcontiguous') as fname: imwrite(fname, data, compression=ADOBE_DEFLATE) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert_array_equal(page.asarray(), data) assert__str__(tif) def test_issue_pathlib(): """Test support for pathlib.Path.""" data = random_data(numpy.uint16, (219, 301)) with TempFileName('pathlib') as fname: fname = pathlib.Path(fname) assert isinstance(fname, os.PathLike) # imwrite imwrite(fname, data) # imread im = imread(fname) assert_array_equal(im, data) # memmap im = memmap(fname) try: assert_array_equal(im, data) finally: del im # TiffFile with TiffFile(fname) as tif: with TempFileName('pathlib_out') as outfname: outfname = pathlib.Path(outfname) # out=file im = tif.asarray(out=outfname) try: assert isinstance(im, numpy.core.memmap) assert_array_equal(im, data) assert os.path.samefile(im.filename, str(outfname)) finally: del im # TiffSequence with TiffSequence(fname) as tifs: im = tifs.asarray() assert_array_equal(im[0], data) with TiffSequence([fname]) as tifs: im = tifs.asarray() assert_array_equal(im[0], data) # TiffSequence container if SKIP_PRIVATE or SKIP_CODECS: pytest.skip(REASON) fname = pathlib.Path(private_file('TiffSequence.zip')) with TiffSequence('*.tif', container=fname, pattern=None) as tifs: im = tifs.asarray() assert im[9, 256, 256] == 135 @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_issue_lzw_corrupt(): """Test decoding corrupted LZW segment raises RuntimeError.""" # reported by S Richter on 2020.2.17 fname = private_file('issues/lzw_corrupt.tiff') with pytest.raises(RuntimeError): with TiffFile(fname) as tif: tif.asarray() def test_issue_iterable_compression(): """Test writing iterable of pages with compression.""" # https://github.com/cgohlke/tifffile/issues/20 data = numpy.random.rand(10, 10, 10) * 127 data = data.astype(numpy.int8) with TempFileName('issue_iterable_compression') as fname: with TiffWriter(fname) as tif: tif.write(data, shape=(10, 10, 10), dtype=numpy.int8) tif.write( data, shape=(10, 10, 10), dtype=numpy.int8, compression=ADOBE_DEFLATE, ) with TiffFile(fname) as tif: assert_array_equal(tif.series[0].asarray(), data) assert_array_equal(tif.series[1].asarray(), data) with TempFileName('issue_iterable_compression_fail') as fname: with TiffWriter(fname) as tif: with pytest.raises(ValueError): tif.write(data, shape=(10, 10, 10), dtype=numpy.uint8) with TiffWriter(fname) as tif: with pytest.raises(ValueError): tif.write( data, shape=(10, 10, 10), dtype=numpy.uint8, compression=ADOBE_DEFLATE, ) def test_issue_write_separated(): """Test write SEPARATED colorspace.""" # https://github.com/cgohlke/tifffile/issues/37 contig = random_data(numpy.uint8, (63, 95, 4)) separate = random_data(numpy.uint8, (4, 63, 95)) extrasample = random_data(numpy.uint8, (63, 95, 5)) with TempFileName('issue_write_separated') as fname: with TiffWriter(fname) as tif: tif.write(contig, photometric=SEPARATED) tif.write(separate, photometric=SEPARATED) tif.write(extrasample, photometric=SEPARATED, extrasamples=[1]) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 3 assert len(tif.series) == 3 page = tif.pages[0] assert page.photometric == SEPARATED assert_array_equal(page.asarray(), contig) page = tif.pages[1] assert page.photometric == SEPARATED assert_array_equal(page.asarray(), separate) page = tif.pages[2] assert page.photometric == SEPARATED assert page.extrasamples == (1,) assert_array_equal(page.asarray(), extrasample) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_issue_mmap(): """Test reading from mmap object with no readinto function..""" fname = public_file('OME/bioformats-artificial/4D-series.ome.tiff') with open(fname, 'rb') as fh: mm = mmap.mmap(fh.fileno(), 0, access=mmap.ACCESS_READ) assert_array_equal(imread(mm), imread(fname)) mm.close() @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_issue_micromanager(caplog): """Test fallback to ImageJ metadata if OME series fails.""" # https://github.com/cgohlke/tifffile/issues/54 # https://forum.image.sc/t/47567/9 # OME-XML does not contain reference to master file # file has corrupted MicroManager DisplaySettings metadata fname = private_file( 'OME/' 'image_stack_tpzc_50tp_2p_5z_3c_512k_1_MMStack_2-Pos001_000.ome.tif' ) with TiffFile(fname) as tif: assert len(tif.pages) == 750 assert len(tif.series) == 1 assert 'OME series is BinaryOnly' in caplog.text assert tif.is_micromanager assert tif.is_ome assert tif.is_imagej assert 'DisplaySettings' not in tif.micromanager_metadata assert 'failed to read display settings' in caplog.text series = tif.series[0] assert series.shape == (50, 5, 3, 256, 256) def test_issue_pickle(): """Test that TIFF constants are picklable.""" # https://github.com/cgohlke/tifffile/issues/64 from pickle import dumps, loads assert loads(dumps(TIFF)).CHUNKMODE.PLANE == TIFF.CHUNKMODE.PLANE assert loads(dumps(TIFF.CHUNKMODE)).PLANE == TIFF.CHUNKMODE.PLANE assert loads(dumps(TIFF.CHUNKMODE.PLANE)) == TIFF.CHUNKMODE.PLANE def test_issue_imagej_singlet_dimensions(): """Test that ImageJ files can be read preserving singlet dimensions.""" # https://github.com/cgohlke/tifffile/issues/19 # https://github.com/cgohlke/tifffile/issues/66 data = numpy.random.randint( 0, 2**8, (1, 10, 1, 248, 260, 1), numpy.uint8 ) with TempFileName('issue_imagej_singlet_dimensions') as fname: imwrite(fname, data, imagej=True) image = imread(fname, squeeze=False) assert_array_equal(image, data) with TiffFile(fname) as tif: assert tif.is_imagej series = tif.series[0] assert series.axes == 'ZYX' assert series.shape == (10, 248, 260) assert series.get_axes(squeeze=False) == 'TZCYXS' assert series.get_shape(squeeze=False) == (1, 10, 1, 248, 260, 1) data = tif.asarray(squeeze=False) assert_array_equal(image, data) assert_aszarr_method(series, data, squeeze=False) assert_aszarr_method(series, data, squeeze=False, chunkmode='page') @pytest.mark.skipif( SKIP_PRIVATE or SKIP_CODECS or not imagecodecs.JPEG, reason=REASON ) def test_issue_cr2_ojpeg(): """Test read OJPEG image from CR2.""" # https://github.com/cgohlke/tifffile/issues/75 fname = private_file('CanonCR2/Canon - EOS M6 - RAW (3 2).cr2') with TiffFile(fname) as tif: assert len(tif.pages) == 4 page = tif.pages[0] assert page.compression == 6 assert page.shape == (4000, 6000, 3) assert page.dtype == numpy.uint8 assert page.photometric == YCBCR assert page.compression == OJPEG data = page.asarray() assert data.shape == (4000, 6000, 3) assert data.dtype == numpy.uint8 assert tuple(data[1640, 2372]) == (71, 75, 58) assert_aszarr_method(page, data) page = tif.pages[1] assert page.shape == (120, 160, 3) assert page.dtype == numpy.uint8 assert page.photometric == YCBCR assert page.compression == OJPEG data = page.asarray() assert tuple(data[60, 80]) == (124, 144, 107) assert_aszarr_method(page, data) page = tif.pages[2] assert page.shape == (400, 600, 3) assert page.dtype == numpy.uint16 assert page.photometric == RGB assert page.compression == NONE data = page.asarray() assert tuple(data[200, 300]) == (1648, 2340, 1348) assert_aszarr_method(page, data) page = tif.pages[3] assert page.shape == (4056, 3144, 2) assert page.dtype == numpy.uint16 assert page.photometric == MINISWHITE assert page.compression == OJPEG # SOF3 data = page.asarray() assert tuple(data[2000, 1500]) == (1759, 2467) assert_aszarr_method(page, data) @pytest.mark.skipif( SKIP_PRIVATE or SKIP_CODECS or not imagecodecs.JPEG, reason=REASON ) def test_issue_ojpeg_preview(): """Test read JPEGInterchangeFormat from RAW image.""" # https://github.com/cgohlke/tifffile/issues/93 fname = private_file('RAW/RAW_NIKON_D3X.NEF') with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == NONE assert page.shape == (120, 160, 3) assert page.dtype == numpy.uint8 assert page.photometric == RGB data = page.asarray() assert data.shape == (120, 160, 3) assert data.dtype == numpy.uint8 assert tuple(data[60, 80]) == (180, 167, 159) assert_aszarr_method(page, data) page = tif.pages[0].pages[0] assert page.shape == (4032, 6048, 3) assert page.dtype == numpy.uint8 assert page.photometric == OJPEG data = page.asarray() assert tuple(data[60, 80]) == (67, 13, 11) assert_aszarr_method(page, data) page = tif.pages[0].pages[1] assert page.shape == (4044, 6080) assert page.bitspersample == 14 assert page.photometric == CFA assert page.compression == TIFF.COMPRESSION.NIKON_NEF with pytest.raises(ValueError): data = page.asarray() @pytest.mark.skipif( SKIP_PRIVATE or SKIP_CODECS or not imagecodecs.JPEG, reason=REASON ) def test_issue_arw(caplog): """Test read Sony ARW RAW image.""" # https://github.com/cgohlke/tifffile/issues/95 fname = private_file('RAW/A1_full_lossless_compressed.ARW') with TiffFile(fname) as tif: assert len(tif.pages) == 3 assert len(tif.series) == 4 page = tif.pages[0] assert page.compression == OJPEG assert page.photometric == YCBCR assert page.shape == (1080, 1616, 3) assert page.dtype == numpy.uint8 data = page.asarray() assert data.shape == (1080, 1616, 3) assert data.dtype == numpy.uint8 assert tuple(data[60, 80]) == (122, 119, 104) assert_aszarr_method(page, data) page = tif.pages[0].pages[0] assert page.is_tiled assert page.compression == JPEG assert page.photometric == CFA assert page.bitspersample == 14 assert page.tags['SonyRawFileType'].value == 4 assert page.tags['CFARepeatPatternDim'].value == (2, 2) assert page.tags['CFAPattern'].value == b'\0\1\1\2' assert page.shape == (6144, 8704) assert page.dtype == numpy.uint16 data = page.asarray() assert 'SonyRawFileType' in caplog.text assert data[60, 80] == 1000 # might not be correct according to #95 assert_aszarr_method(page, data) page = tif.pages[1] assert page.compression == OJPEG assert page.photometric == YCBCR assert page.shape == (120, 160, 3) assert page.dtype == numpy.uint8 data = page.asarray() assert tuple(data[60, 80]) == (56, 54, 29) assert_aszarr_method(page, data) page = tif.pages[2] assert page.compression == JPEG assert page.photometric == YCBCR assert page.shape == (5760, 8640, 3) assert page.dtype == numpy.uint8 data = page.asarray() assert tuple(data[60, 80]) == (243, 238, 218) assert_aszarr_method(page, data) def test_issue_rational_rounding(): """Test rational are rounded to 64-bit.""" # https://github.com/cgohlke/tifffile/issues/81 data = numpy.array([[255]]) with TempFileName('issue_rational_rounding') as fname: imwrite(fname, data, resolution=(7411.824413635355, 7411.824413635355)) with TiffFile(fname) as tif: assert tif.pages[0].tags['XResolution'].value == ( 4294967295, 579475, ) def test_issue_omexml_micron(): """Test OME-TIFF can be created with micron character in XML.""" # https://forum.image.sc/t/micro-character-in-omexml-from-python/53578/4 with TempFileName('issue_omexml_micron', ext='.ome.tif') as fname: imwrite( fname, [[0]], metadata={'PhysicalSizeX': 1.0, 'PhysicalSizeXUnit': 'µm'}, ) with TiffFile(fname) as tif: assert tif.is_ome assert ( 'PhysicalSizeXUnit="µm"' in tif.pages[0].tags['ImageDescription'].value ) def test_issue_svs_doubleheader(): """Test svs_description_metadata for SVS with double header.""" # https://github.com/cgohlke/tifffile/pull/88 assert svs_description_metadata( 'Aperio Image Library v11.2.1\r\n' '2220x2967 -> 574x768 - ;Aperio Image Library v10.0.51\r\n' '46920x33014 [0,100 46000x32914] (256x256) JPEG/RGB Q=30' '|AppMag = 20|StripeWidth = 2040|ScanScope ID = CPAPERIOCS' '|Filename = CMU-1|Date = 12/29/09|Time = 09:59:15' '|User = b414003d-95c6-48b0-9369-8010ed517ba7|Parmset = USM Filter' '|MPP = 0.4990|Left = 25.691574|Top = 23.449873' '|LineCameraSkew = -0.000424|LineAreaXOffset = 0.019265' '|LineAreaYOffset = -0.000313|Focus Offset = 0.000000' '|ImageID = 1004486|OriginalWidth = 46920|Originalheight = 33014' '|Filtered = 5|OriginalWidth = 46000|OriginalHeight = 32914' ) == { 'Header': ( 'Aperio Image Library v11.2.1\r\n' '2220x2967 -> 574x768 - ;Aperio Image Library v10.0.51\r\n' '46920x33014 [0,100 46000x32914] (256x256) JPEG/RGB Q=30' ), 'AppMag': 20, 'StripeWidth': 2040, 'ScanScope ID': 'CPAPERIOCS', 'Filename': 'CMU-1', 'Date': '12/29/09', 'Time': '09:59:15', 'User': 'b414003d-95c6-48b0-9369-8010ed517ba7', 'Parmset': 'USM Filter', 'MPP': 0.499, 'Left': 25.691574, 'Top': 23.449873, 'LineCameraSkew': -0.000424, 'LineAreaXOffset': 0.019265, 'LineAreaYOffset': -0.000313, 'Focus Offset': 0.0, 'ImageID': 1004486, 'OriginalWidth': 46000, 'Originalheight': 33014, 'Filtered': 5, 'OriginalHeight': 32914, } @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_issue_packbits_dtype(): """Test read and efficiently write PackBits compressed int16 image.""" # https://github.com/blink1073/tifffile/issues/61 # requires imagecodecs > 2021.6.8 fname = private_file('packbits/imstack_packbits-int16.tif') with TiffFile(fname) as tif: assert len(tif.pages) == 519 page = tif.pages[181] assert page.compression == PACKBITS assert page.photometric == MINISBLACK assert page.shape == (348, 185) assert page.dtype == numpy.int16 data = page.asarray() assert data.shape == (348, 185) assert data.dtype == numpy.int16 assert data[184, 72] == 24 assert_aszarr_method(page, data) data = tif.asarray() assert_aszarr_method(tif, data) buf = BytesIO() imwrite(buf, data, compression='packbits') assert buf.seek(0, 2) < 1700000 # efficiently compressed buf.seek(0) with TiffFile(buf) as tif: assert len(tif.pages) == 519 page = tif.pages[181] assert page.compression == PACKBITS assert page.photometric == MINISBLACK assert page.shape == (348, 185) assert page.dtype == numpy.int16 data = page.asarray() assert data.shape == (348, 185) assert data.dtype == numpy.int16 assert data[184, 72] == 24 assert_aszarr_method(page, data) data = tif.asarray() assert_aszarr_method(tif, data) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_issue_predictor_byteorder(): """Test read big-endian uint32 RGB with horizontal predictor.""" fname = private_file('issues/flower-rgb-contig-32_msb_zip_predictor.tiff') with TiffFile(fname) as tif: assert tif.tiff.byteorder == '>' assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == ADOBE_DEFLATE assert page.photometric == RGB assert page.predictor == HORIZONTAL assert page.shape == (43, 73, 3) assert page.dtype == numpy.uint32 data = page.asarray() assert data.shape == (43, 73, 3) assert data.dtype == numpy.uint32 assert tuple(data[30, 2]) == (0, 246337650, 191165795) assert data.dtype.byteorder == '=' assert_aszarr_method(page, data) data = tif.asarray() assert_aszarr_method(tif, data) @pytest.mark.skipif(SKIP_ZARR or SKIP_DASK, reason=REASON) @pytest.mark.parametrize('truncate', [False, True]) @pytest.mark.parametrize('chunkmode', [0, 2]) def test_issue_dask_multipage(truncate, chunkmode): """Test multi-threaded access of memory-mapable, multi-page Zarr stores.""" # https://github.com/cgohlke/tifffile/issues/67#issuecomment-908529425 import dask.array data = numpy.arange(5 * 99 * 101, dtype=numpy.uint16).reshape((5, 99, 101)) with TempFileName( f'test_issue_dask_multipage_{int(truncate)}_{int(truncate)}' ) as fname: kwargs = {'truncate': truncate} if not truncate: kwargs['tile'] = (32, 32) imwrite(fname, data, **kwargs) with imread(fname, aszarr=True, chunkmode=chunkmode) as store: daskarray = dask.array.from_zarr(store).compute() assert_array_equal(data, daskarray) @pytest.mark.skipif( SKIP_PRIVATE or SKIP_CODECS or not imagecodecs.LZW, reason=REASON ) def test_issue_read_from_closed_file(): """Test read from closed file handles.""" fname = private_file('OME/tubhiswt-4D-lzw/tubhiswt_C0_T0.ome.tif') with tifffile.TiffFile(fname) as tif: count = 0 for frame in tif.series[0].pages[:10]: # most file handles are closed if frame is None: continue isclosed = frame.parent.filehandle.closed if not isclosed: continue count += 1 if isinstance(frame, TiffFrame): with pytest.warns(UserWarning): page = frame.aspage() # re-load frame as page assert isclosed == page.parent.filehandle.closed else: page = frame with pytest.warns(UserWarning): page.colormap # delay load tag value assert isclosed == page.parent.filehandle.closed with pytest.warns(UserWarning): frame.asarray() # read data assert isclosed == page.parent.filehandle.closed assert count > 0 @pytest.mark.skipif( SKIP_PRIVATE or SKIP_CODECS or not imagecodecs.PNG, reason=REASON ) def test_issue_filesequence_categories(): """Test FileSequence with categories.""" # https://github.com/cgohlke/tifffile/issues/76 with tifffile.FileSequence( imagecodecs.imread, private_file('dataset-A1-20200531/*.png'), pattern=( r'(?P.{2})-' r'(?P.+)-\d{8}T\d{6}-PSII0-' r'(?P\d)' ), categories={'sampleid': {'A1': 0, 'B1': 1}, 'experiment': {'doi': 0}}, ) as pngs: assert len(pngs.files) == 2 assert pngs.files_missing == 2 assert pngs.shape == (2, 1, 2) assert pngs.labels == ('sampleid', 'experiment', 'frameid') data = pngs.asarray() assert data.shape == (2, 1, 2, 200, 200) assert data[1, 0, 1, 100, 100] == 353 @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_issue_filesequence_file_parameter(): """Test FileSequence.asarray with deprecated 'file' parameter.""" # https://github.com/bluesky/tiled/pull/97 files = public_file('tifffile/temp_C001T00*.tif') with TiffSequence(files) as tiffs: assert tiffs.shape == (2,) with pytest.warns(DeprecationWarning): assert_array_equal(tiffs.asarray(file=files[0]), imread(files[0])) with pytest.warns(DeprecationWarning): assert_array_equal(tiffs.asarray(file=1), imread(files[1])) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_issue_imagej_prop(): """Test reading and writing ImageJ prop metadata type.""" # https://github.com/cgohlke/tifffile/issues/103 # also test writing indexed ImageJ file fname = private_file('issues/triple-sphere-big-distance=035.tif') with tifffile.TiffFile(fname) as tif: assert tif.is_imagej meta = tif.imagej_metadata prop = meta['Properties'] assert meta['slices'] == 500 assert not meta['loop'] assert prop['CurrentLUT'] == 'glasbey_on_dark' assert tif.pages[0].photometric == PALETTE colormap = tif.pages[0].colormap data = tif.asarray() prop['Test'] = 0.1 with TempFileName('test_issue_imagej_prop') as fname: meta['axes'] = 'ZYX' imwrite(fname, data, imagej=True, colormap=colormap, metadata=meta) with tifffile.TiffFile(fname) as tif: assert tif.is_imagej meta = tif.imagej_metadata prop = meta['Properties'] assert meta['slices'] == 500 assert not meta['loop'] assert prop['CurrentLUT'] == 'glasbey_on_dark' assert prop['Test'] == '0.1' assert tif.pages[0].photometric == PALETTE colormap = tif.pages[0].colormap image = tif.asarray() assert_array_equal(image, data) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_issue_missing_dataoffset(caplog): """Test reading file with missing data offset.""" fname = private_file('gdal/bigtiff_header_extract.tif') with tifffile.TiffFile(fname) as tif: page = tif.pages[0] assert page.imagewidth == 100000 assert page.imagelength == 100000 assert page.rowsperstrip == 1 assert page.databytecounts == (10000000000,) assert page.dataoffsets == () assert 'incorrect StripOffsets count' in caplog.text assert 'incorrect StripByteCounts count' in caplog.text assert 'missing data offset tag' in caplog.text with pytest.raises(TiffFileError): tif.asarray() @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_issue_imagej_metadatabytecounts(): """Test reading ImageJ file with many IJMetadataByteCounts.""" # https://github.com/cgohlke/tifffile/issues/111 fname = private_file('imagej/issue111.tif') with tifffile.TiffFile(fname) as tif: assert tif.is_imagej page = tif.pages[0] assert isinstance(page.tags['IJMetadataByteCounts'].value, tuple) assert isinstance(page.tags['IJMetadata'].value, dict) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_issue_description_bytes(caplog): """Test reading file with imagedescription bytes.""" # https://github.com/cgohlke/tifffile/issues/112 with TempFileName('issue_description_bytes') as fname: imwrite( fname, [[0]], description='1st description', extratags=[ (270, 1, None, b'\1\128\0', True), (270, 1, None, b'\2\128\0', True), ], metadata=False, ) with TiffFile(fname) as tif: page = tif.pages[0] assert page.description == '1st description' assert page.description1 == '' assert page.tags.get(270).value == '1st description' assert page.tags.get(270, index=1).value == b'\1\128\0' assert page.tags.get(270, index=2).value == b'\2\128\0' def test_issue_imagej_colormap(): """Test writing 32-bit imagej file with colormap.""" # https://github.com/cgohlke/tifffile/issues/115 colormap = numpy.vstack( [ numpy.zeros(256, dtype='uint16'), numpy.arange(0, 2**16, 2**8, dtype='uint16'), numpy.arange(0, 2**16, 2**8, dtype='uint16'), ] ) metadata = {'min': 0.0, 'max': 1.0, 'Properties': {'CurrentLUT': 'cyan'}} with TempFileName('issue_imagej_colormap') as fname: imwrite( fname, numpy.zeros((16, 16), 'float32'), imagej=True, colormap=colormap, metadata=metadata, ) with TiffFile(fname) as tif: assert tif.is_imagej assert tif.imagej_metadata['Properties']['CurrentLUT'] == 'cyan' assert tif.pages[0].photometric == MINISBLACK assert_array_equal(tif.pages[0].colormap, colormap) ############################################################################### # Test specific functions and classes def test_class_filecache(): """Test FileCache class.""" with TempFileName('class_filecache') as fname: cache = FileCache(3) with open(fname, 'wb') as fh: fh.close() # create 6 handles, leaving only first one open handles = [] for i in range(6): fh = FileHandle(fname) if i > 0: fh.close() handles.append(fh) # open all files for fh in handles: cache.open(fh) assert len(cache) == 6 for i, fh in enumerate(handles): assert not fh.closed assert cache.files[fh] == 1 if i else 2 # close all files: only first file and recently used files are open for fh in handles: cache.close(fh) assert len(cache) == 3 for i, fh in enumerate(handles): assert fh.closed == (0 < i < 4) if not 0 < i < 4: assert cache.files[fh] == 0 if i else 1 # open all files, then clear cache: only first file is open for fh in handles: cache.open(fh) cache.clear() assert len(cache) == 1 assert handles[0] in cache.files for i, fh in enumerate(handles): assert fh.closed == (i > 0) # randomly open and close files for i in range(13): fh = handles[random.randint(0, 5)] cache.open(fh) cache.close(fh) assert len(cache) <= 3 assert fh in cache.files assert handles[0] in cache.files # randomly read from files for i in range(13): fh = handles[random.randint(0, 5)] cache.read(fh, 0, 0) assert len(cache) <= 3 assert fh in cache.files assert handles[0] in cache.files # clear cache: only first file is open cache.clear() assert len(cache) == 1 assert handles[0] in cache.files for i, fh in enumerate(handles): assert fh.closed == (i > 0) # open and close all files twice for fh in handles: cache.open(fh) cache.open(fh) assert len(cache) == 6 for i, fh in enumerate(handles): assert not fh.closed assert cache.files[fh] == 2 if i else 3 # close files once for fh in handles: cache.close(fh) assert len(cache) == 6 for i, fh in enumerate(handles): assert not fh.closed assert cache.files[fh] == 1 if i else 2 # close files twice for fh in handles: cache.close(fh) assert len(cache) == 3 for i, fh in enumerate(handles): assert fh.closed == (0 < i < 4) if not 0 < i < 4: assert cache.files[fh] == 0 if i else 1 # close all files cache.clear() handles[0].close() @pytest.mark.parametrize('bigtiff', [False, True]) @pytest.mark.parametrize('byteorder', ['<', '>']) def test_class_tifftag_overwrite(bigtiff, byteorder): """Test TiffTag.overwrite method.""" data = numpy.ones((16, 16, 3), dtype=byteorder + 'i2') bt = '_bigtiff' if bigtiff else '' bo = 'be' if byteorder == '>' else 'le' with TempFileName(f'class_tifftag_overwrite_{bo}{bt}') as fname: imwrite(fname, data, bigtiff=bigtiff, photometric=RGB, software='in') with TiffFile(fname, mode='r+b') as tif: tags = tif.pages[0].tags # inline -> inline tag = tags[305] t305 = tags[305].overwrite('inl') assert tag.valueoffset == t305.valueoffset valueoffset = tag.valueoffset # xresolution tag = tags[282] t282 = tags[282].overwrite((2000, 1000)) assert tag.valueoffset == t282.valueoffset # sampleformat, int -> uint tag = tags[339] t339 = tags[339].overwrite((1, 1, 1)) assert tag.valueoffset == t339.valueoffset with TiffFile(fname) as tif: tags = tif.pages[0].tags tag = tags[305] assert tag.value == 'inl' assert tag.count == t305.count tag = tags[282] assert tag.value == (2000, 1000) assert tag.count == t282.count tag = tags[339] assert tag.value == (1, 1, 1) assert tag.count == t339.count # inline -> separate with TiffFile(fname, mode='r+b') as tif: tag = tif.pages[0].tags[305] t305 = tag.overwrite('separate') assert tag.valueoffset != t305.valueoffset # separate at end -> separate longer with TiffFile(fname, mode='r+b') as tif: tag = tif.pages[0].tags[305] assert tag.value == 'separate' assert tag.valueoffset == t305.valueoffset t305 = tag.overwrite('separate longer') assert tag.valueoffset == t305.valueoffset # overwrite, not append # separate -> separate shorter with TiffFile(fname, mode='r+b') as tif: tag = tif.pages[0].tags[305] assert tag.value == 'separate longer' assert tag.valueoffset == t305.valueoffset t305 = tag.overwrite('separate short') assert tag.valueoffset == t305.valueoffset # separate -> separate longer with TiffFile(fname, mode='r+b') as tif: tag = tif.pages[0].tags[305] assert tag.value == 'separate short' assert tag.valueoffset == t305.valueoffset filesize = tif.filehandle.size t305 = tag.overwrite('separate longer') assert tag.valueoffset != t305.valueoffset assert t305.valueoffset == filesize # append to end # separate -> inline with TiffFile(fname, mode='r+b') as tif: tag = tif.pages[0].tags[305] assert tag.value == 'separate longer' assert tag.valueoffset == t305.valueoffset t305 = tag.overwrite('inl') assert tag.valueoffset != t305.valueoffset assert t305.valueoffset == valueoffset # inline - > erase with TiffFile(fname, mode='r+b') as tif: tag = tif.pages[0].tags[305] assert tag.value == 'inl' assert tag.valueoffset == t305.valueoffset with pytest.warns(DeprecationWarning): t305 = tag.overwrite(tif, '') assert tag.valueoffset == t305.valueoffset with TiffFile(fname) as tif: tag = tif.pages[0].tags[305] assert tag.value == '' assert tag.valueoffset == t305.valueoffset if not bigtiff: assert_valid_tiff(fname) def test_class_tifftags(): """Test TiffTags interface.""" data = random_data(numpy.uint8, (21, 31)) with TempFileName('class_tifftags') as fname: imwrite(fname, data, description='test', software=False) with TiffFile(fname) as tif: tags = tif.pages[0].tags # assert len(tags) == 14 assert 270 in tags assert 'ImageDescription' in tags assert tags[270].value == 'test' assert tags['ImageDescription'].value == 'test' assert tags.get(270).value == 'test' assert tags.get('ImageDescription').value == 'test' assert tags.get(270, index=0).value == 'test' assert tags.get('ImageDescription', index=0).value == 'test' assert tags.get(270, index=1).value.startswith('{') assert tags.get('ImageDescription', index=1).value.startswith('{') assert tags.get(270, index=2) is None assert tags.get('ImageDescription', index=2) is None assert tags.getall(270)[0].value == 'test' assert tags.getall(270)[1].value.startswith('{') assert len(tags.getall(270)) == 2 assert 305 not in tags assert 'Software' not in tags assert tags.get(305) is None assert tags.get('Software') is None with pytest.raises(KeyError): tags[305].value with pytest.raises(KeyError): tags['Software'].value assert len(tags.values()) == len(tags.items()) assert len(tags.keys()) == len(tags.items()) - 1 assert set(tags.keys()) == set(i[0] for i in tags.items()) assert list(tags.values()) == [i[1] for i in tags.items()] assert list(tags.values()) == [t for t in tags] tag270 = tags[270] del tags[270] assert 270 not in tags assert 'ImageDescription' not in tags with pytest.raises(KeyError): del tags[270] with pytest.raises(KeyError): del tags['ImageDescription'] tags.add(tag270) assert 270 in tags assert 'ImageDescription' in tags del tags['ImageDescription'] assert 270 not in tags assert 'ImageDescription' not in tags tags[270] = tag270 assert 270 in tags assert 'ImageDescription' in tags assert 0 not in tags assert 'None' not in tags assert None not in tags def test_class_tifftagregistry(): """Test TiffTagRegistry.""" numtags = 635 tags = TIFF.TAGS assert len(tags) == numtags assert tags[11] == 'ProcessingSoftware' assert tags['ProcessingSoftware'] == 11 assert tags.getall(11) == ['ProcessingSoftware'] assert tags.getall('ProcessingSoftware') == [11] tags.add(11, 'ProcessingSoftware') assert len(tags) == numtags # one code with two names assert 34853 in tags assert 'GPSTag' in tags assert 'OlympusSIS2' in tags assert tags[34853] == 'GPSTag' assert tags['GPSTag'] == 34853 assert tags['OlympusSIS2'] == 34853 assert tags.getall(34853) == ['GPSTag', 'OlympusSIS2'] assert tags.getall('GPSTag') == [34853] del tags[34853] assert len(tags) == numtags - 2 assert 34853 not in tags assert 'GPSTag' not in tags assert 'OlympusSIS2' not in tags tags.add(34853, 'GPSTag') tags.add(34853, 'OlympusSIS2') assert 34853 in tags assert 'GPSTag' in tags assert 'OlympusSIS2' in tags info = str(tags) assert "34853, 'GPSTag'" in info assert "34853, 'OlympusSIS2'" in info # two codes with same name assert 37387 in tags assert 41483 in tags assert 'FlashEnergy' in tags assert tags[37387] == 'FlashEnergy' assert tags[41483] == 'FlashEnergy' assert tags['FlashEnergy'] == 37387 assert tags.getall('FlashEnergy') == [37387, 41483] assert tags.getall(37387) == ['FlashEnergy'] assert tags.getall(41483) == ['FlashEnergy'] del tags['FlashEnergy'] assert len(tags) == numtags - 2 assert 37387 not in tags assert 41483 not in tags assert 'FlashEnergy' not in tags tags.add(37387, 'FlashEnergy') tags.add(41483, 'FlashEnergy') assert 37387 in tags assert 41483 in tags assert 'FlashEnergy' in tags assert "37387, 'FlashEnergy'" in info assert "41483, 'FlashEnergy'" in info @pytest.mark.parametrize( 'shape, storedshape, dtype, axes, error', [ # separate and contig ((32, 32), (1, 2, 1, 32, 32, 2), numpy.uint8, None, ValueError), # depth ((32, 32, 32), (1, 1, 32, 32, 32, 1), numpy.uint8, None, OmeXmlError), # dtype ((32, 32), (1, 1, 1, 32, 32, 1), numpy.float16, None, OmeXmlError), # empty ((0, 0), (1, 1, 1, 0, 0, 1), numpy.uint8, None, OmeXmlError), # not YX ((32, 32), (1, 1, 1, 32, 32, 1), numpy.uint8, 'XZ', OmeXmlError), # unknown axis ((1, 32, 32), (1, 1, 1, 32, 32, 1), numpy.uint8, 'KYX', OmeXmlError), # double axis ((1, 32, 32), (1, 1, 1, 32, 32, 1), numpy.uint8, 'YYX', OmeXmlError), # more than 5 dimensions ( (1, 1, 1, 5, 32, 32), (5, 1, 1, 32, 32, 1), numpy.uint8, None, OmeXmlError, ), # more than 6 dimensions ( (1, 1, 1, 1, 32, 32, 3), (1, 1, 1, 32, 32, 3), numpy.uint8, None, OmeXmlError, ), # more than 8 dimensions ( (1, 1, 1, 1, 1, 1, 1, 32, 32), (1, 1, 1, 32, 32, 1), numpy.uint8, 'ARHETZCYX', OmeXmlError, ), # more than 9 dimensions ( (1, 1, 1, 1, 1, 1, 1, 32, 32, 3), (1, 1, 1, 32, 32, 3), numpy.uint8, 'ARHETZCYXS', OmeXmlError, ), # double axis ((1, 32, 32), (1, 1, 1, 32, 32, 1), numpy.uint8, 'YYX', OmeXmlError), # planecount mismatch ((3, 32, 32), (1, 1, 1, 32, 32, 1), numpy.uint8, 'CYX', ValueError), # stored shape mismatch ((3, 32, 32), (1, 2, 1, 32, 32, 1), numpy.uint8, 'SYX', ValueError), ((32, 32, 3), (1, 1, 1, 32, 32, 2), numpy.uint8, 'YXS', ValueError), ((3, 32, 32), (1, 3, 1, 31, 31, 1), numpy.uint8, 'SYX', ValueError), ((32, 32, 3), (1, 1, 1, 31, 31, 3), numpy.uint8, 'YXS', ValueError), ((32, 32), (1, 1, 1, 32, 31, 1), numpy.uint8, None, ValueError), # too many modulo dimensions ( (2, 3, 4, 5, 32, 32), (60, 1, 1, 32, 32, 1), numpy.uint8, 'RHEQYX', OmeXmlError, ), ], ) def test_class_omexml_fail(shape, storedshape, dtype, axes, error): """Test OmeXml class failures.""" metadata = {'axes': axes} if axes else {} ox = OmeXml() with pytest.raises(error): ox.addimage(dtype, shape, storedshape, **metadata) @pytest.mark.parametrize( 'axes, autoaxes, shape, storedshape, dimorder', [ ('YX', 'YX', (32, 32), (1, 1, 1, 32, 32, 1), 'XYCZT'), ('YXS', 'YXS', (32, 32, 1), (1, 1, 1, 32, 32, 1), 'XYCZT'), ('SYX', 'SYX', (1, 32, 32), (1, 1, 1, 32, 32, 1), 'XYCZT'), ('YXS', 'YXS', (32, 32, 3), (1, 1, 1, 32, 32, 3), 'XYCZT'), ('SYX', 'SYX', (3, 32, 32), (1, 3, 1, 32, 32, 1), 'XYCZT'), ('CYX', 'CYX', (5, 32, 32), (5, 1, 1, 32, 32, 1), 'XYCZT'), ('CYXS', 'CYXS', (5, 32, 32, 1), (5, 1, 1, 32, 32, 1), 'XYCZT'), ('CSYX', 'ZCYX', (5, 1, 32, 32), (5, 1, 1, 32, 32, 1), 'XYCZT'), # ! ('CYXS', 'CYXS', (5, 32, 32, 3), (5, 1, 1, 32, 32, 3), 'XYCZT'), ('CSYX', 'CSYX', (5, 3, 32, 32), (5, 3, 1, 32, 32, 1), 'XYCZT'), ('TZCYX', 'TZCYX', (3, 4, 5, 32, 32), (60, 1, 1, 32, 32, 1), 'XYCZT'), ( 'TZCYXS', 'TZCYXS', (3, 4, 5, 32, 32, 1), (60, 1, 1, 32, 32, 1), 'XYCZT', ), ( 'TZCSYX', 'TZCSYX', (3, 4, 5, 1, 32, 32), (60, 1, 1, 32, 32, 1), 'XYCZT', ), ( 'TZCYXS', 'TZCYXS', (3, 4, 5, 32, 32, 3), (60, 1, 1, 32, 32, 3), 'XYCZT', ), ('ZTCSYX', '', (3, 4, 5, 3, 32, 32), (60, 3, 1, 32, 32, 1), 'XYCTZ'), ], ) @pytest.mark.parametrize('metadata', ('axes', None)) def test_class_omexml(axes, autoaxes, shape, storedshape, dimorder, metadata): """Test OmeXml class.""" dtype = numpy.uint8 if not metadata and dimorder != 'XYCZT': pytest.xfail('') metadata = dict(axes=axes) if metadata else dict() omexml = OmeXml() omexml.addimage(dtype, shape, storedshape, **metadata) if not SKIP_WIN: assert '\n ' in str(omexml) omexml = omexml.tostring() assert dimorder in omexml if metadata: autoaxes = axes for ax in 'XYCZT': if ax in autoaxes: size = shape[autoaxes.index(ax)] else: size = 1 if ax == 'C': size *= storedshape[1] * storedshape[-1] assert f'Size{ax}="{size}"' in omexml assert_valid_omexml(omexml) @pytest.mark.parametrize( 'axes, shape, storedshape, sizetzc, dimorder', [ ('ZAYX', (3, 4, 32, 32), (12, 1, 1, 32, 32, 1), (1, 12, 1), 'XYCZT'), ('AYX', (3, 32, 32), (3, 1, 1, 32, 32, 1), (3, 1, 1), 'XYCZT'), ('APYX', (3, 4, 32, 32), (12, 1, 1, 32, 32, 1), (3, 4, 1), 'XYCZT'), ('TAYX', (3, 4, 32, 32), (12, 1, 1, 32, 32, 1), (12, 1, 1), 'XYCZT'), ( 'CHYXS', (3, 4, 32, 32, 3), (12, 1, 1, 32, 32, 3), (1, 1, 36), 'XYCZT', ), ( 'CHSYX', (3, 4, 3, 32, 32), (12, 3, 1, 32, 32, 1), (1, 1, 36), 'XYCZT', ), ( 'APRYX', (3, 4, 5, 32, 32), (60, 1, 1, 32, 32, 1), (3, 4, 5), 'XYCZT', ), ( 'TAPYX', (3, 4, 5, 32, 32), (60, 1, 1, 32, 32, 1), (12, 5, 1), 'XYCZT', ), ( 'TZAYX', (3, 4, 5, 32, 32), (60, 1, 1, 32, 32, 1), (3, 20, 1), 'XYCZT', ), ( 'ZCHYX', (3, 4, 5, 32, 32), (60, 1, 1, 32, 32, 1), (1, 3, 20), 'XYCZT', ), ( 'EPYX', (10, 5, 200, 200), (50, 1, 1, 200, 200, 1), (10, 5, 1), 'XYCZT', ), ( 'TQCPZRYX', (2, 3, 4, 5, 6, 7, 32, 32), (5040, 1, 1, 32, 32, 1), (6, 42, 20), 'XYZCT', ), ], ) def test_class_omexml_modulo(axes, shape, storedshape, sizetzc, dimorder): """Test OmeXml class with modulo dimensions.""" dtype = numpy.uint8 omexml = OmeXml() omexml.addimage(dtype, shape, storedshape, axes=axes) assert '\n ' in str(omexml) omexml = omexml.tostring() assert dimorder in omexml for ax, size in zip('TZC', sizetzc): assert f'Size{ax}="{size}"' in omexml assert_valid_omexml(omexml) def test_class_omexml_attributes(): """Test OmeXml class with attributes and elements.""" from uuid import uuid1 # noqa: delayed import uuid = str(uuid1()) metadata = dict( # document UUID=uuid, Creator=f'test_tifffile.py {tifffile.__version__}', # image axes='ZYXS', Name='ImageName', Acquisitiondate='2011-09-16T10:45:48', Description='Image "Description" < & >\n{test}', SignificantBits=12, PhysicalSizeX=1.1, PhysicalSizeXUnit='nm', PhysicalSizeY=1.2, PhysicalSizeYUnit='\xb5m', PhysicalSizeZ=1.3, PhysicalSizeZUnit='\xc5', TimeIncrement=1.4, TimeIncrementUnit='\xb5s', Channel=dict(Name='ChannelName'), # one channel with 3 samples Plane=dict(PositionZ=[0.0, 2.0, 4.0]), # 3 Z-planes ) omexml = OmeXml(**metadata) omexml.addimage( numpy.uint16, (3, 32, 32, 3), (3, 1, 1, 32, 32, 3), **metadata ) xml = omexml.tostring() assert uuid in xml assert 'SignificantBits="12"' in xml assert 'SamplesPerPixel="3" Name="ChannelName"' in xml assert 'TheC="0" TheZ="2" TheT="0" PositionZ="4.0"' in xml if SKIP_PYPY: pytest.xfail('lxml bug?') assert_valid_omexml(xml) assert '\n ' in str(omexml) def test_class_omexml_multiimage(): """Test OmeXml class with multiple images.""" omexml = OmeXml(description='multiimage') omexml.addimage( numpy.uint8, (32, 32, 3), (1, 1, 1, 32, 32, 3), name='preview' ) omexml.addimage( numpy.float32, (4, 256, 256), (4, 1, 1, 256, 256, 1), name='1' ) omexml.addimage('bool', (256, 256), (1, 1, 1, 256, 256, 1), name='mask') assert '\n ' in str(omexml) omexml = omexml.tostring() assert 'TiffData IFD="0" PlaneCount="1"' in omexml assert 'TiffData IFD="1" PlaneCount="4"' in omexml assert 'TiffData IFD="5" PlaneCount="1"' in omexml assert_valid_omexml(omexml) def test_func_xml2dict(): """Test xml2dict function.""" d = xml2dict( """ 1 3.14 True Lorem Ipsum """ ) assert d['root']['attr'] == 'attribute' assert d['root']['int'] == 1 assert d['root']['float'] == 3.14 assert d['root']['bool'] is True assert d['root']['string'] == 'Lorem Ipsum' def test_func_memmap(): """Test memmap function.""" with TempFileName('memmap_new') as fname: # create new file im = memmap( fname, shape=(32, 16), dtype=numpy.float32, bigtiff=True, compression=False, ) im[31, 15] = 1.0 im.flush() assert im.shape == (32, 16) assert im.dtype == numpy.float32 del im im = memmap(fname, page=0, mode='r') assert im[31, 15] == 1.0 del im im = memmap(fname, series=0, mode='c') assert im[31, 15] == 1.0 del im # append to file im = memmap( fname, shape=(3, 64, 64), dtype=numpy.uint16, append=True, photometric=MINISBLACK, ) im[2, 63, 63] = 1.0 im.flush() assert im.shape == (3, 64, 64) assert im.dtype == numpy.uint16 del im im = memmap(fname, page=3, mode='r') assert im[63, 63] == 1 del im im = memmap(fname, series=1, mode='c') assert im[2, 63, 63] == 1 del im # can not memory-map compressed array with pytest.raises(ValueError): memmap( fname, shape=(16, 16), dtype=numpy.float32, append=True, compression=ADOBE_DEFLATE, ) def test_func_memmap_fail(): """Test non-native byteorder can not be memory mapped.""" with TempFileName('memmap_fail') as fname: with pytest.raises(ValueError): memmap( fname, shape=(16, 16), dtype=numpy.float32, byteorder='>' if sys.byteorder == 'little' else '<', ) def test_func_repeat_nd(): """Test repeat_nd function.""" a = repeat_nd([[0, 1, 2], [3, 4, 5], [6, 7, 8]], (2, 3)) assert_array_equal( a, [ [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4, 5, 5, 5], [3, 3, 3, 4, 4, 4, 5, 5, 5], [6, 6, 6, 7, 7, 7, 8, 8, 8], [6, 6, 6, 7, 7, 7, 8, 8, 8], ], ) def test_func_byteorder_isnative(): """Test byteorder_isnative function.""" assert byteorder_isnative(sys.byteorder) assert byteorder_isnative('=') if sys.byteorder == 'little': assert byteorder_isnative('<') assert not byteorder_isnative('>') else: assert byteorder_isnative('>') assert not byteorder_isnative('<') def test_func_byteorder_compare(): """Test byteorder_isnative function.""" assert byteorder_compare('<', '<') assert byteorder_compare('>', '>') assert byteorder_compare('=', '=') assert byteorder_compare('|', '|') assert byteorder_compare('>', '|') assert byteorder_compare('<', '|') assert byteorder_compare('|', '>') assert byteorder_compare('|', '<') assert byteorder_compare('=', '|') assert byteorder_compare('|', '=') if sys.byteorder == 'little': assert byteorder_compare('<', '=') else: assert byteorder_compare('>', '=') def test_func_reshape_nd(): """Test reshape_nd function.""" assert reshape_nd(numpy.empty(0), 2).shape == (1, 0) assert reshape_nd(numpy.empty(1), 3).shape == (1, 1, 1) assert reshape_nd(numpy.empty((2, 3)), 3).shape == (1, 2, 3) assert reshape_nd(numpy.empty((2, 3, 4)), 3).shape == (2, 3, 4) assert reshape_nd((0,), 2) == (1, 0) assert reshape_nd((1,), 3) == (1, 1, 1) assert reshape_nd((2, 3), 3) == (1, 2, 3) assert reshape_nd((2, 3, 4), 3) == (2, 3, 4) def test_func_apply_colormap(): """Test apply_colormap function.""" image = numpy.arange(256, dtype=numpy.uint8) colormap = numpy.vstack([image, image, image]).astype(numpy.uint16) * 256 assert_array_equal(apply_colormap(image, colormap)[-1], colormap[:, -1]) def test_func_parse_filenames(): """Test parse_filenames function.""" def func(*args, **kwargs): labels, shape, indices, _ = parse_filenames(*args, **kwargs) return ''.join(labels), shape, indices files = ['c1t001.ext', 'c1t002.ext', 'c2t002.ext'] # 'c2t001.ext' missing # group names p = r'(?P\d).[!\d](?P\d+)\.ext' assert func(files[:1], p) == ('ab', (1, 1), [(0, 0)]) # (1, 1) assert func(files[:2], p) == ('ab', (1, 2), [(0, 0), (0, 1)]) # (1, 1) assert func(files, p) == ('ab', (2, 2), [(0, 0), (0, 1), (1, 1)]) # (1, 1) # unknown axes p = r'(\d)[^\d](\d+)\.ext' assert func(files[:1], p) == ('QQ', (1, 1), [(0, 0)]) # (1, 1) assert func(files[:2], p) == ('QQ', (1, 2), [(0, 0), (0, 1)]) # (1, 1) assert func(files, p) == ('QQ', (2, 2), [(0, 0), (0, 1), (1, 1)]) # (1, 1) # match axes p = r'([^\d])(\d)([^\d])(\d+)\.ext' assert func(files[:1], p) == ('ct', (1, 1), [(0, 0)]) # (1, 1) assert func(files[:2], p) == ('ct', (1, 2), [(0, 0), (0, 1)]) # (1, 1) assert func(files, p) == ('ct', (2, 2), [(0, 0), (0, 1), (1, 1)]) # (1, 1) # misc files = ['c0t001.ext', 'c0t002.ext', 'c2t002.ext'] # 'c2t001.ext' missing p = r'([^\d])(\d)[^\d](?P\d+)\.ext' assert func(files[:1], p) == ('cb', (1, 1), [(0, 0)]) # (0, 1) assert func(files[:2], p) == ('cb', (1, 2), [(0, 0), (0, 1)]) # (0, 1) assert func(files, p) == ('cb', (3, 2), [(0, 0), (0, 1), (2, 1)]) # (0, 1) # BBBC006_v1 categories = {'p': {chr(i + 97): i for i in range(25)}} files = [ 'BBBC006_v1_images_z_00/mcf-z-stacks-03212011_a01_s1_w1a57.tif', 'BBBC006_v1_images_z_00/mcf-z-stacks-03212011_a03_s2_w1419.tif', 'BBBC006_v1_images_z_00/mcf-z-stacks-03212011_p24_s2_w2283.tif', 'BBBC006_v1_images_z_01/mcf-z-stacks-03212011_p24_s2_w11cf.tif', ] # don't match directory p = r'_(?P

[a-z])(?P\d+)(?:_(s)(\d))(?:_(w)(\d))' assert func(files[:1], p, categories=categories) == ( 'pasw', (1, 1, 1, 1), [(0, 0, 0, 0)], # (97, 1, 1, 1), ) assert func(files[:2], p, categories=categories) == ( 'pasw', (1, 3, 2, 1), [(0, 0, 0, 0), (0, 2, 1, 0)], # (97, 1, 1, 1), ) # match directory p = r'(?:_(z)_(\d+)).*_(?P

[a-z])(?P\d+)(?:_(s)(\d))(?:_(w)(\d))' assert func(files, p, categories=categories) == ( 'zpasw', (2, 16, 24, 2, 2), [ (0, 0, 0, 0, 0), (0, 0, 2, 1, 0), (0, 15, 23, 1, 1), (1, 15, 23, 1, 0), ], # (0, 97, 1, 1, 1), ) # reorder axes p = r'(?:_(z)_(\d+)).*_(?P

[a-z])(?P\d+)(?:_(s)(\d))(?:_(w)(\d))' assert func( files, p, axesorder=(2, 0, 1, 3, 4), categories=categories ) == ( 'azpsw', (24, 2, 16, 2, 2), [ (0, 0, 0, 0, 0), (2, 0, 0, 1, 0), (23, 0, 15, 1, 1), (23, 1, 15, 1, 0), ], # (1, 0, 97, 1, 1), ) def test_func_reshape_axes(): """Test reshape_axes function.""" assert reshape_axes('YXS', (219, 301, 1), (219, 301, 1)) == 'YXS' assert reshape_axes('YXS', (219, 301, 3), (219, 301, 3)) == 'YXS' assert reshape_axes('YXS', (219, 301, 1), (219, 301)) == 'YX' assert reshape_axes('YXS', (219, 301, 1), (219, 1, 1, 301, 1)) == 'YQQXS' assert reshape_axes('IYX', (12, 219, 301), (3, 4, 219, 301, 1)) == 'QQYXQ' assert ( reshape_axes('IYX', (12, 219, 301), (3, 4, 219, 1, 301, 1)) == 'QQYQXQ' ) assert ( reshape_axes('IYX', (12, 219, 301), (3, 2, 219, 2, 301, 1)) == 'QQQQXQ' ) with pytest.raises(ValueError): reshape_axes('IYX', (12, 219, 301), (3, 4, 219, 2, 301, 1)) with pytest.raises(ValueError): reshape_axes('IYX', (12, 219, 301), (3, 4, 219, 301, 2)) def test_func_julian_datetime(): """Test julian_datetime function.""" assert julian_datetime(2451576, 54362783) == ( datetime.datetime(2000, 2, 2, 15, 6, 2, 783) ) def test_func_excel_datetime(): """Test excel_datetime function.""" assert excel_datetime(40237.029999999795) == ( datetime.datetime(2010, 2, 28, 0, 43, 11, 999982) ) def test_func_natural_sorted(): """Test natural_sorted function.""" assert natural_sorted(['f1', 'f2', 'f10']) == ['f1', 'f2', 'f10'] def test_func_stripnull(): """Test stripnull function.""" assert stripnull(b'string\x00') == b'string' assert stripnull('string\x00', null='\0') == 'string' assert ( stripnull(b'string\x00string\x00\x00', first=False) == b'string\x00string' ) assert ( stripnull('string\x00string\x00\x00', null='\0', first=False) == 'string\x00string' ) def test_func_stripascii(): """Test stripascii function.""" assert stripascii(b'string\x00string\n\x01\x00') == b'string\x00string\n' assert stripascii(b'\x00') == b'' def test_func_sequence(): """Test sequence function.""" assert sequence(1) == (1,) assert sequence([1]) == [1] def test_func_product(): """Test product function.""" assert product([2**8, 2**30]) == 274877906944 assert product([]) == 1 def test_func_squeeze_axes(): """Test squeeze_axes function.""" assert squeeze_axes((5, 1, 2, 1, 1), 'TZYXC') == ((5, 2, 1), 'TYX') assert squeeze_axes((1,), 'Y') == ((1,), 'Y') assert squeeze_axes((1,), 'Q') == ((1,), 'Q') assert squeeze_axes((1, 1), 'PQ') == ((1,), 'Q') def test_func_transpose_axes(): """Test transpose_axes function.""" assert transpose_axes( numpy.zeros((2, 3, 4, 5)), 'TYXC', asaxes='CTZYX' ).shape == (5, 2, 1, 3, 4) def test_func_subresolution(): """Test subresolution function.""" class a: dtype = numpy.uint8 axes = 'QzyxS' shape = (3, 256, 512, 1024, 4) class b: dtype = numpy.uint8 axes = 'QzyxS' shape = (3, 128, 256, 512, 4) assert subresolution(a, a) == 0 assert subresolution(a, b) == 1 assert subresolution(a, b, p=2, n=2) == 1 assert subresolution(a, b, p=3) is None b.shape = (3, 86, 171, 342, 4) assert subresolution(a, b, p=3) == 1 b.shape = (3, 128, 256, 512, 2) assert subresolution(a, b) is None b.shape = (3, 64, 256, 512, 4) assert subresolution(a, b) is None b.shape = (3, 128, 64, 512, 4) assert subresolution(a, b) is None b.shape = (3, 128, 256, 1024, 4) assert subresolution(a, b) is None b.shape = (3, 32, 64, 128, 4) assert subresolution(a, b) == 3 @pytest.mark.skipif(SKIP_BE, reason=REASON) def test_func_unpack_rgb(): """Test unpack_rgb function.""" data = struct.pack('BBBB', 0x21, 0x08, 0xFF, 0xFF) assert_array_equal( unpack_rgb(data, ' Unknown = unknown % Comment """ ) assert p['Array'] == [1, 2] assert p['Array.2D'] == [[1], [2]] assert p['Array.Empty'] == [] assert p['Cell'] == ['', ''] assert p['Class'] == '@class' assert p['False'] is False assert p['Filename'] == 'C:\\Users\\scanimage.cfg' assert p['Float'] == 3.14 assert p['Float.E'] == 3.14 assert p['Float.Inf'] == float('inf') # self.assertEqual(p['Float.NaN'], float('nan')) # can't compare NaN assert p['Int'] == 10 assert p['StructObject'] == '' assert p['Ones'] == [[]] assert p['String'] == 'string' assert p['String.Array'] == 'ab' assert p['String.Empty'] == '' assert p['Transform'] == [[1, 0, 0], [0, 1, 0], [0, 0, 1]] assert p['True'] is True assert p['Unknown'] == 'unknown' assert p['Zeros'] == [[0.0]] assert p['Zeros.Empty'] == [[]] assert p['false'] is False assert p['true'] is True def test_func_hexdump(): """Test hexdump function.""" # test hexdump function data = binascii.unhexlify( '49492a00080000000e00fe0004000100' '00000000000000010400010000000001' '00000101040001000000000100000201' '03000100000020000000030103000100' ) # one line assert hexdump(data[:16]) == ( '49 49 2a 00 08 00 00 00 0e 00 fe 00 04 00 01 00 II*.............' ) # height=1 assert hexdump(data, width=64, height=1) == ( '49 49 2a 00 08 00 00 00 0e 00 fe 00 04 00 01 00 II*.............' ) # all lines assert hexdump(data) == ( '00: 49 49 2a 00 08 00 00 00 0e 00 fe 00 04 00 01 00 ' 'II*.............\n' '10: 00 00 00 00 00 00 00 01 04 00 01 00 00 00 00 01 ' '................\n' '20: 00 00 01 01 04 00 01 00 00 00 00 01 00 00 02 01 ' '................\n' '30: 03 00 01 00 00 00 20 00 00 00 03 01 03 00 01 00 ' '...... .........' ) # skip center assert hexdump(data, height=3, snipat=0.5) == ( '00: 49 49 2a 00 08 00 00 00 0e 00 fe 00 04 00 01 00 ' 'II*.............\n' '...\n' '30: 03 00 01 00 00 00 20 00 00 00 03 01 03 00 01 00 ' '...... .........' ) # skip start assert hexdump(data, height=3, snipat=0) == ( '10: 00 00 00 00 00 00 00 01 04 00 01 00 00 00 00 01 ' '................\n' '20: 00 00 01 01 04 00 01 00 00 00 00 01 00 00 02 01 ' '................\n' '30: 03 00 01 00 00 00 20 00 00 00 03 01 03 00 01 00 ' '...... .........' ) # skip end assert hexdump(data, height=3, snipat=1) == ( '00: 49 49 2a 00 08 00 00 00 0e 00 fe 00 04 00 01 00 ' 'II*.............\n' '10: 00 00 00 00 00 00 00 01 04 00 01 00 00 00 00 01 ' '................\n' '20: 00 00 01 01 04 00 01 00 00 00 00 01 00 00 02 01 ' '................' ) def test_func_asbool(): """Test asbool function.""" for true in ('TRUE', ' True ', 'true '): assert asbool(true) assert asbool(true.encode()) for false in ('FALSE', ' False ', 'false '): assert not asbool(false) assert not asbool(false.encode()) assert asbool('ON', ['on'], ['off']) assert asbool('ON', 'on', 'off') with pytest.raises(TypeError): assert asbool('Yes') with pytest.raises(TypeError): assert asbool('True', ['on'], ['off']) def test_func_snipstr(): """Test snipstr function.""" # cut middle assert snipstr('abc', 3, ellipsis='...') == 'abc' assert snipstr('abc', 3, ellipsis='....') == 'abc' assert snipstr('abcdefg', 4, ellipsis='') == 'abcd' assert snipstr('abcdefg', 4, ellipsis=None) == 'abc…' assert snipstr(b'abcdefg', 4, ellipsis=None) == b'a...' assert snipstr('abcdefghijklmnop', 8, ellipsis=None) == 'abcd…nop' assert snipstr(b'abcdefghijklmnop', 8, ellipsis=None) == b'abc...op' assert snipstr('abcdefghijklmnop', 9, ellipsis=None) == 'abcd…mnop' assert snipstr(b'abcdefghijklmnop', 9, ellipsis=None) == b'abc...nop' assert snipstr('abcdefghijklmnop', 8, ellipsis='..') == 'abc..nop' assert snipstr('abcdefghijklmnop', 8, ellipsis='....') == 'ab....op' assert snipstr('abcdefghijklmnop', 8, ellipsis='......') == 'ab......' # cut right assert snipstr('abc', 3, snipat=1, ellipsis='...') == 'abc' assert snipstr('abc', 3, snipat=1, ellipsis='....') == 'abc' assert snipstr('abcdefg', 4, snipat=1, ellipsis='') == 'abcd' assert snipstr('abcdefg', 4, snipat=1, ellipsis=None) == 'abc…' assert snipstr(b'abcdefg', 4, snipat=1, ellipsis=None) == b'a...' assert ( snipstr('abcdefghijklmnop', 8, snipat=1, ellipsis=None) == 'abcdefg…' ) assert ( snipstr(b'abcdefghijklmnop', 8, snipat=1, ellipsis=None) == b'abcde...' ) assert ( snipstr('abcdefghijklmnop', 9, snipat=1, ellipsis=None) == 'abcdefgh…' ) assert ( snipstr(b'abcdefghijklmnop', 9, snipat=1, ellipsis=None) == b'abcdef...' ) assert ( snipstr('abcdefghijklmnop', 8, snipat=1, ellipsis='..') == 'abcdef..' ) assert ( snipstr('abcdefghijklmnop', 8, snipat=1, ellipsis='....') == 'abcd....' ) assert ( snipstr('abcdefghijklmnop', 8, snipat=1, ellipsis='......') == 'ab......' ) # cut left assert snipstr('abc', 3, snipat=0, ellipsis='...') == 'abc' assert snipstr('abc', 3, snipat=0, ellipsis='....') == 'abc' assert snipstr('abcdefg', 4, snipat=0, ellipsis='') == 'defg' assert snipstr('abcdefg', 4, snipat=0, ellipsis=None) == '…efg' assert snipstr(b'abcdefg', 4, snipat=0, ellipsis=None) == b'...g' assert ( snipstr('abcdefghijklmnop', 8, snipat=0, ellipsis=None) == '…jklmnop' ) assert ( snipstr(b'abcdefghijklmnop', 8, snipat=0, ellipsis=None) == b'...lmnop' ) assert ( snipstr('abcdefghijklmnop', 9, snipat=0, ellipsis=None) == '…ijklmnop' ) assert ( snipstr(b'abcdefghijklmnop', 9, snipat=0, ellipsis=None) == b'...klmnop' ) assert ( snipstr('abcdefghijklmnop', 8, snipat=0, ellipsis='..') == '..klmnop' ) assert ( snipstr('abcdefghijklmnop', 8, snipat=0, ellipsis='....') == '....mnop' ) assert ( snipstr('abcdefghijklmnop', 8, snipat=0, ellipsis='......') == '......op' ) def test_func_pformat_printable_bytes(): """Test pformat function with printable bytes.""" value = ( b'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRST' b'UVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r\x0b\x0c' ) assert pformat(value, height=1, width=60) == ( '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWX' ) assert ( pformat(value, height=8, width=60) == r""" 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWX """.strip() ) # YZ!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~ def test_func_pformat_printable_unicode(): """Test pformat function with printable unicode.""" value = ( '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRST' 'UVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r\x0b\x0c' ) assert pformat(value, height=1, width=60) == ( '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWX' ) assert ( pformat(value, height=8, width=60) == r""" 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWX """.strip() ) # YZ!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~ def test_func_pformat_hexdump(): """Test pformat function with unprintable bytes.""" value = binascii.unhexlify( '49492a00080000000e00fe0004000100' '00000000000000010400010000000001' '00000101040001000000000100000201' '03000100000020000000030103000100' ) assert pformat(value, height=1, width=60) == ( '49 49 2a 00 08 00 00 00 0e 00 fe 00 04 00 01 II*............' ) assert ( pformat(value, height=8, width=70) == """ 00: 49 49 2a 00 08 00 00 00 0e 00 fe 00 04 00 01 00 II*............. 10: 00 00 00 00 00 00 00 01 04 00 01 00 00 00 00 01 ................ 20: 00 00 01 01 04 00 01 00 00 00 00 01 00 00 02 01 ................ 30: 03 00 01 00 00 00 20 00 00 00 03 01 03 00 01 00 ...... ......... """.strip() ) def test_func_pformat_dict(): """Test pformat function with dict.""" value = { 'GTCitationGeoKey': 'WGS 84 / UTM zone 29N', 'GTModelTypeGeoKey': 1, 'GTRasterTypeGeoKey': 1, 'KeyDirectoryVersion': 1, 'KeyRevision': 1, 'KeyRevisionMinor': 2, 'ModelTransformation': numpy.array( [ [6.00000e01, 0.00000e00, 0.00000e00, 6.00000e05], [0.00000e00, -6.00000e01, 0.00000e00, 5.90004e06], [0.00000e00, 0.00000e00, 0.00000e00, 0.00000e00], [0.00000e00, 0.00000e00, 0.00000e00, 1.00000e00], ] ), 'PCSCitationGeoKey': 'WGS 84 / UTM zone 29N', 'ProjectedCSTypeGeoKey': 32629, } assert pformat(value, height=1, width=60) == ( "{'GTCitationGeoKey': 'WGS 84 / UTM zone 29N', 'GTModelTypeGe" ) assert pformat(value, height=8, width=60) == ( """{'GTCitationGeoKey': 'WGS 84 / UTM zone 29N', 'GTModelTypeGeoKey': 1, 'GTRasterTypeGeoKey': 1, 'KeyDirectoryVersion': 1, ... [ 0., 0., 0., 0.], [ 0., 0., 0., 1.]]), 'PCSCitationGeoKey': 'WGS 84 / UTM zone 29N', 'ProjectedCSTypeGeoKey': 32629}""" ) def test_func_pformat_list(): """Test pformat function with list.""" value = ( 60.0, 0.0, 0.0, 600000.0, 0.0, -60.0, 0.0, 5900040.0, 60.0, 0.0, 0.0, 600000.0, 0.0, -60.0, 0.0, 5900040.0, ) assert pformat(value, height=1, width=60) == ( '(60.0, 0.0, 0.0, 600000.0, 0.0, -60.0, 0.0, 5900040.0, 60.0,' ) assert pformat(value, height=8, width=60) == ( '(60.0, 0.0, 0.0, 600000.0, 0.0, -60.0, 0.0, 5900040.0, 60.0,\n' ' 0.0, 0.0, 600000.0, 0.0, -60.0, 0.0, 5900040.0)' ) def test_func_pformat_numpy(): """Test pformat function with numpy array.""" value = numpy.array( ( 60.0, 0.0, 0.0, 600000.0, 0.0, -60.0, 0.0, 5900040.0, 60.0, 0.0, 0.0, 600000.0, 0.0, -60.0, 0.0, 5900040.0, ) ) assert pformat(value, height=1, width=60) == ( 'array([ 60., 0., 0., 600000., 0., -60., 0., 5900040., 60., 0' ) assert pformat(value, height=8, width=60) == ( """array([ 60., 0., 0., 600000., 0., -60., 0., 5900040., 60., 0., 0., 600000., 0., -60., 0., 5900040.])""" ) @pytest.mark.skipif(SKIP_WIN, reason='not reliable on Linux') def test_func_pformat_xml(): """Test pformat function with XML.""" value = """ DIMAP BEAM-DATAMODEL-V1 0 """ assert pformat(value, height=1, width=60) == ( ' DIMAP ... 0 """ ) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_LARGE, reason=REASON) def test_func_lsm2bin(): """Test lsm2bin function.""" # Convert LSM to BIN fname = private_file( 'lsm/Twoareas_Zstacks54slices_3umintervals_5cycles.lsm' ) # fname = private_file( # 'LSM/fish01-wt-t01-10_ForTest-20zplanes10timepoints.lsm') lsm2bin(fname, '', verbose=True) def test_func_tiffcomment(): """Test tiffcomment function.""" data = random_data(numpy.uint8, (33, 31, 3)) with TempFileName('func_tiffcomment') as fname: comment = 'A comment' imwrite( fname, data, photometric=RGB, description=comment, metadata=None ) assert comment == tiffcomment(fname) comment = 'changed comment' tiffcomment(fname, comment) assert comment == tiffcomment(fname) assert_valid_tiff(fname) def test_func_create_output(): """Test create_output function.""" shape = (16, 17) dtype = numpy.uint16 # None a = create_output(None, shape, dtype) assert_array_equal(a, numpy.zeros(shape, dtype)) # existing array b = create_output(a, a.shape, a.dtype) assert a is b.base # 'memmap' a = create_output('memmap', shape, dtype) assert isinstance(a, numpy.core.memmap) del a # 'memmap:tempdir' a = create_output(f'memmap:{os.path.abspath(TEMP_DIR)}', shape, dtype) assert isinstance(a, numpy.core.memmap) del a # filename with TempFileName('nopages') as fname: a = create_output(fname, shape, dtype) del a @pytest.mark.parametrize('key', [None, 0, 3, 'series']) @pytest.mark.parametrize('out', [None, 'empty', 'memmap', 'dir', 'name']) def test_func_create_output_asarray(out, key): """Test create_output function in context of asarray.""" data = random_data(numpy.uint16, (5, 219, 301)) with TempFileName(f'out_{key}_{out}') as fname: imwrite(fname, data) # assert file with TiffFile(fname) as tif: tif.pages.useframes = True tif.pages._load() if key is None: # default obj = tif dat = data elif key == 'series': # series obj = tif.series[0] dat = data else: # single page/frame obj = tif.pages[key] dat = data[key] if key == 0: assert isinstance(obj, TiffPage) else: assert isinstance(obj, TiffFrame) if out is None: # new array image = obj.asarray(out=None) assert_array_equal(dat, image) del image elif out == 'empty': # existing array image = numpy.empty_like(dat) obj.asarray(out=image) assert_array_equal(dat, image) del image elif out == 'memmap': # memmap in temp dir image = obj.asarray(out='memmap') assert isinstance(image, numpy.core.memmap) assert_array_equal(dat, image) del image elif out == 'dir': # memmap in specified dir tempdir = os.path.dirname(fname) image = obj.asarray(out=f'memmap:{tempdir}') assert isinstance(image, numpy.core.memmap) assert_array_equal(dat, image) del image elif out == 'name': # memmap in specified file with TempFileName( f'out_{key}_{out}', ext='.memmap' ) as fileout: image = obj.asarray(out=fileout) assert isinstance(image, numpy.core.memmap) assert_array_equal(dat, image) del image ############################################################################### # Test FileHandle class FILEHANDLE_NAME = public_file('tifffile/test_FileHandle.bin') FILEHANDLE_SIZE = 7937381 FILEHANDLE_OFFSET = 333 FILEHANDLE_LENGTH = 7937381 - 666 @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def create_filehandle_file(): """Write test_FileHandle.bin file.""" # array start 999 # array end 1254 # recarray start 2253 # recarray end 6078 # tiff start 7077 # tiff end 12821 # mm offset = 13820 # mm size = 7936382 with open(FILEHANDLE_NAME, 'wb') as fh: # buffer numpy.ones(999, dtype=numpy.uint8).tofile(fh) # array print('array start', fh.tell()) numpy.arange(255, dtype=numpy.uint8).tofile(fh) print('array end', fh.tell()) # buffer numpy.ones(999, dtype=numpy.uint8).tofile(fh) # recarray print('recarray start', fh.tell()) a = numpy.recarray( (255, 3), dtype=[('x', numpy.float32), ('y', numpy.uint8)] ) for i in range(3): a[:, i].x = numpy.arange(255, dtype=numpy.float32) a[:, i].y = numpy.arange(255, dtype=numpy.uint8) a.tofile(fh) print('recarray end', fh.tell()) # buffer numpy.ones(999, dtype=numpy.uint8).tofile(fh) # tiff print('tiff start', fh.tell()) with open('data/public/tifffile/generic_series.tif', 'rb') as tif: fh.write(tif.read()) print('tiff end', fh.tell()) # buffer numpy.ones(999, dtype=numpy.uint8).tofile(fh) # micromanager print('micromanager start', fh.tell()) with open('data/public/tifffile/micromanager.tif', 'rb') as tif: fh.write(tif.read()) print('micromanager end', fh.tell()) # buffer numpy.ones(999, dtype=numpy.uint8).tofile(fh) def assert_filehandle(fh, offset=0): """Assert filehandle can read test_FileHandle.bin.""" size = FILEHANDLE_SIZE - 2 * offset pad = 999 - offset assert fh.size == size assert fh.tell() == 0 assert fh.read(4) == b'\x01\x01\x01\x01' fh.seek(pad - 4) assert fh.tell() == pad - 4 assert fh.read(4) == b'\x01\x01\x01\x01' fh.seek(-4, whence=1) assert fh.tell() == pad - 4 assert fh.read(4) == b'\x01\x01\x01\x01' fh.seek(-pad, whence=2) assert fh.tell() == size - pad assert fh.read(4) == b'\x01\x01\x01\x01' # assert array fh.seek(pad, whence=0) assert fh.tell() == pad assert_array_equal( fh.read_array(numpy.uint8, 255), numpy.arange(255, dtype=numpy.uint8) ) # assert records fh.seek(999, whence=1) assert fh.tell() == 2253 - offset records = fh.read_record( [('x', numpy.float32), ('y', numpy.uint8)], (255, 3) ) assert_array_equal(records.y[:, 0], range(255)) assert_array_equal(records.x, records.y) # assert memmap if fh.is_file: assert_array_equal( fh.memmap_array(numpy.uint8, 255, pad), numpy.arange(255, dtype=numpy.uint8), ) @pytest.mark.skipif(SKIP_HTTP, reason=REASON) def test_filehandle_seekable(): """Test FileHandle must be seekable.""" from urllib.request import HTTPHandler, build_opener opener = build_opener(HTTPHandler()) opener.addheaders = [('User-Agent', 'test_tifffile.py')] try: fh = opener.open(URL + 'data/test_http.tif') except OSError: pytest.skip(URL + 'data/test_http.tif') with pytest.raises(ValueError): FileHandle(fh) def test_filehandle_write_bytesio(): """Test write to FileHandle from BytesIO.""" value = b'123456789' buf = BytesIO() with FileHandle(buf) as fh: fh.write(value) buf.seek(0) assert buf.read() == value def test_filehandle_write_bytesio_offset(): """Test write to FileHandle from BytesIO with offset.""" pad = b'abcd' value = b'123456789' buf = BytesIO() buf.write(pad) with FileHandle(buf) as fh: fh.write(value) buf.write(pad) # assert buffer buf.seek(len(pad)) assert buf.read(len(value)) == value buf.seek(2) with FileHandle(buf, offset=len(pad), size=len(value)) as fh: assert fh.read(len(value)) == value @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_filehandle_filename(): """Test FileHandle from filename.""" with FileHandle(FILEHANDLE_NAME) as fh: assert fh.name == 'test_FileHandle.bin' assert fh.is_file assert_filehandle(fh) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_filehandle_filename_offset(): """Test FileHandle from filename with offset.""" with FileHandle( FILEHANDLE_NAME, offset=FILEHANDLE_OFFSET, size=FILEHANDLE_LENGTH ) as fh: assert fh.name == 'test_FileHandle.bin' assert fh.is_file assert_filehandle(fh, FILEHANDLE_OFFSET) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_filehandle_bytesio(): """Test FileHandle from BytesIO.""" with open(FILEHANDLE_NAME, 'rb') as fh: stream = BytesIO(fh.read()) with FileHandle(stream) as fh: assert fh.name == 'Unnamed binary stream' assert not fh.is_file assert_filehandle(fh) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_filehandle_bytesio_offset(): """Test FileHandle from BytesIO with offset.""" with open(FILEHANDLE_NAME, 'rb') as fh: stream = BytesIO(fh.read()) with FileHandle( stream, offset=FILEHANDLE_OFFSET, size=FILEHANDLE_LENGTH ) as fh: assert fh.name == 'Unnamed binary stream' assert not fh.is_file assert_filehandle(fh, offset=FILEHANDLE_OFFSET) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_filehandle_openfile(): """Test FileHandle from open file.""" with open(FILEHANDLE_NAME, 'rb') as fhandle: with FileHandle(fhandle) as fh: assert fh.name == 'test_FileHandle.bin' assert fh.is_file assert_filehandle(fh) assert not fhandle.closed @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_filehandle_openfile_offset(): """Test FileHandle from open file with offset.""" with open(FILEHANDLE_NAME, 'rb') as fhandle: with FileHandle( fhandle, offset=FILEHANDLE_OFFSET, size=FILEHANDLE_LENGTH ) as fh: assert fh.name == 'test_FileHandle.bin' assert fh.is_file assert_filehandle(fh, offset=FILEHANDLE_OFFSET) assert not fhandle.closed @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_filehandle_filehandle(): """Test FileHandle from other FileHandle.""" with FileHandle(FILEHANDLE_NAME, 'rb') as fhandle: with FileHandle(fhandle) as fh: assert fh.name == 'test_FileHandle.bin' assert fh.is_file assert_filehandle(fh) assert not fhandle.closed @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_filehandle_offset(): """Test FileHandle from other FileHandle with offset.""" with FileHandle(FILEHANDLE_NAME, 'rb') as fhandle: with FileHandle( fhandle, offset=FILEHANDLE_OFFSET, size=FILEHANDLE_LENGTH ) as fh: assert fh.name == 'test_FileHandle@333.bin' assert fh.is_file assert_filehandle(fh, offset=FILEHANDLE_OFFSET) assert not fhandle.closed @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_filehandle_reopen(): """Test FileHandle close and open.""" try: fh = FileHandle(FILEHANDLE_NAME) assert not fh.closed assert fh.is_file fh.close() assert fh.closed fh.open() assert not fh.closed assert fh.is_file assert fh.name == 'test_FileHandle.bin' assert_filehandle(fh) finally: fh.close() @pytest.mark.skipif(SKIP_PUBLIC or SKIP_WIN, reason=REASON) def test_filehandle_unc_path(): """Test FileHandle from UNC path.""" with FileHandle(r'\\localhost\Data\Data\test_FileHandle.bin') as fh: assert fh.name == 'test_FileHandle.bin' assert fh.dirname == '\\\\localhost\\Data\\Data' assert_filehandle(fh) ############################################################################### # Test reading specific files if SKIP_EXTENDED or SKIP_PRIVATE: TIGER_FILES = [] TIGER_IDS = [] else: TIGER_FILES = ( public_file('graphicsmagick.org/be/*.tif') + public_file('graphicsmagick.org/le/*.tif') + public_file('graphicsmagick.org/bigtiff-be/*.tif') + public_file('graphicsmagick.org/bigtiff-le/*.tif') ) TIGER_IDS = [ '-'.join(f.split(os.path.sep)[-2:]) .replace('-tiger', '') .replace('.tif', '') for f in TIGER_FILES ] @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS or SKIP_EXTENDED, reason=REASON) @pytest.mark.parametrize('fname', TIGER_FILES, ids=TIGER_IDS) def test_read_tigers(fname): """Test tiger images from GraphicsMagick.""" # ftp://ftp.graphicsmagick.org/pub/tiff-samples with TiffFile(fname) as tif: byteorder = {'le': '<', 'be': '>'}[os.path.split(fname)[0][-2:]] databits = int(fname.rsplit('.tif')[0][-2:]) # assert file properties assert_file_flags(tif) assert tif.byteorder == byteorder assert tif.is_bigtiff == ('bigtiff' in fname) assert len(tif.pages) == 1 # assert page properties page = tif.pages[0] assert_page_flags(page) assert page.tags['DocumentName'].value == os.path.basename(fname) assert page.imagewidth == 73 assert page.imagelength == 76 assert page.bitspersample == databits assert (page.photometric == RGB) == ('rgb' in fname) assert (page.photometric == PALETTE) == ('palette' in fname) assert page.is_tiled == ('tile' in fname) assert (page.planarconfig == CONTIG) == ('planar' not in fname) if 'minisblack' in fname: assert page.photometric == MINISBLACK # float24 not supported # if 'float' in fname and databits == 24: # with pytest.raises(ValueError): # data = tif.asarray() # return # assert data shapes data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] # if 'palette' in fname: # shape = (76, 73, 3) if 'rgb' in fname: if 'planar' in fname: shape = (3, 76, 73) else: shape = (76, 73, 3) elif 'separated' in fname: if 'planar' in fname: shape = (4, 76, 73) else: shape = (76, 73, 4) else: shape = (76, 73) assert data.shape == shape # assert data types if 'float' in fname: if databits == 24: dtype = numpy.float32 else: dtype = f'float{databits}' # elif 'palette' in fname: # dtype = numpy.uint16 elif databits == 1: dtype = numpy.bool8 elif databits <= 8: dtype = numpy.uint8 elif databits <= 16: dtype = numpy.uint16 elif databits <= 32: dtype = numpy.uint32 elif databits <= 64: dtype = numpy.uint64 assert data.dtype == dtype assert_decode_method(page, data) assert_aszarr_method(page, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_exif_paint(): """Test read EXIF tags.""" fname = private_file('exif/paint.tif') with TiffFile(fname) as tif: exif = tif.pages[0].tags['ExifTag'].value assert exif['ColorSpace'] == 65535 assert exif['ExifVersion'] == '0230' assert exif['UserComment'] == 'paint' assert_aszarr_method(tif) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS, reason=REASON) def test_read_hopper_2bit(): """Test read 2-bit, fillorder=lsb2msb.""" # https://github.com/python-pillow/Pillow/pull/1789 fname = public_file('pillow/tiff_gray_2_4_bpp/hopper2.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == MINISBLACK assert not page.is_contiguous assert page.compression == NONE assert page.imagewidth == 128 assert page.imagelength == 128 assert page.bitspersample == 2 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (128, 128) assert series.dtype == numpy.uint8 assert series.axes == 'YX' assert series.offset is None # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (128, 128) assert data[50, 63] == 3 assert_aszarr_method(tif, data) assert__str__(tif) # reversed fname = public_file('pillow/tiff_gray_2_4_bpp/hopper2R.tif') with TiffFile(fname) as tif: page = tif.pages[0] assert page.photometric == MINISBLACK assert page.fillorder == LSB2MSB assert_array_equal(tif.asarray(), data) assert_aszarr_method(tif) assert__str__(tif) # inverted fname = public_file('pillow/tiff_gray_2_4_bpp/hopper2I.tif') with TiffFile(fname) as tif: page = tif.pages[0] assert page.photometric == MINISWHITE assert_array_equal(tif.asarray(), 3 - data) assert_aszarr_method(tif) assert__str__(tif) # inverted and reversed fname = public_file('pillow/tiff_gray_2_4_bpp/hopper2IR.tif') with TiffFile(fname) as tif: page = tif.pages[0] assert page.photometric == MINISWHITE assert_array_equal(tif.asarray(), 3 - data) assert_aszarr_method(tif) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS, reason=REASON) def test_read_hopper_4bit(): """Test read 4-bit, fillorder=lsb2msb.""" # https://github.com/python-pillow/Pillow/pull/1789 fname = public_file('pillow/tiff_gray_2_4_bpp/hopper4.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == MINISBLACK assert not page.is_contiguous assert page.compression == NONE assert page.imagewidth == 128 assert page.imagelength == 128 assert page.bitspersample == 4 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (128, 128) assert series.dtype == numpy.uint8 assert series.axes == 'YX' assert series.offset is None # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (128, 128) assert data[50, 63] == 13 # reversed fname = public_file('pillow/tiff_gray_2_4_bpp/hopper4R.tif') with TiffFile(fname) as tif: page = tif.pages[0] assert page.photometric == MINISBLACK assert page.fillorder == LSB2MSB assert_array_equal(tif.asarray(), data) assert__str__(tif) # inverted fname = public_file('pillow/tiff_gray_2_4_bpp/hopper4I.tif') with TiffFile(fname) as tif: page = tif.pages[0] assert page.photometric == MINISWHITE assert_array_equal(tif.asarray(), 15 - data) assert__str__(tif) # inverted and reversed fname = public_file('pillow/tiff_gray_2_4_bpp/hopper4IR.tif') with TiffFile(fname) as tif: page = tif.pages[0] assert page.photometric == MINISWHITE assert_array_equal(tif.asarray(), 15 - data) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_lsb2msb(): """Test read fillorder=lsb2msb, 2 series.""" # http://lists.openmicroscopy.org.uk/pipermail/ome-users # /2015-September/005635.html fname = private_file('test_lsb2msb.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 2 assert len(tif.series) == 2 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 7100 assert page.imagelength == 4700 assert page.bitspersample == 16 assert page.samplesperpixel == 3 page = tif.pages[1] assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 7100 assert page.imagelength == 4700 assert page.bitspersample == 16 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (4700, 7100, 3) assert series.dtype == numpy.uint16 assert series.axes == 'YXS' assert series.offset is None series = tif.series[1] assert series.shape == (4700, 7100) assert series.dtype == numpy.uint16 assert series.axes == 'YX' assert series.offset is None # assert data data = tif.asarray(series=0) assert isinstance(data, numpy.ndarray) assert data.shape == (4700, 7100, 3) assert data[2350, 3550, 1] == 60457 assert_aszarr_method(tif, data, series=0) data = tif.asarray(series=1) assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (4700, 7100) assert data[2350, 3550] == 56341 assert_aszarr_method(tif, data, series=1) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_gimp_u2(): """Test read uint16 with horizontal predictor by GIMP.""" fname = public_file('tifffile/gimp_u2.tiff') with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == ADOBE_DEFLATE assert page.photometric == RGB assert page.predictor == HORIZONTAL assert page.imagewidth == 333 assert page.imagelength == 231 assert page.samplesperpixel == 3 image = tif.asarray() assert image.flags['C_CONTIGUOUS'] assert tuple(image[110, 110]) == (23308, 17303, 41160) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_gimp_f4(): """Test read float32 with horizontal predictor by GIMP.""" fname = public_file('tifffile/gimp_f4.tiff') with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == ADOBE_DEFLATE assert page.photometric == RGB assert page.predictor == HORIZONTAL assert page.imagewidth == 333 assert page.imagelength == 231 assert page.samplesperpixel == 3 image = tif.asarray() assert image.flags['C_CONTIGUOUS'] assert_array_almost_equal( image[110, 110], (0.35565534, 0.26402164, 0.6280674) ) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_gimp_f2(): """Test read float16 with horizontal predictor by GIMP.""" fname = public_file('tifffile/gimp_f2.tiff') with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == ADOBE_DEFLATE assert page.photometric == RGB assert page.predictor == HORIZONTAL assert page.imagewidth == 333 assert page.imagelength == 231 assert page.samplesperpixel == 3 image = tif.asarray() assert image.flags['C_CONTIGUOUS'] assert_array_almost_equal( image[110, 110].astype(numpy.float64), (0.35571289, 0.26391602, 0.62792969), ) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif( SKIP_PRIVATE or SKIP_CODECS or not imagecodecs.LJPEG, reason=REASON ) def test_read_dng_jpeglossy(): """Test read JPEG_LOSSY in DNG.""" fname = private_file('DNG/Adobe DNG Converter.dng') with TiffFile(fname) as tif: assert len(tif.pages) == 1 assert len(tif.series) == 6 for series in tif.series: image = series.asarray() assert_aszarr_method(series, image) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) @pytest.mark.parametrize('fp', ['fp16', 'fp24', 'fp32']) def test_read_dng_floatpredx2(fp): """Test read FLOATINGPOINTX2 predictor in DNG.""" # fname = private_file(f'DNG/fpx2/hdrmerge-bayer-{fp}-w-pred-deflate.dng') with TiffFile(fname) as tif: assert len(tif.pages) == 1 assert len(tif.series) == 3 page = tif.pages[0].pages[0] assert page.compression == ADOBE_DEFLATE assert page.photometric == CFA assert page.predictor == 34894 assert page.imagewidth == 5920 assert page.imagelength == 3950 assert page.sampleformat == 3 assert page.bitspersample == int(fp[2:]) assert page.samplesperpixel == 1 if fp == 'fp24': with pytest.raises(NotImplementedError): image = page.asarray() else: image = page.asarray() assert_aszarr_method(page, image) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) @pytest.mark.parametrize('fname', ['sample1.orf', 'sample1.rw2']) def test_read_rawformats(fname, caplog): """Test parse unsupported RAW formats.""" fname = private_file(f'RAWformats/{fname}') with TiffFile(fname) as tif: assert 'RAW format' in caplog.text assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_iss_vista(): """Test read bogus imagedepth tag by ISS Vista.""" fname = private_file('iss/10um_beads_14stacks_ch1.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 14 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert not page.is_reduced assert not page.is_tiled assert page.compression == NONE assert page.imagewidth == 256 assert page.imagelength == 256 assert page.tags['ImageDepth'].value == 14 # bogus assert page.bitspersample == 16 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (14, 256, 256) assert series.dtype == numpy.int16 assert series.axes == 'IYX' # ZYX assert_aszarr_method(series) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_vips(): """Test read 347x641 RGB, bigtiff, pyramid, tiled, produced by VIPS.""" fname = private_file('vips.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 4 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert not page.is_reduced assert page.is_tiled assert page.compression == ADOBE_DEFLATE assert page.imagewidth == 641 assert page.imagelength == 347 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert series properties series = tif.series[0] assert series.is_pyramidal assert len(series.levels) == 4 assert series.shape == (347, 641, 3) assert series.dtype == numpy.uint8 assert series.axes == 'YXS' # level 3 series = series.levels[3] page = series.pages[0] assert page.is_reduced assert page.is_tiled assert series.shape == (43, 80, 3) assert series.dtype == numpy.uint8 assert series.axes == 'YXS' # assert data data = tif.asarray(series=0) assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (347, 641, 3) assert data.dtype == numpy.uint8 assert tuple(data[132, 361]) == (114, 233, 58) assert_aszarr_method(tif, data, series=0, level=0) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_volumetric(): """Test read 128x128x128, float32, tiled SGI.""" fname = public_file('tifffile/sgi_depth.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_volumetric assert page.planarconfig == CONTIG assert page.is_tiled assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 128 assert page.imagelength == 128 assert page.imagedepth == 128 assert page.tilewidth == 128 assert page.tilelength == 128 assert page.tiledepth == 1 assert page.bitspersample == 32 assert page.samplesperpixel == 1 assert page.tags['Software'].value == ( 'MFL MeVis File Format Library, TIFF Module' ) # assert series properties series = tif.series[0] assert series.shape == (128, 128, 128) assert series.dtype == numpy.float32 assert series.axes == 'ZYX' # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (128, 128, 128) assert data.dtype == numpy.float32 assert data[64, 64, 64] == 0.0 assert_decode_method(page) assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS, reason=REASON) def test_read_oxford(): """Test read 601x81, uint8, PackBits.""" fname = public_file('juicypixels/oxford.tif') with TiffFile(fname) as tif: assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.compression == LZW assert page.imagewidth == 601 assert page.imagelength == 81 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert series properties series = tif.series[0] assert series.shape == (3, 81, 601) assert series.dtype == numpy.uint8 assert series.axes == 'SYX' # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (3, 81, 601) assert data.dtype == numpy.uint8 assert data[1, 24, 49] == 191 assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS, reason=REASON) def test_read_cramps(): """Test 800x607 uint8, PackBits.""" fname = public_file('juicypixels/cramps.tif') with TiffFile(fname) as tif: assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.compression == PACKBITS assert page.photometric == MINISWHITE assert page.imagewidth == 800 assert page.imagelength == 607 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (607, 800) assert series.dtype == numpy.uint8 assert series.axes == 'YX' # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (607, 800) assert data.dtype == numpy.uint8 assert data[273, 426] == 34 assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_cramps_tile(): """Test read 800x607 uint8, raw, volumetric, tiled.""" fname = public_file('juicypixels/cramps-tile.tif') with TiffFile(fname) as tif: assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_tiled assert not page.is_volumetric assert page.compression == NONE assert page.photometric == MINISWHITE assert page.imagewidth == 800 assert page.imagelength == 607 assert page.imagedepth == 1 assert page.tilewidth == 256 assert page.tilelength == 256 assert page.tiledepth == 1 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (607, 800) assert series.dtype == numpy.uint8 assert series.axes == 'YX' # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (607, 800) assert data.dtype == numpy.uint8 assert data[273, 426] == 34 assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS, reason=REASON) def test_read_jello(): """Test read 256x192x3, uint16, palette, PackBits.""" fname = public_file('juicypixels/jello.tif') with TiffFile(fname) as tif: assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == PALETTE assert page.planarconfig == CONTIG assert page.compression == PACKBITS assert page.imagewidth == 256 assert page.imagelength == 192 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (192, 256) assert series.dtype == numpy.uint8 assert series.axes == 'YX' # assert data data = page.asrgb(uint8=False) assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (192, 256, 3) assert data.dtype == numpy.uint16 assert tuple(data[100, 140, :]) == (48895, 65279, 48895) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS, reason=REASON) def test_read_quad_lzw(): """Test read 384x512 RGB uint8 old style LZW.""" fname = public_file('libtiff/quad-lzw-compat.tiff') with TiffFile(fname) as tif: assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert not page.is_tiled assert page.photometric == RGB assert page.compression == LZW assert page.imagewidth == 512 assert page.imagelength == 384 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert series properties series = tif.series[0] assert series.shape == (384, 512, 3) assert series.dtype == numpy.uint8 assert series.axes == 'YXS' # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (384, 512, 3) assert data.dtype == numpy.uint8 assert tuple(data[309, 460, :]) == (0, 163, 187) assert_aszarr_method(tif, data) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_read_quad_lzw_le(): """Test read 384x512 RGB uint8 LZW.""" fname = private_file('quad-lzw_le.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == RGB assert not page.is_tiled assert page.compression == LZW assert page.imagewidth == 512 assert page.imagelength == 384 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert series properties series = tif.series[0] assert series.shape == (384, 512, 3) assert series.dtype == numpy.uint8 assert series.axes == 'YXS' # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (384, 512, 3) assert data.dtype == numpy.uint8 assert tuple(data[309, 460, :]) == (0, 163, 187) assert_aszarr_method(tif, data) assert_decode_method(page) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS, reason=REASON) def test_read_quad_tile(): """Test read 384x512 RGB uint8 LZW tiled.""" # Strips and tiles defined in same page fname = public_file('juicypixels/quad-tile.tif') with TiffFile(fname) as tif: assert__str__(tif) assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == RGB assert page.is_tiled assert page.compression == LZW assert page.imagewidth == 512 assert page.imagelength == 384 assert page.imagedepth == 1 assert page.tilewidth == 128 assert page.tilelength == 128 assert page.tiledepth == 1 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert series properties series = tif.series[0] assert series.shape == (384, 512, 3) assert series.dtype == numpy.uint8 assert series.axes == 'YXS' # assert data data = tif.asarray() # assert 'invalid tile data (49153,) (1, 128, 128, 3)' in caplog.text assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (384, 512, 3) assert data.dtype == numpy.uint8 assert tuple(data[309, 460, :]) == (0, 163, 187) assert_aszarr_method(tif, data) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS, reason=REASON) def test_read_strike(): """Test read 256x200 RGBA uint8 LZW.""" fname = public_file('juicypixels/strike.tif') with TiffFile(fname) as tif: assert__str__(tif) assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == RGB assert page.compression == LZW assert page.imagewidth == 256 assert page.imagelength == 200 assert page.bitspersample == 8 assert page.samplesperpixel == 4 assert page.extrasamples[0] == ASSOCALPHA # assert series properties series = tif.series[0] assert series.shape == (200, 256, 4) assert series.dtype == numpy.uint8 assert series.axes == 'YXS' # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (200, 256, 4) assert data.dtype == numpy.uint8 assert tuple(data[65, 139, :]) == (43, 34, 17, 91) assert_aszarr_method(tif, data) assert_decode_method(page) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS, reason=REASON) def test_read_incomplete_tile_contig(): """Test read PackBits compressed incomplete tile, contig RGB.""" fname = public_file('GDAL/contig_tiled.tif') with TiffFile(fname) as tif: assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == RGB assert page.planarconfig == CONTIG assert page.compression == PACKBITS assert page.imagewidth == 35 assert page.imagelength == 37 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert series properties series = tif.series[0] assert series.shape == (37, 35, 3) assert series.dtype == numpy.uint8 assert series.axes == 'YXS' # assert data data = page.asarray() assert data.flags['C_CONTIGUOUS'] assert data.shape == (37, 35, 3) assert data.dtype == numpy.uint8 assert tuple(data[19, 31]) == (50, 50, 50) assert tuple(data[36, 34]) == (70, 70, 70) assert_aszarr_method(page, data) assert_decode_method(page) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS, reason=REASON) def test_read_incomplete_tile_separate(): """Test read PackBits compressed incomplete tile, separate RGB.""" fname = public_file('GDAL/separate_tiled.tif') with TiffFile(fname) as tif: assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == RGB assert page.planarconfig == SEPARATE assert page.compression == PACKBITS assert page.imagewidth == 35 assert page.imagelength == 37 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert series properties series = tif.series[0] assert series.shape == (3, 37, 35) assert series.dtype == numpy.uint8 assert series.axes == 'SYX' # assert data data = page.asarray() assert data.flags['C_CONTIGUOUS'] assert data.shape == (3, 37, 35) assert data.dtype == numpy.uint8 assert tuple(data[:, 19, 31]) == (50, 50, 50) assert tuple(data[:, 36, 34]) == (70, 70, 70) assert_aszarr_method(page, data) assert_decode_method(page) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_django(): """Test read 3x480x320, uint16, palette, raw.""" fname = private_file('django.tiff') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == PALETTE assert page.planarconfig == CONTIG assert page.compression == NONE assert page.imagewidth == 320 assert page.imagelength == 480 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (480, 320) assert series.dtype == numpy.uint8 assert series.axes == 'YX' # assert data data = page.asrgb(uint8=False) assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (480, 320, 3) assert data.dtype == numpy.uint16 assert tuple(data[64, 64, :]) == (65535, 52171, 63222) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_read_pygame_icon(): """Test read 128x128 RGBA uint8 PackBits.""" fname = private_file('pygame_icon.tiff') with TiffFile(fname) as tif: assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == RGB assert page.compression == PACKBITS assert page.imagewidth == 128 assert page.imagelength == 128 assert page.bitspersample == 8 assert page.samplesperpixel == 4 assert page.extrasamples[0] == UNASSALPHA # ? assert page.tags['Software'].value == 'QuickTime 5.0.5' assert page.tags['HostComputer'].value == 'MacOS 10.1.2' assert page.tags['DateTime'].value == '2001:12:21 04:34:56' # assert series properties series = tif.series[0] assert series.shape == (128, 128, 4) assert series.dtype == numpy.uint8 assert series.axes == 'YXS' # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (128, 128, 4) assert data.dtype == numpy.uint8 assert tuple(data[22, 112, :]) == (100, 99, 98, 132) assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_read_rgba_wo_extra_samples(): """Test read 1065x785 RGBA uint8.""" fname = private_file('rgba_wo_extra_samples.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == RGB assert page.compression == LZW assert page.imagewidth == 1065 assert page.imagelength == 785 assert page.bitspersample == 8 assert page.samplesperpixel == 4 # with self.assertRaises(AttributeError): # page.extrasamples # assert series properties series = tif.series[0] assert series.shape == (785, 1065, 4) assert series.dtype == numpy.uint8 assert series.axes == 'YXS' # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (785, 1065, 4) assert data.dtype == numpy.uint8 assert tuple(data[560, 412, :]) == (60, 92, 74, 255) assert_aszarr_method(tif, data) assert_decode_method(page) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_rgb565(): """Test read 64x64 RGB uint8 5,6,5 bitspersample.""" fname = private_file('rgb565.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == RGB assert page.compression == NONE assert page.imagewidth == 64 assert page.imagelength == 64 assert page.bitspersample == (5, 6, 5) assert page.samplesperpixel == 3 # assert series properties series = tif.series[0] assert series.shape == (64, 64, 3) assert series.dtype == numpy.uint8 assert series.axes == 'YXS' # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (64, 64, 3) assert data.dtype == numpy.uint8 assert tuple(data[56, 32, :]) == (239, 243, 247) assert_aszarr_method(tif, data) assert_decode_method(page) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS, reason=REASON) def test_read_generic_series(): """Test read 4 series in 6 pages.""" fname = public_file('tifffile/generic_series.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 6 assert len(tif.series) == 4 # assert series 0 properties series = tif.series[0] assert series.shape == (3, 20, 20) assert series.dtype == numpy.uint8 assert series.axes == 'IYX' page = series.pages[0] assert page.compression == LZW assert page.imagewidth == 20 assert page.imagelength == 20 assert page.bitspersample == 8 assert page.samplesperpixel == 1 data = tif.asarray(series=0) assert data.flags['C_CONTIGUOUS'] assert data.shape == (3, 20, 20) assert data.dtype == numpy.uint8 assert tuple(data[:, 9, 9]) == (19, 90, 206) assert_aszarr_method(tif, data, series=0) # assert series 1 properties series = tif.series[1] assert series.shape == (10, 10, 3) assert series.dtype == numpy.float32 assert series.axes == 'YXS' page = series.pages[0] assert page.photometric == RGB assert page.compression == LZW assert page.imagewidth == 10 assert page.imagelength == 10 assert page.bitspersample == 32 assert page.samplesperpixel == 3 data = tif.asarray(series=1) assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (10, 10, 3) assert data.dtype == numpy.float32 assert round(abs(data[9, 9, 1] - 214.5733642578125), 7) == 0 assert_aszarr_method(tif, data, series=1) # assert series 2 properties series = tif.series[2] assert series.shape == (20, 20, 3) assert series.dtype == numpy.uint8 assert series.axes == 'YXS' page = series.pages[0] assert page.photometric == RGB assert page.compression == LZW assert page.imagewidth == 20 assert page.imagelength == 20 assert page.bitspersample == 8 assert page.samplesperpixel == 3 data = tif.asarray(series=2) assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (20, 20, 3) assert data.dtype == numpy.uint8 assert tuple(data[9, 9, :]) == (19, 90, 206) assert_aszarr_method(tif, data, series=2) # assert series 3 properties series = tif.series[3] assert series.shape == (10, 10) assert series.dtype == numpy.float32 assert series.axes == 'YX' page = series.pages[0] assert page.compression == LZW assert page.imagewidth == 10 assert page.imagelength == 10 assert page.bitspersample == 32 assert page.samplesperpixel == 1 data = tif.asarray(series=3) assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (10, 10) assert data.dtype == numpy.float32 assert round(abs(data[9, 9] - 223.1648712158203), 7) == 0 assert_aszarr_method(tif, data, series=3) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_read_freeimage(): """Test read 3 series in 3 pages RGB LZW.""" fname = private_file('freeimage.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 3 assert len(tif.series) == 3 for i, shape in enumerate(((100, 600), (379, 574), (689, 636))): series = tif.series[i] shape = shape + (3,) assert series.shape == shape assert series.dtype == numpy.uint8 assert series.axes == 'YXS' page = series.pages[0] assert page.photometric == RGB assert page.compression == LZW assert page.imagewidth == shape[1] assert page.imagelength == shape[0] assert page.bitspersample == 8 assert page.samplesperpixel == 3 data = tif.asarray(series=i) assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == shape assert data.dtype == numpy.uint8 assert_aszarr_method(tif, data, series=i) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_read_12bit(): """Test read 12 bit images.""" fname = private_file('12bit.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1000 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert not page.is_contiguous assert page.compression == NONE assert page.imagewidth == 1024 assert page.imagelength == 304 assert page.bitspersample == 12 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (1000, 304, 1024) assert series.dtype == numpy.uint16 assert series.axes == 'IYX' # assert data data = tif.asarray(478) assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (304, 1024) assert data.dtype == numpy.uint16 assert round(abs(data[138, 475] - 40), 7) == 0 assert_aszarr_method(tif, data, key=478) assert__str__(tif, 0) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS, reason=REASON) def test_read_lzw_12bit_table(): """Test read lzw-full-12-bit-table.tif. Also test RowsPerStrip > ImageLength. """ fname = public_file('twelvemonkeys/tiff/lzw-full-12-bit-table.tif') with TiffFile(fname) as tif: assert len(tif.series) == 1 assert len(tif.pages) == 1 page = tif.pages[0] assert page.photometric == MINISBLACK assert page.imagewidth == 874 assert page.imagelength == 1240 assert page.bitspersample == 8 assert page.samplesperpixel == 1 assert page.rowsperstrip == 1240 assert page.tags['RowsPerStrip'].value == 4294967295 # assert data image = page.asarray() assert image.flags['C_CONTIGUOUS'] assert image[434, 588] == 88 assert image[400, 600] == 255 assert_aszarr_method(page, image) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS or SKIP_LARGE, reason=REASON) def test_read_lzw_large_buffer(): """Test read LZW compression which requires large buffer.""" # https://github.com/groupdocs-viewer/GroupDocs.Viewer-for-.NET-MVC-App # /issues/35 fname = private_file('lzw/lzw_large_buffer.tiff') with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == LZW assert page.imagewidth == 5104 assert page.imagelength == 8400 assert page.bitspersample == 8 assert page.samplesperpixel == 4 # assert data image = page.asarray() assert image.shape == (8400, 5104, 4) assert image.dtype == numpy.uint8 image = tif.asarray() assert image.shape == (8400, 5104, 4) assert image.dtype == numpy.uint8 assert image[4200, 2550, 0] == 0 assert image[4200, 2550, 3] == 255 assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_read_lzw_ycbcr_subsampling(): """Test fail LZW compression with subsampling.""" fname = private_file('lzw/lzw_ycbcr_subsampling.tif') with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == LZW assert page.photometric == YCBCR assert page.planarconfig == CONTIG assert page.imagewidth == 39 assert page.imagelength == 39 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert data with pytest.raises(NotImplementedError): page.asarray() assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_ycbcr_subsampling(): """Test fail YCBCR with subsampling.""" fname = private_file('ycbcr_subsampling.tif') with TiffFile(fname) as tif: assert len(tif.pages) == 2 page = tif.pages[0] assert page.compression == NONE assert page.photometric == YCBCR assert page.planarconfig == CONTIG assert page.imagewidth == 640 assert page.imagelength == 480 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert data with pytest.raises(NotImplementedError): page.asarray() assert__str__(tif) @pytest.mark.skipif( SKIP_PUBLIC or SKIP_CODECS or not imagecodecs.JPEG, reason=REASON ) def test_read_jpeg_baboon(): """Test JPEG compression.""" fname = private_file('baboon.tiff') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert 'JPEGTables' in page.tags assert not page.is_reduced assert not page.is_tiled assert page.compression == JPEG assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 8 # assert series properties series = tif.series[0] assert series.shape == (512, 512, 3) assert series.dtype == numpy.uint8 assert series.axes == 'YXS' # assert data # with pytest.raises((ValueError, NotImplementedError)): image = tif.asarray() assert image.flags['C_CONTIGUOUS'] assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif( SKIP_PUBLIC or SKIP_CODECS or not imagecodecs.JPEG, reason=REASON ) def test_read_jpeg_ycbcr(): """Test read YCBCR JPEG is returned as RGB.""" fname = private_file('jpeg/jpeg_ycbcr.tiff') with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == JPEG assert page.photometric == YCBCR assert page.planarconfig == CONTIG assert page.imagewidth == 128 assert page.imagelength == 80 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert data image = tif.asarray() assert image.flags['C_CONTIGUOUS'] assert image.shape == (80, 128, 3) assert image.dtype == numpy.uint8 assert tuple(image[50, 50, :]) == (177, 149, 210) # YCBCR (164, 154, 137) assert_aszarr_method(tif, image) assert_decode_method(page) assert__str__(tif) @pytest.mark.skipif( SKIP_PRIVATE or SKIP_CODECS or not imagecodecs.JPEG, reason=REASON ) @pytest.mark.parametrize( 'fname', ['tiff_tiled_cmyk_jpeg.tif', 'tiff_strip_cmyk_jpeg.tif'] ) def test_read_jpeg_cmyk(fname): """Test read JPEG compressed CMYK image.""" with TiffFile(private_file(f'pillow/{fname}')) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == JPEG assert page.photometric == SEPARATED assert page.shape == (100, 100, 4) assert page.dtype == numpy.uint8 data = page.asarray() assert data.shape == (100, 100, 4) assert data.dtype == numpy.uint8 assert tuple(data[46, 49]) == (79, 230, 222, 77) assert_aszarr_method(tif, data) # assert_decode_method(page) assert__str__(tif) @pytest.mark.skipif( SKIP_PUBLIC or SKIP_CODECS or not imagecodecs.JPEG12, reason=REASON ) def test_read_jpeg12_mandril(): """Test read JPEG 12-bit compression.""" # JPEG 12-bit fname = private_file('jpeg/jpeg12_mandril.tif') with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == JPEG assert page.photometric == YCBCR assert page.imagewidth == 512 assert page.imagelength == 480 assert page.bitspersample == 12 assert page.samplesperpixel == 3 # assert data image = tif.asarray() assert image.flags['C_CONTIGUOUS'] assert image.shape == (480, 512, 3) assert image.dtype == numpy.uint16 assert tuple(image[128, 128, :]) == (1685, 1859, 1376) # YCBCR (1752, 1836, 2000) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif( SKIP_PRIVATE or SKIP_CODECS or SKIP_LARGE or not imagecodecs.JPEG, reason=REASON, ) def test_read_jpeg_lsb2msb(): """Test read huge tiled, JPEG compressed, with lsb2msb specified. Also test JPEG with RGB photometric. """ fname = private_file('large/jpeg_lsb2msb.tif') with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == JPEG assert page.photometric == RGB assert page.imagewidth == 49128 assert page.imagelength == 59683 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert data image = tif.asarray() assert image.flags['C_CONTIGUOUS'] assert image.shape == (59683, 49128, 3) assert image.dtype == numpy.uint8 assert tuple(image[38520, 43767, :]) == (255, 255, 255) assert tuple(image[47866, 30076, :]) == (52, 39, 23) assert__str__(tif) @pytest.mark.skipif( SKIP_PUBLIC or SKIP_CODECS or not imagecodecs.JPEG or not imagecodecs.JPEG2K, reason=REASON, ) def test_read_aperio_j2k(): """Test read SVS slide with J2K compression.""" fname = private_file('slides/CMU-1-JP2K-33005.tif') with TiffFile(fname) as tif: assert tif.is_svs assert len(tif.pages) == 6 page = tif.pages[0] assert page.compression == APERIO_JP2000_RGB assert page.photometric == RGB assert page.planarconfig == CONTIG assert page.shape == (32893, 46000, 3) assert page.dtype == numpy.uint8 page = tif.pages[1] assert page.compression == JPEG assert page.photometric == RGB assert page.planarconfig == CONTIG assert page.shape == (732, 1024, 3) assert page.dtype == numpy.uint8 page = tif.pages[2] assert page.compression == APERIO_JP2000_RGB assert page.photometric == RGB assert page.planarconfig == CONTIG assert page.shape == (8223, 11500, 3) assert page.dtype == numpy.uint8 page = tif.pages[3] assert page.compression == APERIO_JP2000_RGB assert page.photometric == RGB assert page.planarconfig == CONTIG assert page.shape == (2055, 2875, 3) assert page.dtype == numpy.uint8 page = tif.pages[4] assert page.is_reduced assert page.compression == LZW assert page.photometric == RGB assert page.planarconfig == CONTIG assert page.shape == (463, 387, 3) assert page.dtype == numpy.uint8 page = tif.pages[5] assert page.is_reduced assert page.compression == JPEG assert page.photometric == RGB assert page.planarconfig == CONTIG assert page.shape == (431, 1280, 3) assert page.dtype == numpy.uint8 # assert data image = tif.pages[3].asarray() assert image.flags['C_CONTIGUOUS'] assert image.shape == (2055, 2875, 3) assert image.dtype == numpy.uint8 assert image[512, 1024, 0] == 246 assert image[512, 1024, 1] == 245 assert image[512, 1024, 2] == 245 assert_decode_method(tif.pages[3], image) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_read_lzma(): """Test read LZMA compression.""" # 512x512, uint8, lzma compression fname = private_file('lzma.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.compression == LZMA assert page.photometric == MINISBLACK assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (512, 512) assert series.dtype == numpy.uint8 assert series.axes == 'YX' # assert data data = tif.asarray() assert data.flags['C_CONTIGUOUS'] assert isinstance(data, numpy.ndarray) assert data.shape == (512, 512) assert data.dtype == numpy.uint8 assert data[273, 426] == 151 assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.skipif( SKIP_PUBLIC or SKIP_CODECS or not imagecodecs.WEBP, reason=REASON ) def test_read_webp(): """Test read WebP compression.""" fname = public_file('GDAL/tif_webp.tif') with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == WEBP assert page.photometric == RGB assert page.planarconfig == CONTIG assert page.imagewidth == 50 assert page.imagelength == 50 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert data image = tif.asarray() assert image.flags['C_CONTIGUOUS'] assert image.shape == (50, 50, 3) assert image.dtype == numpy.uint8 assert image[25, 25, 0] == 92 assert image[25, 25, 1] == 122 assert image[25, 25, 2] == 37 assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif( SKIP_PUBLIC or SKIP_CODECS or not imagecodecs.LERC, reason=REASON ) def test_read_lerc(): """Test read LERC compression.""" if not hasattr(imagecodecs, 'LERC'): pytest.skip('LERC codec missing') fname = public_file('imagecodecs/rgb.u2.lerc.tif') with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == LERC assert page.photometric == RGB assert page.planarconfig == CONTIG assert page.imagewidth == 31 assert page.imagelength == 32 assert page.bitspersample == 16 assert page.samplesperpixel == 3 # assert data image = tif.asarray() assert image.flags['C_CONTIGUOUS'] assert image.shape == (32, 31, 3) assert image.dtype == numpy.uint16 assert tuple(image[25, 25]) == (3265, 1558, 2811) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif( SKIP_PUBLIC or SKIP_CODECS or not imagecodecs.ZSTD, reason=REASON ) def test_read_zstd(): """Test read ZStd compression.""" fname = public_file('GDAL/byte_zstd.tif') with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == ZSTD assert page.photometric == MINISBLACK assert page.planarconfig == CONTIG assert page.imagewidth == 20 assert page.imagelength == 20 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert data image = tif.asarray() # fails with imagecodecs <= 2018.11.8 assert image.flags['C_CONTIGUOUS'] assert image.shape == (20, 20) assert image.dtype == numpy.uint8 assert image[18, 1] == 247 assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif( SKIP_PUBLIC or SKIP_CODECS or not imagecodecs.LJPEG, reason=REASON ) def test_read_dng(): """Test read JPEG compressed CFA image in SubIFD.""" fname = private_file('DNG/IMG_0793.DNG') with TiffFile(fname) as tif: assert len(tif.pages) == 1 assert len(tif.series) == 2 page = tif.pages[0] assert page.index == 0 assert page.shape == (640, 852, 3) assert page.bitspersample == 8 data = page.asarray() assert_aszarr_method(tif, data) page = tif.pages[0].pages[0] assert page.is_tiled assert page.index == (0, 0) assert page.compression == JPEG assert page.photometric == CFA assert page.shape == (3024, 4032) assert page.bitspersample == 16 assert page.tags['CFARepeatPatternDim'].value == (2, 2) assert page.tags['CFAPattern'].value == b'\x00\x01\x01\x02' data = page.asarray() assert_aszarr_method(tif.series[1], data) assert__str__(tif) @pytest.mark.skipif( SKIP_PUBLIC or SKIP_CODECS or not imagecodecs.LJPEG, reason=REASON ) def test_read_cfa(): """Test read 14-bit uncompressed and JPEG compressed CFA image.""" fname = private_file('DNG/cinemadng/M14-1451_000085_cDNG_uncompressed.dng') with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == 1 assert page.photometric == CFA assert page.imagewidth == 960 assert page.imagelength == 540 assert page.bitspersample == 14 assert page.tags['CFARepeatPatternDim'].value == (2, 2) assert page.tags['CFAPattern'].value == b'\x00\x01\x01\x02' data = page.asarray() assert_aszarr_method(tif, data) fname = private_file('DNG/cinemadng/M14-1451_000085_cDNG_compressed.dng') with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == JPEG assert page.photometric == CFA assert page.imagewidth == 960 assert page.imagelength == 540 assert page.bitspersample == 14 assert page.tags['CFARepeatPatternDim'].value == (2, 2) assert page.tags['CFAPattern'].value == b'\x00\x01\x01\x02' image = page.asarray() assert_array_equal(image, data) assert_aszarr_method(tif, data) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_read_lena_be_f16_contig(): """Test read big endian float16 horizontal differencing.""" fname = private_file('PS/lena_be_f16_contig.tif') with TiffFile(fname) as tif: assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert not page.is_reduced assert not page.is_tiled assert page.compression == NONE assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 16 assert page.samplesperpixel == 3 # assert series properties series = tif.series[0] assert series.shape == (512, 512, 3) assert series.dtype == numpy.float16 assert series.axes == 'YXS' # assert data data = tif.asarray(series=0) assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (512, 512, 3) assert data.dtype == numpy.float16 assert_array_almost_equal(data[256, 256], (0.4563, 0.052856, 0.064819)) assert_aszarr_method(tif, data, series=0) assert_decode_method(page) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_read_lena_be_f16_lzw_planar(): """Test read big endian, float16, LZW, horizontal differencing.""" fname = private_file('PS/lena_be_f16_lzw_planar.tif') with TiffFile(fname, is_imagej=False) as tif: assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 assert not tif.is_imagej # assert page properties page = tif.pages[0] assert not page.is_reduced assert not page.is_tiled assert page.compression == LZW assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 16 assert page.samplesperpixel == 3 # assert series properties series = tif.series[0] assert series.shape == (3, 512, 512) assert series.dtype == numpy.float16 assert series.axes == 'SYX' # assert data data = tif.asarray(series=0) assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (3, 512, 512) assert data.dtype == numpy.float16 assert_array_almost_equal( data[:, 256, 256], (0.4563, 0.052856, 0.064819) ) assert_aszarr_method(tif, data, series=0) assert_decode_method(page) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_read_lena_be_f32_deflate_contig(): """Test read big endian, float32 horizontal differencing, deflate.""" fname = private_file('PS/lena_be_f32_deflate_contig.tif') with TiffFile(fname, is_imagej=False) as tif: assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 assert not tif.is_imagej # assert page properties page = tif.pages[0] assert not page.is_reduced assert not page.is_tiled assert page.compression == ADOBE_DEFLATE assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 32 assert page.samplesperpixel == 3 # assert series properties series = tif.series[0] assert series.shape == (512, 512, 3) assert series.dtype == numpy.float32 assert series.axes == 'YXS' # assert data data = tif.asarray(series=0) assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (512, 512, 3) assert data.dtype == numpy.float32 assert_array_almost_equal( data[256, 256], (0.456386, 0.052867, 0.064795) ) assert_aszarr_method(tif, data, series=0) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_read_lena_le_f32_lzw_planar(): """Test read little endian, LZW, float32 horizontal differencing.""" fname = private_file('PS/lena_le_f32_lzw_planar.tif') with TiffFile(fname, is_imagej=False) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 assert not tif.is_imagej # assert page properties page = tif.pages[0] assert not page.is_reduced assert not page.is_tiled assert page.compression == LZW assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 32 assert page.samplesperpixel == 3 # assert series properties series = tif.series[0] assert series.shape == (3, 512, 512) assert series.dtype == numpy.float32 assert series.axes == 'SYX' # assert data data = tif.asarray(series=0) assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (3, 512, 512) assert data.dtype == numpy.float32 assert_array_almost_equal( data[:, 256, 256], (0.456386, 0.052867, 0.064795) ) assert_aszarr_method(tif, data, series=0) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_lena_be_rgb48(): """Test read RGB48.""" fname = private_file('PS/lena_be_rgb48.tif') with TiffFile(fname) as tif: assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert not page.is_reduced assert not page.is_tiled assert page.compression == NONE assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 16 assert page.samplesperpixel == 3 # assert series properties series = tif.series[0] assert series.shape == (512, 512, 3) assert series.dtype == numpy.uint16 assert series.axes == 'YXS' # assert data data = tif.asarray(series=0) assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (512, 512, 3) assert data.dtype == numpy.uint16 assert_array_equal(data[256, 256], (46259, 16706, 18504)) assert_aszarr_method(tif, data, series=0) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_LARGE or SKIP_PYPY, reason=REASON) def test_read_huge_ps5_memmap(): """Test read 30000x30000 float32 contiguous.""" # TODO: segfault on pypy3.7-v7.3.5rc2-win64 fname = private_file('large/huge_ps5.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous == (21890, 3600000000) assert not page.is_memmappable # data not aligned! assert page.compression == NONE assert page.imagewidth == 30000 assert page.imagelength == 30000 assert page.bitspersample == 32 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (30000, 30000) assert series.dtype == numpy.float32 assert series.axes == 'YX' # assert data data = tif.asarray(out='memmap') # memmap in a temp file assert isinstance(data, numpy.core.memmap) assert data.flags['C_CONTIGUOUS'] assert data.shape == (30000, 30000) assert data.dtype == numpy.float32 assert data[6597, 8135] == 0.008780896663665771 assert_aszarr_method(tif, data) del data assert not tif.filehandle.closed assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_LARGE, reason=REASON) def test_read_movie(): """Test read 30000 pages, uint16.""" fname = public_file('tifffile/movie.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 30000 assert len(tif.series) == 1 assert tif.is_uniform # assert series properties series = tif.series[0] assert series.shape == (30000, 64, 64) assert series.dtype == numpy.uint16 assert series.axes == 'IYX' # assert page properties page = tif.pages[-1] if tif.pages.cache: assert isinstance(page, TiffFrame) else: assert isinstance(page, TiffPage) assert page.shape == (64, 64) page = tif.pages[-3] if tif.pages.cache: assert isinstance(page, TiffFrame) else: assert isinstance(page, TiffPage) # assert data data = tif.pages[29999].asarray() # last frame assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (64, 64) assert data.dtype == numpy.uint16 assert data[32, 32] == 460 del data # read selected pages # https://github.com/blink1073/tifffile/issues/51 data = tif.asarray(key=[31, 999, 29999]) assert data.flags['C_CONTIGUOUS'] assert data.shape == (3, 64, 64) assert data[2, 32, 32] == 460 del data assert__str__(tif, 0) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_LARGE, reason=REASON) def test_read_movie_memmap(): """Test read 30000 pages memory-mapped.""" fname = public_file('tifffile/movie.tif') with TiffFile(fname) as tif: # assert data data = tif.asarray(out='memmap') assert isinstance(data, numpy.core.memmap) assert data.flags['C_CONTIGUOUS'] assert data.shape == (30000, 64, 64) assert data.dtype == numpy.dtype('' assert len(tif.pages) == 100000 assert len(tif.series) == 1 # assert series properties series = tif.series[0] assert series.shape == (100000, 64, 64) assert series.dtype == numpy.uint16 assert series.axes == 'TYX' # assert page properties page = tif.pages[100] assert isinstance(page, TiffFrame) # uniform=True assert page.shape == (64, 64) page = tif.pages[0] assert page.imagewidth == 64 assert page.imagelength == 64 assert page.bitspersample == 16 assert page.is_contiguous # assert ImageJ tags tags = tif.imagej_metadata assert tags['ImageJ'] == '1.48g' assert round(abs(tags['max'] - 119.0), 7) == 0 assert round(abs(tags['min'] - 86.0), 7) == 0 # assert data data = tif.asarray() assert data.flags['C_CONTIGUOUS'] assert data.shape == (100000, 64, 64) assert data.dtype == numpy.uint16 assert round(abs(data[7310, 25, 25] - 100), 7) == 0 # too slow: assert_aszarr_method(tif, data) del data assert__str__(tif, 0) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_LARGE, reason=REASON) def test_read_chart_bl(): """Test read 13228x18710, 1 bit, no bitspersample tag.""" fname = public_file('tifffile/chart_bl.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.compression == NONE assert page.imagewidth == 13228 assert page.imagelength == 18710 assert page.bitspersample == 1 assert page.samplesperpixel == 1 assert page.rowsperstrip == 18710 # assert series properties series = tif.series[0] assert series.shape == (18710, 13228) assert series.dtype == numpy.bool8 assert series.axes == 'YX' # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (18710, 13228) assert data.dtype == numpy.bool8 assert data[0, 0] is numpy.bool8(True) assert data[5000, 5000] is numpy.bool8(False) if not SKIP_LARGE: assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_LARGE, reason=REASON) def test_read_srtm_20_13(): """Test read 6000x6000 int16 GDAL.""" fname = private_file('large/srtm_20_13.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 6000 assert page.imagelength == 6000 assert page.bitspersample == 16 assert page.samplesperpixel == 1 assert page.nodata == -32768 assert page.tags['GDAL_NODATA'].value == '-32768' assert page.tags['GeoAsciiParamsTag'].value == 'WGS 84|' # assert series properties series = tif.series[0] assert series.shape == (6000, 6000) assert series.dtype == numpy.int16 assert series.axes == 'YX' # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (6000, 6000) assert data.dtype == numpy.int16 assert data[5199, 5107] == 1019 assert data[0, 0] == -32768 assert_aszarr_method(tif, data) del data assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS or SKIP_LARGE, reason=REASON) def test_read_gel_scan(): """Test read 6976x4992x3 uint8 LZW.""" fname = private_file('large/gel_1-scan2.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == RGB assert page.compression == LZW assert page.imagewidth == 4992 assert page.imagelength == 6976 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert series properties series = tif.series[0] assert series.shape == (6976, 4992, 3) assert series.dtype == numpy.uint8 assert series.axes == 'YXS' # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (6976, 4992, 3) assert data.dtype == numpy.uint8 assert tuple(data[2229, 1080, :]) == (164, 164, 164) assert_aszarr_method(tif, data) del data assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_caspian(): """Test read 3x220x279 float64, RGB, deflate, GDAL.""" fname = public_file('juicypixels/caspian.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == RGB assert page.planarconfig == SEPARATE assert page.compression == DEFLATE assert page.imagewidth == 279 assert page.imagelength == 220 assert page.bitspersample == 64 assert page.samplesperpixel == 3 assert page.tags['GDAL_METADATA'].value.startswith('') # assert series properties series = tif.series[0] assert series.shape == (3, 220, 279) assert series.dtype == numpy.float64 assert series.axes == 'SYX' # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (3, 220, 279) assert data.dtype == numpy.float64 assert round(abs(data[2, 100, 140] - 353.0), 7) == 0 assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_subifds_array(): """Test read SubIFDs.""" fname = public_file('Tiff-Library-4J/IFD struct/SubIFDs array E.tif') with TiffFile(fname) as tif: assert len(tif.pages) == 1 # make sure no pyramid was detected assert len(tif.series) == 5 assert tif.series[0].shape == (1500, 2000, 3) assert tif.series[1].shape == (1200, 1600, 3) assert tif.series[2].shape == (900, 1200, 3) assert tif.series[3].shape == (600, 800, 3) assert tif.series[4].shape == (300, 400, 3) page = tif.pages[0] assert page.photometric == RGB assert page.imagewidth == 2000 assert page.imagelength == 1500 assert page.bitspersample == 8 assert page.samplesperpixel == 3 assert page.tags['SubIFDs'].value == ( 14760220, 18614796, 19800716, 18974964, ) # assert subifds assert len(page.pages) == 4 page = tif.pages[0].pages[0] assert page.photometric == RGB assert page.imagewidth == 1600 assert page.imagelength == 1200 assert_aszarr_method(page) page = tif.pages[0].pages[1] assert page.photometric == RGB assert page.imagewidth == 1200 assert page.imagelength == 900 assert_aszarr_method(page) page = tif.pages[0].pages[2] assert page.photometric == RGB assert page.imagewidth == 800 assert page.imagelength == 600 assert_aszarr_method(page) page = tif.pages[0].pages[3] assert page.photometric == RGB assert page.imagewidth == 400 assert page.imagelength == 300 assert_aszarr_method(page) # assert data image = page.asarray() assert image.flags['C_CONTIGUOUS'] assert image.shape == (300, 400, 3) assert image.dtype == numpy.uint8 assert tuple(image[124, 292]) == (236, 109, 95) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_subifd4(): """Test read BigTIFFSubIFD4.""" fname = public_file('twelvemonkeys/bigtiff/BigTIFFSubIFD4.tif') with TiffFile(fname) as tif: assert len(tif.series) == 1 assert len(tif.pages) == 2 page = tif.pages[0] assert page.photometric == RGB assert page.imagewidth == 64 assert page.imagelength == 64 assert page.bitspersample == 8 assert page.samplesperpixel == 3 assert page.tags['SubIFDs'].value == (3088,) # assert subifd page = page.pages[0] assert page.photometric == RGB assert page.imagewidth == 32 assert page.imagelength == 32 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert data image = page.asarray() assert image.flags['C_CONTIGUOUS'] assert image.shape == (32, 32, 3) assert image.dtype == numpy.uint8 assert image[15, 15, 0] == 255 assert image[16, 16, 2] == 0 assert_aszarr_method(page) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_subifd8(): """Test read BigTIFFSubIFD8.""" fname = public_file('twelvemonkeys/bigtiff/BigTIFFSubIFD8.tif') with TiffFile(fname) as tif: assert len(tif.series) == 1 assert len(tif.pages) == 2 page = tif.pages[0] assert page.photometric == RGB assert page.imagewidth == 64 assert page.imagelength == 64 assert page.bitspersample == 8 assert page.samplesperpixel == 3 assert page.tags['SubIFDs'].value == (3088,) # assert subifd page = page.pages[0] assert page.photometric == RGB assert page.imagewidth == 32 assert page.imagelength == 32 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert data image = page.asarray() assert image.flags['C_CONTIGUOUS'] assert image.shape == (32, 32, 3) assert image.dtype == numpy.uint8 assert image[15, 15, 0] == 255 assert image[16, 16, 2] == 0 assert_aszarr_method(page) assert__str__(tif) @pytest.mark.skipif(SKIP_CODECS or not imagecodecs.JPEG, reason=REASON) def test_read_tiles(): """Test iteration over tiles, manually and via page.segments.""" data = numpy.arange(600 * 500 * 3, dtype=numpy.uint8).reshape( (600, 500, 3) ) with TempFileName('read_tiles') as fname: with TiffWriter(fname) as tif: options = dict( tile=(256, 256), photometric=RGB, compression=JPEG, metadata=None, ) tif.write(data, **options) tif.write(data[::2, ::2], subfiletype=1, **options) with TiffFile(fname) as tif: fh = tif.filehandle for page in tif.pages: segments = page.segments() jpegtables = page.tags.get('JPEGTables', None) if jpegtables is not None: jpegtables = jpegtables.value for index, (offset, bytecount) in enumerate( zip(page.dataoffsets, page.databytecounts) ): fh.seek(offset) data = fh.read(bytecount) tile, indices, shape = page.decode(data, index, jpegtables) assert_array_equal(tile, next(segments)[0]) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_LARGE, reason=REASON) def test_read_lsm_mosaic(): """Test read LSM: PTZCYX (Mosaic mode), two areas, 32 samples, >4 GB.""" # LSM files are little endian with two series, one of which is reduced RGB # Tags may be unordered or contain bogus values fname = private_file( 'lsm/Twoareas_Zstacks54slices_3umintervals_5cycles.lsm' ) with TiffFile(fname) as tif: assert tif.is_lsm assert tif.byteorder == '<' assert len(tif.pages) == 1080 assert len(tif.series) == 2 # assert page properties page = tif.pages[0] assert page.is_lsm assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 16 assert page.samplesperpixel == 32 # assert strip offsets are corrected page = tif.pages[-2] assert page.dataoffsets[0] == 9070895981 # assert series properties series = tif.series[0] assert series.shape == (2, 5, 54, 32, 512, 512) assert series.dtype == numpy.uint16 assert series.axes == 'PTZCYX' if 1: series = tif.series[1] assert series.shape == (2, 5, 54, 3, 128, 128) assert series.dtype == numpy.uint8 assert series.axes == 'PTZSYX' # assert lsm_info tags tags = tif.lsm_metadata assert tags['DimensionX'] == 512 assert tags['DimensionY'] == 512 assert tags['DimensionZ'] == 54 assert tags['DimensionTime'] == 5 assert tags['DimensionChannels'] == 32 # assert lsm_scan_info tags tags = tif.lsm_metadata['ScanInformation'] assert tags['ScanMode'] == 'Stack' assert tags['User'] == 'lfdguest1' # very slow: assert_aszarr_method(tif) assert__str__(tif, 0) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_LARGE, reason=REASON) def test_read_lsm_carpet(): """Test read LSM: ZCTYX (time series x-y), 72000 pages.""" # reads very slowly, ensure colormap is not applied fname = private_file('lsm/Cardarelli_carpet_3.lsm') with TiffFile(fname) as tif: assert tif.is_lsm assert tif.byteorder == '<' assert len(tif.pages) == 72000 assert len(tif.series) == 2 # assert page properties page = tif.pages[0] assert page.is_lsm assert 'ColorMap' in page.tags assert page.photometric == PALETTE assert page.compression == NONE assert page.imagewidth == 32 assert page.imagelength == 10 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.dtype == numpy.uint8 assert series.shape == (36000, 10, 32) assert series.axes == 'TYX' assert series.get_shape(False) == (1, 1, 36000, 10, 32) assert series.get_axes(False) == 'ZCTYX' if 1: series = tif.series[1] assert series.dtype == numpy.uint8 assert series.shape == (36000, 3, 40, 128) assert series.axes == 'TSYX' assert series.get_shape(False) == (1, 1, 36000, 3, 40, 128) assert series.get_axes(False) == 'ZCTSYX' # assert lsm_info tags tags = tif.lsm_metadata assert tags['DimensionX'] == 32 assert tags['DimensionY'] == 10 assert tags['DimensionZ'] == 1 assert tags['DimensionTime'] == 36000 assert tags['DimensionChannels'] == 1 # assert lsm_scan_info tags tags = tif.lsm_metadata['ScanInformation'] assert tags['ScanMode'] == 'Plane' assert tags['User'] == 'LSM User' # assert_aszarr_method(tif) assert__str__(tif, 0) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_lsm_take1(): """Test read LSM: TCZYX (Plane mode), single image, uint8.""" fname = private_file('lsm/take1.lsm') with TiffFile(fname) as tif: assert tif.is_lsm assert tif.byteorder == '<' assert len(tif.pages) == 2 assert len(tif.series) == 2 # assert page properties page = tif.pages[0] assert page.is_lsm assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 8 assert page.samplesperpixel == 1 page = tif.pages[1] assert page.is_reduced assert page.photometric == RGB assert page.planarconfig == SEPARATE assert page.compression == NONE assert page.imagewidth == 128 assert page.imagelength == 128 assert page.samplesperpixel == 3 assert page.bitspersample == 8 # assert series properties series = tif.series[0] assert series.dtype == numpy.uint8 assert series.shape == (512, 512) assert series.axes == 'YX' assert series.get_shape(False) == (1, 1, 1, 512, 512) assert series.get_axes(False) == 'TCZYX' if 1: series = tif.series[1] assert series.shape == (3, 128, 128) assert series.dtype == numpy.uint8 assert series.axes == 'SYX' # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (512, 512) assert data.dtype == numpy.uint8 assert data[..., 256, 256] == 101 if 1: data = tif.asarray(series=1) assert isinstance(data, numpy.ndarray) assert data.shape == (3, 128, 128) assert data.dtype == numpy.uint8 assert tuple(data[..., 64, 64]) == (89, 89, 89) # assert lsm_info tags tags = tif.lsm_metadata assert tags['DimensionX'] == 512 assert tags['DimensionY'] == 512 assert tags['DimensionZ'] == 1 assert tags['DimensionTime'] == 1 assert tags['DimensionChannels'] == 1 # assert lsm_scan_info tags tags = tif.lsm_metadata['ScanInformation'] assert tags['ScanMode'] == 'Plane' assert tags['User'] == 'LSM User' assert len(tags['Tracks']) == 1 assert len(tags['Tracks'][0]['DataChannels']) == 1 track = tags['Tracks'][0] assert track['DataChannels'][0]['Name'] == 'Ch1' assert track['DataChannels'][0]['BitsPerSample'] == 8 assert len(track['IlluminationChannels']) == 1 assert track['IlluminationChannels'][0]['Name'] == '561' assert track['IlluminationChannels'][0]['Wavelength'] == 561.0 assert_aszarr_method(tif) assert_aszarr_method(tif, series=1) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_lsm_2chzt(): """Test read LSM: ZCYX (Stack mode) uint8.""" fname = public_file('scif.io/2chZT.lsm') with TiffFile(fname) as tif: assert tif.is_lsm assert tif.byteorder == '<' assert len(tif.pages) == 798 assert len(tif.series) == 2 # assert page properties page = tif.pages[0] assert page.is_lsm assert page.is_contiguous assert page.photometric == RGB assert page.tags['StripOffsets'].value[2] == 242632 # bogus offset assert page.tags['StripByteCounts'].value[2] == 0 # no strip data assert page.compression == NONE assert page.imagewidth == 400 assert page.imagelength == 300 assert page.bitspersample == 8 assert page.samplesperpixel == 2 page = tif.pages[1] assert page.is_reduced assert page.photometric == RGB assert page.planarconfig == SEPARATE assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 128 assert page.imagelength == 96 assert page.samplesperpixel == 3 assert page.bitspersample == 8 # assert series properties series = tif.series[0] assert series.shape == (19, 21, 2, 300, 400) assert series.dtype == numpy.uint8 assert series.axes == 'TZCYX' if 1: series = tif.series[1] assert series.shape == (19, 21, 3, 96, 128) assert series.dtype == numpy.uint8 assert series.axes == 'TZSYX' # assert data data = tif.asarray(out='memmap') assert isinstance(data, numpy.core.memmap) assert data.flags['C_CONTIGUOUS'] assert data.shape == (19, 21, 2, 300, 400) assert data.dtype == numpy.uint8 assert data[18, 20, 1, 199, 299] == 39 if 1: data = tif.asarray(series=1) assert isinstance(data, numpy.ndarray) assert data.shape == (19, 21, 3, 96, 128) assert data.dtype == numpy.uint8 assert tuple(data[18, 20, :, 64, 96]) == (22, 22, 0) del data # assert lsm_info tags tags = tif.lsm_metadata assert tags['DimensionX'] == 400 assert tags['DimensionY'] == 300 assert tags['DimensionZ'] == 21 assert tags['DimensionTime'] == 19 assert tags['DimensionChannels'] == 2 # assert lsm_scan_info tags tags = tif.lsm_metadata['ScanInformation'] assert tags['ScanMode'] == 'Stack' assert tags['User'] == 'zjfhe' assert len(tags['Tracks']) == 3 assert len(tags['Tracks'][0]['DataChannels']) == 1 track = tags['Tracks'][0] assert track['DataChannels'][0]['Name'] == 'Ch3' assert track['DataChannels'][0]['BitsPerSample'] == 8 assert len(track['IlluminationChannels']) == 6 assert track['IlluminationChannels'][5]['Name'] == '488' assert track['IlluminationChannels'][5]['Wavelength'] == 488.0 assert_aszarr_method(tif) assert_aszarr_method(tif, series=1) assert__str__(tif, 0) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_read_lsm_earpax2isl11(): """Test read LSM: TZCYX (1, 19, 3, 512, 512) uint8, RGB, LZW.""" fname = private_file('lsm/earpax2isl11.lzw.lsm') with TiffFile(fname) as tif: assert tif.is_lsm assert tif.byteorder == '<' assert len(tif.pages) == 38 assert len(tif.series) == 2 # assert page properties page = tif.pages[0] assert page.is_lsm assert not page.is_contiguous assert page.photometric == RGB assert page.compression == LZW assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert corrected strip_byte_counts assert page.tags['StripByteCounts'].value == (262144, 262144, 262144) assert page.databytecounts == (131514, 192933, 167874) page = tif.pages[1] assert page.is_reduced assert page.photometric == RGB assert page.planarconfig == SEPARATE assert page.compression == NONE assert page.imagewidth == 128 assert page.imagelength == 128 assert page.samplesperpixel == 3 assert page.bitspersample == 8 # assert series properties series = tif.series[0] assert series.shape == (19, 3, 512, 512) assert series.get_shape(False) == (1, 19, 3, 512, 512) assert series.dtype == numpy.uint8 assert series.axes == 'ZCYX' assert series.get_axes(False) == 'TZCYX' if 1: series = tif.series[1] assert series.shape == (19, 3, 128, 128) assert series.get_shape(False) == (1, 19, 3, 128, 128) assert series.dtype == numpy.uint8 assert series.axes == 'ZSYX' assert series.get_axes(False) == 'TZSYX' # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (19, 3, 512, 512) assert data.dtype == numpy.uint8 assert tuple(data[18, :, 200, 320]) == (17, 22, 21) assert_aszarr_method(tif, data) if 1: data = tif.asarray(series=1) assert isinstance(data, numpy.ndarray) assert data.shape == (19, 3, 128, 128) assert data.dtype == numpy.uint8 assert tuple(data[18, :, 64, 64]) == (25, 5, 33) assert_aszarr_method(tif, series=1) # assert lsm_info tags tags = tif.lsm_metadata assert tags['DimensionX'] == 512 assert tags['DimensionY'] == 512 assert tags['DimensionZ'] == 19 assert tags['DimensionTime'] == 1 assert tags['DimensionChannels'] == 3 # assert lsm_scan_info tags tags = tif.lsm_metadata['ScanInformation'] assert tags['ScanMode'] == 'Stack' assert tags['User'] == 'megason' assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS or SKIP_LARGE, reason=REASON) def test_read_lsm_mb231paxgfp_060214(): """Test read LSM with many LZW compressed pages.""" # TZCYX (Stack mode), (60, 31, 2, 512, 512), 3720 fname = public_file('tifffile/MB231paxgfp_060214.lzw.lsm') with TiffFile(fname) as tif: assert tif.is_lsm assert tif.byteorder == '<' assert len(tif.pages) == 3720 assert len(tif.series) == 2 # assert page properties page = tif.pages[0] assert page.is_lsm assert not page.is_contiguous assert page.compression == LZW assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 16 assert page.samplesperpixel == 2 page = tif.pages[1] assert page.is_reduced assert page.photometric == RGB assert page.planarconfig == SEPARATE assert page.compression == NONE assert page.imagewidth == 128 assert page.imagelength == 128 assert page.samplesperpixel == 3 assert page.bitspersample == 8 # assert series properties series = tif.series[0] assert series.dtype == numpy.uint16 assert series.shape == (60, 31, 2, 512, 512) assert series.get_shape(False) == (60, 31, 2, 512, 512) assert series.axes == 'TZCYX' assert series.get_axes(False) == 'TZCYX' if 1: series = tif.series[1] assert series.dtype == numpy.uint8 assert series.shape == (60, 31, 3, 128, 128) assert series.axes == 'TZSYX' # assert data data = tif.asarray(out='memmap', maxworkers=None) assert isinstance(data, numpy.core.memmap) assert data.flags['C_CONTIGUOUS'] assert data.shape == (60, 31, 2, 512, 512) assert data.dtype == numpy.dtype(' 4GB Hamamatsu NDPI slide, JPEG 103680x188160.""" fname = private_file('HamamatsuNDPI/103680x188160.ndpi') with TiffFile(fname) as tif: assert tif.is_ndpi assert len(tif.pages) == 8 assert len(tif.series) == 3 for page in tif.pages: assert page.ndpi_tags['Model'] == 'C13220' # first page page = tif.pages[0] assert page.offset == 4466602683 assert page.is_ndpi assert page.databytecounts[0] == 5105 # not 4461521316 assert page.photometric == YCBCR assert page.compression == JPEG assert page.shape == (103680, 188160, 3) assert ( page.tags['ImageLength'].offset - page.tags['ImageWidth'].offset == 12 ) assert page.tags['ImageWidth'].offset == 4466602685 assert page.tags['ImageWidth'].valueoffset == 4466602693 assert page.tags['ImageLength'].offset == 4466602697 assert page.tags['ImageLength'].valueoffset == 4466602705 assert page.tags['ReferenceBlackWhite'].offset == 4466602889 assert page.tags['ReferenceBlackWhite'].valueoffset == 1003 assert page.ndpi_tags['Magnification'] == 40.0 assert page.ndpi_tags['McuStarts'][-1] == 4461516507 # corrected if not SKIP_ZARR: # data = page.asarray() # 55 GB with page.aszarr() as store: data = zarr.open(store, mode='r') assert data[38061, 121978].tolist() == [220, 167, 187] # page 7 page = tif.pages[7] assert page.is_ndpi assert page.photometric == MINISBLACK assert page.compression == NONE assert page.shape == (200, 600) assert page.ndpi_tags['Magnification'] == -2.0 # assert page.asarray()[226, 629, 0] == 167 # first series series = tif.series[0] assert series.kind == 'NDPI' assert series.name == 'S10533009' assert series.shape == (103680, 188160, 3) assert series.is_pyramidal assert len(series.levels) == 6 assert len(series.pages) == 1 # pyramid levels assert series.levels[1].shape == (51840, 94080, 3) assert series.levels[2].shape == (25920, 47040, 3) assert series.levels[3].shape == (12960, 23520, 3) assert series.levels[4].shape == (6480, 11760, 3) assert series.levels[5].shape == (3240, 5880, 3) data = series.levels[5].asarray() assert tuple(data[1000, 1000]) == (222, 165, 200) # cannot decode base levels since JPEG compressed size > 2 GB # series.levels[0].asarray() assert_aszarr_method(series.levels[5], data) assert__str__(tif) @pytest.mark.skipif( SKIP_PUBLIC or SKIP_CODECS or not imagecodecs.JPEGXR, reason=REASON ) def test_read_ndpi_jpegxr(): """Test read Hamamatsu NDPI slide with JPEG XR compression.""" # https://downloads.openmicroscopy.org/images/Hamamatsu-NDPI/hamamatsu/ fname = private_file('HamamatsuNDPI/DM0014 - 2020-04-02 10.25.21.ndpi') with TiffFile(fname) as tif: assert tif.is_ndpi assert len(tif.pages) == 6 assert len(tif.series) == 3 for page in tif.pages: assert page.ndpi_tags['Model'] == 'C13210' for page in tif.pages[:4]: # check that all levels are corrected assert page.is_ndpi assert page.tags['PhotometricInterpretation'].value == YCBCR assert page.tags['BitsPerSample'].value == (8, 8, 8) assert page.samplesperpixel == 1 # not 3 assert page.bitspersample == 16 # not 8 assert page.photometric == MINISBLACK # not YCBCR assert page.compression == TIFF.COMPRESSION.JPEGXR_NDPI # first page page = tif.pages[0] assert page.shape == (34944, 69888) # not (34944, 69888, 3) assert page.databytecounts[0] == 632009 assert page.ndpi_tags['CaptureMode'] == 17 assert page.ndpi_tags['Magnification'] == 20.0 if not SKIP_ZARR: with page.aszarr() as store: data = zarr.open(store, mode='r') assert data[28061, 41978] == 6717 # page 5 page = tif.pages[5] assert page.is_ndpi assert page.photometric == MINISBLACK assert page.compression == NONE assert page.shape == (192, 566) assert page.ndpi_tags['Magnification'] == -2.0 # first series series = tif.series[0] assert series.kind == 'NDPI' assert series.name == 'DM0014' assert series.shape == (34944, 69888) assert series.is_pyramidal assert len(series.levels) == 4 assert len(series.pages) == 1 # pyramid levels assert series.levels[1].shape == (17472, 34944) assert series.levels[2].shape == (8736, 17472) assert series.levels[3].shape == (4368, 8736) data = series.levels[3].asarray() assert data[1000, 1000] == 1095 assert_aszarr_method(series.levels[3], data) assert__str__(tif) @pytest.mark.skipif( SKIP_PUBLIC or SKIP_CODECS or not imagecodecs.JPEG, reason=REASON ) def test_read_svs_cmu1(): """Test read Aperio SVS slide, JPEG and LZW.""" fname = private_file('AperioSVS/CMU-1.svs') with TiffFile(fname) as tif: assert tif.is_svs assert not tif.is_scanimage assert len(tif.pages) == 6 assert len(tif.series) == 4 for page in tif.pages: svs_description_metadata(page.description) # first page page = tif.pages[0] assert page.is_svs assert page.is_subsampled assert page.photometric == RGB assert page.is_tiled assert page.compression == JPEG assert page.shape == (32914, 46000, 3) metadata = svs_description_metadata(page.description) assert metadata['Header'].startswith('Aperio Image Library') assert metadata['Originalheight'] == 33014 # page 4 page = tif.pages[4] assert page.is_svs assert page.is_reduced assert page.photometric == RGB assert page.compression == LZW assert page.shape == (463, 387, 3) metadata = svs_description_metadata(page.description) assert 'label 387x463' in metadata['Header'] assert_aszarr_method(page) assert__str__(tif) @pytest.mark.skipif( SKIP_PUBLIC or SKIP_CODECS or not imagecodecs.JPEG2K, reason=REASON ) def test_read_svs_jp2k_33003_1(): """Test read Aperio SVS slide, JP2000 and LZW.""" fname = private_file('AperioSVS/JP2K-33003-1.svs') with TiffFile(fname) as tif: assert tif.is_svs assert not tif.is_scanimage assert len(tif.pages) == 6 assert len(tif.series) == 4 for page in tif.pages: svs_description_metadata(page.description) # first page page = tif.pages[0] assert page.is_svs assert not page.is_subsampled assert page.photometric == RGB assert page.is_tiled assert page.compression == APERIO_JP2000_YCBC assert page.shape == (17497, 15374, 3) metadata = svs_description_metadata(page.description) assert metadata['Header'].startswith('Aperio Image Library') assert metadata['Originalheight'] == 17597 # page 4 page = tif.pages[4] assert page.is_svs assert page.is_reduced assert page.photometric == RGB assert page.compression == LZW assert page.shape == (422, 415, 3) metadata = svs_description_metadata(page.description) assert 'label 415x422' in metadata['Header'] assert_aszarr_method(page) assert__str__(tif) @pytest.mark.skipif( SKIP_PUBLIC or SKIP_CODECS or not imagecodecs.JPEG, reason=REASON ) def test_read_bif(caplog): """Test read Ventana BIF slide.""" fname = private_file('VentanaBIF/OS-2.bif') with TiffFile(fname) as tif: assert tif.is_bif assert len(tif.pages) == 12 assert len(tif.series) == 3 # first page page = tif.pages[0] assert page.is_bif assert page.photometric == YCBCR assert page.is_tiled assert page.compression == JPEG assert page.shape == (3008, 1008, 3) series = tif.series assert 'not stiched' in caplog.text # baseline series = tif.series[0] assert series.name == 'Baseline' assert len(series.levels) == 10 assert series.shape == (82960, 128000, 3) assert series.dtype == numpy.uint8 # level 0 page = series.pages[0] assert page.is_bif assert page.is_tiled assert page.photometric == YCBCR assert page.compression == JPEG assert page.shape == (82960, 128000, 3) assert page.description == 'level=0 mag=40 quality=90' # level 5 page = series.levels[5].pages[0] assert not page.is_bif assert page.is_tiled assert page.photometric == YCBCR assert page.compression == JPEG assert page.shape == (2600, 4000, 3) assert page.description == 'level=5 mag=1.25 quality=90' assert_aszarr_method(page) assert__str__(tif) @pytest.mark.skipif( SKIP_PRIVATE or SKIP_LARGE or SKIP_CODECS or not imagecodecs.JPEG, reason=REASON, ) def test_read_scn_collection(): """Test read Leica SCN slide, JPEG.""" # collection of 43 CZYX images # https://forum.image.sc/t/43585 fname = private_file( 'LeicaSCN/19-3-12_b5992c2e-5b6e-46f2-bf9b-d5872bdebdc1.SCN' ) with TiffFile(fname) as tif: assert tif.is_scn assert tif.is_bigtiff assert len(tif.pages) == 5358 assert len(tif.series) == 46 # first page page = tif.pages[0] assert page.is_scn assert page.is_tiled assert page.photometric == YCBCR assert page.compression == JPEG assert page.shape == (12990, 5741, 3) metadata = tif.scn_metadata assert metadata.startswith('') for series in tif.series[2:]: assert series.kind == 'SCN' assert series.axes == 'CZYX' assert series.shape[:2] == (4, 8) assert len(series.levels) in (2, 3, 4, 5) assert len(series.pages) == 32 # third series series = tif.series[2] assert series.shape == (4, 8, 946, 993) assert_aszarr_method(series) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_scanimage_metadata(): """Test read ScanImage metadata.""" fname = private_file('ScanImage/TS_UnitTestImage_BigTIFF.tif') with open(fname, 'rb') as fh: frame_data, roi_data, version = read_scanimage_metadata(fh) assert version == 3 assert frame_data['SI.hChannels.channelType'] == ['stripe', 'stripe'] assert roi_data['RoiGroups']['imagingRoiGroup']['ver'] == 1 @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_scanimage_2021(): """Test read ScanImage metadata.""" # https://github.com/cgohlke/tifffile/issues/46 fname = private_file('ScanImage/ScanImage2021_3frames.tif') with open(fname, 'rb') as fh: frame_data, roi_data, version = read_scanimage_metadata(fh) assert frame_data['SI.hChannels.channelType'] == [ 'stripe', 'stripe', 'stripe', 'stripe', ] assert version == 4 assert roi_data['RoiGroups']['imagingRoiGroup']['ver'] == 1 with TiffFile(fname) as tif: assert tif.is_scanimage assert len(tif.pages) == 3 assert len(tif.series) == 1 assert tif.series[0].shape == (3, 256, 256) assert tif.series[0].axes == 'TYX' # non-varying scanimage_metadata assert tif.scanimage_metadata['version'] == 4 assert 'FrameData' in tif.scanimage_metadata assert 'RoiGroups' in tif.scanimage_metadata # assert page properties page = tif.pages[0] assert page.is_scanimage assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 256 assert page.imagelength == 256 assert page.bitspersample == 16 assert page.samplesperpixel == 1 # description tags metadata = scanimage_description_metadata(page.description) assert metadata['epoch'] == [2021, 3, 1, 17, 31, 28.047] assert_aszarr_method(tif) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_scanimage_no_framedata(): """Test read ScanImage no FrameData.""" fname = private_file('ScanImage/PSF001_ScanImage36.tif') with TiffFile(fname) as tif: assert tif.is_scanimage assert len(tif.pages) == 100 assert len(tif.series) == 1 # no non-tiff scanimage_metadata assert not tif.scanimage_metadata # assert page properties page = tif.pages[0] assert page.is_scanimage assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 256 assert page.imagelength == 256 assert page.bitspersample == 16 assert page.samplesperpixel == 1 # description tags metadata = scanimage_description_metadata(page.description) assert metadata['state.software.version'] == 3.6 assert_aszarr_method(tif) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_LARGE, reason=REASON) def test_read_scanimage_2gb(): """Test read ScanImage non-BigTIFF > 2 GB. https://github.com/MouseLand/suite2p/issues/149 """ fname = private_file('ScanImage/M161209TH_01__001.tif') with TiffFile(fname) as tif: assert tif.is_scanimage assert len(tif.pages) == 5980 assert len(tif.series) == 1 # no non-tiff scanimage_metadata assert 'version' not in tif.scanimage_metadata assert 'FrameData' not in tif.scanimage_metadata assert 'RoiGroups' not in tif.scanimage_metadata # assert page properties page = tif.pages[0] assert page.is_scanimage assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 16 assert page.samplesperpixel == 1 # using virtual frames frame = tif.pages[-1] assert isinstance(frame, TiffFrame) assert frame.offset is None assert frame.index == 5979 assert frame.dataoffsets[0] == 3163182856 assert frame.databytecounts[0] == 8192 # 524288 assert len(frame.dataoffsets) == 64 assert len(frame.databytecounts) == 64 # description tags metadata = scanimage_description_metadata(page.description) assert metadata['scanimage.SI5.VERSION_MAJOR'] == 5 # assert data data = tif.asarray() assert data[5979, 256, 256] == 71 data = frame.asarray() assert data[256, 256] == 71 assert_aszarr_method(tif) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_scanimage_bigtiff(): """Test read ScanImage BigTIFF.""" # https://github.com/cgohlke/tifffile/issues/29 fname = private_file('ScanImage/area1__00001.tif') with TiffFile(fname) as tif: assert tif.is_scanimage assert len(tif.pages) == 162 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_scanimage assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 16 assert page.samplesperpixel == 1 # metadata in description, software, artist tags metadata = scanimage_description_metadata(page.description) assert metadata['frameNumbers'] == 1 metadata = scanimage_description_metadata(page.tags['Software'].value) assert metadata['SI.TIFF_FORMAT_VERSION'] == 3 metadata = scanimage_artist_metadata(page.tags['Artist'].value) assert metadata['RoiGroups']['imagingRoiGroup']['ver'] == 1 metadata = tif.scanimage_metadata assert metadata['version'] == 3 assert metadata['FrameData']['SI.TIFF_FORMAT_VERSION'] == 3 assert metadata['RoiGroups']['imagingRoiGroup']['ver'] == 1 assert 'Description' not in metadata # assert page offsets are correct assert tif.pages[-1].offset == 84527590 # not 84526526 (calculated) # read image data assert_aszarr_method(tif) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_ome_single_channel(): """Test read OME image.""" # 2D (single image) # OME-TIFF reference images from # https://www.openmicroscopy.org/site/support/ome-model/ome-tiff fname = public_file('OME/bioformats-artificial/single-channel.ome.tif') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.tags['Software'].value[:15] == 'OME Bio-Formats' assert page.compression == NONE assert page.imagewidth == 439 assert page.imagelength == 167 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert not series.is_multifile assert series.dtype == numpy.int8 assert series.shape == (167, 439) assert series.axes == 'YX' assert series.get_shape(False) == (1, 1, 1, 167, 439, 1) assert series.get_axes(False) == 'TCZYXS' # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (167, 439) assert data.dtype == numpy.int8 assert data[158, 428] == 91 assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_ome_multi_channel(): """Test read OME multi channel image.""" # 2D (3 channels) fname = public_file('OME/bioformats-artificial/multi-channel.ome.tiff') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '>' assert len(tif.pages) == 3 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.tags['Software'].value[:15] == 'OME Bio-Formats' assert page.compression == NONE assert page.imagewidth == 439 assert page.imagelength == 167 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (3, 167, 439) assert series.dtype == numpy.int8 assert series.axes == 'CYX' assert series.get_shape(False) == (1, 3, 1, 167, 439, 1) assert series.get_axes(False) == 'TCZYXS' assert not series.is_multifile # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (3, 167, 439) assert data.dtype == numpy.int8 assert data[2, 158, 428] == 91 assert_aszarr_method(tif, data) # don't squeeze data = tif.asarray(squeeze=False) assert_aszarr_method(tif, data, squeeze=False) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_ome_z_series(): """Test read OME volume.""" # 3D (5 focal planes) fname = public_file('OME/bioformats-artificial/z-series.ome.tif') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '>' assert len(tif.pages) == 5 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.tags['Software'].value[:15] == 'OME Bio-Formats' assert page.compression == NONE assert page.imagewidth == 439 assert page.imagelength == 167 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (5, 167, 439) assert series.dtype == numpy.int8 assert series.axes == 'ZYX' assert series.get_shape(False) == (1, 1, 5, 167, 439, 1) assert series.get_axes(False) == 'TCZYXS' assert not series.is_multifile # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (5, 167, 439) assert data.dtype == numpy.int8 assert data[4, 158, 428] == 91 assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_ome_multi_channel_z_series(): """Test read OME multi-channel volume.""" # 3D (5 focal planes, 3 channels) fname = public_file( 'OME/bioformats-artificial/multi-channel-z-series.ome.tiff' ) with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '>' assert len(tif.pages) == 15 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.tags['Software'].value[:15] == 'OME Bio-Formats' assert page.compression == NONE assert page.imagewidth == 439 assert page.imagelength == 167 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (3, 5, 167, 439) assert series.dtype == numpy.int8 assert series.axes == 'CZYX' assert series.get_shape(False) == (1, 3, 5, 167, 439, 1) assert series.get_axes(False) == 'TCZYXS' assert not series.is_multifile # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (3, 5, 167, 439) assert data.dtype == numpy.int8 assert data[2, 4, 158, 428] == 91 assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_ome_time_series(): """Test read OME time-series of images.""" # 3D (7 time points) fname = public_file('OME/bioformats-artificial/time-series.ome.tiff') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '>' assert len(tif.pages) == 7 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.tags['Software'].value[:15] == 'OME Bio-Formats' assert page.compression == NONE assert page.imagewidth == 439 assert page.imagelength == 167 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (7, 167, 439) assert series.dtype == numpy.int8 assert series.axes == 'TYX' assert series.get_shape(False) == (7, 1, 1, 167, 439, 1) assert series.get_axes(False) == 'TCZYXS' assert not series.is_multifile # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (7, 167, 439) assert data.dtype == numpy.int8 assert data[6, 158, 428] == 91 assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_ome_multi_channel_time_series(): """Test read OME time-series of multi-channel images.""" # 3D (7 time points, 3 channels) fname = public_file( 'OME/bioformats-artificial/multi-channel-time-series.ome.tiff' ) with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '>' assert len(tif.pages) == 21 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.tags['Software'].value[:15] == 'OME Bio-Formats' assert page.compression == NONE assert page.imagewidth == 439 assert page.imagelength == 167 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (7, 3, 167, 439) assert series.dtype == numpy.int8 assert series.axes == 'TCYX' assert series.get_shape(False) == (7, 3, 1, 167, 439, 1) assert series.get_axes(False) == 'TCZYXS' assert not series.is_multifile # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (7, 3, 167, 439) assert data.dtype == numpy.int8 assert data[6, 2, 158, 428] == 91 assert_aszarr_method(tif, data) # don't squeeze data = tif.asarray(squeeze=False) assert_aszarr_method(tif, data, squeeze=False) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_ome_4d_series(): """Test read OME time-series of volumes.""" # 4D (7 time points, 5 focal planes) fname = public_file('OME/bioformats-artificial/4D-series.ome.tiff') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '>' assert len(tif.pages) == 35 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.tags['Software'].value[:15] == 'OME Bio-Formats' assert page.compression == NONE assert page.imagewidth == 439 assert page.imagelength == 167 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (7, 5, 167, 439) assert series.dtype == numpy.int8 assert series.axes == 'TZYX' assert not series.is_multifile # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (7, 5, 167, 439) assert data.dtype == numpy.int8 assert data[6, 4, 158, 428] == 91 assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_ome_multi_channel_4d_series(): """Test read OME time-series of multi-channel volumes.""" # 4D (7 time points, 5 focal planes, 3 channels) fname = public_file( 'OME/bioformats-artificial/multi-channel-4D-series.ome.tiff' ) with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '>' assert len(tif.pages) == 105 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.tags['Software'].value[:15] == 'OME Bio-Formats' assert page.compression == NONE assert page.imagewidth == 439 assert page.imagelength == 167 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (7, 3, 5, 167, 439) assert series.dtype == numpy.int8 assert series.axes == 'TCZYX' assert series.get_shape(False) == (7, 3, 5, 167, 439, 1) assert series.get_axes(False) == 'TCZYXS' assert not series.is_multifile # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (7, 3, 5, 167, 439) assert data.dtype == numpy.int8 assert data[6, 0, 4, 158, 428] == 91 assert_aszarr_method(tif, data) # don't squeeze data = tif.asarray(squeeze=False) assert_aszarr_method(tif, data, squeeze=False) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_ome_modulo_flim(): """Test read OME modulo FLIM.""" fname = public_file('OME/modulo/FLIM-ModuloAlongC.ome.tiff') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '>' assert len(tif.pages) == 16 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.tags['Software'].value[:15] == 'OME Bio-Formats' assert page.compression == NONE assert page.imagewidth == 180 assert page.imagelength == 150 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (2, 8, 150, 180) assert series.dtype == numpy.int8 assert series.axes == 'CHYX' assert series.get_shape(False) == (1, 2, 8, 1, 150, 180, 1) assert series.get_axes(False) == 'TCHZYXS' assert not series.is_multifile # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (2, 8, 150, 180) assert data.dtype == numpy.int8 assert data[1, 7, 143, 172] == 92 assert_aszarr_method(tif, data) # don't squeeze data = tif.asarray(squeeze=False) assert_aszarr_method(tif, data, squeeze=False) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_ome_modulo_flim_tcspc(): """Test read OME modulo FLIM TSCPC.""" # Two channels each recorded at two timepoints and eight histogram bins fname = public_file('OME/modulo/FLIM-ModuloAlongT-TSCPC.ome.tiff') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '<' assert len(tif.pages) == 32 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.tags['Software'].value[:15] == 'OME Bio-Formats' assert page.compression == NONE assert page.imagewidth == 180 assert page.imagelength == 200 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (2, 8, 2, 200, 180) assert series.dtype == numpy.int8 assert series.axes == 'THCYX' assert not series.is_multifile # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (2, 8, 2, 200, 180) assert data.dtype == numpy.int8 assert data[1, 7, 1, 190, 161] == 92 assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_ome_modulo_spim(): """Test read OME modulo SPIM.""" # 2x2 tile of planes each recorded at 4 angles fname = public_file('OME/modulo/SPIM-ModuloAlongZ.ome.tiff') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '<' assert len(tif.pages) == 192 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.tags['Software'].value == 'OME Bio-Formats 5.2.0-SNAPSHOT' assert page.compression == NONE assert page.imagewidth == 160 assert page.imagelength == 220 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (3, 4, 2, 4, 2, 220, 160) assert series.dtype == numpy.uint8 assert series.axes == 'TRZACYX' assert not series.is_multifile # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (3, 4, 2, 4, 2, 220, 160) assert data.dtype == numpy.uint8 assert data[2, 3, 1, 3, 1, 210, 151] == 92 assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_ome_modulo_lambda(): """Test read OME modulo LAMBDA.""" # Excitation of 5 wavelength [big-lambda] each recorded at 10 emission # wavelength ranges [lambda]. fname = public_file('OME/modulo/LAMBDA-ModuloAlongZ-ModuloAlongT.ome.tiff') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '<' assert len(tif.pages) == 50 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.tags['Software'].value == 'OME Bio-Formats 5.2.0-SNAPSHOT' assert page.compression == NONE assert page.imagewidth == 200 assert page.imagelength == 200 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (10, 5, 200, 200) assert series.dtype == numpy.uint8 assert series.axes == 'EPYX' assert not series.is_multifile # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (10, 5, 200, 200) assert data.dtype == numpy.uint8 assert data[9, 4, 190, 192] == 92 assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) def test_read_ome_multi_image_pixels(): """Test read OME with three image series.""" fname = public_file('OME/bioformats-artificial/multi-image-pixels.ome.tif') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '>' assert len(tif.pages) == 86 assert len(tif.series) == 3 # assert page properties for (i, axes, shape) in ( (0, 'CTYX', (2, 7, 555, 431)), (1, 'TZYX', (6, 2, 461, 348)), (2, 'TZCYX', (4, 5, 3, 239, 517)), ): series = tif.series[i] page = series.pages[0] assert page.is_contiguous assert page.tags['Software'].value == 'LOCI Bio-Formats' assert page.compression == NONE assert page.imagewidth == shape[-1] assert page.imagelength == shape[-2] assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties assert series.shape == shape assert series.dtype == numpy.uint8 assert series.axes == axes assert not series.is_multifile # assert data data = tif.asarray(series=i) assert isinstance(data, numpy.ndarray) assert data.shape == shape assert data.dtype == numpy.uint8 assert_aszarr_method(series, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_ome_multi_image_nouuid(): """Test read single-file, multi-image OME without UUID.""" fname = private_file( 'OMETIFF.jl/singles/181003_multi_pos_time_course_1_MMStack.ome.tif' ) with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '<' assert len(tif.pages) == 20 assert len(tif.series) == 2 # assert page properties for i in (0, 1): series = tif.series[i] page = series.pages[0] assert bool(page.is_imagej) == (i == 0) assert page.is_ome == (i == 0) assert page.is_micromanager assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 256 assert page.imagelength == 256 assert page.bitspersample == 16 assert page.samplesperpixel == 1 # assert series properties assert series.shape == (10, 256, 256) assert series.dtype == numpy.uint16 assert series.axes == 'TYX' assert not series.is_multifile # assert data data = tif.asarray(series=i) assert isinstance(data, numpy.ndarray) assert data.shape == (10, 256, 256) assert data.dtype == numpy.uint16 assert data[5, 128, 128] == (18661, 16235)[i] assert_aszarr_method(series, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_ome_zen_2chzt(): """Test read OME time-series of two-channel volumes by ZEN 2011.""" fname = private_file('OME/zen_2chzt.ome.tiff') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '<' assert len(tif.pages) == 798 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.tags['Software'].value == 'ZEN 2011 (blue edition)' assert page.compression == NONE assert page.imagewidth == 400 assert page.imagelength == 300 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (2, 19, 21, 300, 400) assert series.dtype == numpy.uint8 assert series.axes == 'CTZYX' assert not series.is_multifile # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (2, 19, 21, 300, 400) assert data.dtype == numpy.uint8 assert data[1, 10, 10, 100, 245] == 78 assert_aszarr_method(tif, data) assert__str__(tif, 0) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_LARGE, reason=REASON) def test_read_ome_multifile(): """Test read OME CTZYX series in 86 files.""" # (2, 43, 10, 512, 512) CTZYX uint8 in 86 files, 10 pages each fname = public_file('OME/tubhiswt-4D/tubhiswt_C0_TP10.ome.tif') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '<' assert len(tif.pages) == 10 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.tags['Software'].value[:15] == 'OME Bio-Formats' assert page.compression == NONE assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (2, 43, 10, 512, 512) assert series.dtype == numpy.uint8 assert series.axes == 'CTZYX' assert series.is_multifile # assert other files are closed after TiffFile._series_ome for page in tif.series[0].pages: assert bool(page.parent.filehandle._fh) == (page.parent == tif) # assert data data = tif.asarray(out='memmap') assert isinstance(data, numpy.core.memmap) assert data.shape == (2, 43, 10, 512, 512) assert data.dtype == numpy.uint8 assert data[1, 42, 9, 426, 272] == 123 # assert other files are still closed after TiffFile.asarray for page in tif.series[0].pages: assert bool(page.parent.filehandle._fh) == (page.parent == tif) assert tif.filehandle._fh assert__str__(tif) # test aszarr assert_aszarr_method(tif, data) assert_aszarr_method(tif, data, chunkmode='page') del data # assert other files are still closed after ZarrStore.close for page in tif.series[0].pages: assert bool(page.parent.filehandle._fh) == (page.parent == tif) # assert all files stay open # with TiffFile(fname) as tif: # for page in tif.series[0].pages: # self.assertTrue(page.parent.filehandle._fh) # data = tif.asarray(out='memmap') # for page in tif.series[0].pages: # self.assertTrue(page.parent.filehandle._fh) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_LARGE, reason=REASON) def test_read_ome_multifile_missing(caplog): """Test read OME referencing missing files.""" # (2, 43, 10, 512, 512) CTZYX uint8, 85 files missing fname = private_file('OME/tubhiswt_C0_TP34.ome.tif') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '<' assert len(tif.pages) == 10 assert len(tif.series) == 1 assert 'failed to read' in caplog.text # assert page properties page = tif.pages[0] TiffPage.__str__(page, 4) assert page.is_contiguous assert page.tags['Software'].value[:15] == 'OME Bio-Formats' assert page.compression == NONE assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 8 assert page.samplesperpixel == 1 page = tif.pages[-1] TiffPage.__str__(page, 4) assert page.shape == (512, 512) # assert series properties series = tif.series[0] assert series.shape == (2, 43, 10, 512, 512) assert series.dtype == numpy.uint8 assert series.axes == 'CTZYX' assert series.is_multifile # assert data data = tif.asarray(out='memmap') assert isinstance(data, numpy.core.memmap) assert data.shape == (2, 43, 10, 512, 512) assert data.dtype == numpy.uint8 assert data[0, 34, 4, 303, 206] == 82 assert data[1, 25, 2, 425, 272] == 196 assert_aszarr_method(tif, data) assert_aszarr_method(tif, data, chunkmode='page') del data assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_ome_rgb(): """Test read OME RGB image.""" # https://github.com/openmicroscopy/bioformats/pull/1986 fname = private_file('OME/test_rgb.ome.tif') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.tags['Software'].value[:15] == 'OME Bio-Formats' assert page.compression == NONE assert page.imagewidth == 1280 assert page.imagelength == 720 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert series properties series = tif.series[0] assert series.shape == (3, 720, 1280) assert series.dtype == numpy.uint8 assert series.axes == 'SYX' assert series.offset == 17524 assert not series.is_multifile # assert data data = tif.asarray() assert data.shape == (3, 720, 1280) assert data.dtype == numpy.uint8 assert data[1, 158, 428] == 253 assert_aszarr_method(tif, data) assert_aszarr_method(tif, data, chunkmode='page') assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_read_ome_samplesperpixel(): """Test read OME image stack with SamplesPerPixel>1.""" # Reported by Grzegorz Bokota on 2019.1.30 fname = private_file('OME/test_samplesperpixel.ome.tif') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '>' assert len(tif.pages) == 6 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.tags['Software'].value[:15] == 'OME Bio-Formats' assert page.compression == LZW assert page.imagewidth == 1024 assert page.imagelength == 1024 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert series properties series = tif.series[0] assert series.shape == (6, 3, 1024, 1024) assert series.dtype == numpy.uint8 assert series.axes == 'ZSYX' assert not series.is_multifile # assert data data = tif.asarray() assert data.shape == (6, 3, 1024, 1024) assert data.dtype == numpy.uint8 assert tuple(data[5, :, 191, 449]) == (253, 0, 28) assert_aszarr_method(tif, data) assert_aszarr_method(tif, data, chunkmode='page') assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_ome_float_modulo_attributes(): """Test read OME with floating point modulo attributes.""" # reported by Start Berg. File by Lorenz Maier. fname = private_file('OME/float_modulo_attributes.ome.tiff') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '>' assert len(tif.pages) == 2 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.tags['Software'].value[:15] == 'OME Bio-Formats' assert page.compression == NONE assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 16 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (2, 512, 512) assert series.dtype == numpy.uint16 assert series.axes == 'QYX' assert not series.is_multifile # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (2, 512, 512) assert data.dtype == numpy.uint16 assert data[1, 158, 428] == 51 assert_aszarr_method(tif, data) assert_aszarr_method(tif, data, chunkmode='page') assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_ome_cropped(caplog): """Test read bad OME by ImageJ cropping.""" # ImageJ produces invalid ome-xml when cropping # http://lists.openmicroscopy.org.uk/pipermail/ome-devel/2013-December # /002631.html # Reported by Hadrien Mary on Dec 11, 2013 fname = private_file('ome/cropped.ome.tif') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '<' assert len(tif.pages) == 100 assert len(tif.series) == 1 assert 'invalid TiffData index' in caplog.text # assert page properties page = tif.pages[0] assert page.tags['Software'].value[:15] == 'OME Bio-Formats' assert page.imagewidth == 324 assert page.imagelength == 249 assert page.bitspersample == 16 # assert series properties series = tif.series[0] assert series.shape == (5, 10, 2, 249, 324) assert series.dtype == numpy.uint16 assert series.axes == 'TZCYX' assert not series.is_multifile # assert data data = tif.asarray() assert data.shape == (5, 10, 2, 249, 324) assert data.dtype == numpy.uint16 assert data[4, 9, 1, 175, 123] == 9605 assert_aszarr_method(tif, data) assert_aszarr_method(tif, data, chunkmode='page') del data assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS or SKIP_LARGE, reason=REASON) def test_read_ome_corrupted_page(caplog): """Test read OME with corrupted but not referenced page.""" # https://forum.image.sc/t/qupath-0-2-0-not-able-to-open-ome-tiff/23821/3 fname = private_file('ome/2019_02_19__7760_s1.ome.tiff') with TiffFile(fname) as tif: assert tif.is_ome assert tif.is_bigtiff assert tif.byteorder == '<' assert len(tif.pages) == 5 assert len(tif.series) == 1 assert 'missing required tags' in caplog.text # assert page properties page = tif.pages[0] assert page.imagewidth == 7506 assert page.imagelength == 7506 assert page.bitspersample == 16 # assert series properties series = tif.series[0] assert series.shape == (4, 7506, 7506) assert series.dtype == numpy.uint16 assert series.axes == 'CYX' assert not series.is_multifile # assert data data = tif.asarray() assert data.shape == (4, 7506, 7506) assert data.dtype == numpy.uint16 assert tuple(data[:, 2684, 2684]) == (496, 657, 7106, 469) assert_aszarr_method(tif, data) assert_aszarr_method(tif, data, chunkmode='page') del data assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_ome_nikon(caplog): """Test read bad OME by Nikon.""" # OME-XML references only first image # received from E. Gratton fname = private_file('OME/Nikon-cell011.ome.tif') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '<' assert len(tif.pages) == 1000 assert len(tif.series) == 1 # assert 'index out of range' in caplog.text # assert page properties page = tif.pages[0] assert page.photometric != RGB assert page.imagewidth == 1982 assert page.imagelength == 1726 assert page.bitspersample == 16 assert page.is_contiguous assert ( page.tags['ImageLength'].offset - page.tags['ImageWidth'].offset == 20 ) assert page.tags['ImageWidth'].offset == 6856262146 assert page.tags['ImageWidth'].valueoffset == 6856262158 assert page.tags['ImageLength'].offset == 6856262166 assert page.tags['ImageLength'].valueoffset == 6856262178 assert page.tags['StripByteCounts'].offset == 6856262366 assert page.tags['StripByteCounts'].valueoffset == 6856262534 # assert series properties series = tif.series[0] assert len(series._pages) == 1 assert len(series.pages) == 1 assert series.offset == 16 # contiguous assert series.shape == (1726, 1982) assert series.dtype == numpy.uint16 assert series.axes == 'YX' assert__str__(tif) with TiffFile(fname, is_ome=False) as tif: assert not tif.is_ome # assert series properties series = tif.series[0] assert len(series.pages) == 1000 assert series.offset is None # not contiguous assert series.shape == (1000, 1726, 1982) assert series.dtype == numpy.uint16 assert series.axes == 'IYX' assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_ome_shape_mismatch(caplog): """Test read OME with page shape mismatch.""" # TCX (20000, 2, 500) is stored in 2 pages of (20000, 500) # probably exported by ZEN Software fname = private_file('OME/Image 7.ome_h00.tiff') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '<' assert len(tif.pages) == 2 assert len(tif.series) == 2 assert 'cannot handle discontiguous storage' in caplog.text # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.photometric == MINISBLACK assert page.imagewidth == 500 assert page.imagelength == 20000 assert page.bitspersample == 16 assert page.samplesperpixel == 1 page = tif.pages[1] assert page.is_contiguous assert page.photometric == PALETTE assert page.imagewidth == 500 assert page.imagelength == 20000 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (20000, 500) assert series.dtype == numpy.uint16 assert series.axes == 'YX' assert series.offset == 8 assert series.kind == 'Generic' @pytest.mark.skipif( SKIP_PRIVATE or SKIP_CODECS or not imagecodecs.JPEG2K, reason=REASON ) def test_read_ome_jpeg2000_be(): """Test read JPEG2000 compressed big-endian OME-TIFF.""" fname = private_file('OME/mitosis.jpeg2000.ome.tif') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '>' assert len(tif.pages) == 510 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert not page.is_contiguous assert page.tags['Software'].value[:15] == 'OME Bio-Formats' assert page.compression == APERIO_JP2000_YCBC assert page.imagewidth == 171 assert page.imagelength == 196 assert page.bitspersample == 16 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (51, 5, 2, 196, 171) assert series.dtype == numpy.uint16 assert series.axes == 'TZCYX' # assert data data = page.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (196, 171) assert data.dtype == numpy.uint16 assert data[0, 0] == 1904 assert_aszarr_method(page, data) assert_aszarr_method(page, data, chunkmode='page') assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_read_ome_samplesperpixel_mismatch(caplog): """Test read OME with SamplesPerPixel mismatch: OME=1, TIFF=4.""" # https://forum.image.sc/t/ilastik-refuses-to-load-image-file/48541/1 fname = private_file('OME/MismatchSamplesPerPixel.ome.tif') with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == RGB assert page.compression == LZW assert page.imagewidth == 2080 assert page.imagelength == 1552 assert page.bitspersample == 8 assert page.samplesperpixel == 4 # assert series properties series = tif.series[0] assert 'cannot handle discontiguous storage' in caplog.text assert series.kind == 'Generic' assert series.shape == (1552, 2080, 4) assert series.dtype == numpy.uint8 assert series.axes == 'YXS' assert not series.is_multifile # assert data data = tif.asarray() assert data.shape == (1552, 2080, 4) assert_aszarr_method(tif, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_andor_light_sheet_512p(): """Test read Andor.""" # 12113x13453, uint16 fname = private_file('andor/light sheet 512px.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 100 assert len(tif.series) == 1 assert tif.is_andor # assert page properties page = tif.pages[0] assert page.is_andor assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 16 assert page.samplesperpixel == 1 # assert metadata t = page.andor_tags assert t['SoftwareVersion'] == '4.23.30014.0' assert t['Frames'] == 100.0 # assert series properties series = tif.series[0] assert series.shape == (100, 512, 512) assert series.dtype == numpy.uint16 assert series.axes == 'IYX' # assert data data = tif.asarray() assert data.shape == (100, 512, 512) assert data.dtype == numpy.uint16 assert round(abs(data[50, 256, 256] - 703), 7) == 0 assert_aszarr_method(tif, data) assert_aszarr_method(tif, data, chunkmode='page') assert__str__(tif, 0) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_nih_morph(): """Test read NIH.""" # 388x252 uint8 fname = private_file('nihimage/morph.tiff') with TiffFile(fname) as tif: assert tif.is_nih assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.imagewidth == 388 assert page.imagelength == 252 assert page.bitspersample == 8 # assert series properties series = tif.series[0] assert series.shape == (252, 388) assert series.dtype == numpy.uint8 assert series.axes == 'YX' # assert NIH tags tags = tif.nih_metadata assert tags['FileID'] == 'IPICIMAG' assert tags['PixelsPerLine'] == 388 assert tags['nLines'] == 252 assert tags['ForegroundIndex'] == 255 # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (252, 388) assert data.dtype == numpy.uint8 assert data[195, 144] == 41 assert_aszarr_method(tif, data) assert_aszarr_method(tif, data, chunkmode='page') assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_nih_silver_lake(): """Test read NIH palette.""" # 259x187 16 bit palette fname = private_file('nihimage/silver lake.tiff') with TiffFile(fname) as tif: assert tif.is_nih assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.photometric == PALETTE assert page.imagewidth == 259 assert page.imagelength == 187 assert page.bitspersample == 8 # assert series properties series = tif.series[0] assert series.shape == (187, 259) assert series.dtype == numpy.uint8 assert series.axes == 'YX' # assert NIH tags tags = tif.nih_metadata assert tags['FileID'] == 'IPICIMAG' assert tags['PixelsPerLine'] == 259 assert tags['nLines'] == 187 assert tags['ForegroundIndex'] == 109 # assert data data = page.asrgb() assert isinstance(data, numpy.ndarray) assert data.shape == (187, 259, 3) assert data.dtype == numpy.uint16 assert tuple(data[86, 102, :]) == (26214, 39321, 39321) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_nih_scala_media(): """Test read multi-page NIH.""" # 36x54x84 palette fname = private_file('nihimage/scala-media.tif') with TiffFile(fname) as tif: assert tif.is_nih assert tif.byteorder == '>' assert len(tif.pages) == 36 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.photometric == PALETTE assert page.imagewidth == 84 assert page.imagelength == 54 assert page.bitspersample == 8 # assert series properties series = tif.series[0] assert series.shape == (36, 54, 84) assert series.dtype == numpy.uint8 assert series.axes == 'IYX' assert series.kind == 'NIHImage' # assert NIH tags tags = tif.nih_metadata assert tags['Version'] == 160 assert tags['nLines'] == 54 # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (36, 54, 84) assert data.dtype == numpy.uint8 assert data[35, 35, 65] == 171 assert_aszarr_method(tif, data) assert_aszarr_method(tif, data, chunkmode='page') assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS, reason=REASON) def test_read_imagej_rrggbb(): """Test read planar RGB ImageJ file created by Bio-Formats.""" fname = public_file('tifffile/rrggbb.ij.tif') with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == RGB assert page.compression == LZW assert page.imagewidth == 31 assert page.imagelength == 32 assert page.bitspersample == 16 # assert series properties series = tif.series[0] assert series.dtype == numpy.uint16 assert series.shape == (3, 32, 31) assert series.axes == 'CYX' assert series.get_shape(False) == (1, 1, 3, 32, 31, 1) assert series.get_axes(False) == 'TZCYXS' assert len(series._pages) == 1 assert len(series.pages) == 1 # assert ImageJ tags ijtags = tif.imagej_metadata assert ijtags['ImageJ'] == '' assert ijtags['images'] == 3 assert ijtags['channels'] == 3 assert ijtags['slices'] == 1 assert ijtags['frames'] == 1 assert ijtags['hyperstack'] # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (3, 32, 31) assert data.dtype == numpy.uint16 assert tuple(data[:, 15, 15]) == (812, 1755, 648) assert_decode_method(page) assert_aszarr_method(series, data) assert_aszarr_method(series, data, chunkmode='page') # don't squeeze data = tif.asarray(squeeze=False) assert data.shape == (1, 1, 3, 32, 31, 1) assert_aszarr_method(series, data, squeeze=False) assert__str__(tif, 0) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_imagej_focal1(): """Test read ImageJ 205x434x425 uint8.""" fname = private_file('imagej/focal1.tif') with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '>' assert len(tif.pages) == 205 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric != RGB assert page.imagewidth == 425 assert page.imagelength == 434 assert page.bitspersample == 8 assert page.is_contiguous # assert series properties series = tif.series[0] assert series.offset == 768 assert series.shape == (205, 434, 425) assert series.dtype == numpy.uint8 assert series.axes == 'IYX' assert series.get_shape(False) == (205, 1, 1, 1, 434, 425, 1) assert series.get_axes(False) == 'ITZCYXS' assert len(series._pages) == 1 assert len(series.pages) == 205 # assert ImageJ tags ijtags = tif.imagej_metadata assert ijtags['ImageJ'] == '1.34k' assert ijtags['images'] == 205 # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (205, 434, 425) assert data.dtype == numpy.uint8 assert data[102, 216, 212] == 120 assert_aszarr_method(series, data) assert_aszarr_method(series, data, chunkmode='page') assert__str__(tif, 0) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_imagej_hela_cells(): """Test read ImageJ 512x672 RGB uint16.""" fname = private_file('imagej/hela-cells.tif') with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == RGB assert page.imagewidth == 672 assert page.imagelength == 512 assert page.bitspersample == 16 assert page.is_contiguous # assert series properties series = tif.series[0] assert series.shape == (512, 672, 3) assert series.dtype == numpy.uint16 assert series.axes == 'YXS' assert series.get_shape(False) == (1, 1, 1, 512, 672, 3) assert series.get_axes(False) == 'TZCYXS' # assert ImageJ tags ijtags = tif.imagej_metadata assert ijtags['ImageJ'] == '1.46i' assert ijtags['channels'] == 3 # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (512, 672, 3) assert data.dtype == numpy.uint16 assert tuple(data[255, 336]) == (440, 378, 298) assert_aszarr_method(series, data) assert_aszarr_method(series, data, chunkmode='page') # don't squeeze data = tif.asarray(squeeze=False) assert data.shape == (1, 1, 1, 512, 672, 3) assert_aszarr_method(series, data, squeeze=False) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_imagej_flybrain(): """Test read ImageJ 57x256x256 RGB.""" fname = private_file('imagej/flybrain.tif') with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '>' assert len(tif.pages) == 57 assert len(tif.series) == 1 # hyperstack # assert page properties page = tif.pages[0] assert page.photometric == RGB assert page.imagewidth == 256 assert page.imagelength == 256 assert page.bitspersample == 8 # assert series properties series = tif.series[0] assert series.shape == (57, 256, 256, 3) assert series.dtype == numpy.uint8 assert series.axes == 'ZYXS' assert series.get_shape(False) == (1, 57, 1, 256, 256, 3) assert series.get_axes(False) == 'TZCYXS' # assert ImageJ tags ijtags = tif.imagej_metadata assert ijtags['ImageJ'] == '1.43d' assert ijtags['slices'] == 57 # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (57, 256, 256, 3) assert data.dtype == numpy.uint8 assert tuple(data[18, 108, 97]) == (165, 157, 0) assert_aszarr_method(series, data) assert_aszarr_method(series, data, chunkmode='page') # don't squeeze data = tif.asarray(squeeze=False) assert data.shape == (1, 57, 1, 256, 256, 3) assert_aszarr_method(series, data, squeeze=False) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_imagej_confocal_series(): """Test read ImageJ 25x2x400x400 ZCYX.""" fname = private_file('imagej/confocal-series.tif') with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '>' assert len(tif.pages) == 50 assert len(tif.series) == 1 # hyperstack # assert page properties page = tif.pages[0] assert page.imagewidth == 400 assert page.imagelength == 400 assert page.bitspersample == 8 assert page.is_contiguous # assert series properties series = tif.series[0] assert series.shape == (25, 2, 400, 400) assert series.dtype == numpy.uint8 assert series.axes == 'ZCYX' assert len(series._pages) == 1 assert len(series.pages) == 50 # assert ImageJ tags ijtags = tif.imagej_metadata assert ijtags['ImageJ'] == '1.43d' assert ijtags['images'] == len(tif.pages) assert ijtags['channels'] == 2 assert ijtags['slices'] == 25 assert ijtags['hyperstack'] # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (25, 2, 400, 400) assert data.dtype == numpy.uint8 assert tuple(data[12, :, 100, 300]) == (6, 66) # assert only two pages are loaded assert isinstance(tif.pages.pages[0], TiffPage) if tif.pages.cache: assert isinstance(tif.pages.pages[1], TiffFrame) else: assert tif.pages.pages[1] == 8000911 assert tif.pages.pages[2] == 8001073 assert tif.pages.pages[-1] == 8008687 assert_aszarr_method(series, data) assert_aszarr_method(series, data, chunkmode='page') # don't squeeze data = tif.asarray(squeeze=False) assert data.shape == (1, 25, 2, 400, 400, 1) assert_aszarr_method(series, data, squeeze=False) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_imagej_graphite(): """Test read ImageJ 1024x593 float32.""" fname = private_file('imagej/graphite1-1024.tif') with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.imagewidth == 1024 assert page.imagelength == 593 assert page.bitspersample == 32 assert page.is_contiguous # assert series properties series = tif.series[0] assert len(series._pages) == 1 assert len(series.pages) == 1 assert series.shape == (593, 1024) assert series.dtype == numpy.float32 assert series.axes == 'YX' # assert ImageJ tags ijtags = tif.imagej_metadata assert ijtags['ImageJ'] == '1.47t' assert round(abs(ijtags['max'] - 1686.10949707), 7) == 0 assert round(abs(ijtags['min'] - 852.08605957), 7) == 0 # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (593, 1024) assert data.dtype == numpy.float32 assert round(abs(data[443, 656] - 2203.040771484375), 7) == 0 assert_aszarr_method(series, data) # don't squeeze data = tif.asarray(squeeze=False) assert data.shape == (1, 1, 1, 593, 1024, 1) assert_aszarr_method(series, data, squeeze=False) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_imagej_bat_cochlea_volume(): """Test read ImageJ 114 images, no frames, slices, channels specified.""" fname = private_file('imagej/bat-cochlea-volume.tif') with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '>' assert len(tif.pages) == 114 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric != RGB assert page.imagewidth == 121 assert page.imagelength == 154 assert page.bitspersample == 8 assert page.is_contiguous # assert series properties series = tif.series[0] assert len(series._pages) == 1 assert len(series.pages) == 114 assert series.shape == (114, 154, 121) assert series.dtype == numpy.uint8 assert series.axes == 'IYX' # assert ImageJ tags ijtags = tif.imagej_metadata assert ijtags['ImageJ'] == '1.20n' assert ijtags['images'] == 114 # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (114, 154, 121) assert data.dtype == numpy.uint8 assert data[113, 97, 61] == 255 assert_aszarr_method(series, data) # don't squeeze data = tif.asarray(squeeze=False) assert data.shape == (114, 1, 1, 1, 154, 121, 1) assert_aszarr_method(series, data, squeeze=False) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_imagej_first_instar_brain(): """Test read ImageJ 56x256x256x3 ZYXS.""" fname = private_file('imagej/first-instar-brain.tif') with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '>' assert len(tif.pages) == 56 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == RGB assert page.imagewidth == 256 assert page.imagelength == 256 assert page.bitspersample == 8 assert page.is_contiguous # assert series properties series = tif.series[0] assert len(series._pages) == 1 assert len(series.pages) == 56 assert series.shape == (56, 256, 256, 3) assert series.dtype == numpy.uint8 assert series.axes == 'ZYXS' # assert ImageJ tags ijtags = tif.imagej_metadata assert ijtags['ImageJ'] == '1.44j' assert ijtags['images'] == 56 assert ijtags['slices'] == 56 # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (56, 256, 256, 3) assert data.dtype == numpy.uint8 assert tuple(data[55, 151, 112]) == (209, 8, 58) assert_aszarr_method(series, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_imagej_fluorescentcells(): """Test read ImageJ three channels.""" fname = private_file('imagej/FluorescentCells.tif') with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '>' assert len(tif.pages) == 3 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric == PALETTE assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 8 assert page.is_contiguous # assert series properties series = tif.series[0] assert series.shape == (3, 512, 512) assert series.dtype == numpy.uint8 assert series.axes == 'CYX' # assert ImageJ tags ijtags = tif.imagej_metadata assert ijtags['ImageJ'] == '1.40c' assert ijtags['images'] == 3 assert ijtags['channels'] == 3 # assert data data = tif.asarray() assert isinstance(data, numpy.ndarray) assert data.shape == (3, 512, 512) assert data.dtype == numpy.uint8 assert tuple(data[:, 256, 256]) == (57, 120, 13) assert_aszarr_method(series, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_LARGE, reason=REASON) def test_read_imagej_100000_pages(): """Test read ImageJ with 100000 pages.""" # 100000x64x64 # file is big endian, memory mapped fname = public_file('tifffile/100000_pages.tif') with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '>' assert len(tif.pages) == 100000 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.imagewidth == 64 assert page.imagelength == 64 assert page.bitspersample == 16 assert page.is_contiguous # assert series properties series = tif.series[0] assert len(series._pages) == 1 assert len(series.pages) == 100000 assert series.shape == (100000, 64, 64) assert series.dtype == numpy.uint16 assert series.axes == 'TYX' # assert ImageJ tags ijtags = tif.imagej_metadata assert ijtags['ImageJ'] == '1.48g' assert round(abs(ijtags['max'] - 119.0), 7) == 0 assert round(abs(ijtags['min'] - 86.0), 7) == 0 # assert data data = tif.asarray(out='memmap') assert isinstance(data, numpy.core.memmap) assert data.shape == (100000, 64, 64) assert data.dtype == numpy.dtype('>u2') assert round(abs(data[7310, 25, 25] - 100), 7) == 0 # too slow: assert_aszarr_method(series, data) assert__str__(tif, 0) del data @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_imagej_invalid_metadata(caplog): """Test read bad ImageJ metadata.""" # file contains 1 page but metadata claims 3500 images # memory map big endian data fname = private_file('sima/0.tif') with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '>' assert len(tif.pages) == 1 assert len(tif.series) == 1 assert 'ImageJ series metadata invalid or corrupted' in caplog.text # assert page properties page = tif.pages[0] assert page.photometric != RGB assert page.imagewidth == 173 assert page.imagelength == 173 assert page.bitspersample == 16 assert page.is_contiguous # assert series properties series = tif.series[0] assert series.offset == 8 # 8 assert series.shape == (173, 173) assert series.dtype == numpy.uint16 assert series.axes == 'YX' # assert ImageJ tags ijtags = tif.imagej_metadata assert ijtags['ImageJ'] == '1.49i' assert ijtags['images'] == 3500 # assert data data = tif.asarray(out='memmap') assert isinstance(data, numpy.core.memmap) assert data.shape == (173, 173) assert data.dtype == numpy.dtype('>u2') assert data[94, 34] == 1257 assert_aszarr_method(series, data) assert_aszarr_method(series, data, chunkmode='page') assert__str__(tif) del data @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_imagej_invalid_hyperstack(): """Test read bad ImageJ hyperstack.""" # file claims to be a hyperstack but is not stored as such # produced by OME writer # reported by Taras Golota on 10/27/2016 fname = private_file('imagej/X0.ome.CTZ.perm.tif') with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '<' assert len(tif.pages) == 48 # not a hyperstack assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.photometric != RGB assert page.imagewidth == 1392 assert page.imagelength == 1040 assert page.bitspersample == 16 assert page.is_contiguous # assert series properties series = tif.series[0] assert series.offset is None # not contiguous assert series.shape == (2, 4, 6, 1040, 1392) assert series.dtype == numpy.uint16 assert series.axes == 'TZCYX' # assert ImageJ tags ijtags = tif.imagej_metadata assert ijtags['hyperstack'] assert ijtags['images'] == 48 assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_fluoview_lsp1_v_laser(): """Test read FluoView CTYX.""" # raises 'UnicodeWarning: Unicode equal comparison failed' on Python 2 fname = private_file('fluoview/lsp1-V-laser0.3-1.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 100 assert len(tif.series) == 1 assert tif.is_fluoview # assert page properties page = tif.pages[0] assert page.is_fluoview assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 256 assert page.imagelength == 256 assert page.bitspersample == 16 assert page.samplesperpixel == 1 # assert metadata m = fluoview_description_metadata(page.description) assert m['Version Info']['FLUOVIEW Version'] == ( 'FV10-ASW ,ValidBitColunt=12' ) assert tuple(m['LUT Ch1'][255]) == (255, 255, 255) mm = tif.fluoview_metadata assert mm['ImageName'] == 'lsp1-V-laser0.3-1.oib' # assert series properties series = tif.series[0] assert series.shape == (2, 50, 256, 256) assert series.dtype == numpy.uint16 assert series.axes == 'CTYX' # assert data data = tif.asarray() assert data.shape == (2, 50, 256, 256) assert data.dtype == numpy.uint16 assert round(abs(data[1, 36, 128, 128] - 824), 7) == 0 assert_aszarr_method(series, data) assert_aszarr_method(series, data, chunkmode='page') assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_LARGE, reason=REASON) def test_read_fluoview_120816_bf_f0000(): """Test read FluoView TZYX.""" fname = private_file('fluoview/120816_bf_f0000.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 864 assert len(tif.series) == 1 assert tif.is_fluoview # assert page properties page = tif.pages[0] assert page.is_fluoview assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 1024 assert page.imagelength == 1024 assert page.bitspersample == 16 assert page.samplesperpixel == 1 # assert metadata m = fluoview_description_metadata(page.description) assert m['Environment']['User'] == 'admin' assert m['Region Info (Fields) Field']['Width'] == 1331.2 m = tif.fluoview_metadata assert m['ImageName'] == '120816_bf' # assert series properties series = tif.series[0] assert series.shape == (144, 6, 1024, 1024) assert series.dtype == numpy.uint16 assert series.axes == 'TZYX' # assert data data = tif.asarray() assert data.shape == (144, 6, 1024, 1024) assert data.dtype == numpy.uint16 assert round(abs(data[1, 2, 128, 128] - 8317), 7) == 0 # too slow: assert_aszarr_method(series, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_read_metaseries(): """Test read MetaSeries 1040x1392 uint16, LZW.""" # Strips do not contain an EOI code as required by the TIFF spec. fname = private_file('metaseries/metaseries.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.imagewidth == 1392 assert page.imagelength == 1040 assert page.bitspersample == 16 # assert metadata assert page.description.startswith('') # assert series properties series = tif.series[0] assert series.shape == (1040, 1392) assert series.dtype == numpy.uint16 assert series.axes == 'YX' # assert data data = tif.asarray() assert data.shape == (1040, 1392) assert data.dtype == numpy.uint16 assert data[256, 256] == 1917 assert_aszarr_method(series, data) assert_aszarr_method(series, data, chunkmode='page') assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_metaseries_g4d7r(): """Test read Metamorph/Metaseries.""" # 12113x13453, uint16 fname = private_file('metaseries/g4d7r.tif') with TiffFile(fname) as tif: assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 assert tif.is_metaseries # assert page properties page = tif.pages[0] assert page.is_metaseries assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 13453 assert page.imagelength == 12113 assert page.bitspersample == 16 assert page.samplesperpixel == 1 # assert metadata m = metaseries_description_metadata(page.description) assert m['ApplicationVersion'] == '7.8.6.0' assert m['PlaneInfo']['pixel-size-x'] == 13453 assert m['SetInfo']['number-of-planes'] == 1 # assert series properties series = tif.series[0] assert series.shape == (12113, 13453) assert series.dtype == numpy.uint16 assert series.axes == 'YX' # assert data data = tif.asarray(out='memmap') assert isinstance(data, numpy.core.memmap) assert data.shape == (12113, 13453) assert data.dtype == numpy.dtype('' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert series properties series = tif.series[0] assert series.shape == (1830, 1830) assert series.dtype == numpy.uint16 assert series.axes == 'YX' # assert page properties page = tif.pages[0] assert page.shape == (1830, 1830) assert page.imagewidth == 1830 assert page.imagelength == 1830 assert page.bitspersample == 16 assert page.is_contiguous assert page.tags['65000'].value.startswith( '' ) # assert GeoTIFF tags tags = tif.geotiff_metadata assert tags['GTCitationGeoKey'] == 'WGS 84 / UTM zone 29N' assert tags['ProjectedCSTypeGeoKey'] == 32629 assert_array_almost_equal( tags['ModelTransformation'], [ [60.0, 0.0, 0.0, 6.0e5], [0.0, -60.0, 0.0, 5900040.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0], ], ) assert_aszarr_method(page) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_geotiff_spaf27_markedcorrect(): """Test read GeoTIFF.""" fname = private_file('geotiff/spaf27_markedcorrect.tif') with TiffFile(fname) as tif: assert tif.is_geotiff assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert series properties series = tif.series[0] assert series.shape == (20, 20) assert series.dtype == numpy.uint8 assert series.axes == 'YX' # assert page properties page = tif.pages[0] assert page.shape == (20, 20) assert page.imagewidth == 20 assert page.imagelength == 20 assert page.bitspersample == 8 assert page.is_contiguous # assert GeoTIFF tags tags = tif.geotiff_metadata assert tags['GTCitationGeoKey'] == 'NAD27 / California zone VI' assert tags['GeogAngularUnitsGeoKey'] == 9102 assert tags['ProjFalseOriginLatGeoKey'] == 32.1666666666667 assert_array_almost_equal( tags['ModelPixelScale'], [195.509321, 198.32184, 0] ) assert_aszarr_method(page) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_geotiff_cint16(): """Test read complex integer images.""" fname = private_file('geotiff/cint16.tif') with TiffFile(fname) as tif: assert tif.is_geotiff assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.sampleformat == 5 assert page.bitspersample == 32 assert page.dtype == numpy.complex64 assert page.shape == (100, 100) assert page.imagewidth == 100 assert page.imagelength == 100 assert page.compression == ADOBE_DEFLATE assert not page.is_contiguous data = page.asarray() data[9, 11] == 0 + 0j assert_aszarr_method(page, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) @pytest.mark.parametrize('bits', [16, 32]) def test_read_complexint(bits): """Test read complex integer images.""" fname = private_file(f'gdal/cint{bits}.tif') with TiffFile(fname) as tif: assert tif.is_geotiff assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.sampleformat == 5 assert page.bitspersample == bits * 2 assert page.dtype == f'complex{bits * 4}' assert page.shape == (20, 20) assert page.imagewidth == 20 assert page.imagelength == 20 assert not page.is_contiguous data = page.asarray() data[9, 11] == 107 + 0j # assert GeoTIFF tags tags = tif.geotiff_metadata assert tags['GTCitationGeoKey'] == 'NAD27 / UTM zone 11N' assert_aszarr_method(page, data) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_read_qpi(): """Test read PerkinElmer-QPI, non Pyramid.""" fname = private_file( 'PerkinElmer-QPI/LuCa-7color_[13860,52919]_1x1component_data.tiff' ) with TiffFile(fname) as tif: assert len(tif.series) == 2 assert len(tif.pages) == 9 assert tif.is_qpi page = tif.pages[0] assert page.compression == LZW assert page.photometric == MINISBLACK assert page.planarconfig == CONTIG assert page.imagewidth == 1868 assert page.imagelength == 1400 assert page.bitspersample == 32 assert page.samplesperpixel == 1 assert page.tags['Software'].value == 'PerkinElmer-QPI' series = tif.series[0] assert series.shape == (8, 1400, 1868) assert series.dtype == numpy.float32 assert not series.is_pyramidal series = tif.series[1] assert series.shape == (350, 467, 3) assert series.dtype == numpy.uint8 assert not series.is_pyramidal # assert data image = tif.asarray() assert image.shape == (8, 1400, 1868) assert image.dtype == numpy.float32 assert image[7, 1200, 1500] == 2.2132580280303955 image = tif.asarray(series=1) assert image.shape == (350, 467, 3) assert image.dtype == numpy.uint8 assert image[300, 400, 1] == 48 assert_aszarr_method(tif, image, series=1) assert_aszarr_method(tif, image, series=1, chunkmode='page') assert__str__(tif) @pytest.mark.skipif( SKIP_PRIVATE or SKIP_CODECS or not imagecodecs.JPEG, reason=REASON ) def test_read_philips(): """Test read Philips DP pyramid.""" # https://camelyon17.grand-challenge.org/Data/ fname = private_file('PhilipsDP/test_001.tif') with TiffFile(fname) as tif: assert len(tif.series) == 1 assert len(tif.pages) == 9 assert tif.is_philips assert tif.philips_metadata.endswith('') page = tif.pages[0] assert page.compression == JPEG assert page.photometric == YCBCR assert page.planarconfig == CONTIG assert page.tags['ImageWidth'].value == 86016 assert page.tags['ImageLength'].value == 89600 assert page.imagewidth == 85654 assert page.imagelength == 89225 assert page.bitspersample == 8 assert page.samplesperpixel == 3 assert page.tags['Software'].value == 'Philips DP v1.0' series = tif.series[0] assert series.shape == (89225, 85654, 3) assert len(series.levels) == 9 assert series.is_pyramidal # assert data image = tif.asarray(series=0, level=5) assert image.shape == (2789, 2677, 3) assert image[300, 400, 1] == 206 assert_aszarr_method(series, image, level=5) assert_aszarr_method(series, image, level=5, chunkmode='page') assert__str__(tif) @pytest.mark.skipif( SKIP_PRIVATE or SKIP_CODECS or not imagecodecs.JPEG, reason=REASON ) def test_read_zif(): """Test read Zoomable Image Format ZIF.""" fname = private_file('zif/ZoomifyImageExample.zif') with TiffFile(fname) as tif: # assert tif.is_zif assert len(tif.pages) == 5 assert len(tif.series) == 1 for page in tif.pages: assert page.description == ( 'Created by Objective ' 'Pathology Services' ) # first page page = tif.pages[0] assert page.photometric == YCBCR assert page.compression == JPEG assert page.shape == (3120, 2080, 3) assert tuple(page.asarray()[3110, 2070, :]) == (27, 45, 59) # page 4 page = tif.pages[-1] assert page.photometric == YCBCR assert page.compression == JPEG assert page.shape == (195, 130, 3) assert tuple(page.asarray()[191, 127, :]) == (30, 49, 66) # series series = tif.series[0] assert series.is_pyramidal assert len(series.levels) == 5 assert series.shape == (3120, 2080, 3) assert tuple(series.asarray()[3110, 2070, :]) == (27, 45, 59) assert series.levels[-1].shape == (195, 130, 3) assert tuple(series.asarray(level=-1)[191, 127, :]) == (30, 49, 66) assert_aszarr_method(series, level=-1) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_sis(): """Test read Olympus SIS.""" fname = private_file('sis/4A5IE8EM_F00000409.tif') with TiffFile(fname) as tif: assert tif.is_sis assert tif.byteorder == '<' assert len(tif.pages) == 122 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.imagewidth == 353 assert page.imagelength == 310 assert page.bitspersample == 16 assert page.samplesperpixel == 1 assert page.tags['Software'].value == 'analySIS 5.0' # assert data data = tif.asarray() assert data.shape == (61, 2, 310, 353) assert data[30, 1, 256, 256] == 210 # assert metadata sis = tif.sis_metadata assert sis['axes'] == 'TC' assert sis['shape'] == (61, 2) assert sis['Band'][1]['BandName'] == 'Fura380' assert sis['Band'][0]['LUT'].shape == (256, 3) assert sis['Time']['TimePos'].shape == (61,) assert sis['name'] == 'Hela-Zellen' assert sis['magnification'] == 60.0 assert_aszarr_method(tif, data) assert_aszarr_method(tif, data, chunkmode='page') assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_sis_noini(): """Test read Olympus SIS without INI tag.""" fname = private_file('sis/110.tif') with TiffFile(fname) as tif: assert tif.is_sis assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.imagewidth == 2560 assert page.imagelength == 1920 assert page.bitspersample == 8 assert page.samplesperpixel == 3 # assert metadata sis = tif.sis_metadata assert 'axes' not in sis assert sis['magnification'] == 20.0 assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_sem_metadata(): """Test read Zeiss SEM metadata.""" # file from hyperspy tests fname = private_file('hyperspy/test_tiff_Zeiss_SEM_1k.tif') with TiffFile(fname) as tif: assert tif.is_sem assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.photometric == PALETTE assert page.imagewidth == 1024 assert page.imagelength == 768 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert data and metadata data = page.asrgb() assert tuple(data[563, 320]) == (38550, 38550, 38550) sem = tif.sem_metadata assert sem[''][3] == 2.614514e-06 assert sem['ap_date'] == ('Date', '23 Dec 2015') assert sem['ap_time'] == ('Time', '9:40:32') assert sem['dp_image_store'] == ('Store resolution', '1024 * 768') assert sem['ap_fib_fg_emission_actual'] == ( 'Flood Gun Emission Actual', 0.0, 'µA', ) assert_aszarr_method(tif) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_sem_bad_metadata(): """Test read Zeiss SEM metadata with wrong length.""" # reported by Klaus Schwarzburg on 8/27/2018 fname = private_file('issues/sem_bad_metadata.tif') with TiffFile(fname) as tif: assert tif.is_sem assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.photometric == PALETTE assert page.imagewidth == 1024 assert page.imagelength == 768 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert data and metadata data = page.asrgb() assert tuple(data[350, 150]) == (17476, 17476, 17476) sem = tif.sem_metadata assert sem['sv_version'][1] == 'V05.07.00.00 : 08-Jul-14' assert_aszarr_method(tif) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_fei_metadata(): """Test read Helios FEI metadata.""" # file from hyperspy tests fname = private_file('hyperspy/test_tiff_FEI_SEM.tif') with TiffFile(fname) as tif: assert tif.is_fei assert tif.byteorder == '<' assert len(tif.pages) == 1 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.photometric != PALETTE assert page.imagewidth == 1536 assert page.imagelength == 1103 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert data and metadata data = page.asarray() assert data[563, 320] == 220 fei = tif.fei_metadata assert fei['User']['User'] == 'supervisor' assert fei['System']['DisplayHeight'] == 0.324 assert_aszarr_method(tif) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_ndtiffstorage(): """Test read NDTiffStorage/MagellanStack.""" # https://github.com/cgohlke/tifffile/issues/23 fname = private_file( 'NDTiffStorage/MagellanStack/Full resolution/democam_MagellanStack.tif' ) with TiffFile(fname) as tif: assert tif.is_micromanager assert len(tif.pages) == 12 # with pytest.warns(UserWarning): assert 'Comments' not in tif.micromanager_metadata meta = tif.pages[-1].tags['MicroManagerMetadata'].value assert meta['Axes']['repetition'] == 2 assert meta['Axes']['exposure'] == 3 @pytest.mark.skipif(SKIP_PUBLIC or SKIP_ZARR, reason=REASON) def test_read_zarr(): """Test read TIFF with zarr.""" fname = public_file('imagecodecs/gray.u1.tif') with TiffFile(fname) as tif: image = tif.asarray() store = tif.aszarr() try: data = zarr.open(store, mode='r') assert_array_equal(image, data) del data finally: store.close() @pytest.mark.skipif(SKIP_PUBLIC or SKIP_ZARR, reason=REASON) def test_read_zarr_multifile(): """Test read multifile OME-TIFF with zarr.""" fname = public_file('OME/multifile/multifile-Z1.ome.tiff') with TiffFile(fname) as tif: image = tif.asarray() store = tif.aszarr() try: data = zarr.open(store, mode='r') assert_array_equal(image, data) del data finally: store.close() @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_read_eer(caplog): """Test read EER metadata.""" # https://github.com/fei-company/EerReaderLib/issues/1 fname = private_file('EER/Example_1.eer') with TiffFile(fname) as tif: assert not caplog.text # no warning assert tif.is_bigtiff assert tif.is_eer assert tif.byteorder == '<' assert len(tif.pages) == 238 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] assert not page.is_contiguous assert page.photometric == MINISBLACK assert page.compression == 65001 assert page.imagewidth == 4096 assert page.imagelength == 4096 assert page.bitspersample == 1 assert page.samplesperpixel == 1 # assert data and metadata with pytest.raises(ValueError): page.asarray() meta = tif.eer_metadata assert meta.startswith('') assert__str__(tif) ############################################################################### # Test TiffWriter WRITE_DATA = numpy.arange(3 * 219 * 301).astype(numpy.uint16) WRITE_DATA.shape = (3, 219, 301) @pytest.mark.skipif(SKIP_EXTENDED, reason=REASON) @pytest.mark.parametrize( 'shape', [ (219, 301), (219, 301, 2), (219, 301, 3), (219, 301, 4), (2, 219, 301), (3, 219, 301), (4, 219, 301), (5, 219, 301), (4, 3, 219, 301), (4, 219, 301, 3), (3, 4, 219, 301), (3, 4, 219, 301, 1), ], ) @pytest.mark.parametrize('dtype', list('?bhiqefdBHIQFD')) @pytest.mark.parametrize('byteorder', ['>', '<']) @pytest.mark.parametrize('bigtiff', ['plaintiff', 'bigtiff']) @pytest.mark.parametrize('tile', [None, (64, 64)]) @pytest.mark.parametrize('data', ['random', None]) def test_write(data, byteorder, bigtiff, dtype, shape, tile): """Test TiffWriter with various options.""" # TODO: test compression ? fname = '{}_{}_{}_{}{}{}'.format( bigtiff, {'<': 'le', '>': 'be'}[byteorder], numpy.dtype(dtype).name, str(shape).replace(' ', ''), '_tiled' if tile is not None else '', '_empty' if data is None else '', ) bigtiff = bigtiff == 'bigtiff' if (3 in shape or 4 in shape) and shape[-1] != 1 and dtype != '?': photometric = 'rgb' else: photometric = None with TempFileName(fname) as fname: if data is None: with TiffWriter( fname, byteorder=byteorder, bigtiff=bigtiff ) as tif: if tile is not None or dtype == '?': # cannot write non-contiguous empty file with pytest.raises(ValueError): tif.write( shape=shape, dtype=dtype, tile=tile, photometric=photometric, ) return else: tif.write( shape=shape, dtype=dtype, tile=tile, photometric=photometric, ) with TiffFile(fname) as tif: assert__str__(tif) image = tif.asarray() else: data = random_data(dtype, shape) imwrite( fname, data, byteorder=byteorder, bigtiff=bigtiff, tile=tile, photometric=photometric, ) image = imread(fname) assert image.flags['C_CONTIGUOUS'] assert_array_equal(data.squeeze(), image.squeeze()) if not SKIP_ZARR: with imread(fname, aszarr=True) as store: data = zarr.open(store, mode='r') assert_array_equal(data, image) assert shape == image.shape assert dtype == image.dtype if not bigtiff: assert_valid_tiff(fname) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS, reason=REASON) @pytest.mark.parametrize('tile', [False, True]) @pytest.mark.parametrize( 'codec', [ 'deflate', 'lzma', 'packbits', 'zstd', # TODO: 'lzw' 'webp', 'png', 'jpeg', 'jpegxl', 'jpegxr', 'jpeg2000', ], ) @pytest.mark.parametrize('mode', ['gray', 'rgb', 'planar']) def test_write_codecs(mode, tile, codec): """Test write various compression.""" if mode in ('gray', 'planar') and codec == 'webp': pytest.xfail("WebP doesn't support grayscale or planar mode") level = {'webp': -1, 'jpeg': 99}.get(codec, None) tile = (16, 16) if tile else None data = numpy.load(public_file('tifffile/rgb.u1.npy')) if mode == 'rgb': photometric = RGB planarconfig = CONTIG elif mode == 'planar': photometric = RGB planarconfig = SEPARATE data = numpy.moveaxis(data, -1, 0).copy() else: planarconfig = None photometric = MINISBLACK data = data[..., :1].copy() data = numpy.repeat(data[numpy.newaxis], 3, axis=0) data[1] = 255 - data[1] shape = data.shape with TempFileName( 'codecs_{}_{}{}'.format(mode, codec, '_tile' if tile else '') ) as fname: imwrite( fname, data, compression=(codec, level), tile=tile, photometric=photometric, planarconfig=planarconfig, subsampling=(1, 1), ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == shape[0] page = tif.pages[0] assert not page.is_contiguous assert page.compression == enumarg(TIFF.COMPRESSION, codec) assert page.photometric in (photometric, YCBCR) if planarconfig is not None: assert page.planarconfig == planarconfig assert page.imagewidth == 31 assert page.imagelength == 32 assert page.samplesperpixel == 1 if mode == 'gray' else 3 # samplesperpixel = page.samplesperpixel image = tif.asarray() if codec in ('jpeg',): assert_allclose(data, image, atol=10) else: assert_array_equal(data, image) assert_decode_method(page) assert__str__(tif) if ( imagecodecs.TIFF and codec not in ('png', 'jpegxr', 'jpeg2000', 'jpegxl') and mode != 'planar' ): im = imagecodecs.imread(fname, index=None) # if codec == 'jpeg': # # tiff_decode returns JPEG compressed TIFF as RGBA # im = numpy.squeeze(im[..., :samplesperpixel]) assert_array_equal(im, numpy.squeeze(image)) @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) @pytest.mark.parametrize('mode', ['gray', 'rgb', 'planar']) @pytest.mark.parametrize('tile', [False, True]) @pytest.mark.parametrize( 'dtype', ['u1', 'u2', 'u4', 'i1', 'i2', 'i4', 'f2', 'f4', 'f8'] ) @pytest.mark.parametrize('byteorder', ['>', '<']) def test_write_predictor(byteorder, dtype, tile, mode): """Test predictors.""" tile = (32, 32) if tile else None f4 = imread(public_file('tifffile/gray.f4.tif')) if mode == 'rgb': photometric = RGB planarconfig = CONTIG data = numpy.empty((83, 111, 3), 'f4') data[..., 0] = f4 data[..., 1] = f4[::-1] data[..., 2] = f4[::-1, ::-1] elif mode == 'planar': photometric = RGB planarconfig = SEPARATE data = numpy.empty((3, 83, 111), 'f4') data[0] = f4 data[1] = f4[::-1] data[2] = f4[::-1, ::-1] else: planarconfig = None photometric = MINISBLACK data = f4 if dtype[0] in 'if': data -= 0.5 if dtype in 'u1i1': data *= 255 elif dtype in 'i2u2': data *= 2**12 elif dtype in 'i4u4': data *= 2**21 else: data *= 3.145 data = data.astype(byteorder + dtype) with TempFileName( 'predictor_{}_{}_{}{}'.format( dtype, 'be' if byteorder == '>' else 'le', mode, '_tile' if tile else '', ) ) as fname: imwrite( fname, data, predictor=True, compression=ADOBE_DEFLATE, tile=tile, photometric=photometric, planarconfig=planarconfig, byteorder=byteorder, ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert tif.tiff.byteorder == byteorder assert len(tif.pages) == 1 page = tif.pages[0] assert not page.is_contiguous assert page.compression == ADOBE_DEFLATE assert page.predictor == (3 if dtype[0] == 'f' else 2) assert page.photometric == photometric if planarconfig is not None: assert page.planarconfig == planarconfig assert page.imagewidth == 111 assert page.imagelength == 83 assert page.samplesperpixel == 1 if mode == 'gray' else 3 # samplesperpixel = page.samplesperpixel image = tif.asarray() assert_array_equal(data, image) assert_decode_method(page) assert__str__(tif) if imagecodecs.TIFF: im = imagecodecs.imread(fname, index=None) assert_array_equal(im, numpy.squeeze(image)) @pytest.mark.parametrize('bytecount', [16, 256]) @pytest.mark.parametrize('count', [1, 2, 4]) @pytest.mark.parametrize('compression', [0, 6]) @pytest.mark.parametrize('tiled', [0, 1]) @pytest.mark.parametrize('bigtiff', [0, 1]) def test_write_bytecount(bigtiff, tiled, compression, count, bytecount): """Test write bytecount formats.""" if tiled: tag = 'TileByteCounts' rowsperstrip = None tile = (bytecount, bytecount) shape = { 1: (bytecount, bytecount), 2: (bytecount * 2, bytecount), 4: (bytecount * 2, bytecount * 2), }[count] else: tag = 'StripByteCounts' tile = None rowsperstrip = bytecount shape = (bytecount * count, bytecount) data = random_data(numpy.uint8, shape) if count == 1: dtype = TIFF.DATATYPES.LONG8 if bigtiff else TIFF.DATATYPES.LONG elif bytecount == 256: dtype = TIFF.DATATYPES.LONG else: dtype = TIFF.DATATYPES.SHORT with TempFileName( 'bytecounts_{}{}{}{}{}'.format( bigtiff, tiled, compression, count, bytecount ) ) as fname: imwrite( fname, data, bigtiff=bigtiff, tile=tile, compression=(ADOBE_DEFLATE, compression) if compression else compression, rowsperstrip=rowsperstrip, ) if not bigtiff: assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.tags[tag].count == count assert page.tags[tag].dtype == dtype assert page.is_contiguous != bool(compression) assert page.planarconfig == CONTIG assert page.photometric == MINISBLACK assert page.imagewidth == shape[1] assert page.imagelength == shape[0] assert page.samplesperpixel == 1 assert_array_equal(page.asarray(), data) assert_aszarr_method(page, data) assert__str__(tif) @pytest.mark.skipif(SKIP_EXTENDED, reason=REASON) @pytest.mark.parametrize('repeat', [1, 4]) @pytest.mark.parametrize('shape', [(1, 0), (0, 1), (3, 0, 2, 1)]) @pytest.mark.parametrize('data', ['random', 'empty']) @pytest.mark.parametrize('shaped', [True, False]) def test_write_zeroshape(shaped, data, repeat, shape): """Test write arrays with zero shape.""" dtype = numpy.uint8 fname = 'shape_{}x{}{}{}'.format( repeat, str(shape).replace(' ', ''), '_shaped' if shaped else '', '_empty' if data == 'empty' else '', ) metadata = {} if shaped else None with TempFileName(fname) as fname: if data == 'empty': with TiffWriter(fname) as tif: with pytest.warns(UserWarning): for _ in range(repeat): tif.write( shape=shape, dtype=dtype, contiguous=True, metadata=metadata, ) tif.write(numpy.zeros((16, 16), 'u2'), metadata=metadata) with TiffFile(fname) as tif: assert__str__(tif) image = zimage = tif.asarray() if not SKIP_ZARR: zimage = zarr.open(tif.aszarr(), mode='r') else: data = random_data(dtype, shape) with TiffWriter(fname) as tif: with pytest.warns(UserWarning): for _ in range(repeat): tif.write(data, contiguous=True, metadata=metadata) tif.write(numpy.zeros((16, 16), 'u2'), metadata=metadata) with TiffFile(fname) as tif: assert__str__(tif) image = zimage = tif.asarray() if not SKIP_ZARR: zimage = zarr.open(tif.aszarr(), mode='r') assert image.flags['C_CONTIGUOUS'] if shaped: if repeat > 1: for i in range(repeat): assert_array_equal(image[i], data) assert_array_equal(zimage[i], data) else: assert_array_equal(image, data) assert_array_equal(zimage, data) else: empty = numpy.empty((0, 0), dtype) if repeat > 1: for i in range(repeat): assert_array_equal(image[i], empty) assert_array_equal(zimage[i], empty) else: assert_array_equal(image.squeeze(), empty) # assert_array_equal(zimage.squeeze(), empty) if repeat > 1: assert image.shape[0] == repeat assert zimage.shape[0] == repeat elif shaped: assert shape == image.shape assert shape == zimage.shape else: assert image.shape == (0, 0) assert zimage.shape == (0, 0) assert dtype == image.dtype assert dtype == zimage.dtype @pytest.mark.parametrize('repeats', [1, 2]) @pytest.mark.parametrize('series', [1, 2]) @pytest.mark.parametrize('subifds', [0, 1, 2]) @pytest.mark.parametrize('compressed', [False, True]) @pytest.mark.parametrize('tiled', [False, True]) @pytest.mark.parametrize('ome', [False, True]) def test_write_subidfs(ome, tiled, compressed, series, repeats, subifds): """Test writing SubIFDs.""" if repeats > 1 and (compressed or tiled or ome): pytest.xfail('contiguous not working with compression, tiles, ome') data = [ (numpy.random.rand(5, 64, 64) * 1023).astype(numpy.uint16), (numpy.random.rand(5, 32, 32) * 1023).astype(numpy.uint16), (numpy.random.rand(5, 16, 16) * 1023).astype(numpy.uint16), ] kwargs = { 'tile': (16, 16) if tiled else None, 'compression': (ADOBE_DEFLATE, 6) if compressed else None, } with TempFileName( 'write_subidfs_' f'{ome}-{tiled}-{compressed}-{subifds}-{series}-{repeats}' ) as fname: with TiffWriter(fname, ome=ome) as tif: for _ in range(series): for r in range(repeats): kwargs['contiguous'] = r != 0 tif.write(data[0], subifds=subifds, **kwargs) for i in range(1, subifds + 1): for r in range(repeats): kwargs['contiguous'] = r != 0 tif.write(data[i], subfiletype=1, **kwargs) with TiffFile(fname) as tif: for i, page in enumerate(tif.pages): if i % (5 * repeats): assert page.description == '' elif ome: if i == 0: assert page.is_ome else: assert page.description == '' else: assert page.is_shaped assert_array_equal(page.asarray(), data[0][i % 5]) assert_aszarr_method(page, data[0][i % 5]) assert len(page.pages) == subifds for j, subifd in enumerate(page.pages): assert_array_equal(subifd.asarray(), data[j + 1][i % 5]) assert_aszarr_method(subifd, data[j + 1][i % 5]) for i, page in enumerate(tif.pages[:-1]): assert page._nextifd() == tif.pages[i + 1].offset if subifds: for j, subifd in enumerate(page.pages[:-1]): assert subifd.subfiletype == 1 assert subifd._nextifd() == page.subifds[j + 1] assert page.pages[-1]._nextifd() == 0 assert len(tif.series) == series if repeats > 1: for s in range(series): assert tif.series[s].kind == 'OME' if ome else 'Shaped' assert_array_equal(tif.series[s].asarray()[0], data[0]) for i in range(subifds): assert_array_equal( tif.series[s].levels[i + 1].asarray()[0], data[i + 1], ) else: for s in range(series): assert tif.series[s].kind == 'OME' if ome else 'Shaped' assert_array_equal(tif.series[s].asarray(), data[0]) for i in range(subifds): assert_array_equal( tif.series[s].levels[i + 1].asarray(), data[i + 1] ) def test_write_lists(): """Test write lists.""" array = numpy.arange(1000).reshape(10, 10, 10).astype(numpy.uint16) data = array.tolist() with TempFileName('write_lists') as fname: with TiffWriter(fname) as tif: tif.write(data, dtype=numpy.uint16) tif.write(data, compression=ADOBE_DEFLATE) tif.write([100.0]) with pytest.warns(UserWarning): tif.write([]) with TiffFile(fname) as tif: assert_array_equal(tif.series[0].asarray(), array) assert_array_equal(tif.series[1].asarray(), array) assert_array_equal(tif.series[2].asarray(), [100.0]) assert_array_equal(tif.series[3].asarray(), []) assert_aszarr_method(tif.series[0], array) assert_aszarr_method(tif.series[1], array) assert_aszarr_method(tif.series[2], [100.0]) # assert_aszarr_method(tif.series[3], []) def test_write_nopages(): """Test write TIFF with no pages.""" with TempFileName('nopages') as fname: with TiffWriter(fname) as tif: pass with TiffFile(fname) as tif: assert len(tif.pages) == 0 tif.asarray() if not SKIP_VALIDATE: with pytest.raises(ValueError): assert_valid_tiff(fname) def test_write_append_not_exists(): """Test append to non existing file.""" with TempFileName('append_not_exists.bin') as fname: # with self.assertRaises(ValueError): with TiffWriter(fname, append=True): pass def test_write_append_nontif(): """Test fail to append to non-TIFF file.""" with TempFileName('append_nontif.bin') as fname: with open(fname, 'wb') as fh: fh.write(b'not a TIFF file') with pytest.raises(TiffFileError): with TiffWriter(fname, append=True): pass @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_write_append_lsm(): """Test fail to append to LSM file.""" fname = private_file('lsm/take1.lsm') with pytest.raises(ValueError): with TiffWriter(fname, append=True): pass def test_write_append_imwrite(): """Test append using imwrite.""" data = random_data(numpy.uint8, (21, 31)) with TempFileName('imwrite_append') as fname: imwrite(fname, data, metadata=None) for _ in range(3): imwrite(fname, data, append=True, metadata=None) a = imread(fname) assert a.shape == (4, 21, 31) assert_array_equal(a[3], data) def test_write_append(): """Test append to existing TIFF file.""" data = random_data(numpy.uint8, (21, 31)) with TempFileName('append') as fname: with TiffWriter(fname) as tif: pass with TiffFile(fname) as tif: assert len(tif.pages) == 0 assert__str__(tif) with TiffWriter(fname, append=True) as tif: tif.write(data) with TiffFile(fname) as tif: assert len(tif.series) == 1 assert len(tif.pages) == 1 page = tif.pages[0] assert page.imagewidth == 31 assert page.imagelength == 21 assert__str__(tif) with TiffWriter(fname, append=True) as tif: tif.write(data) tif.write(data, contiguous=True) with TiffFile(fname) as tif: assert len(tif.series) == 2 assert len(tif.pages) == 3 page = tif.pages[0] assert page.imagewidth == 31 assert page.imagelength == 21 assert_array_equal(tif.asarray(series=1)[1], data) assert__str__(tif) assert_valid_tiff(fname) def test_write_append_bytesio(): """Test append to existing TIFF file in BytesIO.""" data = random_data(numpy.uint8, (21, 31)) offset = 11 file = BytesIO() file.write(b'a' * offset) with TiffWriter(file) as tif: pass file.seek(offset) with TiffFile(file) as tif: assert len(tif.pages) == 0 file.seek(offset) with TiffWriter(file, append=True) as tif: tif.write(data) file.seek(offset) with TiffFile(file) as tif: assert len(tif.series) == 1 assert len(tif.pages) == 1 page = tif.pages[0] assert page.imagewidth == 31 assert page.imagelength == 21 assert__str__(tif) file.seek(offset) with TiffWriter(file, append=True) as tif: tif.write(data) tif.write(data, contiguous=True) file.seek(offset) with TiffFile(file) as tif: assert len(tif.series) == 2 assert len(tif.pages) == 3 page = tif.pages[0] assert page.imagewidth == 31 assert page.imagelength == 21 assert_array_equal(tif.asarray(series=1)[1], data) assert__str__(tif) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS, reason=REASON) def test_write_roundtrip_filename(): """Test write and read using file name.""" data = imread(public_file('tifffile/generic_series.tif')) with TempFileName('roundtrip_filename') as fname: imwrite(fname, data, photometric=RGB) assert_array_equal(imread(fname), data) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS, reason=REASON) def test_write_roundtrip_openfile(): """Test write and read using open file.""" pad = b'0' * 7 data = imread(public_file('tifffile/generic_series.tif')) with TempFileName('roundtrip_openfile') as fname: with open(fname, 'wb') as fh: fh.write(pad) imwrite(fh, data, photometric=RGB) fh.write(pad) with open(fname, 'rb') as fh: fh.seek(len(pad)) assert_array_equal(imread(fh), data) @pytest.mark.skipif(SKIP_PUBLIC or SKIP_CODECS, reason=REASON) def test_write_roundtrip_bytesio(): """Test write and read using BytesIO.""" pad = b'0' * 7 data = imread(public_file('tifffile/generic_series.tif')) buf = BytesIO() buf.write(pad) imwrite(buf, data, photometric=RGB) buf.write(pad) buf.seek(len(pad)) assert_array_equal(imread(buf), data) def test_write_pages(): """Test write tags for contiguous data in all pages.""" data = random_data(numpy.float32, (17, 219, 301)) with TempFileName('pages') as fname: imwrite(fname, data, photometric=MINISBLACK) assert_valid_tiff(fname) # assert file with TiffFile(fname) as tif: assert len(tif.pages) == 17 for i, page in enumerate(tif.pages): assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric == MINISBLACK assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 1 image = page.asarray() assert_array_equal(data[i], image) # assert series series = tif.series[0] assert series.offset is not None image = series.asarray() assert_array_equal(data, image) assert__str__(tif) def test_write_truncate(): """Test only one page is written for truncated files.""" shape = (4, 5, 6, 1) with TempFileName('truncate') as fname: imwrite(fname, random_data(numpy.uint8, shape), truncate=True) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 # not 4 page = tif.pages[0] assert page.is_shaped assert page.shape == (5, 6) assert '"shape": [4, 5, 6, 1]' in page.description assert '"truncated": true' in page.description series = tif.series[0] assert series.shape == shape assert len(series._pages) == 1 assert len(series.pages) == 1 data = tif.asarray() assert data.shape == shape assert_aszarr_method(tif, data) assert_aszarr_method(tif, data, chunkmode='page') assert__str__(tif) def test_write_is_shaped(): """Test files are written with shape.""" with TempFileName('is_shaped') as fname: imwrite(fname, random_data(numpy.uint8, (4, 5, 6, 3)), photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 4 page = tif.pages[0] assert page.is_shaped assert page.description == '{"shape": [4, 5, 6, 3]}' assert__str__(tif) with TempFileName('is_shaped_with_description') as fname: descr = 'test is_shaped_with_description' imwrite( fname, random_data(numpy.uint8, (5, 6, 3)), photometric=RGB, description=descr, ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_shaped assert page.description == descr assert_aszarr_method(page) assert_aszarr_method(page, chunkmode='page') assert__str__(tif) def test_write_bytes_str(): """Test write bytes in place of 7-bit ascii string.""" micron = 'micron \xB5'.encode('latin-1') # can't be encoded as 7-bit ascii data = numpy.arange(4, dtype=numpy.uint32).reshape((2, 2)) with TempFileName('write_bytes_str') as fname: imwrite( fname, data, description=micron, software=micron, extratags=[(50001, 's', 8, micron, True)], ) with TiffFile(fname) as tif: page = tif.pages[0] assert page.description == 'micron \xB5' assert page.software == 'micron \xB5' assert page.tags[50001].value == 'micron \xB5' def test_write_extratags(): """Test write extratags.""" data = random_data(numpy.uint8, (2, 219, 301)) description = 'Created by TestTiffWriter\nLorem ipsum dolor...' pagename = 'Page name' extratags = [ (270, 's', 0, description, True), ('PageName', 's', 0, pagename, False), (50001, 'b', 1, b'1', True), (50002, 'b', 2, b'12', True), (50004, 'b', 4, b'1234', True), (50008, 'B', 8, b'12345678', True), ] with TempFileName('extratags') as fname: imwrite(fname, data, extratags=extratags) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 2 assert tif.pages[0].description1 == description assert 'ImageDescription' not in tif.pages[1].tags assert tif.pages[0].tags['PageName'].value == pagename assert tif.pages[1].tags['PageName'].value == pagename assert '50001' not in tif.pages[1].tags tags = tif.pages[0].tags assert tags['50001'].value == 49 assert tags['50002'].value == (49, 50) assert tags['50004'].value == (49, 50, 51, 52) assert_array_equal(tags['50008'].value, b'12345678') # (49, 50, 51, 52, 53, 54, 55, 56)) assert__str__(tif) def test_write_double_tags(): """Test write single and sequences of doubles.""" # older versions of tifffile do not use offset to write doubles # reported by Eric Prestat on Feb 21, 2016 data = random_data(numpy.uint8, (8, 8)) value = math.pi extratags = [ (34563, 'd', 1, value, False), (34564, 'd', 1, (value,), False), (34565, 'd', 2, (value, value), False), (34566, 'd', 2, [value, value], False), (34567, 'd', 2, numpy.array((value, value)), False), ] with TempFileName('double_tags') as fname: imwrite(fname, data, extratags=extratags) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 tags = tif.pages[0].tags assert tags['34563'].value == value assert tags['34564'].value == value assert tuple(tags['34565'].value) == (value, value) assert tuple(tags['34566'].value) == (value, value) assert tuple(tags['34567'].value) == (value, value) assert__str__(tif) with TempFileName('double_tags_bigtiff') as fname: imwrite(fname, data, bigtiff=True, extratags=extratags) # assert_jhove(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 tags = tif.pages[0].tags assert tags['34563'].value == value assert tags['34564'].value == value assert tuple(tags['34565'].value) == (value, value) assert tuple(tags['34566'].value) == (value, value) assert tuple(tags['34567'].value) == (value, value) assert__str__(tif) def test_write_short_tags(): """Test write single and sequences of words.""" data = random_data(numpy.uint8, (8, 8)) value = 65531 extratags = [ (34564, 'H', 1, (value,) * 1, False), (34565, 'H', 2, (value,) * 2, False), (34566, 'H', 3, (value,) * 3, False), (34567, 'H', 4, (value,) * 4, False), ] with TempFileName('short_tags') as fname: imwrite(fname, data, extratags=extratags) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 tags = tif.pages[0].tags assert tags['34564'].value == value assert tuple(tags['34565'].value) == (value,) * 2 assert tuple(tags['34566'].value) == (value,) * 3 assert tuple(tags['34567'].value) == (value,) * 4 assert__str__(tif) @pytest.mark.parametrize('subfiletype', [0b1, 0b10, 0b100, 0b1000, 0b1111]) def test_write_subfiletype(subfiletype): """Test write subfiletype.""" data = random_data(numpy.uint8, (16, 16)) if subfiletype & 0b100: data = data.astype('bool') with TempFileName(f'subfiletype_{subfiletype}') as fname: imwrite(fname, data, subfiletype=subfiletype) assert_valid_tiff(fname) with TiffFile(fname) as tif: page = tif.pages[0] assert page.subfiletype == subfiletype assert page.is_reduced == subfiletype & 0b1 assert page.is_multipage == subfiletype & 0b10 assert page.is_mask == subfiletype & 0b100 assert page.is_mrc == subfiletype & 0b1000 assert_array_equal(data, page.asarray()) assert__str__(tif) @pytest.mark.parametrize('dt', [None, True, datetime, '2019:01:30 04:05:37']) def test_write_datetime_tag(dt): """Test write datetime tag.""" arg = dt if dt is datetime: arg = datetime.datetime.now() data = random_data(numpy.uint8, (31, 32)) with TempFileName('datetime') as fname: imwrite(fname, data, datetime=arg) with TiffFile(fname) as tif: if dt is None: assert 'DateTime' not in tif.pages[0].tags elif dt is True: assert ( tif.pages[0] .tags['DateTime'] .value.startswith( datetime.datetime.now().strftime('%Y:%m:%d %H:') ) ) elif dt is datetime: assert tif.pages[0].tags['DateTime'].value == arg.strftime( '%Y:%m:%d %H:%M:%S' ) else: assert tif.pages[0].tags['DateTime'].value == dt assert__str__(tif) def test_write_description_tag(): """Test write two description tags.""" data = random_data(numpy.uint8, (2, 219, 301)) description = 'Created by TestTiffWriter\nLorem ipsum dolor...' with TempFileName('description_tag') as fname: imwrite(fname, data, description=description) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 2 assert tif.pages[0].description == description assert tif.pages[0].description1 == '{"shape": [2, 219, 301]}' assert 'ImageDescription' not in tif.pages[1].tags assert__str__(tif) def test_write_description_tag_nojson(): """Test no JSON description is written with metatata=None.""" data = random_data(numpy.uint8, (2, 219, 301)) description = 'Created by TestTiffWriter\nLorem ipsum dolor...' with TempFileName('description_tag_nojson') as fname: imwrite(fname, data, description=description, metadata=None) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 2 assert tif.pages[0].description == description assert 'ImageDescription' not in tif.pages[1].tags assert 'ImageDescription1' not in tif.pages[0].tags assert__str__(tif) def test_write_software_tag(): """Test write Software tag.""" data = random_data(numpy.uint8, (2, 219, 301)) software = 'test_tifffile.py' with TempFileName('software_tag') as fname: imwrite(fname, data, software=software) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 2 assert tif.pages[0].software == software assert 'Software' not in tif.pages[1].tags assert__str__(tif) def test_write_resolution_float(): """Test write float Resolution tag.""" data = random_data(numpy.uint8, (2, 219, 301)) resolution = (92.0, 92.0) with TempFileName('resolution_float') as fname: imwrite(fname, data, resolution=resolution) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 2 assert tif.pages[0].tags['XResolution'].value == (92, 1) assert tif.pages[0].tags['YResolution'].value == (92, 1) assert tif.pages[1].tags['XResolution'].value == (92, 1) assert tif.pages[1].tags['YResolution'].value == (92, 1) assert__str__(tif) def test_write_resolution_rational(): """Test write rational Resolution tag.""" data = random_data(numpy.uint8, (1, 219, 301)) resolution = ((300, 1), (300, 1)) with TempFileName('resolution_rational') as fname: imwrite(fname, data, resolution=resolution) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 assert tif.pages[0].tags['XResolution'].value == (300, 1) assert tif.pages[0].tags['YResolution'].value == (300, 1) def test_write_resolution_unit(): """Test write Resolution tag unit.""" data = random_data(numpy.uint8, (219, 301)) resolution = (92.0, (9200, 100), None) with TempFileName('resolution_unit') as fname: imwrite(fname, data, resolution=resolution) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 assert tif.pages[0].tags['XResolution'].value == (92, 1) assert tif.pages[0].tags['YResolution'].value == (92, 1) assert tif.pages[0].tags['ResolutionUnit'].value == 1 assert__str__(tif) @pytest.mark.skipif(SKIP_CODECS, reason=REASON) @pytest.mark.parametrize('bps', [1, 2, 7, 8]) @pytest.mark.parametrize('dtype', [numpy.uint8, numpy.uint16, numpy.uint32]) def test_write_bitspersample(bps, dtype): """Test write with packints.""" dtype = numpy.dtype(dtype) bps += (dtype.itemsize // 2) * 8 data = numpy.arange(256 * 256 * 3, dtype=dtype).reshape((256, 256, 3)) with TempFileName(f'write_bitspersample_{dtype.char}{bps}') as fname: # TODO: enable all cases once imagecodecs.packints_encode works if bps == dtype.itemsize * 8: imwrite(fname, data, bitspersample=bps, photometric=RGB) assert_array_equal(imread(fname), data) else: with pytest.raises(NotImplementedError): imwrite(fname, data, bitspersample=bps, photometric=RGB) assert_array_equal(imread(fname), data) def test_write_bitspersample_fail(): """Test write with packints fails.""" data = numpy.arange(32 * 32 * 3, dtype=numpy.uint32).reshape((32, 32, 3)) with TempFileName('write_bitspersample_fail') as fname: with TiffWriter(fname) as tif: # not working with compression with pytest.raises(ValueError): tif.write( data.astype(numpy.uint8), bitspersample=4, compression=ADOBE_DEFLATE, photometric=RGB, ) # dtype.itemsize != bitspersample for dtype in ( numpy.int8, numpy.int16, numpy.float32, numpy.uint64, ): with pytest.raises(ValueError): tif.write( data.astype(dtype), bitspersample=4, photometric=RGB ) # bitspersample out of data range for bps in (0, 9, 16, 32): with pytest.raises(ValueError): tif.write( data.astype(numpy.uint8), bitspersample=bps, photometric=RGB, ) for bps in (1, 8, 17, 32): with pytest.raises(ValueError): tif.write( data.astype(numpy.uint16), bitspersample=bps, photometric=RGB, ) for bps in (1, 8, 16, 33, 64): with pytest.raises(ValueError): tif.write( data.astype(numpy.uint32), bitspersample=bps, photometric=RGB, ) @pytest.mark.parametrize('kind', ['enum', 'int', 'lower', 'upper']) def test_write_enum_parameters(kind): """Test imwrite using different kind of enum""" data = random_data(numpy.uint8, (2, 6, 219, 301)) with TempFileName(f'enum_parameters_{kind}') as fname: if kind == 'enum': imwrite( fname, data, photometric=RGB, planarconfig=SEPARATE, extrasamples=(ASSOCALPHA, UNSPECIFIED, UNASSALPHA), compression=ADOBE_DEFLATE, predictor=HORIZONTAL, ) elif kind == 'int': imwrite( fname, data, photometric=2, planarconfig=2, extrasamples=(1, 0, 2), compression=8, predictor=2, ) elif kind == 'upper': imwrite( fname, data, photometric='RGB', planarconfig='SEPARATE', extrasamples=('ASSOCALPHA', 'UNSPECIFIED', 'UNASSALPHA'), compression='ADOBE_DEFLATE', predictor='HORIZONTAL', ) elif kind == 'lower': imwrite( fname, data, photometric='rgb', planarconfig='separate', extrasamples=('assocalpha', 'unspecified', 'unassalpha'), compression='adobe_deflate', predictor='horizontal', ) with TiffFile(fname) as tif: assert len(tif.pages) == 2 page = tif.pages[0] assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 6 assert page.photometric == RGB assert page.planarconfig == SEPARATE assert page.extrasamples == (ASSOCALPHA, UNSPECIFIED, UNASSALPHA) assert page.compression == ADOBE_DEFLATE assert page.predictor == HORIZONTAL image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.parametrize( 'args', [ (0, 0), (1, 1), (2, NONE), (3, ADOBE_DEFLATE), (4, 'zlib'), (5, 'zlib', 5), (6, 'zlib', 5, {'out': None}), (7, 'zlib', None, {'level': 5}), ], ) def test_write_compression_args(args): """Test compression parameter.""" i = args[0] compressionargs = args[1:] compressed = compressionargs[0] not in (0, 1, NONE) if len(compressionargs) == 1: compressionargs = compressionargs[0] data = WRITE_DATA with TempFileName(f'compression_args_{i}') as fname: imwrite(fname, data, compression=compressionargs, photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == (ADOBE_DEFLATE if compressed else NONE) assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 assert len(page.dataoffsets) == (9 if compressed else 3) image = tif.asarray() assert_array_equal(data, image) assert__str__(tif) @pytest.mark.parametrize( 'args', [(0, 0), (1, 5), (2, ADOBE_DEFLATE), (3, ADOBE_DEFLATE, 5)] ) def test_write_compress_args(args): """Test deprecated compress parameter.""" i = args[0] compressargs = args[1:] compressed = compressargs[0] != 0 if len(compressargs) == 1: compressargs = compressargs[0] data = WRITE_DATA with TempFileName(f'compression_args_{i}') as fname: with pytest.warns(DeprecationWarning): imwrite(fname, data, compress=compressargs, photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == (ADOBE_DEFLATE if compressed else NONE) assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 assert len(page.dataoffsets) == (9 if compressed else 3) image = tif.asarray() assert_array_equal(data, image) assert__str__(tif) def test_write_compression_none(): """Test write compression=0.""" data = WRITE_DATA with TempFileName('compression_none') as fname: imwrite(fname, data, compression=0, photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.compression == NONE assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 assert len(page.dataoffsets) == 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) # @pytest.mark.parametrize('optimize', [None, False, True]) # @pytest.mark.parametrize('smoothing', [None, 10]) @pytest.mark.skipif( SKIP_PUBLIC or SKIP_CODECS or not imagecodecs.JPEG, reason=REASON ) @pytest.mark.parametrize('subsampling', ['444', '422', '420', '411']) @pytest.mark.parametrize('dtype', [numpy.uint8, numpy.uint16]) def test_write_compression_jpeg(dtype, subsampling): """Test write JPEG compression with subsampling.""" dtype = numpy.dtype(dtype) filename = f'compression_jpeg_{dtype}_{subsampling}' subsampling, atol = { '444': [(1, 1), 5], '422': [(2, 1), 10], '420': [(2, 2), 20], '411': [(4, 1), 40], }[subsampling] data = numpy.load(public_file('tifffile/rgb.u1.npy')).astype(dtype) data = data[:32, :16].copy() # make divisable by subsamples with TempFileName(filename) as fname: imwrite( fname, data, compression=(JPEG, 99), subsampling=subsampling, photometric=RGB, ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert not page.is_contiguous if subsampling[0] > 1: assert page.is_subsampled assert page.tags['YCbCrSubSampling'].value == subsampling assert page.compression == JPEG assert page.photometric == YCBCR assert page.imagewidth == data.shape[1] assert page.imagelength == data.shape[0] assert page.samplesperpixel == 3 image = tif.asarray() assert_allclose(data, image, atol=atol) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_compression_deflate(): """Test write ZLIB compression.""" data = WRITE_DATA with TempFileName('compression_deflate') as fname: imwrite(fname, data, compression=(DEFLATE, 6), photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert not page.is_contiguous assert page.compression == DEFLATE assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 assert page.rowsperstrip == 108 assert len(page.dataoffsets) == 9 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_compression_deflate_level(): """Test write ZLIB compression with level.""" data = WRITE_DATA with TempFileName('compression_deflate_level') as fname: imwrite(fname, data, compression=(ADOBE_DEFLATE, 9), photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert not page.is_contiguous assert page.compression == ADOBE_DEFLATE assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif(SKIP_CODECS, reason=REASON) def test_write_compression_lzma(): """Test write LZMA compression.""" data = WRITE_DATA with TempFileName('compression_lzma') as fname: imwrite(fname, data, compression=LZMA, photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert not page.is_contiguous assert page.compression == LZMA assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 assert page.rowsperstrip == 108 assert len(page.dataoffsets) == 9 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif(SKIP_CODECS or not imagecodecs.ZSTD, reason=REASON) def test_write_compression_zstd(): """Test write ZSTD compression.""" data = WRITE_DATA with TempFileName('compression_zstd') as fname: imwrite(fname, data, compression=ZSTD, photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert not page.is_contiguous assert page.compression == ZSTD assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 assert page.rowsperstrip == 108 assert len(page.dataoffsets) == 9 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif(SKIP_CODECS or not imagecodecs.WEBP, reason=REASON) def test_write_compression_webp(): """Test write WEBP compression.""" data = WRITE_DATA.astype(numpy.uint8).reshape((219, 301, 3)) with TempFileName('compression_webp') as fname: imwrite(fname, data, compression=(WEBP, -1), photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert not page.is_contiguous assert page.compression == WEBP assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif(SKIP_CODECS or not imagecodecs.JPEGXL, reason=REASON) def test_write_compression_jpegxl(): """Test write JPEG XL compression.""" data = WRITE_DATA.astype(numpy.uint8).reshape((219, 301, 3)) with TempFileName('compression_jpegxl') as fname: imwrite(fname, data, compression=(JPEGXL, -1), photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert not page.is_contiguous assert page.compression == JPEGXL assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif(SKIP_CODECS, reason=REASON) def test_write_compression_lerc(): """Test write LERC compression.""" if not hasattr(imagecodecs, 'LERC'): pytest.skip('LERC codec missing') data = WRITE_DATA.astype(numpy.uint16).reshape((219, 301, 3)) with TempFileName('compression_lerc') as fname: imwrite(fname, data, compression=LERC, photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert not page.is_contiguous assert page.compression == LERC assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif(SKIP_CODECS, reason=REASON) @pytest.mark.parametrize('dtype', [numpy.int8, numpy.uint8, numpy.bool8]) @pytest.mark.parametrize('tile', [None, (16, 16)]) def test_write_compression_packbits(dtype, tile): """Test write PackBits compression.""" dtype = numpy.dtype(dtype) uncompressed = numpy.frombuffer( b'\xaa\xaa\xaa\x80\x00\x2a\xaa\xaa\xaa\xaa\x80\x00' b'\x2a\x22\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa', dtype=dtype, ) shape = 2, 7, uncompressed.size data = numpy.empty(shape, dtype=dtype) data[..., :] = uncompressed with TempFileName(f'compression_packits_{dtype}') as fname: imwrite(fname, data, compression=PACKBITS, tile=tile) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 2 page = tif.pages[0] assert not page.is_contiguous assert page.compression == PACKBITS assert page.planarconfig == CONTIG assert page.imagewidth == uncompressed.size assert page.imagelength == 7 assert page.samplesperpixel == 1 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_compression_rowsperstrip(): """Test write rowsperstrip with compression.""" data = WRITE_DATA with TempFileName('compression_rowsperstrip') as fname: imwrite( fname, data, compression=ADOBE_DEFLATE, rowsperstrip=32, photometric=RGB, ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert not page.is_contiguous assert page.compression == ADOBE_DEFLATE assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 assert page.rowsperstrip == 32 assert len(page.dataoffsets) == 21 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_compression_tiled(): """Test write compressed tiles.""" data = WRITE_DATA with TempFileName('compression_tiled') as fname: imwrite( fname, data, compression=ADOBE_DEFLATE, tile=(32, 32), photometric=RGB, ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert not page.is_contiguous assert page.is_tiled assert page.compression == ADOBE_DEFLATE assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 assert len(page.dataoffsets) == 210 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_compression_predictor(): """Test write horizontal differencing.""" data = WRITE_DATA with TempFileName('compression_predictor') as fname: imwrite( fname, data, compression=ADOBE_DEFLATE, predictor=HORIZONTAL, photometric=RGB, ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert not page.is_contiguous assert page.compression == ADOBE_DEFLATE assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.predictor == HORIZONTAL assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif(SKIP_CODECS, reason=REASON) @pytest.mark.parametrize('dtype', [numpy.uint16, numpy.float32]) def test_write_compression_predictor_tiled(dtype): """Test write horizontal differencing with tiles.""" dtype = numpy.dtype(dtype) data = WRITE_DATA.astype(dtype) with TempFileName(f'compression_tiled_predictor_{dtype}') as fname: imwrite( fname, data, compression=ADOBE_DEFLATE, predictor=True, tile=(32, 32), photometric=RGB, ) if dtype.kind != 'f': assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert not page.is_contiguous assert page.is_tiled assert page.compression == ADOBE_DEFLATE assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 assert page.predictor == 3 if dtype.kind == 'f' else 2 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_rowsperstrip(): """Test write rowsperstrip without compression.""" data = WRITE_DATA with TempFileName('rowsperstrip') as fname: imwrite( fname, data, rowsperstrip=32, contiguous=False, photometric=RGB, metadata=None, ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 assert page.rowsperstrip == 32 assert len(page.dataoffsets) == 21 stripbytecounts = page.tags['StripByteCounts'].value assert stripbytecounts[0] == 19264 assert stripbytecounts[6] == 16254 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif(SKIP_BE, reason=REASON) def test_write_write_bigendian(): """Test write big endian file.""" # also test memory mapping non-native byte order data = random_data(numpy.float32, (2, 3, 219, 301)).newbyteorder() data = numpy.nan_to_num(data, copy=False) with TempFileName('write_bigendian') as fname: imwrite(fname, data, planarconfig=SEPARATE, photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 2 assert len(tif.series) == 1 assert tif.byteorder == '>' # assert not tif.isnative assert tif.series[0].offset is not None page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 # test reading data image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) image = page.asarray() assert_array_equal(data[0], image) # test direct memory mapping; returns big endian array image = tif.asarray(out='memmap') assert isinstance(image, numpy.core.memmap) assert image.dtype == numpy.dtype('>f4') assert_array_equal(data, image) del image image = page.asarray(out='memmap') assert isinstance(image, numpy.core.memmap) assert image.dtype == numpy.dtype('>f4') assert_array_equal(data[0], image) del image # test indirect memory mapping; returns native endian array image = tif.asarray(out='memmap:') assert isinstance(image, numpy.core.memmap) assert image.dtype == numpy.dtype('=f4') assert_array_equal(data, image) del image image = page.asarray(out='memmap:') assert isinstance(image, numpy.core.memmap) assert image.dtype == numpy.dtype('=f4') assert_array_equal(data[0], image) del image # test 2nd page page = tif.pages[1] image = page.asarray(out='memmap') assert isinstance(image, numpy.core.memmap) assert image.dtype == numpy.dtype('>f4') assert_array_equal(data[1], image) del image image = page.asarray(out='memmap:') assert isinstance(image, numpy.core.memmap) assert image.dtype == numpy.dtype('=f4') assert_array_equal(data[1], image) del image assert__str__(tif) def test_write_zero_size(): """Test write zero size array no longer fails.""" # with pytest.raises(ValueError): with pytest.warns(UserWarning): with TempFileName('empty') as fname: imwrite(fname, numpy.empty(0)) def test_write_pixel(): """Test write single pixel.""" data = numpy.zeros(1, dtype=numpy.uint8) with TempFileName('pixel') as fname: imwrite(fname, data) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 assert tif.series[0].axes == 'Y' page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 1 assert page.imagelength == 1 assert page.samplesperpixel == 1 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert_aszarr_method(tif, image, chunkmode='page') assert__str__(tif) def test_write_small(): """Test write small image.""" data = random_data(numpy.uint8, (1, 1)) with TempFileName('small') as fname: imwrite(fname, data) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 1 assert page.imagelength == 1 assert page.samplesperpixel == 1 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_2d_as_rgb(): """Test write RGB color palette as RGB image.""" # image length should be 1 data = numpy.arange(3 * 256, dtype=numpy.uint16).reshape(256, 3) // 3 with TempFileName('2d_as_rgb_contig') as fname: imwrite(fname, data, photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 assert tif.series[0].axes == 'XS' page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric == RGB assert page.imagewidth == 256 assert page.imagelength == 1 assert page.samplesperpixel == 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert_aszarr_method(tif, image, chunkmode='page') assert__str__(tif) def test_write_invalid_contig_rgb(): """Test write planar RGB with 2 samplesperpixel.""" data = random_data(numpy.uint8, (219, 301, 2)) with pytest.raises(ValueError): with TempFileName('invalid_contig_rgb') as fname: imwrite(fname, data, photometric=RGB) # default to pages with TempFileName('invalid_contig_rgb_pages') as fname: imwrite(fname, data) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 219 assert tif.series[0].axes == 'QYX' page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 2 assert page.imagelength == 301 assert page.samplesperpixel == 1 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) # better save as contig samples with TempFileName('invalid_contig_rgb_samples') as fname: imwrite(fname, data, planarconfig=CONTIG) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 assert tif.series[0].axes == 'YXS' page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 2 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_invalid_planar_rgb(): """Test write planar RGB with 2 samplesperpixel.""" data = random_data(numpy.uint8, (2, 219, 301)) with pytest.raises(ValueError): with TempFileName('invalid_planar_rgb') as fname: imwrite(fname, data, photometric=RGB, planarconfig=SEPARATE) # default to pages with TempFileName('invalid_planar_rgb_pages') as fname: imwrite(fname, data) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 2 assert tif.series[0].axes == 'QYX' page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 1 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) # or save as planar samples with TempFileName('invalid_planar_rgb_samples') as fname: imwrite(fname, data, planarconfig=SEPARATE) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 assert tif.series[0].axes == 'SYX' page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == SEPARATE assert page.photometric != RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 2 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_extrasamples_gray(): """Test write grayscale with extrasamples contig.""" data = random_data(numpy.uint8, (301, 219, 2)) with TempFileName('extrasamples_gray') as fname: imwrite(fname, data, extrasamples=UNASSALPHA) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.photometric == MINISBLACK assert page.planarconfig == CONTIG assert page.imagewidth == 219 assert page.imagelength == 301 assert page.samplesperpixel == 2 assert page.extrasamples[0] == 2 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_extrasamples_gray_planar(): """Test write planar grayscale with extrasamples.""" data = random_data(numpy.uint8, (2, 301, 219)) with TempFileName('extrasamples_gray_planar') as fname: imwrite(fname, data, planarconfig=SEPARATE, extrasamples=UNASSALPHA) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.photometric == MINISBLACK assert page.planarconfig == SEPARATE assert page.imagewidth == 219 assert page.imagelength == 301 assert page.samplesperpixel == 2 assert page.extrasamples[0] == 2 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_extrasamples_gray_mix(): """Test write grayscale with multiple extrasamples.""" data = random_data(numpy.uint8, (301, 219, 4)) with TempFileName('extrasamples_gray_mix') as fname: imwrite( fname, data, photometric=MINISBLACK, extrasamples=[ASSOCALPHA, UNASSALPHA, UNSPECIFIED], ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.photometric == MINISBLACK assert page.imagewidth == 219 assert page.imagelength == 301 assert page.samplesperpixel == 4 assert page.extrasamples == (1, 2, 0) image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_extrasamples_unspecified(): """Test write RGB with unspecified extrasamples by default.""" data = random_data(numpy.uint8, (301, 219, 5)) with TempFileName('extrasamples_unspecified') as fname: imwrite(fname, data, photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.photometric == RGB assert page.imagewidth == 219 assert page.imagelength == 301 assert page.samplesperpixel == 5 assert page.extrasamples == (0, 0) image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_extrasamples_assocalpha(): """Test write RGB with assocalpha extrasample.""" data = random_data(numpy.uint8, (219, 301, 4)) with TempFileName('extrasamples_assocalpha') as fname: imwrite(fname, data, photometric=RGB, extrasamples=ASSOCALPHA) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 4 assert page.extrasamples[0] == 1 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_extrasamples_mix(): """Test write RGB with mixture of extrasamples.""" data = random_data(numpy.uint8, (219, 301, 6)) with TempFileName('extrasamples_mix') as fname: imwrite( fname, data, photometric=RGB, extrasamples=[ASSOCALPHA, UNASSALPHA, UNSPECIFIED], ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 6 assert page.extrasamples == (1, 2, 0) image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_extrasamples_contig(): """Test write contig grayscale with large number of extrasamples.""" data = random_data(numpy.uint8, (3, 219, 301)) with TempFileName('extrasamples_contig') as fname: imwrite(fname, data, planarconfig=CONTIG) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 219 assert page.imagelength == 3 assert page.samplesperpixel == 301 assert len(page.extrasamples) == 301 - 1 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) # better save as RGB planar with TempFileName('extrasamples_contig_planar') as fname: imwrite(fname, data, photometric=RGB, planarconfig=SEPARATE) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_extrasamples_contig_rgb2(): """Test write contig RGB with large number of extrasamples.""" data = random_data(numpy.uint8, (3, 219, 301)) with TempFileName('extrasamples_contig_rgb2') as fname: imwrite(fname, data, photometric=RGB, planarconfig=CONTIG) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric == RGB assert page.imagewidth == 219 assert page.imagelength == 3 assert page.samplesperpixel == 301 assert len(page.extrasamples) == 301 - 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) # better save as planar with TempFileName('extrasamples_contig_rgb2_planar') as fname: imwrite(fname, data, photometric=RGB, planarconfig=SEPARATE) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_extrasamples_planar(): """Test write planar large number of extrasamples.""" data = random_data(numpy.uint8, (219, 301, 3)) with TempFileName('extrasamples_planar') as fname: imwrite(fname, data, planarconfig=SEPARATE) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == SEPARATE assert page.photometric != RGB assert page.imagewidth == 3 assert page.imagelength == 301 assert page.samplesperpixel == 219 assert len(page.extrasamples) == 219 - 1 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_extrasamples_planar_rgb2(): """Test write planar RGB with large number of extrasamples.""" data = random_data(numpy.uint8, (219, 301, 3)) with TempFileName('extrasamples_planar_rgb2') as fname: imwrite(fname, data, photometric=RGB, planarconfig=SEPARATE) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 3 assert page.imagelength == 301 assert page.samplesperpixel == 219 assert len(page.extrasamples) == 219 - 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_minisblack_planar(): """Test write planar minisblack.""" data = random_data(numpy.uint8, (3, 219, 301)) with TempFileName('minisblack_planar') as fname: imwrite(fname, data, photometric=MINISBLACK) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 3 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 1 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_minisblack_contig(): """Test write contig minisblack.""" data = random_data(numpy.uint8, (219, 301, 3)) with TempFileName('minisblack_contig') as fname: imwrite(fname, data, photometric=MINISBLACK) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 219 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 3 assert page.imagelength == 301 assert page.samplesperpixel == 1 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_scalar(): """Test write 2D grayscale.""" data = random_data(numpy.uint8, (219, 301)) with TempFileName('scalar') as fname: imwrite(fname, data) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 1 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_scalar_3d(): """Test write 3D grayscale.""" data = random_data(numpy.uint8, (63, 219, 301)) with TempFileName('scalar_3d') as fname: imwrite(fname, data) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 63 page = tif.pages[62] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 1 image = tif.asarray() assert isinstance(image, numpy.ndarray) assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_scalar_4d(): """Test write 4D grayscale.""" data = random_data(numpy.uint8, (3, 2, 219, 301)) with TempFileName('scalar_4d') as fname: imwrite(fname, data) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 6 page = tif.pages[5] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 1 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_contig_extrasample(): """Test write grayscale with contig extrasamples.""" data = random_data(numpy.uint8, (219, 301, 2)) with TempFileName('contig_extrasample') as fname: imwrite(fname, data, planarconfig=CONTIG) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 2 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_planar_extrasample(): """Test write grayscale with planar extrasamples.""" data = random_data(numpy.uint8, (2, 219, 301)) with TempFileName('planar_extrasample') as fname: imwrite(fname, data, planarconfig=SEPARATE) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == SEPARATE assert page.photometric != RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 2 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_auto_rgb_contig(): """Test write auto contig RGB.""" data = random_data(numpy.uint8, (219, 301, 3)) with TempFileName('auto_rgb_contig') as fname: imwrite(fname, data) # photometric=RGB assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_auto_rgb_planar(): """Test write auto planar RGB.""" data = random_data(numpy.uint8, (3, 219, 301)) with TempFileName('auto_rgb_planar') as fname: with pytest.warns(DeprecationWarning): imwrite(fname, data) # photometric=RGB, planarconfig=SEPARATE assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_auto_rgba_contig(): """Test write auto contig RGBA.""" data = random_data(numpy.uint8, (219, 301, 4)) with TempFileName('auto_rgba_contig') as fname: imwrite(fname, data) # photometric=RGB assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 4 assert page.extrasamples[0] == UNASSALPHA image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_auto_rgba_planar(): """Test write auto planar RGBA.""" data = random_data(numpy.uint8, (4, 219, 301)) with TempFileName('auto_rgba_planar') as fname: with pytest.warns(DeprecationWarning): imwrite(fname, data) # photometric=RGB, planarconfig=SEPARATE assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 4 assert page.extrasamples[0] == UNASSALPHA image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_extrasamples_contig_rgb(): """Test write contig RGB with extrasamples.""" data = random_data(numpy.uint8, (219, 301, 8)) with TempFileName('extrasamples_contig') as fname: imwrite(fname, data, photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 8 assert len(page.extrasamples) == 5 assert page.extrasamples[0] == UNSPECIFIED image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_extrasamples_planar_rgb(): """Test write planar RGB with extrasamples.""" data = random_data(numpy.uint8, (8, 219, 301)) with TempFileName('extrasamples_planar') as fname: imwrite(fname, data, photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 8 assert len(page.extrasamples) == 5 assert page.extrasamples[0] == UNSPECIFIED image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_write_cfa(): """Test write uncompressed CFA image.""" # TODO: write a valid TIFF/EP file data = imread( private_file('DNG/cinemadng/M14-1451_000085_cDNG_uncompressed.dng') ) extratags = [ (271, 's', 4, 'Make', False), (272, 's', 5, 'Model', False), (33421, 'H', 2, (2, 2), False), # CFARepeatPatternDim (33422, 'B', 4, b'\x00\x01\x01\x02', False), # CFAPattern # (37398, 'B', 4, b'\x01\x00\x00\x00', False), # TIFF/EPStandardID # (37399, 'H', 1, 0) # SensingMethod Undefined # (50706, 'B', 4, b'\x01\x04\x00\x00', False), # DNGVersion ] with TempFileName('write_cfa') as fname: imwrite( fname, data, photometric=CFA, software='Tifffile', datetime=True, extratags=extratags, ) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.compression == 1 assert page.photometric == CFA assert page.imagewidth == 960 assert page.imagelength == 540 assert page.bitspersample == 16 assert page.tags['CFARepeatPatternDim'].value == (2, 2) assert page.tags['CFAPattern'].value == b'\x00\x01\x01\x02' assert_array_equal(page.asarray(), data) assert_aszarr_method(page, data) def test_write_tiled_compressed(): """Test write compressed tiles.""" data = random_data(numpy.uint8, (3, 219, 301)) with TempFileName('tiled_compressed') as fname: imwrite( fname, data, photometric=RGB, planarconfig=SEPARATE, compression=(ADOBE_DEFLATE, 5), tile=(96, 64), ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_tiled assert not page.is_contiguous assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.tilewidth == 64 assert page.tilelength == 96 assert page.samplesperpixel == 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_tiled(): """Test write tiled.""" data = random_data(numpy.uint16, (219, 301)) with TempFileName('tiled') as fname: imwrite(fname, data, tile=(96, 64)) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_tiled assert not page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.tilewidth == 64 assert page.tilelength == 96 assert page.samplesperpixel == 1 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_tiled_planar(): """Test write planar tiles.""" data = random_data(numpy.uint8, (4, 219, 301)) with TempFileName('tiled_planar') as fname: imwrite( fname, data, tile=(96, 64), photometric=RGB, planarconfig=SEPARATE ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_tiled assert not page.is_contiguous assert not page.is_volumetric assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.tilewidth == 64 assert page.tilelength == 96 assert page.samplesperpixel == 4 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_tiled_contig(): """Test write contig tiles.""" data = random_data(numpy.uint8, (219, 301, 3)) with TempFileName('tiled_contig') as fname: imwrite(fname, data, tile=(96, 64), photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_tiled assert not page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.tilewidth == 64 assert page.tilelength == 96 assert page.samplesperpixel == 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_tiled_pages(): """Test write multiple tiled pages.""" data = random_data(numpy.uint8, (5, 219, 301, 3)) with TempFileName('tiled_pages') as fname: imwrite(fname, data, tile=(96, 64), photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 5 page = tif.pages[0] assert page.is_tiled assert not page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric == RGB assert not page.is_volumetric assert page.imagewidth == 301 assert page.imagelength == 219 assert page.tilewidth == 64 assert page.tilelength == 96 assert page.samplesperpixel == 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_tileiter(): """Test write tiles from iterator.""" data = numpy.arange(3 * 4 * 16 * 16, dtype=numpy.uint16).reshape( (3 * 4, 16, 16) ) def tiles(): for i in range(data.shape[0]): yield data[i] with TempFileName('write_tileiter') as fname: with pytest.raises(StopIteration): # missing tiles imwrite( fname, tiles(), shape=(43, 81), tile=(16, 16), dtype=numpy.uint16, ) with pytest.raises(TypeError): # missing parameters imwrite(fname, tiles()) with pytest.raises(TypeError): # missing parameters imwrite(fname, tiles(), shape=(43, 81)) with pytest.raises(ValueError): # dtype mismatch imwrite( fname, tiles(), shape=(43, 61), tile=(16, 16), dtype=numpy.uint32, ) with pytest.raises(ValueError): # shape mismatch imwrite( fname, tiles(), shape=(43, 61), tile=(8, 8), dtype=numpy.uint16 ) imwrite( fname, tiles(), shape=(43, 61), tile=(16, 16), dtype=numpy.uint16 ) with TiffFile(fname) as tif: page = tif.pages[0] assert page.shape == (43, 61) assert page.tilelength == 16 assert page.tilewidth == 16 image = page.asarray() assert_array_equal(image[:16, :16], data[0]) for i, segment in enumerate(page.segments()): assert_array_equal(numpy.squeeze(segment[0]), data[i]) def test_write_tileiter_separate(): """Test write separate tiles from iterator.""" data = numpy.arange(2 * 3 * 4 * 16 * 16, dtype=numpy.uint16) data = data.reshape((2 * 3 * 4, 16, 16)) def tiles(): for i in range(data.shape[0]): yield data[i] with TempFileName('write_tile_iter_separate') as fname: imwrite( fname, tiles(), shape=(2, 43, 61), tile=(16, 16), dtype=numpy.uint16, planarconfig=SEPARATE, compression=ADOBE_DEFLATE, ) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.shape == (2, 43, 61) assert page.tilelength == 16 assert page.tilewidth == 16 assert page.planarconfig == 2 image = page.asarray() assert_array_equal(image[0, :16, :16], data[0]) for i, segment in enumerate(page.segments()): assert_array_equal(numpy.squeeze(segment[0]), data[i]) def test_write_pyramids(): """Test write two pyramids to shaped file.""" data = random_data(numpy.uint8, (31, 64, 96, 3)) with TempFileName('pyramids') as fname: with TiffWriter(fname) as tif: # use pages tif.write(data, tile=(16, 16), photometric=RGB) # interrupt pyramid, e.g. thumbnail tif.write(data[0, :, :, 0]) # pyramid levels tif.write( data[:, ::2, ::2], tile=(16, 16), subfiletype=1, photometric=RGB, ) tif.write( data[:, ::4, ::4], tile=(16, 16), subfiletype=1, photometric=RGB, ) # second pyramid using volumetric with downsampling factor 3 tif.write(data, tile=(16, 16, 16), photometric=RGB) tif.write( data[::3, ::3, ::3], tile=(16, 16, 16), subfiletype=1, photometric=RGB, ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 3 * 31 + 2 + 1 assert len(tif.series) == 3 series = tif.series[0] assert series.is_pyramidal assert len(series.levels) == 3 assert len(series.levels[0].pages) == 31 assert len(series.levels[1].pages) == 31 assert len(series.levels[2].pages) == 31 assert series.levels[0].shape == (31, 64, 96, 3) assert series.levels[1].shape == (31, 32, 48, 3) assert series.levels[2].shape == (31, 16, 24, 3) series = tif.series[1] assert not series.is_pyramidal assert series.shape == (64, 96) series = tif.series[2] assert series.is_pyramidal assert len(series.levels) == 2 assert len(series.levels[0].pages) == 1 assert len(series.levels[1].pages) == 1 assert series.levels[0].keyframe.is_volumetric assert series.levels[1].keyframe.is_volumetric assert series.levels[0].shape == (31, 64, 96, 3) assert series.levels[1].shape == (11, 22, 32, 3) assert_array_equal(tif.asarray(), data) assert_array_equal(tif.asarray(series=0, level=0), data) assert_aszarr_method(tif, data, series=0, level=0) assert_array_equal( data[:, ::2, ::2], tif.asarray(series=0, level=1) ) assert_aszarr_method(tif, data[:, ::2, ::2], series=0, level=1) assert_array_equal( data[:, ::4, ::4], tif.asarray(series=0, level=2) ) assert_aszarr_method(tif, data[:, ::4, ::4], series=0, level=2) assert_array_equal(data[0, :, :, 0], tif.asarray(series=1)) assert_aszarr_method(tif, data[0, :, :, 0], series=1) assert_array_equal(data, tif.asarray(series=2, level=0)) assert_aszarr_method(tif, data, series=2, level=0) assert_array_equal( data[::3, ::3, ::3], tif.asarray(series=2, level=1) ) assert_aszarr_method(tif, data[::3, ::3, ::3], series=2, level=1) assert__str__(tif) def test_write_volumetric_tiled(): """Test write tiled volume.""" data = random_data(numpy.uint8, (253, 64, 96)) with TempFileName('volumetric_tiled') as fname: imwrite(fname, data, tile=(64, 64, 64)) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_volumetric assert page.is_tiled assert not page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 96 assert page.imagelength == 64 assert page.imagedepth == 253 assert page.tilewidth == 64 assert page.tilelength == 64 assert page.tiledepth == 64 assert page.samplesperpixel == 1 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif(SKIP_CODECS, reason=REASON) def test_write_volumetric_tiled_png(): """Test write tiled volume using an image compressor.""" data = random_data(numpy.uint8, (16, 64, 96, 3)) with TempFileName('volumetric_tiled_png') as fname: imwrite( fname, data, tile=(1, 64, 64), photometric=RGB, compression=PNG ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_volumetric assert page.is_tiled assert page.compression == PNG assert not page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric == RGB assert page.imagewidth == 96 assert page.imagelength == 64 assert page.imagedepth == 16 assert page.tilewidth == 64 assert page.tilelength == 64 assert page.tiledepth == 1 assert page.samplesperpixel == 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_volumetric_tiled_planar_rgb(): """Test write 5D array as grayscale volumes.""" shape = (2, 3, 256, 64, 96) data = numpy.empty(shape, dtype=numpy.uint8) data[:] = numpy.arange(256, dtype=numpy.uint8).reshape(1, 1, -1, 1, 1) with TempFileName('volumetric_tiled_planar_rgb') as fname: imwrite( fname, data, tile=(256, 64, 96), photometric=RGB, planarconfig=SEPARATE, ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 2 page = tif.pages[0] assert page.is_volumetric assert page.is_tiled assert page.is_contiguous assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 96 assert page.imagelength == 64 assert page.imagedepth == 256 assert page.tilewidth == 96 assert page.tilelength == 64 assert page.tiledepth == 256 assert page.samplesperpixel == 3 series = tif.series[0] assert len(series._pages) == 1 assert len(series.pages) == 2 assert series.offset is not None assert series.shape == shape image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_volumetric_tiled_contig_rgb(): """Test write 6D array as contig RGB volumes.""" shape = (2, 3, 256, 64, 96, 3) data = numpy.empty(shape, dtype=numpy.uint8) data[:] = numpy.arange(256, dtype=numpy.uint8).reshape(1, 1, -1, 1, 1, 1) with TempFileName('volumetric_tiled_contig_rgb') as fname: imwrite(fname, data, tile=(256, 64, 96), photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 6 page = tif.pages[0] assert page.is_volumetric assert page.is_tiled assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric == RGB assert page.imagewidth == 96 assert page.imagelength == 64 assert page.imagedepth == 256 assert page.tilewidth == 96 assert page.tilelength == 64 assert page.tiledepth == 256 assert page.samplesperpixel == 3 # self.assertEqual(page.tags['TileOffsets'].value, (352,)) assert page.tags['TileByteCounts'].value == (4718592,) series = tif.series[0] assert len(series._pages) == 1 assert len(series.pages) == 6 assert series.offset is not None assert series.shape == shape image = tif.asarray() assert_array_equal(data, image) # assert iterating over series.pages data = data.reshape(6, 256, 64, 96, 3) for i, page in enumerate(series.pages): image = page.asarray() assert_array_equal(data[i], image) assert_aszarr_method(page, image) assert__str__(tif) @pytest.mark.skipif(SKIP_LARGE, reason=REASON) def test_write_volumetric_tiled_contig_rgb_empty(): """Test write empty 6D array as contig RGB volumes.""" shape = (2, 3, 256, 64, 96, 3) with TempFileName('volumetric_tiled_contig_rgb_empty') as fname: with TiffWriter(fname) as tif: tif.write( shape=shape, dtype=numpy.uint8, tile=(256, 64, 96), photometric=RGB, ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 6 page = tif.pages[0] assert page.is_volumetric assert page.is_tiled assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric == RGB assert page.imagewidth == 96 assert page.imagelength == 64 assert page.imagedepth == 256 assert page.tilewidth == 96 assert page.tilelength == 64 assert page.tiledepth == 256 assert page.samplesperpixel == 3 # self.assertEqual(page.tags['TileOffsets'].value, (352,)) assert page.tags['TileByteCounts'].value == (4718592,) series = tif.series[0] assert len(series._pages) == 1 assert len(series.pages) == 6 assert series.offset is not None assert series.shape == shape image = tif.asarray() assert_array_equal(image.shape, shape) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_volumetric_striped(): """Test write striped volume.""" data = random_data(numpy.uint8, (15, 63, 95)) with TempFileName('volumetric_striped') as fname: imwrite(fname, data, volumetric=True) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_volumetric assert not page.is_tiled assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 95 assert page.imagelength == 63 assert page.imagedepth == 15 assert len(page.dataoffsets) == 15 assert len(page.databytecounts) == 15 assert page.samplesperpixel == 1 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif(SKIP_CODECS, reason=REASON) def test_write_volumetric_striped_png(): """Test write tiled volume using an image compressor.""" data = random_data(numpy.uint8, (15, 63, 95, 3)) with TempFileName('volumetric_striped_png') as fname: imwrite( fname, data, photometric=RGB, volumetric=True, rowsperstrip=32, compression=PNG, ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_volumetric assert not page.is_tiled assert page.compression == PNG assert not page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric == RGB assert page.imagewidth == 95 assert page.imagelength == 63 assert page.imagedepth == 15 assert page.samplesperpixel == 3 assert len(page.dataoffsets) == 30 assert len(page.databytecounts) == 30 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert_aszarr_method(tif, image, chunkmode='page') assert__str__(tif) def test_write_volumetric_striped_planar_rgb(): """Test write 5D array as grayscale volumes.""" shape = (2, 3, 15, 63, 96) data = numpy.empty(shape, dtype=numpy.uint8) data[:] = numpy.arange(15, dtype=numpy.uint8).reshape(1, 1, -1, 1, 1) with TempFileName('volumetric_striped_planar_rgb') as fname: imwrite(fname, data, volumetric=True, photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 2 page = tif.pages[0] assert page.is_volumetric assert not page.is_tiled assert page.is_contiguous assert page.planarconfig == SEPARATE assert page.photometric == RGB assert page.imagewidth == 96 assert page.imagelength == 63 assert page.imagedepth == 15 assert page.samplesperpixel == 3 assert len(page.dataoffsets) == 15 * 3 assert len(page.databytecounts) == 15 * 3 series = tif.series[0] assert len(series._pages) == 1 assert len(series.pages) == 2 assert series.offset is not None assert series.shape == shape image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_volumetric_striped_contig_rgb(): """Test write 6D array as contig RGB volumes.""" shape = (2, 3, 15, 63, 95, 3) data = numpy.empty(shape, dtype=numpy.uint8) data[:] = numpy.arange(15, dtype=numpy.uint8).reshape(1, 1, -1, 1, 1, 1) with TempFileName('volumetric_striped_contig_rgb') as fname: imwrite(fname, data, volumetric=True, photometric=RGB) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 6 page = tif.pages[0] assert page.is_volumetric assert not page.is_tiled assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric == RGB assert page.imagewidth == 95 assert page.imagelength == 63 assert page.imagedepth == 15 assert page.samplesperpixel == 3 assert len(page.dataoffsets) == 15 assert len(page.databytecounts) == 15 series = tif.series[0] assert len(series._pages) == 1 assert len(series.pages) == 6 assert series.offset is not None assert series.shape == shape image = tif.asarray() assert_array_equal(data, image) # assert iterating over series.pages data = data.reshape(6, 15, 63, 95, 3) for i, page in enumerate(series.pages): image = page.asarray() assert_array_equal(data[i], image) assert_aszarr_method(page, image) assert__str__(tif) @pytest.mark.skipif(SKIP_LARGE, reason=REASON) def test_write_volumetric_striped_contig_rgb_empty(): """Test write empty 6D array as contig RGB volumes.""" shape = (2, 3, 15, 63, 95, 3) with TempFileName('volumetric_striped_contig_rgb_empty') as fname: with TiffWriter(fname) as tif: tif.write( shape=shape, dtype=numpy.uint8, volumetric=True, photometric=RGB, ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 6 page = tif.pages[0] assert page.is_volumetric assert not page.is_tiled assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric == RGB assert page.imagewidth == 95 assert page.imagelength == 63 assert page.imagedepth == 15 assert page.samplesperpixel == 3 assert len(page.dataoffsets) == 15 assert len(page.databytecounts) == 15 series = tif.series[0] assert len(series._pages) == 1 assert len(series.pages) == 6 assert series.offset is not None assert series.shape == shape image = tif.asarray() assert_array_equal(image.shape, shape) assert_aszarr_method(tif, image) assert__str__(tif) def test_write_contiguous(): """Test contiguous mode.""" data = random_data(numpy.uint8, (5, 4, 219, 301, 3)) with TempFileName('write_contiguous') as fname: with TiffWriter(fname, bigtiff=True) as tif: for i in range(data.shape[0]): tif.write(data[i], contiguous=True, photometric=RGB) # assert_jhove(fname) with TiffFile(fname) as tif: assert tif.is_bigtiff assert len(tif.pages) == 20 # check metadata is updated in-place assert tif.pages[0].tags[270].valueoffset < tif.pages[1].offset for page in tif.pages: assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric == RGB assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 3 image = tif.asarray() assert_array_equal(data, image) assert_aszarr_method(tif, image) assert__str__(tif) @pytest.mark.skipif(SKIP_LARGE, reason=REASON) def test_write_3gb(): """Test write 3 GB no-BigTiff file.""" # https://github.com/blink1073/tifffile/issues/47 data = numpy.empty((4096 - 32, 1024, 1024), dtype=numpy.uint8) with TempFileName('3gb', remove=False) as fname: imwrite(fname, data) del data assert_valid_tiff(fname) # assert file with TiffFile(fname) as tif: assert not tif.is_bigtiff @pytest.mark.skipif(SKIP_LARGE, reason=REASON) def test_write_bigtiff(): """Test write 5GB BigTiff file.""" data = numpy.empty((640, 1024, 1024), dtype=numpy.float64) data[:] = numpy.arange(640, dtype=numpy.float64).reshape(-1, 1, 1) with TempFileName('bigtiff') as fname: # TiffWriter should fail without bigtiff parameter with pytest.raises(ValueError): with TiffWriter(fname) as tif: tif.write(data) # imwrite should use bigtiff for large data imwrite(fname, data) # assert_jhove(fname) # assert file with TiffFile(fname) as tif: assert tif.is_bigtiff assert len(tif.pages) == 640 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 1024 assert page.imagelength == 1024 assert page.samplesperpixel == 1 image = tif.asarray(out='memmap') assert_array_equal(data, image) del image del data assert__str__(tif) @pytest.mark.parametrize('compression', [0, 6]) @pytest.mark.parametrize('dtype', [numpy.uint8, numpy.uint16]) def test_write_palette(dtype, compression): """Test write palette images.""" dtype = numpy.dtype(dtype) data = random_data(dtype, (3, 219, 301)) cmap = random_data(numpy.uint16, (3, 2 ** (data.itemsize * 8))) with TempFileName(f'palette_{compression}{dtype}') as fname: imwrite( fname, data, colormap=cmap, compression=(ADOBE_DEFLATE, compression) if compression else compression, ) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 3 page = tif.pages[0] assert page.is_contiguous != bool(compression) assert page.planarconfig == CONTIG assert page.photometric == PALETTE assert page.imagewidth == 301 assert page.imagelength == 219 assert page.samplesperpixel == 1 for i, page in enumerate(tif.pages): assert_array_equal(apply_colormap(data[i], cmap), page.asrgb()) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_write_palette_django(): """Test write palette read from existing file.""" fname = private_file('django.tiff') with TiffFile(fname) as tif: page = tif.pages[0] assert page.photometric == PALETTE assert page.imagewidth == 320 assert page.imagelength == 480 data = page.asarray() # .squeeze() # UserWarning ... cmap = page.colormap assert__str__(tif) with TempFileName('palette_django') as fname: imwrite(fname, data, colormap=cmap, compression=ADOBE_DEFLATE) assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 1 page = tif.pages[0] assert not page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric == PALETTE assert page.imagewidth == 320 assert page.imagelength == 480 assert page.samplesperpixel == 1 image = page.asrgb(uint8=False) assert_array_equal(apply_colormap(data, cmap), image) assert__str__(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_write_multiple_series(): """Test write multiple data into one file using various options.""" data1 = imread(private_file('ome/multi-channel-4D-series.ome.tif')) image1 = imread(private_file('django.tiff')) image2 = imread(private_file('horse-16bit-col-littleendian.tif')) with TempFileName('multiple_series') as fname: with TiffWriter(fname, bigtiff=False) as tif: # series 0 tif.write( image1, compression=(ADOBE_DEFLATE, 5), description='Django' ) # series 1 tif.write(image2, photometric=RGB) # series 2 tif.write(data1[0], metadata=dict(axes='TCZYX')) for i in range(1, data1.shape[0]): tif.write(data1[i], contiguous=True) # series 3 tif.write(data1[0], contiguous=False) # series 4 tif.write(data1[0, 0, 0], tile=(64, 64)) # series 5 tif.write(image1, compression=ADOBE_DEFLATE, description='DEFLATE') assert_valid_tiff(fname) with TiffFile(fname) as tif: assert len(tif.pages) == 124 assert len(tif.series) == 6 serie = tif.series[0] assert not serie.offset assert serie.axes == 'YX' assert_array_equal(image1, serie.asarray()) assert_aszarr_method(serie, image1) serie = tif.series[1] assert serie.offset assert serie.axes == 'YXS' assert_array_equal(image2, serie.asarray()) assert_aszarr_method(serie, image2) serie = tif.series[2] assert serie.offset assert serie.pages[0].is_contiguous assert serie.axes == 'TCZYX' result = serie.asarray(out='memmap') assert_array_equal(data1, result) assert_aszarr_method(serie, data1) assert tif.filehandle.path == result.filename del result serie = tif.series[3] assert serie.offset assert serie.axes == 'QQYX' assert_array_equal(data1[0], serie.asarray()) assert_aszarr_method(serie, data1[0]) serie = tif.series[4] assert not serie.offset assert serie.axes == 'YX' assert_array_equal(data1[0, 0, 0], serie.asarray()) assert_aszarr_method(serie, data1[0, 0, 0]) serie = tif.series[5] assert not serie.offset assert serie.axes == 'YX' assert_array_equal(image1, serie.asarray()) assert_aszarr_method(serie, image1) assert__str__(tif) # test TiffFile.asarray key and series parameters assert_array_equal(image1, tif.asarray(key=0)) assert_array_equal(image1, tif.asarray(key=-1)) assert_array_equal(image2, tif.asarray(key=[1])) assert_array_equal(image2, tif.asarray(key=0, series=1)) assert_array_equal( image2, tif.asarray(key=0, series=tif.series[1]) ) assert_array_equal( data1, tif.asarray(key=range(2, 107)).reshape(data1.shape) ) assert_array_equal( data1, tif.asarray(key=range(105), series=2).reshape(data1.shape), ) assert_array_equal( data1, tif.asarray(key=slice(None), series=2).reshape(data1.shape), ) assert_array_equal( data1[0], tif.asarray(key=slice(107, 122)).reshape(data1[0].shape), ) assert_array_equal( data1[0].reshape(-1, 167, 439)[::2], tif.asarray(key=slice(107, 122, 2)).reshape((-1, 167, 439)), ) with pytest.raises(RuntimeError): tif.asarray(key=[0, 1]) with pytest.raises(RuntimeError): tif.asarray(key=[-3, -2]) assert_array_equal(image1, imread(fname, key=0)) assert_array_equal(image1, imread(fname, key=-1)) assert_array_equal(image2, imread(fname, key=[1])) assert_array_equal( data1, imread(fname, key=range(2, 107)).reshape(data1.shape) ) assert_array_equal( data1, imread(fname, key=range(105), series=2).reshape(data1.shape) ) assert_array_equal( data1[0], imread(fname, key=slice(107, 122)).reshape(data1[0].shape), ) def assert_fsspec(url, data, target_protocol='http'): """Assert fsspec ReferenceFileSystem from local http server.""" mapper = fsspec.get_mapper( 'reference://', fo=url, target_protocol=target_protocol ) zobj = zarr.open(mapper, mode='r') if isinstance(zobj, zarr.Group): assert_array_equal(zobj[0][:], data) assert_array_equal(zobj[1][:], data[:, ::2, ::2]) assert_array_equal(zobj[2][:], data[:, ::4, ::4]) else: assert_array_equal(zobj[:], data) @pytest.mark.skipif( SKIP_HTTP or SKIP_ZARR or SKIP_CODECS or not imagecodecs.JPEG, reason=REASON, ) @pytest.mark.parametrize('version', [0, 1]) def test_write_fsspec(version): """Test write fsspec for multi-series OME-TIFF.""" try: from imagecodecs.numcodecs import register_codecs except ImportError: register_codecs = None else: register_codecs('imagecodecs_delta', verbose=False) data0 = random_data(numpy.uint8, (3, 252, 244)) data1 = random_data(numpy.uint8, (219, 301, 3)) data2 = random_data(numpy.uint16, (3, 219, 301)) with TempFileName('write_fsspec', ext='.ome.tif') as fname: filename = os.path.split(fname)[-1] with TiffWriter(fname, ome=True, byteorder='>') as tif: # series 0 options = dict( tile=(64, 64), photometric=MINISBLACK, compression=DEFLATE, predictor=HORIZONTAL, ) tif.write(data0, subifds=2, **options) tif.write(data0[:, ::2, ::2], subfiletype=1, **options) tif.write(data0[:, ::4, ::4], subfiletype=1, **options) # series 1 tif.write(data1, photometric=RGB, rowsperstrip=data1.shape[0]) # series 2 tif.write( data2, rowsperstrip=data1.shape[1], photometric=RGB, planarconfig=SEPARATE, ) # series 3 tif.write(data1, photometric=RGB, rowsperstrip=5) # series 4 tif.write(data1, photometric=RGB, tile=(32, 32), compression=JPEG) with TiffFile(fname) as tif: assert tif.is_ome assert len(tif.series) == 5 # TODO: clean up temp JSON files with tif.series[0].aszarr() as store: assert store.is_multiscales store.write_fsspec( fname + f'.v{version}.s0.json', URL, version=version ) assert_fsspec(URL + filename + f'.v{version}.s0.json', data0) with tif.series[1].aszarr() as store: assert not store.is_multiscales store.write_fsspec( fname + f'.v{version}.s1.json', URL, version=version ) assert_fsspec(URL + filename + f'.v{version}.s1.json', data1) with tif.series[2].aszarr() as store: store.write_fsspec( fname + f'.v{version}.s2.json', URL, version=version ) assert_fsspec(URL + filename + f'.v{version}.s2.json', data2) with tif.series[3].aszarr(chunkmode=2) as store: store.write_fsspec( fname + f'.v{version}.s3.json', URL, version=version ) assert_fsspec(URL + filename + f'.v{version}.s3.json', data1) with tif.series[3].aszarr() as store: with pytest.raises(ValueError): # imagelength % rowsperstrip != 0 store.write_fsspec( fname + f'.v{version}.s3fail.json', URL, version=version, ) with tif.series[4].aszarr() as store: store.write_fsspec( fname + f'.v{version}.s4.json', URL, version=version ) if version == 0: with pytest.raises(ValueError): # codec not available: 'imagecodecs_jpeg' assert_fsspec( URL + filename + f'.v{version}.s4.json', data1 ) if register_codecs is not None: register_codecs('imagecodecs_jpeg', verbose=False) assert_fsspec( URL + filename + f'.v{version}.s4.json', tif.series[4].asarray(), ) @pytest.mark.skipif( SKIP_PRIVATE or SKIP_LARGE or SKIP_CODECS or SKIP_ZARR, reason=REASON ) @pytest.mark.parametrize('version', [1]) # 0, def test_write_fsspec_sequence(version): """Test write fsspec for multi-file sequence.""" # https://bbbc.broadinstitute.org/BBBC006 categories = {'p': {chr(i + 97): i for i in range(25)}} ptrn = r'(?:_(z)_(\d+)).*_(?P

[a-z])(?P\d+)(?:_(s)(\d))(?:_(w)(\d))' fnames = private_file('BBBC/BBBC006_v1_images_z_00/*.tif') fnames += private_file('BBBC/BBBC006_v1_images_z_01/*.tif') tifs = TiffSequence( fnames, imread=imagecodecs.imread, pattern=ptrn, axesorder=(1, 2, 0, 3, 4), categories=categories, ) assert len(tifs) == 3072 assert tifs.shape == (16, 24, 2, 2, 2) assert tifs.axes == 'PAZSW' data = tifs.asarray() with TempFileName( 'write_fsspec_sequence', ext=f'.v{version}.json' ) as fname: with tifs.aszarr(codec=imagecodecs.tiff_decode) as store: store.write_fsspec( fname, 'file:///' + store._commonpath.replace('\\', '/'), version=version, ) mapper = fsspec.get_mapper( 'reference://', fo=fname, target_protocol='file' ) from imagecodecs.numcodecs import register_codecs register_codecs() za = zarr.open(mapper, mode='r') assert_array_equal(za[:], data) @pytest.mark.skipif(SKIP_ZARR, reason=REASON) def test_write_numcodecs(): """Test write zarr with numcodecs.Tiff.""" from tifffile import numcodecs data = numpy.arange(256 * 256 * 3, dtype=numpy.uint16).reshape(256, 256, 3) numcodecs.register_codec() compressor = numcodecs.Tiff( bigtiff=True, photometric=MINISBLACK, planarconfig=CONTIG, compression=(ADOBE_DEFLATE, 5), key=0, ) with TempFileName('write_numcodecs', ext='.zarr') as fname: z = zarr.open( fname, mode='w', shape=(256, 256, 3), chunks=(100, 100, 3), dtype=numpy.uint16, compressor=compressor, ) z[:] = data assert_array_equal(z[:], data) ############################################################################### # Test ImageJ writing @pytest.mark.skipif(SKIP_EXTENDED, reason=REASON) @pytest.mark.parametrize( 'shape', [ (219, 301, 1), (219, 301, 2), (219, 301, 3), (219, 301, 4), (219, 301, 5), (1, 219, 301), (2, 219, 301), (3, 219, 301), (4, 219, 301), (5, 219, 301), (4, 3, 219, 301), (4, 219, 301, 3), (3, 4, 219, 301), (1, 3, 1, 219, 301), (3, 1, 1, 219, 301), (1, 3, 4, 219, 301), (3, 1, 4, 219, 301), (3, 4, 1, 219, 301), (3, 4, 1, 219, 301, 3), (2, 3, 4, 219, 301), (4, 3, 2, 219, 301, 3), ], ) @pytest.mark.parametrize( 'dtype', [numpy.uint8, numpy.uint16, numpy.int16, numpy.float32] ) @pytest.mark.parametrize('byteorder', ['>', '<']) def test_write_imagej(byteorder, dtype, shape): """Test write ImageJ format.""" # TODO: test compression and bigtiff ? dtype = numpy.dtype(dtype) if dtype != numpy.uint8 and shape[-1] in (3, 4): pytest.xfail('ImageJ only supports uint8 RGB') data = random_data(dtype, shape) fname = 'imagej_{}_{}_{}'.format( {'<': 'le', '>': 'be'}[byteorder], dtype, str(shape).replace(' ', '') ) with TempFileName(fname) as fname: imwrite(fname, data, byteorder=byteorder, imagej=True) image = imread(fname) assert_array_equal(data.squeeze(), image.squeeze()) # TODO: assert_aszarr_method assert_valid_tiff(fname) def test_write_imagej_voxel_size(): """Test write ImageJ with xyz voxel size 2.6755x2.6755x3.9474 µm^3.""" data = numpy.zeros((4, 256, 256), dtype=numpy.float32) data.shape = 4, 1, 256, 256 with TempFileName('imagej_voxel_size') as fname: imwrite( fname, data, imagej=True, resolution=(0.373759, 0.373759), metadata={'spacing': 3.947368, 'unit': 'um'}, ) with TiffFile(fname) as tif: assert tif.is_imagej assert 'unit' in tif.imagej_metadata assert tif.imagej_metadata['unit'] == 'um' series = tif.series[0] assert series.axes == 'ZYX' assert series.shape == (4, 256, 256) assert series.get_axes(False) == 'TZCYXS' assert series.get_shape(False) == (1, 4, 1, 256, 256, 1) assert__str__(tif) assert_valid_tiff(fname) def test_write_imagej_metadata(): """Test write additional ImageJ metadata.""" data = numpy.empty((4, 256, 256), dtype=numpy.uint16) data[:] = numpy.arange(256 * 256, dtype=numpy.uint16).reshape(1, 256, 256) with TempFileName('imagej_metadata') as fname: imwrite(fname, data, imagej=True, metadata={'unit': 'um'}) with TiffFile(fname) as tif: assert tif.is_imagej assert 'unit' in tif.imagej_metadata assert tif.imagej_metadata['unit'] == 'um' assert__str__(tif) assert_valid_tiff(fname) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_write_imagej_ijmetadata_tag(): """Test write and read IJMetadata tag.""" fname = private_file('imagej/IJMetadata.tif') with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '>' assert len(tif.pages) == 3 assert len(tif.series) == 1 data = tif.asarray() ijmetadata = tif.pages[0].tags['IJMetadata'].value assert ijmetadata['Info'][:21] == 'FluorescentCells.tif\n' assert ijmetadata['ROI'][:5] == b'Iout\x00' assert ijmetadata['Overlays'][1][:5] == b'Iout\x00' assert ijmetadata['Ranges'] == (0.0, 255.0, 0.0, 255.0, 0.0, 255.0) assert ijmetadata['Labels'] == ['Red', 'Green', 'Blue'] assert ijmetadata['LUTs'][2][2, 255] == 255 assert_valid_tiff(fname) with TempFileName('imagej_ijmetadata') as fname: with pytest.warns(DeprecationWarning): imwrite( fname, data, byteorder='>', imagej=True, metadata={'mode': 'composite'}, ijmetadata=ijmetadata, ) imwrite( fname, data, byteorder='>', imagej=True, metadata={**ijmetadata, 'mode': 'composite'}, ) with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '>' assert len(tif.pages) == 3 assert len(tif.series) == 1 imagej_metadata = tif.imagej_metadata data2 = tif.asarray() ijmetadata2 = tif.pages[0].tags['IJMetadata'].value assert__str__(tif) assert_array_equal(data, data2) assert imagej_metadata['mode'] == 'composite' assert imagej_metadata['Info'] == ijmetadata['Info'] assert ijmetadata2['Info'] == ijmetadata['Info'] assert ijmetadata2['ROI'] == ijmetadata['ROI'] assert ijmetadata2['Overlays'] == ijmetadata['Overlays'] assert ijmetadata2['Ranges'] == ijmetadata['Ranges'] assert ijmetadata2['Labels'] == ijmetadata['Labels'] assert_array_equal(ijmetadata2['LUTs'][2], ijmetadata['LUTs'][2]) assert_valid_tiff(fname) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_write_imagej_roundtrip(): """Test ImageJ metadata survive read/write roundtrip.""" fname = private_file('imagej/IJMetadata.tif') with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '>' assert len(tif.pages) == 3 assert len(tif.series) == 1 data = tif.asarray() ijmetadata = tif.imagej_metadata assert ijmetadata['Info'][:21] == 'FluorescentCells.tif\n' assert ijmetadata['ROI'][:5] == b'Iout\x00' assert ijmetadata['Overlays'][1][:5] == b'Iout\x00' assert ijmetadata['Ranges'] == (0.0, 255.0, 0.0, 255.0, 0.0, 255.0) assert ijmetadata['Labels'] == ['Red', 'Green', 'Blue'] assert ijmetadata['LUTs'][2][2, 255] == 255 assert ijmetadata['mode'] == 'composite' assert not ijmetadata['loop'] assert ijmetadata['ImageJ'] == '1.52b' assert_valid_tiff(fname) with TempFileName('imagej_ijmetadata_roundtrip') as fname: imwrite(fname, data, byteorder='>', imagej=True, metadata=ijmetadata) with TiffFile(fname) as tif: assert tif.is_imagej assert tif.byteorder == '>' assert len(tif.pages) == 3 assert len(tif.series) == 1 ijmetadata2 = tif.imagej_metadata data2 = tif.asarray() assert__str__(tif) assert_array_equal(data, data2) assert ijmetadata2['ImageJ'] == ijmetadata['ImageJ'] assert ijmetadata2['mode'] == ijmetadata['mode'] assert ijmetadata2['Info'] == ijmetadata['Info'] assert ijmetadata2['ROI'] == ijmetadata['ROI'] assert ijmetadata2['Overlays'] == ijmetadata['Overlays'] assert ijmetadata2['Ranges'] == ijmetadata['Ranges'] assert ijmetadata2['Labels'] == ijmetadata['Labels'] assert_array_equal(ijmetadata2['LUTs'][2], ijmetadata['LUTs'][2]) assert_valid_tiff(fname) @pytest.mark.parametrize('mmap', [False, True]) @pytest.mark.parametrize('truncate', [False, True]) def test_write_imagej_hyperstack(truncate, mmap): """Test write ImageJ hyperstack.""" shape = (5, 6, 7, 49, 61, 3) data = numpy.empty(shape, dtype=numpy.uint8) data[:] = numpy.arange(210, dtype=numpy.uint8).reshape(5, 6, 7, 1, 1, 1) _truncate = ['', '_trunc'][truncate] _memmap = ['', '_memmap'][mmap] with TempFileName(f'imagej_hyperstack{_truncate}{_memmap}') as fname: if mmap: image = memmap( fname, shape=data.shape, dtype=data.dtype, imagej=True, truncate=truncate, ) image[:] = data del image else: imwrite(fname, data, truncate=truncate, imagej=True) # assert file with TiffFile(fname) as tif: assert not tif.is_bigtiff assert not tif.is_shaped assert len(tif.pages) == 1 if truncate else 210 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric == RGB assert page.imagewidth == 61 assert page.imagelength == 49 assert page.samplesperpixel == 3 # assert series properties series = tif.series[0] assert series.shape == shape assert len(series._pages) == 1 assert len(series.pages) == 1 if truncate else 210 assert series.dtype == numpy.uint8 assert series.axes == 'TZCYXS' assert series.get_axes(False) == 'TZCYXS' assert series.get_shape(False) == shape # assert data image = tif.asarray(out='memmap') assert_array_equal(data.squeeze(), image.squeeze()) del image # assert iterating over series.pages data = data.reshape(210, 49, 61, 3) for i, page in enumerate(series.pages): image = page.asarray() assert_array_equal(data[i], image) del image assert__str__(tif) assert_valid_tiff(fname) def test_write_imagej_append(): """Test write ImageJ file consecutively.""" data = numpy.empty((256, 1, 256, 256), dtype=numpy.uint8) data[:] = numpy.arange(256, dtype=numpy.uint8).reshape(-1, 1, 1, 1) with TempFileName('imagej_append') as fname: with TiffWriter(fname, imagej=True) as tif: for image in data: tif.write(image, contiguous=True) assert_valid_tiff(fname) # assert file with TiffFile(fname) as tif: assert not tif.is_bigtiff assert not tif.is_shaped assert len(tif.pages) == 256 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 256 assert page.imagelength == 256 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (256, 256, 256) assert series.dtype == numpy.uint8 assert series.axes == 'ZYX' assert series.get_axes(False) == 'TZCYXS' assert series.get_shape(False) == (1, 256, 1, 256, 256, 1) # assert data image = tif.asarray(out='memmap') assert_array_equal(data.squeeze(), image) del image assert__str__(tif) @pytest.mark.skipif(SKIP_LARGE, reason=REASON) def test_write_imagej_raw(): """Test write ImageJ 5 GB raw file.""" data = numpy.empty((1280, 1, 1024, 1024), dtype=numpy.float32) data[:] = numpy.arange(1280, dtype=numpy.float32).reshape(-1, 1, 1, 1) with TempFileName('imagej_big') as fname: with pytest.warns(UserWarning): # UserWarning: truncating ImageJ file imwrite(fname, data, imagej=True) assert_valid_tiff(fname) # assert file with TiffFile(fname) as tif: assert not tif.is_bigtiff assert not tif.is_shaped assert len(tif.pages) == 1 page = tif.pages[0] assert page.is_contiguous assert page.planarconfig == CONTIG assert page.photometric != RGB assert page.imagewidth == 1024 assert page.imagelength == 1024 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert len(series._pages) == 1 assert len(series.pages) == 1 assert series.shape == (1280, 1024, 1024) assert series.dtype == numpy.float32 assert series.axes == 'ZYX' assert series.get_axes(False) == 'TZCYXS' assert series.get_shape(False) == (1, 1280, 1, 1024, 1024, 1) # assert data image = tif.asarray(out='memmap') assert_array_equal(data.squeeze(), image.squeeze()) del image assert__str__(tif) @pytest.mark.skipif(SKIP_EXTENDED, reason=REASON) @pytest.mark.parametrize( 'shape, axes', [ ((219, 301, 1), None), ((219, 301, 2), None), ((219, 301, 3), None), ((219, 301, 4), None), ((219, 301, 5), None), ((1, 219, 301), None), ((2, 219, 301), None), ((3, 219, 301), None), ((4, 219, 301), None), ((5, 219, 301), None), ((4, 3, 219, 301), None), ((4, 219, 301, 3), None), ((3, 4, 219, 301), None), ((1, 3, 1, 219, 301), None), ((3, 1, 1, 219, 301), None), ((1, 3, 4, 219, 301), None), ((3, 1, 4, 219, 301), None), ((3, 4, 1, 219, 301), None), ((3, 4, 1, 219, 301, 3), None), ((2, 3, 4, 219, 301), None), ((4, 3, 2, 219, 301, 3), None), ((5, 1, 32, 32), 'CSYX'), ((5, 1, 32, 32), 'ZCYX'), ((2, 3, 4, 219, 301, 3), 'TCZYXS'), ((10, 5, 200, 200), 'EPYX'), ((2, 3, 4, 5, 6, 7, 32, 32, 3), 'TQCPZRYXS'), ], ) def test_write_ome(shape, axes): """Test write OME-TIFF format.""" photometric = None planarconfig = None if shape[-1] in (3, 4): photometric = RGB planarconfig = CONTIG elif shape[-3] in (3, 4): photometric = RGB planarconfig = SEPARATE metadata = {'axes': axes} if axes is not None else {} data = random_data(numpy.uint8, shape) fname = 'write_ome_{}.ome'.format(str(shape).replace(' ', '')) with TempFileName(fname) as fname: imwrite( fname, data, metadata=metadata, photometric=photometric, planarconfig=planarconfig, ) with TiffFile(fname) as tif: assert tif.is_ome assert not tif.is_shaped image = tif.asarray() omexml = tif.ome_metadata if axes: assert tif.series[0].axes == squeeze_axes(shape, axes)[-1] assert_array_equal(data.squeeze(), image.squeeze()) assert_aszarr_method(tif, image) assert_valid_omexml(omexml) assert_valid_tiff(fname) def test_write_ome_enable(): """Test OME-TIFF enabling.""" data = numpy.zeros((32, 32), dtype=numpy.uint8) with TempFileName('write_ome_enable.ome') as fname: imwrite(fname, data) with TiffFile(fname) as tif: assert tif.is_ome imwrite(fname, data, description='not OME') with TiffFile(fname) as tif: assert not tif.is_ome with pytest.warns(UserWarning): imwrite(fname, data, description='not OME', ome=True) with TiffFile(fname) as tif: assert tif.is_ome imwrite(fname, data, imagej=True) with TiffFile(fname) as tif: assert not tif.is_ome assert tif.is_imagej imwrite(fname, data, imagej=True, ome=True) with TiffFile(fname) as tif: assert tif.is_ome assert not tif.is_imagej with TempFileName('write_ome_auto.tif') as fname: imwrite(fname, data) with TiffFile(fname) as tif: assert not tif.is_ome imwrite(fname, data, ome=True) with TiffFile(fname) as tif: assert tif.is_ome @pytest.mark.skipif(SKIP_PUBLIC, reason=REASON) @pytest.mark.parametrize( 'method', ['manual', 'copy', 'iter', 'compression', 'xml'] ) def test_write_ome_methods(method): """Test re-write OME-TIFF.""" # 4D (7 time points, 5 focal planes) fname = public_file('OME/bioformats-artificial/4D-series.ome.tiff') with TiffFile(fname) as tif: series = tif.series[0] data = series.asarray() dtype = data.dtype shape = data.shape axes = series.axes omexml = tif.ome_metadata def pages(): for image in data.reshape(-1, *data.shape[-2:]): yield image with TempFileName(f'write_ome_{method}.ome') as fname: if method == 'xml': # use original XML metadata metadata = xml2dict(omexml) metadata['axes'] = axes imwrite( fname, data, byteorder='>', photometric=MINISBLACK, metadata=metadata, ) elif method == 'manual': # manually write omexml to first page and data to individual pages # process OME-XML omexml = omexml.replace( '4D-series.ome.tiff', os.path.split(fname)[-1] ) # omexml = omexml.replace('BigEndian="true"', 'BigEndian="false"') data = data.newbyteorder('>') # save image planes in the order referenced in the OME-XML # make sure storage options (compression, byteorder, photometric) # match OME-XML # write OME-XML to first page only with TiffWriter(fname, byteorder='>') as tif: for i, image in enumerate(pages()): description = omexml if i == 0 else None tif.write( image, description=description, photometric=MINISBLACK, metadata=None, contiguous=False, ) elif method == 'iter': # use iterator over individual pages imwrite( fname, pages(), shape=shape, dtype=dtype, byteorder='>', photometric=MINISBLACK, metadata={'axes': axes}, ) elif method == 'compression': # use iterator with compression imwrite( fname, pages(), shape=shape, dtype=dtype, compression=ADOBE_DEFLATE, byteorder='>', photometric=MINISBLACK, metadata={'axes': axes}, ) elif method == 'copy': # use one numpy array imwrite( fname, data, byteorder='>', photometric=MINISBLACK, metadata={'axes': axes}, ) with TiffFile(fname) as tif: assert tif.is_ome assert tif.byteorder == '>' assert len(tif.pages) == 35 assert len(tif.series) == 1 # assert page properties page = tif.pages[0] if method != 'compression': assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 439 assert page.imagelength == 167 assert page.bitspersample == 8 assert page.samplesperpixel == 1 # assert series properties series = tif.series[0] assert series.shape == (7, 5, 167, 439) assert series.dtype == numpy.int8 assert series.axes == 'TZYX' # assert data assert_array_equal(data, tif.asarray()) assert_valid_omexml(tif.ome_metadata) assert__str__(tif) assert_valid_tiff(fname) @pytest.mark.parametrize('contiguous', [True, False]) def test_write_ome_manual(contiguous): """Test writing OME-TIFF manually.""" data = numpy.random.randint(0, 255, (19, 31, 21), numpy.uint8) with TempFileName(f'write_ome__manual{int(contiguous)}.ome') as fname: with TiffWriter(fname) as tif: # sucessively write image data to TIFF pages # disable tifffile from writing any metadata # add empty ImageDescription tag to first page for i, frame in enumerate(data): tif.write( frame, contiguous=contiguous, metadata=None, description=None if i else b'', ) # update ImageDescription tag with custom OME-XML xml = OmeXml() xml.addimage( numpy.uint8, (16, 31, 21), (16, 1, 1, 31, 21, 1), axes='ZYX' ) xml.addimage( numpy.uint8, (3, 31, 21), (3, 1, 1, 31, 21, 1), axes='CYX' ) tif.overwrite_description(xml.tostring()) with TiffFile(fname) as tif: assert tif.is_ome assert len(tif.pages) == 19 assert len(tif.series) == 2 # assert series properties series = tif.series[0] assert series.axes == 'ZYX' assert bool(series.offset) == contiguous assert_array_equal(data[:16], series.asarray()) series = tif.series[1] assert series.axes == 'CYX' assert bool(series.offset) == contiguous assert_array_equal(data[16:], series.asarray()) # assert_valid_omexml(tif.ome_metadata) assert__str__(tif) assert_valid_tiff(fname) @pytest.mark.skipif( SKIP_PRIVATE or SKIP_CODECS or not imagecodecs.JPEG or SKIP_LARGE, reason=REASON, ) def test_write_ome_copy(): """Test write pyramidal OME-TIFF by copying compressed tiles from SVS.""" def tiles(page): # return iterator over compressed tiles in page assert page.is_tiled fh = page.parent.filehandle for offset, bytecount in zip(page.dataoffsets, page.databytecounts): fh.seek(offset) yield fh.read(bytecount) with TiffFile(private_file('AperioSVS/CMU-1.svs')) as svs: assert svs.is_svs levels = svs.series[0].levels with TempFileName('_write_ome_copy', ext='.ome.tif') as fname: with TiffWriter(fname, ome=True, bigtiff=True) as tif: level = levels[0] assert len(level.pages) == 1 page = level.pages[0] if page.compression == 7: # override default that RGB will be compressed as YCBCR compressionargs = {'outcolorspace': page.photometric} else: compressionargs = {} extratags = ( # copy some extra tags page.tags.get('ImageDepth')._astuple(), page.tags.get('InterColorProfile')._astuple(), ) tif.write( tiles(page), shape=page.shape, dtype=page.dtype, tile=(page.tilelength, page.tilewidth), photometric=page.photometric, planarconfig=page.planarconfig, compression=(page.compression, None, compressionargs), jpegtables=page.jpegtables, subsampling=page.subsampling, subifds=len(levels) - 1, extratags=extratags, ) for level in levels[1:]: assert len(level.pages) == 1 page = level.pages[0] if page.compression == 7: compressionargs = {'outcolorspace': page.photometric} else: compressionargs = {} tif.write( tiles(page), shape=page.shape, dtype=page.dtype, tile=(page.tilelength, page.tilewidth), photometric=page.photometric, planarconfig=page.planarconfig, compression=(page.compression, None, compressionargs), jpegtables=page.jpegtables, subsampling=page.subsampling, subfiletype=1, ) with TiffFile(fname) as tif: assert tif.is_ome assert len(tif.pages) == 1 assert len(tif.pages[0].pages) == 2 assert 'InterColorProfile' in tif.pages[0].tags assert tif.pages[0].tags['ImageDepth'].value == 1 levels_ = tif.series[0].levels assert len(levels_) == len(levels) for level, level_ in zip(levels[1:], levels_[1:]): assert level.shape == level_.shape assert level.dtype == level_.dtype assert_array_equal(level.asarray(), level_.asarray()) @pytest.mark.skipif( SKIP_PRIVATE or SKIP_CODECS or not imagecodecs.JPEG, reason=REASON ) @pytest.mark.xfail # TODO: should pass once strip generators are supported def test_write_geotiff_copy(): """Test write a copy of striped, compressed GeoTIFF.""" def strips(page): # return iterator over compressed tiles in page assert not page.is_tiled fh = page.parent.filehandle for offset, bytecount in zip(page.dataoffsets, page.databytecounts): fh.seek(offset) yield fh.read(bytecount) with TiffFile(private_file('GeoTIFF/ML_30m.tif')) as geotiff: assert geotiff.is_geotiff assert len(geotiff.pages) == 1 with TempFileName('_write_geotiff_copy') as fname: with TiffWriter( fname, byteorder=geotiff.byteorder, bigtiff=geotiff.is_bigtiff ) as tif: page = geotiff.pages[0] tags = page.tags extratags = ( tags.get('ModelPixelScaleTag')._astuple(), tags.get('ModelTiepointTag')._astuple(), tags.get('GeoKeyDirectoryTag')._astuple(), tags.get('GeoAsciiParamsTag')._astuple(), tags.get('GDAL_NODATA')._astuple(), ) tif.write( strips(page), shape=page.shape, dtype=page.dtype, rowsperstrip=page.rowsperstrip, photometric=page.photometric, planarconfig=page.planarconfig, compression=page.compression, predictor=page.predictor, jpegtables=page.jpegtables, subsampling=page.subsampling, extratags=extratags, ) with TiffFile(fname) as tif: assert tif.is_geotiff assert len(tif.pages) == 1 assert tif.nodata == -32767 assert tif.pages[0].tags['ModelPixelScaleTag'].value == ( 30.0, 30.0, 0.0, ) assert tif.pages[0].tags['ModelTiepointTag'].value == ( 0.0, 0.0, 0.0, 1769487.0, 5439473.0, 0.0, ) assert tif.geotiff_metadata['GeogAngularUnitsGeoKey'] == 9102 assert_array_equal(tif.asarray(), geotiff.asarray()) ############################################################################### # Test embedded TIFF files EMBED_NAME = public_file('tifffile/test_FileHandle.bin') EMBED_OFFSET = 7077 EMBED_SIZE = 5744 EMBED_OFFSET1 = 13820 EMBED_SIZE1 = 7936382 def assert_embed_tif(tif): """Assert embedded TIFF file.""" # 4 series in 6 pages assert tif.byteorder == '<' assert len(tif.pages) == 6 assert len(tif.series) == 4 # assert series 0 properties series = tif.series[0] assert series.shape == (3, 20, 20) assert series.dtype == numpy.uint8 assert series.axes == 'IYX' page = series.pages[0] assert page.compression == LZW assert page.imagewidth == 20 assert page.imagelength == 20 assert page.bitspersample == 8 assert page.samplesperpixel == 1 data = tif.asarray(series=0) assert isinstance(data, numpy.ndarray) assert data.shape == (3, 20, 20) assert data.dtype == numpy.uint8 assert tuple(data[:, 9, 9]) == (19, 90, 206) # assert series 1 properties series = tif.series[1] assert series.shape == (10, 10, 3) assert series.dtype == numpy.float32 assert series.axes == 'YXS' page = series.pages[0] assert page.photometric == RGB assert page.compression == LZW assert page.imagewidth == 10 assert page.imagelength == 10 assert page.bitspersample == 32 assert page.samplesperpixel == 3 data = tif.asarray(series=1) assert isinstance(data, numpy.ndarray) assert data.shape == (10, 10, 3) assert data.dtype == numpy.float32 assert round(abs(data[9, 9, 1] - 214.5733642578125), 7) == 0 # assert series 2 properties series = tif.series[2] assert series.shape == (20, 20, 3) assert series.dtype == numpy.uint8 assert series.axes == 'YXS' page = series.pages[0] assert page.photometric == RGB assert page.compression == LZW assert page.imagewidth == 20 assert page.imagelength == 20 assert page.bitspersample == 8 assert page.samplesperpixel == 3 data = tif.asarray(series=2) assert isinstance(data, numpy.ndarray) assert data.shape == (20, 20, 3) assert data.dtype == numpy.uint8 assert tuple(data[9, 9, :]) == (19, 90, 206) # assert series 3 properties series = tif.series[3] assert series.shape == (10, 10) assert series.dtype == numpy.float32 assert series.axes == 'YX' page = series.pages[0] assert page.compression == LZW assert page.imagewidth == 10 assert page.imagelength == 10 assert page.bitspersample == 32 assert page.samplesperpixel == 1 data = tif.asarray(series=3) assert isinstance(data, numpy.ndarray) assert data.shape == (10, 10) assert data.dtype == numpy.float32 assert round(abs(data[9, 9] - 223.1648712158203), 7) == 0 assert__str__(tif) def assert_embed_micromanager(tif): """Assert embedded MicroManager TIFF file.""" assert tif.is_ome assert tif.is_imagej assert tif.is_micromanager assert tif.byteorder == '<' assert len(tif.pages) == 15 assert len(tif.series) == 1 # assert non-tiff micromanager_metadata tags = tif.micromanager_metadata['Summary'] assert tags['MicroManagerVersion'] == '1.4.x dev' assert tags['UserName'] == 'trurl' # assert page properties page = tif.pages[0] assert page.is_contiguous assert page.compression == NONE assert page.imagewidth == 512 assert page.imagelength == 512 assert page.bitspersample == 16 assert page.samplesperpixel == 1 # two description tags assert page.description.startswith('[a-z])(?P\d+)(?:_(s)(\d))(?:_(w)(\d))' fnames = private_file('BBBC/BBBC006_v1_images_z_00/*.tif') fnames += private_file('BBBC/BBBC006_v1_images_z_01/*.tif') tifs = TiffSequence( fnames, pattern=ptrn, categories=categories, axesorder=(1, 2, 0, 3, 4) ) assert len(tifs) == 3072 assert tifs.shape == (16, 24, 2, 2, 2) assert tifs.axes == 'PAZSW' data = tifs.asarray() assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.shape == (16, 24, 2, 2, 2, 520, 696) assert data.dtype == numpy.uint16 assert data[8, 12, 1, 0, 1, 256, 519] == 1579 if not SKIP_ZARR: with tifs.aszarr() as store: assert_array_equal(data, zarr.open(store, mode='r')) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_LARGE, reason=REASON) @pytest.mark.parametrize('tiled', [False, True]) def test_sequence_tiled(tiled): """Test FileSequence with tiled OME-TIFFs.""" # Dataset from https://github.com/tlambert03/tifffolder/issues/2 ptrn = re.compile( r'\[(?P\d+) x (?P\d+)\].*(C)(\d+).*(Z)(\d+)', re.IGNORECASE ) fnames = private_file('TiffSequenceTiled/*.tif', expand=False) tifs = TiffSequence(fnames, pattern=ptrn) assert len(tifs) == 60 assert tifs.shape == (2, 3, 2, 5) assert tifs.axes == 'UVCZ' tiled = {0: 0, 1: 1} if tiled else None data = tifs.asarray(axestiled=tiled, is_ome=False) assert isinstance(data, numpy.ndarray) assert data.flags['C_CONTIGUOUS'] assert data.dtype == numpy.uint16 if tiled: assert data.shape == (2, 5, 2 * 2560, 3 * 2160) assert data[1, 3, 2560 + 1024, 2 * 2160 + 1024] == 596 else: assert data.shape == (2, 3, 2, 5, 2560, 2160) assert data[1, 2, 1, 3, 1024, 1024] == 596 if not SKIP_ZARR: with tifs.aszarr(axestiled=tiled, is_ome=False) as store: if tiled: assert_array_equal( data[1, 3, 2048:3072], zarr.open(store, mode='r')[1, 3, 2048:3072], ) else: assert_array_equal( data[1, 2, 1, 3:5], zarr.open(store, mode='r')[1, 2, 1, 3:5], ) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_CODECS, reason=REASON) def test_sequence_imread(): """Test TiffSequence with imagecodecs.imread.""" fname = private_file('PNG/*.png') pngs = TiffSequence(fname, imread=imagecodecs.imread) assert len(pngs) == 4 assert pngs.shape == (4,) assert pngs.axes == 'I' data = pngs.asarray(codec=imagecodecs.png_decode) assert data.flags['C_CONTIGUOUS'] assert data.shape == (4, 200, 200) assert data.dtype == numpy.uint16 if not SKIP_ZARR: with pngs.aszarr(codec=imagecodecs.png_decode) as store: assert_array_equal(data, zarr.open(store, mode='r')) del data ############################################################################### # Test packages depending on tifffile @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_depend_roifile(): """Test roifile.ImagejRoi class.""" from roifile import ImagejRoi # noqa for roi in ImagejRoi.fromfile(private_file('imagej/IJMetadata.tif')): assert roi == ImagejRoi.frombytes(roi.tobytes()) roi.coordinates() roi.__str__() @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_depend_lfdfiles(): """Test lfdfiles conversion to TIFF.""" from lfdfiles import SimfcsZ64 # noqa filename = private_file('SimFCS/simfcs.Z64') with TempFileName('simfcsz_z64', ext='.tif') as outfile: with SimfcsZ64(filename) as z64: data = z64.asarray() z64.totiff(outfile) with TiffFile(outfile) as tif: assert len(tif.pages) == 256 assert len(tif.series) == 1 assert tif.series[0].shape == (256, 256, 256) assert tif.series[0].dtype == numpy.float32 assert_array_equal(data, tif.asarray()) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_depend_cmapfile(): """Test cmapfile.lsm2cmap.""" from cmapfile import CmapFile, lsm2cmap # noqa filename = private_file('LSM/3d_zfish_onephoton_zoom.lsm') data = imread(filename) with TempFileName('cmapfile', ext='.cmap') as cmapfile: lsm2cmap(filename, cmapfile, step=(1.0, 1.0, 20.0)) fname = os.path.join( os.path.split(cmapfile)[0], 'test_cmapfile.ch0000.cmap' ) with CmapFile(fname, mode='r') as cmap: assert_array_equal( cmap['map00000']['data00000'], data.squeeze()[:, 0, :, :] ) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_depend_czifile(): """Test czifile.CziFile.""" # TODO: test LZW compressed czi file from czifile import CziFile fname = private_file('czi/pollen.czi') with CziFile(fname) as czi: assert czi.shape == (1, 1, 104, 365, 364, 1) assert czi.axes == 'TCZYX0' # verify data data = czi.asarray() assert data.flags['C_CONTIGUOUS'] assert data.shape == (1, 1, 104, 365, 364, 1) assert data.dtype == numpy.uint8 assert data[0, 0, 52, 182, 182, 0] == 10 @pytest.mark.skipif(SKIP_PRIVATE or SKIP_LARGE, reason=REASON) def test_depend_czi2tif(): """Test czifile.czi2tif.""" from czifile.czifile import CziFile, czi2tif fname = private_file('CZI/pollen.czi') with CziFile(fname) as czi: metadata = czi.metadata() data = czi.asarray().squeeze() with TempFileName('czi2tif') as tif: czi2tif(fname, tif, bigtiff=False) with TiffFile(tif) as t: im = t.asarray() assert t.pages[0].description == metadata assert_array_equal(im, data) del im del data assert_valid_tiff(tif) @pytest.mark.skipif(SKIP_PRIVATE or SKIP_LARGE, reason=REASON) def test_depend_czi2tif_airy(): """Test czifile.czi2tif with AiryScan.""" from czifile.czifile import czi2tif fname = private_file('CZI/AiryscanSRChannel.czi') with TempFileName('czi2tif_airy') as tif: czi2tif(fname, tif, verbose=True, truncate=True, bigtiff=False) im = memmap(tif) assert im.shape == (32, 6, 1680, 1680) assert tuple(im[17, :, 1500, 1000]) == (95, 109, 3597, 0, 0, 0) del im assert_valid_tiff(tif) @pytest.mark.skipif(SKIP_PRIVATE, reason=REASON) def test_depend_oiffile(): """Test oiffile.OifFile.""" from oiffile import OifFile fname = private_file( 'oib/MB231cell1_paxgfp_PDMSgasket_PMMAflat_30nm_378sli.oib' ) with OifFile(fname) as oib: assert oib.is_oib tifs = oib.series[0] assert len(tifs) == 756 assert tifs.shape == (2, 378) assert tifs.axes == 'CZ' # verify data data = tifs.asarray(out='memmap') assert data.flags['C_CONTIGUOUS'] assert data.shape == (2, 378, 256, 256) assert data.dtype == numpy.dtype(' 1: lsm2bin(argv[1], argv[2] if len(argv) > 2 else None) else: print() print(__doc__.strip()) if __name__ == '__main__': sys.exit(main()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1643911013.0 tifffile-2022.2.9/tifffile/numcodecs.py0000666000000000000000000001120000000000000014547 0ustar00# tifffile/numcodecs.py # Copyright (c) 2021-2022, Christoph Gohlke # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """TIFF codec for numcodecs based on tifffile.""" __all__ = ('register_codec', 'Tiff') from io import BytesIO from numcodecs import registry from numcodecs.abc import Codec import tifffile class Tiff(Codec): """TIFF codec for numcodecs.""" codec_id = 'tifffile' def __init__( self, # TiffFile.asarray key=None, series=None, level=None, maxworkers=None, # TiffWriter bigtiff=None, byteorder=None, imagej=False, ome=None, # TiffWriter.write photometric=None, planarconfig=None, volumetric=None, tile=None, truncate=False, rowsperstrip=None, compression=None, predictor=None, subsampling=None, metadata={}, extratags=(), ): self.key = key self.series = series self.level = level self.maxworkers = maxworkers self.bigtiff = bigtiff self.byteorder = byteorder self.imagej = imagej self.ome = ome self.photometric = photometric self.planarconfig = planarconfig self.volumetric = volumetric self.tile = tile self.truncate = truncate self.rowsperstrip = rowsperstrip self.compression = compression self.predictor = predictor self.subsampling = subsampling self.metadata = metadata self.extratags = extratags def encode(self, buf): """Return TIFF file as bytes.""" with BytesIO() as fh: with tifffile.TiffWriter( fh, bigtiff=self.bigtiff, byteorder=self.byteorder, imagej=self.imagej, ome=self.ome, ) as tif: tif.write( buf, photometric=self.photometric, planarconfig=self.planarconfig, volumetric=self.volumetric, tile=self.tile, truncate=self.truncate, rowsperstrip=self.rowsperstrip, compression=self.compression, predictor=self.predictor, subsampling=self.subsampling, metadata=self.metadata, extratags=self.extratags, ) result = fh.getvalue() return result def decode(self, buf, out=None): """Return decoded image as numpy array.""" with BytesIO(buf) as fh: with tifffile.TiffFile(fh) as tif: result = tif.asarray( key=self.key, series=self.series, level=self.level, maxworkers=self.maxworkers, out=out, ) return result def register_codec(cls=Tiff, codec_id=None): """Register Tiff codec with numcodecs.""" registry.register_codec(cls, codec_id=codec_id) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1617234959.0 tifffile-2022.2.9/tifffile/tiff2fsspec.py0000666000000000000000000000455200000000000015021 0ustar00#!/usr/bin/env python3 # tifffile/tiff2fsspec.py """Write fsspec ReferenceFileSystem for TIFF file. positional arguments: tifffile path to the local TIFF input file url remote URL of TIFF file without file name optional arguments: -h, --help show this help message and exit --out OUT path to the JSON output file --series SERIES index of series in file --level LEVEL index of level in series --key KEY index of page in file or series --chunkmode CHUNKMODE mode used for chunking {None, pages} For example: ``tiff2fsspec ./test.ome.tif https://server.com/path/`` """ import argparse try: from .tifffile import tiff2fsspec except ImportError: try: from tifffile.tifffile import tiff2fsspec except ImportError: from tifffile import tiff2fsspec def main(): """Tiff2fsspec command line usage main function.""" parser = argparse.ArgumentParser( 'tiff2fsspec', description='Write fsspec ReferenceFileSystem for TIFF file.', ) parser.add_argument( 'tifffile', type=str, help='path to the local TIFF input file' ) parser.add_argument( 'url', type=str, help='remote URL of TIFF file without file name' ) parser.add_argument( '--out', type=str, default=None, help='path to the JSON output file' ) parser.add_argument( '--series', type=int, default=None, help='index of series in file' ) parser.add_argument( '--level', type=int, default=None, help='index of level in series' ) parser.add_argument( '--key', type=int, default=None, help='index of page in file or series' ) parser.add_argument( '--chunkmode', type=int, default=None, help='mode used for chunking {None, pages}', ) parser.add_argument( '--ver', type=int, default=None, help='version of ReferenceFileSystem' ) args = parser.parse_args() tiff2fsspec( args.tifffile, args.url, out=args.out, key=args.key, series=args.series, level=args.level, chunkmode=args.chunkmode, version=args.ver, ) if __name__ == '__main__': import sys sys.exit(main()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1617234945.0 tifffile-2022.2.9/tifffile/tiffcomment.py0000666000000000000000000000263100000000000015112 0ustar00#!/usr/bin/env python3 # tifffile/tiffcomment.py """Print or replace ImageDescription in first page of TIFF file. Usage: tiffcomment [--set comment] file """ import os import sys try: from .tifffile import tiffcomment except ImportError: try: from tifffile.tifffile import tiffcomment except ImportError: from tifffile import tiffcomment def main(argv=None): """Tiffcomment command line usage main function.""" if argv is None: argv = sys.argv if len(argv) > 2 and argv[1] in '--set': comment = argv[2] files = argv[3:] else: comment = None files = argv[1:] if len(files) == 0 or any(f.startswith('-') for f in files): print() print(__doc__.strip()) return if comment is None: pass elif os.path.exists(comment): with open(comment, 'rb') as fh: comment = fh.read() else: try: comment = comment.encode('ascii') except UnicodeEncodeError as exc: print(f'{exc}') comment = comment.encode() for file in files: try: result = tiffcomment(file, comment) except Exception as exc: print(f'{file}: {exc}') else: if result: print(result) if __name__ == '__main__': sys.exit(main()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1644438363.0 tifffile-2022.2.9/tifffile/tifffile.py0000666000000000000000000244414700000000000014405 0ustar00# tifffile.py # Copyright (c) 2008-2022, Christoph Gohlke # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. r"""Read and write TIFF files. Tifffile is a Python library to (1) store numpy arrays in TIFF (Tagged Image File Format) files, and (2) read image and metadata from TIFF-like files used in bioimaging. Image and metadata can be read from TIFF, BigTIFF, OME-TIFF, STK, LSM, SGI, NIHImage, ImageJ, MicroManager, FluoView, ScanImage, SEQ, GEL, SVS, SCN, SIS, BIF, ZIF (Zoomable Image File Format), QPTIFF (QPI), NDPI, and GeoTIFF files. Image data can be read as numpy arrays or zarr arrays/groups from strips, tiles, pages (IFDs), SubIFDs, higher order series, and pyramidal levels. Numpy arrays can be written to TIFF, BigTIFF, OME-TIFF, and ImageJ hyperstack compatible files in multi-page, volumetric, pyramidal, memory-mappable, tiled, predicted, or compressed form. A subset of the TIFF specification is supported, mainly 8, 16, 32 and 64-bit integer, 16, 32 and 64-bit float, grayscale and multi-sample images. Specifically, CCITT and OJPEG compression, chroma subsampling without JPEG compression, color space transformations, samples with differing types, or IPTC, ICC, and XMP metadata are not implemented. TIFF, the Tagged Image File Format, was created by the Aldus Corporation and Adobe Systems Incorporated. BigTIFF allows for files larger than 4 GB. STK, LSM, FluoView, SGI, SEQ, GEL, QPTIFF, NDPI, SCN, SVS, ZIF, BIF, and OME-TIFF, are custom extensions defined by Molecular Devices (Universal Imaging Corporation), Carl Zeiss MicroImaging, Olympus, Silicon Graphics International, Media Cybernetics, Molecular Dynamics, PerkinElmer, Hamamatsu, Leica, ObjectivePathology, Roche Digital Pathology, and the Open Microscopy Environment consortium, respectively. For command line usage run ``python -m tifffile --help`` :Author: `Christoph Gohlke `_ :Organization: Laboratory for Fluorescence Dynamics, University of California, Irvine :License: BSD 3-Clause :Version: 2022.2.9 Requirements ------------ This release has been tested with the following requirements and dependencies (other versions may work): * `CPython 3.8.10, 3.9.10, 3.10.2, 64-bit `_ * `Numpy 1.21.5 `_ * `Imagecodecs 2021.11.20 `_ (required only for encoding or decoding LZW, JPEG, etc.) * `Matplotlib 3.4.3 `_ (required only for plotting) * `Lxml 4.7.1 `_ (required only for validating and printing XML) * `Zarr 2.11.0 `_ (required only for opening zarr storage) Revisions --------- 2022.2.9 Pass 4734 tests. Fix ValueError using multiscale ZarrStore with zarr >= 2.11.0. Raise KeyError if ZarrStore does not contain key. Limit number of warnings for missing files in multifile series. Allow to save colormap to 32-bit ImageJ files (#115). 2022.2.2 Fix TypeError when second ImageDescription tag contains non-ASCII (#112). Fix parsing IJMetadata with many IJMetadataByteCounts (#111). Detect MicroManager NDTiffv2 header (not tested). Remove cache from ZarrFileSequenceStore (use zarr.LRUStoreCache). Raise limit on maximum number of pages. Use J2K format when encoding JPEG2000 segments. Formally deprecate imsave and TiffWriter.save. Drop support for Python 3.7 and numpy < 1.19 (NEP29). 2021.11.2 Lazy-load non-essential tag values (breaking). Warn when reading from closed file. Support ImageJ 'prop' metadata type (#103). Support writing indexed ImageJ format. Fix multi-threaded access of multi-page Zarr stores with chunkmode 2. Raise error if truncate is used with compression, packints, or tile. Read STK metadata without UIC2tag. Improve log and warning messages (WIP). Improve string representation of large tag values. 2021.10.12 Revert renaming of 'file' parameter in FileSequence.asarray (breaking). Deprecate 'file' parameter in FileSequence.asarray. 2021.10.10 Disallow letters as indices in FileSequence; use categories (breaking). Do not warn of missing files in FileSequence; use files_missing property. Support predictors in ZarrTiffStore.write_fsspec. Add option to specify zarr group name in write_fsspec. Add option to specify categories for FileSequence patterns (#76). Add option to specify chunk shape and dtype for ZarrFileSequenceStore. Add option to tile ZarrFileSequenceStore and FileSequence.asarray. Add option to pass additional zattrs to Zarr stores. Detect Roche BIF files. 2021.8.30 Fix horizontal differencing with non-native byte order. Fix multi-threaded access of memory-mappable, multi-page Zarr stores (#67). 2021.8.8 Fix tag offset and valueoffset for NDPI > 4 GB (#96). 2021.7.30 Deprecate first parameter to TiffTag.overwrite (no longer required). TiffTag init API change (breaking). Detect Ventana BIF series and warn that tiles are not stitched. Enable reading PreviewImage from RAW formats (#93, #94). Work around numpy.ndarray.tofile is very slow for non-contiguous arrays. Fix issues with PackBits compression (requires imagecodecs 2021.7.30). 2021.7.2 Decode complex integer images found in SAR GeoTIFF. Support reading NDPI with JPEG-XR compression. Deprecate TiffWriter RGB auto-detection, except for RGB24/48 and RGBA32/64. 2021.6.14 Set stacklevel for deprecation warnings (#89). Fix svs_description_metadata for SVS with double header (#88, breaking). Fix reading JPEG compressed CMYK images. Support ALT_JPEG and JPEG_2000_LOSSY compression found in Bio-Formats. Log warning if TiffWriter auto-detects RGB mode (specify photometric). 2021.6.6 Fix TIFF.COMPESSOR typo (#85). Round resolution numbers that do not fit in 64-bit rationals (#81). Add support for JPEG XL compression. Add numcodecs compatible TIFF codec. Rename ZarrFileStore to ZarrFileSequenceStore (breaking). Add method to export fsspec ReferenceFileSystem from ZarrFileStore. Fix fsspec ReferenceFileSystem v1 for multifile series. Fix creating OME-TIFF with micron character in OME-XML. 2021.4.8 Fix reading OJPEG with wrong photometric or samplesperpixel tags (#75). Fix fsspec ReferenceFileSystem v1 and JPEG compression. Use TiffTagRegistry for NDPI_TAGS, EXIF_TAGS, GPS_TAGS, IOP_TAGS constants. Make TIFF.GEO_KEYS an Enum (breaking). 2021.3.31 Use JPEG restart markers as tile offsets in NDPI. Support version 1 and more codecs in fsspec ReferenceFileSystem (untested). 2021.3.17 Fix regression reading multi-file OME-TIFF with missing files (#72). Fix fsspec ReferenceFileSystem with non-native byte order (#56). 2021.3.16 TIFF is no longer a defended trademark. Add method to export fsspec ReferenceFileSystem from ZarrTiffStore (#56). 2021.3.5 Preliminary support for EER format (#68). Do not warn about unknown compression (#68). 2021.3.4 Fix reading multi-file, multi-series OME-TIFF (#67). Detect ScanImage 2021 files (#46). Shape new version ScanImage series according to metadata (breaking). Remove Description key from TiffFile.scanimage_metadata dict (breaking). Also return ScanImage version from read_scanimage_metadata (breaking). Fix docstrings. 2021.2.26 Squeeze axes of LSM series by default (breaking). Add option to preserve single dimensions when reading from series (WIP). Do not allow appending to OME-TIFF files. Fix reading STK files without name attribute in metadata. Make TIFF constants multi-thread safe and pickleable (#64). Add detection of NDTiffStorage MajorVersion to read_micromanager_metadata. Support ScanImage v4 files in read_scanimage_metadata. 2021.2.1 Fix multi-threaded access of ZarrTiffStores using same TiffFile instance. Use fallback zlib and lzma codecs with imagecodecs lite builds. Open Olympus and Panasonic RAW files for parsing, albeit not supported. Support X2 and X4 differencing found in DNG. Support reading JPEG_LOSSY compression found in DNG. 2021.1.14 Try ImageJ series if OME series fails (#54) Add option to use pages as chunks in ZarrFileStore (experimental). Fix reading from file objects with no readinto function. 2021.1.11 Fix test errors on PyPy. Fix decoding bitorder with imagecodecs >= 2021.1.11. 2021.1.8 Decode float24 using imagecodecs >= 2021.1.8. Consolidate reading of segments if possible. 2020.12.8 Fix corrupted ImageDescription in multi shaped series if buffer too small. Fix libtiff warning that ImageDescription contains null byte in value. Fix reading invalid files using JPEG compression with palette colorspace. 2020.12.4 Fix reading some JPEG compressed CFA images. Make index of SubIFDs a tuple. Pass through FileSequence.imread arguments in imread. Do not apply regex flags to FileSequence axes patterns (breaking). 2020.11.26 Add option to pass axes metadata to ImageJ writer. Pad incomplete tiles passed to TiffWriter.write (#38). Split TiffTag constructor (breaking). Change TiffTag.dtype to TIFF.DATATYPES (breaking). Add TiffTag.overwrite method. Add script to change ImageDescription in files. Add TiffWriter.overwrite_description method (WIP). 2020.11.18 Support writing SEPARATED color space (#37). Use imagecodecs.deflate codec if available. Fix SCN and NDPI series with Z dimensions. Add TiffReader alias for TiffFile. TiffPage.is_volumetric returns True if ImageDepth > 1. Zarr store getitem returns numpy arrays instead of bytes. 2020.10.1 Formally deprecate unused TiffFile parameters (scikit-image #4996). 2020.9.30 Allow to pass additional arguments to compression codecs. Deprecate TiffWriter.save method (use TiffWriter.write). Deprecate TiffWriter.save compress parameter (use compression). Remove multifile parameter from TiffFile (breaking). Pass all is_flag arguments from imread to TiffFile. Do not byte-swap JPEG2000, WEBP, PNG, JPEGXR segments in TiffPage.decode. 2020.9.29 Fix reading files produced by ScanImage > 2015 (#29). 2020.9.28 Derive ZarrStore from MutableMapping. Support zero shape ZarrTiffStore. Fix ZarrFileStore with non-TIFF files. Fix ZarrFileStore with missing files. Cache one chunk in ZarrFileStore. Keep track of already opened files in FileCache. Change parse_filenames function to return zero-based indices. Remove reopen parameter from asarray (breaking). Rename FileSequence.fromfile to imread (breaking). 2020.9.22 Add experimental zarr storage interface (WIP). Remove unused first dimension from TiffPage.shaped (breaking). Move reading of STK planes to series interface (breaking). Always use virtual frames for ScanImage files. Use DimensionOrder to determine axes order in OmeXml. Enable writing striped volumetric images. Keep complete dataoffsets and databytecounts for TiffFrames. Return full size tiles from Tiffpage.segments. Rename TiffPage.is_sgi property to is_volumetric (breaking). Rename TiffPageSeries.is_pyramid to is_pyramidal (breaking). Fix TypeError when passing jpegtables to non-JPEG decode method (#25). 2020.9.3 Do not write contiguous series by default (breaking). Allow to write to SubIFDs (WIP). Fix writing F-contiguous numpy arrays (#24). 2020.8.25 Do not convert EPICS timeStamp to datetime object. Read incompletely written Micro-Manager image file stack header (#23). Remove tag 51123 values from TiffFile.micromanager_metadata (breaking). 2020.8.13 Use tifffile metadata over OME and ImageJ for TiffFile.series (breaking). Fix writing iterable of pages with compression (#20). Expand error checking of TiffWriter data, dtype, shape, and tile arguments. 2020.7.24 Parse nested OmeXml metadata argument (WIP). Do not lazy load TiffFrame JPEGTables. Fix conditionally skipping some tests. 2020.7.22 Do not auto-enable OME-TIFF if description is passed to TiffWriter.save. Raise error writing empty bilevel or tiled images. Allow to write tiled bilevel images. Allow to write multi-page TIFF from iterable of single page images (WIP). Add function to validate OME-XML. Correct Philips slide width and length. 2020.7.17 Initial support for writing OME-TIFF (WIP). Return samples as separate dimension in OME series (breaking). Fix modulo dimensions for multiple OME series. Fix some test errors on big endian systems (#18). Fix BytesWarning. Allow to pass TIFF.PREDICTOR values to TiffWriter.save. 2020.7.4 Deprecate support for Python 3.6 (NEP 29). Move pyramidal subresolution series to TiffPageSeries.levels (breaking). Add parser for SVS, SCN, NDPI, and QPI pyramidal series. Read single-file OME-TIFF pyramids. Read NDPI files > 4 GB (#15). Include SubIFDs in generic series. Preliminary support for writing packed integer arrays (#11, WIP). Read more LSM info subrecords. Fix missing ReferenceBlackWhite tag for YCbCr photometrics. Fix reading lossless JPEG compressed DNG files. 2020.6.3 ... Refer to the CHANGES file for older revisions. Notes ----- The API is not stable yet and might change between revisions. Tested on little-endian platforms only. Python 32-bit versions are deprecated. Python <= 3.7 are no longer supported. Tifffile relies on the `imagecodecs `_ package for encoding and decoding LZW, JPEG, and other compressed image segments. Several TIFF-like formats do not strictly adhere to the TIFF6 specification, some of which allow file or data sizes to exceed the 4 GB limit: * *BigTIFF* is identified by version number 43 and uses different file header, IFD, and tag structures with 64-bit offsets. It adds more data types. Tifffile can read and write BigTIFF files. * *ImageJ hyperstacks* store all image data, which may exceed 4 GB, contiguously after the first IFD. Files > 4 GB contain one IFD only. The size (shape and dtype) of the up to 6-dimensional image data can be determined from the ImageDescription tag of the first IFD, which is Latin-1 encoded. Tifffile can read and write ImageJ hyperstacks. * *OME-TIFF* stores up to 8-dimensional data in one or multiple TIFF of BigTIFF files. The 8-bit UTF-8 encoded OME-XML metadata found in the ImageDescription tag of the first IFD defines the position of TIFF IFDs in the high dimensional data. Tifffile can read OME-TIFF files, except when the OME-XML metadata are stored in a separate file. Tifffile can write numpy arrays to single-file OME-TIFF. * *LSM* stores all IFDs below 4 GB but wraps around 32-bit StripOffsets. The StripOffsets of each series and position require separate unwrapping. The StripByteCounts tag contains the number of bytes for the uncompressed data. Tifffile can read large LSM files. * *STK* (MetaMorph Stack) contains additional image planes stored contiguously after the image data of the first page. The total number of planes is equal to the counts of the UIC2tag. Tifffile can read STK files. * *Hamamatsu NDPI* uses some 64-bit offsets in the file header, IFD, and tag structures. Tag values/offsets can be corrected using high bits stored after IFD structures. Tifffile can read NDPI files > 4 GB. JPEG compressed segments with dimensions >65530 or missing restart markers are not decodable with libjpeg. Tifffile works around this limitation by separately decoding the MCUs between restart markers. BitsPerSample, SamplesPerPixel, and PhotometricInterpretation tags may contain wrong values, which can be corrected using the value of tag 65441. * *Philips TIFF* slides store wrong ImageWidth and ImageLength tag values for tiled pages. The values can be corrected using the DICOM_PIXEL_SPACING attributes of the XML formatted description of the first page. Tifffile can read Philips slides. * *Ventana/Roche BIF* slides store tiles and metadata in a BigTIFF container. Tiles may overlap and require stitching based on the TileJointInfo elements in the XMP tag. Volumetric scans are stored using the ImageDepth extension. Tifffile can read BIF and decode individual tiles, but does not perform stitching. * *ScanImage* optionally allows corrupted non-BigTIFF files > 2 GB. The values of StripOffsets and StripByteCounts can be recovered using the constant differences of the offsets of IFD and tag values throughout the file. Tifffile can read such files if the image data are stored contiguously in each page. * *GeoTIFF* sparse files allow strip or tile offsets and byte counts to be 0. Such segments are implicitly set to 0 or the NODATA value on reading. Tifffile can read GeoTIFF sparse files. Other libraries for reading scientific TIFF files from Python: * `Python-bioformats `_ * `Imread `_ * `GDAL `_ * `OpenSlide-python `_ * `Slideio `_ * `PyLibTiff `_ * `SimpleITK `_ * `PyLSM `_ * `PyMca.TiffIO.py `_ (same as fabio.TiffIO) * `BioImageXD.Readers `_ * `CellCognition `_ * `pymimage `_ * `pytiff `_ * `ScanImageTiffReaderPython `_ * `bigtiff `_ * `Large Image `_ * `tiffslide `_ * `opentile `_ Some libraries are using tifffile to write OME-TIFF files: * `Zeiss Apeer OME-TIFF library `_ * `Allen Institute for Cell Science imageio `_ * `xtiff `_ Other tools for inspecting and manipulating TIFF files: * `tifftools `_ * `Tyf `_ References ---------- * TIFF 6.0 Specification and Supplements. Adobe Systems Incorporated. https://www.adobe.io/open/standards/TIFF.html * TIFF File Format FAQ. https://www.awaresystems.be/imaging/tiff/faq.html * The BigTIFF File Format. https://www.awaresystems.be/imaging/tiff/bigtiff.html * MetaMorph Stack (STK) Image File Format. http://mdc.custhelp.com/app/answers/detail/a_id/18862 * Image File Format Description LSM 5/7 Release 6.0 (ZEN 2010). Carl Zeiss MicroImaging GmbH. BioSciences. May 10, 2011 * The OME-TIFF format. https://docs.openmicroscopy.org/ome-model/latest/ * UltraQuant(r) Version 6.0 for Windows Start-Up Guide. http://www.ultralum.com/images%20ultralum/pdf/UQStart%20Up%20Guide.pdf * Micro-Manager File Formats. https://micro-manager.org/wiki/Micro-Manager_File_Formats * ScanImage BigTiff Specification - ScanImage 2019. http://scanimage.vidriotechnologies.com/display/SI2019/ ScanImage+BigTiff+Specification * ZIF, the Zoomable Image File format. http://zif.photo/ * GeoTIFF File Format https://gdal.org/drivers/raster/gtiff.html * Cloud optimized GeoTIFF. https://github.com/cogeotiff/cog-spec/blob/master/spec.md * Tags for TIFF and Related Specifications. Digital Preservation. https://www.loc.gov/preservation/digital/formats/content/tiff_tags.shtml * CIPA DC-008-2016: Exchangeable image file format for digital still cameras: Exif Version 2.31. http://www.cipa.jp/std/documents/e/DC-008-Translation-2016-E.pdf * The EER (Electron Event Representation) file format. https://github.com/fei-company/EerReaderLib * Digital Negative (DNG) Specification. Version 1.5.0.0, June 2012. https://www.adobe.com/content/dam/acom/en/products/photoshop/pdfs/ dng_spec_1.5.0.0.pdf * Roche Digital Pathology. BIF image file format for digital pathology. https://diagnostics.roche.com/content/dam/diagnostics/Blueprint/en/pdf/rmd/ Roche-Digital-Pathology-BIF-Whitepaper.pdf Examples -------- Write a numpy array to a single-page RGB TIFF file: >>> data = numpy.random.randint(0, 255, (256, 256, 3), 'uint8') >>> imwrite('temp.tif', data, photometric='rgb') Read the image from the TIFF file as numpy array: >>> image = imread('temp.tif') >>> image.shape (256, 256, 3) Write a 3D numpy array to a multi-page, 16-bit grayscale TIFF file: >>> data = numpy.random.randint(0, 2**12, (64, 301, 219), 'uint16') >>> imwrite('temp.tif', data, photometric='minisblack') Read the whole image stack from the TIFF file as numpy array: >>> image_stack = imread('temp.tif') >>> image_stack.shape (64, 301, 219) >>> image_stack.dtype dtype('uint16') Read the image from the first page in the TIFF file as numpy array: >>> image = imread('temp.tif', key=0) >>> image.shape (301, 219) Read images from a selected range of pages: >>> images = imread('temp.tif', key=range(4, 40, 2)) >>> images.shape (18, 301, 219) Iterate over all pages in the TIFF file and successively read images: >>> with TiffFile('temp.tif') as tif: ... for page in tif.pages: ... image = page.asarray() Get information about the image stack in the TIFF file without reading the image data: >>> tif = TiffFile('temp.tif') >>> len(tif.pages) # number of pages in the file 64 >>> page = tif.pages[0] # get shape and dtype of the image in the first page >>> page.shape (301, 219) >>> page.dtype dtype('uint16') >>> page.axes 'YX' >>> series = tif.series[0] # get shape and dtype of the first image series >>> series.shape (64, 301, 219) >>> series.dtype dtype('uint16') >>> series.axes 'QYX' >>> tif.close() Inspect the "XResolution" tag from the first page in the TIFF file: >>> with TiffFile('temp.tif') as tif: ... tag = tif.pages[0].tags['XResolution'] >>> tag.value (1, 1) >>> tag.name 'XResolution' >>> tag.code 282 >>> tag.count 1 >>> tag.dtype Iterate over all tags in the TIFF file: >>> with TiffFile('temp.tif') as tif: ... for page in tif.pages: ... for tag in page.tags: ... tag_name, tag_value = tag.name, tag.value Overwrite the value of an existing tag, e.g. XResolution: >>> with TiffFile('temp.tif', mode='r+b') as tif: ... _ = tif.pages[0].tags['XResolution'].overwrite((96000, 1000)) Write a floating-point ndarray and metadata using BigTIFF format, tiling, compression, and planar storage: >>> data = numpy.random.rand(2, 5, 3, 301, 219).astype('float32') >>> imwrite('temp.tif', data, bigtiff=True, photometric='minisblack', ... compression='zlib', planarconfig='separate', tile=(32, 32), ... metadata={'axes': 'TZCYX'}) Write a 10 fps time series of volumes with xyz voxel size 2.6755x2.6755x3.9474 micron^3 to an ImageJ hyperstack formatted TIFF file: >>> volume = numpy.random.randn(6, 57, 256, 256).astype('float32') >>> imwrite('temp.tif', volume, imagej=True, resolution=(1./2.6755, 1./2.6755), ... metadata={'spacing': 3.947368, 'unit': 'um', 'finterval': 1/10, ... 'axes': 'TZYX'}) Read the volume and metadata from the ImageJ file: >>> with TiffFile('temp.tif') as tif: ... volume = tif.asarray() ... axes = tif.series[0].axes ... imagej_metadata = tif.imagej_metadata >>> volume.shape (6, 57, 256, 256) >>> axes 'TZYX' >>> imagej_metadata['slices'] 57 >>> imagej_metadata['frames'] 6 Create a TIFF file containing an empty image and write to the memory-mapped numpy array: >>> memmap_image = memmap( ... 'temp.tif', shape=(256, 256, 3), dtype='float32', photometric='rgb' ... ) >>> type(memmap_image) >>> memmap_image[255, 255, 1] = 1.0 >>> memmap_image.flush() >>> del memmap_image Memory-map and read contiguous image data in the TIFF file: >>> memmap_image = memmap('temp.tif') >>> memmap_image.shape (256, 256, 3) >>> memmap_image[255, 255, 1] 1.0 >>> del memmap_image Write two numpy arrays to a multi-series TIFF file: >>> series0 = numpy.random.randint(0, 255, (32, 32, 3), 'uint8') >>> series1 = numpy.random.randint(0, 1023, (4, 256, 256), 'uint16') >>> with TiffWriter('temp.tif') as tif: ... tif.write(series0, photometric='rgb') ... tif.write(series1, photometric='minisblack') Read the second image series from the TIFF file: >>> series1 = imread('temp.tif', series=1) >>> series1.shape (4, 256, 256) Successively write the frames of one contiguous series to a TIFF file: >>> data = numpy.random.randint(0, 255, (30, 301, 219), 'uint8') >>> with TiffWriter('temp.tif') as tif: ... for frame in data: ... tif.write(frame, contiguous=True) Append an image series to the existing TIFF file: >>> data = numpy.random.randint(0, 255, (301, 219, 3), 'uint8') >>> imwrite('temp.tif', data, photometric='rgb', append=True) Create a TIFF file from a generator of tiles: >>> data = numpy.random.randint(0, 2**12, (31, 33, 3), 'uint16') >>> def tiles(data, tileshape): ... for y in range(0, data.shape[0], tileshape[0]): ... for x in range(0, data.shape[1], tileshape[1]): ... yield data[y : y + tileshape[0], x : x + tileshape[1]] >>> imwrite('temp.tif', tiles(data, (16, 16)), tile=(16, 16), ... shape=data.shape, dtype=data.dtype, photometric='rgb') Write two numpy arrays to a multi-series OME-TIFF file: >>> series0 = numpy.random.randint(0, 255, (32, 32, 3), 'uint8') >>> series1 = numpy.random.randint(0, 1023, (4, 256, 256), 'uint16') >>> with TiffWriter('temp.ome.tif') as tif: ... tif.write(series0, photometric='rgb') ... tif.write(series1, photometric='minisblack', ... metadata={'axes': 'ZYX', 'SignificantBits': 10, ... 'Plane': {'PositionZ': [0.0, 1.0, 2.0, 3.0]}}) Write a tiled, multi-resolution, pyramidal, OME-TIFF file using JPEG compression. Sub-resolution images are written to SubIFDs: >>> data = numpy.arange(1024*1024*3, dtype='uint8').reshape((1024, 1024, 3)) >>> with TiffWriter('temp.ome.tif', bigtiff=True) as tif: ... options = dict(tile=(256, 256), photometric='rgb', compression='jpeg') ... tif.write(data, subifds=2, **options) ... # save pyramid levels to the two subifds ... # in production use resampling to generate sub-resolutions ... tif.write(data[::2, ::2], subfiletype=1, **options) ... tif.write(data[::4, ::4], subfiletype=1, **options) Access the image levels in the pyramidal OME-TIFF file: >>> baseimage = imread('temp.ome.tif') >>> second_level = imread('temp.ome.tif', series=0, level=1) >>> with TiffFile('temp.ome.tif') as tif: ... baseimage = tif.series[0].asarray() ... second_level = tif.series[0].levels[1].asarray() Iterate over and decode single JPEG compressed tiles in the TIFF file: >>> with TiffFile('temp.ome.tif') as tif: ... fh = tif.filehandle ... for page in tif.pages: ... for index, (offset, bytecount) in enumerate( ... zip(page.dataoffsets, page.databytecounts) ... ): ... _ = fh.seek(offset) ... data = fh.read(bytecount) ... tile, indices, shape = page.decode( ... data, index, jpegtables=page.jpegtables ... ) Use zarr to read parts of the tiled, pyramidal images in the TIFF file: >>> import zarr >>> store = imread('temp.ome.tif', aszarr=True) >>> z = zarr.open(store, mode='r') >>> z >>> z[0] # base layer >>> z[0][256:512, 512:768].shape # read a tile from the base layer (256, 256, 3) >>> store.close() Read images from a sequence of TIFF files as numpy array: >>> imwrite('temp_C001T001.tif', numpy.random.rand(64, 64)) >>> imwrite('temp_C001T002.tif', numpy.random.rand(64, 64)) >>> image_sequence = imread(['temp_C001T001.tif', 'temp_C001T002.tif']) >>> image_sequence.shape (2, 64, 64) >>> image_sequence.dtype dtype('float64') Read an image stack from a series of TIFF files with a file name pattern as numpy or zarr arrays: >>> image_sequence = TiffSequence('temp_C0*.tif', pattern=r'_(C)(\d+)(T)(\d+)') >>> image_sequence.shape (1, 2) >>> image_sequence.axes 'CT' >>> data = image_sequence.asarray() >>> data.shape (1, 2, 64, 64) >>> with image_sequence.aszarr() as store: ... zarr.open(store, mode='r') >>> image_sequence.close() Write the zarr store to a fsspec ReferenceFileSystem in JSON format: >>> with image_sequence.aszarr() as store: ... store.write_fsspec('temp.json', url='file://') Open the fsspec ReferenceFileSystem as a zarr array: >>> import fsspec >>> import tifffile.numcodecs >>> tifffile.numcodecs.register_codec() >>> mapper = fsspec.get_mapper( ... 'reference://', fo='temp.json', target_protocol='file') >>> zarr.open(mapper, mode='r') """ __version__ = '2022.2.9' __all__ = [ 'OmeXml', 'OmeXmlError', 'TIFF', 'TiffFile', 'TiffFileError', 'TiffFrame', 'TiffPage', 'TiffPageSeries', 'TiffReader', 'TiffSequence', 'TiffTag', 'TiffTags', 'TiffTagRegistry', 'TiffWriter', 'ZarrFileSequenceStore', 'ZarrStore', 'ZarrTiffStore', 'imread', 'imshow', 'imwrite', 'lsm2bin', 'memmap', 'read_micromanager_metadata', 'read_scanimage_metadata', 'tiff2fsspec', 'tiffcomment', # utility classes and functions used by oiffile, czifile, etc. 'FileCache', 'FileHandle', 'FileSequence', 'Timer', 'askopenfilename', 'astype', 'create_output', 'enumarg', 'enumstr', 'format_size', 'lazyattr', 'matlabstr2py', 'natural_sorted', 'nullfunc', 'parse_kwargs', 'pformat', 'product', 'repeat_nd', 'reshape_axes', 'reshape_nd', 'squeeze_axes', 'stripnull', 'transpose_axes', 'update_kwargs', 'xml2dict', # deprecated 'imsave', '_app_show', ] import binascii import collections import datetime import enum import glob import io import json import math import os import re import struct import sys import threading import time import warnings from collections.abc import Iterable, MutableMapping from concurrent.futures import ThreadPoolExecutor import numpy try: import imagecodecs except Exception: imagecodecs = None # delay import of mmap, pprint, fractions, xml, lxml, matplotlib, tkinter, # logging, subprocess, multiprocessing, tempfile, zipfile, fnmatch def imread(files=None, aszarr=False, **kwargs): """Return image data from TIFF file(s) as numpy array or zarr storage. Refer to the TiffFile and TiffSequence classes and their asarray functions for documentation. Parameters ---------- files : str, path-like, binary stream, or sequence File name, seekable binary stream, glob pattern, or sequence of file names. aszarr : bool If True, return file sequences, series, or single pages as zarr storage instead of numpy array (experimental). **kwargs Optional extra arguments. Parameters 'name', 'offset', 'size', and 'is_' flags are passed to TiffFile or TiffSequence.imread. Parameters 'imread', 'container', 'sort', 'pattern', 'axesorder', and 'categories' are passed to TiffSequence. Other parameters are passed to the asarray or aszarr functions. The first image series in the file is returned if no arguments are provided. Returns ------- numpy.ndarray or zarr storage Image data from the specified pages. Zarr storage instances must be closed after use. See TiffPage.asarray for operations that are applied (or not) to the raw data stored in the file. """ kwargs_file = parse_kwargs( kwargs, 'name', 'offset', 'size', # private '_multifile', '_useframes', # deprecated, ignored # TODO: remove 'fastij', 'movie', 'multifile', 'multifile_close', # is_flags *(key for key in kwargs if key[:3] == 'is_'), ) kwargs_seq = parse_kwargs( kwargs, 'imread', 'container', 'sort', 'pattern', 'axesorder', 'categories', ) if kwargs.get('pages', None) is not None: # TODO: remove if kwargs.get('key', None) is not None: raise TypeError( "the 'pages' and 'key' parameters cannot be used together" ) warnings.warn( ' ' "the 'pages' parameter is deprecated since 2017.9.29. " "Use the 'key' parameter", DeprecationWarning, stacklevel=2, ) kwargs['key'] = kwargs.pop('pages') if kwargs_seq.get('container', None) is None: if isinstance(files, str) and ('*' in files or '?' in files): files = glob.glob(files) if not files: raise ValueError('no files found') if ( not hasattr(files, 'seek') and not isinstance(files, (str, os.PathLike)) and len(files) == 1 ): files = files[0] if isinstance(files, (str, os.PathLike)) or hasattr(files, 'seek'): with TiffFile(files, **kwargs_file) as tif: if aszarr: return tif.aszarr(**kwargs) return tif.asarray(**kwargs) with TiffSequence(files, **kwargs_seq) as imseq: if aszarr: return imseq.aszarr(**kwargs, **kwargs_file) return imseq.asarray(**kwargs, **kwargs_file) def imwrite(file, data=None, shape=None, dtype=None, **kwargs): """Write numpy array to TIFF file. Refer to the TiffWriter class and its write function for documentation. A BigTIFF file is created if the data's size is larger than 4 GB minus 32 MB (for metadata), and 'bigtiff' is not specified, and 'imagej' or 'truncate' are not enabled. Parameters ---------- file : str, path-like, or binary stream File name or writable binary stream, such as an open file or BytesIO. data : array-like Input image. The last dimensions are assumed to be image depth, length, width, and samples. If None, an empty array of the specified shape and dtype is saved to file. Unless 'byteorder' is specified in 'kwargs', the TIFF file byte order is determined from the data's dtype or the dtype argument. shape : tuple If 'data' is None, shape of an empty array to save to the file. dtype : numpy.dtype If 'data' is None, datatype of an empty array to save to the file. **kwargs Optional extra arguments. Parameters 'append', 'byteorder', 'bigtiff', 'imagej', and 'ome', are passed to TiffWriter. Other parameters are passed to TiffWriter.write. Returns ------- offset, bytecount : tuple or None If the 'returnoffset' argument is True and the image data are written contiguously, return offset and bytecount of image data in the file. """ tifargs = parse_kwargs( kwargs, 'append', 'bigtiff', 'byteorder', 'imagej', 'ome' ) if data is None: dtype = numpy.dtype(dtype) datasize = product(shape) * dtype.itemsize byteorder = dtype.byteorder else: try: datasize = data.nbytes byteorder = data.dtype.byteorder except Exception: datasize = 0 byteorder = None bigsize = kwargs.pop('bigsize', 2**32 - 2**25) if ( 'bigtiff' not in tifargs and datasize > bigsize and not tifargs.get('imagej', False) and not tifargs.get('truncate', False) and not kwargs.get('compression', False) and not kwargs.get('compress', False) # TODO: remove deprecated ): tifargs['bigtiff'] = True if 'byteorder' not in tifargs: tifargs['byteorder'] = byteorder with TiffWriter(file, **tifargs) as tif: result = tif.write(data, shape, dtype, **kwargs) return result def imsave(*args, **kwargs): """Deprecated. Use imwrite.""" warnings.warn( ' is deprecated. Use tifffile.imwrite', DeprecationWarning, stacklevel=2, ) imwrite(*args, **kwargs) def memmap( filename, shape=None, dtype=None, page=None, series=0, level=0, mode='r+', **kwargs, ): """Return memory-mapped numpy array stored in TIFF file. Memory-mapping requires data stored in native byte order, without tiling, compression, predictors, etc. If 'shape' and 'dtype' are provided, existing files are overwritten or appended to depending on the 'append' parameter. Otherwise the image data of a specified page or series in an existing file are memory-mapped. By default, the image data of the first series are memory-mapped. Call flush() to write any changes in the array to the file. Raise ValueError if the image data in the file are not memory-mappable. Parameters ---------- filename : str or path-like Name of the TIFF file which stores the array. shape : tuple Shape of the empty array. dtype : numpy.dtype Datatype of the empty array. page : int Index of the page which image data to memory-map. series, level : int Index of the page series and pyramid level which image data to memory-map. mode : {'r+', 'r', 'c'} The file open mode. Default is to open existing file for reading and writing ('r+'). **kwargs Optional extra arguments to imwrite or TiffFile. Returns ------- numpy.memmap Image data in TIFF file. """ if shape is not None and dtype is not None: # create a new, empty array kwargs.update( data=None, shape=shape, dtype=dtype, align=TIFF.ALLOCATIONGRANULARITY, returnoffset=True, ) result = imwrite(filename, **kwargs) if result is None: # TODO: fail before creating file or writing data raise ValueError('image data are not memory-mappable') offset = result[0] else: # use existing file with TiffFile(filename, **kwargs) as tif: if page is not None: page = tif.pages[page] if not page.is_memmappable: raise ValueError('image data are not memory-mappable') offset, _ = page.is_contiguous shape = page.shape dtype = page.dtype else: series = tif.series[series] if series.offset is None: raise ValueError('image data are not memory-mappable') shape = series.shape dtype = series.dtype offset = series.offset dtype = tif.byteorder + dtype.char return numpy.memmap(filename, dtype, mode, offset, shape, 'C') class lazyattr: """Attribute whose value is computed on first access. Lazyattrs are not thread-safe. """ # TODO: replace with functools.cached_property? requires Python >= 3.8 __slots__ = ('func', '__dict__') def __init__(self, func): """Initialize instance from decorated function.""" self.func = func self.__doc__ = func.__doc__ self.__module__ = func.__module__ self.__name__ = func.__name__ self.__qualname__ = func.__qualname__ # self.lock = threading.RLock() def __get__(self, instance, owner): # with self.lock: if instance is None: return self try: value = self.func(instance) except AttributeError as exc: raise RuntimeError(exc) if value is NotImplemented: return getattr(super(owner, instance), self.func.__name__) setattr(instance, self.func.__name__, value) return value class TiffFileError(Exception): """Exception to indicate invalid TIFF structure.""" class TiffWriter: """Write numpy arrays to TIFF file. TiffWriter's main purpose is saving nD numpy array's as TIFF, not to create any possible TIFF format. Specifically, ExifIFD and GPSIFD tags are not supported. TiffWriter instances must be closed using the 'close' method, which is automatically called when using the 'with' context manager. TiffWriter instances are not thread-safe. """ def __init__( self, file, bigtiff=False, byteorder=None, append=False, imagej=False, ome=None, ): """Open TIFF file for writing. An empty TIFF file is created if the file does not exist, else the file is overwritten with an empty TIFF file unless 'append' is true. Use 'bigtiff=True' when creating files larger than 4 GB. Parameters ---------- file : path-like, binary stream, or FileHandle File name or writable binary stream, such as an open file or BytesIO. bigtiff : bool (optional) If True, the BigTIFF format is used. byteorder : {'<', '>', '=', '|'} (optional) The endianness of the data in the file. By default, this is the system's native byte order. append : bool (optional) If True and 'file' is an existing standard TIFF file, image data and tags are appended to the file. This does not scale well with the number of pages already in the file. Appending data may corrupt specifically formatted TIFF files such as OME-TIFF, LSM, STK, ImageJ, or FluoView. imagej : bool (optional) If True and not 'ome', write an ImageJ hyperstack compatible file. This format can handle data types uint8, uint16, or float32 and data shapes up to 6 dimensions in TZCYXS order. RGB images (S=3 or S=4) must be uint8. ImageJ's default byte order is big-endian but this implementation uses the system's native byte order by default. ImageJ hyperstacks do not support BigTIFF or compression. The ImageJ file format is undocumented. When using compression, use ImageJ's Bio-Formats import function. ome : bool (optional) If True, write an OME-TIFF compatible file. If None (default), the value is determined from the file name extension, the value of the 'description' parameter in the first call of the write function, and the value of 'imagej'. Refer to the OME model for restrictions of this format. """ if append: # determine if file is an existing TIFF file that can be extended try: with FileHandle(file, mode='rb', size=0) as fh: pos = fh.tell() try: with TiffFile(fh) as tif: if append != 'force' and not tif.is_appendable: raise ValueError( 'cannot append to file containing metadata' ) byteorder = tif.byteorder bigtiff = tif.is_bigtiff self._ifdoffset = tif.pages.next_page_offset finally: fh.seek(pos) except (OSError, FileNotFoundError): append = False if byteorder in (None, '=', '|'): byteorder = '<' if sys.byteorder == 'little' else '>' elif byteorder not in ('<', '>'): raise ValueError(f'invalid byteorder {byteorder}') if byteorder == '<': self.tiff = TIFF.BIG_LE if bigtiff else TIFF.CLASSIC_LE else: self.tiff = TIFF.BIG_BE if bigtiff else TIFF.CLASSIC_BE self._truncate = False self._metadata = None self._colormap = None self._tags = None self._datashape = None # shape of data in consecutive pages self._datadtype = None # data type self._dataoffset = None # offset to data self._databytecounts = None # byte counts per plane self._dataoffsetstag = None # strip or tile offset tag code self._descriptiontag = None # TiffTag for updating comment self._subifds = 0 # number of subifds self._subifdslevel = -1 # index of current subifd level self._subifdsoffsets = [] # offsets to offsets to subifds self._nextifdoffsets = [] # offsets to offset to next ifd self._ifdindex = 0 # index of current ifd # normalized shape of data in consecutive pages # (pages, separate_samples, depth, length, width, contig_samples) self._storedshape = None if append: self._fh = FileHandle(file, mode='r+b', size=0) self._fh.seek(0, os.SEEK_END) else: self._fh = FileHandle(file, mode='wb', size=0) self._fh.write({'<': b'II', '>': b'MM'}[byteorder]) if bigtiff: self._fh.write(struct.pack(byteorder + 'HHH', 43, 8, 0)) else: self._fh.write(struct.pack(byteorder + 'H', 42)) # first IFD self._ifdoffset = self._fh.tell() self._fh.write(struct.pack(self.tiff.offsetformat, 0)) self._ome = None if ome is None else bool(ome) self._imagej = False if self._ome else bool(imagej) if self._imagej: self._ome = False if imagej and bigtiff: warnings.warn( f'{self!r} writing nonconformant BigTIFF ImageJ', UserWarning ) @property def filehandle(self): """Return file handle.""" return self._fh def write( self, data=None, shape=None, dtype=None, photometric=None, planarconfig=None, extrasamples=None, volumetric=False, tile=None, contiguous=False, truncate=False, align=None, rowsperstrip=None, bitspersample=None, compression=None, predictor=None, subsampling=None, jpegtables=None, colormap=None, description=None, datetime=None, resolution=None, subfiletype=0, software=None, subifds=None, metadata={}, extratags=(), returnoffset=False, ijmetadata=None, # deprecated: use metadata compress=None, # deprecated: use compression ): """Write numpy ndarray to a series of TIFF pages. The ND image data are written to a series of TIFF pages/IFDs. By default, metadata in JSON, ImageJ, or OME-XML format are written to the ImageDescription tag of the first page to describe the series such that the image data can later be read back as a ndarray of same shape. The data shape's last dimensions are assumed to be image depth, length (height), width, and samples. If a colormap is provided, the data's dtype must be uint8 or uint16 and the data values are indices into the last dimension of the colormap. If 'shape' and 'dtype' are specified instead of 'data', an empty array is written. This option cannot be used with compression, predictors, packed integers, bilevel images, or multiple tiles. If 'shape', 'dtype', and 'tile' are specified, 'data' must be an iterable of all tiles in the image. If 'shape', 'dtype', and 'data' are specified but not 'tile', 'data' must be an iterable of all single planes in the image. Image data are written uncompressed in one strip per plane by default. Dimensions larger than 2 to 4 (depending on photometric mode, planar configuration, and volumetric mode) are flattened and written as separate pages. If the data size is zero, a single page with shape (0, 0) is written. The SampleFormat tag is derived from the data type or dtype. A UserWarning is logged if RGB colorspace is auto-detected. Specify the 'photometric' parameter to avoid the warning. Parameters ---------- data : numpy.ndarray, iterable of numpy.ndarray, or None Input image or iterable of tiles or images. A copy of the image data is made if 'data' is not a C-contiguous numpy array with the same byteorder as the TIFF file. Iterables must yield C-contiguous numpy array of TIFF byteorder. Iterable tiles must match 'dtype' and the shape specified in 'tile'. Incomplete tiles are zero-padded. Iterable images must match 'dtype' and 'shape[1:]'. shape : tuple or None Shape of the empty or iterable data to write. Use only if 'data' is None or an iterable of tiles or images. dtype : numpy.dtype or None Datatype of the empty or iterable data to write. Use only if 'data' is None or an iterable of tiles or images. photometric : {MINISBLACK, MINISWHITE, RGB, PALETTE, SEPARATED, CFA} The color space of the image data according to TIFF.PHOTOMETRIC. By default, this setting is inferred from the data shape, dtype, and the value of colormap. Always specify this parameter to avoid ambiguities. For CFA images, the CFARepeatPatternDim, CFAPattern, and other DNG or TIFF/EP tags must be specified in 'extratags' to produce a valid file. planarconfig : {CONTIG, SEPARATE} Specifies if samples are stored interleaved or in separate planes. By default, this setting is inferred from the data shape. If this parameter is set, extra samples are used to store grayscale images. CONTIG: last dimension contains samples. SEPARATE: third (or fourth) last dimension contains samples. extrasamples : tuple of {UNSPECIFIED, ASSOCALPHA, UNASSALPHA} Defines the interpretation of extra components in pixels. UNSPECIFIED: no transparency information (default). ASSOCALPHA: single, true transparency with pre-multiplied color. UNASSALPHA: independent transparency masks. volumetric : bool If True, the SGI ImageDepth tag is used to write volumetric data in one page. The volumetric format is not officially specified, and few software can read it. OME and ImageJ formats are not compatible with volumetric storage. tile : tuple of int The shape ([depth,] length, width) of image tiles to write. If None (default), image data are written in strips. The tile length and width must be a multiple of 16. If a tile depth is provided, the SGI ImageDepth and TileDepth tags are used to write volumetric data. Tiles cannot be used to write contiguous series, except if tile matches the data shape. contiguous : bool If False (default), write data to a new series. If True and the data and parameters are compatible with previous written ones (same shape, no compression, etc.), the image data are stored contiguously after the previous one. In that case, 'photometric', 'planarconfig', and 'rowsperstrip' are ignored. Metadata such as 'description', 'metadata', 'datetime', and 'extratags' are written to the first page of a contiguous series only. Cannot be used with the OME or ImageJ formats. truncate : bool If True, only write the first page of a contiguous series if possible (uncompressed, contiguous, not tiled). Other TIFF readers will only be able to read part of the data. Cannot be used with the OME or ImageJ formats. align : int Byte boundary on which to align the image data in the file. Default 16. Use mmap.ALLOCATIONGRANULARITY for memory-mapped data. Following contiguous writes are not aligned. rowsperstrip : int The number of rows per strip. By default, strips are ~64 KB if compression is enabled, else rowsperstrip is set to the image length. bitspersample : int Number of bits per sample. By default, this is the number of bits of the data dtype. Different values for different samples are not supported. Unsigned integer data are packed into bytes as tightly as possible. Valid values are 1-8 for uint8, 9-16 for uint16 and 17-32 for uint32. Cannot be used with compression, contiguous series, or empty files. compression : str, (str, int), (str, int, dict) If None (default), data are written uncompressed. If a str, one of TIFF.COMPRESSION, e.g. 'JPEG' or 'ZSTD'. If a tuple, the first item is one of TIFF.COMPRESSION, the second item is the compression level, and the third item is a dict of arguments passed to the compression codec. Compression cannot be used to write contiguous series. Compressors may require certain data shapes, types or value ranges. For example, JPEG requires grayscale or RGB(A), uint8 or 12-bit uint16. JPEG compression is experimental. JPEG markers and TIFF tags may not match. Only a limited set of compression shemes are implemented. predictor : bool or TIFF.PREDICTOR If True, apply horizontal differencing or floating-point predictor before compression. Predictors are disabled for 64-bit integers. subsampling : {(1, 1), (2, 1), (2, 2), (4, 1)} The horizontal and vertical subsampling factors used for the chrominance components of images. The default is (2, 2). Currently applies to JPEG compression of RGB images only. Images are stored in YCbCr color space. Segment widths must be a multiple of 8 times the horizontal factor. Segment lengths and rowsperstrip must be a multiple of 8 times the vertical factor. jpegtables : bytes JPEG quantization and/or Huffman tables. Use for copying pre-compressed JPEG segments. colormap : numpy.ndarray RGB color values for the corresponding data value. Must be of shape (3, 2**(data.itemsize*8)) and dtype uint16. description : str or encoded bytes The subject of the image. Must be 7-bit ASCII. Cannot be used with the ImageJ or OME formats. Written with the first page of a series only. datetime : datetime, str, or bool Date and time of image creation in '%Y:%m:%d %H:%M:%S' format or datetime object. Else if True, the current date and time is used. Written with the first page of a series only. resolution : (float, float[, str]) or ((int, int), (int, int)[, str]) X and Y resolutions in pixels per resolution unit as float or rational numbers. A third, optional parameter specifies the resolution unit, which must be None (default for ImageJ), 'INCH' (default), or 'CENTIMETER'. subfiletype : int Bitfield to indicate the kind of data. Set bit 0 if the image is a reduced-resolution version of another image. Set bit 1 if the image is part of a multi-page image. Set bit 2 if the image is transparency mask for another image (photometric must be MASK, SamplesPerPixel and BitsPerSample must be 1). software : str or bool Name of the software used to create the file. If None (default), 'tifffile.py'. Must be 7-bit ASCII. Written with the first page of a series only. subifds : int Number of child IFDs. If greater than 0, the following 'subifds' number of series are written as child IFDs of the current series. The number of IFDs written for each SubIFD level must match the number of IFDs written for the current series. All pages written to a certain SubIFD level of the current series must have the same hash. SubIFDs cannot be used with truncated or ImageJ files. SubIFDs in OME-TIFF files must be sub-resolutions of the main IFDs. metadata : dict Additional metadata describing the image data, written along with shape information in JSON, OME-XML, or ImageJ formats in ImageDescription or IJMetadata tags. If None, do not write an ImageDescription tag with shape in JSON format. If ImageJ format, values for keys 'Info', 'Labels', 'Ranges', 'LUTs', 'Plot', 'ROI', and 'Overlays' are written in IJMetadata and IJMetadataByteCounts tags. Refer to the imagej_metadata_tag function for valid values. Refer to the OmeXml class for supported keys when writing OME-TIFF. Strings must be 7-bit ASCII. Written with the first page of a series only. extratags : sequence of tuples Additional tags as [(code, dtype, count, value, writeonce)]. code : int The TIFF tag Id. dtype : int or str Data type of items in 'value'. One of TIFF.DATATYPES. count : int Number of data values. Not used for string or bytes values. value : sequence 'Count' values compatible with 'dtype'. Bytes must contain count values of dtype packed as binary data. writeonce : bool If True, the tag is written to the first page of a series only. returnoffset : bool If True and the image data in the file are memory-mappable, return the offset and number of bytes of the image data in the file. Returns ------- offset, bytecount : tuple or None If 'returnoffset' is true and the image data in the file are memory-mappable, return the offset and number of bytes of the image data in the file. """ # TODO: refactor this function fh = self._fh byteorder = self.tiff.byteorder if data is None: # empty dataiter = None datashape = tuple(shape) datadtype = numpy.dtype(dtype).newbyteorder(byteorder) datadtypechar = datadtype.char elif ( shape is not None and dtype is not None and hasattr(data, '__iter__') ): # iterable pages or tiles if hasattr(data, '__next__'): dataiter = data else: dataiter = iter(data) datashape = tuple(shape) datadtype = numpy.dtype(dtype).newbyteorder(byteorder) datadtypechar = datadtype.char elif hasattr(data, '__next__'): # generator raise TypeError( "generators require 'shape' and 'dtype' parameters" ) else: # whole image data # must be C-contiguous numpy array of TIFF byteorder if hasattr(data, 'dtype'): data = numpy.asarray(data, byteorder + data.dtype.char, 'C') else: datadtype = numpy.dtype(dtype).newbyteorder(byteorder) data = numpy.asarray(data, datadtype, 'C') if dtype is not None and dtype != data.dtype: warnings.warn( f"{self!r} ignoring 'dtype' argument", UserWarning ) if shape is not None and shape != data.shape: warnings.warn( f"{self!r} ignoring 'shape' argument", UserWarning ) dataiter = None datashape = data.shape datadtype = data.dtype datadtypechar = data.dtype.char if any(size >= 4294967296 for size in datashape): raise ValueError('invalid data shape') returnoffset = returnoffset and datadtype.isnative if compression is None and compress is not None: # TODO: remove warnings.warn( " the 'compress' parameter is " "deprecated since 2020.9.30. Use the 'compression' parameter", DeprecationWarning, stacklevel=2, ) if isinstance(compress, (int, numpy.integer)) and compress > 0: # ADOBE_DEFLATE compression = 8, int(compress) if not 0 < compress <= 9: raise ValueError(f'invalid compression level {compress}') else: compression = compress del compress bilevel = datadtypechar == '?' if bilevel: index = -1 if datashape[-1] > 1 else -2 datasize = product(datashape[:index]) if datashape[index] % 8: datasize *= datashape[index] // 8 + 1 else: datasize *= datashape[index] // 8 else: datasize = product(datashape) * datadtype.itemsize if datasize == 0: data = None compression = False bitspersample = None if metadata is not None: truncate = True elif compression in (None, 0, 1, 'NONE', 'none'): compression = False inputshape = datashape packints = ( bitspersample is not None and bitspersample != datadtype.itemsize * 8 ) # just append contiguous data if possible if self._datashape is not None: if ( not contiguous or self._datashape[1:] != datashape or self._datadtype != datadtype or not numpy.array_equal(colormap, self._colormap) ): # incompatible shape, dtype, or colormap self._write_remaining_pages() if self._imagej: raise ValueError( 'the ImageJ format does not support ' 'non-contiguous series' ) elif self._ome: if self._subifdslevel < 0: # add image to OME-XML self._ome.addimage( self._datadtype, self._datashape[ 0 if self._datashape[0] != 1 else 1 : ], self._storedshape, **self._metadata, ) elif metadata is not None: self._write_image_description() # description might have been appended to file fh.seek(0, os.SEEK_END) if self._subifds: if self._truncate or truncate: raise ValueError( 'SubIFDs cannot be used with truncated series' ) self._subifdslevel += 1 if self._subifdslevel == self._subifds: # done with writing SubIFDs self._nextifdoffsets = [] self._subifdsoffsets = [] self._subifdslevel = -1 self._subifds = 0 self._ifdindex = 0 elif subifds: raise ValueError( 'SubIFDs in SubIFDs are not supported' ) self._datashape = None self._colormap = None elif compression or packints or tile: raise ValueError( 'contiguous cannot be used with compression, tiles, etc.' ) else: # consecutive mode # write contiguous data, write IFDs/tags later self._datashape = (self._datashape[0] + 1,) + datashape offset = fh.tell() if data is None: fh.write_empty(datasize) else: fh.write_array(data) if returnoffset: return offset, datasize return None if self._ome is None: if description is None: self._ome = '.ome.tif' in fh.name else: self._ome = False self._truncate = False if self._ome else bool(truncate) if self._truncate and (compression or packints or tile): raise ValueError( 'truncate cannot be used with compression, packints, or tiles' ) if datasize == 0: # write single placeholder TiffPage for arrays with size=0 datashape = (0, 0) warnings.warn( f'{self!r} writing zero size array to nonconformant TIFF', UserWarning, ) # TODO: reconsider this # raise ValueError('cannot save zero size array') valueformat = f'{self.tiff.offsetsize}s' tagnoformat = self.tiff.tagnoformat offsetformat = self.tiff.offsetformat offsetsize = self.tiff.offsetsize tagsize = self.tiff.tagsize MINISBLACK = TIFF.PHOTOMETRIC.MINISBLACK MINISWHITE = TIFF.PHOTOMETRIC.MINISWHITE RGB = TIFF.PHOTOMETRIC.RGB YCBCR = TIFF.PHOTOMETRIC.YCBCR PALETTE = TIFF.PHOTOMETRIC.PALETTE CONTIG = TIFF.PLANARCONFIG.CONTIG SEPARATE = TIFF.PLANARCONFIG.SEPARATE # parse input if photometric is not None: photometric = enumarg(TIFF.PHOTOMETRIC, photometric) if planarconfig: planarconfig = enumarg(TIFF.PLANARCONFIG, planarconfig) if predictor: if not isinstance(predictor, bool): predictor = bool(enumarg(TIFF.PREDICTOR, predictor)) if extrasamples is None: extrasamples_ = None else: extrasamples_ = tuple( enumarg(TIFF.EXTRASAMPLE, es) for es in sequence(extrasamples) ) if compression: if isinstance(compression, (tuple, list)): if len(compression) == 2: compressionargs = {'level': compression[1]} else: compressionargs = dict(compression[2]) if compression[1] is not None: compressionargs['level'] = compression[1] compression = compression[0] else: compressionargs = {} if isinstance(compression, str): compression = compression.upper() if compression == 'ZLIB': compression = 8 # ADOBE_DEFLATE compressiontag = enumarg(TIFF.COMPRESSION, compression) compression = compressiontag > 1 else: compression = False compressiontag = 1 if not compression: compressionargs = {} predictor = False predictortag = 1 elif compression in (33003, 33004, 33005, 34712): # JPEG2000: use J2K instead of JP2 compressionargs['codecformat'] = 0 # OPJ_CODEC_J2K if predictor: if compressiontag in ( 7, 33003, 33004, 33005, 33007, 34712, 34892, 34933, 34934, 50001, 50002, ): # disable predictor for JPEG, JPEG2000, WEBP, PNG, JPEGXR predictor = False elif datadtype.kind in 'iu': if datadtype.itemsize > 4: predictor = False # disable predictor for 64 bit else: predictortag = 2 predictor = TIFF.PREDICTORS[2] elif datadtype.kind == 'f': predictortag = 3 predictor = TIFF.PREDICTORS[3] else: raise ValueError(f'cannot apply predictor to {datadtype}') if self._ome: if description is not None: warnings.warn( f'{self!r} not writing description to OME-TIFF', UserWarning, ) description = None if not isinstance(self._ome, OmeXml): self._ome = OmeXml(**metadata) if volumetric or (tile and len(tile) > 2): raise ValueError('OME-TIFF does not support ImageDepth') volumetric = False elif self._imagej: # if tile is not None or predictor or compression: # warnings.warn( # f'{self!r} the ImageJ format does not support ' # 'tiles, predictors, compression' # ) if description is not None: warnings.warn( f'{self!r} not writing description to ImageJ file', UserWarning, ) description = None if datadtypechar not in 'BHhf': raise ValueError( 'the ImageJ format does not support data type ' f'{datadtypechar!r}' ) if volumetric or (tile and len(tile) > 2): raise ValueError( 'the ImageJ format does not support ImageDepth' ) volumetric = False ijrgb = photometric == RGB if photometric else None if datadtypechar not in 'B': ijrgb = False ijshape = imagej_shape( datashape, ijrgb, metadata.get('axes', None) ) if ijshape[-1] in (3, 4): photometric = RGB if datadtypechar not in 'B': raise ValueError( 'the ImageJ format does not support ' f'data type {datadtypechar!r} for RGB' ) elif photometric is None: photometric = MINISBLACK planarconfig = None if planarconfig == SEPARATE: raise ValueError( 'the ImageJ format does not support planar images' ) planarconfig = CONTIG if ijrgb else None # verify colormap and indices if colormap is not None: colormap = numpy.asarray(colormap, dtype=byteorder + 'H') if datadtypechar in 'BH': if colormap.shape != (3, 2 ** (datadtype.itemsize * 8)): raise ValueError('invalid color map shape') elif self._imagej: if colormap.shape != (3, 256): raise ValueError('invalid color map shape') else: raise ValueError('invalid data dtype for palette mode') self._colormap = colormap if tile: # verify tile shape tile = tuple(int(i) for i in tile[:3]) if ( len(tile) < 2 or tile[-1] % 16 or tile[-2] % 16 or any(i < 1 for i in tile) ): raise ValueError('invalid tile shape') if volumetric and len(tile) == 2: tile = (1,) + tile volumetric = len(tile) == 3 else: tile = () volumetric = bool(volumetric) # normalize data shape to 5D or 6D, depending on volume: # (pages, separate_samples, [depth,] length, width, contig_samples) storedshape = reshape_nd( datashape, TIFF.PHOTOMETRIC_SAMPLES.get(photometric, 2) ) shape = storedshape ndim = len(storedshape) samplesperpixel = 1 extrasamples = 0 if volumetric and ndim < 3: volumetric = False if colormap is not None and datadtypechar in 'BH': photometric = PALETTE planarconfig = None if photometric is None: deprecate = False photometric = MINISBLACK if bilevel: photometric = MINISWHITE elif planarconfig == CONTIG: if ndim > 2 and shape[-1] in (3, 4): photometric = RGB deprecate = datadtypechar not in 'BH' elif planarconfig == SEPARATE: if volumetric and ndim > 3 and shape[-4] in (3, 4): photometric = RGB deprecate = True elif ndim > 2 and shape[-3] in (3, 4): photometric = RGB deprecate = True elif ndim > 2 and shape[-1] in (3, 4): photometric = RGB planarconfig = CONTIG deprecate = datadtypechar not in 'BH' elif self._imagej or self._ome: photometric = MINISBLACK planarconfig = None elif volumetric and ndim > 3 and shape[-4] in (3, 4): photometric = RGB planarconfig = SEPARATE deprecate = True elif ndim > 2 and shape[-3] in (3, 4): photometric = RGB planarconfig = SEPARATE deprecate = True if deprecate: if planarconfig == CONTIG: msg = 'contiguous samples', "parameter is" else: msg = ( 'separate component planes', "and 'planarconfig' parameters are", ) warnings.warn( f" data with shape {datashape} " f"and dtype '{datadtype}' are stored as RGB with {msg[0]}." " Future versions will store such data as MINISBLACK in " "separate pages by default unless the 'photometric' " f"{msg[1]} specified.", DeprecationWarning, stacklevel=2, ) del msg del deprecate del datashape photometricsamples = TIFF.PHOTOMETRIC_SAMPLES[photometric] if planarconfig and len(shape) <= (3 if volumetric else 2): # TODO: raise error? planarconfig = None if photometricsamples > 1: photometric = MINISBLACK if photometricsamples > 1: if len(shape) < 3: raise ValueError(f'not a {photometric!r} image') if len(shape) < 4: volumetric = False if planarconfig is None: if photometric == RGB: samples_ = (photometricsamples, 4) # allow common alpha else: samples_ = (photometricsamples,) if shape[-1] in samples_: planarconfig = CONTIG elif shape[-4 if volumetric else -3] in samples_: planarconfig = SEPARATE elif shape[-1] > shape[-4 if volumetric else -3]: # TODO: deprecated this? planarconfig = SEPARATE else: planarconfig = CONTIG if planarconfig == CONTIG: storedshape = (-1, 1) + shape[(-4 if volumetric else -3) :] samplesperpixel = storedshape[-1] else: storedshape = ( (-1,) + shape[(-4 if volumetric else -3) :] + (1,) ) samplesperpixel = storedshape[1] if samplesperpixel > photometricsamples: extrasamples = samplesperpixel - photometricsamples elif photometric == TIFF.PHOTOMETRIC.CFA: if len(shape) != 2: raise ValueError('invalid CFA image') volumetric = False planarconfig = None storedshape = (-1, 1) + shape[-2:] + (1,) # if all(et[0] != 50706 for et in extratags): # raise ValueError('must specify DNG tags for CFA image') elif planarconfig and len(shape) > (3 if volumetric else 2): if planarconfig == CONTIG: storedshape = (-1, 1) + shape[(-4 if volumetric else -3) :] samplesperpixel = storedshape[-1] else: storedshape = ( (-1,) + shape[(-4 if volumetric else -3) :] + (1,) ) samplesperpixel = storedshape[1] extrasamples = samplesperpixel - 1 # TODO: do not squeeze data when writing OME or ImageJ files (breaking) # elif self._ome or self._imagej or metadata in (None, False): # planarconfig = None # if extrasamples_ is None: # if len(shape) < 3: # volumetric = False # if len(shape) < 3 or shape[-1] != 1: # storedshape = ( # (-1, 1) + shape[(-3 if volumetric else -2) :] + (1,) # ) # else: # storedshape = (-1, 1) + shape[(-4 if volumetric else -3) :] # else: # assert len(shape) > 2 # if len(shape) < 4: # volumetric = False # storedshape = (-1, 1) + shape[(-4 if volumetric else -3) :] # samplesperpixel = storedshape[-1] # extrasamples = samplesperpixel - 1 else: # shaped series planarconfig = None while len(shape) > 2 and shape[-1] == 1: shape = shape[:-1] # remove trailing 1s if len(shape) < 3: volumetric = False if extrasamples_ is None: storedshape = ( (-1, 1) + shape[(-3 if volumetric else -2) :] + (1,) ) else: storedshape = (-1, 1) + shape[(-4 if volumetric else -3) :] samplesperpixel = storedshape[-1] extrasamples = samplesperpixel - 1 if subfiletype & 0b100: # FILETYPE_MASK if not ( bilevel and samplesperpixel == 1 and photometric in (0, 1, 4) ): raise ValueError('invalid SubfileType MASK') photometric = TIFF.PHOTOMETRIC.MASK packints = False if bilevel: if bitspersample is not None and bitspersample != 1: raise ValueError( f'bitspersample {bitspersample} must be 1 for bilevel' ) bitspersample = 1 elif compressiontag == 7 and datadtype == 'uint16': if bitspersample is not None and bitspersample != 12: raise ValueError( f'bitspersample {bitspersample} must be 12 for JPEG ' 'compressed uint16' ) bitspersample = 12 # use 12-bit JPEG compression elif bitspersample is None: bitspersample = datadtype.itemsize * 8 elif ( datadtype.kind != 'u' or datadtype.itemsize > 4 ) and bitspersample != datadtype.itemsize * 8: raise ValueError( f'bitspersample {bitspersample} does not match ' f'dtype {datadtype}' ) elif not ( bitspersample > {1: 0, 2: 8, 4: 16}[datadtype.itemsize] and bitspersample <= datadtype.itemsize * 8 ): raise ValueError( f'bitspersample {bitspersample} out of range of ' f'dtype {datadtype}' ) elif compression: if bitspersample != datadtype.itemsize * 8: raise ValueError( f'bitspersample {bitspersample} cannot be used with ' 'compression' ) elif bitspersample != datadtype.itemsize * 8: packints = True # normalize storedshape to 6D if len(storedshape) not in (5, 6): raise RuntimeError( f'length of storedshape {len(storedshape)} not in (5, 6)' ) if len(storedshape) == 5: storedshape = storedshape[:2] + (1,) + storedshape[2:] if storedshape[0] == -1: s0 = product(storedshape[1:]) s0 = 1 if s0 == 0 else product(inputshape) // s0 storedshape = (s0,) + storedshape[1:] try: data = data.reshape(storedshape) except AttributeError: pass # data is None or iterator if photometric == PALETTE: if ( samplesperpixel != 1 or extrasamples or storedshape[1] != 1 or storedshape[-1] != 1 ): raise ValueError( f'invalid data shape {storedshape!r} for palette mode' ) if photometric == RGB and samplesperpixel == 2: raise ValueError('not a RGB image (samplesperpixel=2)') tags = [] # list of (code, ifdentry, ifdvalue, writeonce) if tile: tagbytecounts = 325 # TileByteCounts tagoffsets = 324 # TileOffsets else: tagbytecounts = 279 # StripByteCounts tagoffsets = 273 # StripOffsets self._dataoffsetstag = tagoffsets def pack(fmt, *val): if fmt[0] not in '<>': fmt = byteorder + fmt return struct.pack(fmt, *val) def addtag(code, dtype, count, value, writeonce=False): # compute ifdentry & ifdvalue bytes from code, dtype, count, value # append (code, ifdentry, ifdvalue, writeonce) to tags list if not isinstance(code, int): code = TIFF.TAGS[code] try: datatype = dtype dataformat = TIFF.DATA_FORMATS[datatype][-1] except KeyError as exc: try: dataformat = dtype if dataformat[0] in '<>': dataformat = dataformat[1:] datatype = TIFF.DATA_DTYPES[dataformat] except (KeyError, TypeError): raise ValueError(f'unknown dtype {dtype}') from exc del dtype rawcount = count if datatype == 2: # string if isinstance(value, str): # enforce 7-bit ASCII on Unicode strings try: value = value.encode('ascii') except UnicodeEncodeError as exc: raise ValueError( 'TIFF strings must be 7-bit ASCII' ) from exc elif not isinstance(value, bytes): raise ValueError('TIFF strings must be 7-bit ASCII') if len(value) == 0 or value[-1] != b'\x00': value += b'\x00' count = len(value) if code == 270: self._descriptiontag = TiffTag( self, 0, 270, 2, count, None, 0 ) rawcount = value.find(b'\x00\x00') if rawcount < 0: rawcount = count else: # length of string without buffer rawcount = max(offsetsize + 1, rawcount + 1) rawcount = min(count, rawcount) else: rawcount = count value = (value,) elif isinstance(value, bytes): # packed binary data itemsize = struct.calcsize(dataformat) if len(value) % itemsize: raise ValueError('invalid packed binary data') count = len(value) // itemsize rawcount = count if datatype in (5, 10): # rational count *= 2 dataformat = dataformat[-1] ifdentry = [ pack('HH', code, datatype), pack(offsetformat, rawcount), ] ifdvalue = None if struct.calcsize(dataformat) * count <= offsetsize: # value(s) can be written directly if isinstance(value, bytes): ifdentry.append(pack(valueformat, value)) elif count == 1: if isinstance(value, (tuple, list, numpy.ndarray)): value = value[0] ifdentry.append(pack(valueformat, pack(dataformat, value))) else: ifdentry.append( pack(valueformat, pack(f'{count}{dataformat}', *value)) ) else: # use offset to value(s) ifdentry.append(pack(offsetformat, 0)) if isinstance(value, bytes): ifdvalue = value elif isinstance(value, numpy.ndarray): if value.size != count: raise RuntimeError('value.size != count') if value.dtype.char != dataformat: raise RuntimeError('value.dtype.char != dtype') ifdvalue = value.tobytes() elif isinstance(value, (tuple, list)): ifdvalue = pack(f'{count}{dataformat}', *value) else: ifdvalue = pack(dataformat, value) tags.append((code, b''.join(ifdentry), ifdvalue, writeonce)) def rational(arg): # return numerator and denominator from float or two integers from fractions import Fraction # delayed import try: f = Fraction.from_float(arg) except TypeError: f = Fraction(arg[0], arg[1]) try: numerator, denominator = f.as_integer_ratio() except AttributeError: # Python 3.7 f = f.limit_denominator(4294967294) numerator, denominator = f.numerator, f.denominator if numerator > 4294967295 or denominator > 4294967295: s = 4294967295 / max(numerator, denominator) numerator = round(numerator * s) denominator = round(denominator * s) return numerator, denominator if description is not None: # ImageDescription: user provided description addtag(270, 2, 0, description, writeonce=True) # write shape and metadata to ImageDescription self._metadata = {} if not metadata else metadata.copy() if self._ome: if len(self._ome.images) == 0: description = '' # rewritten later at end of file else: description = None elif self._imagej: if ijmetadata is None: ijmetadata = parse_kwargs( self._metadata, 'Info', 'Labels', 'Ranges', 'LUTs', 'Plot', 'ROI', 'Overlays', 'Properties', 'info', 'labels', 'ranges', 'luts', 'plot', 'roi', 'overlays', 'prop', ) else: # TODO: remove warnings.warn( ' ' "the 'ijmetadata' parameter is deprecated since 2020.5.5. " "Use the 'metadata' parameter", DeprecationWarning, stacklevel=2, ) for t in imagej_metadata_tag(ijmetadata, byteorder): addtag(*t) description = imagej_description( inputshape, storedshape[-1] in (3, 4), self._colormap is not None, **self._metadata, ) description += '\x00' * 64 # add buffer for in-place update elif metadata or metadata == {}: if self._truncate: self._metadata.update(truncated=True) description = json_description(inputshape, **self._metadata) description += '\x00' * 16 # add buffer for in-place update # elif metadata is None and self._truncate: # raise ValueError('cannot truncate without writing metadata') else: description = None if description is not None: description = description.encode('ascii') addtag(270, 2, 0, description, writeonce=True) del description if software is None: software = 'tifffile.py' if software: addtag(305, 2, 0, software, writeonce=True) if datetime: if isinstance(datetime, str): if len(datetime) != 19 or datetime[16] != ':': raise ValueError('invalid datetime string') else: try: datetime = datetime.strftime('%Y:%m:%d %H:%M:%S') except AttributeError: datetime = self._now().strftime('%Y:%m:%d %H:%M:%S') addtag(306, 2, 0, datetime, writeonce=True) addtag(259, 3, 1, compressiontag) # Compression if compressiontag == 34887: # LERC without additional compression addtag(50674, 4, 2, (4, 0)) if predictor: addtag(317, 3, 1, predictortag) addtag(256, 4, 1, storedshape[-2]) # ImageWidth addtag(257, 4, 1, storedshape[-3]) # ImageLength if tile: addtag(322, 4, 1, tile[-1]) # TileWidth addtag(323, 4, 1, tile[-2]) # TileLength if volumetric: addtag(32997, 4, 1, storedshape[-4]) # ImageDepth if tile: addtag(32998, 4, 1, tile[0]) # TileDepth if subfiletype: addtag(254, 4, 1, subfiletype) # NewSubfileType if (subifds or self._subifds) and self._subifdslevel < 0: if self._subifds: subifds = self._subifds else: try: self._subifds = subifds = int(subifds) except TypeError: # allow TiffPage.subifds tuple self._subifds = subifds = len(subifds) addtag(330, 18 if offsetsize > 4 else 13, subifds, [0] * subifds) if not bilevel and not datadtype.kind == 'u': sampleformat = {'u': 1, 'i': 2, 'f': 3, 'c': 6}[datadtype.kind] addtag(339, 3, samplesperpixel, (sampleformat,) * samplesperpixel) if colormap is not None: addtag(320, 3, colormap.size, colormap) addtag(277, 3, 1, samplesperpixel) if bilevel: pass elif planarconfig and samplesperpixel > 1: addtag(284, 3, 1, planarconfig.value) # PlanarConfiguration addtag( # BitsPerSample 258, 3, samplesperpixel, (bitspersample,) * samplesperpixel ) else: addtag(258, 3, 1, bitspersample) if extrasamples: if extrasamples_ is not None: if extrasamples != len(extrasamples_): raise ValueError( 'wrong number of extrasamples ' f'{extrasamples} != {len(extrasamples_)}' ) addtag(338, 3, extrasamples, extrasamples_) elif photometric == RGB and extrasamples == 1: # Unassociated alpha channel addtag(338, 3, 1, 2) else: # Unspecified alpha channel addtag(338, 3, extrasamples, (0,) * extrasamples) if jpegtables is not None: addtag(347, 7, len(jpegtables), jpegtables) if ( compressiontag == 7 and planarconfig == 1 and photometric in (RGB, YCBCR) ): # JPEG compression with subsampling # TODO: use JPEGTables for multiple tiles or strips if subsampling is None: subsampling = (2, 2) elif subsampling not in ((1, 1), (2, 1), (2, 2), (4, 1)): raise ValueError( f'invalid subsampling factors {subsampling!r}' ) maxsampling = max(subsampling) * 8 if tile and (tile[-1] % maxsampling or tile[-2] % maxsampling): raise ValueError(f'tile shape not a multiple of {maxsampling}') if extrasamples > 1: raise ValueError('JPEG subsampling requires RGB(A) images') addtag(530, 3, 2, subsampling) # YCbCrSubSampling # use PhotometricInterpretation YCBCR by default outcolorspace = enumarg( TIFF.PHOTOMETRIC, compressionargs.get('outcolorspace', 6) ) compressionargs['subsampling'] = subsampling compressionargs['colorspace'] = photometric.name compressionargs['outcolorspace'] = outcolorspace.name addtag(262, 3, 1, outcolorspace) # ReferenceBlackWhite is required for YCBCR if all(et[0] != 532 for et in extratags): addtag( 532, 5, 6, (0, 1, 255, 1, 128, 1, 255, 1, 128, 1, 255, 1) ) else: if subsampling not in (None, (1, 1)): log_warning( f'{self!r} cannot apply subsampling {subsampling!r}' ) subsampling = None maxsampling = 1 addtag(262, 3, 1, photometric.value) # PhotometricInterpretation if photometric == YCBCR: # YCbCrSubSampling and ReferenceBlackWhite addtag(530, 3, 2, (1, 1)) if all(et[0] != 532 for et in extratags): addtag( 532, 5, 6, (0, 1, 255, 1, 128, 1, 255, 1, 128, 1, 255, 1), ) if resolution is not None: addtag(282, 5, 1, rational(resolution[0])) # XResolution addtag(283, 5, 1, rational(resolution[1])) # YResolution if len(resolution) > 2: unit = resolution[2] unit = 1 if unit is None else enumarg(TIFF.RESUNIT, unit) elif self._imagej: unit = 1 else: unit = 2 addtag(296, 3, 1, unit) # ResolutionUnit elif not self._imagej: addtag(282, 5, 1, (1, 1)) # XResolution addtag(283, 5, 1, (1, 1)) # YResolution addtag(296, 3, 1, 1) # ResolutionUnit def bytecount_format( bytecounts, compression=compression, size=offsetsize ): # return small bytecount format if len(bytecounts) == 1: return {4: 'I', 8: 'Q'}[size] bytecount = bytecounts[0] if compression: bytecount = bytecount * 10 if bytecount < 2**16: return 'H' if bytecount < 2**32: return 'I' if size == 4: return 'I' return 'Q' # can save data array contiguous contiguous = not (compression or packints or bilevel) if tile: # one chunk per tile per plane if len(tile) == 2: tiles = ( (storedshape[3] + tile[0] - 1) // tile[0], (storedshape[4] + tile[1] - 1) // tile[1], ) contiguous = ( contiguous and storedshape[3] == tile[0] and storedshape[4] == tile[1] ) else: tiles = ( (storedshape[2] + tile[0] - 1) // tile[0], (storedshape[3] + tile[1] - 1) // tile[1], (storedshape[4] + tile[2] - 1) // tile[2], ) contiguous = ( contiguous and storedshape[2] == tile[0] and storedshape[3] == tile[1] and storedshape[4] == tile[2] ) numtiles = product(tiles) * storedshape[1] databytecounts = [ product(tile) * storedshape[-1] * datadtype.itemsize ] * numtiles bytecountformat = bytecount_format(databytecounts) addtag(tagbytecounts, bytecountformat, numtiles, databytecounts) addtag(tagoffsets, offsetformat, numtiles, [0] * numtiles) bytecountformat = bytecountformat * numtiles if contiguous or dataiter is not None: pass else: dataiter = iter_tiles(data, tile, tiles) elif contiguous and rowsperstrip is None: count = storedshape[1] * storedshape[2] databytecounts = [ product(storedshape[3:]) * datadtype.itemsize ] * count bytecountformat = bytecount_format(databytecounts) addtag(tagbytecounts, bytecountformat, count, databytecounts) addtag(tagoffsets, offsetformat, count, [0] * count) addtag(278, 4, 1, storedshape[-3]) # RowsPerStrip bytecountformat = bytecountformat * storedshape[1] if contiguous or dataiter is not None: pass else: dataiter = iter_images(data) else: # use rowsperstrip rowsize = product(storedshape[-2:]) * datadtype.itemsize if rowsperstrip is None: # compress ~64 KB chunks by default # TIFF-EP requires <= 64 KB if compression: rowsperstrip = 65536 // rowsize else: rowsperstrip = storedshape[-3] if rowsperstrip < 1: rowsperstrip = maxsampling elif rowsperstrip > storedshape[-3]: rowsperstrip = storedshape[-3] elif subsampling and rowsperstrip % maxsampling: rowsperstrip = ( math.ceil(rowsperstrip / maxsampling) * maxsampling ) addtag(278, 4, 1, rowsperstrip) # RowsPerStrip numstrips1 = (storedshape[-3] + rowsperstrip - 1) // rowsperstrip numstrips = numstrips1 * storedshape[1] * storedshape[2] # TODO: save bilevel data with rowsperstrip stripsize = rowsperstrip * rowsize databytecounts = [stripsize] * numstrips stripsize -= rowsize * ( numstrips1 * rowsperstrip - storedshape[-3] ) for i in range(numstrips1 - 1, numstrips, numstrips1): databytecounts[i] = stripsize bytecountformat = bytecount_format(databytecounts) addtag(tagbytecounts, bytecountformat, numstrips, databytecounts) addtag(tagoffsets, offsetformat, numstrips, [0] * numstrips) bytecountformat = bytecountformat * numstrips if contiguous or dataiter is not None: pass else: dataiter = iter_images(data) if data is None and not contiguous: raise ValueError('cannot write non-contiguous empty file') # add extra tags from user for t in extratags: addtag(*t) # TODO: check TIFFReadDirectoryCheckOrder warning in files containing # multiple tags of same code # the entries in an IFD must be sorted in ascending order by tag code tags = sorted(tags, key=lambda x: x[0]) # define compress function if bilevel: if compressiontag == 1: def compress(data, level=None): return numpy.packbits(data, axis=-2).tobytes() elif compressiontag in (5, 32773): # LZW, PackBits def compress( data, compressor=TIFF.COMPRESSORS[compressiontag], kwargs=compressionargs, ): data = numpy.packbits(data, axis=-2).tobytes() return compressor(data, **kwargs) else: raise NotImplementedError('cannot compress bilevel image') elif compression: compressor = TIFF.COMPRESSORS[compressiontag] if compressiontag == 32773: # PackBits compressionargs['axis'] = -2 if subsampling: # JPEG with subsampling def compress( data, compressor=compressor, kwargs=compressionargs ): return compressor(data, **kwargs) elif predictor: def compress( data, predictor=predictor, compressor=compressor, kwargs=compressionargs, ): data = predictor(data, axis=-2) return compressor(data, **kwargs) elif compressionargs: def compress( data, compressor=compressor, kwargs=compressionargs ): return compressor(data, **kwargs) else: compress = compressor elif packints: def compress(data, bps=bitspersample): return packints_encode(data, bps, axis=-2) else: compress = False del compression fhpos = fh.tell() if ( not (offsetsize > 4 or self._imagej or compress) and fhpos + datasize > 2**32 - 1 ): raise ValueError('data too large for standard TIFF file') # if not compressed or multi-tiled, write the first IFD and then # all data contiguously; else, write all IFDs and data interleaved for pageindex in range(1 if contiguous else storedshape[0]): ifdpos = fhpos if ifdpos % 2: # location of IFD must begin on a word boundary fh.write(b'\x00') ifdpos += 1 if self._subifdslevel < 0: # update pointer at ifdoffset fh.seek(self._ifdoffset) fh.write(pack(offsetformat, ifdpos)) fh.seek(ifdpos) # create IFD in memory if pageindex < 2: subifdsoffsets = None ifd = io.BytesIO() ifd.write(pack(tagnoformat, len(tags))) tagoffset = ifd.tell() ifd.write(b''.join(t[1] for t in tags)) ifdoffset = ifd.tell() ifd.write(pack(offsetformat, 0)) # offset to next IFD # write tag values and patch offsets in ifdentries for tagindex, tag in enumerate(tags): offset = tagoffset + tagindex * tagsize + 4 + offsetsize code = tag[0] value = tag[2] if value: pos = ifd.tell() if pos % 2: # tag value is expected to begin on word boundary ifd.write(b'\x00') pos += 1 ifd.seek(offset) ifd.write(pack(offsetformat, ifdpos + pos)) ifd.seek(pos) ifd.write(value) if code == tagoffsets: dataoffsetsoffset = offset, pos elif code == tagbytecounts: databytecountsoffset = offset, pos elif code == 270: self._descriptiontag.offset = ( ifdpos + tagoffset + tagindex * tagsize ) self._descriptiontag.valueoffset = ifdpos + pos elif code == 330: subifdsoffsets = offset, pos elif code == tagoffsets: dataoffsetsoffset = offset, None elif code == tagbytecounts: databytecountsoffset = offset, None elif code == 270: self._descriptiontag.offset = ( ifdpos + tagoffset + tagindex * tagsize ) self._descriptiontag.valueoffset = ( self._descriptiontag.offset + offsetsize + 4 ) elif code == 330: subifdsoffsets = offset, None ifdsize = ifd.tell() if ifdsize % 2: ifd.write(b'\x00') ifdsize += 1 # write IFD later when strip/tile bytecounts and offsets are known fh.seek(ifdsize, os.SEEK_CUR) # write image data dataoffset = fh.tell() if align is None: align = 16 skip = (align - (dataoffset % align)) % align fh.seek(skip, os.SEEK_CUR) dataoffset += skip if contiguous: if data is None: fh.write_empty(datasize) elif dataiter is not None: for pagedata in dataiter: if pagedata.dtype != datadtype: raise ValueError( f'dtype of iterable {pagedata.dtype!r} ' f'does not match dtype {datadtype!r}' ) fh.write_array(pagedata.reshape(storedshape[1:])) else: fh.write_array(data) elif tile: if storedshape[-1] == 1: tileshape = tile else: tileshape = tile + (storedshape[-1],) tilesize = product(tileshape) * datadtype.itemsize if data is None: fh.write_empty(numtiles * tilesize) elif compress: isbytes = True for tileindex in range(storedshape[1] * product(tiles)): chunk = next(dataiter) if chunk is None: databytecounts[tileindex] = 0 continue if isbytes and isinstance(chunk, bytes): # pre-compressed pass else: if chunk.nbytes != tilesize: chunk = pad_tile(chunk, tileshape, datadtype) isbytes = False chunk = compress(chunk) fh.write(chunk) databytecounts[tileindex] = len(chunk) else: for tileindex in range(storedshape[1] * product(tiles)): chunk = next(dataiter) if chunk is None: # databytecounts[tileindex] = 0 # not contiguous fh.write_empty(tilesize) continue if chunk.nbytes != tilesize: chunk = pad_tile(chunk, tileshape, datadtype) fh.write_array(chunk) elif compress: # write one strip per rowsperstrip numstrips = ( storedshape[-3] + rowsperstrip - 1 ) // rowsperstrip stripindex = 0 pagedata = next(dataiter).reshape(storedshape[1:]) if pagedata.dtype != datadtype: raise ValueError( f'dtype of iterable {pagedata.dtype!r} ' f'does not match dtype {datadtype!r}' ) for plane in pagedata: for depth in plane: for i in range(numstrips): strip = depth[ i * rowsperstrip : (i + 1) * rowsperstrip ] strip = compress(strip) fh.write(strip) databytecounts[stripindex] = len(strip) stripindex += 1 else: pagedata = next(dataiter).reshape(storedshape[1:]) if pagedata.dtype != datadtype: raise ValueError( f'dtype of iterable {pagedata.dtype!r} ' f'does not match dtype {datadtype!r}' ) fh.write_array(pagedata) # update strip/tile offsets offset, pos = dataoffsetsoffset ifd.seek(offset) if pos: ifd.write(pack(offsetformat, ifdpos + pos)) ifd.seek(pos) offset = dataoffset for size in databytecounts: ifd.write(pack(offsetformat, offset)) offset += size else: ifd.write(pack(offsetformat, dataoffset)) if compress: # update strip/tile bytecounts offset, pos = databytecountsoffset ifd.seek(offset) if pos: ifd.write(pack(offsetformat, ifdpos + pos)) ifd.seek(pos) ifd.write(pack(bytecountformat, *databytecounts)) if subifdsoffsets is not None: # update and save pointer to SubIFDs tag values if necessary offset, pos = subifdsoffsets if pos is not None: ifd.seek(offset) ifd.write(pack(offsetformat, ifdpos + pos)) self._subifdsoffsets.append(ifdpos + pos) else: self._subifdsoffsets.append(ifdpos + offset) fhpos = fh.tell() fh.seek(ifdpos) fh.write(ifd.getbuffer()) fh.flush() if self._subifdslevel < 0: self._ifdoffset = ifdpos + ifdoffset else: # update SubIFDs tag values fh.seek( self._subifdsoffsets[self._ifdindex] + self._subifdslevel * offsetsize ) fh.write(pack(offsetformat, ifdpos)) # update SubIFD chain offsets if self._subifdslevel == 0: self._nextifdoffsets.append(ifdpos + ifdoffset) else: fh.seek(self._nextifdoffsets[self._ifdindex]) fh.write(pack(offsetformat, ifdpos)) self._nextifdoffsets[self._ifdindex] = ifdpos + ifdoffset self._ifdindex += 1 self._ifdindex %= len(self._subifdsoffsets) fh.seek(fhpos) # remove tags that should be written only once if pageindex == 0: tags = [tag for tag in tags if not tag[-1]] self._storedshape = storedshape self._datashape = (1,) + inputshape self._datadtype = datadtype self._dataoffset = dataoffset self._databytecounts = databytecounts if contiguous: # write remaining IFDs/tags later self._tags = tags # return offset and size of image data if returnoffset: return dataoffset, sum(databytecounts) return None def save(self, *args, **kwargs): """Deprecated. Use TiffWriter.write.""" warnings.warn( ' is deprecated. Use TiffWriter.write', DeprecationWarning, stacklevel=2, ) self.write(*args, **kwargs) def overwrite_description(self, description): """Overwrite the value of the last ImageDescription tag. Can be used to write OME-XML after writing the image data. Ends a contiguous series. """ if self._descriptiontag is None: raise ValueError('no ImageDescription tag found') self._write_remaining_pages() self._descriptiontag.overwrite(description, erase=False) self._descriptiontag = None def _write_remaining_pages(self): """Write outstanding IFDs and tags to file.""" if not self._tags or self._truncate or self._datashape is None: return pageno = self._storedshape[0] * self._datashape[0] - 1 if pageno < 1: self._tags = None self._dataoffset = None self._databytecounts = None return fh = self._fh fhpos = fh.tell() if fhpos % 2: fh.write(b'\x00') fhpos += 1 pack = struct.pack offsetformat = self.tiff.offsetformat offsetsize = self.tiff.offsetsize tagnoformat = self.tiff.tagnoformat tagsize = self.tiff.tagsize dataoffset = self._dataoffset pagedatasize = sum(self._databytecounts) subifdsoffsets = None # construct template IFD in memory # must patch offsets to next IFD and data before writing to file ifd = io.BytesIO() ifd.write(pack(tagnoformat, len(self._tags))) tagoffset = ifd.tell() ifd.write(b''.join(t[1] for t in self._tags)) ifdoffset = ifd.tell() ifd.write(pack(offsetformat, 0)) # offset to next IFD # tag values for tagindex, tag in enumerate(self._tags): offset = tagoffset + tagindex * tagsize + offsetsize + 4 code = tag[0] value = tag[2] if value: pos = ifd.tell() if pos % 2: # tag value is expected to begin on word boundary ifd.write(b'\x00') pos += 1 ifd.seek(offset) try: ifd.write(pack(offsetformat, fhpos + pos)) except Exception: # struct.error if self._imagej: warnings.warn( f'{self!r} truncating ImageJ file', UserWarning ) self._truncate = True return raise ValueError('data too large for non-BigTIFF file') ifd.seek(pos) ifd.write(value) if code == self._dataoffsetstag: # save strip/tile offsets for later updates dataoffsetsoffset = offset, pos elif code == 330: # save subifds offsets for later updates subifdsoffsets = offset, pos elif code == self._dataoffsetstag: dataoffsetsoffset = offset, None elif code == 330: subifdsoffsets = offset, None ifdsize = ifd.tell() if ifdsize % 2: ifd.write(b'\x00') ifdsize += 1 # check if all IFDs fit in file if offsetsize < 8 and fhpos + ifdsize * pageno > 2**32 - 32: if self._imagej: warnings.warn(f'{self!r} truncating ImageJ file', UserWarning) self._truncate = True return raise ValueError('data too large for non-BigTIFF file') # assemble IFD chain in memory from IFD template ifds = io.BytesIO(bytes(ifdsize * pageno)) ifdpos = fhpos for _ in range(pageno): # update strip/tile offsets in IFD dataoffset += pagedatasize # offset to image data offset, pos = dataoffsetsoffset ifd.seek(offset) if pos is not None: ifd.write(pack(offsetformat, ifdpos + pos)) ifd.seek(pos) offset = dataoffset for size in self._databytecounts: ifd.write(pack(offsetformat, offset)) offset += size else: ifd.write(pack(offsetformat, dataoffset)) if subifdsoffsets is not None: offset, pos = subifdsoffsets self._subifdsoffsets.append( ifdpos + (pos if pos is not None else offset) ) if self._subifdslevel < 0: if subifdsoffsets is not None: # update pointer to SubIFDs tag values if necessary offset, pos = subifdsoffsets if pos is not None: ifd.seek(offset) ifd.write(pack(offsetformat, ifdpos + pos)) # update pointer at ifdoffset to point to next IFD in file ifdpos += ifdsize ifd.seek(ifdoffset) ifd.write(pack(offsetformat, ifdpos)) else: # update SubIFDs tag values in file fh.seek( self._subifdsoffsets[self._ifdindex] + self._subifdslevel * offsetsize ) fh.write(pack(offsetformat, ifdpos)) # update SubIFD chain if self._subifdslevel == 0: self._nextifdoffsets.append(ifdpos + ifdoffset) else: fh.seek(self._nextifdoffsets[self._ifdindex]) fh.write(pack(offsetformat, ifdpos)) self._nextifdoffsets[self._ifdindex] = ifdpos + ifdoffset self._ifdindex += 1 self._ifdindex %= len(self._subifdsoffsets) ifdpos += ifdsize # write IFD entry ifds.write(ifd.getbuffer()) # terminate IFD chain ifdoffset += ifdsize * (pageno - 1) ifds.seek(ifdoffset) ifds.write(pack(offsetformat, 0)) # write IFD chain to file fh.seek(fhpos) fh.write(ifds.getbuffer()) if self._subifdslevel < 0: # update file to point to new IFD chain pos = fh.tell() fh.seek(self._ifdoffset) fh.write(pack(offsetformat, fhpos)) fh.flush() fh.seek(pos) self._ifdoffset = fhpos + ifdoffset self._tags = None self._dataoffset = None self._databytecounts = None # do not reset _storedshape, _datashape, _datadtype def _write_image_description(self): """Write metadata to ImageDescription tag.""" if self._datashape is None or self._descriptiontag is None: self._descriptiontag = None return if self._ome: if self._subifdslevel < 0: self._ome.addimage( self._datadtype, self._datashape[0 if self._datashape[0] != 1 else 1 :], self._storedshape, **self._metadata, ) description = self._ome.tostring(declaration=True).encode() elif self._datashape[0] == 1: # description already up-to-date self._descriptiontag = None return # elif self._subifdslevel >= 0: # # don't write metadata to SubIFDs # return elif self._imagej: colormapped = self._colormap is not None isrgb = self._storedshape[-1] in (3, 4) description = imagej_description( self._datashape, isrgb, colormapped, **self._metadata ) else: description = json_description(self._datashape, **self._metadata) self._descriptiontag.overwrite(description, erase=False) self._descriptiontag = None def _now(self): """Return current date and time.""" return datetime.datetime.now() def close(self): """Write remaining pages and close file handle.""" if not self._truncate: self._write_remaining_pages() self._write_image_description() self._fh.close() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def __repr__(self): return f'' class TiffFile: """Read image and metadata from TIFF file. TiffFile instances must be closed using the 'close' method, which is automatically called when using the 'with' context manager. TiffFile instances are not thread-safe. Attributes ---------- pages : TiffPages Sequence of TIFF pages in file. series : list of TiffPageSeries Sequences of closely related TIFF pages. These are computed from OME, LSM, ImageJ, etc. metadata or based on similarity of page properties such as shape, dtype, and compression. is_flag : bool If True, file is of a certain format. Flags are: bigtiff, uniform, shaped, ome, imagej, stk, lsm, fluoview, nih, vista, micromanager, metaseries, mdgel, mediacy, tvips, fei, sem, scn, svs, scanimage, andor, epics, ndpi, pilatus, qpi. All attributes are read-only. """ def __init__( self, arg, mode=None, name=None, offset=None, size=None, _multifile=True, _useframes=None, _parent=None, **kwargs, ): """Initialize instance from file. Parameters ---------- arg : path_like or open file Name of file or open file object. The file objects are closed in TiffFile.close(). mode : str (optional) File open mode in case 'arg' is a file name. Must be 'rb' or 'r+b'. Default is 'rb'. name : str (optional) Optional name of file in case 'arg' is a file handle. offset : int (optional) Optional start position of embedded file. By default, this is the current file position. size : int (optional) Optional size of embedded file. By default, this is the number of bytes from the 'offset' to the end of the file. **kwargs Optional extra arguments. 'is_ome' : bool If False, disable processing of OME-XML metadata. """ if kwargs: # TODO: remove; formally deprecated in 2020.10.1 for key in ('fastij', 'movie', 'multifile', 'multifile_close'): if key in kwargs: del kwargs[key] warnings.warn( f' the {key!r} argument is ignored', DeprecationWarning, stacklevel=2, ) if 'pages' in kwargs: raise TypeError( "the 'pages' parameter is no longer supported." "\n\nUse TiffFile.asarray(key=[...]) to read image data " "from specific pages.\n" ) for key, value in kwargs.items(): if key[:3] == 'is_' and key[3:] in TIFF.FILE_FLAGS: if value is not None: setattr(self, key, bool(value)) else: raise TypeError(f'unexpected keyword argument: {key}') if mode not in (None, 'rb', 'r+b'): raise ValueError(f'invalid mode {mode!r}') fh = FileHandle(arg, mode=mode, name=name, offset=offset, size=size) self._fh = fh self._multifile = bool(_multifile) self._files = {fh.name: self} # cache of TiffFile instances self._decoders = {} # cache of TiffPage.decode functions self._parent = self if _parent is None else _parent # OME master file try: fh.seek(0) header = fh.read(4) try: byteorder = {b'II': '<', b'MM': '>', b'EP': '<'}[header[:2]] except KeyError: raise TiffFileError(f'not a TIFF file {header!r}') version = struct.unpack(byteorder + 'H', header[2:4])[0] if version == 43: # BigTiff offsetsize, zero = struct.unpack(byteorder + 'HH', fh.read(4)) if zero != 0 or offsetsize != 8: raise TiffFileError( f'invalid BigTIFF offset size {(offsetsize, zero)}' ) if byteorder == '>': self.tiff = TIFF.BIG_BE else: self.tiff = TIFF.BIG_LE elif version == 42: # Classic TIFF if byteorder == '>': self.tiff = TIFF.CLASSIC_BE elif kwargs.get('is_ndpi', False) or fh.name.endswith('ndpi'): # NDPI uses 64 bit IFD offsets self.tiff = TIFF.NDPI_LE else: self.tiff = TIFF.CLASSIC_LE elif version == 0x4E31: # NIFF if byteorder == '>': raise TiffFileError('invalid NIFF file') log_warning(f'{self!r} NIFF format not supported') self.tiff = TIFF.CLASSIC_LE elif version == 0x55 or version == 0x4F52 or version == 0x5352: # Panasonic or Olympus RAW log_warning( f'{self!r} RAW format 0x{version:04X} not supported' ) if byteorder == '>': self.tiff = TIFF.CLASSIC_BE else: self.tiff = TIFF.CLASSIC_LE else: raise TiffFileError(f'invalid TIFF version {version}') # file handle is at offset to offset to first page self.pages = TiffPages(self) if self.is_lsm and ( self.filehandle.size >= 2**32 or self.pages[0].compression != 1 or self.pages[1].compression != 1 ): self._lsm_load_pages() elif self.is_scanimage and not self.is_bigtiff: # ScanImage <= 2015 try: self.pages._load_virtual_frames() except Exception as exc: log_warning( f'{self!r} _load_virtual_frames failed with ' f'{exc.__class__.__name__}: {exc}' ) elif self.is_philips: try: self._philips_load_pages() except Exception as exc: log_warning( f'{self!r} _philips_load_pages failed with ' f'{exc.__class__.__name__}: {exc}' ) elif self.is_ndpi: try: self._ndpi_load_pages() except Exception as exc: log_warning( f'{self!r} _ndpi_load_pages failed with ' f'{exc.__class__.__name__}: {exc}' ) elif _useframes: self.pages.useframes = True except Exception: fh.close() raise @property def byteorder(self): return self.tiff.byteorder @property def filehandle(self): """Return file handle.""" return self._fh @property def filename(self): """Return name of file handle.""" return self._fh.name @lazyattr def fstat(self): """Return status of file handle as stat_result object.""" try: return os.fstat(self._fh.fileno()) except Exception: # io.UnsupportedOperation return None def close(self): """Close open file handle(s).""" for tif in self._files.values(): tif.filehandle.close() def asarray( self, key=None, series=None, level=None, squeeze=None, out=None, maxworkers=None, ): """Return image data from selected TIFF page(s) as numpy array. By default, the data from the first series is returned. Parameters ---------- key : int, slice, or sequence of indices Defines which pages to return as array. If None (default), data from a series (default 0) is returned. If not None, data from the specified pages in the whole file (if 'series' is None) or a specified series are returned as a stacked array. Requesting an array from multiple pages that are not compatible wrt. shape, dtype, compression etc. is undefined, i.e. may crash or return incorrect values. series : int or TiffPageSeries Defines which series of pages to return as array. level : int Defines which pyramid level of a series to return as array. squeeze : bool If True, all length-1 dimensions (except X and Y) are squeezed out from the array. If False, single pages are returned as 5D array (TiffPage.shaped). For series, the shape of the returned array also includes singlet dimensions specified in some file formats. E.g. ImageJ series, and most commonly also OME series, are returned in TZCYXS order. If None (default), all but "shaped" series are squeezed. out : numpy.ndarray, str, or file-like object Buffer where image data are saved. If None (default), a new array is created. If numpy.ndarray, a writable array of compatible dtype and shape. If 'memmap', directly memory-map the image data in the TIFF file if possible; else create a memory-mapped array in a temporary file. If str or open file, the file name or file object used to create a memory-map to an array stored in a binary file on disk. maxworkers : int or None Maximum number of threads to concurrently get data from multiple pages or compressed segments. If None (default), up to half the CPU cores are used. If 1, multi-threading is disabled. Reading data from file is limited to a single thread. Using multiple threads can significantly speed up this function if the bottleneck is decoding compressed data, e.g. in case of large LZW compressed LSM files or JPEG compressed tiled slides. If the bottleneck is I/O or pure Python code, using multiple threads might be detrimental. Returns ------- numpy.ndarray Image data from the specified pages. See TiffPage.asarray for operations that are applied (or not) to the raw data stored in the file. """ if not self.pages: return numpy.array([]) if key is None and series is None: series = 0 if series is None: pages = self.pages else: try: series = self.series[series] except (KeyError, TypeError): pass if level is not None: series = series.levels[level] pages = series.pages if key is None: pass elif series is None: pages = self.pages._getlist(key) elif isinstance(key, (int, numpy.integer)): pages = [pages[key]] elif isinstance(key, slice): pages = pages[key] elif isinstance(key, Iterable): pages = [pages[k] for k in key] else: raise TypeError('key must be an int, slice, or sequence') if not pages: raise ValueError('no pages selected') if key is None and series and series.offset: typecode = self.byteorder + series.dtype.char if ( pages[0].is_memmappable and isinstance(out, str) and out == 'memmap' ): # direct mapping shape = series.get_shape(squeeze) result = self.filehandle.memmap_array( typecode, shape, series.offset ) else: # read into output shape = series.get_shape(squeeze) if out is not None: out = create_output(out, shape, series.dtype) self.filehandle.seek(series.offset) result = self.filehandle.read_array( typecode, product(shape), out=out ) elif len(pages) == 1: result = pages[0].asarray(out=out, maxworkers=maxworkers) else: result = stack_pages(pages, out=out, maxworkers=maxworkers) if result is None: return None if key is None: shape = series.get_shape(squeeze) try: result.shape = shape except ValueError: try: log_warning( f'{self!r} ' f'asarray failed to reshape {result.shape} to {shape}' ) # try series of expected shapes result.shape = (-1,) + shape except ValueError: # revert to generic shape result.shape = (-1,) + pages[0].shape elif len(pages) == 1: if squeeze is None: squeeze = True result.shape = pages[0].shape if squeeze else pages[0].shaped else: if squeeze is None: squeeze = True result.shape = (-1,) + ( pages[0].shape if squeeze else pages[0].shaped ) return result def aszarr(self, key=None, series=None, level=None, **kwargs): """Return image data from selected TIFF page(s) as zarr storage.""" if not self.pages: raise NotImplementedError('empty zarr arrays not supported') if key is None and series is None: return self.series[0].aszarr(level=level, **kwargs) if series is None: pages = self.pages else: try: series = self.series[series] except (KeyError, TypeError): pass if key is None: return series.aszarr(level=level, **kwargs) pages = series.pages if isinstance(key, (int, numpy.integer)): return pages[key].aszarr(**kwargs) raise TypeError('key must be an integer index') @lazyattr def series(self): """Return related pages as TiffPageSeries. Side effect: after calling this function, TiffFile.pages might contain TiffPage and TiffFrame instances. """ if not self.pages: return [] useframes = self.pages.useframes keyframe = self.pages.keyframe.index series = [] for name in ( 'shaped', 'lsm', 'ome', 'imagej', 'fluoview', 'stk', 'sis', 'svs', 'scn', 'qpi', 'ndpi', 'bif', 'scanimage', 'mdgel', # adds second page to cache 'uniform', ): if getattr(self, 'is_' + name, False): series = getattr(self, '_series_' + name)() if not series and name == 'ome' and self.is_imagej: # try ImageJ series if OME series fails. # clear pages cache since _series_ome() might leave some # frames without keyframe self.pages._clear() continue break self.pages.useframes = useframes self.pages.keyframe = keyframe if not series: series = self._series_generic() # remove empty series, e.g. in MD Gel files # series = [s for s in series if product(s.shape) > 0] for i, s in enumerate(series): s.index = i return series def _series_uniform(self): """Return all images in file as single series.""" page = self.pages[0] validate = not (page.is_scanimage or page.is_nih) pages = self.pages._getlist(validate=validate) shape = (len(pages),) + page.shape axes = 'I' + page.axes dtype = page.dtype if page.is_nih: kind = 'NIHImage' else: kind = 'Uniform' return [TiffPageSeries(pages, shape, dtype, axes, kind=kind)] def _series_generic(self): """Return image series in file. A series is a sequence of TiffPages with the same hash. """ pages = self.pages pages._clear(False) pages.useframes = False if pages.cache: pages._load() series = [] keys = [] seriesdict = {} def addpage(page): # add page to seriesdict if not page.shape: # or product(page.shape) == 0: return key = page.hash if key in seriesdict: for p in seriesdict[key]: if p.offset == page.offset: break # remove duplicate page else: seriesdict[key].append(page) else: keys.append(key) seriesdict[key] = [page] for page in pages: addpage(page) if page.subifds is not None: for i, offset in enumerate(page.subifds): if offset < 8: continue try: self._fh.seek(offset) subifd = TiffPage(self, (page.index, i)) except Exception as exc: log_warning( f'{self!r} generic series failed with ' f'{exc.__class__.__name__}: {exc}' ) else: addpage(subifd) for key in keys: pages = seriesdict[key] page = pages[0] shape = (len(pages),) + page.shape axes = 'I' + page.axes if 'S' not in axes: shape += (1,) axes += 'S' series.append( TiffPageSeries(pages, shape, page.dtype, axes, kind='Generic') ) self.is_uniform = len(series) == 1 pyramidize_series(series) return series def _series_shaped(self): """Return image series in "shaped" file.""" def append(series, pages, axes, shape, reshape, name, truncated): # append TiffPageSeries to series page = pages[0] if not axes: shape = page.shape axes = page.axes if len(pages) > 1: shape = (len(pages),) + shape axes = 'Q' + axes size = product(shape) resize = product(reshape) if page.is_contiguous and resize > size and resize % size == 0: if truncated is None: truncated = True axes = 'Q' + axes shape = (resize // size,) + shape try: axes = reshape_axes(axes, shape, reshape) shape = reshape except ValueError as exc: log_warning( f'{self!r} shaped series failed with ' f'{exc.__class__.__name__}: {exc}' ) series.append( TiffPageSeries( pages, shape, page.dtype, axes, name=name, kind='Shaped', truncated=truncated, squeeze=False, ) ) def detect_series(pages, series, issubifds=False): lenpages = len(pages) keyframe = axes = shape = reshape = name = None index = 0 while True: if index >= lenpages: break if issubifds: keyframe = pages[0] else: # new keyframe; start of new series pages.keyframe = index keyframe = pages.keyframe if not keyframe.is_shaped: log_warning( f'{self!r} ' 'invalid shaped series metadata or corrupted file' ) return None # read metadata axes = None shape = None metadata = json_description_metadata(keyframe.is_shaped) name = metadata.get('name', '') reshape = metadata['shape'] truncated = None if keyframe.subifds is None else False truncated = metadata.get('truncated', truncated) if 'axes' in metadata: axes = metadata['axes'] if len(axes) == len(reshape): shape = reshape else: axes = '' log_warning( f'{self!r} shaped series axes do not match shape' ) # skip pages if possible spages = [keyframe] size = product(reshape) if size > 0: npages, mod = divmod(size, product(keyframe.shape)) else: npages = 1 mod = 0 if mod: log_warning( f'{self!r} ' 'shaped series shape does not match page shape' ) return None if 1 < npages <= lenpages - index: size *= keyframe._dtype.itemsize if truncated: npages = 1 elif ( keyframe.is_final and keyframe.offset + size < pages[index + 1].offset and keyframe.subifds is None ): truncated = False else: # must read all pages for series truncated = False for j in range(index + 1, index + npages): page = pages[j] page.keyframe = keyframe spages.append(page) append(series, spages, axes, shape, reshape, name, truncated) index += npages # create series from SubIFDs if keyframe.subifds: for i, offset in enumerate(keyframe.subifds): if offset < 8: continue subifds = [] for j, page in enumerate(spages): # if page.subifds is not None: try: self._fh.seek(page.subifds[i]) if j == 0: subifd = TiffPage(self, (page.index, i)) keysubifd = subifd else: subifd = TiffFrame( self, (page.index, i), keyframe=keysubifd, ) except Exception as exc: log_warning( f'{self!r} shaped series failed with ' f'{exc.__class__.__name__}: {exc}' ) return None subifds.append(subifd) if subifds: series = detect_series(subifds, series, True) if series is None: return None return series self.pages.useframes = True series = detect_series(self.pages, []) if series is None: return None self.is_uniform = len(series) == 1 pyramidize_series(series, isreduced=True) return series def _series_imagej(self): """Return image series in ImageJ file.""" # ImageJ's dimension order is TZCYXS # TODO: fix loading of color, composite, or palette images pages = self.pages pages.useframes = True pages.keyframe = 0 page = pages[0] meta = self.imagej_metadata def is_virtual(): # ImageJ virtual hyperstacks store all image metadata in the first # page and image data are stored contiguously before the second # page, if any if not page.is_final: return False images = meta.get('images', 0) if images <= 1: return False offset, count = page.is_contiguous if ( count != product(page.shape) * page.bitspersample // 8 or offset + count * images > self.filehandle.size ): raise ValueError # check that next page is stored after data if len(pages) > 1 and offset + count * images > pages[1].offset: return False return True try: isvirtual = is_virtual() except (ValueError, RuntimeError): log_warning( f'{self!r} ImageJ series metadata invalid or corrupted file' ) return None if isvirtual: # no need to read other pages pages = [page] else: pages = pages[:] images = meta.get('images', len(pages)) frames = meta.get('frames', 1) slices = meta.get('slices', 1) channels = meta.get('channels', 1) shape = (frames, slices, channels) axes = 'TZC' remain = images // product(shape) if remain > 1: log_warning( f'{self!r} ImageJ series contains unidentified dimension' ) shape = (remain,) + shape axes = 'I' + axes if page.shaped[0] > 1: # planar storage, S == C, saved by Bio-Formats if page.shaped[0] != channels: log_warning( f'{self!r} ImageJ series number of channels {channels} ' f'does not match separate samples {page.shaped[0]}' ) shape = shape[:-1] + page.shape axes += page.axes[1:] elif page.shaped[-1] == channels and channels > 1: # keep contig storage, C = 1 shape = (frames, slices, 1) + page.shape axes += page.axes else: shape += page.shape axes += page.axes if 'S' not in axes: shape += (1,) axes += 'S' # assert axes.endswith('TZCYXS'), axes truncated = ( isvirtual and len(self.pages) == 1 and page.is_contiguous[1] != (product(shape) * page.bitspersample // 8) ) self.is_uniform = True return [ TiffPageSeries( pages, shape, page.dtype, axes, kind='ImageJ', truncated=truncated, ) ] def _series_scanimage(self): """Return image series in ScanImage file.""" pages = self.pages._getlist(validate=False) page = pages[0] dtype = page.dtype shape = None framedata = self.scanimage_metadata.get('FrameData', {}) if 'SI.hChannels.channelSave' in framedata: try: channels = framedata['SI.hChannels.channelSave'] try: # channelSave is a list channels = len(channels) except TypeError: # channelSave is an int channels = int(channels) # slices = framedata.get( # 'SI.hStackManager.actualNumSlices', # framedata.get('SI.hStackManager.numSlices', None), # ) # if slices is None: # raise ValueError('unable to determine numSlices') slices = None try: frames = int(framedata['SI.hStackManager.framesPerSlice']) except Exception: # framesPerSlice is inf slices = 1 if len(pages) % channels: raise ValueError('unable to determine framesPerSlice') frames = len(pages) // channels if slices is None: slices = max(len(pages) // (frames * channels), 1) shape = (slices, frames, channels) + page.shape axes = 'ZTC' + page.axes except Exception as exc: log_warning( f'{self!r} ScanImage series failed with' f'{exc.__class__.__name__}: {exc}' ) # TODO: older versions of ScanImage store non-varying frame data in # the ImageDescription tag. Candidates are scanimage.SI5.channelsSave, # scanimage.SI5.stackNumSlices, scanimage.SI5.acqNumFrames # scanimage.SI4., state.acq.numberOfFrames, state.acq.numberOfFrames... if shape is None: shape = (len(pages),) + page.shape axes = 'I' + page.axes return [TiffPageSeries(pages, shape, dtype, axes, kind='ScanImage')] def _series_fluoview(self): """Return image series in FluoView file.""" pages = self.pages._getlist(validate=False) mm = self.fluoview_metadata mmhd = list(reversed(mm['Dimensions'])) axes = ''.join(TIFF.MM_DIMENSIONS.get(i[0].upper(), 'Q') for i in mmhd) shape = tuple(int(i[1]) for i in mmhd) self.is_uniform = True return [ TiffPageSeries( pages, shape, pages[0].dtype, axes, name=mm['ImageName'], kind='FluoView', ) ] def _series_mdgel(self): """Return image series in MD Gel file.""" # only a single page, scaled according to metadata in second page self.pages.useframes = False self.pages.keyframe = 0 md = self.mdgel_metadata if md['FileTag'] in (2, 128): dtype = numpy.dtype('float32') scale = md['ScalePixel'] scale = scale[0] / scale[1] # rational if md['FileTag'] == 2: # squary root data format def transform(a): return a.astype('float32') ** 2 * scale else: def transform(a): return a.astype('float32') * scale else: transform = None page = self.pages[0] self.is_uniform = False return [ TiffPageSeries( [page], page.shape, dtype, page.axes, transform=transform, kind='MDGel', ) ] def _series_ndpi(self): """Return pyramidal image series in NDPI file.""" series = self._series_generic() for s in series: s.kind = 'NDPI' if s.axes[0] == 'I': s.axes = 'Z' + s.axes[1:] if s.is_pyramidal: name = s.pages[0].tags.valueof(65427) s.name = 'Baseline' if name is None else name continue mag = s.pages[0].tags.valueof(65421) if mag is not None: if mag == -1.0: s.name = 'Macro' elif mag == -2.0: s.name = 'Map' return series def _series_sis(self): """Return image series in Olympus SIS file.""" pages = self.pages._getlist(validate=False) page = pages[0] lenpages = len(pages) md = self.sis_metadata if 'shape' in md and 'axes' in md: shape = md['shape'] + page.shape axes = md['axes'] + page.axes else: shape = (lenpages,) + page.shape axes = 'I' + page.axes self.is_uniform = True return [TiffPageSeries(pages, shape, page.dtype, axes, kind='SIS')] def _series_qpi(self): """Return image series in PerkinElmer QPI file.""" series = [] pages = self.pages pages.cache = True pages.useframes = False pages.keyframe = 0 pages._load() # Baseline # TODO: get name from ImageDescription XML ifds = [] index = 0 axes = 'C' + pages[0].axes dtype = pages[0].dtype pshape = pages[0].shape while index < len(pages): page = pages[index] if page.shape != pshape: break ifds.append(page) index += 1 shape = (len(ifds),) + pshape series.append( TiffPageSeries( ifds, shape, dtype, axes, name='Baseline', kind='QPI' ) ) if index < len(pages): # Thumbnail page = pages[index] series.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name='Thumbnail', kind='QPI', ) ) index += 1 if pages[0].is_tiled: # Resolutions while index < len(pages): pshape = (pshape[0] // 2, pshape[1] // 2) + pshape[2:] ifds = [] while index < len(pages): page = pages[index] if page.shape != pshape: break ifds.append(page) index += 1 if len(ifds) != len(series[0].pages): break shape = (len(ifds),) + pshape series[0].levels.append( TiffPageSeries( ifds, shape, dtype, axes, name='Resolution', kind='QPI' ) ) if series[0].is_pyramidal and index < len(pages): # Macro page = pages[index] series.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name='Macro', kind='QPI', ) ) index += 1 # Label if index < len(pages): page = pages[index] series.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name='Label', kind='QPI', ) ) self.is_uniform = False return series def _series_svs(self): """Return image series in Aperio SVS file.""" if not self.pages[0].is_tiled: return None series = [] self.is_uniform = False self.pages.cache = True self.pages.useframes = False self.pages.keyframe = 0 self.pages._load() # Baseline index = 0 page = self.pages[index] series.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name='Baseline', kind='SVS', ) ) # Thumbnail index += 1 if index == len(self.pages): return series page = self.pages[index] series.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name='Thumbnail', kind='SVS', ) ) # Resolutions # TODO: resolutions not by two index += 1 while index < len(self.pages): page = self.pages[index] if not page.is_tiled or page.is_reduced: break series[0].levels.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name='Resolution', kind='SVS', ) ) index += 1 # Label, Macro; subfiletype 1, 9 for name in ('Label', 'Macro'): if index == len(self.pages): break page = self.pages[index] series.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name=name, kind='SVS', ) ) index += 1 return series def _series_scn(self): """Return pyramidal image series in Leica SCN file.""" # TODO: support collections from xml.etree import ElementTree as etree # delayed import scnxml = self.pages[0].description root = etree.fromstring(scnxml) series = [] self.is_uniform = False self.pages.cache = True self.pages.useframes = False self.pages.keyframe = 0 self.pages._load() for collection in root: if not collection.tag.endswith('collection'): continue for image in collection: if not image.tag.endswith('image'): continue name = image.attrib.get('name', 'Unknown') for pixels in image: if not pixels.tag.endswith('pixels'): continue resolutions = {} for dimension in pixels: if not dimension.tag.endswith('dimension'): continue if int(image.attrib.get('sizeZ', 1)) > 1: raise NotImplementedError( 'SCN series: Z-Stacks not supported. ' 'Please submit a sample file.' ) sizex = int(dimension.attrib['sizeX']) sizey = int(dimension.attrib['sizeY']) c = int(dimension.attrib.get('c', 0)) z = int(dimension.attrib.get('z', 0)) r = int(dimension.attrib.get('r', 0)) ifd = int(dimension.attrib['ifd']) if r in resolutions: level = resolutions[r] if c > level['channels']: level['channels'] = c if z > level['sizez']: level['sizez'] = z level['ifds'][(c, z)] = ifd else: resolutions[r] = { 'size': [sizey, sizex], 'channels': c, 'sizez': z, 'ifds': {(c, z): ifd}, } if not resolutions: continue levels = [] for r, level in sorted(resolutions.items()): shape = (level['channels'] + 1, level['sizez'] + 1) axes = 'CZ' ifds = [None] * product(shape) for (c, z), ifd in sorted(level['ifds'].items()): ifds[c * shape[1] + z] = self.pages[ifd] axes += ifds[0].axes shape += ifds[0].shape dtype = ifds[0].dtype levels.append( TiffPageSeries( ifds, shape, dtype, axes, parent=self, name=name, kind='SCN', ) ) levels[0].levels.extend(levels[1:]) series.append(levels[0]) return series def _series_bif(self): """Return image series in Ventana/Roche BIF file.""" series = [] baseline = None self.is_uniform = False self.pages.cache = True self.pages.useframes = False self.pages.keyframe = 0 self.pages._load() for page in self.pages: if page.description[:5] == 'Label': series.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name='Label', kind='BIF', ) ) elif ( page.description == 'Thumbnail' or page.description[:11] == 'Probability' ): series.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name='Thumbnail', kind='BIF', ) ) elif 'level' not in page.description: # TODO: is this necessary? series.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name='Unknown', kind='BIF', ) ) elif baseline is None: baseline = TiffPageSeries( [page], page.shape, page.dtype, page.axes, name='Baseline', kind='BIF', ) series.insert(0, baseline) else: baseline.levels.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name='Resolution', kind='SVS', ) ) log_warning(f'{self!r} BIF series tiles are not stiched') return series def _series_ome(self): """Return image series in OME-TIFF file(s).""" # xml.etree found to be faster than lxml from xml.etree import ElementTree as etree # delayed import omexml = self.pages[0].description try: root = etree.fromstring(omexml) except etree.ParseError as exc: # TODO: test badly encoded OME-XML log_warning( f'{self!r} OME series failed with ' f'{exc.__class__.__name__}: {exc}' ) try: omexml = omexml.decode(errors='ignore').encode() root = etree.fromstring(omexml) except Exception: return None self.pages.cache = True self.pages.useframes = True self.pages.keyframe = 0 self.pages._load(keyframe=None) root_uuid = root.attrib.get('UUID', None) self._files = {root_uuid: self} dirname = self._fh.dirname files_missing = 0 moduloref = [] modulo = {} series = [] for element in root: if element.tag.endswith('BinaryOnly'): # TODO: load OME-XML from master or companion file log_warning( f'{self!r} OME series is BinaryOnly, ' 'not an OME-TIFF master file ' ) break if element.tag.endswith('StructuredAnnotations'): for annot in element: if not annot.attrib.get('Namespace', '').endswith( 'modulo' ): continue modulo[annot.attrib['ID']] = mod = {} for value in annot: for modul in value: for along in modul: if not along.tag[:-1].endswith('Along'): continue axis = along.tag[-1] newaxis = along.attrib.get('Type', 'other') newaxis = TIFF.AXES_LABELS[newaxis] if 'Start' in along.attrib: step = float(along.attrib.get('Step', 1)) start = float(along.attrib['Start']) stop = float(along.attrib['End']) + step labels = numpy.arange(start, stop, step) else: labels = [ label.text for label in along if label.tag.endswith('Label') ] mod[axis] = (newaxis, labels) if not element.tag.endswith('Image'): continue for annot in element: if annot.tag.endswith('AnnotationRef'): annotationref = annot.attrib['ID'] break else: annotationref = None attr = element.attrib name = attr.get('Name', None) for pixels in element: if not pixels.tag.endswith('Pixels'): continue attr = pixels.attrib # dtype = attr.get('PixelType', None) axes = ''.join(reversed(attr['DimensionOrder'])) shape = [int(attr['Size' + ax]) for ax in axes] ifds = [] spp = 1 # samples per pixel first = True for data in pixels: if data.tag.endswith('Channel'): attr = data.attrib if first: first = False spp = int(attr.get('SamplesPerPixel', spp)) if spp > 1: # correct channel dimension for spp shape = [ shape[i] // spp if ax == 'C' else shape[i] for i, ax in enumerate(axes) ] elif int(attr.get('SamplesPerPixel', 1)) != spp: raise ValueError( 'OME series cannot handle differing ' 'SamplesPerPixel' ) continue if not data.tag.endswith('TiffData'): continue attr = data.attrib ifd = int(attr.get('IFD', 0)) num = int(attr.get('NumPlanes', 1 if 'IFD' in attr else 0)) num = int(attr.get('PlaneCount', num)) idx = [int(attr.get('First' + ax, 0)) for ax in axes[:-2]] try: idx = int(numpy.ravel_multi_index(idx, shape[:-2])) except ValueError: # ImageJ produces invalid ome-xml when cropping log_warning( f'{self!r} ' 'OME series contains invalid TiffData index' ) continue for uuid in data: if not uuid.tag.endswith('UUID'): continue if root_uuid is None and uuid.text is not None: # no global UUID, use this file root_uuid = uuid.text self._files[root_uuid] = self._files[None] elif uuid.text not in self._files: if not self._multifile: # abort reading multifile OME series # and fall back to generic series return [] fname = uuid.attrib['FileName'] try: tif = TiffFile( os.path.join(dirname, fname), _parent=self ) tif.pages.cache = True tif.pages.useframes = True tif.pages.keyframe = 0 tif.pages._load(keyframe=None) except (OSError, FileNotFoundError, ValueError): if files_missing == 0: log_warning( f'{self!r} OME series failed to read ' f'{fname!r}. Missing data are zeroed' ) files_missing += 1 # assume that size is same as in previous file # if no NumPlanes or PlaneCount are given size = num if num else size # noqa: undefined ifds.extend([None] * (size + idx - len(ifds))) break self._files[uuid.text] = tif tif.close() pages = self._files[uuid.text].pages try: size = num if num else len(pages) ifds.extend([None] * (size + idx - len(ifds))) for i in range(size): ifds[idx + i] = pages[ifd + i] except IndexError: log_warning( f'{self!r} ' 'OME series contains index out of range' ) # only process first UUID break else: # no uuid found pages = self.pages try: size = num if num else len(pages) ifds.extend([None] * (size + idx - len(ifds))) for i in range(size): ifds[idx + i] = pages[ifd + i] except IndexError: log_warning( f'{self!r} ' 'OME series contains index out of range' ) if not ifds or all(i is None for i in ifds): # skip images without data continue # find a keyframe keyframe = None for ifd in ifds: # try find a TiffPage if ifd and ifd == ifd.keyframe: keyframe = ifd break if keyframe is None: # reload a TiffPage from file for i, keyframe in enumerate(ifds): if keyframe: isclosed = keyframe.parent.filehandle.closed if isclosed: keyframe.parent.filehandle.open() keyframe.parent.pages.keyframe = keyframe.index keyframe = keyframe.parent.pages[keyframe.index] ifds[i] = keyframe if isclosed: keyframe.parent.filehandle.close() break # does the series spawn multiple files multifile = False for ifd in ifds: if ifd and ifd.parent != keyframe.parent: multifile = True break if spp > 1: if keyframe.planarconfig == 1: shape += [spp] axes += 'S' else: shape = shape[:-2] + [spp] + shape[-2:] axes = axes[:-2] + 'S' + axes[-2:] if 'S' not in shape: shape += [1] axes += 'S' # there might be more pages in the file than referenced in XML # e.g. Nikon-cell011.ome.tif size = max(product(shape) // keyframe.size, 1) if size != len(ifds): log_warning( f'{self!r} ' f'OME series expected {size} frames, got {len(ifds)}' ) ifds = ifds[:size] # FIXME: this implementation assumes the last dimensions are # stored in TIFF pages. Apparently that is not always the case. # E.g. TCX (20000, 2, 500) is stored in 2 pages of (20000, 500) # in 'Image 7.ome_h00.tiff'. # For now, verify that shapes of keyframe and series match. # If not, skip series. squeezed = squeeze_axes(shape, axes)[0] if keyframe.shape != tuple(squeezed[-len(keyframe.shape) :]): log_warning( f'{self!r} OME series ' 'cannot handle discontiguous storage (%s != %s)', keyframe.shape, tuple(squeezed[-len(keyframe.shape) :]), ) del ifds continue # set keyframe on all IFDs keyframes = {keyframe.parent.filehandle.name: keyframe} for i, page in enumerate(ifds): if page is None: continue fh = page.parent.filehandle if fh.name not in keyframes: if page.keyframe != page: # reload TiffPage from file isclosed = fh.closed if isclosed: fh.open() page.parent.pages.keyframe = page.index page = page.parent.pages[page.index] ifds[i] = page if isclosed: fh.close() keyframes[fh.name] = page if page.keyframe != page: page.keyframe = keyframes[fh.name] moduloref.append(annotationref) series.append( TiffPageSeries( ifds, shape, keyframe.dtype, axes, parent=self, name=name, multifile=multifile, kind='OME', ) ) del ifds if files_missing > 1: log_warning( f'{self!r} OME series failed to read {files_missing} files' ) for serie, annotationref in zip(series, moduloref): if annotationref not in modulo: continue shape = list(serie.get_shape(False)) axes = serie.get_axes(False) for axis, (newaxis, labels) in modulo[annotationref].items(): i = axes.index(axis) size = len(labels) if shape[i] == size: axes = axes.replace(axis, newaxis, 1) else: shape[i] //= size shape.insert(i + 1, size) axes = axes.replace(axis, axis + newaxis, 1) serie.set_shape_axes(shape, axes) # pyramids for serie in series: keyframe = serie.keyframe if keyframe.subifds is None: continue if len(self._files) > 1: # TODO: support multi-file pyramids; must re-open/close log_warning( f'{self!r} OME series cannot read multi-file pyramids' ) break for level in range(len(keyframe.subifds)): keyframe = None ifds = [] for page in serie.pages: if page is None: ifds.append(None) continue page.parent.filehandle.seek(page.subifds[level]) if page.keyframe == page: ifd = keyframe = TiffPage(self, (page.index, level)) elif keyframe is None: raise RuntimeError('no keyframe') else: ifd = TiffFrame(self, page.index, keyframe=keyframe) ifds.append(ifd) # fix shape shape = [] for i, ax in enumerate(serie.axes): if ax == 'X': shape.append(keyframe.imagewidth) elif ax == 'Y': shape.append(keyframe.imagelength) else: shape.append(serie.shape[i]) # add series serie.levels.append( TiffPageSeries( ifds, tuple(shape), keyframe.dtype, serie.axes, parent=self, name=f'level {level + 1}', kind='OME', ) ) self.is_uniform = len(series) == 1 and len(series[0].levels) == 1 return series def _series_stk(self): """Return series in STK file.""" page = self.pages[0] meta = self.stk_metadata planes = meta['NumberPlanes'] name = meta.get('Name', '') if planes == 1: shape = (1,) + page.shape axes = 'I' + page.axes elif numpy.all(meta['ZDistance'] != 0): shape = (planes,) + page.shape axes = 'Z' + page.axes elif numpy.all(numpy.diff(meta['TimeCreated']) != 0): shape = (planes,) + page.shape axes = 'T' + page.axes else: # TODO: determine other/combinations of dimensions shape = (planes,) + page.shape axes = 'I' + page.axes self.is_uniform = True series = TiffPageSeries( [page], shape, page.dtype, axes, name=name, truncated=planes > 1, kind='STK', ) return [series] def _series_lsm(self): """Return main and thumbnail series in LSM file.""" lsmi = self.lsm_metadata axes = TIFF.CZ_LSMINFO_SCANTYPE[lsmi['ScanType']] if self.pages[0].photometric == 2: # RGB; more than one channel axes = axes.replace('C', '').replace('XY', 'XYC') if lsmi.get('DimensionP', 0) > 0: axes += 'P' if lsmi.get('DimensionM', 0) > 0: axes += 'M' axes = axes[::-1] shape = tuple(int(lsmi[TIFF.CZ_LSMINFO_DIMENSIONS[i]]) for i in axes) name = lsmi.get('Name', '') pages = self.pages._getlist(slice(0, None, 2), validate=False) dtype = pages[0].dtype series = [ TiffPageSeries(pages, shape, dtype, axes, name=name, kind='LSM') ] page = self.pages[1] if page.is_reduced: pages = self.pages._getlist(slice(1, None, 2), validate=False) dtype = page.dtype cp = 1 i = 0 while cp < len(pages) and i < len(shape) - 2: cp *= shape[i] i += 1 shape = shape[:i] + page.shape axes = axes[:i] + 'SYX' series.append( TiffPageSeries( pages, shape, dtype, axes, name=name, kind='LSMreduced' ) ) self.is_uniform = False return series def _lsm_load_pages(self): """Load and fix all pages from LSM file.""" # cache all pages to preserve corrected values pages = self.pages pages.cache = True pages.useframes = True # use first and second page as keyframes pages.keyframe = 1 pages.keyframe = 0 # load remaining pages as frames pages._load(keyframe=None) # fix offsets and bytecounts first # TODO: fix multiple conversions between lists and tuples self._lsm_fix_strip_offsets() self._lsm_fix_strip_bytecounts() # assign keyframes for data and thumbnail series keyframe = pages[0] for page in pages[::2]: page.keyframe = keyframe keyframe = pages[1] for page in pages[1::2]: page.keyframe = keyframe def _lsm_fix_strip_offsets(self): """Unwrap strip offsets for LSM files greater than 4 GB. Each series and position require separate unwrapping (undocumented). """ if self.filehandle.size < 2**32: return pages = self.pages npages = len(pages) series = self.series[0] axes = series.axes # find positions positions = 1 for i in 0, 1: if series.axes[i] in 'PM': positions *= series.shape[i] # make time axis first if positions > 1: ntimes = 0 for i in 1, 2: if axes[i] == 'T': ntimes = series.shape[i] break if ntimes: div, mod = divmod(npages, 2 * positions * ntimes) if mod != 0: raise RuntimeError('mod != 0') shape = (positions, ntimes, div, 2) indices = numpy.arange(product(shape)).reshape(shape) indices = numpy.moveaxis(indices, 1, 0) else: indices = numpy.arange(npages).reshape(-1, 2) # images of reduced page might be stored first if pages[0].dataoffsets[0] > pages[1].dataoffsets[0]: indices = indices[..., ::-1] # unwrap offsets wrap = 0 previousoffset = 0 for i in indices.flat: page = pages[int(i)] dataoffsets = [] for currentoffset in page.dataoffsets: if currentoffset < previousoffset: wrap += 2**32 dataoffsets.append(currentoffset + wrap) previousoffset = currentoffset page.dataoffsets = tuple(dataoffsets) def _lsm_fix_strip_bytecounts(self): """Set databytecounts to size of compressed data. The StripByteCounts tag in LSM files contains the number of bytes for the uncompressed data. """ pages = self.pages if pages[0].compression == 1: return # sort pages by first strip offset pages = sorted(pages, key=lambda p: p.dataoffsets[0]) npages = len(pages) - 1 for i, page in enumerate(pages): if page.index % 2: continue offsets = page.dataoffsets bytecounts = page.databytecounts if i < npages: lastoffset = pages[i + 1].dataoffsets[0] else: # LZW compressed strips might be longer than uncompressed lastoffset = min( offsets[-1] + 2 * bytecounts[-1], self._fh.size ) bytecounts = list(bytecounts) for j in range(len(bytecounts) - 1): bytecounts[j] = offsets[j + 1] - offsets[j] bytecounts[-1] = lastoffset - offsets[-1] page.databytecounts = tuple(bytecounts) def _ndpi_load_pages(self): """Load and fix pages from NDPI slide file if CaptureMode > 6. If the value of the CaptureMode tag is greater than 6, change the attributes of the TiffPages that are part of the pyramid to match 16-bit grayscale data. TiffTags are not corrected. """ pages = self.pages capturemode = pages[0].tags.valueof(65441) if capturemode is None or capturemode < 6: return pages.cache = True pages.useframes = False pages._load() for page in pages: mag = page.tags.valueof(65421) if mag is None or mag > 0: page.photometric = TIFF.PHOTOMETRIC.MINISBLACK page.samplesperpixel = 1 page.sampleformat = 1 page.bitspersample = 16 page.dtype = page._dtype = numpy.dtype('uint16') if page.shaped[-1] > 1: page.axes = page.axes[:-1] page.shape = page.shape[:-1] page.shaped = page.shaped[:-1] + (1,) def _philips_load_pages(self): """Load and fix all pages from Philips slide file. The imagewidth and imagelength values of all tiled pages are corrected using the DICOM_PIXEL_SPACING attributes of the XML formatted description of the first page. """ from xml.etree import ElementTree as etree # delayed import pages = self.pages pages.cache = True pages.useframes = False pages._load() npages = len(pages) root = etree.fromstring(pages[0].description) imagewidth = pages[0].imagewidth imagelength = pages[0].imagelength sizes = None for elem in root.iter(): if ( elem.tag != 'Attribute' or elem.attrib.get('Name', '') != 'DICOM_PIXEL_SPACING' ): continue w, h = (float(v) for v in elem.text.replace('"', '').split()) if sizes is None: imagelength *= h imagewidth *= w sizes = [] else: sizes.append( ( int(math.ceil(imagelength / h)), int(math.ceil(imagewidth / w)), ) ) i = 0 for imagelength, imagewidth in sizes: while i < npages and pages[i].tilewidth == 0: # Label, Macro i += 1 continue if i == npages: break page = pages[i] page.imagewidth = imagewidth page.imagelength = imagelength if page.shaped[-1] > 1: page.shape = (imagelength, imagewidth, page.shape[-1]) elif page.shaped[0] > 1: page.shape = (page.shape[0], imagelength, imagewidth) else: page.shape = (imagelength, imagewidth) page.shaped = ( page.shaped[:2] + (imagelength, imagewidth) + page.shaped[-1:] ) i += 1 def __getattr__(self, name): """Return 'is_flag' attributes from first page.""" if name[3:] in TIFF.FILE_FLAGS: if not self.pages: return False value = bool(getattr(self.pages[0], name)) setattr(self, name, value) return value raise AttributeError( f'{self.__class__.__name__!r} object has no attribute {name!r}' ) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def __repr__(self): return f'' def __str__(self, detail=0, width=79): """Return string containing information about TiffFile. The detail parameter specifies the level of detail returned: 0: file only. 1: all series, first page of series and its tags. 2: large tag values and file metadata. 3: all pages. """ info = [ "TiffFile '{}'", format_size(self._fh.size), '' if byteorder_isnative(self.byteorder) else {'<': 'little-endian', '>': 'big-endian'}[self.byteorder], ] if self.is_bigtiff: info.append('BigTiff') info.append(' '.join(f.lower() for f in self.flags)) if len(self.pages) > 1: info.append(f'{len(self.pages)} Pages') if len(self.series) > 1: info.append(f'{len(self.series)} Series') if len(self._files) > 1: info.append(f'{len(self._files)} Files') info = ' '.join(info) info = info.replace(' ', ' ').replace(' ', ' ') info = info.format( snipstr(self._fh.name, max(12, width + 2 - len(info))) ) if detail <= 0: return info info = [info] info.append('\n'.join(str(s) for s in self.series)) if detail >= 3: for p in self.pages: if p is None: continue info.append(TiffPage.__str__(p, detail=detail, width=width)) for s in p.pages: info.append( TiffPage.__str__(s, detail=detail, width=width) ) elif self.series: info.extend( TiffPage.__str__(s.keyframe, detail=detail, width=width) for s in self.series if not s.keyframe.parent.filehandle.closed # avoid warning ) elif self.pages and self.pages[0]: info.append( TiffPage.__str__(self.pages[0], detail=detail, width=width) ) if detail >= 2: for name in sorted(self.flags): if hasattr(self, name + '_metadata'): m = getattr(self, name + '_metadata') if m: info.append( '{}_METADATA\n{}'.format( name.upper(), pformat(m, width=width, height=detail * 24), ) ) return '\n\n'.join(info).replace('\n\n\n', '\n\n') @lazyattr def flags(self): """Return set of file flags, a potentially expensive operation.""" return { name.lower() for name in sorted(TIFF.FILE_FLAGS) if getattr(self, 'is_' + name) } @property def is_bigtiff(self): """Return if file has BigTIFF format.""" return self.tiff.version == 43 @lazyattr def is_mdgel(self): """Return if file has MD Gel format.""" # side effect: add second page, if exists, to cache try: ismdgel = ( self.pages[0].is_mdgel or self.pages.get(1, cache=True).is_mdgel ) if ismdgel: self.is_uniform = False return ismdgel except IndexError: return False @lazyattr def is_uniform(self): """Return if file contains a uniform series of pages.""" # the hashes of IFDs 0, 7, and -1 are the same pages = self.pages page = pages[0] if page.subifds: return False if page.is_scanimage or page.is_nih: return True try: useframes = pages.useframes pages.useframes = False h = page.hash for i in (1, 7, -1): if pages[i].aspage().hash != h: return False except IndexError: return False finally: pages.useframes = useframes return True @property def is_appendable(self): """Return if pages can be appended to file without corrupting.""" # TODO: check other formats return not ( self.is_ome or self.is_lsm or self.is_stk or self.is_imagej or self.is_fluoview or self.is_micromanager ) @lazyattr def shaped_metadata(self): """Return tifffile metadata from JSON descriptions as dicts.""" if not self.is_shaped: return None return tuple( json_description_metadata(s.pages[0].is_shaped) for s in self.series if s.kind.lower() == 'shaped' ) @property def ome_metadata(self): """Return OME XML.""" if not self.is_ome: return None # return xml2dict(self.pages[0].description)['OME'] return self.pages[0].description @property def scn_metadata(self): """Return Leica SCN XML.""" if not self.is_scn: return None return self.pages[0].description @property def philips_metadata(self): """Return Philips DP XML.""" if not self.is_philips: return None return self.pages[0].description @property def lsm_metadata(self): """Return LSM metadata from CZ_LSMINFO tag as dict.""" if not self.is_lsm: return None return self.pages[0].tags.valueof(34412) # CZ_LSMINFO @lazyattr def stk_metadata(self): """Return STK metadata from UIC tags as dict.""" if not self.is_stk: return None page = self.pages[0] tags = page.tags result = {} if page.description: result['PlaneDescriptions'] = page.description.split('\x00') # result['plane_descriptions'] = stk_description_metadata( # page.image_description) tag = tags.get(33629) # UIC2tag result['NumberPlanes'] = 1 if tag is None else tag.count value = tags.valueof(33628) # UIC1tag if value is not None: result.update(value) value = tags.valueof(33630) # UIC3tag if value is not None: result.update(value) # wavelengths value = tags.valueof(33631) # UIC4tag if value is not None: result.update(value) # override UIC1 tags uic2tag = tags.valueof(33629) if uic2tag is not None: result['ZDistance'] = uic2tag['ZDistance'] result['TimeCreated'] = uic2tag['TimeCreated'] result['TimeModified'] = uic2tag['TimeModified'] try: result['DatetimeCreated'] = numpy.array( [ julian_datetime(*dt) for dt in zip( uic2tag['DateCreated'], uic2tag['TimeCreated'] ) ], dtype='datetime64[ns]', ) result['DatetimeModified'] = numpy.array( [ julian_datetime(*dt) for dt in zip( uic2tag['DateModified'], uic2tag['TimeModified'] ) ], dtype='datetime64[ns]', ) except ValueError as exc: log_warning( f'{self!r} STK metadata failed with ' f'{exc.__class__.__name__}: {exc}' ) return result @lazyattr def imagej_metadata(self): """Return consolidated ImageJ metadata as dict.""" if not self.is_imagej: return None page = self.pages[0] result = imagej_description_metadata(page.is_imagej) value = page.tags.valueof(50839) # IJMetadata if value is not None: try: result.update(value) except Exception: pass return result @lazyattr def fluoview_metadata(self): """Return consolidated FluoView metadata as dict.""" if not self.is_fluoview: return None result = {} page = self.pages[0] value = page.tags.valueof(34361) # MM_Header if value is not None: result.update(value) # TODO: read stamps from all pages value = page.tags.valueof(34362) # MM_Stamp if value is not None: result['Stamp'] = value # skip parsing image description; not reliable # try: # t = fluoview_description_metadata(page.image_description) # if t is not None: # result['ImageDescription'] = t # except Exception as exc: # log_warning( # f'{self!r} fluoview_description_metadata failed with' # f'{exc.__class__.__name__}: {exc}' # ) return result @property def nih_metadata(self): """Return NIH Image metadata from NIHImageHeader tag as dict.""" if not self.is_nih: return None return self.pages[0].tags.valueof(43314) # NIHImageHeader @property def fei_metadata(self): """Return FEI metadata from SFEG or HELIOS tags as dict.""" if not self.is_fei: return None tags = self.pages[0].tags return tags.valueof(34680, tags.valueof(34682)) # FEI_SFEG, FEI_HELIOS @property def sem_metadata(self): """Return SEM metadata from CZ_SEM tag as dict.""" if not self.is_sem: return None return self.pages[0].tags.valueof(34118) @property def sis_metadata(self): """Return Olympus SIS metadata from SIS and INI tags as dict.""" if not self.is_sis: return None tags = self.pages[0].tags result = {} try: result.update(tags.valueof(33471)) # OlympusINI except Exception: pass try: result.update(tags.valueof(33560)) # OlympusSIS except Exception: pass return result @lazyattr def mdgel_metadata(self): """Return consolidated metadata from MD GEL tags as dict.""" for page in self.pages[:2]: if 33445 in page.tags: # MDFileTag tags = page.tags break else: return None result = {} for code in range(33445, 33453): if code not in tags: continue name = TIFF.TAGS[code] result[name[2:]] = tags.valueof(code) return result @property def andor_metadata(self): """Return Andor tags as dict.""" return self.pages[0].andor_tags @property def epics_metadata(self): """Return EPICS areaDetector tags as dict.""" return self.pages[0].epics_tags @property def tvips_metadata(self): """Return TVIPS tag as dict.""" if not self.is_tvips: return None return self.pages[0].tags.valueof(37706) @lazyattr def metaseries_metadata(self): """Return MetaSeries metadata from image description as dict.""" if not self.is_metaseries: return None return metaseries_description_metadata(self.pages[0].description) @lazyattr def pilatus_metadata(self): """Return Pilatus metadata from image description as dict.""" if not self.is_pilatus: return None return pilatus_description_metadata(self.pages[0].description) @lazyattr def micromanager_metadata(self): """Return MicroManager non-TIFF settings from file as dict.""" if not self.is_micromanager: return None return read_micromanager_metadata(self._fh) @lazyattr def scanimage_metadata(self): """Return ScanImage non-varying frame and ROI metadata as dict. The returned dict may be empty or contain 'FrameData', 'RoiGroups', and 'version' keys. The varying frame data can be found in the ImageDescription tags. """ if not self.is_scanimage: return None result = {} try: framedata, roidata, version = read_scanimage_metadata(self._fh) result['version'] = version result['FrameData'] = framedata result.update(roidata) except ValueError: pass return result @property def geotiff_metadata(self): """Return GeoTIFF metadata from first page as dict.""" if not self.is_geotiff: return None return self.pages[0].geotiff_tags @property def eer_metadata(self): """Return EER metadata from first page as XML.""" if not self.is_eer: return None value = self.pages[0].tags.valueof(65001) return None if value is None else value.decode() class TiffPages: """Sequence of TIFF image file directories (IFD chain). Instances of TiffPages have a state (cache, keyframe, etc.) and are not thread-safe. """ def __init__(self, arg, index=None): """Initialize instance and read first TiffPage from file. If arg is a TiffFile, the file position must be at an offset to an offset to a TiffPage. If arg is a TiffPage, page offsets are read from the SubIFDs tag. """ self.parent = None self.pages = [] # cache of TiffPages, TiffFrames, or their offsets self._indexed = False # True if offsets to all pages were read self._cached = False # True if all pages were read into cache self._tiffpage = TiffPage # class used for reading pages self._keyframe = None # page that is currently used as keyframe self._cache = False # do not cache frames or pages (if not keyframe) self._offset = 0 self._nextpageoffset = None if isinstance(index, (int, numpy.integer)): self._index = (int(index),) elif index is None: self._index = None else: self._index = tuple(index) if isinstance(arg, TiffFile): # read offset to first page from current file position self.parent = arg fh = self.parent.filehandle self._nextpageoffset = fh.tell() offset = struct.unpack( self.parent.tiff.offsetformat, fh.read(self.parent.tiff.offsetsize), )[0] if offset == 0: log_warning(f'{arg!r} contains no pages') self._indexed = True return elif 330 in arg.tags: # use offsets from SubIFDs tag self.parent = arg.parent fh = self.parent.filehandle offsets = arg.tags[330].value offset = offsets[0] if offset == 0: log_warning(f'{arg!r} contains invalid SubIFDs') self._indexed = True return else: self._indexed = True return self._offset = offset if offset >= fh.size: log_warning(f'{self!r} invalid offset to first page {offset!r}') self._indexed = True return pageindex = 0 if self._index is None else self._index + (0,) # read and cache first page fh.seek(offset) page = TiffPage(self.parent, index=pageindex) self.pages.append(page) self._keyframe = page if self._nextpageoffset is None: # offsets from SubIFDs tag self.pages.extend(offsets[1:]) self._indexed = True self._cached = True @property def cache(self): """Return if pages/frames are currently being cached.""" return self._cache @cache.setter def cache(self, value): """Enable or disable caching of pages/frames. Clear cache if False.""" value = bool(value) if self._cache and not value: self._clear() self._cache = value @property def useframes(self): """Return if currently using TiffFrame (True) or TiffPage (False).""" return self._tiffpage == TiffFrame and TiffFrame is not TiffPage @useframes.setter def useframes(self, value): """Set to use TiffFrame (True) or TiffPage (False).""" self._tiffpage = TiffFrame if value else TiffPage @property def keyframe(self): """Return current keyframe.""" return self._keyframe @keyframe.setter def keyframe(self, index): """Set current keyframe. Load TiffPage from file if necessary.""" index = int(index) if index < 0: index %= len(self) if self._keyframe.index == index: return if index == 0: self._keyframe = self.pages[0] return if self._indexed or index < len(self.pages): page = self.pages[index] if isinstance(page, TiffPage): self._keyframe = page return if isinstance(page, TiffFrame): # remove existing TiffFrame self.pages[index] = page.offset # load TiffPage from file tiffpage = self._tiffpage self._tiffpage = TiffPage try: self._keyframe = self._getitem(index) finally: self._tiffpage = tiffpage # always cache keyframes self.pages[index] = self._keyframe @property def next_page_offset(self): """Return offset where offset to a new page can be stored.""" if not self._indexed: self._seek(-1) return self._nextpageoffset def get(self, key, default=None, validate=False, cache=None, aspage=True): """Return specified page from cache or file.""" try: return self._getitem( key, validate=validate, cache=cache, aspage=aspage ) except IndexError: if default is None: raise return default def _load(self, keyframe=True): """Read all remaining pages from file.""" if self._cached: return pages = self.pages if not pages: return if not self._indexed: self._seek(-1) if not self._cache: return fh = self.parent.filehandle if keyframe is not None: keyframe = self._keyframe for i, page in enumerate(pages): if isinstance(page, (int, numpy.integer)): pageindex = i if self._index is None else self._index + (i,) fh.seek(page) page = self._tiffpage( self.parent, index=pageindex, keyframe=keyframe ) pages[i] = page self._cached = True def _load_virtual_frames(self): """Calculate virtual TiffFrames.""" pages = self.pages try: if len(pages) > 1: raise ValueError('pages already loaded') page = pages[0] if not page.is_contiguous: raise ValueError('data not contiguous') self._seek(4) delta = pages[2] - pages[1] if pages[3] - pages[2] != delta or pages[4] - pages[3] != delta: raise ValueError('page offsets not equidistant') page1 = self._getitem(1, validate=page.hash) offsetoffset = page1.dataoffsets[0] - page1.offset if offsetoffset < 0 or offsetoffset > delta: raise ValueError('page offsets not equidistant') pages = [page, page1] filesize = self.parent.filehandle.size - delta for index, offset in enumerate( range(page1.offset + delta, filesize, delta) ): pageindex = index + 2 d = pageindex * delta offsets = tuple(i + d for i in page.dataoffsets) offset = offset if offset < 2**31 - 1 else None if self._index is not None: pageindex = self._index + (pageindex,) pages.append( TiffFrame( parent=page.parent, index=pageindex, offset=offset, offsets=offsets, bytecounts=page.databytecounts, keyframe=page, ) ) self.pages = pages self._cache = True self._cached = True self._indexed = True except Exception as exc: if self.parent.filehandle.size >= 2147483648: log_warning( f'{self!r} _load_virtual_frames failed with ' f'({exc.__class__.__name__}: {exc})' ) def _clear(self, fully=True): """Delete all but first page from cache. Set keyframe to first page.""" pages = self.pages if not pages: return self._keyframe = pages[0] if fully: # delete all but first TiffPage/TiffFrame for i, page in enumerate(pages[1:]): if not isinstance(page, int) and page.offset is not None: pages[i + 1] = page.offset elif TiffFrame is not TiffPage: # delete only TiffFrames for i, page in enumerate(pages): if isinstance(page, TiffFrame) and page.offset is not None: pages[i] = page.offset self._cached = False def _seek(self, index): """Seek file to offset of page specified by index.""" pages = self.pages lenpages = len(pages) if lenpages == 0: raise IndexError('index out of range') fh = self.parent.filehandle if fh.closed: raise ValueError('seek of closed file') if self._indexed or 0 <= index < lenpages: page = pages[index] offset = page if isinstance(page, int) else page.offset fh.seek(offset) return tiff = self.parent.tiff offsetformat = tiff.offsetformat offsetsize = tiff.offsetsize tagnoformat = tiff.tagnoformat tagnosize = tiff.tagnosize tagsize = tiff.tagsize unpack = struct.unpack page = pages[-1] offset = page if isinstance(page, int) else page.offset while lenpages < 2**32: # read offsets to pages from file until index is reached fh.seek(offset) # skip tags try: tagno = unpack(tagnoformat, fh.read(tagnosize))[0] if tagno > 4096: raise TiffFileError(f'suspicious number of tags {tagno!r}') except Exception: log_warning( f'{self!r} corrupted tag list of page ' f'{lenpages} @{offset}' ) del pages[-1] lenpages -= 1 self._indexed = True break self._nextpageoffset = offset + tagnosize + tagno * tagsize fh.seek(self._nextpageoffset) # read offset to next page try: offset = unpack(offsetformat, fh.read(offsetsize))[0] except Exception: log_warning( f'{self!r} invalid offset to page ' f'{lenpages + 1} @{self._nextpageoffset}' ) self._indexed = True break if offset == 0: self._indexed = True break if offset >= fh.size: log_warning(f'{self!r} invalid page offset {offset!r}') self._indexed = True break pages.append(offset) lenpages += 1 if 0 <= index < lenpages: break # detect some circular references if lenpages == 100: for p in pages[:-1]: if offset == (p if isinstance(p, int) else p.offset): raise TiffFileError('invalid circular IFD reference') if index >= lenpages: raise IndexError('index out of range') page = pages[index] fh.seek(page if isinstance(page, int) else page.offset) def _getlist(self, key=None, useframes=True, validate=True): """Return specified pages as list of TiffPages or TiffFrames. The first item is a TiffPage, and is used as a keyframe for following TiffFrames. """ getitem = self._getitem _useframes = self.useframes if key is None: key = iter(range(len(self))) elif isinstance(key, Iterable): key = iter(key) elif isinstance(key, slice): start, stop, _ = key.indices(2**31 - 1) if not self._indexed and max(stop, start) > len(self.pages): self._seek(-1) key = iter(range(*key.indices(len(self.pages)))) elif isinstance(key, (int, numpy.integer)): # return single TiffPage self.useframes = False if key == 0: return [self.pages[key]] try: return [getitem(key)] finally: self.useframes = _useframes else: raise TypeError('key must be an integer, slice, or iterable') # use first page as keyframe keyframe = self._keyframe self.keyframe = next(key) if validate: validate = self._keyframe.hash if useframes: self.useframes = True try: pages = [getitem(i, validate) for i in key] pages.insert(0, self._keyframe) finally: # restore state self._keyframe = keyframe if useframes: self.useframes = _useframes return pages def _getitem(self, key, validate=False, cache=None, aspage=None): """Return specified page from cache or file.""" key = int(key) pages = self.pages if key < 0: key %= len(self) elif self._indexed and key >= len(pages): raise IndexError(f'index {key} out of range({len(pages)})') tiffpage = TiffPage if aspage else self._tiffpage if key < len(pages): page = pages[key] if self._cache and not aspage: if not isinstance(page, (int, numpy.integer)): if validate and validate != page.hash: raise RuntimeError('page hash mismatch') return page elif isinstance(page, (TiffPage, tiffpage)): if validate and validate != page.hash: raise RuntimeError('page hash mismatch') return page pageindex = key if self._index is None else self._index + (key,) self._seek(key) page = tiffpage(self.parent, index=pageindex, keyframe=self._keyframe) if validate and validate != page.hash: raise RuntimeError('page hash mismatch') if self._cache or cache: pages[key] = page return page def __getitem__(self, key): """Return specified page(s).""" pages = self.pages getitem = self._getitem if isinstance(key, (int, numpy.integer)): if key == 0: return pages[key] return getitem(key) if isinstance(key, slice): start, stop, _ = key.indices(2**31 - 1) if not self._indexed and max(stop, start) > len(pages): self._seek(-1) return [getitem(i) for i in range(*key.indices(len(pages)))] if isinstance(key, Iterable): return [getitem(k) for k in key] raise TypeError('key must be an integer, slice, or iterable') def __iter__(self): """Return iterator over all pages.""" i = 0 while True: try: yield self._getitem(i) i += 1 except IndexError: break if self._cache: self._cached = True def __bool__(self): """Return True if file contains any pages.""" return len(self.pages) > 0 def __len__(self): """Return number of pages in file.""" if not self._indexed: self._seek(-1) return len(self.pages) def __repr__(self): return f'' class TiffPage: """TIFF image file directory (IFD). Attributes ---------- index : int or tuple of int Index of the page in file. dtype : numpy.dtype or None Data type (native byte order) of the image in IFD. shape : tuple of int Dimensions of the image in IFD, as returned by asarray. axes : str Axes label codes for each dimension in shape: 'S' sample, 'X' width, 'Y' length, 'Z' depth, tags : TiffTags Multidict like interface to tags in IFD. colormap : numpy.ndarray Color look up table, if exists. shaped : tuple of int Normalized 5-dimensional shape of the image in IFD: 0 : separate samplesperpixel or 1. 1 : imagedepth Z or 1. 2 : imagelength Y. 3 : imagewidth X. 4 : contig samplesperpixel or 1. All attributes are read-only. """ # default properties; will be updated from tags subfiletype = 0 imagewidth = 0 imagelength = 0 imagedepth = 1 tilewidth = 0 tilelength = 0 tiledepth = 1 bitspersample = 1 samplesperpixel = 1 sampleformat = 1 rowsperstrip = 2**32 - 1 compression = 1 planarconfig = 1 fillorder = 1 photometric = 0 predictor = 1 extrasamples = () subsampling = None subifds = None jpegtables = None jpegheader = None # NDPI only software = '' description = '' description1 = '' nodata = 0 def __init__(self, parent, index, keyframe=None): """Initialize instance from file. The file handle position must be at offset to a valid IFD. """ self.parent = parent self.index = index self.shape = () self.shaped = () self.dtype = None self._dtype = None self.axes = '' self.tags = tags = TiffTags() self.dataoffsets = () self.databytecounts = () tiff = parent.tiff # read TIFF IFD structure and its tags from file fh = parent.filehandle self.offset = fh.tell() # offset to this IFD try: tagno = struct.unpack(tiff.tagnoformat, fh.read(tiff.tagnosize))[0] if tagno > 4096: raise ValueError(f'suspicious number of tags {tagno}') except Exception as exc: raise TiffFileError( f'corrup tag list at offset {self.offset}' ) from exc tagoffset = self.offset + tiff.tagnosize # fh.tell() tagsize = tagsize_ = tiff.tagsize data = fh.read(tagsize * tagno) if len(data) != tagsize * tagno: raise TiffFileError('corrupted IFD structure') if tiff.version == 42 and tiff.offsetsize == 8: # patch offsets/values for 64-bit NDPI file tagsize = 16 fh.seek(8, os.SEEK_CUR) ext = fh.read(4 * tagno) # high bits data = b''.join( data[i * 12 : i * 12 + 12] + ext[i * 4 : i * 4 + 4] for i in range(tagno) ) tagindex = -tagsize for i in range(tagno): tagindex += tagsize tagdata = data[tagindex : tagindex + tagsize] try: tag = TiffTag.fromfile( parent, tagoffset + i * tagsize_, tagdata ) except TiffFileError as exc: log_warning(f'{self!r} {exc}') continue tags.add(tag) if not tags: return # found in FIBICS for code, name in TIFF.TAG_ATTRIBUTES.items(): value = tags.valueof(code) if value is None: continue if (code == 270 or code == 305) and not isinstance(value, str): # wrong string type for software or description continue setattr(self, name, value) value = tags.valueof(270, index=1) if isinstance(value, str): self.description1 = value if self.subfiletype == 0: value = tags.valueof(255) # SubfileType if value == 2: self.subfiletype = 0b1 # reduced image elif value == 3: self.subfiletype = 0b10 # multi-page # consolidate private tags; remove them from self.tags # if self.is_andor: # self.andor_tags # elif self.is_epics: # self.epics_tags # elif self.is_ndpi: # self.ndpi_tags # if self.is_sis and 34853 in tags: # # TODO: can't change tag.name # tags[34853].name = 'OlympusSIS2' # dataoffsets and databytecounts # TileOffsets self.dataoffsets = tags.valueof(324) if self.dataoffsets is None: # StripOffsets self.dataoffsets = tags.valueof(273) if self.dataoffsets is None: # JPEGInterchangeFormat et al. self.dataoffsets = tags.valueof(513) if self.dataoffsets is None: self.dataoffsets = () log_warning(f'{self!r} missing data offset tag') # TileByteCounts self.databytecounts = tags.valueof(325) if self.databytecounts is None: # StripByteCounts self.databytecounts = tags.valueof(279) if self.databytecounts is None: # JPEGInterchangeFormatLength et al. self.databytecounts = tags.valueof(514) if ( self.imagewidth == 0 and self.imagelength == 0 and self.dataoffsets and self.databytecounts ): # dimensions may be missing in some RAW formats # read dimensions from assumed JPEG encoded segment try: fh.seek(self.dataoffsets[0]) ( precision, imagelength, imagewidth, samplesperpixel, ) = jpeg_shape(fh.read(min(self.databytecounts[0], 4096))) except Exception: pass else: self.imagelength = imagelength self.imagewidth = imagewidth self.samplesperpixel = samplesperpixel if 258 not in tags: self.bitspersample = 8 if precision <= 8 else 16 if 262 not in tags and samplesperpixel == 3: self.photometric = 6 # YCbCr if 259 not in tags: self.compression = 6 # OJPEG if 278 not in tags: self.rowsperstrip = imagelength elif self.compression == 6: # OJPEG hack. See libtiff v4.2.0 tif_dirread.c#L4082 if 262 not in tags: # PhotometricInterpretation missing self.photometric = 6 # YCbCr elif self.photometric == 2: # RGB -> YCbCr self.photometric = 6 if 258 not in tags: # BitsPerSample missing self.bitspersample = 8 if 277 not in tags: # SamplesPerPixel missing if self.photometric in (2, 6): self.samplesperpixel = 3 elif self.photometric in (0, 1): self.samplesperpixel = 3 elif self.is_lsm or (self.index != 0 and self.parent.is_lsm): # correct non standard LSM bitspersample tags tags[258]._fix_lsm_bitspersample() if self.compression == 1 and self.predictor != 1: # work around bug in LSM510 software self.predictor = 1 elif self.is_vista or (self.index != 0 and self.parent.is_vista): # ISS Vista writes wrong ImageDepth tag self.imagedepth = 1 elif self.is_stk: if tags.get(33629) is not None: # UIC2tag # read UIC1tag again now that plane count is known tag = tags.get(33628) # UIC1tag fh.seek(tag.valueoffset) try: tag.value = read_uic1tag( fh, tiff.byteorder, tag.dtype, tag.count, None, tags[33629].count, # UIC2tag ) except Exception as exc: log_warning( f'{self!r} read_uic1tag failed with ' f'{exc.__class__.__name__}: {exc}' ) tag = tags.get(50839) if tag is not None: # decode IJMetadata tag try: tag.value = imagej_metadata( tag.value, tags[50838].value, # IJMetadataByteCounts tiff.byteorder, ) except Exception as exc: log_warning( f'{self!r} imagej_metadata failed with ' f'{exc.__class__.__name__}: {exc}' ) # BitsPerSample value = tags.valueof(258) if value is not None: if self.bitspersample != 1: pass # bitspersample was set by ojpeg hack elif tags[258].count == 1: self.bitspersample = value else: # LSM might list more items than samplesperpixel value = value[: self.samplesperpixel] if any(v - value[0] for v in value): self.bitspersample = value else: self.bitspersample = value[0] # SampleFormat value = tags.valueof(339) if value is not None: if tags[339].count == 1: self.sampleformat = value else: value = value[: self.samplesperpixel] if any(v - value[0] for v in value): self.sampleformat = value else: self.sampleformat = value[0] if 322 in tags: # TileWidth self.rowsperstrip = None elif 257 in tags: # ImageLength if 278 not in tags or tags[278].count > 1: # RowsPerStrip self.rowsperstrip = self.imagelength self.rowsperstrip = min(self.rowsperstrip, self.imagelength) # self.stripsperimage = int(math.floor( # float(self.imagelength + self.rowsperstrip - 1) / # self.rowsperstrip)) # determine dtype dtype = TIFF.SAMPLE_DTYPES.get( (self.sampleformat, self.bitspersample), None ) if dtype is not None: dtype = numpy.dtype(dtype) self.dtype = self._dtype = dtype # determine shape of data imagelength = self.imagelength imagewidth = self.imagewidth imagedepth = self.imagedepth samplesperpixel = self.samplesperpixel if self.photometric == 2 or samplesperpixel > 1: # PHOTOMETRIC.RGB if self.planarconfig == 1: self.shaped = ( 1, imagedepth, imagelength, imagewidth, samplesperpixel, ) if imagedepth == 1: self.shape = (imagelength, imagewidth, samplesperpixel) self.axes = 'YXS' else: self.shape = ( imagedepth, imagelength, imagewidth, samplesperpixel, ) self.axes = 'ZYXS' else: self.shaped = ( samplesperpixel, imagedepth, imagelength, imagewidth, 1, ) if imagedepth == 1: self.shape = (samplesperpixel, imagelength, imagewidth) self.axes = 'SYX' else: self.shape = ( samplesperpixel, imagedepth, imagelength, imagewidth, ) self.axes = 'SZYX' else: self.shaped = (1, imagedepth, imagelength, imagewidth, 1) if imagedepth == 1: self.shape = (imagelength, imagewidth) self.axes = 'YX' else: self.shape = (imagedepth, imagelength, imagewidth) self.axes = 'ZYX' if not self.databytecounts: self.databytecounts = ( product(self.shape) * (self.bitspersample // 8), ) if self.compression != 1: log_warning(f'{self!r} missing ByteCounts tag') if imagelength and self.rowsperstrip and not self.is_lsm: # fix incorrect number of strip bytecounts and offsets maxstrips = ( int( math.floor(imagelength + self.rowsperstrip - 1) / self.rowsperstrip ) * self.imagedepth ) if self.planarconfig == 2: maxstrips *= self.samplesperpixel if maxstrips != len(self.databytecounts): log_warning( f'{self!r} incorrect StripByteCounts count ' f'({len(self.databytecounts)} != {maxstrips})' ) self.databytecounts = self.databytecounts[:maxstrips] if maxstrips != len(self.dataoffsets): log_warning( f'{self!r} incorrect StripOffsets count ' f'({len(self.dataoffsets)} != {maxstrips})' ) self.dataoffsets = self.dataoffsets[:maxstrips] value = tags.valueof(42113) # GDAL_NODATA if value is not None: try: pytype = type(dtype.type(0).item()) value = value.replace(',', '.') # comma decimal separator self.nodata = pytype(value) except Exception: pass mcustarts = tags.valueof(65426) if mcustarts is not None and self.is_ndpi: # use NDPI JPEG McuStarts as tile offsets high = tags.valueof(65432) if high is not None: # McuStartsHighBytes high = high.astype('uint64') high <<= 32 mcustarts = mcustarts.astype('uint64') mcustarts += high fh.seek(self.dataoffsets[0]) jpegheader = fh.read(mcustarts[0]) try: ( self.tilelength, self.tilewidth, self.jpegheader, ) = ndpi_jpeg_tile(jpegheader) except ValueError as exc: log_warning( f'{self!r} ndpi_jpeg_tile failed with ' f'{exc.__class__.__name__}: {exc}' ) else: self.databytecounts = ( mcustarts[1:] - mcustarts[:-1] ).tolist() + [self.databytecounts[0] - int(mcustarts[-1])] self.dataoffsets = (mcustarts + self.dataoffsets[0]).tolist() @lazyattr def decode(self): """Return decoded segment, its shape, and indices in image. The decode function is implemeted as a closure. Parameters ---------- data : bytes Encoded bytes of a segment (aka strile, strip or tile) or None for empty segments. index : int The index of the segment in the Offsets and Bytecount tag values. jpegtables : bytes or None For JPEG compressed segments only, the value of the JPEGTables tag if any. Returns ------- segment : numpy.ndarray Decoded segment or None for empty segments. indices : tuple of int The position of the segment in the image array of normalized shape: (separate sample, depth, length, width, contig sample). shape : tuple of int The shape of the segment: (depth, length, width, contig samples). The shape of strips depends on their linear index. Raises ValueError or NotImplementedError if decoding is not supported. """ if self.hash in self.parent._parent._decoders: return self.parent._parent._decoders[self.hash] def cache(decode): self.parent._parent._decoders[self.hash] = decode return decode if self.dtype is None: def decode(*args, **kwargs): raise ValueError( 'data type not supported ' f'(SampleFormat {self.sampleformat}, ' f'{self.bitspersample}-bit)' ) return cache(decode) if 0 in self.shaped: def decode(*args, **kwargs): raise ValueError('empty image') return cache(decode) try: if self.compression == 1: decompress = None else: decompress = TIFF.DECOMPRESSORS[self.compression] except KeyError as exc: def decode(*args, exc=str(exc)[1:-1], **kwargs): # type: ignore raise ValueError(f'{exc}') return cache(decode) try: if self.predictor == 1: unpredict = None else: unpredict = TIFF.UNPREDICTORS[self.predictor] except KeyError as exc: def decode(*args, exc=str(exc)[1:-1], **kwargs): # type: ignore raise ValueError(f'{exc}') return cache(decode) if self.tags.get(339) is not None: tag = self.tags[339] # SampleFormat if tag.count != 1 and any(i - tag.value[0] for i in tag.value): def decode(*args, **kwargs): raise ValueError( f'sample formats do not match {tag.value}' ) return cache(decode) if self.is_subsampled and ( self.compression not in (6, 7) or self.planarconfig == 2 ): def decode(*args, **kwargs): raise NotImplementedError('chroma subsampling not supported') return cache(decode) # normalize segments shape to [depth, length, length, contig] if self.is_tiled: stshape = [self.tiledepth, self.tilelength, self.tilewidth, 1] else: stshape = [1, self.rowsperstrip, self.imagewidth, 1] if self.planarconfig == 1: stshape[-1] = self.samplesperpixel stshape = tuple(stshape) stdepth, stlength, stwidth, samples = stshape imdepth, imlength, imwidth, samples = self.shaped[1:] if self.is_tiled: width = (imwidth + stwidth - 1) // stwidth length = (imlength + stlength - 1) // stlength depth = (imdepth + stdepth - 1) // stdepth def indices(segmentindex): # return indices and shape of tile in image array return ( ( segmentindex // (width * length * depth), (segmentindex // (width * length)) % depth * stdepth, (segmentindex // width) % length * stlength, segmentindex % width * stwidth, 0, ), stshape, ) def reshape(data, indices, shape): # return reshaped tile if data is None: return data size = shape[0] * shape[1] * shape[2] * shape[3] if data.size > size: # decompression / unpacking might return too many bytes data.shape = -1 data = data[:size] if data.size == size: # complete tile # data might be non-contiguous; cannot reshape inplace data = data.reshape(shape) else: # data fills remaining space # found in some JPEG/PNG compressed tiles try: data = data.reshape( ( min(imdepth - indices[1], shape[0]), min(imlength - indices[2], shape[1]), min(imwidth - indices[3], shape[2]), samples, ) ) except ValueError: # incomplete tile; see gdal issue #1179 log_warning( ' ' f'incomplete tile {data.shape} {shape}' ) t = numpy.zeros(size, data.dtype) size = min(data.size, size) t[:size] = data[:size] data = t.reshape(shape) return data def pad(data, shape, nodata=self.nodata): # pad tile to shape if data is None or data.shape == shape: return data, shape padwidth = [(0, i - j) for i, j in zip(shape, data.shape)] data = numpy.pad(data, padwidth, constant_values=nodata) return data, data.shape else: # strips length = (imlength + stlength - 1) // stlength def indices(segmentindex): # return indices and shape of strip in image array indices = ( segmentindex // (length * imdepth), (segmentindex // length) % imdepth * stdepth, segmentindex % length * stlength, 0, 0, ) shape = ( stdepth, min(stlength, imlength - indices[2]), stwidth, samples, ) return indices, shape def reshape(data, indices, shape): # return reshaped strip if data is None: return data size = shape[0] * shape[1] * shape[2] * shape[3] if data.size > size: # decompression / unpacking might return too many bytes data.shape = -1 data = data[:size] if data.size == size: # expected size data.shape = shape else: # should not happen, but try different length data.shape = shape[0], -1, shape[2], shape[3] # raise RuntimeError( # f'invalid strip shape {data.shape} or size {size}' # ) return data def pad(data, shape, nodata=self.nodata): # pad strip length to rowsperstrip shape = (shape[0], stlength, shape[2], shape[3]) if data is None or data.shape == shape: return data, shape padwidth = [ (0, 0), (0, stlength - data.shape[1]), (0, 0), (0, 0), ] data = numpy.pad(data, padwidth, constant_values=nodata) return data, data.shape if self.compression in (6, 7, 34892, 33007): # JPEG needs special handling if self.fillorder == 2: log_warning(f'{self!r} disabling LSB2MSB for JPEG') if unpredict: log_warning(f'{self!r} disabling predictor for JPEG') if 28672 in self.tags: # SonyRawFileType log_warning( f'{self!r} SonyRawFileType might need additional ' 'unpacking (see issue #95)' ) colorspace, outcolorspace = jpeg_decode_colorspace( self.photometric, self.planarconfig, self.extrasamples ) def decode( # type: ignore data, segmentindex, jpegtables=None, jpegheader=None, _fullsize=False, bitspersample=self.bitspersample, colorspace=colorspace, outcolorspace=outcolorspace, ): # return decoded segment, its shape, and indices in image index, shape = indices(segmentindex) if data is None: if _fullsize: data, shape = pad(data, shape) return data, index, shape data = imagecodecs.jpeg_decode( data, bitspersample=bitspersample, tables=jpegtables, header=jpegheader, colorspace=colorspace, outcolorspace=outcolorspace, shape=shape[1:3], ) data = reshape(data, index, shape) if _fullsize: data, shape = pad(data, shape) return data, index, shape return cache(decode) if self.compression in ( 33003, 33004, 33005, 34712, 34933, 34934, 22610, 50001, 50002, ): # JPEG2000, WEBP, PNG, JPEGXR # presume codecs always return correct dtype, native byte order... if self.fillorder == 2: log_warning( f'{self!r} ' f'disabling LSB2MSB for compression {self.compression}' ) if unpredict: log_warning( f'{self!r} ' f'disabling predictor for compression {self.compression}' ) def decode( # type: ignore data, segmentindex, jpegtables=None, _fullsize=False ): # return decoded segment, its shape, and indices in image index, shape = indices(segmentindex) if data is None: if _fullsize: data, shape = pad(data, shape) return data, index, shape data = decompress(data) data = reshape(data, index, shape) if _fullsize: data, shape = pad(data, shape) return data, index, shape return cache(decode) dtype = numpy.dtype(self.parent.byteorder + self._dtype.char) if self.sampleformat == 5: # complex integer if unpredict is not None: raise NotImplementedError( 'unpredicting complex integers not supported' ) itype = numpy.dtype( f'{self.parent.byteorder}i{self.bitspersample // 16}' ) ftype = numpy.dtype( f'{self.parent.byteorder}f{dtype.itemsize // 2}' ) def unpack(data, byteorder=None): # return complex integer as numpy.complex data = numpy.frombuffer(data, itype) return data.astype(ftype).view(dtype) elif self.bitspersample in (8, 16, 32, 64, 128): # regular data types if (self.bitspersample * stwidth * samples) % 8: raise ValueError('data and sample size mismatch') if self.predictor == 3: # PREDICTOR.FLOATINGPOINT # floating-point horizontal differencing decoder needs # raw byte order dtype = numpy.dtype(self._dtype.char) def unpack(data, byteorder=None): # return numpy array from buffer try: # read only numpy array return numpy.frombuffer(data, dtype) except ValueError: # e.g. LZW strips may be missing EOI bps = self.bitspersample // 8 size = (len(data) // bps) * bps return numpy.frombuffer(data[:size], dtype) elif isinstance(self.bitspersample, tuple): # e.g. RGB 565 def unpack(data, byteorder=None): # return numpy array from packed integers return unpack_rgb(data, dtype, self.bitspersample) elif self.bitspersample == 24 and dtype.char == 'f': # float24 if unpredict is not None: # floatpred_decode requires numpy.float24, which does not exist raise NotImplementedError('unpredicting float24 not supported') def unpack(data, byteorder=self.parent.byteorder): # return numpy.float32 array from float24 return float24_decode(data, byteorder) else: # bilevel and packed integers def unpack(data, byteorder=None): # return numpy array from packed integers return packints_decode( data, dtype, self.bitspersample, stwidth * samples ) def decode(data, segmentindex, jpegtables=None, _fullsize=False): # return decoded segment, its shape, and indices in image index, shape = indices(segmentindex) if data is None: if _fullsize: data, shape = pad(data, shape) return data, index, shape if self.fillorder == 2: data = bitorder_decode(data) if decompress is not None: # TODO: calculate correct size for packed integers size = shape[0] * shape[1] * shape[2] * shape[3] data = decompress(data, out=size * dtype.itemsize) data = unpack(data) data = reshape(data, index, shape) data = data.astype('=' + dtype.char, copy=False) if unpredict is not None: # unpredict is faster with native byte order data = unpredict(data, axis=-2, out=data) if _fullsize: data, shape = pad(data, shape) return data, index, shape return cache(decode) def segments( self, lock=None, maxworkers=None, func=None, sort=False, _fullsize=None ): """Return iterator over decoded segments in TiffPage. See the decode function for return values. """ keyframe = self.keyframe # self or keyframe fh = self.parent.filehandle if lock is None: lock = fh.lock if _fullsize is None: _fullsize = keyframe.is_tiled decodeargs = {'_fullsize': bool(_fullsize)} if keyframe.compression in (6, 7, 34892, 33007): # JPEG decodeargs['jpegtables'] = self.jpegtables decodeargs['jpegheader'] = keyframe.jpegheader if func is None: def decode(args, decodeargs=decodeargs, keyframe=keyframe): return keyframe.decode(*args, **decodeargs) else: def decode( # type: ignore args, decodeargs=decodeargs, keyframe=keyframe, func=func ): return func(keyframe.decode(*args, **decodeargs)) if maxworkers is None or maxworkers < 1: maxworkers = keyframe.maxworkers if maxworkers < 2: for segment in fh.read_segments( self.dataoffsets, self.databytecounts, lock=lock, sort=sort, flat=True, ): yield decode(segment) else: # reduce memory overhead by processing chunks of up to # ~64 MB of segments because ThreadPoolExecutor.map is not # collecting iterables lazily with ThreadPoolExecutor(maxworkers) as executor: for segments in fh.read_segments( self.dataoffsets, self.databytecounts, lock=lock, sort=sort, flat=False, ): yield from executor.map(decode, segments) def asarray(self, out=None, squeeze=True, lock=None, maxworkers=None): """Read image data from file and return as numpy array. Raise ValueError if format is not supported. Parameters ---------- out : numpy.ndarray, str, or file-like object Buffer where image data are saved. If None (default), a new array is created. If numpy.ndarray, a writable array of compatible dtype and shape. If 'memmap', directly memory-map the image data in the TIFF file if possible; else create a memory-mapped array in a temporary file. If str or open file, the file name or file object used to create a memory-map to an array stored in a binary file on disk. squeeze : bool If True (default), all length-1 dimensions (except X and Y) are squeezed out from the array. If False, the shape of the returned array is the normalized 5-dimensional shape (TiffPage.shaped). lock : {RLock, NullContext} A reentrant lock used to synchronize seeks and reads from file. If None (default), the lock of the parent's filehandle is used. maxworkers : int or None Maximum number of threads to concurrently decode strips or tiles. If None (default), up to half the CPU cores are used. See remarks in TiffFile.asarray. Returns ------- numpy.ndarray Numpy array of decompressed, unpredicted, and unpacked image data read from Strip/Tile Offsets/ByteCounts, formatted according to shape and dtype metadata found in tags and parameters. Photometric conversion, pre-multiplied alpha, orientation, and colorimetry corrections are not applied. Specifically, CMYK images are not converted to RGB, MinIsWhite images are not inverted, and color palettes are not applied. Exception are YCbCr JPEG compressed images, which are converted to RGB. """ keyframe = self.keyframe # self or keyframe if not keyframe.shaped or product(keyframe.shaped) == 0: return None if len(self.dataoffsets) == 0: raise TiffFileError('missing data offset') fh = self.parent.filehandle if lock is None: lock = fh.lock with lock: closed = fh.closed if closed: # this is an inefficient resort in case a user calls # asarray of a TiffPage or TiffFrame with a closed FileHandle. warnings.warn( f'{self!r} reading array from closed file', UserWarning ) fh.open() if ( isinstance(out, str) and out == 'memmap' and keyframe.is_memmappable ): # direct memory map array in file with lock: result = fh.memmap_array( keyframe.parent.byteorder + keyframe._dtype.char, keyframe.shaped, offset=self.dataoffsets[0], ) elif keyframe.is_contiguous: # read contiguous bytes to array if keyframe.is_subsampled: raise NotImplementedError('chroma subsampling not supported') if out is not None: out = create_output(out, keyframe.shaped, keyframe._dtype) with lock: fh.seek(self.dataoffsets[0]) result = fh.read_array( keyframe.parent.byteorder + keyframe._dtype.char, product(keyframe.shaped), out=out, ) if keyframe.fillorder == 2: bitorder_decode(result, out=result) if keyframe.predictor != 1: # predictors without compression unpredict = TIFF.UNPREDICTORS[keyframe.predictor] if keyframe.predictor == 1: unpredict(result, axis=-2, out=result) else: # floatpred cannot decode in-place out = unpredict(result, axis=-2, out=result) result[:] = out elif ( keyframe.jpegheader is not None and keyframe is self and 273 in self.tags # striped ... and self.is_tiled # but reported as tiled and self.imagewidth <= 65500 and self.imagelength <= 65500 ): # decode the whole NDPI JPEG strip with lock: fh.seek(self.tags[273].value[0]) # StripOffsets data = fh.read(self.tags[279].value[0]) # StripByteCounts decompress = TIFF.DECOMPRESSORS[self.compression] result = decompress( data, bitspersample=self.bitspersample, out=out ) del data else: # decode individual strips or tiles result = create_output(out, keyframe.shaped, keyframe._dtype) keyframe.decode # init TiffPage.decode function def func(decoderesult, keyframe=keyframe, out=out): # copy decoded segments to output array segment, (s, d, l, w, _), shape = decoderesult if segment is None: segment = keyframe.nodata else: segment = segment[ : keyframe.imagedepth - d, : keyframe.imagelength - l, : keyframe.imagewidth - w, ] result[ s, d : d + shape[0], l : l + shape[1], w : w + shape[2] ] = segment # except IndexError: # pass # corrupted file e.g. with too many strips for _ in self.segments( func=func, lock=lock, maxworkers=maxworkers, sort=True, _fullsize=False, ): pass result.shape = keyframe.shaped if squeeze: try: result.shape = keyframe.shape except ValueError: log_warning( f'{self!r} ' f'failed to reshape {result.shape} to {keyframe.shape}' ) if closed: # TODO: close file if an exception occurred above fh.close() return result def aszarr(self, **kwargs): """Return image data as zarr storage.""" return ZarrTiffStore(self, **kwargs) def asrgb( self, uint8=False, alpha=None, colormap=None, dmin=None, dmax=None, **kwargs, ): """Return image data as RGB(A). Work in progress. """ data = self.asarray(**kwargs) keyframe = self.keyframe # self or keyframe if keyframe.photometric == TIFF.PHOTOMETRIC.PALETTE: colormap = keyframe.colormap if ( colormap.shape[1] < 2**keyframe.bitspersample or keyframe.dtype.char not in 'BH' ): raise ValueError('cannot apply colormap') if uint8: if colormap.max() > 255: colormap >>= 8 colormap = colormap.astype('uint8') if 'S' in keyframe.axes: data = data[..., 0] if keyframe.planarconfig == 1 else data[0] data = apply_colormap(data, colormap) elif keyframe.photometric == TIFF.PHOTOMETRIC.RGB: if keyframe.extrasamples: if alpha is None: alpha = TIFF.EXTRASAMPLE for i, exs in enumerate(keyframe.extrasamples): if exs in alpha: if keyframe.planarconfig == 1: data = data[..., [0, 1, 2, 3 + i]] else: data = data[:, [0, 1, 2, 3 + i]] break else: if keyframe.planarconfig == 1: data = data[..., :3] else: data = data[:, :3] # TODO: convert to uint8? elif keyframe.photometric == TIFF.PHOTOMETRIC.MINISBLACK: raise NotImplementedError elif keyframe.photometric == TIFF.PHOTOMETRIC.MINISWHITE: raise NotImplementedError elif keyframe.photometric == TIFF.PHOTOMETRIC.SEPARATED: raise NotImplementedError else: raise NotImplementedError return data def _gettags(self, codes=None, lock=None): """Return list of (code, TiffTag).""" return [ (tag.code, tag) for tag in self.tags if codes is None or tag.code in codes ] def _nextifd(self): """Return offset to next IFD from file.""" fh = self.parent.filehandle tiff = self.parent.tiff fh.seek(self.offset) tagno = struct.unpack(tiff.tagnoformat, fh.read(tiff.tagnosize))[0] fh.seek(self.offset + tiff.tagnosize + tagno * tiff.tagsize) return struct.unpack(tiff.offsetformat, fh.read(tiff.offsetsize))[0] def aspage(self): """Return self.""" return self @property def keyframe(self): """Return keyframe, self.""" return self @keyframe.setter def keyframe(self, index): """Set keyframe, NOP.""" return @property def ndim(self): """Return number of array dimensions.""" return len(self.shape) @property def size(self): """Return number of elements in array.""" return product(self.shape) @property def nbytes(self): """Return number of bytes in array.""" return product(self.shape) * self.dtype.itemsize @property def colormap(self): """Return colormap as numpy array.""" return self.tags.valueof(320) @property def transferfunction(self): """Return transferfunction as numpy array.""" return self.tags.valueof(301) @lazyattr def chunks(self): """Return shape of tiles or stripes.""" shape = [] if self.tiledepth > 1: shape.append(self.tiledepth) if self.is_tiled: shape.extend((self.tilelength, self.tilewidth)) else: shape.extend((self.rowsperstrip, self.imagewidth)) if self.planarconfig == 1 and self.samplesperpixel > 1: shape.append(self.samplesperpixel) return tuple(shape) @lazyattr def chunked(self): """Return shape of chunked image.""" shape = [] if self.planarconfig == 2 and self.samplesperpixel > 1: shape.append(self.samplesperpixel) if self.is_tiled: if self.imagedepth > 1: shape.append( (self.imagedepth + self.tiledepth - 1) // self.tiledepth ) shape.append( (self.imagelength + self.tilelength - 1) // self.tilelength ) shape.append( (self.imagewidth + self.tilewidth - 1) // self.tilewidth ) else: if self.imagedepth > 1: shape.append(self.imagedepth) shape.append( (self.imagelength + self.rowsperstrip - 1) // self.rowsperstrip ) shape.append(1) if self.planarconfig == 1 and self.samplesperpixel > 1: shape.append(1) return tuple(shape) @lazyattr def hash(self): """Return checksum to identify pages in same series. Pages with the same hash can use the same decode function. """ return hash( self.shaped + ( self.parent.byteorder, self.tilewidth, self.tilelength, self.tiledepth, self.sampleformat, self.bitspersample, self.rowsperstrip, self.fillorder, self.predictor, self.extrasamples, self.photometric, self.planarconfig, self.compression, ) ) @lazyattr def pages(self): """Return sequence of sub-pages, SubIFDs.""" if 330 not in self.tags: return () return TiffPages(self, index=self.index) @lazyattr def maxworkers(self): """Return maximum number of threads for decoding segments. Return 0 to disable multi-threading also for stacking pages. """ if self.is_contiguous or self.dtype is None: return 0 if self.compression in ( 6, 7, 33003, 33004, 33005, 33007, 34712, 34892, 34933, 34934, 22610, 50001, 50002, ): # image codecs return min(TIFF.MAXWORKERS, len(self.dataoffsets)) bytecount = product(self.chunks) * self.dtype.itemsize if bytecount < 2048: # disable multi-threading for small segments return 0 if self.compression != 1 or self.fillorder != 1 or self.predictor != 1: if self.compression == 5 and bytecount < 16384: # disable multi-threading for small LZW compressed segments return 0 if len(self.dataoffsets) < 4: return 1 if self.compression != 1 or self.fillorder != 1 or self.predictor != 1: if imagecodecs is not None: return min(TIFF.MAXWORKERS, len(self.dataoffsets)) return 2 # optimum for large number of uncompressed tiles @lazyattr def is_contiguous(self): """Return offset and size of contiguous data, else None. Excludes prediction and fill_order. """ if self.sampleformat == 5: return None if self.compression != 1 or self.bitspersample not in (8, 16, 32, 64): return None if 322 in self.tags: # TileWidth if ( self.imagewidth != self.tilewidth or self.imagelength % self.tilelength or self.tilewidth % 16 or self.tilelength % 16 ): return None if ( 32997 in self.tags # ImageDepth and 32998 in self.tags # TileDepth and ( self.imagelength != self.tilelength or self.imagedepth % self.tiledepth ) ): return None offsets = self.dataoffsets bytecounts = self.databytecounts if len(offsets) == 0: return None if len(offsets) == 1: return offsets[0], bytecounts[0] if self.is_stk or self.is_lsm: return offsets[0], sum(bytecounts) if all( bytecounts[i] != 0 and offsets[i] + bytecounts[i] == offsets[i + 1] for i in range(len(offsets) - 1) ): return offsets[0], sum(bytecounts) return None @lazyattr def is_final(self): """Return if page's image data are stored in final form. Excludes byte-swapping. """ return ( self.is_contiguous and self.fillorder == 1 and self.predictor == 1 and not self.is_subsampled ) @lazyattr def is_memmappable(self): """Return if page's image data in file can be memory-mapped.""" return ( self.parent.filehandle.is_file and self.is_final # and (self.bitspersample == 8 or self.parent.isnative) # aligned? and self.is_contiguous[0] % self.dtype.itemsize == 0 ) def __repr__(self): return f'' def __str__(self, detail=0, width=79): """Return string containing information about TiffPage.""" if self.keyframe != self: return TiffFrame.__str__(self, detail, width) attr = '' for name in ('memmappable', 'final', 'contiguous'): attr = getattr(self, 'is_' + name) if attr: attr = name.upper() break def tostr(name, skip=1): obj = getattr(self, name) try: value = getattr(obj, 'name') except AttributeError: return '' if obj != skip: return value return '' info = ' '.join( s.lower() for s in ( 'x'.join(str(i) for i in self.shape), '{}{}'.format( TIFF.SAMPLEFORMAT(self.sampleformat).name, self.bitspersample, ), ' '.join( i for i in ( TIFF.PHOTOMETRIC(self.photometric).name, 'REDUCED' if self.is_reduced else '', 'MASK' if self.is_mask else '', 'TILED' if self.is_tiled else '', tostr('compression'), tostr('planarconfig'), tostr('predictor'), tostr('fillorder'), ) + tuple(f.upper() for f in self.flags) + (attr,) if i ), ) if s ) info = f'TiffPage {self.index} @{self.offset} {info}' if detail <= 0: return info info = [info, self.tags.__str__(detail + 1, width=width)] if detail > 1: for name in ('ndpi',): name = name + '_tags' attr = getattr(self, name, False) if attr: info.append( '{}\n{}'.format( name.upper(), pformat(attr, width=width, height=detail * 8), ) ) if detail > 3: try: info.append( 'DATA\n{}'.format( pformat(self.asarray(), width=width, height=detail * 8) ) ) except Exception: pass return '\n\n'.join(info) @lazyattr def flags(self): """Return set of flags.""" return { name.lower() for name in sorted(TIFF.FILE_FLAGS) if getattr(self, 'is_' + name) } @lazyattr def andor_tags(self): """Return consolidated metadata from Andor tags as dict.""" if not self.is_andor: return None result = {'Id': self.tags[4864].value} # AndorId for tag in self.tags: # list(self.tags.values()): code = tag.code if not 4864 < code < 5031: continue name = tag.name name = name[5:] if len(name) > 5 else name result[name] = tag.value # del self.tags[code] return result @lazyattr def epics_tags(self): """Return consolidated metadata from EPICS areaDetector tags as dict. Use epics_datetime() to get a datetime object from the epicsTSSec and epicsTSNsec tags. """ if not self.is_epics: return None result = {} for tag in self.tags: # list(self.tags.values()): code = tag.code if not 65000 <= code < 65500: continue value = tag.value if code == 65000: # not a POSIX timestamp # https://github.com/bluesky/area-detector-handlers/issues/20 result['timeStamp'] = float(value) elif code == 65001: result['uniqueID'] = int(value) elif code == 65002: result['epicsTSSec'] = int(value) elif code == 65003: result['epicsTSNsec'] = int(value) else: key, value = value.split(':', 1) result[key] = astype(value) # del self.tags[code] return result @lazyattr def ndpi_tags(self): """Return consolidated metadata from Hamamatsu NDPI as dict.""" # TODO: parse 65449 ini style comments if not self.is_ndpi: return None tags = self.tags result = {} for name in ('Make', 'Model', 'Software'): result[name] = tags[name].value for code, name in TIFF.NDPI_TAGS.items(): if code in tags: result[name] = tags[code].value # del tags[code] if 'McuStarts' in result: mcustarts = result['McuStarts'] if 'McuStartsHighBytes' in result: high = result['McuStartsHighBytes'].astype('uint64') high <<= 32 mcustarts = mcustarts.astype('uint64') mcustarts += high del result['McuStartsHighBytes'] result['McuStarts'] = mcustarts return result @lazyattr def geotiff_tags(self): """Return consolidated metadata from GeoTIFF tags as dict.""" if not self.is_geotiff: return None tags = self.tags gkd = tags.valueof(34735) # GeoKeyDirectoryTag if gkd is None or len(gkd) < 2 or gkd[0] != 1: log_warning(f'{self!r} invalid GeoKeyDirectoryTag') return {} result = { 'KeyDirectoryVersion': gkd[0], 'KeyRevision': gkd[1], 'KeyRevisionMinor': gkd[2], # 'NumberOfKeys': gkd[3], } # deltags = ['GeoKeyDirectoryTag'] geokeys = TIFF.GEO_KEYS geocodes = TIFF.GEO_CODES for index in range(gkd[3]): try: keyid, tagid, count, offset = gkd[ 4 + index * 4 : index * 4 + 8 ] except Exception as exc: log_warning( f'{self!r} corrupted GeoKeyDirectoryTag ' f'({exc.__class__.__name__}: {exc})' ) continue if tagid == 0: value = offset else: try: value = tags[tagid].value[offset : offset + count] except TiffFileError: log_warning( f'{self!r} corrupted GeoKeyDirectoryTag {tagid}' ) continue except KeyError: log_warning( f'{self!r} GeoKeyDirectoryTag {tagid} not found' ) continue if tagid == 34737 and count > 1 and value[-1] == '|': value = value[:-1] value = value if count > 1 else value[0] if keyid in geocodes: try: value = geocodes[keyid](value) except Exception: pass try: key = geokeys(keyid).name except ValueError: key = keyid result[key] = value value = tags.valueof(33920) # IntergraphMatrixTag if value is not None: value = numpy.array(value) if len(value) == 16: value = value.reshape((4, 4)).tolist() result['IntergraphMatrix'] = value value = tags.valueof(33550) # ModelPixelScaleTag if value is not None: result['ModelPixelScale'] = numpy.array(value).tolist() value = tags.valueof(33922) # ModelTiepointTag if value is not None: value = numpy.array(value).reshape((-1, 6)).squeeze().tolist() result['ModelTiepoint'] = value value = tags.valueof(34264) # ModelTransformationTag if value is not None: value = numpy.array(value).reshape((4, 4)).tolist() result['ModelTransformation'] = value # if 33550 in tags and 33922 in tags: # sx, sy, sz = tags[33550].value # ModelPixelScaleTag # tiepoints = tags[33922].value # ModelTiepointTag # transforms = [] # for tp in range(0, len(tiepoints), 6): # i, j, k, x, y, z = tiepoints[tp : tp + 6] # transforms.append( # [ # [sx, 0.0, 0.0, x - i * sx], # [0.0, -sy, 0.0, y + j * sy], # [0.0, 0.0, sz, z - k * sz], # [0.0, 0.0, 0.0, 1.0], # ] # ) # if len(tiepoints) == 6: # transforms = transforms[0] # result['ModelTransformation'] = transforms rpcc = tags.valueof(50844) # RPCCoefficientTag if rpcc is not None: result['RPCCoefficient'] = { 'ERR_BIAS': rpcc[0], 'ERR_RAND': rpcc[1], 'LINE_OFF': rpcc[2], 'SAMP_OFF': rpcc[3], 'LAT_OFF': rpcc[4], 'LONG_OFF': rpcc[5], 'HEIGHT_OFF': rpcc[6], 'LINE_SCALE': rpcc[7], 'SAMP_SCALE': rpcc[8], 'LAT_SCALE': rpcc[9], 'LONG_SCALE': rpcc[10], 'HEIGHT_SCALE': rpcc[11], 'LINE_NUM_COEFF': rpcc[12:33], 'LINE_DEN_COEFF ': rpcc[33:53], 'SAMP_NUM_COEFF': rpcc[53:73], 'SAMP_DEN_COEFF': rpcc[73:], } return result @property def is_reduced(self): """Page is reduced image of another image.""" return self.subfiletype & 0b1 @property def is_multipage(self): """Page is part of multi-page image.""" return self.subfiletype & 0b10 @property def is_mask(self): """Page is transparency mask for another image.""" return self.subfiletype & 0b100 @property def is_mrc(self): """Page is part of Mixed Raster Content.""" return self.subfiletype & 0b1000 @property def is_tiled(self): """Page contains tiled image.""" return self.tilewidth > 0 # return 322 in self.tags # TileWidth @property def is_subsampled(self): """Page contains chroma subsampled image.""" if self.subsampling is not None: return self.subsampling != (1, 1) return ( self.compression == 7 and self.planarconfig == 1 and self.photometric in (2, 6) ) @lazyattr def is_imagej(self): """Return ImageJ description if exists, else None.""" for description in (self.description, self.description1): if not description: return None if description[:7] == 'ImageJ=': return description return None @lazyattr def is_shaped(self): """Return description containing array shape if exists, else None.""" for description in (self.description, self.description1): if not description or '"mibi.' in description: return None if description[:1] == '{' and '"shape":' in description: return description if description[:6] == 'shape=': return description return None @property def is_mdgel(self): """Page contains MDFileTag tag.""" return 33445 in self.tags # MDFileTag @property def is_mediacy(self): """Page contains Media Cybernetics Id tag.""" tag = self.tags.get(50288) # MC_Id try: return tag is not None and tag.value[:7] == b'MC TIFF' except Exception: return False @property def is_stk(self): """Page contains UIC1Tag tag.""" return 33628 in self.tags @property def is_lsm(self): """Page contains CZ_LSMINFO tag.""" return 34412 in self.tags @property def is_fluoview(self): """Page contains FluoView MM_STAMP tag.""" return 34362 in self.tags @property def is_nih(self): """Page contains NIHImageHeader tag.""" return 43314 in self.tags @property def is_volumetric(self): """Page contains SGI ImageDepth tag with value > 1.""" return self.imagedepth > 1 @property def is_vista(self): """Software tag is 'ISS Vista'.""" return self.software == 'ISS Vista' @property def is_metaseries(self): """Page contains MDS MetaSeries metadata in ImageDescription tag.""" if self.index != 0 or self.software != 'MetaSeries': return False d = self.description return d.startswith('') and d.endswith('') @property def is_ome(self): """Page contains OME-XML in ImageDescription tag.""" if self.index != 0 or not self.description: return False return self.description[-4:] == 'OME>' # and [:13] == '' @property def is_micromanager(self): """Page contains MicroManagerMetadata tag.""" return 51123 in self.tags @property def is_andor(self): """Page contains Andor Technology tags 4864-5030.""" return 4864 in self.tags @property def is_pilatus(self): """Page contains Pilatus tags.""" return self.software[:8] == 'TVX TIFF' and self.description[:2] == '# ' @property def is_epics(self): """Page contains EPICS areaDetector tags.""" return ( self.description == 'EPICS areaDetector' or self.software == 'EPICS areaDetector' ) @property def is_tvips(self): """Page contains TVIPS metadata.""" return 37706 in self.tags @property def is_fei(self): """Page contains FEI_SFEG or FEI_HELIOS tags.""" return 34680 in self.tags or 34682 in self.tags @property def is_sem(self): """Page contains CZ_SEM tag.""" return 34118 in self.tags @property def is_svs(self): """Page contains Aperio metadata.""" return self.description[:7] == 'Aperio ' @property def is_bif(self): """Page contains Ventana metadata.""" try: return 700 in self.tags and ( # avoid reading XMP tag from file at this point # b' element return self.software[:15] == 'PerkinElmer-QPI' @property def is_geotiff(self): """Page contains GeoTIFF metadata.""" return 34735 in self.tags # GeoKeyDirectoryTag @property def is_tiffep(self): """Page contains TIFF/EP metadata.""" return 37398 in self.tags # TIFF/EPStandardID @property def is_sis(self): """Page contains Olympus SIS metadata.""" return 33560 in self.tags or 33471 in self.tags @property def is_ndpi(self): """Page contains NDPI metadata.""" return 65420 in self.tags and 271 in self.tags @property def is_philips(self): """Page contains Philips DP metadata.""" return ( self.software[:10] == 'Philips DP' and self.description[-13:] == '' ) @property def is_eer(self): """Page contains EER metadata.""" return ( self.parent.is_bigtiff and self.compression in (65000, 65001) and 65001 in self.tags ) class TiffFrame: """Lightweight TIFF image file directory (IFD). Only a limited number of tag values are read from file. Other tag values are assumed to be identical with a specified TiffPage instance, the keyframe. TiffFrame is intended to reduce resource usage and speed up reading image data from file, not for introspection of metadata. """ __slots__ = ( 'index', 'parent', 'offset', 'dataoffsets', 'databytecounts', 'subifds', 'jpegtables', '_keyframe', ) is_mdgel = False pages = () # tags = {} def __init__( self, parent, index, offset=None, keyframe=None, offsets=None, bytecounts=None, ): """Initialize TiffFrame from file or values. The file handle position must be at the offset to a valid IFD. """ self._keyframe = None self.parent = parent self.index = index self.offset = offset self.subifds = None self.jpegtables = None self.dataoffsets = () self.databytecounts = () if offsets is not None: # initialize "virtual frame" from offsets and bytecounts self.dataoffsets = offsets self.databytecounts = bytecounts self._keyframe = keyframe return if offset is None: self.offset = self.parent.filehandle.tell() else: self.parent.filehandle.seek(offset) if keyframe is None: tags = {273, 279, 324, 325, 330, 347} elif keyframe.is_contiguous: # use databytecounts from keyframe tags = {256, 273, 324, 330} self.databytecounts = keyframe.databytecounts else: tags = {256, 273, 279, 324, 325, 330, 347} for code, tag in self._gettags(tags): if code == 273 or code == 324: self.dataoffsets = tag.value elif code == 279 or code == 325: self.databytecounts = tag.value elif code == 330: self.subifds = tag.value elif code == 347: self.jpegtables = tag.value elif code == 256 and keyframe.imagewidth != tag.value: raise RuntimeError('incompatible keyframe') if not self.dataoffsets: log_warning(f'{self!r} is missing required tags') self.keyframe = keyframe def _gettags(self, codes=None, lock=None): """Return list of (code, TiffTag) from file.""" fh = self.parent.filehandle tiff = self.parent.tiff unpack = struct.unpack lock = NullContext() if lock is None else lock tags = [] with lock: fh.seek(self.offset) try: tagno = unpack(tiff.tagnoformat, fh.read(tiff.tagnosize))[0] if tagno > 4096: raise TiffFileError(f'suspicious number of tags {tagno}') except Exception as exc: raise TiffFileError('corrupted tag list') from exc tagoffset = self.offset + tiff.tagnosize # fh.tell() tagsize = tiff.tagsize tagindex = -tagsize codeformat = tiff.tagformat1[:2] tagbytes = fh.read(tagsize * tagno) for _ in range(tagno): tagindex += tagsize code = unpack(codeformat, tagbytes[tagindex : tagindex + 2])[0] if codes and code not in codes: continue try: tag = TiffTag.fromfile( self.parent, tagoffset + tagindex, tagbytes[tagindex : tagindex + tagsize], ) except TiffFileError as exc: log_warning(f'{self!r} {exc}') continue tags.append((code, tag)) return tags def _nextifd(self): """Return offset to next IFD from file.""" return TiffPage._nextifd(self) def aspage(self): """Return TiffPage from file.""" if self.offset is None: raise ValueError('cannot return virtual frame as page') fh = self.parent.filehandle closed = fh.closed if closed: # this is an inefficient resort in case a user calls aspage # of a TiffFrame with a closed FileHandle. warnings.warn( f'{self!r} reading TiffPage from closed file', UserWarning ) fh.open() try: fh.seek(self.offset) page = TiffPage(self.parent, index=self.index) finally: if closed: fh.close() return page def asarray(self, *args, **kwargs): """Read image data from file and return as numpy array.""" return TiffPage.asarray(self, *args, **kwargs) def aszarr(self, **kwargs): """Return image data as zarr storage.""" return TiffPage.aszarr(self, **kwargs) def asrgb(self, *args, **kwargs): """Read image data from file and return RGB image as numpy array.""" return TiffPage.asrgb(self, *args, **kwargs) def segments(self, *args, **kwargs): """Return iterator over decoded segments in TiffFrame.""" return TiffPage.segments(self, *args, **kwargs) @property def keyframe(self): """Return keyframe.""" return self._keyframe @keyframe.setter def keyframe(self, keyframe): """Set keyframe.""" if self._keyframe == keyframe: return if self._keyframe is not None: raise RuntimeError('cannot reset keyframe') if len(self.dataoffsets) != len(keyframe.dataoffsets): raise RuntimeError('incompatible keyframe') if keyframe.is_contiguous: self.databytecounts = keyframe.databytecounts self._keyframe = keyframe @property def is_contiguous(self): """Return offset and size of contiguous data, else None.""" # if self._keyframe is None: # raise RuntimeError('keyframe not set') if self._keyframe.is_contiguous: return self.dataoffsets[0], self._keyframe.is_contiguous[1] return None @property def is_memmappable(self): """Return if page's image data in file can be memory-mapped.""" # if self._keyframe is None: # raise RuntimeError('keyframe not set') return self._keyframe.is_memmappable @property def hash(self): """Return checksum to identify pages in same series.""" # if self._keyframe is None: # raise RuntimeError('keyframe not set') return self._keyframe.hash def __getattr__(self, name): """Return attribute from keyframe.""" if name in TIFF.FRAME_ATTRS: return getattr(self._keyframe, name) # this error could be raised because an AttributeError was # raised inside a @property function raise AttributeError( f'{self.__class__.__name__!r} object has no attribute {name!r}' ) def __repr__(self): return f'' def __str__(self, detail=0, width=79): """Return string containing information about TiffFrame.""" if self._keyframe is None: info = '' kf = None else: info = ' '.join( s for s in ( 'x'.join(str(i) for i in self.shape), str(self.dtype), ) ) kf = TiffPage.__str__(self._keyframe, width=width - 11) if detail > 3: of = pformat(self.dataoffsets, width=width - 9, height=detail - 3) bc = pformat( self.databytecounts, width=width - 13, height=detail - 3 ) info = f'\n Keyframe {kf}\n Offsets {of}\n Bytecounts {bc}' return f'TiffFrame {self.index} @{self.offset} {info}' class TiffTag: """TIFF tag structure. Attributes ---------- name : string Name of tag, TIFF.TAGS[code]. code : int Decimal code of tag. dtype : int Datatype of tag data. One of TIFF.DATATYPES. count : int Number of values. value : various types Tag data as Python object. valueoffset : int Location of value in file. offset : int Location of tag structure in file. parent : TiffFile or TiffWriter Reference to parent TIFF file. All attributes are read-only. """ __slots__ = ( 'parent', 'offset', 'code', 'dtype', 'count', '_value', 'valueoffset', ) def __init__(self, parent, offset, code, dtype, count, value, valueoffset): """Initialize TiffTag instance from values.""" self.parent = parent self.offset = int(offset) self.code = int(code) self.count = int(count) self._value = value self.valueoffset = valueoffset try: self.dtype = TIFF.DATATYPES(dtype) except ValueError: self.dtype = int(dtype) @classmethod def fromfile(cls, parent, offset=None, header=None, validate=True): """Return TiffTag instance read from file.""" tiff = parent.tiff if header is None: if offset is None: offset = parent.filehandle.tell() else: parent.filehandle.seek(offset) header = parent.filehandle.read(tiff.tagsize) elif offset is None: offset = parent.filehandle.tell() valueoffset = offset + tiff.tagsize - tiff.tagoffsetthreshold code, dtype = struct.unpack(tiff.tagformat1, header[:4]) count, value = struct.unpack(tiff.tagformat2, header[4:]) try: valueformat = TIFF.DATA_FORMATS[dtype] except KeyError: msg = ( f' ' f'invalid data type {dtype!r}' ) if validate: raise TiffFileError(msg) log_warning(msg) return cls(parent, offset, code, dtype, count, None, None) valuesize = count * struct.calcsize(valueformat) if ( valuesize > tiff.tagoffsetthreshold or code in TIFF.TAG_READERS # TODO: only works with offsets? ): valueoffset = struct.unpack(tiff.offsetformat, value)[0] if validate and code in TIFF.TAG_LOAD: value = TiffTag._read_value( parent, offset, code, dtype, count, valueoffset ) elif ( valueoffset < 8 or valueoffset + valuesize > parent.filehandle.size ): msg = ( f' ' f'invalid value offset {valueoffset}' ) if validate: raise TiffFileError(msg) log_warning(msg) value = None elif code in TIFF.TAG_LOAD: value = TiffTag._read_value( parent, offset, code, dtype, count, valueoffset ) else: value = None elif dtype == 1 or dtype == 2 or dtype == 7: # BYTES, ASCII, UNDEFINED value = value[:valuesize] elif ( tiff.version == 42 and tiff.offsetsize == 8 and count == 1 and (dtype == 4 or dtype == 13) and value[4:] != b'\x00\x00\x00\x00' ): # NDPI LONG or IFD value = struct.unpack(' ' f'invalid data type {dtype!r}' ) fh = parent.filehandle tiff = parent.tiff valuesize = count * struct.calcsize(valueformat) if ( valueoffset is None or valueoffset < 8 or valueoffset + valuesize > fh.size ): raise TiffFileError( f' ' f'invalid value offset {valueoffset}' ) # if valueoffset % 2: # log_warning( # f' ' # 'value does not begin on word boundary' # ) fh.seek(valueoffset) if code in TIFF.TAG_READERS: readfunc = TIFF.TAG_READERS[code] value = readfunc(fh, tiff.byteorder, dtype, count, tiff.offsetsize) elif dtype == 1 or dtype == 2 or dtype == 7: # BYTES, ASCII, UNDEFINED value = fh.read(valuesize) if len(value) != valuesize: log_warning( f' ' 'could not read all values' ) elif code not in TIFF.TAG_TUPLE and count > 1024: value = read_numpy( fh, tiff.byteorder, dtype, count, tiff.offsetsize ) else: fmt = '{}{}{}'.format( tiff.byteorder, count * int(valueformat[0]), valueformat[1] ) value = struct.unpack(fmt, fh.read(valuesize)) return value @staticmethod def _process_value(value, code, dtype, offset): """Process tag value. .""" if ( value is None or dtype == 1 # BYTE or dtype == 7 # UNDEFINED or code in TIFF.TAG_READERS or not isinstance(value, (bytes, str, tuple)) ): return value if dtype == 2: # TIFF ASCII fields can contain multiple strings, # each terminated with a NUL try: value = bytes2str(stripnull(value, first=False).strip()) except UnicodeDecodeError: log_warning( f' ' 'coercing invalid ASCII to bytes' ) return value if code in TIFF.TAG_ENUM: t = TIFF.TAG_ENUM[code] try: value = tuple(t(v) for v in value) except ValueError as exc: if code not in (259, 317): # ignore compression/predictor log_warning(f' {exc}') if len(value) == 1 and code not in TIFF.TAG_TUPLE: value = value[0] return value @property def value(self): """Return value of tag. Load from file if necessary.""" if self._value is None: # print( # f'_read_value {self.code} {TIFF.TAGS.get(self.code)} ' # f'{self.dtype}[{self.count}] @{self.valueoffset} ' # ) fh = self.parent.filehandle with fh.lock: closed = fh.closed if closed: # this is an inefficient resort in case a user delay loads # tag values from a TiffPage with a closed FileHandle. warnings.warn( f'{self!r} reading value from closed file', UserWarning ) fh.open() try: value = TiffTag._read_value( self.parent, self.offset, self.code, self.dtype, self.count, self.valueoffset, ) finally: if closed: fh.close() self._value = TiffTag._process_value( value, self.code, self.dtype, self.offset, ) return self._value @value.setter def value(self, value): self._value = value @property def dtype_name(self): try: return self.dtype.name except AttributeError: return f'TYPE{self.dtype}' @property def name(self): """Return name of tag from TIFF.TAGS registry.""" return TIFF.TAGS.get(self.code, str(self.code)) @property def dataformat(self): """Return data type as Python struct format.""" return TIFF.DATA_FORMATS[self.dtype] @property def valuebytecount(self): """Return size of value in file.""" return self.count * struct.calcsize(TIFF.DATA_FORMATS[self.dtype]) def _astuple(self): """Return tag code, dtype, count, and encoded value. The encoded value is read from file if necessary. """ # TODO: make this method public if isinstance(self.value, bytes): value = self.value else: dataformat = TIFF.DATA_FORMATS[self.dtype] count = self.count * int(dataformat[0]) fmt = '{}{}{}'.format( self.parent.tiff.byteorder, count, dataformat[1] ) try: if count == 1: value = struct.pack(fmt, self.value) else: value = struct.pack(fmt, *self.value) except Exception: tiff = self.parent.tiff if tiff.version == 42 and tiff.offsetsize == 8: raise NotImplementedError( 'cannot read from NDPI > 4 GB files' ) fh = self.parent.filehandle pos = fh.tell() fh.seek(self.valueoffset) value = fh.read(struct.calcsize(fmt)) fh.seek(pos) return self.code, self.dtype.value, self.count, value def overwrite(self, value, _arg=None, dtype=None, erase=True): """Write new tag value to file and return new TiffTag instance. The value must be compatible with the struct.pack formats in TIFF.DATA_FORMATS. The new packed value is appended to the file if it is longer than the old value. The old value is zeroed. The file position is left where it was. """ if self.offset < 8 or self.valueoffset < 8: raise ValueError(f'cannot rewrite tag at offset {self.offset} < 8') if hasattr(value, 'filehandle'): value = _arg warnings.warn( ' passing a TiffFile instance is ' 'deprecated and no longer required since 2021.7.30.', DeprecationWarning, stacklevel=2, ) fh = self.parent.filehandle tiff = self.parent.tiff if tiff.version == 42 and tiff.offsetsize == 8: # TODO: support patching NDPI > 4 GB files raise NotImplementedError('cannot patch NDPI > 4 GB files') if value is None: value = b'' if dtype is None: dtype = self.dtype try: dataformat = TIFF.DATA_FORMATS[dtype] except KeyError as exc: try: dataformat = dtype[-1:] if dataformat[0] in '<>': dataformat = dataformat[1:] dtype = TIFF.DATA_DTYPES[dataformat] except (KeyError, TypeError): raise ValueError(f'unknown dtype {dtype}') from exc if dtype == 2: # strings if isinstance(value, str): # enforce 7-bit ASCII on Unicode strings try: value = value.encode('ascii') except UnicodeEncodeError as exc: raise ValueError( 'TIFF strings must be 7-bit ASCII' ) from exc elif not isinstance(value, bytes): raise ValueError('TIFF strings must be 7-bit ASCII') if len(value) == 0 or value[-1] != b'\x00': value += b'\x00' count = len(value) value = (value,) elif isinstance(value, bytes): # pre-packed binary data dtsize = struct.calcsize(dataformat) if len(value) % dtsize: raise ValueError('invalid packed binary data') count = len(value) // dtsize value = (value,) else: try: count = len(value) except TypeError: value = (value,) count = 1 if dtype in (5, 10): if count < 2 or count % 2: raise ValueError('invalid RATIONAL value') count //= 2 # rational packedvalue = struct.pack( '{}{}{}'.format( tiff.byteorder, count * int(dataformat[0]), dataformat[1] ), *value, ) newsize = len(packedvalue) oldsize = self.count * struct.calcsize(TIFF.DATA_FORMATS[self.dtype]) valueoffset = self.valueoffset pos = fh.tell() try: if dtype != self.dtype: # rewrite data type fh.seek(self.offset + 2) fh.write(struct.pack(tiff.byteorder + 'H', dtype)) if oldsize <= tiff.tagoffsetthreshold: if newsize <= tiff.tagoffsetthreshold: # inline -> inline: overwrite fh.seek(self.offset + 4) fh.write(struct.pack(tiff.tagformat2, count, packedvalue)) else: # inline -> separate: append to file fh.seek(0, os.SEEK_END) valueoffset = fh.tell() if valueoffset % 2: # value offset must begin on a word boundary fh.write(b'\x00') valueoffset += 1 fh.write(packedvalue) fh.seek(self.offset + 4) fh.write( struct.pack( tiff.tagformat2, count, struct.pack(tiff.offsetformat, valueoffset), ) ) elif newsize <= tiff.tagoffsetthreshold: # separate -> inline: erase old value valueoffset = self.offset + 4 + tiff.offsetsize fh.seek(self.offset + 4) fh.write(struct.pack(tiff.tagformat2, count, packedvalue)) if erase: fh.seek(self.valueoffset) fh.write(b'\x00' * oldsize) elif newsize <= oldsize or self.valueoffset + oldsize == fh.size: # separate -> separate smaller: overwrite, erase remaining fh.seek(self.offset + 4) fh.write(struct.pack(tiff.offsetformat, count)) fh.seek(self.valueoffset) fh.write(packedvalue) if erase and oldsize - newsize > 0: fh.write(b'\x00' * (oldsize - newsize)) else: # separate -> separate larger: erase old value, append to file if erase: fh.seek(self.valueoffset) fh.write(b'\x00' * oldsize) fh.seek(0, os.SEEK_END) valueoffset = fh.tell() if valueoffset % 2: # value offset must begin on a word boundary fh.write(b'\x00') valueoffset += 1 fh.write(packedvalue) fh.seek(self.offset + 4) fh.write( struct.pack( tiff.tagformat2, count, struct.pack(tiff.offsetformat, valueoffset), ) ) finally: fh.seek(pos) # must restore file position return TiffTag( self.parent, self.offset, self.code, dtype, count, value, valueoffset, ) def _fix_lsm_bitspersample(self): """Correct LSM bitspersample tag. Old LSM writers may use a separate region for two 16-bit values, although they fit into the tag value element of the tag. """ if self.code != 258 or self.count != 2: return # TODO: test this case; need example file log_warning(f'{self!r} correcting LSM bitspersample tag') value = struct.pack('' def __str__(self, detail=0, width=79): """Return string containing information about TiffTag.""" height = 1 if detail <= 0 else 8 * detail dtype = self.dtype_name if self.count > 1: dtype += f'[{self.count}]' name = '|'.join(TIFF.TAGS.getall(self.code, ())) if name: name = f'{self.code} {name} @{self.offset}' else: name = f'{self.code} @{self.offset}' line = f'TiffTag {name} {dtype} @{self.valueoffset} ' line = line[:width] try: value = self.value except TiffFileError: value = 'CORRUPT' else: try: if self.count == 1: value = enumstr(value) else: value = pformat(tuple(enumstr(v) for v in value)) except Exception: value = pformat(value, width=width, height=height) if detail <= 0: line += value[:width] line = line[:width] else: line += '\n' + value return line class TiffTags: """Multidict like interface to TiffTag instances in TiffPage. Differences to a regular dict: * values are instances of TiffTag. * keys are TiffTag.code (int). * multiple values can be stored per key. * can be indexed with TiffTag.name (str), although slower than by key. * iter() returns values instead of keys. * values() and items() contain all values sorted by offset stored in file. * len() returns the number of all values. * get() takes an optional index argument. * some functions are not implemented, e.g. update, setdefault, pop. """ __slots__ = ('_dict', '_list') def __init__(self): """Initialize empty instance.""" self._dict = {} self._list = [self._dict] def add(self, tag): """Add a tag.""" code = tag.code for d in self._list: if code not in d: d[code] = tag break else: self._list.append({code: tag}) def keys(self): """Return new view of all codes.""" return self._dict.keys() def values(self): """Return all tags in order they are stored in file.""" tags = (t for d in self._list for t in d.values()) return sorted(tags, key=lambda t: t.offset) def items(self): """Return all (code, tag) pairs in order tags are stored in file.""" items = (i for d in self._list for i in d.items()) return sorted(items, key=lambda i: i[1].offset) def valueof(self, key, default=None, index=None): """Return value of tag if exists, else default.""" tag = self.get(key, default=None, index=index) if tag is None: return default try: return tag.value except TiffFileError: return default # corrupted tag def get(self, key, default=None, index=None): """Return tag of code or name if exists, else default.""" if index is None: if key in self._dict: return self._dict[key] if not isinstance(key, str): return default index = 0 try: tags = self._list[index] except IndexError: return default if key in tags: return tags[key] if not isinstance(key, str): return default for tag in tags.values(): if tag.name == key: return tag return default def getall(self, key, default=None): """Return list of all tags of code or name if exists, else default.""" result = [] for tags in self._list: if key in tags: result.append(tags[key]) else: break if result: return result if not isinstance(key, str): return default for tags in self._list: for tag in tags.values(): if tag.name == key: result.append(tag) break if not result: break return result if result else default def __getitem__(self, key): """Return first tag of code or name. Raise KeyError if not found.""" if key in self._dict: return self._dict[key] if not isinstance(key, str): raise KeyError(key) for tag in self._dict.values(): if tag.name == key: return tag raise KeyError(key) def __setitem__(self, code, tag): """Add a tag.""" self.add(tag) def __delitem__(self, key): """Delete all tags of code or name.""" found = False for tags in self._list: if key in tags: found = True del tags[key] else: break if found: return None if not isinstance(key, str): raise KeyError(key) for tags in self._list: for tag in tags.values(): if tag.name == key: del tags[tag.code] found = True break else: break if not found: raise KeyError(key) return None def __contains__(self, item): """Return if tag is in map.""" if item in self._dict: return True if not isinstance(item, str): return False for tag in self._dict.values(): if tag.name == item: return True return False def __iter__(self): """Return iterator over all tags.""" return iter(self.values()) def __len__(self): """Return number of tags.""" size = 0 for d in self._list: size += len(d) return size def __repr__(self): return f'' def __str__(self, detail=0, width=79): """Return string with information about TiffTags.""" info = [] tlines = [] vlines = [] for tag in self: value = tag.__str__(width=width + 1) tlines.append(value[:width].strip()) if detail > 0 and len(value) > width: try: value = tag.value except Exception: # delay load failed or closed file continue if detail < 2 and tag.code in (273, 279, 324, 325): value = pformat(value, width=width, height=detail * 4) else: value = pformat(value, width=width, height=detail * 12) if tag.count > 1: vlines.append( f'{tag.name} {tag.dtype_name}[{tag.count}]\n{value}' ) else: vlines.append(f'{tag.name}\n{value}') info.append('\n'.join(tlines)) if detail > 0 and vlines: info.append('\n') info.append('\n\n'.join(vlines)) return '\n'.join(info) class TiffTagRegistry: """Registry of TIFF tag codes and names. The registry allows to look up tag codes and names by indexing with names and codes respectively. One tag code may be registered with several names, e.g. 34853 is used for GPSTag or OlympusSIS2. Different tag codes may be registered with the same name, e.g. 37387 and 41483 are both named FlashEnergy. """ __slots__ = ('_dict', '_list') def __init__(self, arg): self._dict = {} self._list = [self._dict] self.update(arg) def update(self, arg): """Add codes and names from sequence or dict to registry.""" if isinstance(arg, TiffTagRegistry): self._list.extend(arg._list) return if isinstance(arg, dict): arg = arg.items() for code, name in arg: self.add(code, name) def add(self, code, name): """Add code and name to registry.""" for d in self._list: if code in d and d[code] == name: break if code not in d and name not in d: d[code] = name d[name] = code break else: self._list.append({code: name, name: code}) def items(self): """Return all registry items as (code, name).""" items = ( i for d in self._list for i in d.items() if isinstance(i[0], int) ) return sorted(items, key=lambda i: i[0]) def get(self, key, default=None): """Return first code/name if exists, else default.""" for d in self._list: if key in d: return d[key] return default def getall(self, key, default=None): """Return list of all codes/names if exists, else default.""" result = [d[key] for d in self._list if key in d] return result if result else default def __getitem__(self, key): """Return first code/name. Raise KeyError if not found.""" for d in self._list: if key in d: return d[key] raise KeyError(key) def __delitem__(self, key): """Delete all tags of code or name.""" found = False for d in self._list: if key in d: found = True value = d[key] del d[key] del d[value] if not found: raise KeyError(key) def __contains__(self, item): """Return if code or name is in registry.""" for d in self._list: if item in d: return True return False def __iter__(self): """Return iterator over all items in registry.""" return iter(self.items()) def __len__(self): """Return number of registered tags.""" size = 0 for d in self._list: size += len(d) return size // 2 def __repr__(self): return f'' def __str__(self): """Return string with information about TiffTags.""" return 'TiffTagRegistry(((\n {}\n))'.format( ',\n '.join(f'({code}, {name!r})' for code, name in self.items()) ) class TiffPageSeries: """Series of TIFF pages with compatible shape and data type (same hash). Attributes ---------- pages : list of TiffPage, TiffFrame, or None Sequence of TiffPages or TiffFrame in series. May be None if pages or files of pages are missing in the series. The file handles of TiffPages or TiffFrames may not be open. keyframe : TiffPage A key frame of the series. dtype : numpy.dtype Data type (native byte order) of the image array in series. shape : tuple Dimensions of the image array in series. axes : str Labels of axes in shape. See TIFF.AXES_LABELS. offset : int or None Position of image data in file if memory-mappable, else None. levels : list of TiffPageSeries Pyramid levels. levels[0] is 'self'. """ def __init__( self, pages, shape=None, dtype=None, axes=None, parent=None, name=None, transform=None, kind=None, truncated=False, multifile=False, squeeze=True, ): """Initialize instance.""" self.index = 0 self._pages = pages # might contain only first of contiguous pages self.levels = [self] if shape is None: shape = pages[0].shape if axes is None: axes = pages[0].axes if dtype is None: dtype = pages[0].dtype self.set_shape_axes(shape, axes, squeeze) self.dtype = numpy.dtype(dtype) self.kind = kind if kind else '' self.name = name if name else '' self.transform = transform self.keyframe = next(p.keyframe for p in pages if p is not None) self.is_multifile = bool(multifile) if parent: self.parent = parent elif pages: self.parent = self.keyframe.parent else: self.parent = None if not truncated and len(pages) == 1: s = product(pages[0].shape) if s > 0: self._len = int(product(self.shape) // s) else: self._len = len(pages) else: self._len = len(pages) def set_shape_axes(self, shape, axes, squeeze=True): """Set shape and axes.""" shape = tuple(shape) axes = ''.join(axes) # expanded shape according to metadata self._shape_expanded = shape self._axes_expanded = axes # squeezed shape and axes self._shape_squeezed, self._axes_squeezed = squeeze_axes(shape, axes) # default shape and axes returned by asarray self.shape = self._shape_squeezed if squeeze else self._shape_expanded self.axes = self._axes_squeezed if squeeze else self._axes_expanded def get_shape(self, squeeze=None): """Return default, squeezed, or expanded shape.""" if squeeze is None: return self.shape return self._shape_squeezed if squeeze else self._shape_expanded def get_axes(self, squeeze=None): """Return default, squeezed, or expanded axes.""" if squeeze is None: return self.axes return self._axes_squeezed if squeeze else self._axes_expanded def asarray(self, level=None, **kwargs): """Return image data from series of TIFF pages as numpy array.""" if level is not None: return self.levels[level].asarray(**kwargs) if self.parent: result = self.parent.asarray(series=self, **kwargs) if self.transform is not None: result = self.transform(result) return result return None def aszarr(self, level=None, **kwargs): """Return image data from series of TIFF pages as zarr storage.""" if self.parent: return ZarrTiffStore(self, level=level, **kwargs) return None @lazyattr def offset(self): """Return offset to series data in file, if any.""" if not self._pages: return None pos = 0 for page in self._pages: if page is None: return None if not page.is_final: return None if not pos: pos = page.is_contiguous[0] + page.is_contiguous[1] continue if pos != page.is_contiguous[0]: return None pos += page.is_contiguous[1] page = self._pages[0] offset = page.is_contiguous[0] if (page.is_imagej or page.is_shaped or page.is_stk) and len( self._pages ) == 1: # truncated files return offset if pos == offset + product(self.shape) * self.dtype.itemsize: return offset return None @property def is_pyramidal(self): """Return if series contains several levels.""" return len(self.levels) > 1 @property def ndim(self): """Return number of array dimensions.""" return len(self.shape) @property def size(self): """Return number of elements in array.""" return int(product(self.shape)) @property def pages(self): """Return sequence of all pages in series.""" # a workaround to keep the old interface working return self def _getitem(self, key): """Return specified page of series from cache or file.""" key = int(key) if key < 0: key %= self._len if len(self._pages) == 1 and 0 < key < self._len: index = self._pages[0].index return self.parent.pages._getitem(index + key) return self._pages[key] def __getitem__(self, key): """Return specified page(s).""" if isinstance(key, (int, numpy.integer)): return self._getitem(key) if isinstance(key, slice): return [self._getitem(i) for i in range(*key.indices(self._len))] if isinstance(key, Iterable): return [self._getitem(k) for k in key] raise TypeError('key must be an integer, slice, or iterable') def __iter__(self): """Return iterator over pages in series.""" if len(self._pages) == self._len: yield from self._pages else: pages = self.parent.pages index = self._pages[0].index for i in range(self._len): yield pages[index + i] def __len__(self): """Return number of pages in series.""" return self._len def __repr__(self): return f'' def __str__(self): """Return string with information about TiffPageSeries.""" s = ' '.join( s for s in ( snipstr(f'{self.name!r}', 20) if self.name else '', 'x'.join(str(i) for i in self.shape), str(self.dtype), self.axes, self.kind, (f'{len(self.levels)} Levels') if self.is_pyramidal else '', f'{len(self)} Pages', (f'@{self.offset}') if self.offset else '', ) if s ) return f'TiffPageSeries {self.index} {s}' # TODO: derive from zarr.storage.Store # TODO: this interface does not expose index keys except in __getitem__ class ZarrStore(MutableMapping): """Zarr storage base class. ZarrStore instances must be closed using the 'close' method, which is automatically called when using the 'with' context manager. https://zarr.readthedocs.io/en/stable/spec/v2.html https://forum.image.sc/t/multiscale-arrays-v0-1/37930 """ def __init__(self, fillvalue=None, chunkmode=None): """Initialize ZarrStore.""" self._store = {} self._fillvalue = 0 if fillvalue is None else fillvalue if chunkmode is None: self._chunkmode = TIFF.CHUNKMODE(0) else: self._chunkmode = enumarg(TIFF.CHUNKMODE, chunkmode) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def __del__(self): self.close() def close(self): """Close ZarrStore.""" def flush(self): """Flush ZarrStore.""" raise PermissionError('ZarrStore is read-only') def clear(self): """Clear ZarrStore.""" raise PermissionError('ZarrStore is read-only') def keys(self): """Return keys in ZarrStore.""" return self._store.keys() def items(self): """Return items in ZarrStore.""" return self._store.items() def values(self): """Return values in ZarrStore.""" return self._store.values() def __iter__(self): return iter(self._store.keys()) def __len__(self): return len(self._store) def __delitem__(self, key): raise PermissionError('ZarrStore is read-only') def __contains__(self, key): return key in self._store def __setitem__(self, key, value): raise PermissionError('ZarrStore is read-only') def __getitem__(self, key): if key in self._store: return self._store[key] if key == '.zarray' or key == '.zgroup': raise KeyError(key) return self._getitem(key) def _getitem(self, key): """Return chunk from file.""" raise NotImplementedError @property def is_multiscales(self): """Return if ZarrStore is multiscales.""" return b'multiscales' in self._store['.zattrs'] @staticmethod def _empty_chunk(shape, dtype, fillvalue): """Return empty chunk.""" if fillvalue is None or fillvalue == 0: return bytes(product(shape) * dtype.itemsize) chunk = numpy.empty(shape, dtype) chunk[:] = fillvalue return chunk # .tobytes() @staticmethod def _dtype(dtype): """Return dtype as string with native byte order.""" if dtype.itemsize == 1: byteorder = '|' else: byteorder = {'big': '>', 'little': '<'}[sys.byteorder] return byteorder + dtype.str[1:] @staticmethod def _json(obj): """Serialize obj to a JSON formatted string.""" return json.dumps( obj, indent=1, sort_keys=True, ensure_ascii=True, separators=(',', ': '), ).encode('ascii') @staticmethod def _value(value, dtype): """Return value which is serializable to JSON.""" if value is None: return value if dtype.kind == 'b': return bool(value) if dtype.kind in 'ui': return int(value) if dtype.kind == 'f': if numpy.isnan(value): return 'NaN' if numpy.isposinf(value): return 'Infinity' if numpy.isneginf(value): return '-Infinity' return float(value) if dtype.kind in 'c': value = numpy.array(value, dtype) return ( ZarrStore._value(value.real, dtype.type().real.dtype), ZarrStore._value(value.imag, dtype.type().imag.dtype), ) return value @staticmethod def _ndindex(shape, chunks): """Return iterator over all chunk index strings.""" assert len(shape) == len(chunks) chunked = tuple( i // j + (1 if i % j else 0) for i, j in zip(shape, chunks) ) for indices in numpy.ndindex(chunked): yield '.'.join(str(index) for index in indices) class ZarrTiffStore(ZarrStore): """Zarr storage interface to image data in TiffPage or TiffPageSeries. ZarrTiffStore instances are using a TiffFile instance for reading and decoding chunks. Therefore ZarrTiffStore instances cannot be pickled. """ def __init__( self, arg, level=None, chunkmode=None, fillvalue=None, zattrs=None, lock=None, squeeze=None, maxworkers=None, _openfiles=None, ): """Initialize Zarr storage. Parameters ---------- arg : TiffPage or TiffPageSeries The TiffPage or TiffPageSeries instance to wrap as a zarr store. level : int (optional) Specifies a pyramidal level to wrap. chunkmode : {0, 2} (optional) Specifies to use strips/tiles (0, the default) or whole page data (2) as chunks. fillvalue : number (optional) Value to use for missing chunks of the Zarr store. Default: 0. zattrs : dict (optional) Additional attributes to store in .zattrs. lock : {RLock, NullContext} (optional) A reentrant lock used to synchronize seeks and reads from file. If None (default), the lock of the parent's filehandle is used. squeeze : bool (optional) Squeeze shape of TiffPageSeries. maxworkers : int or None Maximum number of threads to concurrently decode strips or tiles if chunkmode=2. If None (default), up to half the CPU cores are used. See remarks in TiffFile.asarray. """ super().__init__(fillvalue=fillvalue, chunkmode=chunkmode) if self._chunkmode not in (0, 2): raise NotImplementedError(f'{self._chunkmode!r} not implemented') self._maxworkers = maxworkers self._squeeze = None if squeeze is None else bool(squeeze) self._transform = getattr(arg, 'transform', None) self._data = getattr(arg, 'levels', [TiffPageSeries([arg])]) if level is not None: self._data = [self._data[level]] if lock is None: fh = self._data[0].keyframe.parent._parent.filehandle fh.lock = True lock = fh.lock self._filecache = FileCache(size=_openfiles, lock=lock) zattrs = {} if zattrs is None else dict(zattrs) if len(self._data) > 1: # multiscales self._store['.zgroup'] = ZarrStore._json({'zarr_format': 2}) self._store['.zattrs'] = ZarrStore._json( { 'multiscales': [ { 'datasets': [ {'path': str(i)} for i in range(len(self._data)) ], 'metadata': {}, 'name': arg.name, # 'type': 'gaussian', 'version': '0.1', } ], **zattrs, } ) for level, series in enumerate(self._data): series.keyframe.decode # cache decode function shape = series.get_shape(squeeze) dtype = series.dtype if fillvalue is None: self._fillvalue = fillvalue = series.keyframe.nodata if self._chunkmode: chunks = series.keyframe.shape else: chunks = series.keyframe.chunks self._store[f'{level}/.zarray'] = ZarrStore._json( { 'zarr_format': 2, 'shape': shape, 'chunks': ZarrTiffStore._chunks(chunks, shape), 'dtype': ZarrStore._dtype(dtype), 'compressor': None, 'fill_value': ZarrStore._value(fillvalue, dtype), 'order': 'C', 'filters': None, } ) else: series = self._data[0] series.keyframe.decode # cache decode function shape = series.get_shape(squeeze) dtype = series.dtype if fillvalue is None: self._fillvalue = fillvalue = series.keyframe.nodata if self._chunkmode: chunks = series.keyframe.shape else: chunks = series.keyframe.chunks self._store['.zattrs'] = ZarrStore._json(zattrs) self._store['.zarray'] = ZarrStore._json( { 'zarr_format': 2, 'shape': shape, 'chunks': ZarrTiffStore._chunks(chunks, shape), 'dtype': ZarrStore._dtype(dtype), 'compressor': None, 'fill_value': ZarrStore._value(fillvalue, dtype), 'order': 'C', 'filters': None, } ) def close(self): """Close ZarrTiffStore.""" if hasattr(self, '_filecache'): self._filecache.clear() def write_fsspec( self, arg, url, groupname=None, compressors=None, version=None, _append=False, ): """Write fsspec ReferenceFileSystem as JSON to file. Url is the remote location of the TIFF file without the file name(s). Raise ValueError if TIFF store can not be represented as ReferenceFileSystem due to features that are not supported by zarr, numcodecs, or imagecodecs: * compressors, e.g. CCITT * filters, e.g. bitorder reversal, packed integers * dtypes, e.g. float24 * JPEGTables in multi-page files * incomplete chunks, e.g. if imagelength % rowsperstrip != 0 Files containing incomplete tiles may fail at runtime. https://github.com/fsspec/kerchunk """ compressors = { 1: None, 8: 'zlib', 32946: 'zlib', 34925: 'lzma', 50000: 'zstd', 5: 'imagecodecs_lzw', 7: 'imagecodecs_jpeg', 22610: 'imagecodecs_jpegxr', # NDPI 32773: 'imagecodecs_packbits', 33003: 'imagecodecs_jpeg2k', 33004: 'imagecodecs_jpeg2k', 33005: 'imagecodecs_jpeg2k', 33007: 'imagecodecs_jpeg', # ALT_JPG 34712: 'imagecodecs_jpeg2k', 34887: 'imagecodecs_lerc', 34892: 'imagecodecs_jpeg', # DNG lossy 34933: 'imagecodecs_png', 34934: 'imagecodecs_jpegxr', # ZIF 50001: 'imagecodecs_webp', 50002: 'imagecodecs_jpegxl', **({} if compressors is None else compressors), } for series in self._data: errormsg = ' not supported by the fsspec ReferenceFileSystem' keyframe = series.keyframe if keyframe.compression not in compressors: raise ValueError(f'{keyframe.compression!r} is' + errormsg) if keyframe.fillorder != 1: raise ValueError(f'{keyframe.fillorder!r} is' + errormsg) if keyframe.sampleformat not in (1, 2, 3, 6): # TODO: support float24 and cint via filters? raise ValueError(f'{keyframe.sampleformat!r} is' + errormsg) if keyframe.bitspersample not in ( 8, 16, 32, 64, 128, ) and keyframe.compression not in ( 7, 33007, 34892, ): # JPEG raise ValueError( f'BitsPerSample {keyframe.bitspersample} is' + errormsg ) if ( not self._chunkmode and not keyframe.is_tiled and keyframe.imagelength % keyframe.rowsperstrip ): raise ValueError('incomplete chunks are' + errormsg) if self._chunkmode and not keyframe.is_final: raise ValueError(f'{self._chunkmode!r} is' + errormsg) if keyframe.jpegtables is not None and len(series.pages) > 1: raise ValueError( 'JPEGTables in multi-page files are' + errormsg ) if url is None: url = '' elif url and url[-1] != '/': url += '/' if groupname is None: groupname = '' elif groupname and groupname[-1] != '/': groupname += '/' byteorder = '<' if sys.byteorder == 'big' else '>' if ( self._data[0].keyframe.parent.byteorder != byteorder or self._data[0].keyframe.dtype.itemsize == 1 ): byteorder = None refs = dict() if version == 1: if _append: raise ValueError('cannot append to version 1') refs['version'] = 1 refs['templates'] = {} refs['gen'] = [] templates = {} if self._data[0].is_multifile: i = 0 for page in self._data[0].pages: if page is None: continue fname = page.keyframe.parent.filehandle.name if fname in templates: continue key = f'u{i}' templates[fname] = '{{%s}}' % key refs['templates'][key] = url + fname i += 1 else: fname = self._data[0].keyframe.parent.filehandle.name key = 'u' templates[fname] = '{{%s}}' % key refs['templates'][key] = url + fname refs['refs'] = refzarr = dict() else: refzarr = refs if groupname and not _append: # TODO: support nested groups refzarr['.zgroup'] = ZarrStore._json({'zarr_format': 2}).decode() for key, value in self._store.items(): if '.zarray' in key: level = int(key.split('/')[0]) if '/' in key else 0 keyframe = self._data[level].keyframe value = json.loads(value) codec_id = compressors[keyframe.compression] if codec_id == 'imagecodecs_jpeg': # TODO: handle JPEG colorspaces tables = keyframe.jpegtables if tables is not None: import base64 tables = base64.b64encode(tables).decode() header = keyframe.jpegheader if header is not None: import base64 header = base64.b64encode(header).decode() colorspace_jpeg, colorspace_data = jpeg_decode_colorspace( keyframe.photometric, keyframe.planarconfig, keyframe.extrasamples, ) value['compressor'] = { 'id': codec_id, 'tables': tables, 'header': header, 'bitspersample': keyframe.bitspersample, 'colorspace_jpeg': colorspace_jpeg, 'colorspace_data': colorspace_data, } elif codec_id is not None: value['compressor'] = {'id': codec_id} if keyframe.predictor > 1: # predictors need access to chunk shape and dtype # requires imagecodecs > 2021.8.26 to read if keyframe.predictor in (2, 34892, 34893): filter_id = 'imagecodecs_delta' else: filter_id = 'imagecodecs_floatpred' if keyframe.predictor <= 3: dist = 1 elif keyframe.predictor in (34892, 34894): dist = 2 else: dist = 4 if ( keyframe.planarconfig == 1 and keyframe.samplesperpixel > 1 ): axis = -2 else: axis = -1 value['filters'] = [ { 'id': filter_id, 'axis': axis, 'dist': dist, 'shape': value['chunks'], 'dtype': value['dtype'], } ] if byteorder is not None: value['dtype'] = byteorder + value['dtype'][1:] value = ZarrStore._json(value) refzarr[groupname + key] = value.decode() if hasattr(arg, 'write'): fh = arg else: fh = open(arg, 'w') if version == 1: fh.write(json.dumps(refs, indent=1).rsplit('}"', 1)[0] + '}"') indent = ' ' elif _append: fh.write(',\n') fh.write(json.dumps(refs, indent=1)[2:-2]) indent = ' ' else: fh.write(json.dumps(refs, indent=1)[:-2]) indent = ' ' for key, value in self._store.items(): if '.zarray' in key: value = json.loads(value) shape = value['shape'] chunks = value['chunks'] level = (key.split('/')[0] + '/') if '/' in key else '' for chunkindex in ZarrStore._ndindex(shape, chunks): key = level + chunkindex keyframe, page, _, offset, bytecount = self._parse_key(key) if page and self._chunkmode and offset is None: offset = page.dataoffsets[0] bytecount = keyframe.nbytes if offset and bytecount: fname = keyframe.parent.filehandle.name if version == 1: fname = templates[fname] else: fname = f'{url}{fname}' fh.write( f',\n{indent}"{groupname}{key}": ' f'["{fname}", {offset}, {bytecount}]' ) # TODO: support nested groups if version == 1: fh.write('\n }\n}') elif not _append: fh.write('\n}') if not hasattr(arg, 'write'): fh.close() def _getitem(self, key): """Return chunk from file.""" keyframe, page, chunkindex, offset, bytecount = self._parse_key(key) if self._chunkmode: chunks = keyframe.shape else: chunks = keyframe.chunks if page is None or offset == 0 or bytecount == 0: chunk = ZarrStore._empty_chunk( chunks, keyframe.dtype, self._fillvalue ) if self._transform is not None: chunk = self._transform(chunk) return chunk fh = page.parent.filehandle if self._chunkmode and offset is None: self._filecache.open(fh) chunk = page.asarray( lock=self._filecache.lock, maxworkers=self._maxworkers ) self._filecache.close(fh) if self._transform is not None: chunk = self._transform(chunk) return chunk chunk = self._filecache.read(fh, offset, bytecount) decodeargs = {'_fullsize': True} if page.jpegtables is not None: decodeargs['jpegtables'] = page.jpegtables if keyframe.jpegheader is not None: decodeargs['jpegheader'] = keyframe.jpegheader chunk = keyframe.decode(chunk, chunkindex, **decodeargs)[0] if self._transform is not None: chunk = self._transform(chunk) if chunk.size != product(chunks): raise RuntimeError(f'{chunk.size} != {product(chunks)}') return chunk # .tobytes() def _parse_key(self, key): """Return keyframe, page, index, offset, and bytecount from key.""" if len(self._data) > 1: # multiscales try: level, key = key.split('/') except ValueError: raise KeyError(key) series = self._data[int(level)] else: series = self._data[0] keyframe = series.keyframe pageindex, chunkindex = self._indices(key, series) if pageindex > 0 and len(series) == 1: # truncated ImageJ, STK, or shaped if series.offset is None: raise RuntimeError('truncated series is not contiguous') page = series[0] if page is None: return keyframe, None, chunkindex, 0, 0 offset = pageindex * page.size * page.dtype.itemsize offset += page.dataoffsets[chunkindex] if self._chunkmode: bytecount = page.size * page.dtype.itemsize return page.keyframe, page, chunkindex, offset, bytecount elif self._chunkmode: with self._filecache.lock: page = series[pageindex] if page is None: return keyframe, None, None, 0, 0 return page.keyframe, page, None, None, None else: with self._filecache.lock: page = series[pageindex] if page is None: return keyframe, None, chunkindex, 0, 0 offset = page.dataoffsets[chunkindex] bytecount = page.databytecounts[chunkindex] return page.keyframe, page, chunkindex, offset, bytecount def _indices(self, key, series): """Return page and strile indices from zarr chunk index.""" keyframe = series.keyframe shape = series.get_shape(self._squeeze) try: indices = [int(i) for i in key.split('.')] except ValueError: raise KeyError(key) assert len(indices) == len(shape) if self._chunkmode: chunked = (1,) * len(keyframe.shape) else: chunked = keyframe.chunked p = 1 for i, s in enumerate(shape[::-1]): p *= s if p == keyframe.size: i = len(indices) - i - 1 frames_indices = indices[:i] strile_indices = indices[i:] frames_chunked = shape[:i] strile_chunked = list(shape[i:]) # updated later break else: raise RuntimeError if len(strile_chunked) == len(keyframe.shape): strile_chunked = chunked else: # get strile_chunked including singleton dimensions i = len(strile_indices) - 1 j = len(keyframe.shape) - 1 while True: if strile_chunked[i] == keyframe.shape[j]: strile_chunked[i] = chunked[j] i -= 1 j -= 1 elif strile_chunked[i] == 1: i -= 1 else: raise RuntimeError('shape does not match page shape') if i < 0 or j < 0: break assert product(strile_chunked) == product(chunked) if len(frames_indices) > 0: frameindex = int( numpy.ravel_multi_index(frames_indices, frames_chunked) ) else: frameindex = 0 if len(strile_indices) > 0: strileindex = int( numpy.ravel_multi_index(strile_indices, strile_chunked) ) else: strileindex = 0 return frameindex, strileindex @staticmethod def _chunks(chunks, shape): """Return chunks with same length as shape.""" ndim = len(shape) if ndim == 0: return () # empty array if 0 in shape: return (1,) * ndim newchunks = [] i = ndim - 1 j = len(chunks) - 1 while True: if j < 0: newchunks.append(1) i -= 1 elif shape[i] > 1 and chunks[j] > 1: newchunks.append(chunks[j]) i -= 1 j -= 1 elif shape[i] == chunks[j]: # both 1 newchunks.append(1) i -= 1 j -= 1 elif shape[i] == 1: newchunks.append(1) i -= 1 elif chunks[j] == 1: newchunks.append(1) j -= 1 else: raise RuntimeError if i < 0 or ndim == len(newchunks): break # assert ndim == len(newchunks) return tuple(newchunks[::-1]) def __repr__(self): return f'' class ZarrFileSequenceStore(ZarrStore): """Zarr storage interface to image data in FileSequence.""" def __init__( self, arg, fillvalue=None, chunkmode=None, chunkshape=None, dtype=None, axestiled=None, zattrs=None, **kwargs, ): """Initialize Zarr storage from FileSequence. Parameters ---------- arg: FileSequence FileSequence instance to wrap as zarr store. Files in containers are not supported. fillvalue : number (optional) Default value to use for missing chunks of the Zarr store. Default: 0. chunkmode: {0, 3} (optional) Currently only one chunk per file is supported. chunkshape : tuple of int (optional) Shape of the chunk in each file. Must match `arg.imread(file, **kwargs).shape`. dtype : numpy.dtype (optional) Data type of the chunk in each file. Must match `arg.imread(file, **kwargs).dtype`. axestiled: dict (optional) Defines the axes to be tiled. Map stacked sequence axis to chunk axis. zattrs : dict Additional attributes to store in .zattrs. kwargs: dict Additional parameters passed to the FileSequence.imread function. Notes ----- If chunkshape or dtype are None (default), their values are determined by reading the first file using `arg.imread(arg.files[0], **kwargs)`. """ super().__init__(fillvalue=fillvalue, chunkmode=chunkmode) if self._chunkmode not in (0, 3): raise ValueError(f'invalid chunkmode {self._chunkmode!r}') if not isinstance(arg, FileSequence): raise TypeError('not a FileSequence') if arg._container: raise NotImplementedError('cannot open container as zarr storage') self._kwargs = kwargs self._imread = arg.imread # self._cache = {} # TODO: make thread-safe. cache MRU number chunks self._commonpath = arg.commonpath() if chunkshape is None or dtype is None: chunk = arg.imread(arg.files[0], **kwargs) self._chunks = chunk.shape self._dtype = chunk.dtype else: self._chunks = tuple(chunkshape) self._dtype = numpy.dtype(dtype) chunk = None self._tiled = TiledSequence(arg.shape, self._chunks, axestiled) self._lookup = dict(zip(self._tiled.indices(arg.indices), arg.files)) # if chunk is not None: # self._cache[next(self._tiled.indices(arg.indices[0:1]))] = chunk zattrs = {} if zattrs is None else dict(zattrs) self._store['.zattrs'] = ZarrStore._json(zattrs) self._store['.zarray'] = ZarrStore._json( { 'zarr_format': 2, 'shape': self._tiled.shape, 'chunks': self._tiled.chunks, 'dtype': ZarrStore._dtype(self._dtype), 'compressor': None, 'fill_value': ZarrStore._value(fillvalue, self._dtype), 'order': 'C', 'filters': None, } ) def _getitem(self, key): """Return chunk from file.""" indices = tuple(int(i) for i in key.split('.')) # if indices in self._cache: # return self._cache[indices] # self._cache.clear() filename = self._lookup.get(indices, None) if filename is None: chunk = ZarrStore._empty_chunk( self._chunks, self._dtype, self._fillvalue ) else: chunk = self._imread(filename, **self._kwargs) # .tobytes() # self._cache[indices] = chunk return chunk def close(self): """Clear chunk cache.""" # self._cache.clear() def write_fsspec( self, arg, url, groupname=None, codec_id=None, version=None, _append=False, ): """Write fsspec ReferenceFileSystem as JSON to file. Url is the remote location of the files without the file names. """ from urllib.parse import quote kwargs = self._kwargs.copy() if codec_id is not None: pass elif self._imread == imread: codec_id = 'tifffile' elif 'imagecodecs.' in self._imread.__module__: if ( self._imread.__name__ != 'imread' or 'codec' not in self._kwargs ): raise ValueError('can not determine codec_id') codec = kwargs.pop('codec') if isinstance(codec, (list, tuple)): codec = codec[0] if callable(codec): codec = codec.__name__.split('_')[0] codec_id = { 'avif': 'imagecodecs_avif', 'gif': 'imagecodecs_gif', 'jpeg': 'imagecodecs_jpeg', 'jpeg8': 'imagecodecs_jpeg', 'jpeg12': 'imagecodecs_jpeg', 'jpeg2k': 'imagecodecs_jpeg2k', 'jpegls': 'imagecodecs_jpegls', 'jpegxl': 'imagecodecs_jpegxl', 'jpegxr': 'imagecodecs_jpegxr', 'ljpeg': 'imagecodecs_ljpeg', # 'npy': 'imagecodecs_npy', 'png': 'imagecodecs_png', 'tiff': 'imagecodecs_tiff', 'webp': 'imagecodecs_webp', 'zfp': 'imagecodecs_zfp', }[codec] else: raise ValueError('can not determine codec_id') if url is None: url = '' elif url and url[-1] != '/': url += '/' if groupname is None: groupname = '' elif groupname and groupname[-1] != '/': groupname += '/' refs = dict() if version == 1: if _append: raise ValueError('cannot append when using version 1') refs['version'] = 1 refs['templates'] = {'u': url} refs['gen'] = [] refs['refs'] = refzarr = dict() url = '{{u}}' else: refzarr = refs if groupname and not _append: refzarr['.zgroup'] = ZarrStore._json({'zarr_format': 2}).decode() for key, value in self._store.items(): if '.zarray' in key: value = json.loads(value) # TODO: make kwargs serializable value['compressor'] = {'id': codec_id, **kwargs} value = ZarrStore._json(value) refzarr[groupname + key] = value.decode() if hasattr(arg, 'write'): fh = arg else: fh = open(arg, 'w') if version == 1: fh.write(json.dumps(refs, indent=1).rsplit('}"', 1)[0] + '}"') indent = ' ' elif _append: fh.write(',\n') fh.write(json.dumps(refs, indent=1)[2:-2]) indent = ' ' else: fh.write(json.dumps(refs, indent=1)[:-2]) indent = ' ' prefix = len(self._commonpath) for key, value in self._store.items(): if '.zarray' in key: value = json.loads(value) for index, filename in sorted( self._lookup.items(), key=lambda x: x[0] ): filename = quote(filename[prefix:].replace('\\', '/')) if filename[0] == '/': filename = filename[1:] index = '.'.join(str(i) for i in index) fh.write( f',\n{indent}"{groupname}{index}": ["{url}{filename}"]' ) if version == 1: fh.write('\n }\n}') elif not _append: fh.write('\n}') if not hasattr(arg, 'write'): fh.close() def __repr__(self): return f'' def __str__(self): """Return information about instance.""" return '\n '.join( ( self.__class__.__name__, 'shape: {}'.format( ', '.join(str(i) for i in self._tiled.shape) ), 'chunks: {}'.format( ', '.join(str(i) for i in self._tiled.chunks) ), f'dtype: {self._dtype}', f'fillvalue: {self._fillvalue}', ) ) class FileSequence: """Series of files containing array data of compatible shape and type. Attributes ---------- files : list List of file names. shape : tuple Shape of file series. Excludes shape of chunks in files. axes : str One letter labels of axes in shape. labels : tuple of str Labels of axes in shape. indices : tuple of tuples ND indices of files in shape. """ def __init__( self, imread, files, container=None, sort=None, parse=None, **kwargs, ): r"""Initialize instance from multiple files. Parameters ---------- imread : function or class Array read function or class with asarray function returning numpy array from single file. files : str, path-like, or sequence thereof Glob filename pattern or sequence of file names. Default: \*. Binary streams are not supported. container : str or container instance (optional) Name or open instance of ZIP file in which files are stored. sort : function (optional) Sort function used to sort file names when 'files' is a pattern. The default (None) is the natural_sorted function. If False, disable sorting. parse : func (optional) Parse function used to parse the sequence of sorted file names to axes labels, shape, chunk indices, and filtered file names. The default (None) is the parse_filenames function if kwargs contains 'pattern'. **kwargs Optional extra arguments to the parse function. """ if files is None: files = '*' if sort is None: sort = natural_sorted self._container = container if container: import fnmatch if isinstance(container, (str, os.PathLike)): import zipfile self._container = zipfile.ZipFile(container) elif not hasattr(self._container, 'open'): raise ValueError('invalid container') if isinstance(files, str): files = fnmatch.filter(self._container.namelist(), files) if sort: files = sort(files) elif isinstance(files, os.PathLike): files = [os.fspath(files)] elif isinstance(files, str): files = glob.glob(files) if sort: files = sort(files) files = [os.fspath(f) for f in files] if not files: raise ValueError('no files found') if hasattr(imread, 'asarray'): # redefine imread to use asarray from imread class if not callable(imread.asarray): raise ValueError('invalid imread function') _imread_ = imread def imread(fname, **kwargs): with _imread_(fname) as handle: return handle.asarray(**kwargs) elif not callable(imread): raise ValueError('invalid imread function') if container: # redefine imread to read from container _imread_ = imread def imread(fname, **kwargs): with self._container.open(fname) as handle1: with io.BytesIO(handle1.read()) as handle2: return _imread_(handle2, **kwargs) if parse is None and kwargs.get('pattern', None): parse = parse_filenames if parse: try: labels, shape, indices, files = parse(files, **kwargs) except ValueError as exc: raise ValueError('failed to parse file names') from exc else: labels = ('I',) shape = (len(files),) indices = tuple((i,) for i in range(len(files))) self.imread = imread self.files = files self.axes = ''.join(label[0] for label in labels).upper() self.labels = tuple(labels) self.shape = tuple(shape) self.indices = indices @property def files_missing(self): """Return number of empty chunks.""" return product(self.shape) - len(self.files) def __str__(self): """Return string with information about file FileSequence.""" file = str(self._container) if self._container else self.files[0] file = os.path.split(file)[-1] return '\n '.join( ( self.__class__.__name__, file, f'files: {len(self.files)} ({self.files_missing} missing)', 'shape: {}'.format(', '.join(str(i) for i in self.shape)), 'labels: {}'.format(', '.join(s for s in self.labels)), # f'axes: {self.axes}', ) ) def __repr__(self): return f'' def __len__(self): return len(self.files) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): if self._container: self._container.close() self._container = None def asarray( self, file=None, # deprecated axestiled=None, ioworkers=1, out=None, **kwargs, ): """Read image data from files and return as numpy array. Raise IndexError or ValueError if array shapes do not match. Parameters ---------- file : int or str (optional, deprecated) Index or name of single file to read. axestiled: dict (optional) Defines the axes to be tiled. Map stacked sequence axis to chunk axis. ioworkers : int (optional) Maximum number of threads to execute the array read function asynchronously. Default: 1. If None, default to the number of processors multiplied by 5. Using threads can significantly improve runtime when reading many small files from a network share. out : numpy.ndarray, str, or file-like object (optional) Buffer where image data are saved. If None (default), a new array is created. If numpy.ndarray, a writable array of compatible dtype and shape. If 'memmap', create a memory-mapped array in a temporary file. If str or open file, the file name or file object used to create a memory-map to an array stored in a binary file on disk. **kwargs Optional extra arguments to the array read function. """ if file is not None: warnings.warn( " " "the 'file' parameter is deprecated since 2021.10.12.", DeprecationWarning, stacklevel=2, ) if isinstance(file, (int, numpy.integer)): return self.imread(self.files[file], **kwargs) return self.imread(file, **kwargs) if len(self.files) < 2: ioworkers = 1 elif ioworkers is None or ioworkers < 1: import multiprocessing ioworkers = max(multiprocessing.cpu_count() * 5, 1) im = self.imread(self.files[0], **kwargs) if axestiled: tiled = TiledSequence(self.shape, im.shape, axestiled) result = create_output(out, tiled.shape, dtype=im.dtype) def func(index, fname): # read single image from file into result # if index is None: # return result[index] = self.imread(fname, **kwargs) if ioworkers < 2: for index, fname in zip( tiled.slices(self.indices), self.files ): func(index, fname) else: with ThreadPoolExecutor(ioworkers) as executor: for _ in executor.map( func, tiled.slices(self.indices), self.files ): pass else: shape = self.shape + im.shape result = create_output(out, shape, dtype=im.dtype) result = result.reshape(-1, *im.shape) def func(index, fname): # read single image from file into result if index is None: return index = int(numpy.ravel_multi_index(index, self.shape)) im = self.imread(fname, **kwargs) result[index] = im if ioworkers < 2: for index, fname in zip(self.indices, self.files): func(index, fname) else: with ThreadPoolExecutor(ioworkers) as executor: for _ in executor.map(func, self.indices, self.files): pass result.shape = shape return result def aszarr(self, **kwargs): """Return image data from files as zarr storage.""" return ZarrFileSequenceStore(self, **kwargs) def commonpath(self): """Return longest common sub-path of each file in sequence.""" if len(self.files) == 1: commonpath = os.path.dirname(self.files[0]) else: commonpath = os.path.commonpath(self.files) return commonpath class TiffSequence(FileSequence): """Series of TIFF files.""" def __init__(self, files=None, imread=imread, **kwargs): """Initialize instance from multiple TIFF files.""" super().__init__(imread, '*.tif' if files is None else files, **kwargs) def __repr__(self): return f'' class TiledSequence: """Tiled Sequence. Transform a sequence of stacked chunks to tiled chunks. Attributes ---------- shape : tuple of int Shape of the tiled sequence. chunks : tuple of int Shape of the chunks in the tiled sequence. Examples -------- >>> ts = TiledSequence((1, 2), (3, 4), {1: 0}) >>> ts.shape (1, 6, 4) >>> ts.chunks (1, 3, 4) """ def __init__(self, stackshape, chunkshape, axestiled=None): """Initialize from shape of stacked sequence and axes to be tiled. Parameters ---------- stackshape : tuple of int Shape of the stacked sequence excluding chunks. chunkshape : tuple of int Shape of the chunks excluding stack axes. axestiled: dict (optional) Defines the axes to be tiled. Map stacked sequence axis to chunk axis. """ self._stackdims = len(stackshape) self._chunkdims = len(chunkshape) self._stackshape = tuple(stackshape) + tuple(chunkshape) if axestiled: axestiled = dict(axestiled) for ax0, ax1 in axestiled.items(): axestiled[ax0] = ax1 + self._stackdims self._axestiled = tuple(reversed(sorted(axestiled.items()))) shape = list(self._stackshape) chunks = [1] * self._stackdims + list(chunkshape) used = set() for ax0, ax1 in self._axestiled: if ax0 in used or ax1 in used: raise ValueError('duplicate axis') used.add(ax0) used.add(ax1) shape[ax1] *= stackshape[ax0] for ax0, ax1 in self._axestiled: del shape[ax0] del chunks[ax0] self.shape = tuple(shape) self.chunks = tuple(chunks) else: self._axestiled = () self.shape = self._stackshape self.chunks = (1,) * self._stackdims + tuple(chunkshape) def indices(self, indices): """Return iterator over chunk indices of tiled sequence. Parameters ---------- indices : sequence of tuple of int Indices of chunks in the stacked sequence. """ chunkindex = [0] * self._chunkdims for index in indices: if index is None: yield None else: if len(index) != self._stackdims: raise ValueError(f'{len(index)} != {self._stackdims}') index = list(index) + chunkindex for ax0, ax1 in self._axestiled: index[ax1] = index[ax0] for ax0, ax1 in self._axestiled: del index[ax0] yield tuple(index) def slices(self, indices): """Return iterator over slices of chunks in tiled sequence. Parameters ---------- indices : sequence of tuple of int Indices of chunks in the stacked sequence. """ chunkslice = [slice(None)] * self._chunkdims for index in indices: if index is None: yield None else: assert len(index) == self._stackdims index = list(index) + chunkslice for ax0, ax1 in self._axestiled: j = self._stackshape[ax1] i = index[ax0] * j index[ax1] = slice(i, i + j) for ax0, ax1 in self._axestiled: del index[ax0] yield tuple(index) @property def ndim(self): return len(self.shape) @property def is_tiled(self): return bool(self._axestiled) class FileHandle: """Binary file handle. A limited, special purpose file handle that can: * handle embedded files (e.g. for LSM within LSM files) * re-open closed files (for multi-file formats, such as OME-TIFF) * read and write numpy arrays and records from file like objects Only 'rb', 'r+b', and 'wb' modes are supported. Concurrently reading and writing of the same stream is untested. When initialized from another file handle, do not use it unless this FileHandle is closed. Attributes ---------- name : str Name of the file. path : str Absolute path to file. size : int Size of file in bytes. is_file : bool If True, file has a fileno and can be memory-mapped. All attributes are read-only. """ __slots__ = ( '_fh', '_file', '_mode', '_name', '_dir', '_lock', '_offset', '_size', '_close', 'is_file', ) def __init__(self, file, mode=None, name=None, offset=None, size=None): """Initialize file handle from file name or another file handle. Parameters ---------- file : str, path-like, binary stream, or FileHandle File name or seekable binary stream, such as an open file or BytesIO. mode : str File open mode in case 'file' is a file name. Must be 'rb', 'r+b', or 'wb'. Default is 'rb'. name : str Optional name of file in case 'file' is a binary stream. offset : int Optional start position of embedded file. By default, this is the current file position. size : int Optional size of embedded file. By default, this is the number of bytes from the 'offset' to the end of the file. """ self._fh = None self._file = file self._mode = 'rb' if mode is None else mode self._name = name self._dir = '' self._offset = offset self._size = size self._close = True self.is_file = None self._lock = NullContext() self.open() def open(self): """Open or re-open file.""" if self._fh is not None: return # file is open if isinstance(self._file, os.PathLike): self._file = os.fspath(self._file) if isinstance(self._file, str): # file name self._file = os.path.realpath(self._file) self._dir, self._name = os.path.split(self._file) self._fh = open(self._file, self._mode) self._close = True if self._offset is None: self._offset = 0 elif isinstance(self._file, FileHandle): # FileHandle self._fh = self._file._fh if self._offset is None: self._offset = 0 self._offset += self._file._offset self._close = False if not self._name: if self._offset: name, ext = os.path.splitext(self._file._name) self._name = f'{name}@{self._offset}{ext}' else: self._name = self._file._name if self._mode and self._mode != self._file._mode: raise ValueError('FileHandle has wrong mode') self._mode = self._file._mode self._dir = self._file._dir elif hasattr(self._file, 'seek'): # binary stream: open file, BytesIO try: self._file.tell() except Exception: raise ValueError('binary stream is not seekable') self._fh = self._file if self._offset is None: self._offset = self._file.tell() self._close = False if not self._name: try: self._dir, self._name = os.path.split(self._fh.name) except AttributeError: self._name = 'Unnamed binary stream' try: self._mode = self._fh.mode except AttributeError: pass else: raise ValueError( 'the first parameter must be a file name, ' 'seekable binary stream, or FileHandle' ) if self._offset: self._fh.seek(self._offset) if self._size is None: pos = self._fh.tell() self._fh.seek(self._offset, os.SEEK_END) self._size = self._fh.tell() self._fh.seek(pos) if self.is_file is None: try: self._fh.fileno() self.is_file = True except Exception: self.is_file = False def close(self): """Close file.""" if self._close and self._fh is not None: self._fh.close() self._fh = None def tell(self): """Return file's current position.""" return self._fh.tell() - self._offset def seek(self, offset, whence=0): """Set file's current position.""" if self._offset: if whence == 0: return ( self._fh.seek(self._offset + offset, whence) - self._offset ) if whence == 2 and self._size > 0: return ( self._fh.seek(self._offset + self._size + offset, 0) - self._offset ) return self._fh.seek(offset, whence) def read(self, size=-1): """Read 'size' bytes from file, or until EOF is reached.""" if size < 0 and self._offset: size = self._size return self._fh.read(size) def readinto(self, b): """Read up to len(b) bytes into b and return number of bytes read.""" return self._fh.readinto(b) def write(self, bytestring): """Write bytes to file.""" return self._fh.write(bytestring) def flush(self): """Flush write buffers if applicable.""" return self._fh.flush() def memmap_array(self, dtype, shape, offset=0, mode='r', order='C'): """Return numpy.memmap of data stored in file.""" if not self.is_file: raise ValueError('cannot memory-map file without fileno') return numpy.memmap( self._fh, dtype=dtype, mode=mode, offset=self._offset + offset, shape=shape, order=order, ) def read_array(self, dtype, count=-1, out=None): """Return numpy array from file in native byte order.""" dtype = numpy.dtype(dtype) if count < 0: nbytes = self._size if out is None else out.nbytes count = nbytes // dtype.itemsize else: nbytes = count * dtype.itemsize result = numpy.empty(count, dtype) if out is None else out if result.nbytes != nbytes: raise ValueError('size mismatch') try: n = self._fh.readinto(result) except AttributeError: result[:] = numpy.frombuffer(self._fh.read(nbytes), dtype).reshape( result.shape ) n = nbytes if n != nbytes: raise ValueError(f'failed to read {nbytes} bytes, got {n}') if not result.dtype.isnative: if not dtype.isnative: result.byteswap(True) result = result.newbyteorder() elif result.dtype.isnative != dtype.isnative: result.byteswap(True) if out is not None: if hasattr(out, 'flush'): out.flush() return result def read_record(self, dtype, shape=1, byteorder=None): """Return numpy record from file.""" rec = numpy.rec try: record = rec.fromfile(self._fh, dtype, shape, byteorder=byteorder) except Exception: dtype = numpy.dtype(dtype) if shape is None: shape = self._size // dtype.itemsize size = product(sequence(shape)) * dtype.itemsize # data = bytearray(size) # n = self._fh.readinto(data) # data = data[:n] # TODO: record is not writable data = self._fh.read(size) record = rec.fromstring(data, dtype, shape, byteorder=byteorder) return record[0] if shape == 1 else record def write_empty(self, size): """Append size bytes to file. Position must be at end of file.""" if size < 1: return self._fh.seek(size - 1, os.SEEK_CUR) self._fh.write(b'\x00') def write_array(self, data): """Write numpy array to binary file.""" try: # writing non-contiguous arrays is very slow numpy.ascontiguousarray(data).tofile(self._fh) except Exception: # numpy can't write to BytesIO self._fh.write(data.tobytes()) def read_segments( self, offsets, bytecounts, indices=None, sort=True, lock=None, buffersize=None, flat=True, ): """Return iterator over segments read from file and their indices. The purpose of this function is to * reduce small or random reads * reduce acquiring reentrant locks * synchronize seeks and reads * limit the size of segments read into memory at once (ThreadPoolExecutor.map is not collecting iterables lazily). Parameters ---------- offsets, bytecounts : sequence of int offsets and bytecounts of the segments to read from file. indices : sequence of int Indices of the segments in the image. Default: range(len(offsets)). sort : bool If True (default), segments are read from file in the order of their offsets. lock: A reentrant lock used to synchronize seeks and reads. buffersize : int Approximate number of bytes to read from file in one pass. Default: 64 MB. flat : bool If True (default), return an iterator over individual (segment, index) tuples. Else return an iterator over a list of (segment, index) tuples that were acquired in one pass. Returns ------- items : (bytes, int) or [(bytes, int)] Iterator over individual or lists of (segment, index) tuples. """ # TODO: Cythonize this? length = len(offsets) if length < 1: return if length == 1: index = 0 if indices is None else indices[0] if bytecounts[index] > 0 and offsets[index] > 0: if lock is None: lock = self._lock with lock: self.seek(offsets[index]) data = self._fh.read(bytecounts[index]) else: data = None yield (data, index) if flat else [(data, index)] return if lock is None: lock = self._lock if buffersize is None: buffersize = 67108864 # 2 ** 26, 64 MB if indices is None: segments = [(i, offsets[i], bytecounts[i]) for i in range(length)] else: segments = [ (indices[i], offsets[i], bytecounts[i]) for i in range(length) ] if sort: segments = sorted(segments, key=lambda x: x[1]) iscontig = True for i in range(length - 1): _, offset, bytecount = segments[i] nextoffset = segments[i + 1][1] if offset == 0 or bytecount == 0 or nextoffset == 0: continue if offset + bytecount != nextoffset: iscontig = False break seek = self.seek read = self._fh.read if iscontig: # consolidate reads i = 0 while i < length: j = i offset = None bytecount = 0 while bytecount < buffersize and i < length: _, o, b = segments[i] if o > 0 and b > 0: if offset is None: offset = o bytecount += b i += 1 if offset is None: data = None else: with lock: seek(offset) data = read(bytecount) start = 0 stop = 0 result = [] while j < i: index, offset, bytecount = segments[j] if offset > 0 and bytecount > 0: stop += bytecount result.append((data[start:stop], index)) start = stop else: result.append((None, index)) j += 1 if flat: yield from result else: yield result return i = 0 while i < length: result = [] size = 0 with lock: while size < buffersize and i < length: index, offset, bytecount = segments[i] if offset > 0 and bytecount > 0: seek(offset) result.append((read(bytecount), index)) # buffer = bytearray(bytecount) # n = fh.readinto(buffer) # data.append(buffer[:n]) size += bytecount else: result.append((None, index)) i += 1 if flat: yield from result else: yield result def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def __getattr__(self, name): """Return attribute from underlying file object.""" if self._offset: warnings.warn( ' ' f'{name} not implemented for embedded files', UserWarning, ) return getattr(self._fh, name) def __repr__(self): return f'' def __str__(self): """Return string with information about FileHandle.""" return '\n '.join( ( 'FileHandle', self.name, self.dirname, f'{self.size} bytes', 'closed' if self.closed else 'open', ) ) @property def name(self): return self._name @property def dirname(self): return self._dir @property def path(self): return os.path.join(self._dir, self._name) @property def size(self): return self._size @property def closed(self): return self._fh is None @property def lock(self): """Return current lock instance.""" return self._lock @lock.setter def lock(self, value): if bool(value) == isinstance(self._lock, NullContext): self._lock = threading.RLock() if value else NullContext() @property def has_lock(self): """Return if a RLock is used.""" return not isinstance(self._lock, NullContext) class FileCache: """Keep FileHandles open.""" __slots__ = ('files', 'keep', 'past', 'lock', 'size') def __init__(self, size=None, lock=None): """Initialize open file cache.""" self.past = [] # FIFO of opened files self.files = {} # refcounts of opened file handles self.keep = set() # files to keep open self.lock = NullContext() if lock is None else lock self.size = 8 if size is None else int(size) def __len__(self): """Return number of open files.""" return len(self.files) def open(self, filehandle): """Open file, re-open if necessary.""" with self.lock: if filehandle in self.files: self.files[filehandle] += 1 elif filehandle.closed: filehandle.open() self.files[filehandle] = 1 self.past.append(filehandle) else: self.files[filehandle] = 2 self.keep.add(filehandle) self.past.append(filehandle) def close(self, filehandle): """Close least recently used open files.""" with self.lock: if filehandle in self.files: self.files[filehandle] -= 1 self._trim() def clear(self): """Close all opened files if not in use when opened first.""" with self.lock: for filehandle, refcount in list(self.files.items()): if filehandle not in self.keep: filehandle.close() del self.files[filehandle] del self.past[self.past.index(filehandle)] def read(self, filehandle, offset, bytecount, whence=0): """Return bytes read from binary file.""" # this function is more efficient than # filecache.open(filehandle) # with lock: # filehandle.seek() # data = filehandle.read() # filecache.close(filehandle) with self.lock: b = filehandle not in self.files if b: if filehandle.closed: filehandle.open() self.files[filehandle] = 0 else: self.files[filehandle] = 1 self.keep.add(filehandle) self.past.append(filehandle) filehandle.seek(offset, whence) data = filehandle.read(bytecount) if b: self._trim() return data def _trim(self): """Trim file cache.""" index = 0 size = len(self.past) while index < size > self.size: filehandle = self.past[index] if filehandle not in self.keep and self.files[filehandle] <= 0: filehandle.close() del self.files[filehandle] del self.past[index] size -= 1 else: index += 1 def __repr__(self): return f'' class NullContext: """Null context manager. >>> with NullContext(): ... pass """ __slots = () def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): pass def __repr__(self): return 'NullContext()' class Timer: """Stopwatch for timing execution speed.""" __slots__ = ('started', 'stopped', 'duration') clock = time.perf_counter def __init__(self, message=None, end=' ', started=None): """Initialize timer and print message.""" if message is not None: print(message, end=end, flush=True) self.duration = 0 if started is None: started = Timer.clock() self.started = self.stopped = started def start(self, message=None, end=' '): """Start timer and return current time.""" if message is not None: print(message, end=end, flush=True) self.duration = 0 self.started = self.stopped = Timer.clock() return self.started def stop(self, message=None, end=' '): """Return duration of timer till start.""" self.stopped = Timer.clock() if message is not None: print(message, end=end, flush=True) self.duration = self.stopped - self.started return self.duration def print(self, message=None, end=None): """Print duration from timer start till last stop or now.""" msg = str(self) if message is not None: print(message, end=' ') print(msg, end=end, flush=True) def __str__(self): """Return duration from timer start till last stop or now as string.""" if self.duration <= 0: # not stopped duration = Timer.clock() - self.started else: duration = self.duration s = str(datetime.timedelta(seconds=duration)) i = 0 while i < len(s) and s[i : i + 2] in '0:0010203040506070809': i += 1 if s[i : i + 1] == ':': i += 1 return f'{s[i:]} s' def __repr__(self): return f'Timer(started={self.started})' def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.print() class OmeXmlError(Exception): """Exception to indicate invalid OME-XML or unsupported cases.""" class OmeXml: """OME-TIFF XML.""" def __init__(self, **metadata): """Create a new instance. Creator : str (optional) Name of the creating application. Default 'tifffile.py'. UUID : str (optional) Unique identifier. """ if 'OME' in metadata: metadata = metadata['OME'] self.ifd = 0 self.images = [] self.annotations = [] self.elements = [] # TODO: parse other OME elements from metadata # Project # Dataset # Folder # Experiment # Plate # Screen # Experimenter # ExperimenterGroup # Instrument # StructuredAnnotations # ROI if 'UUID' in metadata: self.uuid = metadata['UUID'].split(':')[-1] else: from uuid import uuid1 # noqa: delayed import self.uuid = str(uuid1()) creator = OmeXml._attribute( metadata, 'Creator', default=f'tifffile.py {__version__}' ) schema = 'http://www.openmicroscopy.org/Schemas/OME/2016-06' self.xml = ( '{declaration}' f'' '{images}' '{annotations}' '{elements}' f'' ) def addimage(self, dtype, shape, storedshape, axes=None, **metadata): """Add image to OME-XML. The OME model can handle up to 9 dimensional images for selected axes orders. Refer to the OME-XML specification for details. Non-TZCYXS (modulo) dimensions must be after a TZC dimension or require an unused TZC dimension. Parameters ---------- dtype : numpy.dtype Data type of image array. shape : tuple Shape of image array. storedshape: tuple Normalized shape describing how the image array is stored in TIFF: (pages, separate_samples, depth, length, width, contig_samples). axes : str (optional) Axes labels for each dimension in shape. By default, axes are matched to the shape in reverse order of TZC(S)YX(S) based on storedshape. The following axes codes are supported: 'S' sample, 'X' width, 'Y' length, 'Z' depth, 'C' channel, 'T' time, 'A' angle, 'P' phase, 'R' tile, 'H' lifetime, 'E' lambda, 'Q' other. metadata : miscellaneous (optional) Additional OME-XML attributes or elements to be stored. Image/Pixels: Name, AcquisitionDate, Description, PhysicalSizeX, PhysicalSizeXUnit, PhysicalSizeY, PhysicalSizeYUnit, PhysicalSizeZ, PhysicalSizeZUnit, TimeIncrement, TimeIncrementUnit. Per Plane: DeltaTUnit, ExposureTime, ExposureTimeUnit, PositionX, PositionXUnit, PositionY, PositionYUnit, PositionZ, PositionZUnit. Per Channel: Name, AcquisitionMode, Color, ContrastMethod, EmissionWavelength, EmissionWavelengthUnit, ExcitationWavelength, ExcitationWavelengthUnit, Fluor, IlluminationType, NDFilter, PinholeSize, PinholeSizeUnit, PockelCellSetting. """ index = len(self.images) # get Image and Pixels metadata metadata = metadata.get('OME', metadata) metadata = metadata.get('Image', metadata) if isinstance(metadata, (list, tuple)): # multiple images metadata = metadata[index] if 'Pixels' in metadata: # merge with Image if 'ID' in metadata['Pixels']: del metadata['Pixels']['ID'] metadata.update(metadata['Pixels']) del metadata['Pixels'] try: dtype = numpy.dtype(dtype).name dtype = { 'int8': 'int8', 'int16': 'int16', 'int32': 'int32', 'uint8': 'uint8', 'uint16': 'uint16', 'uint32': 'uint32', 'float32': 'float', 'float64': 'double', 'complex64': 'complex', 'complex128': 'double-complex', 'bool': 'bit', }[dtype] except KeyError: raise OmeXmlError(f'data type {dtype!r} not supported') if metadata.get('Type', dtype) != dtype: raise OmeXmlError( f'metadata Pixels Type {metadata["Type"]!r} ' f'does not match array dtype {dtype!r}' ) samples = 1 planecount, separate, depth, length, width, contig = storedshape if depth != 1: raise OmeXmlError('ImageDepth not supported') if not (separate == 1 or contig == 1): raise ValueError('invalid stored shape') shape = tuple(int(i) for i in shape) ndim = len(shape) if ndim < 1 or product(shape) <= 0: raise OmeXmlError('empty arrays not supported') if axes is None: # get axes from shape, stored shape, and DimensionOrder if contig != 1 or shape[-3:] == (length, width, 1): axes = 'YXS' samples = contig elif separate != 1 or ( ndim == 6 and shape[-3:] == (1, length, width) ): axes = 'SYX' samples = separate else: axes = 'YX' if not len(axes) <= ndim <= (6 if 'S' in axes else 5): raise OmeXmlError(f'{ndim} dimensions not supported') hiaxes = metadata.get('DimensionOrder', 'XYCZT')[:1:-1] axes = hiaxes[(6 if 'S' in axes else 5) - ndim :] + axes assert len(axes) == len(shape) else: # validate axes against shape and stored shape axes = axes.upper() if len(axes) != len(shape): raise ValueError('axes do not match shape') if not (axes.endswith('YX') or axes.endswith('YXS')): raise OmeXmlError('dimensions must end with YX or YXS') unique = [] for ax in axes: if ax not in 'TZCYXSAPRHEQ': raise OmeXmlError(f'dimension {ax!r} not supported') if ax in unique: raise OmeXmlError(f'multiple {ax!r} dimensions') unique.append(ax) if ndim > (9 if 'S' in axes else 8): raise OmeXmlError('more than 8 dimensions not supported') if contig != 1: samples = contig if ndim < 3: raise ValueError('dimensions do not match stored shape') if axes[-1] != 'S': raise ValueError('axes do not match stored shape') if shape[-1] != contig or shape[-2] != width: raise ValueError('shape does not match stored shape') elif separate != 1: samples = separate if ndim < 3: raise ValueError('dimensions do not match stored shape') if axes[-3] != 'S': raise ValueError('axes do not match stored shape') if shape[-3] != separate or shape[-1] != length: raise ValueError('shape does not match stored shape') if shape[axes.index('X')] != width or shape[axes.index('Y')] != length: raise ValueError('shape does not match stored shape') if 'S' in axes: hiaxes = axes[: min(axes.index('S'), axes.index('Y'))] else: hiaxes = axes[: axes.index('Y')] if any(ax in 'APRHEQ' for ax in hiaxes): # modulo axes modulo = {} dimorder = [] axestype = { 'A': 'angle', 'P': 'phase', 'R': 'tile', 'H': 'lifetime', 'E': 'lambda', 'Q': 'other', } for i, ax in enumerate(hiaxes): if ax in 'APRHEQ': x = hiaxes[i - 1 : i] if x and x in 'TZC': # use previous axis modulo[x] = axestype[ax], shape[i] else: # use next unused axis for x in 'TZC': if x not in dimorder and x not in modulo: modulo[x] = axestype[ax], shape[i] dimorder.append(x) break else: # TODO: support any order of axes, e.g. APRTZC raise OmeXmlError('more than 3 modulo dimensions') else: dimorder.append(ax) hiaxes = ''.join(dimorder) # TODO: use user-specified start, stop, step, or labels moduloalong = ''.join( f'' for ax, (axtype, size) in modulo.items() ) annotationref = f'' annotations = ( f'' '' '' f'{moduloalong}' '' '' '' ) self.annotations.append(annotations) else: modulo = {} annotationref = '' hiaxes = hiaxes[::-1] for dimorder in ( metadata.get('DimensionOrder', 'XYCZT'), 'XYCZT', 'XYZCT', 'XYZTC', 'XYCTZ', 'XYTCZ', 'XYTZC', ): if hiaxes in dimorder: break else: raise OmeXmlError(f'dimension order {axes!r} not supported') dimsizes = [] for ax in dimorder: if ax == 'S': continue if ax in axes: size = shape[axes.index(ax)] else: size = 1 if ax == 'C': sizec = size size *= samples if ax in modulo: size *= modulo[ax][1] dimsizes.append(size) sizes = ''.join( f' Size{ax}="{size}"' for ax, size in zip(dimorder, dimsizes) ) # verify DimensionOrder in metadata is compatible if 'DimensionOrder' in metadata: omedimorder = metadata['DimensionOrder'] omedimorder = ''.join( ax for ax in omedimorder if dimsizes[dimorder.index(ax)] > 1 ) if hiaxes not in omedimorder: raise OmeXmlError( f'metadata DimensionOrder does not match {axes!r}' ) # verify metadata Size values match shape for ax, size in zip(dimorder, dimsizes): if metadata.get(f'Size{ax}', size) != size: raise OmeXmlError( f'metadata Size{ax} does not match {shape!r}' ) dimsizes[dimorder.index('C')] //= samples if planecount != product(dimsizes[2:]): raise ValueError('shape does not match stored shape') planes = [] planeattributes = metadata.get('Plane', '') if planeattributes: cztorder = tuple(dimorder[2:].index(ax) for ax in 'CZT') for p in range(planecount): attributes = OmeXml._attributes( planeattributes, p, 'DeltaTUnit', 'ExposureTime', 'ExposureTimeUnit', 'PositionX', 'PositionXUnit', 'PositionY', 'PositionYUnit', 'PositionZ', 'PositionZUnit', ) unraveled = numpy.unravel_index(p, dimsizes[2:], order='F') c, z, t = (int(unraveled[i]) for i in cztorder) planes.append( f'' ) # TODO: if possible, verify c, z, t match planeattributes planes = ''.join(planes) channels = [] for c in range(sizec): lightpath = '' # TODO: use LightPath elements from metadata # 'AnnotationRef', # 'DichroicRef', # 'EmissionFilterRef', # 'ExcitationFilterRef' attributes = OmeXml._attributes( metadata.get('Channel', ''), c, 'Name', 'AcquisitionMode', 'Color', 'ContrastMethod', 'EmissionWavelength', 'EmissionWavelengthUnit', 'ExcitationWavelength', 'ExcitationWavelengthUnit', 'Fluor', 'IlluminationType', 'NDFilter', 'PinholeSize', 'PinholeSizeUnit', 'PockelCellSetting', ) channels.append( f'' f'{lightpath}' '' ) channels = ''.join(channels) # TODO: support more Image elements elements = OmeXml._elements(metadata, 'AcquisitionDate', 'Description') name = OmeXml._attribute(metadata, 'Name', default=f'Image{index}') attributes = OmeXml._attributes( metadata, None, 'SignificantBits', 'PhysicalSizeX', 'PhysicalSizeXUnit', 'PhysicalSizeY', 'PhysicalSizeYUnit', 'PhysicalSizeZ', 'PhysicalSizeZUnit', 'TimeIncrement', 'TimeIncrementUnit', ) if separate > 1 or contig > 1: interleaved = 'false' if separate > 1 else 'true' interleaved = f' Interleaved="{interleaved}"' else: interleaved = '' self.images.append( f'' f'{elements}' f'' f'{channels}' f'' f'{planes}' f'' f'{annotationref}' f'' ) self.ifd += planecount def tostring(self, declaration=False): """Return OME-XML string.""" # TODO: support other top-level elements elements = ''.join(self.elements) images = ''.join(self.images) annotations = ''.join(self.annotations) if annotations: annotations = ( f'{annotations}' ) if declaration: declaration = '' else: declaration = '' xml = self.xml.format( declaration=declaration, images=images, annotations=annotations, elements=elements, ) return xml def __repr__(self): return f'' def __str__(self): """Return OME-XML string.""" xml = self.tostring() try: from lxml import etree # noqa: delayed import parser = etree.XMLParser(remove_blank_text=True) tree = etree.fromstring(xml, parser) xml = etree.tostring( tree, encoding='utf-8', pretty_print=True, xml_declaration=True ).decode() except Exception as exc: warnings.warn( f' {exc.__class__.__name__}: {exc}', UserWarning, ) except ImportError: pass return xml @staticmethod def _escape(value): """Return escaped string of value.""" if not isinstance(value, str): value = str(value) elif '&' in value or '>' in value or '<' in value: return value value = value.replace('&', '&') value = value.replace('>', '>') value = value.replace('<', '<') return value @staticmethod def _element(metadata, name, default=None): """Return XML formatted element if name in metadata.""" value = metadata.get(name, default) if value is None: return None return f'<{name}>{OmeXml._escape(value)}' @staticmethod def _elements(metadata, *names): """Return XML formatted elements.""" if not metadata: return '' elements = (OmeXml._element(metadata, name) for name in names) return ''.join(e for e in elements if e) @staticmethod def _attribute(metadata, name, index=None, default=None): """Return XML formatted attribute if name in metadata.""" value = metadata.get(name, default) if value is None: return None if index is not None: if isinstance(value, (list, tuple)): value = value[index] elif index > 0: raise TypeError( f'{type(value).__name__!r} is not a list or tuple' ) return f' {name}="{OmeXml._escape(value)}"' @staticmethod def _attributes(metadata, index_, *names): """Return XML formatted attributes.""" if not metadata: return '' if index_ is None: attributes = (OmeXml._attribute(metadata, name) for name in names) elif isinstance(metadata, (list, tuple)): metadata = metadata[index_] attributes = (OmeXml._attribute(metadata, name) for name in names) elif isinstance(metadata, dict): attributes = ( OmeXml._attribute(metadata, name, index_) for name in names ) return ''.join(a for a in attributes if a) @staticmethod def _reference(metadata, name): """Return XML formatted reference element.""" value = metadata.get(name, None) if value is None: return '' try: value = value['ID'] except KeyError: pass return f'<{name} ID="{OmeXml._escape(value)}"/>' @staticmethod def validate(omexml, omexsd=None, assert_=True, _schema=[]): """Return if OME-XML is valid according to XMLSchema. If 'assert_' is True, raise an AssertionError if validation fails. On first run, this function takes several seconds to download and parse the 2016-06 OME XMLSchema. """ from lxml import etree # noqa: delay import if not _schema: if omexsd is None: omexsd = os.path.join(os.path.dirname(__file__), 'ome.xsd') if os.path.exists(omexsd): with open(omexsd, 'rb') as fh: omexsd = fh.read() else: import urllib.request # noqa: delay import with urllib.request.urlopen( 'https://www.openmicroscopy.org/' 'Schemas/OME/2016-06/ome.xsd' ) as fh: omexsd = fh.read() if omexsd.startswith(b'', 1)[-1] try: _schema.append( etree.XMLSchema(etree.fromstring(omexsd.decode())) ) except Exception: # raise _schema.append(None) if _schema and _schema[0] is not None: if omexml.startswith('', 1)[-1] tree = etree.fromstring(omexml) if assert_: _schema[0].assert_(tree) return True return _schema[0].validate(tree) return None class LazyConst: """Class whose attributes are computed on first access from its methods.""" def __init__(self, cls): self._cls = cls self.__doc__ = cls.__doc__ self.__module__ = cls.__module__ self.__name__ = cls.__name__ self.__qualname__ = cls.__qualname__ self.lock = threading.RLock() # for name, value in ( # (name, getattr(cls, name)) for name in dir(cls) if name.isupper() # ): # if callable(value): # value = staticmethod(value) # setattr(cls, name, value) def __reduce__(self): # decorated class will be pickled by name return self._cls.__qualname__ def __getattr__(self, name): with self.lock: if name in self.__dict__: # another thread set attribute while awaiting lock value = self.__dict__[name] else: func = getattr(self._cls, name) value = func() if callable(func) else func try: setattr(value, '__module__', getattr(func, '__module__')) except AttributeError: pass try: setattr(value, '__name__', getattr(func, '__name__')) except AttributeError: pass try: setattr( value, '__qualname__', getattr(func, '__qualname__') ) except AttributeError: pass # __doc__ # __annotations__ setattr(self, name, value) return value @LazyConst class TIFF: """Namespace for module constants.""" def CLASSIC_LE(): class ClassicTiffLe: __slots__ = () version = 42 byteorder = '<' offsetsize = 4 offsetformat = '= 32768 (32781, 'ImageID'), (32931, 'WangTag1'), (32932, 'WangAnnotation'), (32933, 'WangTag3'), (32934, 'WangTag4'), (32953, 'ImageReferencePoints'), (32954, 'RegionXformTackPoint'), (32955, 'WarpQuadrilateral'), (32956, 'AffineTransformMat'), (32995, 'Matteing'), (32996, 'DataType'), # use SampleFormat (32997, 'ImageDepth'), (32998, 'TileDepth'), (33300, 'ImageFullWidth'), (33301, 'ImageFullLength'), (33302, 'TextureFormat'), (33303, 'TextureWrapModes'), (33304, 'FieldOfViewCotangent'), (33305, 'MatrixWorldToScreen'), (33306, 'MatrixWorldToCamera'), (33405, 'Model2'), (33421, 'CFARepeatPatternDim'), (33422, 'CFAPattern'), (33423, 'BatteryLevel'), (33424, 'KodakIFD'), (33434, 'ExposureTime'), (33437, 'FNumber'), (33432, 'Copyright'), (33445, 'MDFileTag'), (33446, 'MDScalePixel'), (33447, 'MDColorTable'), (33448, 'MDLabName'), (33449, 'MDSampleInfo'), (33450, 'MDPrepDate'), (33451, 'MDPrepTime'), (33452, 'MDFileUnits'), (33465, 'NiffRotation'), # NIFF (33466, 'NiffNavyCompression'), # NIFF (33467, 'NiffTileIndex'), # NIFF (33471, 'OlympusINI'), (33550, 'ModelPixelScaleTag'), (33560, 'OlympusSIS'), # see also 33471 and 34853 (33589, 'AdventScale'), (33590, 'AdventRevision'), (33628, 'UIC1tag'), # Metamorph Universal Imaging Corp STK (33629, 'UIC2tag'), (33630, 'UIC3tag'), (33631, 'UIC4tag'), (33723, 'IPTCNAA'), (33858, 'ExtendedTagsOffset'), # DEFF points IFD with tags (33918, 'IntergraphPacketData'), # INGRPacketDataTag (33919, 'IntergraphFlagRegisters'), # INGRFlagRegisters (33920, 'IntergraphMatrixTag'), # IrasBTransformationMatrix (33921, 'INGRReserved'), (33922, 'ModelTiepointTag'), (33923, 'LeicaMagic'), (34016, 'Site'), # 34016..34032 ANSI IT8 TIFF/IT (34017, 'ColorSequence'), (34018, 'IT8Header'), (34019, 'RasterPadding'), (34020, 'BitsPerRunLength'), (34021, 'BitsPerExtendedRunLength'), (34022, 'ColorTable'), (34023, 'ImageColorIndicator'), (34024, 'BackgroundColorIndicator'), (34025, 'ImageColorValue'), (34026, 'BackgroundColorValue'), (34027, 'PixelIntensityRange'), (34028, 'TransparencyIndicator'), (34029, 'ColorCharacterization'), (34030, 'HCUsage'), (34031, 'TrapIndicator'), (34032, 'CMYKEquivalent'), (34118, 'CZ_SEM'), # Zeiss SEM (34152, 'AFCP_IPTC'), (34232, 'PixelMagicJBIGOptions'), # EXIF, also TI FrameCount (34263, 'JPLCartoIFD'), (34122, 'IPLAB'), # number of images (34264, 'ModelTransformationTag'), (34306, 'WB_GRGBLevels'), # Leaf MOS (34310, 'LeafData'), (34361, 'MM_Header'), (34362, 'MM_Stamp'), (34363, 'MM_Unknown'), (34377, 'ImageResources'), # Photoshop (34386, 'MM_UserBlock'), (34412, 'CZ_LSMINFO'), (34665, 'ExifTag'), (34675, 'InterColorProfile'), # ICCProfile (34680, 'FEI_SFEG'), # (34682, 'FEI_HELIOS'), # (34683, 'FEI_TITAN'), # (34687, 'FXExtensions'), (34688, 'MultiProfiles'), (34689, 'SharedData'), (34690, 'T88Options'), (34710, 'MarCCD'), # offset to MarCCD header (34732, 'ImageLayer'), (34735, 'GeoKeyDirectoryTag'), (34736, 'GeoDoubleParamsTag'), (34737, 'GeoAsciiParamsTag'), (34750, 'JBIGOptions'), (34821, 'PIXTIFF'), # ? Pixel Translations Inc (34850, 'ExposureProgram'), (34852, 'SpectralSensitivity'), (34853, 'GPSTag'), # GPSIFD also OlympusSIS2 (34853, 'OlympusSIS2'), (34855, 'ISOSpeedRatings'), (34855, 'PhotographicSensitivity'), (34856, 'OECF'), # optoelectric conversion factor (34857, 'Interlace'), (34858, 'TimeZoneOffset'), (34859, 'SelfTimerMode'), (34864, 'SensitivityType'), (34865, 'StandardOutputSensitivity'), (34866, 'RecommendedExposureIndex'), (34867, 'ISOSpeed'), (34868, 'ISOSpeedLatitudeyyy'), (34869, 'ISOSpeedLatitudezzz'), (34908, 'HylaFAXFaxRecvParams'), (34909, 'HylaFAXFaxSubAddress'), (34910, 'HylaFAXFaxRecvTime'), (34911, 'FaxDcs'), (34929, 'FedexEDR'), (34954, 'LeafSubIFD'), (34959, 'Aphelion1'), (34960, 'Aphelion2'), (34961, 'AphelionInternal'), # ADCIS (36864, 'ExifVersion'), (36867, 'DateTimeOriginal'), (36868, 'DateTimeDigitized'), (36873, 'GooglePlusUploadCode'), (36880, 'OffsetTime'), (36881, 'OffsetTimeOriginal'), (36882, 'OffsetTimeDigitized'), # TODO, Pilatus/CHESS/TV6 36864..37120 conflicting with Exif (36864, 'TVX_Unknown'), (36865, 'TVX_NumExposure'), (36866, 'TVX_NumBackground'), (36867, 'TVX_ExposureTime'), (36868, 'TVX_BackgroundTime'), (36870, 'TVX_Unknown'), (36873, 'TVX_SubBpp'), (36874, 'TVX_SubWide'), (36875, 'TVX_SubHigh'), (36876, 'TVX_BlackLevel'), (36877, 'TVX_DarkCurrent'), (36878, 'TVX_ReadNoise'), (36879, 'TVX_DarkCurrentNoise'), (36880, 'TVX_BeamMonitor'), (37120, 'TVX_UserVariables'), # A/D values (37121, 'ComponentsConfiguration'), (37122, 'CompressedBitsPerPixel'), (37377, 'ShutterSpeedValue'), (37378, 'ApertureValue'), (37379, 'BrightnessValue'), (37380, 'ExposureBiasValue'), (37381, 'MaxApertureValue'), (37382, 'SubjectDistance'), (37383, 'MeteringMode'), (37384, 'LightSource'), (37385, 'Flash'), (37386, 'FocalLength'), (37387, 'FlashEnergy'), # 37387 (37388, 'SpatialFrequencyResponse'), # 37388 (37389, 'Noise'), (37390, 'FocalPlaneXResolution'), (37391, 'FocalPlaneYResolution'), (37392, 'FocalPlaneResolutionUnit'), (37393, 'ImageNumber'), (37394, 'SecurityClassification'), (37395, 'ImageHistory'), (37396, 'SubjectLocation'), (37397, 'ExposureIndex'), (37398, 'TIFFEPStandardID'), (37399, 'SensingMethod'), (37434, 'CIP3DataFile'), (37435, 'CIP3Sheet'), (37436, 'CIP3Side'), (37439, 'StoNits'), (37500, 'MakerNote'), (37510, 'UserComment'), (37520, 'SubsecTime'), (37521, 'SubsecTimeOriginal'), (37522, 'SubsecTimeDigitized'), (37679, 'MODIText'), # Microsoft Office Document Imaging (37680, 'MODIOLEPropertySetStorage'), (37681, 'MODIPositioning'), (37706, 'TVIPS'), # offset to TemData structure (37707, 'TVIPS1'), (37708, 'TVIPS2'), # same TemData structure as undefined (37724, 'ImageSourceData'), # Photoshop (37888, 'Temperature'), (37889, 'Humidity'), (37890, 'Pressure'), (37891, 'WaterDepth'), (37892, 'Acceleration'), (37893, 'CameraElevationAngle'), (40000, 'XPos'), # Janelia (40001, 'YPos'), (40002, 'ZPos'), (40001, 'MC_IpWinScal'), # Media Cybernetics (40001, 'RecipName'), # MS FAX (40002, 'RecipNumber'), (40003, 'SenderName'), (40004, 'Routing'), (40005, 'CallerId'), (40006, 'TSID'), (40007, 'CSID'), (40008, 'FaxTime'), (40100, 'MC_IdOld'), (40106, 'MC_Unknown'), (40965, 'InteroperabilityTag'), # InteropOffset (40091, 'XPTitle'), (40092, 'XPComment'), (40093, 'XPAuthor'), (40094, 'XPKeywords'), (40095, 'XPSubject'), (40960, 'FlashpixVersion'), (40961, 'ColorSpace'), (40962, 'PixelXDimension'), (40963, 'PixelYDimension'), (40964, 'RelatedSoundFile'), (40976, 'SamsungRawPointersOffset'), (40977, 'SamsungRawPointersLength'), (41217, 'SamsungRawByteOrder'), (41218, 'SamsungRawUnknown'), (41483, 'FlashEnergy'), (41484, 'SpatialFrequencyResponse'), (41485, 'Noise'), # 37389 (41486, 'FocalPlaneXResolution'), # 37390 (41487, 'FocalPlaneYResolution'), # 37391 (41488, 'FocalPlaneResolutionUnit'), # 37392 (41489, 'ImageNumber'), # 37393 (41490, 'SecurityClassification'), # 37394 (41491, 'ImageHistory'), # 37395 (41492, 'SubjectLocation'), # 37395 (41493, 'ExposureIndex '), # 37397 (41494, 'TIFF-EPStandardID'), (41495, 'SensingMethod'), # 37399 (41728, 'FileSource'), (41729, 'SceneType'), (41730, 'CFAPattern'), # 33422 (41985, 'CustomRendered'), (41986, 'ExposureMode'), (41987, 'WhiteBalance'), (41988, 'DigitalZoomRatio'), (41989, 'FocalLengthIn35mmFilm'), (41990, 'SceneCaptureType'), (41991, 'GainControl'), (41992, 'Contrast'), (41993, 'Saturation'), (41994, 'Sharpness'), (41995, 'DeviceSettingDescription'), (41996, 'SubjectDistanceRange'), (42016, 'ImageUniqueID'), (42032, 'CameraOwnerName'), (42033, 'BodySerialNumber'), (42034, 'LensSpecification'), (42035, 'LensMake'), (42036, 'LensModel'), (42037, 'LensSerialNumber'), (42080, 'CompositeImage'), (42081, 'SourceImageNumberCompositeImage'), (42082, 'SourceExposureTimesCompositeImage'), (42112, 'GDAL_METADATA'), (42113, 'GDAL_NODATA'), (42240, 'Gamma'), (43314, 'NIHImageHeader'), (44992, 'ExpandSoftware'), (44993, 'ExpandLens'), (44994, 'ExpandFilm'), (44995, 'ExpandFilterLens'), (44996, 'ExpandScanner'), (44997, 'ExpandFlashLamp'), (48129, 'PixelFormat'), # HDP and WDP (48130, 'Transformation'), (48131, 'Uncompressed'), (48132, 'ImageType'), (48256, 'ImageWidth'), # 256 (48257, 'ImageHeight'), (48258, 'WidthResolution'), (48259, 'HeightResolution'), (48320, 'ImageOffset'), (48321, 'ImageByteCount'), (48322, 'AlphaOffset'), (48323, 'AlphaByteCount'), (48324, 'ImageDataDiscard'), (48325, 'AlphaDataDiscard'), (50003, 'KodakAPP3'), (50215, 'OceScanjobDescription'), (50216, 'OceApplicationSelector'), (50217, 'OceIdentificationNumber'), (50218, 'OceImageLogicCharacteristics'), (50255, 'Annotations'), (50288, 'MC_Id'), # Media Cybernetics (50289, 'MC_XYPosition'), (50290, 'MC_ZPosition'), (50291, 'MC_XYCalibration'), (50292, 'MC_LensCharacteristics'), (50293, 'MC_ChannelName'), (50294, 'MC_ExcitationWavelength'), (50295, 'MC_TimeStamp'), (50296, 'MC_FrameProperties'), (50341, 'PrintImageMatching'), (50495, 'PCO_RAW'), # TODO, PCO CamWare (50547, 'OriginalFileName'), (50560, 'USPTO_OriginalContentType'), # US Patent Office (50561, 'USPTO_RotationCode'), (50648, 'CR2Unknown1'), (50649, 'CR2Unknown2'), (50656, 'CR2CFAPattern'), (50674, 'LercParameters'), # ESGI 50674 .. 50677 (50706, 'DNGVersion'), # DNG 50706 .. 51114 (50707, 'DNGBackwardVersion'), (50708, 'UniqueCameraModel'), (50709, 'LocalizedCameraModel'), (50710, 'CFAPlaneColor'), (50711, 'CFALayout'), (50712, 'LinearizationTable'), (50713, 'BlackLevelRepeatDim'), (50714, 'BlackLevel'), (50715, 'BlackLevelDeltaH'), (50716, 'BlackLevelDeltaV'), (50717, 'WhiteLevel'), (50718, 'DefaultScale'), (50719, 'DefaultCropOrigin'), (50720, 'DefaultCropSize'), (50721, 'ColorMatrix1'), (50722, 'ColorMatrix2'), (50723, 'CameraCalibration1'), (50724, 'CameraCalibration2'), (50725, 'ReductionMatrix1'), (50726, 'ReductionMatrix2'), (50727, 'AnalogBalance'), (50728, 'AsShotNeutral'), (50729, 'AsShotWhiteXY'), (50730, 'BaselineExposure'), (50731, 'BaselineNoise'), (50732, 'BaselineSharpness'), (50733, 'BayerGreenSplit'), (50734, 'LinearResponseLimit'), (50735, 'CameraSerialNumber'), (50736, 'LensInfo'), (50737, 'ChromaBlurRadius'), (50738, 'AntiAliasStrength'), (50739, 'ShadowScale'), (50740, 'DNGPrivateData'), (50741, 'MakerNoteSafety'), (50752, 'RawImageSegmentation'), (50778, 'CalibrationIlluminant1'), (50779, 'CalibrationIlluminant2'), (50780, 'BestQualityScale'), (50781, 'RawDataUniqueID'), (50784, 'AliasLayerMetadata'), (50827, 'OriginalRawFileName'), (50828, 'OriginalRawFileData'), (50829, 'ActiveArea'), (50830, 'MaskedAreas'), (50831, 'AsShotICCProfile'), (50832, 'AsShotPreProfileMatrix'), (50833, 'CurrentICCProfile'), (50834, 'CurrentPreProfileMatrix'), (50838, 'IJMetadataByteCounts'), (50839, 'IJMetadata'), (50844, 'RPCCoefficientTag'), (50879, 'ColorimetricReference'), (50885, 'SRawType'), (50898, 'PanasonicTitle'), (50899, 'PanasonicTitle2'), (50908, 'RSID'), # DGIWG (50909, 'GEO_METADATA'), # DGIWG XML (50931, 'CameraCalibrationSignature'), (50932, 'ProfileCalibrationSignature'), (50933, 'ProfileIFD'), # EXTRACAMERAPROFILES (50934, 'AsShotProfileName'), (50935, 'NoiseReductionApplied'), (50936, 'ProfileName'), (50937, 'ProfileHueSatMapDims'), (50938, 'ProfileHueSatMapData1'), (50939, 'ProfileHueSatMapData2'), (50940, 'ProfileToneCurve'), (50941, 'ProfileEmbedPolicy'), (50942, 'ProfileCopyright'), (50964, 'ForwardMatrix1'), (50965, 'ForwardMatrix2'), (50966, 'PreviewApplicationName'), (50967, 'PreviewApplicationVersion'), (50968, 'PreviewSettingsName'), (50969, 'PreviewSettingsDigest'), (50970, 'PreviewColorSpace'), (50971, 'PreviewDateTime'), (50972, 'RawImageDigest'), (50973, 'OriginalRawFileDigest'), (50974, 'SubTileBlockSize'), (50975, 'RowInterleaveFactor'), (50981, 'ProfileLookTableDims'), (50982, 'ProfileLookTableData'), (51008, 'OpcodeList1'), (51009, 'OpcodeList2'), (51022, 'OpcodeList3'), (51023, 'FibicsXML'), # (51041, 'NoiseProfile'), (51043, 'TimeCodes'), (51044, 'FrameRate'), (51058, 'TStop'), (51081, 'ReelName'), (51089, 'OriginalDefaultFinalSize'), (51090, 'OriginalBestQualitySize'), (51091, 'OriginalDefaultCropSize'), (51105, 'CameraLabel'), (51107, 'ProfileHueSatMapEncoding'), (51108, 'ProfileLookTableEncoding'), (51109, 'BaselineExposureOffset'), (51110, 'DefaultBlackRender'), (51111, 'NewRawImageDigest'), (51112, 'RawToPreviewGain'), (51113, 'CacheBlob'), (51114, 'CacheVersion'), (51123, 'MicroManagerMetadata'), (51125, 'DefaultUserCrop'), (51159, 'ZIFmetadata'), # Objective Pathology Services (51160, 'ZIFannotations'), # Objective Pathology Services (51177, 'DepthFormat'), (51178, 'DepthNear'), (51179, 'DepthFar'), (51180, 'DepthUnits'), (51181, 'DepthMeasureType'), (51182, 'EnhanceParams'), (59932, 'Padding'), (59933, 'OffsetSchema'), # Reusable Tags 65000-65535 # (65000, DimapDocumentXML'), # (65001, 'EER_XML'), # 65000-65112, Photoshop Camera RAW EXIF tags # (65000, 'OwnerName'), # (65001, 'SerialNumber'), # (65002, 'Lens'), # (65024, 'KodakKDCPrivateIFD'), # (65100, 'RawFile'), # (65101, 'Converter'), # (65102, 'WhiteBalance'), # (65105, 'Exposure'), # (65106, 'Shadows'), # (65107, 'Brightness'), # (65108, 'Contrast'), # (65109, 'Saturation'), # (65110, 'Sharpness'), # (65111, 'Smoothness'), # (65112, 'MoireFilter'), (65200, 'FlexXML'), ) ) def TAG_READERS(): # map tag codes to import functions return { 301: read_colormap, 320: read_colormap, # 700: read_bytes, # read_utf8, # 34377: read_bytes, 33723: read_bytes, # 34675: read_bytes, 33628: read_uic1tag, # Universal Imaging Corp STK 33629: read_uic2tag, 33630: read_uic3tag, 33631: read_uic4tag, 34118: read_cz_sem, # Carl Zeiss SEM 34361: read_mm_header, # Olympus FluoView 34362: read_mm_stamp, 34363: read_numpy, # MM_Unknown 34386: read_numpy, # MM_UserBlock 34412: read_cz_lsminfo, # Carl Zeiss LSM 34680: read_fei_metadata, # S-FEG 34682: read_fei_metadata, # Helios NanoLab 37706: read_tvips_header, # TVIPS EMMENU 37724: read_bytes, # ImageSourceData 33923: read_bytes, # read_leica_magic 43314: read_nih_image_header, # 40001: read_bytes, 40100: read_bytes, 50288: read_bytes, 50296: read_bytes, 50839: read_bytes, 51123: read_json, 33471: read_sis_ini, 33560: read_sis, 34665: read_exif_ifd, 34853: read_gps_ifd, # conflicts with OlympusSIS 40965: read_interoperability_ifd, 65426: read_numpy, # NDPI McuStarts 65432: read_numpy, # NDPI McuStartsHighBytes 65439: read_numpy, # NDPI unknown 65459: read_bytes, # NDPI bytes, not string } def TAG_LOAD(): # tags whose values are not delay loaded return frozenset( ( 258, # BitsPerSample 270, # ImageDescription 273, # StripOffsets 277, # SamplesPerPixel 279, # StripByteCounts 282, # XResolution 283, # YResolution # 301, # TransferFunction 305, # Software # 306, # DateTime # 320, # ColorMap 324, # TileOffsets 325, # TileByteCounts 330, # SubIFDs 338, # ExtraSamples 339, # SampleFormat 347, # JPEGTables 513, # JPEGInterchangeFormat 514, # JPEGInterchangeFormatLength 530, # YCbCrSubSampling 33628, # UIC1tag 42113, # GDAL_NODATA 50838, # IJMetadataByteCounts 50839, # IJMetadata ) ) def TAG_TUPLE(): # tags whose values must be stored as tuples return frozenset( (273, 279, 324, 325, 330, 338, 513, 514, 530, 531, 34736, 50838) ) def TAG_ATTRIBUTES(): # map tag codes to TiffPage attribute names return { 254: 'subfiletype', 256: 'imagewidth', 257: 'imagelength', # 258: 'bitspersample', # set manually 259: 'compression', 262: 'photometric', 266: 'fillorder', 270: 'description', 277: 'samplesperpixel', 278: 'rowsperstrip', 284: 'planarconfig', # 301: 'transferfunction', # delay load 305: 'software', # 320: 'colormap', # delay load 317: 'predictor', 322: 'tilewidth', 323: 'tilelength', 330: 'subifds', 338: 'extrasamples', # 339: 'sampleformat', # set manually 347: 'jpegtables', 530: 'subsampling', 32997: 'imagedepth', 32998: 'tiledepth', } def TAG_ENUM(): # map tag codes to Enums class TAG_ENUM: __slots__ = ('_codes',) def __init__(self): self._codes = { 254: None, 255: None, 259: TIFF.COMPRESSION, 262: TIFF.PHOTOMETRIC, 263: None, 266: None, 274: None, 284: TIFF.PLANARCONFIG, 290: None, 296: None, 300: None, 317: None, 338: None, 339: TIFF.SAMPLEFORMAT, } def __contains__(self, key): return key in self._codes def __getitem__(self, key): value = self._codes[key] if value is not None: return value if key == 254: value = TIFF.FILETYPE elif key == 255: value = TIFF.OFILETYPE elif key == 263: value = TIFF.THRESHHOLD elif key == 266: value = TIFF.FILLORDER elif key == 274: value = TIFF.ORIENTATION elif key == 290: value = TIFF.GRAYRESPONSEUNIT # elif key == 292: # value = TIFF.GROUP3OPT # elif key == 293: # value = TIFF.GROUP4OPT elif key == 296: value = TIFF.RESUNIT elif key == 300: value = TIFF.COLORRESPONSEUNIT elif key == 317: value = TIFF.PREDICTOR elif key == 338: value = TIFF.EXTRASAMPLE # elif key == 512: # TIFF.JPEGPROC # elif key == 531: # TIFF.YCBCRPOSITION else: raise KeyError(key) self._codes[key] = value return value return TAG_ENUM() def FILETYPE(): class FILETYPE(enum.IntFlag): UNDEFINED = 0 REDUCEDIMAGE = 1 PAGE = 2 MASK = 4 MACRO = 8 # Aperio SVS, or DNG Depth map ENHANCED = 16 # DNG DNG = 65536 # 65537: Alternative, 65540: Semantic mask return FILETYPE def OFILETYPE(): class OFILETYPE(enum.IntEnum): UNDEFINED = 0 IMAGE = 1 REDUCEDIMAGE = 2 PAGE = 3 return OFILETYPE def COMPRESSION(): class COMPRESSION(enum.IntEnum): NONE = 1 # Uncompressed CCITTRLE = 2 # CCITT 1D CCITT_T4 = 3 # T4/Group 3 Fax CCITT_T6 = 4 # T6/Group 4 Fax LZW = 5 OJPEG = 6 # old-style JPEG JPEG = 7 ADOBE_DEFLATE = 8 JBIG_BW = 9 JBIG_COLOR = 10 JPEG_99 = 99 KODAK_262 = 262 JPEGXR_NDPI = 22610 NEXT = 32766 SONY_ARW = 32767 PACKED_RAW = 32769 SAMSUNG_SRW = 32770 CCIRLEW = 32771 SAMSUNG_SRW2 = 32772 PACKBITS = 32773 THUNDERSCAN = 32809 IT8CTPAD = 32895 IT8LW = 32896 IT8MP = 32897 IT8BL = 32898 PIXARFILM = 32908 PIXARLOG = 32909 DEFLATE = 32946 DCS = 32947 APERIO_JP2000_YCBC = 33003 # Leica Aperio JPEG_2000_LOSSY = 33004 # BioFormats APERIO_JP2000_RGB = 33005 # Leica Aperio ALT_JPEG = 33007 # BioFormats JBIG = 34661 SGILOG = 34676 SGILOG24 = 34677 JPEG2000 = 34712 NIKON_NEF = 34713 JBIG2 = 34715 MDI_BINARY = 34718 # Microsoft Document Imaging MDI_PROGRESSIVE = 34719 # Microsoft Document Imaging MDI_VECTOR = 34720 # Microsoft Document Imaging LERC = 34887 # ESRI Lerc JPEG_LOSSY = 34892 # DNG LZMA = 34925 ZSTD_DEPRECATED = 34926 WEBP_DEPRECATED = 34927 PNG = 34933 # Objective Pathology Services JPEGXR = 34934 # Objective Pathology Services ZSTD = 50000 WEBP = 50001 JPEGXL = 50002 # JXL PIXTIFF = 50013 # EER_V0 = 65000 # EER_V1 = 65001 # KODAK_DCR = 65000 # PENTAX_PEF = 65535 def __bool__(self): return self != 1 return COMPRESSION def PHOTOMETRIC(): class PHOTOMETRIC(enum.IntEnum): MINISWHITE = 0 MINISBLACK = 1 RGB = 2 PALETTE = 3 MASK = 4 SEPARATED = 5 # CMYK YCBCR = 6 CIELAB = 8 ICCLAB = 9 ITULAB = 10 CFA = 32803 # Color Filter Array LOGL = 32844 LOGLUV = 32845 LINEAR_RAW = 34892 DEPTH_MAP = 51177 # DNG 1.5 SEMANTIC_MASK = 52527 # DNG 1.6 return PHOTOMETRIC def PHOTOMETRIC_SAMPLES(): return { 0: 1, # MINISWHITE 1: 1, # MINISBLACK 2: 3, # RGB 3: 1, # PALETTE 4: 1, # MASK 5: 4, # SEPARATED 6: 3, # YCBCR 8: 3, # CIELAB 9: 3, # ICCLAB 10: 3, # ITULAB 32803: 1, # CFA 32844: 1, # LOGL ? 32845: 3, # LOGLUV 34892: 3, # LINEAR_RAW ? 51177: 1, # DEPTH_MAP ? 52527: 1, # SEMANTIC_MASK ? } def THRESHHOLD(): class THRESHHOLD(enum.IntEnum): BILEVEL = 1 HALFTONE = 2 ERRORDIFFUSE = 3 return THRESHHOLD def FILLORDER(): class FILLORDER(enum.IntEnum): MSB2LSB = 1 LSB2MSB = 2 return FILLORDER def ORIENTATION(): class ORIENTATION(enum.IntEnum): TOPLEFT = 1 TOPRIGHT = 2 BOTRIGHT = 3 BOTLEFT = 4 LEFTTOP = 5 RIGHTTOP = 6 RIGHTBOT = 7 LEFTBOT = 8 return ORIENTATION def PLANARCONFIG(): class PLANARCONFIG(enum.IntEnum): CONTIG = 1 # CHUNKY SEPARATE = 2 return PLANARCONFIG def GRAYRESPONSEUNIT(): class GRAYRESPONSEUNIT(enum.IntEnum): _10S = 1 _100S = 2 _1000S = 3 _10000S = 4 _100000S = 5 return GRAYRESPONSEUNIT def GROUP4OPT(): class GROUP4OPT(enum.IntEnum): UNCOMPRESSED = 2 return GROUP4OPT def RESUNIT(): class RESUNIT(enum.IntEnum): NONE = 1 INCH = 2 CENTIMETER = 3 MILLIMETER = 4 # DNG MICROMETER = 5 # DNG def __bool__(self): return self != 1 return RESUNIT def COLORRESPONSEUNIT(): class COLORRESPONSEUNIT(enum.IntEnum): _10S = 1 _100S = 2 _1000S = 3 _10000S = 4 _100000S = 5 return COLORRESPONSEUNIT def PREDICTOR(): class PREDICTOR(enum.IntEnum): NONE = 1 HORIZONTAL = 2 FLOATINGPOINT = 3 HORIZONTALX2 = 34892 # DNG HORIZONTALX4 = 34893 FLOATINGPOINTX2 = 34894 FLOATINGPOINTX4 = 34895 def __bool__(self): return self != 1 return PREDICTOR def EXTRASAMPLE(): class EXTRASAMPLE(enum.IntEnum): UNSPECIFIED = 0 ASSOCALPHA = 1 UNASSALPHA = 2 return EXTRASAMPLE def SAMPLEFORMAT(): class SAMPLEFORMAT(enum.IntEnum): UINT = 1 INT = 2 IEEEFP = 3 VOID = 4 COMPLEXINT = 5 COMPLEXIEEEFP = 6 return SAMPLEFORMAT def DATATYPES(): class DATATYPES(enum.IntEnum): BYTE = 1 # 8-bit unsigned integer ASCII = 2 # 8-bit byte that contains a 7-bit ASCII code; # the last byte must be NULL (binary zero) SHORT = 3 # 16-bit (2-byte) unsigned integer LONG = 4 # 32-bit (4-byte) unsigned integer RATIONAL = 5 # two LONGs: the first represents the numerator # of a fraction; the second, the denominator SBYTE = 6 # an 8-bit signed (twos-complement) integer UNDEFINED = 7 # an 8-bit byte that may contain anything, # depending on the definition of the field SSHORT = 8 # A 16-bit (2-byte) signed (twos-complement) integer SLONG = 9 # a 32-bit (4-byte) signed (twos-complement) integer SRATIONAL = 10 # two SLONGs: the first represents the numerator # of a fraction, the second the denominator FLOAT = 11 # single precision (4-byte) IEEE format DOUBLE = 12 # double precision (8-byte) IEEE format IFD = 13 # unsigned 4 byte IFD offset UNICODE = 14 COMPLEX = 15 LONG8 = 16 # unsigned 8 byte integer (BigTiff) SLONG8 = 17 # signed 8 byte integer (BigTiff) IFD8 = 18 # unsigned 8 byte IFD offset (BigTiff) return DATATYPES def DATA_FORMATS(): # map TIFF DATATYPES to Python struct formats return { 1: '1B', 2: '1s', 3: '1H', 4: '1I', 5: '2I', 6: '1b', 7: '1B', 8: '1h', 9: '1i', 10: '2i', 11: '1f', 12: '1d', 13: '1I', # 14: '', # 15: '', 16: '1Q', 17: '1q', 18: '1Q', } def DATA_DTYPES(): # map numpy dtypes to TIFF DATATYPES return { 'B': 1, 's': 2, 'H': 3, 'I': 4, '2I': 5, 'b': 6, 'h': 8, 'i': 9, '2i': 10, 'f': 11, 'd': 12, 'Q': 16, 'q': 17, } def SAMPLE_DTYPES(): # map SampleFormat and BitsPerSample to numpy dtype return { # UINT (1, 1): '?', # bitmap (1, 2): 'B', (1, 3): 'B', (1, 4): 'B', (1, 5): 'B', (1, 6): 'B', (1, 7): 'B', (1, 8): 'B', (1, 9): 'H', (1, 10): 'H', (1, 11): 'H', (1, 12): 'H', (1, 13): 'H', (1, 14): 'H', (1, 15): 'H', (1, 16): 'H', (1, 17): 'I', (1, 18): 'I', (1, 19): 'I', (1, 20): 'I', (1, 21): 'I', (1, 22): 'I', (1, 23): 'I', (1, 24): 'I', (1, 25): 'I', (1, 26): 'I', (1, 27): 'I', (1, 28): 'I', (1, 29): 'I', (1, 30): 'I', (1, 31): 'I', (1, 32): 'I', (1, 64): 'Q', # VOID : treat as UINT (4, 1): '?', # bitmap (4, 2): 'B', (4, 3): 'B', (4, 4): 'B', (4, 5): 'B', (4, 6): 'B', (4, 7): 'B', (4, 8): 'B', (4, 9): 'H', (4, 10): 'H', (4, 11): 'H', (4, 12): 'H', (4, 13): 'H', (4, 14): 'H', (4, 15): 'H', (4, 16): 'H', (4, 17): 'I', (4, 18): 'I', (4, 19): 'I', (4, 20): 'I', (4, 21): 'I', (4, 22): 'I', (4, 23): 'I', (4, 24): 'I', (4, 25): 'I', (4, 26): 'I', (4, 27): 'I', (4, 28): 'I', (4, 29): 'I', (4, 30): 'I', (4, 31): 'I', (4, 32): 'I', (4, 64): 'Q', # INT (2, 8): 'b', (2, 16): 'h', (2, 32): 'i', (2, 64): 'q', # IEEEFP (3, 16): 'e', (3, 24): 'f', # float24 bit not supported by numpy (3, 32): 'f', (3, 64): 'd', # COMPLEXIEEEFP (6, 64): 'F', (6, 128): 'D', # RGB565 (1, (5, 6, 5)): 'B', # COMPLEXINT : not supported by numpy (5, 16): 'E', (5, 32): 'F', (5, 64): 'D', } def PREDICTORS(): # map PREDICTOR to predictor encode functions class PREDICTORS: def __init__(self): self._codecs = {None: identityfunc, 1: identityfunc} if imagecodecs is None: self._codecs[2] = delta_encode def __getitem__(self, key): if key in self._codecs: return self._codecs[key] try: if key == 2: codec = imagecodecs.delta_encode elif key == 3: codec = imagecodecs.floatpred_encode elif key == 34892: def codec(data, axis=-1, out=None): return imagecodecs.delta_encode( data, axis=axis, out=out, dist=2 ) elif key == 34893: def codec(data, axis=-1, out=None): return imagecodecs.delta_encode( data, axis=axis, out=out, dist=4 ) elif key == 34894: def codec(data, axis=-1, out=None): return imagecodecs.floatpred_encode( data, axis=axis, out=out, dist=2 ) elif key == 34895: def codec(data, axis=-1, out=None): return imagecodecs.floatpred_encode( data, axis=axis, out=out, dist=4 ) else: raise KeyError(f'{key} is not a known PREDICTOR') except AttributeError: raise KeyError( f'{TIFF.PREDICTOR(key)!r}' " requires the 'imagecodecs' package" ) self._codecs[key] = codec return codec return PREDICTORS() def UNPREDICTORS(): # map PREDICTOR to predictor decode functions class UNPREDICTORS: def __init__(self): self._codecs = {None: identityfunc, 1: identityfunc} if imagecodecs is None: self._codecs[2] = delta_decode def __getitem__(self, key): if key in self._codecs: return self._codecs[key] try: if key == 2: codec = imagecodecs.delta_decode elif key == 3: codec = imagecodecs.floatpred_decode elif key == 34892: def codec(data, axis=-1, out=None): return imagecodecs.delta_decode( data, axis=axis, out=out, dist=2 ) elif key == 34893: def codec(data, axis=-1, out=None): return imagecodecs.delta_decode( data, axis=axis, out=out, dist=4 ) elif key == 34894: def codec(data, axis=-1, out=None): return imagecodecs.floatpred_decode( data, axis=axis, out=out, dist=2 ) elif key == 34895: def codec(data, axis=-1, out=None): return imagecodecs.floatpred_decode( data, axis=axis, out=out, dist=4 ) else: raise KeyError(f'{key} is not a known PREDICTOR') except AttributeError: raise KeyError( f'{TIFF.PREDICTOR(key)!r}' " requires the 'imagecodecs' package" ) self._codecs[key] = codec return codec return UNPREDICTORS() def COMPRESSORS(): # map COMPRESSION to compress functions class COMPRESSORS: def __init__(self): self._codecs = {None: identityfunc, 1: identityfunc} if imagecodecs is None: self._codecs[8] = zlib_encode self._codecs[32946] = zlib_encode self._codecs[34925] = lzma_encode def __getitem__(self, key): if key in self._codecs: return self._codecs[key] try: if key == 5: codec = imagecodecs.lzw_encode elif key == 7: codec = imagecodecs.jpeg_encode elif key == 8 or key == 32946: if ( hasattr(imagecodecs, 'DEFLATE') and imagecodecs.DEFLATE ): codec = imagecodecs.deflate_encode elif imagecodecs.ZLIB: codec = imagecodecs.zlib_encode else: codec = zlib_encode elif key == 32773: codec = imagecodecs.packbits_encode elif ( key == 33003 or key == 33004 or key == 33005 or key == 34712 ): codec = imagecodecs.jpeg2k_encode elif key == 34887: codec = imagecodecs.lerc_encode elif key == 34892: codec = imagecodecs.jpeg8_encode # DNG lossy elif key == 34925: if imagecodecs.LZMA: codec = imagecodecs.lzma_encode else: codec = lzma_encode elif key == 34933: codec = imagecodecs.png_encode elif key == 34934 or key == 22610: codec = imagecodecs.jpegxr_encode elif key == 50000: codec = imagecodecs.zstd_encode elif key == 50001: codec = imagecodecs.webp_encode elif key == 50002: codec = imagecodecs.jpegxl_encode else: try: msg = f'{TIFF.COMPRESSION(key)!r} not supported' except ValueError: msg = f'{key} is not a known COMPRESSION' raise KeyError(msg) except AttributeError: raise KeyError( f'{TIFF.COMPRESSION(key)!r} ' "requires the 'imagecodecs' package" ) self._codecs[key] = codec return codec return COMPRESSORS() def DECOMPRESSORS(): # map COMPRESSION to decompress functions class DECOMPRESSORS: def __init__(self): self._codecs = {None: identityfunc, 1: identityfunc} if imagecodecs is None: self._codecs[8] = zlib_decode self._codecs[32773] = packbits_decode self._codecs[32946] = zlib_decode self._codecs[34925] = lzma_decode def __getitem__(self, key): if key in self._codecs: return self._codecs[key] try: # TODO: enable CCITTRLE decoder for future imagecodecs # if key == 2: # codec = imagecodecs.ccittrle_decode if key == 5: codec = imagecodecs.lzw_decode elif key == 6 or key == 7 or key == 33007: codec = imagecodecs.jpeg_decode elif key == 8 or key == 32946: if ( hasattr(imagecodecs, 'DEFLATE') and imagecodecs.DEFLATE ): codec = imagecodecs.deflate_decode elif imagecodecs.ZLIB: codec = imagecodecs.zlib_decode else: codec = zlib_decode elif key == 32773: codec = imagecodecs.packbits_decode elif ( key == 33003 or key == 33004 or key == 33005 or key == 34712 ): codec = imagecodecs.jpeg2k_decode elif key == 34887: codec = imagecodecs.lerc_decode elif key == 34892: codec = imagecodecs.jpeg8_decode # DNG lossy elif key == 34925: if imagecodecs.LZMA: codec = imagecodecs.lzma_decode else: codec = lzma_decode elif key == 34933: codec = imagecodecs.png_decode elif key == 34934 or key == 22610: codec = imagecodecs.jpegxr_decode elif key == 50000 or key == 34926: # 34926 deprecated codec = imagecodecs.zstd_decode elif key == 50001 or key == 34927: # 34927 deprecated codec = imagecodecs.webp_decode elif key == 50002: codec = imagecodecs.jpegxl_decode else: try: msg = f'{TIFF.COMPRESSION(key)!r} not supported' except ValueError: msg = f'{key} is not a known COMPRESSION' raise KeyError(msg) except AttributeError: raise KeyError( f'{TIFF.COMPRESSION(key)!r} ' "requires the 'imagecodecs' package" ) self._codecs[key] = codec return codec def __contains__(self, key): try: self[key] except KeyError: return False return True return DECOMPRESSORS() def FRAME_ATTRS(): # attributes that a TiffFrame shares with its keyframe return {'shape', 'ndim', 'size', 'dtype', 'axes', 'is_final', 'decode'} def FILE_FLAGS(): # TiffFile and TiffPage 'is_\*' attributes exclude = { 'reduced', 'mask', 'final', 'memmappable', 'contiguous', 'tiled', 'subsampled', } return { a[3:] for a in dir(TiffPage) if a[:3] == 'is_' and a[3:] not in exclude } def FILE_PATTERNS(): # predefined FileSequence patterns return { 'axes': r"""(?ix) # matches Olympus OIF and Leica TIFF series _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4})) _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? """ } def FILE_EXTENSIONS(): # TIFF file extensions return ( 'tif', 'tiff', 'ome.tif', 'lsm', 'stk', 'qpi', 'pcoraw', 'qptiff', 'gel', 'seq', 'svs', 'scn', 'zif', 'ndpi', 'bif', 'tf8', 'tf2', 'btf', 'eer', ) def FILEOPEN_FILTER(): # string for use in Windows File Open box return [ (f'{ext.upper()} files', f'*.{ext}') for ext in TIFF.FILE_EXTENSIONS ] + [('allfiles', '*')] def AXES_LABELS(): # TODO: is there a standard for character axes labels? axes = { 'X': 'width', 'Y': 'length', # height 'Z': 'depth', 'S': 'sample', # rgb(a), cmyk 'I': 'series', # general sequence of frames/planes/pages/IFDs 'T': 'time', 'C': 'channel', # color, emission wavelength 'A': 'angle', 'P': 'phase', # formerly F # P is Position in LSM! 'R': 'tile', # region, point, mosaic 'H': 'lifetime', # histogram 'E': 'lambda', # excitation wavelength 'L': 'exposure', # lux 'V': 'event', 'Q': 'other', 'M': 'mosaic', # LSM 6 } axes.update({v: k for k, v in axes.items()}) return axes def NDPI_TAGS(): # 65420 - 65458 Private Hamamatsu NDPI tags # TODO: obtain specification return TiffTagRegistry( ( (65324, 'OffsetHighBytes'), (65325, 'ByteCountHighBytes'), (65420, 'FileFormat'), (65421, 'Magnification'), # SourceLens (65422, 'XOffsetFromSlideCenter'), (65423, 'YOffsetFromSlideCenter'), (65424, 'ZOffsetFromSlideCenter'), # FocalPlane (65425, 'TissueIndex'), (65426, 'McuStarts'), (65427, 'SlideLabel'), (65428, 'AuthCode'), # ? (65429, '65429'), (65430, '65430'), (65431, '65431'), (65432, 'McuStartsHighBytes'), (65433, '65433'), (65434, 'Fluorescence'), # FilterSetName (65435, 'ExposureRatio'), (65436, 'RedMultiplier'), (65437, 'GreenMultiplier'), (65438, 'BlueMultiplier'), (65439, 'FocusPoints'), (65440, 'FocusPointRegions'), (65441, 'CaptureMode'), (65442, 'ScannerSerialNumber'), (65443, '65443'), (65444, 'JpegQuality'), (65445, 'RefocusInterval'), (65446, 'FocusOffset'), (65447, 'BlankLines'), (65448, 'FirmwareVersion'), (65449, 'Comments'), # PropertyMap, CalibrationInfo (65450, 'LabelObscured'), (65451, 'Wavelength'), (65452, '65452'), (65453, 'LampAge'), (65454, 'ExposureTime'), (65455, 'FocusTime'), (65456, 'ScanTime'), (65457, 'WriteTime'), (65458, 'FullyAutoFocus'), (65500, 'DefaultGamma'), ) ) def EXIF_TAGS(): # 65000 - 65112 Photoshop Camera RAW EXIF tags tags = TiffTagRegistry( ( (65000, 'OwnerName'), (65001, 'SerialNumber'), (65002, 'Lens'), (65100, 'RawFile'), (65101, 'Converter'), (65102, 'WhiteBalance'), (65105, 'Exposure'), (65106, 'Shadows'), (65107, 'Brightness'), (65108, 'Contrast'), (65109, 'Saturation'), (65110, 'Sharpness'), (65111, 'Smoothness'), (65112, 'MoireFilter'), ) ) tags.update(TIFF.TAGS) return tags def GPS_TAGS(): return TiffTagRegistry( ( (0, 'GPSVersionID'), (1, 'GPSLatitudeRef'), (2, 'GPSLatitude'), (3, 'GPSLongitudeRef'), (4, 'GPSLongitude'), (5, 'GPSAltitudeRef'), (6, 'GPSAltitude'), (7, 'GPSTimeStamp'), (8, 'GPSSatellites'), (9, 'GPSStatus'), (10, 'GPSMeasureMode'), (11, 'GPSDOP'), (12, 'GPSSpeedRef'), (13, 'GPSSpeed'), (14, 'GPSTrackRef'), (15, 'GPSTrack'), (16, 'GPSImgDirectionRef'), (17, 'GPSImgDirection'), (18, 'GPSMapDatum'), (19, 'GPSDestLatitudeRef'), (20, 'GPSDestLatitude'), (21, 'GPSDestLongitudeRef'), (22, 'GPSDestLongitude'), (23, 'GPSDestBearingRef'), (24, 'GPSDestBearing'), (25, 'GPSDestDistanceRef'), (26, 'GPSDestDistance'), (27, 'GPSProcessingMethod'), (28, 'GPSAreaInformation'), (29, 'GPSDateStamp'), (30, 'GPSDifferential'), (31, 'GPSHPositioningError'), ) ) def IOP_TAGS(): return TiffTagRegistry( ( (1, 'InteroperabilityIndex'), (2, 'InteroperabilityVersion'), (4096, 'RelatedImageFileFormat'), (4097, 'RelatedImageWidth'), (4098, 'RelatedImageLength'), ) ) def GEO_KEYS(): try: from .tifffile_geodb import GeoKeys # delayed import except ImportError: try: from tifffile_geodb import GeoKeys # delayed import except ImportError: class GeoKeys(enum.IntEnum): pass return GeoKeys def GEO_CODES(): try: from .tifffile_geodb import GEO_CODES # delayed import except ImportError: try: from tifffile_geodb import GEO_CODES # delayed import except ImportError: GEO_CODES = {} return GEO_CODES def CZ_LSMINFO(): return [ ('MagicNumber', 'u4'), ('StructureSize', 'i4'), ('DimensionX', 'i4'), ('DimensionY', 'i4'), ('DimensionZ', 'i4'), ('DimensionChannels', 'i4'), ('DimensionTime', 'i4'), ('DataType', 'i4'), # DATATYPES ('ThumbnailX', 'i4'), ('ThumbnailY', 'i4'), ('VoxelSizeX', 'f8'), ('VoxelSizeY', 'f8'), ('VoxelSizeZ', 'f8'), ('OriginX', 'f8'), ('OriginY', 'f8'), ('OriginZ', 'f8'), ('ScanType', 'u2'), ('SpectralScan', 'u2'), ('TypeOfData', 'u4'), # TYPEOFDATA ('OffsetVectorOverlay', 'u4'), ('OffsetInputLut', 'u4'), ('OffsetOutputLut', 'u4'), ('OffsetChannelColors', 'u4'), ('TimeIntervall', 'f8'), ('OffsetChannelDataTypes', 'u4'), ('OffsetScanInformation', 'u4'), # SCANINFO ('OffsetKsData', 'u4'), ('OffsetTimeStamps', 'u4'), ('OffsetEventList', 'u4'), ('OffsetRoi', 'u4'), ('OffsetBleachRoi', 'u4'), ('OffsetNextRecording', 'u4'), # LSM 2.0 ends here ('DisplayAspectX', 'f8'), ('DisplayAspectY', 'f8'), ('DisplayAspectZ', 'f8'), ('DisplayAspectTime', 'f8'), ('OffsetMeanOfRoisOverlay', 'u4'), ('OffsetTopoIsolineOverlay', 'u4'), ('OffsetTopoProfileOverlay', 'u4'), ('OffsetLinescanOverlay', 'u4'), ('ToolbarFlags', 'u4'), ('OffsetChannelWavelength', 'u4'), ('OffsetChannelFactors', 'u4'), ('ObjectiveSphereCorrection', 'f8'), ('OffsetUnmixParameters', 'u4'), # LSM 3.2, 4.0 end here ('OffsetAcquisitionParameters', 'u4'), ('OffsetCharacteristics', 'u4'), ('OffsetPalette', 'u4'), ('TimeDifferenceX', 'f8'), ('TimeDifferenceY', 'f8'), ('TimeDifferenceZ', 'f8'), ('InternalUse1', 'u4'), ('DimensionP', 'i4'), ('DimensionM', 'i4'), ('DimensionsReserved', '16i4'), ('OffsetTilePositions', 'u4'), ('', '9u4'), # Reserved ('OffsetPositions', 'u4'), # ('', '21u4'), # must be 0 ] def CZ_LSMINFO_READERS(): # import functions for CZ_LSMINFO sub-records # TODO: read more CZ_LSMINFO sub-records return { 'ScanInformation': read_lsm_scaninfo, 'TimeStamps': read_lsm_timestamps, 'EventList': read_lsm_eventlist, 'ChannelColors': read_lsm_channelcolors, 'Positions': read_lsm_positions, 'TilePositions': read_lsm_positions, 'VectorOverlay': None, 'InputLut': read_lsm_lookuptable, 'OutputLut': read_lsm_lookuptable, 'TimeIntervall': None, 'ChannelDataTypes': read_lsm_channeldatatypes, 'KsData': None, 'Roi': None, 'BleachRoi': None, 'NextRecording': None, # read with TiffFile(fh, offset=) 'MeanOfRoisOverlay': None, 'TopoIsolineOverlay': None, 'TopoProfileOverlay': None, 'ChannelWavelength': read_lsm_channelwavelength, 'SphereCorrection': None, 'ChannelFactors': None, 'UnmixParameters': None, 'AcquisitionParameters': None, 'Characteristics': None, } def CZ_LSMINFO_SCANTYPE(): # map CZ_LSMINFO.ScanType to dimension order return { 0: 'XYZCT', # 'Stack' normal x-y-z-scan 1: 'XYZCT', # 'Z-Scan' x-z-plane Y=1 2: 'XYZCT', # 'Line' 3: 'XYTCZ', # 'Time Series Plane' time series x-y XYCTZ ? Z=1 4: 'XYZTC', # 'Time Series z-Scan' time series x-z 5: 'XYTCZ', # 'Time Series Mean-of-ROIs' 6: 'XYZTC', # 'Time Series Stack' time series x-y-z 7: 'XYCTZ', # Spline Scan 8: 'XYCZT', # Spline Plane x-z 9: 'XYTCZ', # Time Series Spline Plane x-z 10: 'XYZCT', # 'Time Series Point' point mode } def CZ_LSMINFO_DIMENSIONS(): # map dimension codes to CZ_LSMINFO attribute return { 'X': 'DimensionX', 'Y': 'DimensionY', 'Z': 'DimensionZ', 'C': 'DimensionChannels', 'T': 'DimensionTime', 'P': 'DimensionP', 'M': 'DimensionM', } def CZ_LSMINFO_DATATYPES(): # description of CZ_LSMINFO.DataType return { 0: 'varying data types', 1: '8 bit unsigned integer', 2: '12 bit unsigned integer', 5: '32 bit float', } def CZ_LSMINFO_TYPEOFDATA(): # description of CZ_LSMINFO.TypeOfData return { 0: 'Original scan data', 1: 'Calculated data', 2: '3D reconstruction', 3: 'Topography height map', } def CZ_LSMINFO_SCANINFO_ARRAYS(): return { 0x20000000: 'Tracks', 0x30000000: 'Lasers', 0x60000000: 'DetectionChannels', 0x80000000: 'IlluminationChannels', 0xA0000000: 'BeamSplitters', 0xC0000000: 'DataChannels', 0x11000000: 'Timers', 0x13000000: 'Markers', } def CZ_LSMINFO_SCANINFO_STRUCTS(): return { # 0x10000000: 'Recording', 0x40000000: 'Track', 0x50000000: 'Laser', 0x70000000: 'DetectionChannel', 0x90000000: 'IlluminationChannel', 0xB0000000: 'BeamSplitter', 0xD0000000: 'DataChannel', 0x12000000: 'Timer', 0x14000000: 'Marker', } def CZ_LSMINFO_SCANINFO_ATTRIBUTES(): return { # Recording 0x10000001: 'Name', 0x10000002: 'Description', 0x10000003: 'Notes', 0x10000004: 'Objective', 0x10000005: 'ProcessingSummary', 0x10000006: 'SpecialScanMode', 0x10000007: 'ScanType', 0x10000008: 'ScanMode', 0x10000009: 'NumberOfStacks', 0x1000000A: 'LinesPerPlane', 0x1000000B: 'SamplesPerLine', 0x1000000C: 'PlanesPerVolume', 0x1000000D: 'ImagesWidth', 0x1000000E: 'ImagesHeight', 0x1000000F: 'ImagesNumberPlanes', 0x10000010: 'ImagesNumberStacks', 0x10000011: 'ImagesNumberChannels', 0x10000012: 'LinscanXySize', 0x10000013: 'ScanDirection', 0x10000014: 'TimeSeries', 0x10000015: 'OriginalScanData', 0x10000016: 'ZoomX', 0x10000017: 'ZoomY', 0x10000018: 'ZoomZ', 0x10000019: 'Sample0X', 0x1000001A: 'Sample0Y', 0x1000001B: 'Sample0Z', 0x1000001C: 'SampleSpacing', 0x1000001D: 'LineSpacing', 0x1000001E: 'PlaneSpacing', 0x1000001F: 'PlaneWidth', 0x10000020: 'PlaneHeight', 0x10000021: 'VolumeDepth', 0x10000023: 'Nutation', 0x10000034: 'Rotation', 0x10000035: 'Precession', 0x10000036: 'Sample0time', 0x10000037: 'StartScanTriggerIn', 0x10000038: 'StartScanTriggerOut', 0x10000039: 'StartScanEvent', 0x10000040: 'StartScanTime', 0x10000041: 'StopScanTriggerIn', 0x10000042: 'StopScanTriggerOut', 0x10000043: 'StopScanEvent', 0x10000044: 'StopScanTime', 0x10000045: 'UseRois', 0x10000046: 'UseReducedMemoryRois', 0x10000047: 'User', 0x10000048: 'UseBcCorrection', 0x10000049: 'PositionBcCorrection1', 0x10000050: 'PositionBcCorrection2', 0x10000051: 'InterpolationY', 0x10000052: 'CameraBinning', 0x10000053: 'CameraSupersampling', 0x10000054: 'CameraFrameWidth', 0x10000055: 'CameraFrameHeight', 0x10000056: 'CameraOffsetX', 0x10000057: 'CameraOffsetY', 0x10000059: 'RtBinning', 0x1000005A: 'RtFrameWidth', 0x1000005B: 'RtFrameHeight', 0x1000005C: 'RtRegionWidth', 0x1000005D: 'RtRegionHeight', 0x1000005E: 'RtOffsetX', 0x1000005F: 'RtOffsetY', 0x10000060: 'RtZoom', 0x10000061: 'RtLinePeriod', 0x10000062: 'Prescan', 0x10000063: 'ScanDirectionZ', # Track 0x40000001: 'MultiplexType', # 0 After Line; 1 After Frame 0x40000002: 'MultiplexOrder', 0x40000003: 'SamplingMode', # 0 Sample; 1 Line Avg; 2 Frame Avg 0x40000004: 'SamplingMethod', # 1 Mean; 2 Sum 0x40000005: 'SamplingNumber', 0x40000006: 'Acquire', 0x40000007: 'SampleObservationTime', 0x4000000B: 'TimeBetweenStacks', 0x4000000C: 'Name', 0x4000000D: 'Collimator1Name', 0x4000000E: 'Collimator1Position', 0x4000000F: 'Collimator2Name', 0x40000010: 'Collimator2Position', 0x40000011: 'IsBleachTrack', 0x40000012: 'IsBleachAfterScanNumber', 0x40000013: 'BleachScanNumber', 0x40000014: 'TriggerIn', 0x40000015: 'TriggerOut', 0x40000016: 'IsRatioTrack', 0x40000017: 'BleachCount', 0x40000018: 'SpiCenterWavelength', 0x40000019: 'PixelTime', 0x40000021: 'CondensorFrontlens', 0x40000023: 'FieldStopValue', 0x40000024: 'IdCondensorAperture', 0x40000025: 'CondensorAperture', 0x40000026: 'IdCondensorRevolver', 0x40000027: 'CondensorFilter', 0x40000028: 'IdTransmissionFilter1', 0x40000029: 'IdTransmission1', 0x40000030: 'IdTransmissionFilter2', 0x40000031: 'IdTransmission2', 0x40000032: 'RepeatBleach', 0x40000033: 'EnableSpotBleachPos', 0x40000034: 'SpotBleachPosx', 0x40000035: 'SpotBleachPosy', 0x40000036: 'SpotBleachPosz', 0x40000037: 'IdTubelens', 0x40000038: 'IdTubelensPosition', 0x40000039: 'TransmittedLight', 0x4000003A: 'ReflectedLight', 0x4000003B: 'SimultanGrabAndBleach', 0x4000003C: 'BleachPixelTime', # Laser 0x50000001: 'Name', 0x50000002: 'Acquire', 0x50000003: 'Power', # DetectionChannel 0x70000001: 'IntegrationMode', 0x70000002: 'SpecialMode', 0x70000003: 'DetectorGainFirst', 0x70000004: 'DetectorGainLast', 0x70000005: 'AmplifierGainFirst', 0x70000006: 'AmplifierGainLast', 0x70000007: 'AmplifierOffsFirst', 0x70000008: 'AmplifierOffsLast', 0x70000009: 'PinholeDiameter', 0x7000000A: 'CountingTrigger', 0x7000000B: 'Acquire', 0x7000000C: 'PointDetectorName', 0x7000000D: 'AmplifierName', 0x7000000E: 'PinholeName', 0x7000000F: 'FilterSetName', 0x70000010: 'FilterName', 0x70000013: 'IntegratorName', 0x70000014: 'ChannelName', 0x70000015: 'DetectorGainBc1', 0x70000016: 'DetectorGainBc2', 0x70000017: 'AmplifierGainBc1', 0x70000018: 'AmplifierGainBc2', 0x70000019: 'AmplifierOffsetBc1', 0x70000020: 'AmplifierOffsetBc2', 0x70000021: 'SpectralScanChannels', 0x70000022: 'SpiWavelengthStart', 0x70000023: 'SpiWavelengthStop', 0x70000026: 'DyeName', 0x70000027: 'DyeFolder', # IlluminationChannel 0x90000001: 'Name', 0x90000002: 'Power', 0x90000003: 'Wavelength', 0x90000004: 'Aquire', 0x90000005: 'DetchannelName', 0x90000006: 'PowerBc1', 0x90000007: 'PowerBc2', # BeamSplitter 0xB0000001: 'FilterSet', 0xB0000002: 'Filter', 0xB0000003: 'Name', # DataChannel 0xD0000001: 'Name', 0xD0000003: 'Acquire', 0xD0000004: 'Color', 0xD0000005: 'SampleType', 0xD0000006: 'BitsPerSample', 0xD0000007: 'RatioType', 0xD0000008: 'RatioTrack1', 0xD0000009: 'RatioTrack2', 0xD000000A: 'RatioChannel1', 0xD000000B: 'RatioChannel2', 0xD000000C: 'RatioConst1', 0xD000000D: 'RatioConst2', 0xD000000E: 'RatioConst3', 0xD000000F: 'RatioConst4', 0xD0000010: 'RatioConst5', 0xD0000011: 'RatioConst6', 0xD0000012: 'RatioFirstImages1', 0xD0000013: 'RatioFirstImages2', 0xD0000014: 'DyeName', 0xD0000015: 'DyeFolder', 0xD0000016: 'Spectrum', 0xD0000017: 'Acquire', # Timer 0x12000001: 'Name', 0x12000002: 'Description', 0x12000003: 'Interval', 0x12000004: 'TriggerIn', 0x12000005: 'TriggerOut', 0x12000006: 'ActivationTime', 0x12000007: 'ActivationNumber', # Marker 0x14000001: 'Name', 0x14000002: 'Description', 0x14000003: 'TriggerIn', 0x14000004: 'TriggerOut', } def CZ_LSM_LUTTYPE(): class CZ_LSM_LUTTYPE(enum.IntEnum): NORMAL = 0 ORIGINAL = 1 RAMP = 2 POLYLINE = 3 SPLINE = 4 GAMMA = 5 return CZ_LSM_LUTTYPE def CZ_LSM_SUBBLOCK_TYPE(): class CZ_LSM_SUBBLOCK_TYPE(enum.IntEnum): END = 0 GAMMA = 1 BRIGHTNESS = 2 CONTRAST = 3 RAMP = 4 KNOTS = 5 PALETTE_12_TO_12 = 6 return CZ_LSM_SUBBLOCK_TYPE def NIH_IMAGE_HEADER(): return [ ('FileID', 'a8'), ('nLines', 'i2'), ('PixelsPerLine', 'i2'), ('Version', 'i2'), ('OldLutMode', 'i2'), ('OldnColors', 'i2'), ('Colors', 'u1', (3, 32)), ('OldColorStart', 'i2'), ('ColorWidth', 'i2'), ('ExtraColors', 'u2', (6, 3)), ('nExtraColors', 'i2'), ('ForegroundIndex', 'i2'), ('BackgroundIndex', 'i2'), ('XScale', 'f8'), ('Unused2', 'i2'), ('Unused3', 'i2'), ('UnitsID', 'i2'), # NIH_UNITS_TYPE ('p1', [('x', 'i2'), ('y', 'i2')]), ('p2', [('x', 'i2'), ('y', 'i2')]), ('CurveFitType', 'i2'), # NIH_CURVEFIT_TYPE ('nCoefficients', 'i2'), ('Coeff', 'f8', 6), ('UMsize', 'u1'), ('UM', 'a15'), ('UnusedBoolean', 'u1'), ('BinaryPic', 'b1'), ('SliceStart', 'i2'), ('SliceEnd', 'i2'), ('ScaleMagnification', 'f4'), ('nSlices', 'i2'), ('SliceSpacing', 'f4'), ('CurrentSlice', 'i2'), ('FrameInterval', 'f4'), ('PixelAspectRatio', 'f4'), ('ColorStart', 'i2'), ('ColorEnd', 'i2'), ('nColors', 'i2'), ('Fill1', '3u2'), ('Fill2', '3u2'), ('Table', 'u1'), # NIH_COLORTABLE_TYPE ('LutMode', 'u1'), # NIH_LUTMODE_TYPE ('InvertedTable', 'b1'), ('ZeroClip', 'b1'), ('XUnitSize', 'u1'), ('XUnit', 'a11'), ('StackType', 'i2'), # NIH_STACKTYPE_TYPE # ('UnusedBytes', 'u1', 200) ] def NIH_COLORTABLE_TYPE(): return ( 'CustomTable', 'AppleDefault', 'Pseudo20', 'Pseudo32', 'Rainbow', 'Fire1', 'Fire2', 'Ice', 'Grays', 'Spectrum', ) def NIH_LUTMODE_TYPE(): return ( 'PseudoColor', 'OldAppleDefault', 'OldSpectrum', 'GrayScale', 'ColorLut', 'CustomGrayscale', ) def NIH_CURVEFIT_TYPE(): return ( 'StraightLine', 'Poly2', 'Poly3', 'Poly4', 'Poly5', 'ExpoFit', 'PowerFit', 'LogFit', 'RodbardFit', 'SpareFit1', 'Uncalibrated', 'UncalibratedOD', ) def NIH_UNITS_TYPE(): return ( 'Nanometers', 'Micrometers', 'Millimeters', 'Centimeters', 'Meters', 'Kilometers', 'Inches', 'Feet', 'Miles', 'Pixels', 'OtherUnits', ) def TVIPS_HEADER_V1(): # TVIPS TemData structure from EMMENU Help file return [ ('Version', 'i4'), ('CommentV1', 'a80'), ('HighTension', 'i4'), ('SphericalAberration', 'i4'), ('IlluminationAperture', 'i4'), ('Magnification', 'i4'), ('PostMagnification', 'i4'), ('FocalLength', 'i4'), ('Defocus', 'i4'), ('Astigmatism', 'i4'), ('AstigmatismDirection', 'i4'), ('BiprismVoltage', 'i4'), ('SpecimenTiltAngle', 'i4'), ('SpecimenTiltDirection', 'i4'), ('IlluminationTiltDirection', 'i4'), ('IlluminationTiltAngle', 'i4'), ('ImageMode', 'i4'), ('EnergySpread', 'i4'), ('ChromaticAberration', 'i4'), ('ShutterType', 'i4'), ('DefocusSpread', 'i4'), ('CcdNumber', 'i4'), ('CcdSize', 'i4'), ('OffsetXV1', 'i4'), ('OffsetYV1', 'i4'), ('PhysicalPixelSize', 'i4'), ('Binning', 'i4'), ('ReadoutSpeed', 'i4'), ('GainV1', 'i4'), ('SensitivityV1', 'i4'), ('ExposureTimeV1', 'i4'), ('FlatCorrected', 'i4'), ('DeadPxCorrected', 'i4'), ('ImageMean', 'i4'), ('ImageStd', 'i4'), ('DisplacementX', 'i4'), ('DisplacementY', 'i4'), ('DateV1', 'i4'), ('TimeV1', 'i4'), ('ImageMin', 'i4'), ('ImageMax', 'i4'), ('ImageStatisticsQuality', 'i4'), ] def TVIPS_HEADER_V2(): return [ ('ImageName', 'V160'), # utf16 ('ImageFolder', 'V160'), ('ImageSizeX', 'i4'), ('ImageSizeY', 'i4'), ('ImageSizeZ', 'i4'), ('ImageSizeE', 'i4'), ('ImageDataType', 'i4'), ('Date', 'i4'), ('Time', 'i4'), ('Comment', 'V1024'), ('ImageHistory', 'V1024'), ('Scaling', '16f4'), ('ImageStatistics', '16c16'), ('ImageType', 'i4'), ('ImageDisplaType', 'i4'), ('PixelSizeX', 'f4'), # distance between two px in x, [nm] ('PixelSizeY', 'f4'), # distance between two px in y, [nm] ('ImageDistanceZ', 'f4'), ('ImageDistanceE', 'f4'), ('ImageMisc', '32f4'), ('TemType', 'V160'), ('TemHighTension', 'f4'), ('TemAberrations', '32f4'), ('TemEnergy', '32f4'), ('TemMode', 'i4'), ('TemMagnification', 'f4'), ('TemMagnificationCorrection', 'f4'), ('PostMagnification', 'f4'), ('TemStageType', 'i4'), ('TemStagePosition', '5f4'), # x, y, z, a, b ('TemImageShift', '2f4'), ('TemBeamShift', '2f4'), ('TemBeamTilt', '2f4'), ('TilingParameters', '7f4'), # 0: tiling? 1:x 2:y 3: max x # 4: max y 5: overlap x 6: overlap y ('TemIllumination', '3f4'), # 0: spotsize 1: intensity ('TemShutter', 'i4'), ('TemMisc', '32f4'), ('CameraType', 'V160'), ('PhysicalPixelSizeX', 'f4'), ('PhysicalPixelSizeY', 'f4'), ('OffsetX', 'i4'), ('OffsetY', 'i4'), ('BinningX', 'i4'), ('BinningY', 'i4'), ('ExposureTime', 'f4'), ('Gain', 'f4'), ('ReadoutRate', 'f4'), ('FlatfieldDescription', 'V160'), ('Sensitivity', 'f4'), ('Dose', 'f4'), ('CamMisc', '32f4'), ('FeiMicroscopeInformation', 'V1024'), ('FeiSpecimenInformation', 'V1024'), ('Magic', 'u4'), ] def MM_HEADER(): # Olympus FluoView MM_Header MM_DIMENSION = [ ('Name', 'a16'), ('Size', 'i4'), ('Origin', 'f8'), ('Resolution', 'f8'), ('Unit', 'a64'), ] return [ ('HeaderFlag', 'i2'), ('ImageType', 'u1'), ('ImageName', 'a257'), ('OffsetData', 'u4'), ('PaletteSize', 'i4'), ('OffsetPalette0', 'u4'), ('OffsetPalette1', 'u4'), ('CommentSize', 'i4'), ('OffsetComment', 'u4'), ('Dimensions', MM_DIMENSION, 10), ('OffsetPosition', 'u4'), ('MapType', 'i2'), ('MapMin', 'f8'), ('MapMax', 'f8'), ('MinValue', 'f8'), ('MaxValue', 'f8'), ('OffsetMap', 'u4'), ('Gamma', 'f8'), ('Offset', 'f8'), ('GrayChannel', MM_DIMENSION), ('OffsetThumbnail', 'u4'), ('VoiceField', 'i4'), ('OffsetVoiceField', 'u4'), ] def MM_DIMENSIONS(): # map FluoView MM_Header.Dimensions to axes characters return { 'X': 'X', 'Y': 'Y', 'Z': 'Z', 'T': 'T', 'CH': 'C', 'WAVELENGTH': 'C', 'TIME': 'T', 'XY': 'R', 'EVENT': 'V', 'EXPOSURE': 'L', } def UIC_TAGS(): # map Universal Imaging Corporation MetaMorph internal tag ids to # name and type from fractions import Fraction # delayed import return [ ('AutoScale', int), ('MinScale', int), ('MaxScale', int), ('SpatialCalibration', int), ('XCalibration', Fraction), ('YCalibration', Fraction), ('CalibrationUnits', str), ('Name', str), ('ThreshState', int), ('ThreshStateRed', int), ('tagid_10', None), # undefined ('ThreshStateGreen', int), ('ThreshStateBlue', int), ('ThreshStateLo', int), ('ThreshStateHi', int), ('Zoom', int), ('CreateTime', julian_datetime), ('LastSavedTime', julian_datetime), ('currentBuffer', int), ('grayFit', None), ('grayPointCount', None), ('grayX', Fraction), ('grayY', Fraction), ('grayMin', Fraction), ('grayMax', Fraction), ('grayUnitName', str), ('StandardLUT', int), ('wavelength', int), ('StagePosition', '(%i,2,2)u4'), # N xy positions as fract ('CameraChipOffset', '(%i,2,2)u4'), # N xy offsets as fract ('OverlayMask', None), ('OverlayCompress', None), ('Overlay', None), ('SpecialOverlayMask', None), ('SpecialOverlayCompress', None), ('SpecialOverlay', None), ('ImageProperty', read_uic_image_property), ('StageLabel', '%ip'), # N str ('AutoScaleLoInfo', Fraction), ('AutoScaleHiInfo', Fraction), ('AbsoluteZ', '(%i,2)u4'), # N fractions ('AbsoluteZValid', '(%i,)u4'), # N long ('Gamma', 'I'), # 'I' uses offset ('GammaRed', 'I'), ('GammaGreen', 'I'), ('GammaBlue', 'I'), ('CameraBin', '2I'), ('NewLUT', int), ('ImagePropertyEx', None), ('PlaneProperty', int), ('UserLutTable', '(256,3)u1'), ('RedAutoScaleInfo', int), ('RedAutoScaleLoInfo', Fraction), ('RedAutoScaleHiInfo', Fraction), ('RedMinScaleInfo', int), ('RedMaxScaleInfo', int), ('GreenAutoScaleInfo', int), ('GreenAutoScaleLoInfo', Fraction), ('GreenAutoScaleHiInfo', Fraction), ('GreenMinScaleInfo', int), ('GreenMaxScaleInfo', int), ('BlueAutoScaleInfo', int), ('BlueAutoScaleLoInfo', Fraction), ('BlueAutoScaleHiInfo', Fraction), ('BlueMinScaleInfo', int), ('BlueMaxScaleInfo', int), # ('OverlayPlaneColor', read_uic_overlay_plane_color), ] def PILATUS_HEADER(): # PILATUS CBF Header Specification, Version 1.4 # map key to [value_indices], type return { 'Detector': ([slice(1, None)], str), 'Pixel_size': ([1, 4], float), 'Silicon': ([3], float), 'Exposure_time': ([1], float), 'Exposure_period': ([1], float), 'Tau': ([1], float), 'Count_cutoff': ([1], int), 'Threshold_setting': ([1], float), 'Gain_setting': ([1, 2], str), 'N_excluded_pixels': ([1], int), 'Excluded_pixels': ([1], str), 'Flat_field': ([1], str), 'Trim_file': ([1], str), 'Image_path': ([1], str), # optional 'Wavelength': ([1], float), 'Energy_range': ([1, 2], float), 'Detector_distance': ([1], float), 'Detector_Voffset': ([1], float), 'Beam_xy': ([1, 2], float), 'Flux': ([1], str), 'Filter_transmission': ([1], float), 'Start_angle': ([1], float), 'Angle_increment': ([1], float), 'Detector_2theta': ([1], float), 'Polarization': ([1], float), 'Alpha': ([1], float), 'Kappa': ([1], float), 'Phi': ([1], float), 'Phi_increment': ([1], float), 'Chi': ([1], float), 'Chi_increment': ([1], float), 'Oscillation_axis': ([slice(1, None)], str), 'N_oscillations': ([1], int), 'Start_position': ([1], float), 'Position_increment': ([1], float), 'Shutter_time': ([1], float), 'Omega': ([1], float), 'Omega_increment': ([1], float), } def ALLOCATIONGRANULARITY(): # alignment for writing contiguous data to TIFF import mmap # delayed import return mmap.ALLOCATIONGRANULARITY def MAXWORKERS(): # half of CPU cores import multiprocessing # delayed import return max(multiprocessing.cpu_count() // 2, 1) def CHUNKMODE(): class CHUNKMODE(enum.IntEnum): NONE = 0 PLANE = 1 PAGE = 2 FILE = 3 return CHUNKMODE def read_tags( fh, byteorder, offsetsize, tagnames, customtags=None, maxifds=None ): """Read tags from chain of IFDs and return as list of dicts. The file handle position must be at a valid IFD header. Does not work with NDPI. """ if offsetsize == 4: offsetformat = byteorder + 'I' tagnosize = 2 tagnoformat = byteorder + 'H' tagsize = 12 tagformat1 = byteorder + 'HH' tagformat2 = byteorder + 'I4s' elif offsetsize == 8: offsetformat = byteorder + 'Q' tagnosize = 8 tagnoformat = byteorder + 'Q' tagsize = 20 tagformat1 = byteorder + 'HH' tagformat2 = byteorder + 'Q8s' else: raise ValueError('invalid offset size') if customtags is None: customtags = {} if maxifds is None: maxifds = 2**32 result = [] unpack = struct.unpack offset = fh.tell() while len(result) < maxifds: # loop over IFDs try: tagno = unpack(tagnoformat, fh.read(tagnosize))[0] if tagno > 4096: raise TiffFileError(f'suspicious number of tags {tagno}') except Exception as exc: log_warning( f' corrupted tag list @{offset} ({exc})' ) break tags = {} data = fh.read(tagsize * tagno) pos = fh.tell() index = 0 for _ in range(tagno): code, dtype = unpack(tagformat1, data[index : index + 4]) count, value = unpack( tagformat2, data[index + 4 : index + tagsize] ) index += tagsize name = tagnames.get(code, str(code)) try: valueformat = TIFF.DATA_FORMATS[dtype] except KeyError: raise TiffFileError( f'invalid data type {dtype!r} for tag #{code}' ) valuesize = count * struct.calcsize(valueformat) if valuesize > offsetsize or code in customtags: valueoffset = unpack(offsetformat, value)[0] if valueoffset < 8 or valueoffset + valuesize > fh.size: raise TiffFileError( f'invalid value offset {valueoffset} for tag #{code}' ) fh.seek(valueoffset) if code in customtags: readfunc = customtags[code][1] value = readfunc(fh, byteorder, dtype, count, offsetsize) elif dtype == 1 or dtype == 2 or dtype == 7: # BYTES, ASCII, UNDEFINED value = fh.read(valuesize) if len(value) != valuesize: log_warning( ' ' f'could not read all values for tag #{code}' ) elif code in tagnames: fmt = '{}{}{}'.format( byteorder, count * int(valueformat[0]), valueformat[1] ) value = unpack(fmt, fh.read(valuesize)) else: value = read_numpy(fh, byteorder, dtype, count, offsetsize) elif dtype == 1 or dtype == 2 or dtype == 7: # BYTES, ASCII, UNDEFINED value = value[:valuesize] else: fmt = '{}{}{}'.format( byteorder, count * int(valueformat[0]), valueformat[1] ) value = unpack(fmt, value[:valuesize]) process = ( code not in customtags and code not in TIFF.TAG_TUPLE and dtype != 7 # UNDEFINED ) if process and dtype == 2: # TIFF ASCII fields can contain multiple strings, # each terminated with a NUL try: value = bytes2str(stripnull(value, first=False).strip()) except UnicodeDecodeError: log_warning( ' ' f'coercing invalid ASCII to bytes for tag #{code}' ) else: if code in TIFF.TAG_ENUM: t = TIFF.TAG_ENUM[code] try: value = tuple(t(v) for v in value) except ValueError as exc: if code not in (259, 317): # ignore compression/predictor log_warning( ' ' f'failed for tag #{code}: {exc}' ) if process and len(value) == 1: value = value[0] tags[name] = value result.append(tags) # read offset to next page fh.seek(pos) offset = unpack(offsetformat, fh.read(offsetsize))[0] if offset == 0: break if offset >= fh.size: log_warning( f' invalid next page offset {offset}' ) break fh.seek(offset) if result and maxifds == 1: result = result[0] return result def read_exif_ifd(fh, byteorder, dtype, count, offsetsize): """Read EXIF tags from file and return as dict.""" exif = read_tags(fh, byteorder, offsetsize, TIFF.EXIF_TAGS, maxifds=1) for name in ('ExifVersion', 'FlashpixVersion'): try: exif[name] = bytes2str(exif[name]) except Exception: pass if 'UserComment' in exif: idcode = exif['UserComment'][:8] try: if idcode == b'ASCII\x00\x00\x00': exif['UserComment'] = bytes2str(exif['UserComment'][8:]) elif idcode == b'UNICODE\x00': exif['UserComment'] = exif['UserComment'][8:].decode('utf-16') except Exception: pass return exif def read_gps_ifd(fh, byteorder, dtype, count, offsetsize): """Read GPS tags from file and return as dict.""" return read_tags(fh, byteorder, offsetsize, TIFF.GPS_TAGS, maxifds=1) def read_interoperability_ifd(fh, byteorder, dtype, count, offsetsize): """Read Interoperability tags from file and return as dict.""" return read_tags(fh, byteorder, offsetsize, TIFF.IOP_TAGS, maxifds=1) def read_bytes(fh, byteorder, dtype, count, offsetsize): """Read tag data from file and return as bytes.""" dtype = 'B' if dtype == 2 else byteorder + TIFF.DATA_FORMATS[dtype][-1] count *= numpy.dtype(dtype).itemsize data = fh.read(count) if len(data) != count: log_warning( ' ' f'failed to read {count} bytes, got {len(data)})' ) return data def read_utf8(fh, byteorder, dtype, count, offsetsize): """Read tag data from file and return as Unicode string.""" return fh.read(count).decode() def read_numpy(fh, byteorder, dtype, count, offsetsize): """Read tag data from file and return as numpy array.""" dtype = 'b' if dtype == 2 else byteorder + TIFF.DATA_FORMATS[dtype][-1] return fh.read_array(dtype, count) def read_colormap(fh, byteorder, dtype, count, offsetsize): """Read ColorMap/TransferFunction from file and return as numpy array.""" cmap = fh.read_array(byteorder + TIFF.DATA_FORMATS[dtype][-1], count) if count % 3 == 0: cmap.shape = (3, -1) return cmap def read_json(fh, byteorder, dtype, count, offsetsize): """Read JSON tag data from file and return as object.""" data = fh.read(count) try: return json.loads(stripnull(data).decode()) except ValueError as exc: log_warning(f' {exc.__class__.__name__}: {exc}') return None def read_mm_header(fh, byteorder, dtype, count, offsetsize): """Read FluoView mm_header tag from file and return as dict.""" mmh = fh.read_record(TIFF.MM_HEADER, byteorder=byteorder) mmh = recarray2dict(mmh) mmh['Dimensions'] = [ (bytes2str(d[0]).strip(), d[1], d[2], d[3], bytes2str(d[4]).strip()) for d in mmh['Dimensions'] ] d = mmh['GrayChannel'] mmh['GrayChannel'] = ( bytes2str(d[0]).strip(), d[1], d[2], d[3], bytes2str(d[4]).strip(), ) return mmh def read_mm_stamp(fh, byteorder, dtype, count, offsetsize): """Read FluoView mm_stamp tag from file and return as numpy.ndarray.""" return fh.read_array(byteorder + 'f8', 8) def read_uic1tag(fh, byteorder, dtype, count, offsetsize, planecount=None): """Read MetaMorph STK UIC1Tag from file and return as dict. Return empty dictionary if planecount is unknown. """ if dtype not in (4, 5) or byteorder != '<': raise ValueError(f'invalid UIC1Tag {byteorder}{dtype}') result = {} if dtype == 5: # pre MetaMorph 2.5 (not tested) values = fh.read_array(' ' f'invalid offset for tag {name!r} @{off}' ) return name, off fh.seek(off) if dtype is None: # skip name = '_' + name value = read_int() elif dtype is int: # int value = read_int() elif dtype is Fraction: # fraction value = read_int(2) value = value[0] / value[1] elif dtype is julian_datetime: # datetime value = julian_datetime(*read_int(2)) elif dtype is read_uic_image_property: # ImagePropertyEx value = read_uic_image_property(fh) elif dtype is str: # pascal string size = read_int() if 0 <= size < 2**10: value = struct.unpack(f'{size}s', fh.read(size))[0][:-1] value = bytes2str(stripnull(value)) elif offset: value = '' log_warning( f' invalid string in tag {name!r}' ) else: raise ValueError(f'invalid string size {size}') elif planecount is None: value = None elif dtype == '%ip': # sequence of pascal strings value = [] for _ in range(planecount): size = read_int() if 0 <= size < 2**10: string = struct.unpack(f'{size}s', fh.read(size))[0][:-1] string = bytes2str(stripnull(string)) value.append(string) elif offset: log_warning( f' invalid string in tag {name!r}' ) else: raise ValueError(f'invalid string size: {size}') else: # struct or numpy type dtype = '<' + dtype if '%i' in dtype: dtype = dtype % planecount if '(' in dtype: # numpy type value = fh.read_array(dtype, 1)[0] if value.shape[-1] == 2: # assume fractions value = value[..., 0] / value[..., 1] else: # struct format value = struct.unpack(dtype, fh.read(struct.calcsize(dtype))) if len(value) == 1: value = value[0] if offset: fh.seek(pos + 4) return name, value def read_uic_image_property(fh): """Read UIC ImagePropertyEx tag from file and return as dict.""" # TODO: test this size = struct.unpack('B', fh.read(1))[0] name = struct.unpack(f'{size}s', fh.read(size))[0][:-1] flags, prop = struct.unpack(' structure_size: break lsminfo.append((name, dtype)) else: lsminfo = TIFF.CZ_LSMINFO lsminfo = fh.read_record(lsminfo, byteorder=byteorder) lsminfo = recarray2dict(lsminfo) # read LSM info subrecords at offsets for name, reader in TIFF.CZ_LSMINFO_READERS.items(): if reader is None: continue offset = lsminfo.get('Offset' + name, 0) if offset < 8: continue fh.seek(offset) try: lsminfo[name] = reader(fh) except ValueError: pass return lsminfo def read_lsm_channeldatatypes(fh): """Read LSM channel data type.""" size = struct.unpack(' invalid LSM TimeStamps block' ) return [] # return struct.unpack(f'<{count}d', fh.read(8 * count)) return fh.read_array(' 0: esize, etime, etype = struct.unpack(' ' 'invalid LSM ChannelColors structure' ) return result result['Mono'] = bool(mono) # Colors fh.seek(pos + coffset) colors = fh.read_array('uint8', count=ncolors * 4).reshape((ncolors, 4)) result['Colors'] = colors.tolist() # ColorNames fh.seek(pos + noffset) buffer = fh.read(size - noffset) names = [] while len(buffer) > 4: size = struct.unpack(' ' 'invalid LSM LookupTables structure' ) return result fh.read(9 * 4) # reserved result['LutType'] = TIFF.CZ_LSM_LUTTYPE(luttype) result['Advanced'] = advanced result['NumberChannels'] = nchannels result['CurrentChannel'] = currentchannel result['SubBlocks'] = subblocks = [] for _ in range(nsubblocks): sbtype = struct.unpack(' ' f'invalid LSM SubBlock type {sbtype}' ) break subblocks.append( {'Type': TIFF.CZ_LSM_SUBBLOCK_TYPE(sbtype), 'Data': data} ) return result def read_lsm_scaninfo(fh): """Read LSM ScanInfo structure from file and return as dict.""" block = {} blocks = [block] unpack = struct.unpack if struct.unpack(' invalid LSM ScanInfo structure' ) return block fh.read(8) while True: entry, dtype, size = unpack(' {exc.__class__.__name__}: {exc}' ) return {} def read_tvips_header(fh, byteorder, dtype, count, offsetsize): """Read TVIPS EM-MENU headers and return as dict.""" result = {} header = fh.read_record(TIFF.TVIPS_HEADER_V1, byteorder=byteorder) for name, typestr in TIFF.TVIPS_HEADER_V1: result[name] = header[name].tolist() if header['Version'] == 2: header = fh.read_record(TIFF.TVIPS_HEADER_V2, byteorder=byteorder) if header['Magic'] != int(0xAAAAAAAA): log_warning( ' invalid TVIPS v2 magic number' ) return {} # decode utf16 strings for name, typestr in TIFF.TVIPS_HEADER_V2: if typestr.startswith('V'): s = header[name].tobytes().decode('utf-16', errors='ignore') result[name] = stripnull(s, null='\x00') else: result[name] = header[name].tolist() # convert nm to m for axis in 'XY': header['PhysicalPixelSize' + axis] /= 1e9 header['PixelSize' + axis] /= 1e9 elif header.version != 1: log_warning( ' unknown TVIPS header version' ) return {} return result def read_fei_metadata(fh, byteorder, dtype, count, offsetsize): """Read FEI SFEG/HELIOS headers and return as dict.""" result = {} section = {} data = bytes2str(stripnull(fh.read(count))) for line in data.splitlines(): line = line.strip() if line.startswith('['): section = {} result[line[1:-1]] = section continue try: key, value = line.split('=') except ValueError: continue section[key] = astype(value) return result def read_cz_sem(fh, byteorder, dtype, count, offsetsize): """Read Zeiss SEM tag and return as dict. See https://sourceforge.net/p/gwyddion/mailman/message/29275000/ for unnamed values. """ result = {'': ()} key = None data = bytes2str(stripnull(fh.read(count))) for line in data.splitlines(): if line.isupper(): key = line.lower() elif key: try: name, value = line.split('=') except ValueError: try: name, value = line.split(':', 1) except Exception: continue value = value.strip() unit = '' try: v, u = value.split() number = astype(v, (int, float)) if number != v: value = number unit = u except Exception: number = astype(value, (int, float)) if number != value: value = number if value in ('No', 'Off'): value = False elif value in ('Yes', 'On'): value = True result[key] = (name.strip(), value) if unit: result[key] += (unit,) key = None else: result[''] += (astype(line, (int, float)),) return result def read_nih_image_header(fh, byteorder, dtype, count, offsetsize): """Read NIH_IMAGE_HEADER tag from file and return as dict.""" a = fh.read_record(TIFF.NIH_IMAGE_HEADER, byteorder=byteorder) a = a.newbyteorder(byteorder) a = recarray2dict(a) a['XUnit'] = a['XUnit'][: a['XUnitSize']] a['UM'] = a['UM'][: a['UMsize']] return a def read_scanimage_metadata(fh): """Read ScanImage BigTIFF v3 or v4 static and ROI metadata from open file. Return non-varying frame data, ROI group data, and version as tuple(dict, dict, int). The settings can be used to read image data and metadata without parsing the TIFF file. Raise ValueError if file does not contain valid ScanImage metadata. Frame data and ROI groups can alternatively be obtained from the Software and Artist tags of any TIFF page. """ fh.seek(0) try: byteorder, version = struct.unpack('<2sH', fh.read(4)) if byteorder != b'II' or version != 43: raise ValueError('not a BigTIFF file') fh.seek(16) magic, version, size0, size1 = struct.unpack(' 1 else {} return frame_data, roi_data, version def read_micromanager_metadata(fh): """Read MicroManager non-TIFF settings from open file and return as dict. The settings can be used to read image data without parsing the TIFF file. """ fh.seek(0) try: byteorder = {b'II': '<', b'MM': '>'}[fh.read(2)] except IndexError: raise ValueError('not a MicroManager TIFF file') result = {} fh.seek(8) ( index_header, index_offset, ) = struct.unpack(byteorder + 'II', fh.read(8)) if index_header == 483729: # NDTiff v2 result['MajorVersion'] = index_offset ( summary_header, summary_length, ) = struct.unpack(byteorder + 'II', fh.read(8)) try: if summary_header != 2355492: raise ValueError('invalid header') data = fh.read(summary_length) if len(data) != summary_length: raise ValueError('not enough data') result['Summary'] = json.loads(stripnull(data).decode()) except Exception as exc: log_warning( ' ' f'failed to read NDTiffv2 summary settings: {exc}' ) return result # Micro-Manager multipage TIFF or NDTiff v1 ( display_header, display_offset, comments_header, comments_offset, summary_header, summary_length, ) = struct.unpack(byteorder + 'IIIIII', fh.read(24)) try: if summary_header != 2355492: raise ValueError('invalid offset header') data = fh.read(summary_length) if len(data) != summary_length: raise ValueError('not enough data') result['Summary'] = json.loads(stripnull(data).decode()) except Exception as exc: log_warning( ' ' f'failed to read summary settings: {exc}' ) try: if index_header != 54773648: raise ValueError('invalid offset header') fh.seek(index_offset) header, count = struct.unpack(byteorder + 'II', fh.read(8)) if header != 3453623: raise ValueError('invalid header') data = fh.read(count * 20) if len(data) != count * 20: raise ValueError('not enough data') data = numpy.frombuffer(data, dtype=byteorder + 'u4').reshape(count, 5) # TODO: return micromanager_metadata IndexMap as ndarray? result['IndexMap'] = { 'Channel': data[:, 0], 'Slice': data[:, 1], 'Frame': data[:, 2], 'Position': data[:, 3], 'Offset': data[:, 4], } except Exception as exc: log_warning( ' ' f'failed to read index map: {exc}' ) try: if display_header != 483765892: raise ValueError('invalid offset header') fh.seek(display_offset) header, count = struct.unpack(byteorder + 'II', fh.read(8)) if header != 347834724: raise ValueError('invalid header') data = fh.read(count) if len(data) != count: raise ValueError('not enough data') result['DisplaySettings'] = json.loads(stripnull(data).decode()) except Exception as exc: log_warning( ' ' f'failed to read display settings: {exc}' ) result['MajorVersion'] = 0 try: if comments_header == 99384722: # Micro-Manager multipage TIFF fh.seek(comments_offset) header, count = struct.unpack(byteorder + 'II', fh.read(8)) if header != 84720485: raise ValueError('invalid header') data = fh.read(count) if len(data) != count: raise ValueError('not enough data') result['Comments'] = json.loads(stripnull(data).decode()) elif comments_header == 483729: # NDTiff v1 result['MajorVersion'] = comments_offset else: raise ValueError('invalid offset header') except Exception as exc: log_warning( ' ' f'failed to read comments: {exc}' ) return result def read_metaseries_catalog(fh): """Read MetaSeries non-TIFF hint catalog from file. Raise ValueError if the file does not contain a valid hint catalog. """ # TODO: implement read_metaseries_catalog raise NotImplementedError def imagej_metadata_tag(metadata, byteorder): """Return IJMetadata and IJMetadataByteCounts tags from metadata dict. The tags can be passed to TiffWriter.write() as extratags. The metadata dict may contain the following keys and values: Info : str Human-readable information as string. Labels : sequence of str Human-readable labels for each channel. Ranges : sequence of doubles Lower and upper values for each channel. LUTs : sequence of (3, 256) uint8 ndarrays Color palettes for each channel. Plot : bytes Undocumented ImageJ internal format. ROI: bytes Undocumented ImageJ internal region of interest format. Overlays : bytes Undocumented ImageJ internal format. Properties : {str: str} Map of key, value items as strings. """ if not metadata: return () header = [{'>': b'IJIJ', '<': b'JIJI'}[byteorder]] bytecounts = [0] body = [] def _string(data, byteorder): return data.encode('utf-16' + {'>': 'be', '<': 'le'}[byteorder]) def _doubles(data, byteorder): return struct.pack(byteorder + ('d' * len(data)), *data) def _ndarray(data, byteorder): return data.tobytes() def _bytes(data, byteorder): return data metadata_types = ( ('Info', b'info', _string), ('Labels', b'labl', _string), ('Ranges', b'rang', _doubles), ('LUTs', b'luts', _ndarray), ('Plot', b'plot', _bytes), ('ROI', b'roi ', _bytes), ('Overlays', b'over', _bytes), ('Properties', b'prop', _string), ) for key, mtype, func in metadata_types: if key.lower() in metadata: key = key.lower() elif key not in metadata: continue if byteorder == '<': mtype = mtype[::-1] values = metadata[key] if isinstance(values, dict): values = [str(i) for item in values.items() for i in item] count = len(values) elif isinstance(values, list): count = len(values) else: values = [values] count = 1 header.append(mtype + struct.pack(byteorder + 'I', count)) for value in values: data = func(value, byteorder) body.append(data) bytecounts.append(len(data)) if not body: return () body = b''.join(body) header = b''.join(header) data = header + body bytecounts[0] = len(header) bytecounts = struct.pack(byteorder + ('I' * len(bytecounts)), *bytecounts) return ( (50839, 1, len(data), data, True), (50838, 4, len(bytecounts) // 4, bytecounts, True), ) def imagej_metadata(data, bytecounts, byteorder): """Return IJMetadata tag value as dict. The 'Info' string can have multiple formats, e.g. OIF or ScanImage, that might be parsed into dicts using the matlabstr2py or oiffile.SettingsFile functions. 'ROI' and 'Overlays' are returned as bytes, which can be parsed with the ImagejRoi.frombytes() function of the roifile package. """ def _string(data, byteorder): return data.decode('utf-16' + {'>': 'be', '<': 'le'}[byteorder]) def _doubles(data, byteorder): return struct.unpack(byteorder + ('d' * (len(data) // 8)), data) def _lut(data, byteorder): return numpy.frombuffer(data, 'uint8').reshape(-1, 256) def _bytes(data, byteorder): return data # big-endian metadata_types = { b'info': ('Info', _string), b'labl': ('Labels', _string), b'rang': ('Ranges', _doubles), b'luts': ('LUTs', _lut), b'plot': ('Plot', _bytes), b'roi ': ('ROI', _bytes), b'over': ('Overlays', _bytes), b'prop': ('Properties', _string), } # little-endian metadata_types.update({k[::-1]: v for k, v in metadata_types.items()}) if len(bytecounts) == 0: raise ValueError('no ImageJ metadata') if not data[:4] in (b'IJIJ', b'JIJI'): raise ValueError('invalid ImageJ metadata') header_size = bytecounts[0] if header_size < 12 or header_size > 804: raise ValueError('invalid ImageJ metadata header size') ntypes = (header_size - 4) // 8 header = struct.unpack( byteorder + '4sI' * ntypes, data[4 : 4 + ntypes * 8] ) pos = 4 + ntypes * 8 counter = 0 result = {} for mtype, count in zip(header[::2], header[1::2]): values = [] name, func = metadata_types.get(mtype, (bytes2str(mtype), _bytes)) for _ in range(count): counter += 1 pos1 = pos + bytecounts[counter] values.append(func(data[pos:pos1], byteorder)) pos = pos1 result[name.strip()] = values[0] if count == 1 else values prop = result.get('Properties') if prop and len(prop) % 2 == 0: result['Properties'] = dict( prop[i : i + 2] for i in range(0, len(prop), 2) ) return result def imagej_description_metadata(description): r"""Return metatata from ImageJ image description as dict. Raise ValueError if not a valid ImageJ description. >>> description = 'ImageJ=1.11a\nimages=510\nhyperstack=true\n' >>> imagej_description_metadata(description) # doctest: +SKIP {'ImageJ': '1.11a', 'images': 510, 'hyperstack': True} """ def _bool(val): return {'true': True, 'false': False}[val.lower()] result = {} for line in description.splitlines(): try: key, val = line.split('=') except Exception: continue key = key.strip() val = val.strip() for dtype in (int, float, _bool): try: val = dtype(val) break except Exception: pass result[key] = val if 'ImageJ' not in result: raise ValueError('not an ImageJ image description') return result def imagej_description( shape, rgb=None, colormaped=False, version=None, hyperstack=None, mode=None, loop=None, **kwargs, ): """Return ImageJ image description from data shape. ImageJ can handle up to 6 dimensions in order TZCYXS. >>> imagej_description((51, 5, 2, 196, 171)) # doctest: +SKIP ImageJ=1.11a images=510 channels=2 slices=5 frames=51 hyperstack=true mode=grayscale loop=false """ if colormaped: hyperstack = False rgb = False if version is None: version = kwargs.pop('ImageJ', '1.11a') axes = kwargs.pop('axes', None) shape = imagej_shape(shape, rgb=rgb, axes=axes) rgb = shape[-1] in (3, 4) append = [] result = [f'ImageJ={version}'] result.append(f'images={product(shape[:-3])}') if hyperstack is None: hyperstack = True append.append('hyperstack=true') else: append.append(f'hyperstack={bool(hyperstack)}') if shape[2] > 1: result.append(f'channels={shape[2]}') if mode is None and not rgb and not colormaped: mode = 'grayscale' if hyperstack and mode: append.append(f'mode={mode}') if shape[1] > 1: result.append(f'slices={shape[1]}') if shape[0] > 1: result.append(f'frames={shape[0]}') if loop is None: append.append('loop=false') if loop is not None: append.append(f'loop={bool(loop)}'.lower()) for key, value in kwargs.items(): if key not in ('images', 'channels', 'slices', 'frames'): append.append(f'{key.lower()}={value}') return '\n'.join(result + append + ['']) def imagej_shape(shape, rgb=None, axes=None): """Return shape normalized to 6D ImageJ hyperstack TZCYXS. Raise ValueError if not a valid ImageJ hyperstack shape or axes order. >>> imagej_shape((2, 3, 4, 5, 3), False) (2, 3, 4, 5, 3, 1) """ shape = tuple(int(i) for i in shape) ndim = len(shape) if 1 > ndim > 6: raise ValueError('ImageJ hyperstack must be 2-6 dimensional') if axes: if len(axes) != ndim: raise ValueError('ImageJ hyperstack shape and axes do not match') i = 0 axes = axes.upper() for ax in axes: j = 'TZCYXS'.find(ax) if j < i: raise ValueError( 'ImageJ hyperstack axes must be in TZCYXS order' ) i = j ndims = len(axes) newshape = [] i = 0 for ax in 'TZCYXS': if i < ndims and ax == axes[i]: newshape.append(shape[i]) i += 1 else: newshape.append(1) if newshape[-1] not in (1, 3, 4): raise ValueError( 'ImageJ hyperstack must contain 1, 3, or 4 samples' ) return tuple(newshape) if rgb is None: rgb = shape[-1] in (3, 4) and ndim > 2 if rgb and shape[-1] not in (3, 4): raise ValueError('ImageJ hyperstack is not a RGB image') if not rgb and ndim == 6 and shape[-1] != 1: raise ValueError('ImageJ hyperstack is not a grayscale image') if rgb or shape[-1] == 1: return (1,) * (6 - ndim) + shape return (1,) * (5 - ndim) + shape + (1,) def jpeg_decode_colorspace(photometric, planarconfig, extrasamples): """Return JPEG and output colorspace for jpeg_decode function.""" colorspace = None outcolorspace = None if extrasamples: pass elif photometric == 6: # YCBCR -> RGB outcolorspace = 2 # RGB elif photometric == 2: if planarconfig == 1: colorspace = outcolorspace = 2 # RGB elif photometric == 5: # CMYK outcolorspace = 4 elif photometric > 3: outcolorspace = TIFF.PHOTOMETRIC(photometric).name return colorspace, outcolorspace def jpeg_shape(jpeg): """Return bitdepth and shape of JPEG image.""" i = 0 while True and i < len(jpeg): marker = struct.unpack('>H', jpeg[i : i + 2])[0] i += 2 if marker == 0xFFD8: # start of image continue if marker == 0xFFD9: # end of image break if 0xFFD0 <= marker <= 0xFFD7: # restart marker continue if marker == 0xFF01: # private marker continue length = struct.unpack('>H', jpeg[i : i + 2])[0] i += 2 if 0xFFC0 <= marker <= 0xFFC3: # start of frame return struct.unpack('>BHHB', jpeg[i : i + 6]) if marker == 0xFFDA: # start of scan break # skip to next marker i += length - 2 raise ValueError('no SOF marker found') def ndpi_jpeg_tile(jpeg): """Return tile shape and JPEG header from JPEG with restart markers.""" restartinterval = 0 sofoffset = 0 sosoffset = 0 i = 0 while True and i < len(jpeg): marker = struct.unpack('>H', jpeg[i : i + 2])[0] i += 2 if marker == 0xFFD8: # start of image continue if marker == 0xFFD9: # end of image break if 0xFFD0 <= marker <= 0xFFD7: # restart marker continue if marker == 0xFF01: # private marker continue length = struct.unpack('>H', jpeg[i : i + 2])[0] i += 2 if marker == 0xFFDD: # define restart interval restartinterval = struct.unpack('>H', jpeg[i : i + 2])[0] elif marker == 0xFFC0: # start of frame sofoffset = i + 1 precision, imlength, imwidth, ncomponents = struct.unpack( '>BHHB', jpeg[i : i + 6] ) i += 6 mcuwidth = 1 mcuheight = 1 for _ in range(ncomponents): cid, factor, table = struct.unpack('>BBB', jpeg[i : i + 3]) i += 3 if factor >> 4 > mcuwidth: mcuwidth = factor >> 4 if factor & 0b00001111 > mcuheight: mcuheight = factor & 0b00001111 mcuwidth *= 8 mcuheight *= 8 i = sofoffset - 1 elif marker == 0xFFDA: # start of scan sosoffset = i + length - 2 break # skip to next marker i += length - 2 if restartinterval == 0 or sofoffset == 0 or sosoffset == 0: raise ValueError('missing required JPEG markers') # patch jpeg header for tile size tilelength = mcuheight tilewidth = restartinterval * mcuwidth jpegheader = ( jpeg[:sofoffset] + struct.pack('>HH', tilelength, tilewidth) + jpeg[sofoffset + 4 : sosoffset] ) return tilelength, tilewidth, jpegheader def json_description(shape, **metadata): """Return JSON image description from data shape and other metadata. Return UTF-8 encoded JSON. >>> json_description((256, 256, 3), axes='YXS') # doctest: +SKIP b'{"shape": [256, 256, 3], "axes": "YXS"}' """ metadata.update(shape=shape) return json.dumps(metadata) # .encode() def json_description_metadata(description): """Return metatata from JSON formated image description as dict. Raise ValuError if description is of unknown format. >>> description = '{"shape": [256, 256, 3], "axes": "YXS"}' >>> json_description_metadata(description) # doctest: +SKIP {'shape': [256, 256, 3], 'axes': 'YXS'} >>> json_description_metadata('shape=(256, 256, 3)') {'shape': (256, 256, 3)} """ if description[:6] == 'shape=': # old-style 'shaped' description; not JSON shape = tuple(int(i) for i in description[7:-1].split(',')) return dict(shape=shape) if description[:1] == '{' and description[-1:] == '}': # JSON description return json.loads(description) raise ValueError('invalid JSON image description', description) def fluoview_description_metadata(description, ignoresections=None): r"""Return metatata from FluoView image description as dict. The FluoView image description format is unspecified. Expect failures. >>> descr = ('[Intensity Mapping]\nMap Ch0: Range=00000 to 02047\n' ... '[Intensity Mapping End]') >>> fluoview_description_metadata(descr) {'Intensity Mapping': {'Map Ch0: Range': '00000 to 02047'}} """ if not description.startswith('['): raise ValueError('invalid FluoView image description') if ignoresections is None: ignoresections = {'Region Info (Fields)', 'Protocol Description'} result = {} sections = [result] comment = False for line in description.splitlines(): if not comment: line = line.strip() if not line: continue if line[0] == '[': if line[-5:] == ' End]': # close section del sections[-1] section = sections[-1] name = line[1:-5] if comment: section[name] = '\n'.join(section[name]) if name[:4] == 'LUT ': a = numpy.array(section[name], dtype=numpy.uint8) a.shape = -1, 3 section[name] = a continue # new section comment = False name = line[1:-1] if name[:4] == 'LUT ': section = [] elif name in ignoresections: section = [] comment = True else: section = {} sections.append(section) result[name] = section continue # add entry if comment: section.append(line) continue line = line.split('=', 1) if len(line) == 1: section[line[0].strip()] = None continue key, value = line if key[:4] == 'RGB ': section.extend(int(rgb) for rgb in value.split()) else: section[key.strip()] = astype(value.strip()) return result def pilatus_description_metadata(description): """Return metatata from Pilatus image description as dict. Return metadata from Pilatus pixel array detectors by Dectris, created by camserver or TVX software. >>> pilatus_description_metadata('# Pixel_size 172e-6 m x 172e-6 m') {'Pixel_size': (0.000172, 0.000172)} """ result = {} if not description.startswith('# '): return result for c in '#:=,()': description = description.replace(c, ' ') for line in description.split('\n'): if line[:2] != ' ': continue line = line.split() name = line[0] if line[0] not in TIFF.PILATUS_HEADER: try: result['DateTime'] = datetime.datetime.strptime( ' '.join(line), '%Y-%m-%dT%H %M %S.%f' ) except Exception: result[name] = ' '.join(line[1:]) continue indices, dtype = TIFF.PILATUS_HEADER[line[0]] if isinstance(indices[0], slice): # assumes one slice values = line[indices[0]] else: values = [line[i] for i in indices] if dtype is float and values[0] == 'not': values = ['NaN'] values = tuple(dtype(v) for v in values) if dtype == str: values = ' '.join(values) elif len(values) == 1: values = values[0] result[name] = values return result def svs_description_metadata(description): """Return metatata from Aperio image description as dict. The Aperio image description format is unspecified. Expect failures. >>> svs_description_metadata('Aperio Image Library v1.0') {'Header': 'Aperio Image Library v1.0'} """ if not description.startswith('Aperio '): raise ValueError('invalid Aperio image description') result = {} items = description.split('|') result['Header'] = items[0] if len(items) == 1: return result for item in items[1:]: key, value = item.split(' = ') result[key.strip()] = astype(value.strip()) return result def stk_description_metadata(description): """Return metadata from MetaMorph image description as list of dict. The MetaMorph image description format is unspecified. Expect failures. """ description = description.strip() if not description: return [] try: description = bytes2str(description) except UnicodeDecodeError as exc: log_warning( ' ' f'{exc.__class__.__name__}: {exc}' ) return [] result = [] for plane in description.split('\x00'): d = {} for line in plane.split('\r\n'): line = line.split(':', 1) if len(line) > 1: name, value = line d[name.strip()] = astype(value.strip()) else: value = line[0].strip() if value: if '' in d: d[''].append(value) else: d[''] = [value] result.append(d) return result def metaseries_description_metadata(description): """Return metatata from MetaSeries image description as dict.""" if not description.startswith(''): raise ValueError('invalid MetaSeries image description') from xml.etree import ElementTree as etree # delayed import root = etree.fromstring(description) types = { 'float': float, 'int': int, 'bool': lambda x: asbool(x, 'on', 'off'), } def parse(root, result): # recursive for child in root: attrib = child.attrib if not attrib: result[child.tag] = parse(child, {}) continue if 'id' in attrib: i = attrib['id'] t = attrib['type'] v = attrib['value'] if t in types: result[i] = types[t](v) else: result[i] = v return result adict = parse(root, {}) if 'Description' in adict: adict['Description'] = adict['Description'].replace(' ', '\n') return adict def scanimage_description_metadata(description): """Return metatata from ScanImage image description as dict.""" return matlabstr2py(description) def scanimage_artist_metadata(artist): """Return metatata from ScanImage artist tag as dict.""" try: return json.loads(artist) except ValueError as exc: log_warning( ' ' f'{exc.__class__.__name__}: {exc}' ) return None def olympusini_metadata(inistr): """Return OlympusSIS metadata from INI string. No documentation is available. """ def keyindex(key): # split key into name and index index = 0 i = len(key.rstrip('0123456789')) if i < len(key): index = int(key[i:]) - 1 key = key[:i] return key, index result = {} bands = [] zpos = None tpos = None for line in inistr.splitlines(): line = line.strip() if line == '' or line[0] == ';': continue if line[0] == '[' and line[-1] == ']': section_name = line[1:-1] result[section_name] = section = {} if section_name == 'Dimension': result['axes'] = axes = [] result['shape'] = shape = [] elif section_name == 'ASD': result[section_name] = [] elif section_name == 'Z': if 'Dimension' in result: result[section_name]['ZPos'] = zpos = [] elif section_name == 'Time': if 'Dimension' in result: result[section_name]['TimePos'] = tpos = [] elif section_name == 'Band': nbands = result['Dimension']['Band'] bands = [{'LUT': []} for _ in range(nbands)] result[section_name] = bands iband = 0 else: key, value = line.split('=') if value.strip() == '': value = None elif ',' in value: value = tuple(astype(v) for v in value.split(',')) else: value = astype(value) if section_name == 'Dimension': section[key] = value axes.append(key) shape.append(value) elif section_name == 'ASD': if key == 'Count': result['ASD'] = [{}] * value else: key, index = keyindex(key) result['ASD'][index][key] = value elif section_name == 'Band': if key[:3] == 'LUT': lut = bands[iband]['LUT'] value = struct.pack(' 1: axes.append(sisaxes.get(x, x[0].upper())) shape.append(i) result['axes'] = ''.join(axes) result['shape'] = tuple(shape) try: result['Z']['ZPos'] = numpy.array( result['Z']['ZPos'][: result['Dimension']['Z']], 'float64' ) except Exception: pass try: result['Time']['TimePos'] = numpy.array( result['Time']['TimePos'][: result['Dimension']['Time']], 'int32' ) except Exception: pass for band in bands: band['LUT'] = numpy.array(band['LUT'], 'uint8') return result def unpack_rgb(data, dtype=None, bitspersample=None, rescale=True): """Return array from bytes containing packed samples. Use to unpack RGB565 or RGB555 to RGB888 format. Works on little-endian platforms only. Parameters ---------- data : byte str The data to be decoded. Samples in each pixel are stored consecutively. Pixels are aligned to 8, 16, or 32 bit boundaries. dtype : numpy.dtype The sample data type. The byteorder applies also to the data stream. bitspersample : tuple Number of bits for each sample in a pixel. rescale : bool Upscale samples to the number of bits in dtype. Returns ------- numpy.ndarray Flattened array of unpacked samples of native dtype. Examples -------- >>> data = struct.pack('BBBB', 0x21, 0x08, 0xff, 0xff) >>> print(unpack_rgb(data, '>> print(unpack_rgb(data, '>> print(unpack_rgb(data, '= bits) data = numpy.frombuffer(data, dtype.byteorder + dt) result = numpy.empty((data.size, len(bitspersample)), dtype.char) for i, bps in enumerate(bitspersample): t = data >> int(numpy.sum(bitspersample[i + 1 :])) t &= int('0b' + '1' * bps, 2) if rescale: o = ((dtype.itemsize * 8) // bps + 1) * bps if o > data.dtype.itemsize * 8: t = t.astype('I') t *= (2**o - 1) // (2**bps - 1) t //= 2 ** (o - (dtype.itemsize * 8)) result[:, i] = t return result.reshape(-1) def float24_decode(data, byteorder): """Return float32 array from float24.""" raise NotImplementedError('float24_decode') def zlib_encode(data, level=None, out=None): """Compress Zlib DEFLATE.""" import zlib return zlib.compress(data, 6 if level is None else level) def zlib_decode(data, out=None): """Decompress Zlib DEFLATE.""" import zlib return zlib.decompress(data) def lzma_encode(data, level=None, out=None): """Compress LZMA.""" import lzma return lzma.compress(data) def lzma_decode(data, out=None): """Decompress LZMA.""" import lzma return lzma.decompress(data) if imagecodecs is None: def delta_encode(data, axis=-1, dist=1, out=None): """Encode Delta.""" if dist != 1: raise NotImplementedError(f'dist {dist} not implemented') if isinstance(data, (bytes, bytearray)): data = numpy.frombuffer(data, dtype=numpy.uint8) diff = numpy.diff(data, axis=0) return numpy.insert(diff, 0, data[0]).tobytes() dtype = data.dtype if dtype.kind == 'f': data = data.view(f'u{dtype.itemsize}') diff = numpy.diff(data, axis=axis) key = [slice(None)] * data.ndim key[axis] = 0 diff = numpy.insert(diff, 0, data[tuple(key)], axis=axis) if dtype.kind == 'f': return diff.view(dtype) return diff def delta_decode(data, axis=-1, dist=1, out=None): """Decode Delta.""" if dist != 1: raise NotImplementedError(f'dist {dist} not implemented') if out is not None and not out.flags.writeable: out = None if isinstance(data, (bytes, bytearray)): data = numpy.frombuffer(data, dtype=numpy.uint8) return numpy.cumsum( data, axis=0, dtype=numpy.uint8, out=out ).tobytes() if data.dtype.kind == 'f': view = data.view(f'u{data.dtype.itemsize}') view = numpy.cumsum(view, axis=axis, dtype=view.dtype) return view.view(data.dtype) return numpy.cumsum(data, axis=axis, dtype=data.dtype, out=out) def bitorder_decode(data, out=None, _bitorder=[]): r"""Reverse bits in each byte of bytes or numpy array. Decode data where pixels with lower column values are stored in the lower-order bits of the bytes (TIFF FillOrder is LSB2MSB). Parameters ---------- data : bytes or ndarray The data to be bit reversed. If bytes, a new bit-reversed bytes is returned. Numpy arrays are bit-reversed in-place. Examples -------- >>> bitorder_decode(b'\x01\x64') b'\x80&' >>> data = numpy.array([1, 666], dtype='uint16') >>> bitorder_decode(data) >>> data array([ 128, 16473], dtype=uint16) """ if not _bitorder: _bitorder.append( b'\x00\x80@\xc0 \xa0`\xe0\x10\x90P\xd00\xb0p\xf0\x08\x88H' b'\xc8(\xa8h\xe8\x18\x98X\xd88\xb8x\xf8\x04\x84D\xc4$\xa4d' b'\xe4\x14\x94T\xd44\xb4t\xf4\x0c\x8cL\xcc,\xacl\xec\x1c\x9c' b'\\\xdc<\xbc|\xfc\x02\x82B\xc2"\xa2b\xe2\x12\x92R\xd22' b'\xb2r\xf2\n\x8aJ\xca*\xaaj\xea\x1a\x9aZ\xda:\xbaz\xfa' b'\x06\x86F\xc6&\xa6f\xe6\x16\x96V\xd66\xb6v\xf6\x0e\x8eN' b'\xce.\xaen\xee\x1e\x9e^\xde>\xbe~\xfe\x01\x81A\xc1!\xa1a' b'\xe1\x11\x91Q\xd11\xb1q\xf1\t\x89I\xc9)\xa9i\xe9\x19' b'\x99Y\xd99\xb9y\xf9\x05\x85E\xc5%\xa5e\xe5\x15\x95U\xd55' b'\xb5u\xf5\r\x8dM\xcd-\xadm\xed\x1d\x9d]\xdd=\xbd}\xfd' b'\x03\x83C\xc3#\xa3c\xe3\x13\x93S\xd33\xb3s\xf3\x0b\x8bK' b'\xcb+\xabk\xeb\x1b\x9b[\xdb;\xbb{\xfb\x07\x87G\xc7\'\xa7g' b'\xe7\x17\x97W\xd77\xb7w\xf7\x0f\x8fO\xcf/\xafo\xef\x1f\x9f_' b'\xdf?\xbf\x7f\xff' ) _bitorder.append(numpy.frombuffer(_bitorder[0], dtype=numpy.uint8)) try: view = data.view('uint8') numpy.take(_bitorder[1], view, out=view) return data except AttributeError: return data.translate(_bitorder[0]) except ValueError: raise NotImplementedError('slices of arrays not supported') return None def packints_encode(data, bitspersample, axis=-1, out=None): """Tightly pack integers.""" raise NotImplementedError('packints_encode') def packints_decode(data, dtype, bitspersample, runlen=0, out=None): """Decompress bytes to array of integers. This implementation only handles itemsizes 1, 8, 16, 32, and 64 bits. Install the imagecodecs package for decoding other integer sizes. Parameters ---------- data : byte str Data to decompress. dtype : numpy.dtype or str A numpy boolean or integer type. bitspersample : int Number of bits per integer. runlen : int Number of consecutive integers, after which to start at next byte. Examples -------- >>> packints_decode(b'a', 'B', 1) array([0, 1, 1, 0, 0, 0, 0, 1], dtype=uint8) """ if bitspersample == 1: # bitarray data = numpy.frombuffer(data, '|B') data = numpy.unpackbits(data) if runlen % 8: data = data.reshape(-1, runlen + (8 - runlen % 8)) data = data[:, :runlen].reshape(-1) return data.astype(dtype) if bitspersample in (8, 16, 32, 64): return numpy.frombuffer(data, dtype) raise NotImplementedError( f'unpacking {bitspersample}-bit integers ' f'to {numpy.dtype(dtype)} not supported' ) def packbits_decode(encoded, out=None): r"""Decompress PackBits encoded byte string. >>> packbits_decode(b'\x80\x80') # NOP b'' >>> packbits_decode(b'\x02123') b'123' >>> packbits_decode( ... b'\xfe\xaa\x02\x80\x00\x2a\xfd\xaa\x03\x80\x00\x2a\x22\xf7\xaa' ... )[:-5] b'\xaa\xaa\xaa\x80\x00*\xaa\xaa\xaa\xaa\x80\x00*"\xaa\xaa\xaa\xaa\xaa' """ out = [] out_extend = out.extend i = 0 try: while True: n = ord(encoded[i : i + 1]) + 1 i += 1 if n > 129: # replicate out_extend(encoded[i : i + 1] * (258 - n)) i += 1 elif n < 129: # literal out_extend(encoded[i : i + n]) i += n except TypeError: pass return bytes(out) else: bitorder_decode = imagecodecs.bitorder_decode # noqa packints_decode = imagecodecs.packints_decode # noqa packints_encode = imagecodecs.packints_encode # noqa try: float24_decode = imagecodecs.float24_decode # noqa except AttributeError: pass def apply_colormap(image, colormap, contig=True): """Return palette-colored image. The image values are used to index the colormap on axis 1. The returned image is of shape image.shape+colormap.shape[0] and dtype colormap.dtype. Parameters ---------- image : numpy.ndarray Indexes into the colormap. colormap : numpy.ndarray RGB lookup table aka palette of shape (3, 2**bits_per_sample). contig : bool If True, return a contiguous array. Examples -------- >>> image = numpy.arange(256, dtype='uint8') >>> colormap = numpy.vstack([image, image, image]).astype('uint16') * 256 >>> apply_colormap(image, colormap)[-1] array([65280, 65280, 65280], dtype=uint16) """ image = numpy.take(colormap, image, axis=1) image = numpy.rollaxis(image, 0, image.ndim) if contig: image = numpy.ascontiguousarray(image) return image def parse_filenames( files, pattern, axesorder=None, categories=None, _shape=None ): r"""Return shape and axes from sequence of file names matching pattern. Parameters ---------- files : sequence of str Sequence of file names to parse. pattern : str Regular expression pattern matching axes labels and chunk indices in file names. By default, no pattern matching is performed. Axes labels can be specified by matching groups preceding the index groups in the file name, be provided as group names for the index groups, or be omitted. The predefined 'axes' pattern matches Olympus OIF and Leica TIFF series. axesorder : sequence of int (optional) Indices of axes in pattern. By default axes are returned in the order they appear in pattern. categories : dict of dicts (optional) Map of index group matches to integer indices. {'axislabel': {'category': index}} _shape : tuple of int (optional) Shape of the file sequence. If None (default), the shape is maximum-minimum+1 of the parsed indices for each dimension. Returns ------- labels : tuple of str Axes labels for each dimension. shape : tuple of int Shape of file series. indices : sequence of tuples Index of each file in shape. files : sequence of str Filtered sequence of file names. Examples -------- >>> parse_filenames( ... ['c1001.ext', 'c2002.ext'], r'([^\d])(\d)(?P\d+)\.ext' ... ) (('c', 't'), (2, 2), [(0, 0), (1, 1)], ['c1001.ext', 'c2002.ext']) """ # TODO: add option to filter files that do not match pattern shape = _shape if pattern is None: if shape is not None and (len(shape) != 1 or shape[0] < len(files)): raise ValueError( f'shape {(len(files),)} does not fit provided shape {shape}' ) return ( ('I',), (len(files),), tuple((i,) for i in range(len(files))), files, ) pattern = TIFF.FILE_PATTERNS.get(pattern, pattern) if not pattern: raise ValueError('invalid pattern') if isinstance(pattern, str): pattern = re.compile(pattern) if categories is None: categories = {} def parse(fname): # return axes labels and indices from file name labels = [] indices = [] groupindex = {v: k for k, v in pattern.groupindex.items()} match = pattern.search(fname) if not match: raise ValueError(f'pattern does not match file name {fname!r}') ax = None for i, m in enumerate(match.groups()): if m is None: continue if i + 1 in groupindex: ax = groupindex[i + 1] elif m[0].isalpha(): ax = m # axis label for next index continue if ax is None: ax = 'Q' # no preceding axis letter try: if ax in categories: m = categories[ax][m] m = int(m) except Exception as exc: raise ValueError(f'invalid index {m!r}') from exc indices.append(m) labels.append(ax) ax = None return tuple(labels), indices normpaths = [os.path.normpath(f) for f in files] if len(normpaths) == 1: prefix = os.path.dirname(normpaths[0]) else: prefix = os.path.commonpath(normpaths) prefix = len(prefix) labels = None indices = [] for fname in normpaths: lbl, idx = parse(fname[prefix:]) if labels is None: labels = lbl if axesorder is not None and ( len(axesorder) != len(labels) or any(i not in axesorder for i in range(len(labels))) ): raise ValueError( f'invalid axesorder {axesorder!r} for {labels!r}' ) elif labels != lbl: raise ValueError('axes labels do not match within image sequence') if axesorder is not None: idx = [idx[i] for i in axesorder] indices.append(idx) if axesorder is None: labels = tuple(labels) else: labels = tuple(labels[i] for i in axesorder) # determine shape indices = numpy.array(indices, dtype=numpy.intp) parsedshape = numpy.max(indices, axis=0) if shape is None: startindex = numpy.min(indices, axis=0) indices -= startindex parsedshape -= startindex parsedshape += 1 shape = tuple(parsedshape.tolist()) elif len(parsedshape) != len(shape) or any( i > j for i, j in zip(shape, parsedshape) ): raise ValueError( f'parsed shape {parsedshape} does not fit provided shape {shape}' ) indices = [tuple(index) for index in indices.tolist()] return labels, shape, indices, files def iter_images(data): """Return iterator over pages in data array of normalized shape.""" yield from data def iter_tiles(data, tile, tiles): """Return iterator over tiles in data array of normalized shape.""" shape = data.shape chunk = numpy.empty(tile + (shape[-1],), dtype=data.dtype) if not 1 < len(tile) < 4: raise ValueError('invalid tile shape') if len(tile) == 2: for page in data: for plane in page: for ty in range(tiles[0]): for tx in range(tiles[1]): c1 = min(tile[0], shape[3] - ty * tile[0]) c2 = min(tile[1], shape[4] - tx * tile[1]) chunk[c1:, c2:] = 0 chunk[:c1, :c2] = plane[ 0, ty * tile[0] : ty * tile[0] + c1, tx * tile[1] : tx * tile[1] + c2, ] yield chunk else: for page in data: for plane in page: for tz in range(tiles[0]): for ty in range(tiles[1]): for tx in range(tiles[2]): c0 = min(tile[0], shape[2] - tz * tile[0]) c1 = min(tile[1], shape[3] - ty * tile[1]) c2 = min(tile[2], shape[4] - tx * tile[2]) chunk[c0:, c1:, c2:] = 0 chunk[:c0, :c1, :c2] = plane[ tz * tile[0] : tz * tile[0] + c0, ty * tile[1] : ty * tile[1] + c1, tx * tile[2] : tx * tile[2] + c2, ] if tile[0] == 1: # squeeze for image compressors yield chunk[0] else: yield chunk def pad_tile(tile, shape, dtype): """Return tile padded to tile shape.""" if tile.dtype != dtype or tile.nbytes > product(shape) * dtype.itemsize: raise ValueError('invalid tile shape or dtype') pad = tuple((0, i - j) for i, j in zip(shape, tile.shape)) return numpy.pad(tile, pad) def reorient(image, orientation): """Return reoriented view of image array. Parameters ---------- image : numpy.ndarray Non-squeezed output of asarray() functions. Axes -3 and -2 must be image length and width respectively. orientation : int or str One of TIFF.ORIENTATION names or values. """ orient = TIFF.ORIENTATION orientation = enumarg(orient, orientation) if orientation == orient.TOPLEFT: return image if orientation == orient.TOPRIGHT: return image[..., ::-1, :] if orientation == orient.BOTLEFT: return image[..., ::-1, :, :] if orientation == orient.BOTRIGHT: return image[..., ::-1, ::-1, :] if orientation == orient.LEFTTOP: return numpy.swapaxes(image, -3, -2) if orientation == orient.RIGHTTOP: return numpy.swapaxes(image, -3, -2)[..., ::-1, :] if orientation == orient.RIGHTBOT: return numpy.swapaxes(image, -3, -2)[..., ::-1, :, :] if orientation == orient.LEFTBOT: return numpy.swapaxes(image, -3, -2)[..., ::-1, ::-1, :] return image def repeat_nd(a, repeats): """Return read-only view into input array with elements repeated. Zoom nD image by integer factors using nearest neighbor interpolation (box filter). Parameters ---------- a : array-like Input array. repeats : sequence of int The number of repetitions to apply along each dimension of input array. Examples -------- >>> repeat_nd([[1, 2], [3, 4]], (2, 2)) array([[1, 1, 2, 2], [1, 1, 2, 2], [3, 3, 4, 4], [3, 3, 4, 4]]) """ a = numpy.asarray(a) reshape = [] shape = [] strides = [] for i, j, k in zip(a.strides, a.shape, repeats): shape.extend((j, k)) strides.extend((i, 0)) reshape.append(j * k) return numpy.lib.stride_tricks.as_strided( a, shape, strides, writeable=False ).reshape(reshape) def reshape_nd(data_or_shape, ndim): """Return image array or shape with at least ndim dimensions. Prepend 1s to image shape as necessary. >>> reshape_nd(numpy.empty(0), 1).shape (0,) >>> reshape_nd(numpy.empty(1), 2).shape (1, 1) >>> reshape_nd(numpy.empty((2, 3)), 3).shape (1, 2, 3) >>> reshape_nd(numpy.empty((3, 4, 5)), 3).shape (3, 4, 5) >>> reshape_nd((2, 3), 3) (1, 2, 3) """ is_shape = isinstance(data_or_shape, tuple) shape = data_or_shape if is_shape else data_or_shape.shape if len(shape) >= ndim: return data_or_shape shape = (1,) * (ndim - len(shape)) + shape return shape if is_shape else data_or_shape.reshape(shape) def squeeze_axes(shape, axes, skip=None): """Return shape and axes with single-dimensional entries removed. Remove unused dimensions unless their axes are listed in 'skip'. >>> squeeze_axes((5, 1, 2, 1, 1), 'TZYXC') ((5, 2, 1), 'TYX') >>> squeeze_axes((1,), 'Q') ((1,), 'Q') """ if len(shape) != len(axes): raise ValueError('dimensions of axes and shape do not match') if skip is None: skip = 'XY' try: shape_squeezed, axes_squeezed = zip( *(i for i in zip(shape, axes) if i[0] > 1 or i[1] in skip) ) except ValueError: # not enough values to unpack, return last axis shape_squeezed = shape[-1:] axes_squeezed = axes[-1:] return tuple(shape_squeezed), ''.join(axes_squeezed) def transpose_axes(image, axes, asaxes=None): """Return image with its axes permuted to match specified axes. A view is returned if possible. >>> transpose_axes(numpy.zeros((2, 3, 4, 5)), 'TYXC', asaxes='CTZYX').shape (5, 2, 1, 3, 4) """ for ax in axes: if ax not in asaxes: raise ValueError(f'unknown axis {ax}') # add missing axes to image if asaxes is None: asaxes = 'CTZYX' shape = image.shape for ax in reversed(asaxes): if ax not in axes: axes = ax + axes shape = (1,) + shape image = image.reshape(shape) # transpose axes image = image.transpose([axes.index(ax) for ax in asaxes]) return image def reshape_axes(axes, shape, newshape, unknown=None): """Return axes matching new shape. By default, unknown dimensions are labelled 'Q'. >>> reshape_axes('YXS', (219, 301, 1), (219, 301)) 'YX' >>> reshape_axes('IYX', (12, 219, 301), (3, 4, 219, 1, 301, 1)) 'QQYQXQ' """ shape = tuple(shape) newshape = tuple(newshape) if len(axes) != len(shape): raise ValueError('axes do not match shape') size = product(shape) newsize = product(newshape) if size != newsize: raise ValueError(f'cannot reshape {shape} to {newshape}') if not axes or not newshape: return '' lendiff = max(0, len(shape) - len(newshape)) if lendiff: newshape = newshape + (1,) * lendiff i = len(shape) - 1 prodns = 1 prods = 1 result = [] for ns in newshape[::-1]: prodns *= ns while i > 0 and shape[i] == 1 and ns != 1: i -= 1 if ns == shape[i] and prodns == prods * shape[i]: prods *= shape[i] result.append(axes[i]) i -= 1 elif unknown: result.append(unknown) else: unknown = 'Q' result.append(unknown) return ''.join(reversed(result[lendiff:])) def subresolution(a, b, p=2, n=16): """Return level of subresolution of series or page b vs a.""" if a.axes != b.axes or a.dtype != b.dtype: return None level = None for ax, i, j in zip(a.axes.lower(), a.shape, b.shape): if ax in 'xyz': if level is None: for r in range(n): d = p**r if d > i: return None if abs((i / d) - j) < 1.0: level = r break else: return None else: d = p**level if d > i: return None if abs((i / d) - j) >= 1.0: return None elif i != j: return None return level def pyramidize_series(series, isreduced=False): """Pyramidize list of TiffPageSeries in-place. TiffPageSeries that are a subresolution of another TiffPageSeries are appended to the other's TiffPageSeries levels and removed from the list. Levels are to be ordered by size using the same downsampling factor. TiffPageSeries of subifds cannot be pyramid top levels. """ samplingfactors = (2, 3, 4) i = 0 while i < len(series): a = series[i] p = None j = i + 1 if isinstance(a.keyframe.index, tuple): # subifds cannot be pyramid top levels i += 1 continue while j < len(series): b = series[j] if isreduced and not b.keyframe.is_reduced: # pyramid levels must be reduced j += 1 continue # not a pyramid level if p is None: for f in samplingfactors: if subresolution(a.levels[-1], b, p=f) == 1: p = f break # not a pyramid level else: j += 1 continue # not a pyramid level elif subresolution(a.levels[-1], b, p=p) != 1: j += 1 continue a.levels.append(b) del series[j] i += 1 def stack_pages(pages, out=None, maxworkers=None, **kwargs): """Read data from sequence of TiffPage/Frame and stack them vertically. Additional parameters are passsed to the TiffPage.asarray function. """ npages = len(pages) if npages == 0: raise ValueError('no pages') if npages == 1: kwargs['maxworkers'] = maxworkers return pages[0].asarray(out=out, **kwargs) page0 = next(p.keyframe for p in pages if p is not None) shape = (npages,) + page0.shape dtype = page0.dtype out = create_output(out, shape, dtype) # TODO: benchmark and optimize this if maxworkers is None or maxworkers < 1: # auto-detect page_maxworkers = page0.maxworkers maxworkers = min(npages, TIFF.MAXWORKERS) if maxworkers == 1 or page_maxworkers < 1: maxworkers = page_maxworkers = 1 elif npages < 3: maxworkers = 1 elif ( page_maxworkers <= 2 and page0.compression == 1 and page0.fillorder == 1 and page0.predictor == 1 ): maxworkers = 1 else: page_maxworkers = 1 elif maxworkers == 1: maxworkers = page_maxworkers = 1 elif npages > maxworkers or page0.maxworkers < 2: page_maxworkers = 1 else: page_maxworkers = maxworkers maxworkers = 1 kwargs['maxworkers'] = page_maxworkers filehandle = page0.parent.filehandle haslock = filehandle.has_lock if not haslock and maxworkers > 1 or page_maxworkers > 1: filehandle.lock = True filecache = FileCache(size=max(4, maxworkers), lock=filehandle.lock) def func(page, index, out=out, filecache=filecache, kwargs=kwargs): # read, decode, and copy page data if page is not None: filecache.open(page.parent.filehandle) page.asarray(lock=filecache.lock, out=out[index], **kwargs) filecache.close(page.parent.filehandle) if maxworkers < 2: for i, page in enumerate(pages): func(page, i) else: page0.decode # init TiffPage.decode function with ThreadPoolExecutor(maxworkers) as executor: for _ in executor.map(func, pages, range(npages)): pass filecache.clear() if not haslock: filehandle.lock = False return out def create_output(out, shape, dtype, mode='w+', suffix=None, fillvalue=0): """Return numpy array where image data of shape and dtype can be copied. The 'out' parameter may have the following values or types: None A zeroed array of shape and dtype is created and returned. numpy.ndarray An existing writable array of compatible dtype and shape. A view of the same array is returned after verification. 'memmap' or 'memmap:tempdir' A memory-map to an array stored in a temporary binary file on disk is created and returned. str or open file The file name or file object used to create a memory-map to an array stored in a binary file on disk. The created memory-mapped array is returned. """ if out is None: if fillvalue is None: return numpy.empty(shape, dtype) if fillvalue: out = numpy.empty(shape, dtype) out[:] = fillvalue return out return numpy.zeros(shape, dtype) if isinstance(out, numpy.ndarray): if product(shape) != product(out.shape): raise ValueError('incompatible output shape') if not numpy.can_cast(dtype, out.dtype): raise ValueError('incompatible output dtype') return out.reshape(shape) if isinstance(out, str) and out[:6] == 'memmap': import tempfile tempdir = out[7:] if len(out) > 7 else None if suffix is None: suffix = '.memmap' with tempfile.NamedTemporaryFile(dir=tempdir, suffix=suffix) as fh: return numpy.memmap(fh, shape=shape, dtype=dtype, mode=mode) return numpy.memmap(out, shape=shape, dtype=dtype, mode=mode) def matlabstr2py(string): r"""Return Python object from Matlab string representation. Return str, bool, int, float, list (Matlab arrays or cells), or dict (Matlab structures) types. Use to access ScanImage metadata. >>> matlabstr2py('1') 1 >>> matlabstr2py("['x y z' true false; 1 2.0 -3e4; NaN Inf @class]") [['x y z', True, False], [1, 2.0, -30000.0], [nan, inf, '@class']] >>> d = matlabstr2py( ... "SI.hChannels.channelType = {'stripe' 'stripe'}\n" ... "SI.hChannels.channelsActive = 2" ... ) >>> d['SI.hChannels.channelType'] ['stripe', 'stripe'] """ # TODO: handle invalid input # TODO: review unboxing of multidimensional arrays def lex(s): # return sequence of tokens from matlab string representation tokens = ['['] while True: t, i = next_token(s) if t is None: break if t == ';': tokens.extend((']', '[')) elif t == '[': tokens.extend(('[', '[')) elif t == ']': tokens.extend((']', ']')) else: tokens.append(t) s = s[i:] tokens.append(']') return tokens def next_token(s): # return next token in matlab string length = len(s) if length == 0: return None, 0 i = 0 while i < length and s[i] == ' ': i += 1 if i == length: return None, i if s[i] in '{[;]}': return s[i], i + 1 if s[i] == "'": j = i + 1 while j < length and s[j] != "'": j += 1 return s[i : j + 1], j + 1 if s[i] == '<': j = i + 1 while j < length and s[j] != '>': j += 1 return s[i : j + 1], j + 1 j = i while j < length and not s[j] in ' {[;]}': j += 1 return s[i:j], j def value(s, fail=False): # return Python value of token s = s.strip() if not s: return s if len(s) == 1: try: return int(s) except Exception: if fail: raise ValueError return s if s[0] == "'": if fail and s[-1] != "'" or "'" in s[1:-1]: raise ValueError return s[1:-1] if s[0] == '<': if fail and s[-1] != '>' or '<' in s[1:-1]: raise ValueError return s if fail and any(i in s for i in " ';[]{}"): raise ValueError if s[0] == '@': return s if s == 'true' or s == 'True': return True if s == 'false' or s == 'False': return False if s[:6] == 'zeros(': return numpy.zeros([int(i) for i in s[6:-1].split(',')]).tolist() if s[:5] == 'ones(': return numpy.ones([int(i) for i in s[5:-1].split(',')]).tolist() if '.' in s or 'e' in s: try: return float(s) except Exception: pass try: return int(s) except Exception: pass try: return float(s) # nan, inf except Exception: if fail: raise ValueError return s def parse(s): # return Python value from string representation of Matlab value s = s.strip() try: return value(s, fail=True) except ValueError: pass result = add2 = [] levels = [add2] for t in lex(s): if t in '[{': add2 = [] levels.append(add2) elif t in ']}': x = levels.pop() if len(x) == 1 and isinstance(x[0], (list, str)): x = x[0] add2 = levels[-1] add2.append(x) else: add2.append(value(t)) if len(result) == 1 and isinstance(result[0], (list, str)): result = result[0] return result if '\r' in string or '\n' in string: # structure d = {} for line in string.splitlines(): line = line.strip() if not line or line[0] == '%': continue k, v = line.split('=', 1) k = k.strip() if any(c in k for c in " ';[]{}<>"): continue d[k] = parse(v) return d return parse(string) def stripnull(string, null=b'\x00', first=True): r"""Return string truncated at first null character. Clean NULL terminated C strings. For Unicode strings use null='\0'. >>> stripnull(b'string\x00\x00') b'string' >>> stripnull(b'string\x00string\x00\x00', first=False) b'string\x00string' >>> stripnull('string\x00', null='\0') 'string' """ if first: i = string.find(null) return string if i < 0 else string[:i] null = null[0] i = len(string) while i: i -= 1 if string[i] != null: break else: i = -1 return string[: i + 1] def stripascii(string): r"""Return string truncated at last byte that is 7-bit ASCII. Clean NULL separated and terminated TIFF strings. >>> stripascii(b'string\x00string\n\x01\x00') b'string\x00string\n' >>> stripascii(b'\x00') b'' """ # TODO: pythonize this i = len(string) while i: i -= 1 if 8 < string[i] < 127: break else: i = -1 return string[: i + 1] def asbool(value, true=None, false=None): """Return string as bool if possible, else raise TypeError. >>> asbool(b' False ') False >>> asbool('ON', ['on'], ['off']) True """ value = value.strip().lower() isbytes = False if true is None: if isinstance(value, bytes): if value == b'true': return True isbytes = True elif value == 'true': return True if false is None: if isbytes or isinstance(value, bytes): if value == b'false': return False elif value == 'false': return False if value in true: return True if value in false: return False raise TypeError def astype(value, types=None): """Return argument as one of types if possible. >>> astype('42') 42 >>> astype('3.14') 3.14 >>> astype('True') True >>> astype(b'Neee-Wom') 'Neee-Wom' """ if types is None: types = int, float, asbool, bytes2str for typ in types: try: return typ(value) except (ValueError, AttributeError, TypeError, UnicodeEncodeError): pass return value def format_size(size, threshold=1536): """Return file size as string from byte size. >>> format_size(1234) '1234 B' >>> format_size(12345678901) '11.50 GiB' """ if size < threshold: return f'{size} B' for unit in ('KiB', 'MiB', 'GiB', 'TiB', 'PiB'): size /= 1024.0 if size < threshold: return f'{size:.2f} {unit}' return 'ginormous' def identityfunc(arg, *args, **kwargs): """Single argument identity function. >>> identityfunc('arg') 'arg' """ return arg def nullfunc(*args, **kwargs): """Null function. >>> nullfunc('arg', kwarg='kwarg') """ return def sequence(value): """Return tuple containing value if value is not a tuple or list. >>> sequence(1) (1,) >>> sequence([1]) [1] >>> sequence('ab') ('ab',) """ return value if isinstance(value, (tuple, list)) else (value,) def product(iterable): """Return product of sequence of numbers. Equivalent of functools.reduce(operator.mul, iterable, 1). Multiplying numpy integers might overflow. >>> product([2**8, 2**30]) 274877906944 >>> product([]) 1 """ prod = 1 for i in iterable: prod *= i return prod def natural_sorted(iterable): """Return human sorted list of strings. E.g. for sorting file names. >>> natural_sorted(['f1', 'f2', 'f10']) ['f1', 'f2', 'f10'] """ def sortkey(x): return [(int(c) if c.isdigit() else c) for c in re.split(numbers, x)] numbers = re.compile(r'(\d+)') return sorted(iterable, key=sortkey) def epics_datetime(sec, nsec): """Return datetime object from epicsTSSec and epicsTSNsec tag values.""" return datetime.datetime.fromtimestamp(sec + 631152000 + nsec / 1e9) def excel_datetime(timestamp, epoch=None): """Return datetime object from timestamp in Excel serial format. Convert LSM time stamps. >>> excel_datetime(40237.029999999795) datetime.datetime(2010, 2, 28, 0, 43, 11, 999982) """ if epoch is None: epoch = datetime.datetime.fromordinal(693594) return epoch + datetime.timedelta(timestamp) def julian_datetime(julianday, milisecond=0): """Return datetime from days since 1/1/4713 BC and ms since midnight. Convert Julian dates according to MetaMorph. >>> julian_datetime(2451576, 54362783) datetime.datetime(2000, 2, 2, 15, 6, 2, 783) """ if julianday <= 1721423: # no datetime before year 1 return None a = julianday + 1 if a > 2299160: alpha = math.trunc((a - 1867216.25) / 36524.25) a += 1 + alpha - alpha // 4 b = a + (1524 if a > 1721423 else 1158) c = math.trunc((b - 122.1) / 365.25) d = math.trunc(365.25 * c) e = math.trunc((b - d) / 30.6001) day = b - d - math.trunc(30.6001 * e) month = e - (1 if e < 13.5 else 13) year = c - (4716 if month > 2.5 else 4715) hour, milisecond = divmod(milisecond, 1000 * 60 * 60) minute, milisecond = divmod(milisecond, 1000 * 60) second, milisecond = divmod(milisecond, 1000) return datetime.datetime( year, month, day, hour, minute, second, milisecond ) def byteorder_isnative(byteorder): """Return if byteorder matches the system's byteorder. >>> byteorder_isnative('=') True """ if byteorder == '=' or byteorder == sys.byteorder: return True keys = {'big': '>', 'little': '<'} return keys.get(byteorder, byteorder) == keys[sys.byteorder] def byteorder_compare(byteorder, byteorder2): """Return if byteorders match. >>> byteorder_compare('<', '<') True >>> byteorder_compare('>', '<') False """ if byteorder == byteorder2 or byteorder == '|' or byteorder2 == '|': return True if byteorder == '=': byteorder = {'big': '>', 'little': '<'}[sys.byteorder] elif byteorder2 == '=': byteorder2 = {'big': '>', 'little': '<'}[sys.byteorder] return byteorder == byteorder2 def recarray2dict(recarray): """Return numpy.recarray as dict.""" # TODO: subarrays result = {} for descr, value in zip(recarray.dtype.descr, recarray): name, dtype = descr[:2] if dtype[1] == 'S': value = bytes2str(stripnull(value)) elif value.ndim < 2: value = value.tolist() result[name] = value return result def xml2dict(xml, sanitize=True, prefix=None): """Return XML as dict. >>> xml2dict('1') {'root': {'key': 1, 'attr': 'name'}} >>> xml2dict('3.5322') {'level1': {'level2': 3.5322}} """ from xml.etree import ElementTree as etree # delayed import at = tx = '' if prefix: at, tx = prefix def astype(value): # return string value as int, float, bool, or unchanged if not isinstance(value, (str, bytes)): return value for t in (int, float, asbool): try: return t(value) except Exception: pass return value def etree2dict(t): # adapted from https://stackoverflow.com/a/10077069/453463 key = t.tag if sanitize: key = key.rsplit('}', 1)[-1] d = {key: {} if t.attrib else None} children = list(t) if children: dd = collections.defaultdict(list) for dc in map(etree2dict, children): for k, v in dc.items(): dd[k].append(astype(v)) d = { key: { k: astype(v[0]) if len(v) == 1 else astype(v) for k, v in dd.items() } } if t.attrib: d[key].update((at + k, astype(v)) for k, v in t.attrib.items()) if t.text: text = t.text.strip() if children or t.attrib: if text: d[key][tx + 'value'] = astype(text) else: d[key] = astype(text) return d return etree2dict(etree.fromstring(xml)) def hexdump(bytestr, width=75, height=24, snipat=-2, modulo=2, ellipsis=None): """Return hexdump representation of bytes. >>> hexdump(binascii.unhexlify('49492a00080000000e00fe0004000100')) '49 49 2a 00 08 00 00 00 0e 00 fe 00 04 00 01 00 II*.............' """ size = len(bytestr) if size < 1 or width < 2 or height < 1: return '' if height == 1: addr = b'' bytesperline = min( modulo * (((width - len(addr)) // 4) // modulo), size ) if bytesperline < 1: return '' nlines = 1 else: addr = b'%%0%ix: ' % len(b'%x' % size) bytesperline = min( modulo * (((width - len(addr % 1)) // 4) // modulo), size ) if bytesperline < 1: return '' width = 3 * bytesperline + len(addr % 1) nlines = (size - 1) // bytesperline + 1 if snipat is None or snipat == 1: snipat = height elif 0 < abs(snipat) < 1: snipat = int(math.floor(height * snipat)) if snipat < 0: snipat += height if height == 1 or nlines == 1: blocks = [(0, bytestr[:bytesperline])] addr = b'' height = 1 width = 3 * bytesperline elif height is None or nlines <= height: blocks = [(0, bytestr)] elif snipat <= 0: start = bytesperline * (nlines - height) blocks = [(start, bytestr[start:])] # (start, None) elif snipat >= height or height < 3: end = bytesperline * height blocks = [(0, bytestr[:end])] # (end, None) else: end1 = bytesperline * snipat end2 = bytesperline * (height - snipat - 1) blocks = [ (0, bytestr[:end1]), (size - end1 - end2, None), (size - end2, bytestr[size - end2 :]), ] ellipsis = b'...' if ellipsis is None else ellipsis.encode('cp1252') result = [] for start, bytestr in blocks: if bytestr is None: result.append(ellipsis) # 'skip %i bytes' % start) continue hexstr = binascii.hexlify(bytestr) strstr = re.sub(br'[^\x20-\x7f]', b'.', bytestr) for i in range(0, len(bytestr), bytesperline): h = hexstr[2 * i : 2 * i + bytesperline * 2] r = (addr % (i + start)) if height > 1 else addr r += b' '.join(h[i : i + 2] for i in range(0, 2 * bytesperline, 2)) r += b' ' * (width - len(r)) r += strstr[i : i + bytesperline] result.append(r) result = b'\n'.join(result) result = result.decode('ascii') return result def isprintable(string): r"""Return if all characters in string are printable. >>> isprintable('abc') True >>> isprintable(b'\01') False """ string = string.strip() if not string: return True try: return string.isprintable() except Exception: pass try: return string.decode().isprintable() except Exception: pass def clean_whitespace(string, compact=False): """Return string with compressed whitespace.""" string = ( string.replace('\r\n', '\n') .replace('\r', '\n') .replace('\n\n', '\n') .replace('\t', ' ') .replace(' ', ' ') ) if compact: string = ( string.replace('\n', ' ') .replace('[ ', '[') .replace(' ', ' ') .replace(' ', ' ') .replace(' ', ' ') ) return string.strip() def pformat_xml(xml): """Return pretty formatted XML.""" try: from lxml import etree # delayed import if not isinstance(xml, bytes): xml = xml.encode() tree = etree.parse(io.BytesIO(xml)) xml = etree.tostring( tree, pretty_print=True, xml_declaration=True, encoding=tree.docinfo.encoding, ) xml = bytes2str(xml) except Exception: if isinstance(xml, bytes): xml = bytes2str(xml) xml = xml.replace('><', '>\n<') return xml.replace(' ', ' ').replace('\t', ' ') def pformat(arg, width=79, height=24, compact=True): """Return pretty formatted representation of object as string. Whitespace might be altered. """ if height is None or height < 1: height = 1024 if width is None or width < 1: width = 256 npopt = numpy.get_printoptions() numpy.set_printoptions(threshold=100, linewidth=width) if isinstance(arg, bytes): if arg[:5].lower() == b'': arg = bytes2str(arg) if isinstance(arg, bytes): if isprintable(arg): arg = bytes2str(arg) arg = clean_whitespace(arg) else: numpy.set_printoptions(**npopt) return hexdump(arg, width=width, height=height, modulo=1) arg = arg.rstrip() elif isinstance(arg, str): if arg[:5].lower() == '': arg = arg[: 4 * width] if height == 1 else pformat_xml(arg) # too slow # else: # import textwrap # delayed import # return '\n'.join( # textwrap.wrap(arg, width=width, max_lines=height, tabsize=2) # ) arg = arg.rstrip() elif isinstance(arg, numpy.record): arg = arg.pprint() else: import pprint # delayed import arg = pprint.pformat(arg, width=width, compact=compact) numpy.set_printoptions(**npopt) if height == 1: arg = arg[: width * width] arg = clean_whitespace(arg, compact=True) return arg[:width] argl = list(arg.splitlines()) if len(argl) > height: arg = '\n'.join( line[:width] for line in argl[: height // 2] + ['...'] + argl[-height // 2 :] ) else: arg = '\n'.join(line[:width] for line in argl[:height]) return arg def snipstr(string, width=79, snipat=None, ellipsis=None): """Return string cut to specified length. >>> snipstr('abcdefghijklmnop', 8) 'abc...op' """ if snipat is None: snipat = 0.5 if ellipsis is None: if isinstance(string, bytes): ellipsis = b'...' else: ellipsis = '\u2026' esize = len(ellipsis) splitlines = string.splitlines() # TODO: finish and test multiline snip result = [] for line in splitlines: if line is None: result.append(ellipsis) continue linelen = len(line) if linelen <= width: result.append(string) continue split = snipat if split is None or split == 1: split = linelen elif 0 < abs(split) < 1: split = int(math.floor(linelen * split)) if split < 0: split += linelen if split < 0: split = 0 if esize == 0 or width < esize + 1: if split <= 0: result.append(string[-width:]) else: result.append(string[:width]) elif split <= 0: result.append(ellipsis + string[esize - width :]) elif split >= linelen or width < esize + 4: result.append(string[: width - esize] + ellipsis) else: splitlen = linelen - width + esize end1 = split - splitlen // 2 end2 = end1 + splitlen result.append(string[:end1] + ellipsis + string[end2:]) if isinstance(string, bytes): return b'\n'.join(result) return '\n'.join(result) def enumstr(enum): """Return short string representation of Enum instance.""" name = enum.name if name is None: name = str(enum) return name def enumarg(enum, arg): """Return enum member from its name or value. >>> enumarg(TIFF.PHOTOMETRIC, 2) >>> enumarg(TIFF.PHOTOMETRIC, 'RGB') """ try: return enum(arg) except Exception: try: return enum[arg.upper()] except Exception: raise ValueError(f'invalid argument {arg}') def parse_kwargs(kwargs, *keys, **keyvalues): """Return dict with keys from keys|keyvals and values from kwargs|keyvals. Existing keys are deleted from kwargs. >>> kwargs = {'one': 1, 'two': 2, 'four': 4} >>> kwargs2 = parse_kwargs(kwargs, 'two', 'three', four=None, five=5) >>> kwargs == {'one': 1} True >>> kwargs2 == {'two': 2, 'four': 4, 'five': 5} True """ result = {} for key in keys: if key in kwargs: result[key] = kwargs[key] del kwargs[key] for key, value in keyvalues.items(): if key in kwargs: result[key] = kwargs[key] del kwargs[key] else: result[key] = value return result def update_kwargs(kwargs, **keyvalues): """Update dict with keys and values if keys do not already exist. >>> kwargs = {'one': 1, } >>> update_kwargs(kwargs, one=None, two=2) >>> kwargs == {'one': 1, 'two': 2} True """ for key, value in keyvalues.items(): if key not in kwargs: kwargs[key] = value def log_warning(msg, *args, **kwargs): """Log message with level WARNING.""" import logging logging.getLogger(__name__).warning(msg, *args, **kwargs) def validate_jhove(filename, jhove=None, ignore=None): """Validate TIFF file using jhove -m TIFF-hul. Raise ValueError if jhove outputs an error message unless the message contains one of the strings in 'ignore'. JHOVE does not support bigtiff or more than 50 IFDs. See `JHOVE TIFF-hul Module `_ """ import subprocess if ignore is None: ignore = ['More than 50 IFDs'] if jhove is None: jhove = 'jhove' out = subprocess.check_output([jhove, filename, '-m', 'TIFF-hul']) if b'ErrorMessage: ' in out: for line in out.splitlines(): line = line.strip() if line.startswith(b'ErrorMessage: '): error = line[14:].decode() for i in ignore: if i in error: break else: raise ValueError(error) break def tiffcomment(arg, comment=None, index=None, code=None): """Return or replace ImageDescription value in first page of TIFF file.""" if index is None: index = 0 if code is None: code = 270 mode = None if comment is None else 'r+b' with TiffFile(arg, mode=mode) as tif: tag = tif.pages[index].tags.get(code, None) if tag is None: raise ValueError(f'no {TIFF.TAGS[code]} tag found') if comment is None: return tag.value tag.overwrite(comment) def tiff2fsspec( filename, url, out=None, key=None, series=None, level=None, chunkmode=None, version=None, ): """Write fsspec ReferenceFileSystem JSON from TIFF file.""" if out is None: out = filename + '.json' with TiffFile(filename) as tif: with tif.aszarr( key=key, series=series, level=level, chunkmode=chunkmode ) as store: store.write_fsspec(out, url, version=version) def lsm2bin(lsmfile, binfile=None, tile=None, verbose=True): """Convert [MP]TZCYX LSM file to series of BIN files. One BIN file containing 'ZCYX' data are created for each position, time, and tile. The position, time, and tile indices are encoded at the end of the filenames. """ verbose = print if verbose else nullfunc if tile is None: tile = (256, 256) if binfile is None: binfile = lsmfile elif binfile.lower() == 'none': binfile = None if binfile: binfile += '_(z%ic%iy%ix%i)_m%%ip%%it%%03iy%%ix%%i.bin' verbose('\nOpening LSM file... ', end='', flush=True) timer = Timer() with TiffFile(lsmfile) as lsm: if not lsm.is_lsm: verbose('\n', lsm, flush=True) raise ValueError('not a LSM file') series = lsm.series[0] # first series contains the image data shape = series.get_shape(False) axes = series.get_axes(False) dtype = series.dtype size = product(shape) * dtype.itemsize verbose(timer) # verbose(lsm, flush=True) verbose( 'Image\n axes: {}\n shape: {}\n dtype: {}\n size: {}'.format( axes, shape, dtype, format_size(size) ), flush=True, ) if not series.axes.endswith('TZCYX'): raise ValueError('not a *TZCYX LSM file') verbose('Copying image from LSM to BIN files', end='', flush=True) timer.start() tiles = shape[-2] // tile[-2], shape[-1] // tile[-1] if binfile: binfile = binfile % (shape[-4], shape[-3], tile[0], tile[1]) shape = (1,) * (7 - len(shape)) + shape # cache for ZCYX stacks and output files data = numpy.empty(shape[3:], dtype=dtype) out = numpy.empty( (shape[-4], shape[-3], tile[0], tile[1]), dtype=dtype ) # iterate over Tiff pages containing data pages = iter(series.pages) for m in range(shape[0]): # mosaic axis for p in range(shape[1]): # position axis for t in range(shape[2]): # time axis for z in range(shape[3]): # z slices data[z] = next(pages).asarray() for y in range(tiles[0]): # tile y for x in range(tiles[1]): # tile x out[:] = data[ ..., y * tile[0] : (y + 1) * tile[0], x * tile[1] : (x + 1) * tile[1], ] if binfile: out.tofile(binfile % (m, p, t, y, x)) verbose('.', end='', flush=True) verbose(timer, flush=True) def imshow( data, photometric=None, planarconfig=None, bitspersample=None, nodata=0, interpolation=None, cmap=None, vmin=None, vmax=None, figure=None, title=None, dpi=96, subplot=None, maxdim=None, **kwargs, ): """Plot n-dimensional images using matplotlib.pyplot. Return figure, subplot, and plot axis. Requires pyplot already imported C{from matplotlib import pyplot}. Parameters ---------- data : nd array The image data. photometric : {'MINISWHITE', 'MINISBLACK', 'RGB', or 'PALETTE'} The color space of the image data. planarconfig : {'CONTIG' or 'SEPARATE'} Defines how components of each pixel are stored. bitspersample : int Number of bits per channel in integer RGB images. interpolation : str The image interpolation method used in matplotlib.imshow. By default, 'nearest' is used for image dimensions <= 512, else 'bilinear'. cmap : str or matplotlib.colors.Colormap The colormap maps non-RGBA scalar data to colors. vmin, vmax : scalar Data range covered by the colormap. By default, the complete range of the data is covered. figure : matplotlib.figure.Figure Matplotlib figure to use for plotting. title : str Window and subplot title. subplot : int A matplotlib.pyplot.subplot axis. maxdim : int Maximum image width and length. **kwargs Optional extra arguments to matplotlib.pyplot.imshow. """ # TODO: rewrite detection of isrgb, iscontig # TODO: use planarconfig if photometric is None: photometric = 'RGB' if maxdim is None: maxdim = 2**16 isrgb = photometric in ('RGB', 'YCBCR') # 'PALETTE', 'YCBCR' if data.dtype == 'float16': data = data.astype('float32') if data.dtype.kind == 'b': isrgb = False if isrgb and not ( data.shape[-1] in (3, 4) or (data.ndim > 2 and data.shape[-3] in (3, 4)) ): isrgb = False photometric = 'MINISBLACK' data = data.squeeze() if photometric in ('MINISWHITE', 'MINISBLACK', None): data = reshape_nd(data, 2) else: data = reshape_nd(data, 3) dims = data.ndim if dims < 2: raise ValueError('not an image') if dims == 2: dims = 0 isrgb = False else: if isrgb and data.shape[-3] in (3, 4): data = numpy.swapaxes(data, -3, -2) data = numpy.swapaxes(data, -2, -1) elif not isrgb and ( data.shape[-1] < data.shape[-2] // 8 and data.shape[-1] < data.shape[-3] // 8 ): data = numpy.swapaxes(data, -3, -1) data = numpy.swapaxes(data, -2, -1) isrgb = isrgb and data.shape[-1] in (3, 4) dims -= 3 if isrgb else 2 if interpolation is None: threshold = 512 elif isinstance(interpolation, int): threshold = interpolation else: threshold = 0 if isrgb: data = data[..., :maxdim, :maxdim, :maxdim] if threshold: if data.shape[-2] > threshold or data.shape[-3] > threshold: interpolation = 'bilinear' else: interpolation = 'nearest' else: data = data[..., :maxdim, :maxdim] if threshold: if data.shape[-1] > threshold or data.shape[-2] > threshold: interpolation = 'bilinear' else: interpolation = 'nearest' if photometric == 'PALETTE' and isrgb: try: datamax = numpy.max(data) except ValueError: datamax = 1 if datamax > 255: data = data >> 8 # possible precision loss data = data.astype('B', copy=False) elif data.dtype.kind in 'ui': if not (isrgb and data.dtype.itemsize <= 1) or bitspersample is None: try: bitspersample = int(math.ceil(math.log(data.max(), 2))) except Exception: bitspersample = data.dtype.itemsize * 8 elif not isinstance(bitspersample, (int, numpy.integer)): # bitspersample can be tuple, e.g. (5, 6, 5) bitspersample = data.dtype.itemsize * 8 datamax = 2**bitspersample if isrgb: if bitspersample < 8: data = data << (8 - bitspersample) elif bitspersample > 8: data = data >> (bitspersample - 8) # precision loss data = data.astype('B', copy=False) elif data.dtype.kind == 'f': if nodata: data = data.copy() data[data > 1e30] = 0.0 try: datamax = numpy.max(data) except ValueError: datamax = 1 if isrgb and datamax > 1.0: if data.dtype.char == 'd': data = data.astype('f') data /= datamax else: data = data / datamax elif data.dtype.kind == 'b': datamax = 1 elif data.dtype.kind == 'c': data = numpy.absolute(data) try: datamax = numpy.max(data) except ValueError: datamax = 1 if isrgb: vmin = 0 else: if vmax is None: vmax = datamax if vmin is None: if data.dtype.kind == 'i': dtmin = numpy.iinfo(data.dtype).min try: vmin = numpy.min(data) except ValueError: vmin = -1 if vmin == dtmin: vmin = numpy.min(data[data > dtmin]) elif data.dtype.kind == 'f': dtmin = numpy.finfo(data.dtype).min try: vmin = numpy.min(data) except ValueError: vmin = 0.0 if vmin == dtmin: vmin = numpy.min(data[data > dtmin]) else: vmin = 0 pyplot = sys.modules['matplotlib.pyplot'] if figure is None: pyplot.rc('font', family='sans-serif', weight='normal', size=8) figure = pyplot.figure( dpi=dpi, figsize=(10.3, 6.3), frameon=True, facecolor='1.0', edgecolor='w', ) try: figure.canvas.manager.window.title(title) except Exception: pass size = len(title.splitlines()) if title else 1 pyplot.subplots_adjust( bottom=0.03 * (dims + 2), top=0.98 - size * 0.03, left=0.1, right=0.95, hspace=0.05, wspace=0.0, ) if subplot is None: subplot = 111 subplot = pyplot.subplot(subplot) subplot.set_facecolor((0, 0, 0)) if title: try: title = str(title, 'Windows-1252') except TypeError: pass pyplot.title(title, size=11) if cmap is None: if data.dtype.char == '?': cmap = 'gray' elif data.dtype.kind in 'buf' or vmin == 0: cmap = 'viridis' else: cmap = 'coolwarm' if photometric == 'MINISWHITE': cmap += '_r' image = pyplot.imshow( numpy.atleast_2d(data[(0,) * dims].squeeze()), vmin=vmin, vmax=vmax, cmap=cmap, interpolation=interpolation, **kwargs, ) if not isrgb: pyplot.colorbar() # panchor=(0.55, 0.5), fraction=0.05 def format_coord(x, y): # callback function to format coordinate display in toolbar x = int(x + 0.5) y = int(y + 0.5) try: if dims: return f'{curaxdat[1][y, x]} @ {current} [{y:4}, {x:4}]' return f'{data[y, x]} @ [{y:4}, {x:4}]' except IndexError: return '' def none(event): return '' subplot.format_coord = format_coord image.get_cursor_data = none image.format_cursor_data = none if dims: current = list((0,) * dims) curaxdat = [0, data[tuple(current)].squeeze()] sliders = [ pyplot.Slider( pyplot.axes([0.125, 0.03 * (axis + 1), 0.725, 0.025]), f'Dimension {axis}', 0, data.shape[axis] - 1, 0, facecolor='0.5', valfmt=f'%.0f [{data.shape[axis]}]', ) for axis in range(dims) ] for slider in sliders: slider.drawon = False def set_image(current, sliders=sliders, data=data): # change image and redraw canvas curaxdat[1] = data[tuple(current)].squeeze() image.set_data(curaxdat[1]) for ctrl, index in zip(sliders, current): ctrl.eventson = False ctrl.set_val(index) ctrl.eventson = True figure.canvas.draw() def on_changed(index, axis, data=data, current=current): # callback function for slider change event index = int(round(index)) curaxdat[0] = axis if index == current[axis]: return if index >= data.shape[axis]: index = 0 elif index < 0: index = data.shape[axis] - 1 current[axis] = index set_image(current) def on_keypressed(event, data=data, current=current): # callback function for key press event key = event.key axis = curaxdat[0] if str(key) in '0123456789': on_changed(key, axis) elif key == 'right': on_changed(current[axis] + 1, axis) elif key == 'left': on_changed(current[axis] - 1, axis) elif key == 'up': curaxdat[0] = 0 if axis == len(data.shape) - 1 else axis + 1 elif key == 'down': curaxdat[0] = len(data.shape) - 1 if axis == 0 else axis - 1 elif key == 'end': on_changed(data.shape[axis] - 1, axis) elif key == 'home': on_changed(0, axis) figure.canvas.mpl_connect('key_press_event', on_keypressed) for axis, ctrl in enumerate(sliders): ctrl.on_changed(lambda k, a=axis: on_changed(k, a)) return figure, subplot, image def _app_show(): """Block the GUI. For use as skimage plugin.""" pyplot = sys.modules['matplotlib.pyplot'] pyplot.show() def askopenfilename(**kwargs): """Return file name(s) from Tkinter's file open dialog.""" from tkinter import Tk, filedialog root = Tk() root.withdraw() root.update() filenames = filedialog.askopenfilename(**kwargs) root.destroy() return filenames def main(): """Tifffile command line usage main function.""" import logging import optparse # TODO: use argparse logging.getLogger(__name__).setLevel(logging.INFO) parser = optparse.OptionParser( usage='usage: %prog [options] path', description='Display image data in TIFF files.', version=f'%prog {__version__}', prog='tifffile', ) opt = parser.add_option opt( '-p', '--page', dest='page', type='int', default=-1, help='display single page', ) opt( '-s', '--series', dest='series', type='int', default=-1, help='display series of pages of same shape', ) opt( '-l', '--level', dest='level', type='int', default=-1, help='display pyramid level of series', ) opt( '--nomultifile', dest='nomultifile', action='store_true', default=False, help='do not read OME series from multiple files', ) opt( '--noplots', dest='noplots', type='int', default=10, help='maximum number of plots', ) opt( '--interpol', dest='interpol', metavar='INTERPOL', default=None, help='image interpolation method', ) opt('--dpi', dest='dpi', type='int', default=96, help='plot resolution') opt( '--vmin', dest='vmin', type='int', default=None, help='minimum value for colormapping', ) opt( '--vmax', dest='vmax', type='int', default=None, help='maximum value for colormapping', ) opt( '--debug', dest='debug', action='store_true', default=False, help='raise exception on failures', ) opt( '--doctest', dest='doctest', action='store_true', default=False, help='runs the docstring examples', ) opt('-v', '--detail', dest='detail', type='int', default=2) opt('-q', '--quiet', dest='quiet', action='store_true') settings, path = parser.parse_args() path = ' '.join(path) if settings.doctest: import doctest try: import tifffile.tifffile as m except ImportError: m = None doctest.testmod(m, optionflags=doctest.ELLIPSIS) return 0 if not path: path = askopenfilename( title='Select a TIFF file', filetypes=TIFF.FILEOPEN_FILTER ) if not path: parser.error('No file specified') if any(i in path for i in '?*'): path = glob.glob(path) if not path: print('No files match the pattern') return 0 # TODO: handle image sequences path = path[0] if not settings.quiet: print('\nReading TIFF header:', end=' ', flush=True) timer = Timer() try: tif = TiffFile(path, _multifile=not settings.nomultifile) except Exception as exc: if settings.debug: raise print(f'\n\n{exc.__class__.__name__}: {exc}') sys.exit(0) if not settings.quiet: print(timer) if tif.is_ome: settings.norgb = True images = [] if settings.noplots > 0: if not settings.quiet: print('Reading image data: ', end=' ', flush=True) def notnone(x): return next(i for i in x if i is not None) timer.start() try: if settings.page >= 0: images = [ ( tif.asarray(key=settings.page), tif.pages[settings.page], None, ) ] elif settings.series >= 0: series = tif.series[settings.series] if settings.level >= 0: level = settings.level elif series.is_pyramidal and product(series.shape) > 2**32: level = -1 for r in series.levels: level += 1 if product(r.shape) < 2**32: break else: level = 0 images = [ ( tif.asarray(series=settings.series, level=level), notnone(tif.series[settings.series]._pages), tif.series[settings.series], ) ] else: for i, s in enumerate(tif.series[: settings.noplots]): if settings.level < 0: level = -1 for r in s.levels: level += 1 if product(r.shape) < 2**31: break else: level = 0 try: images.append( ( tif.asarray(series=i, level=level), notnone(s._pages), tif.series[i], ) ) except Exception as exc: images.append((None, notnone(s.pages), None)) if settings.debug: raise print( '\nSeries {} failed with {}: {}... '.format( i, exc.__class__.__name__, exc ), end='', ) except Exception as exc: if settings.debug: raise print(f'{exc.__class__.__name__}: {exc}') if not settings.quiet: print(timer) if not settings.quiet: print('Generating report:', end=' ', flush=True) timer.start() info = TiffFile.__str__(tif, detail=int(settings.detail)) print(timer) print() print(info) print() tif.close() if images and settings.noplots > 0: try: import matplotlib matplotlib.use('TkAgg') from matplotlib import pyplot except ImportError as exc: log_warning(f' {exc.__class__.__name__}: {exc}') else: for img, page, series in images: if img is None: continue keyframe = page.keyframe vmin, vmax = settings.vmin, settings.vmax if keyframe.nodata: try: vmin = numpy.min(img[img > keyframe.nodata]) except ValueError: pass if tif.is_stk: try: vmin = tif.stk_metadata['MinScale'] vmax = tif.stk_metadata['MaxScale'] except KeyError: pass else: if vmax <= vmin: vmin, vmax = settings.vmin, settings.vmax if series: title = f'{tif}\n{page}\n{series}' else: title = f'{tif}\n {page}' photometric = 'MINISBLACK' if keyframe.photometric not in (3,): photometric = TIFF.PHOTOMETRIC(keyframe.photometric).name imshow( img, title=title, vmin=vmin, vmax=vmax, bitspersample=keyframe.bitspersample, nodata=keyframe.nodata, photometric=photometric, interpolation=settings.interpol, dpi=settings.dpi, ) pyplot.show() return 0 def bytes2str(b, encoding=None, errors='strict'): """Return Unicode string from encoded bytes.""" if encoding is not None: return b.decode(encoding, errors) try: return b.decode('utf-8', errors) except UnicodeDecodeError: return b.decode('cp1252', errors) def bytestr(s, encoding='cp1252'): """Return bytes from Unicode string, else pass through.""" return s.encode(encoding) if isinstance(s, str) else s # aliases and deprecated TiffReader = TiffFile if __name__ == '__main__': sys.exit(main()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1617830271.0 tifffile-2022.2.9/tifffile/tifffile_geodb.py0000666000000000000000000017036600000000000015542 0ustar00# tifffile/tifffile_geodb.py """GeoTIFF GeoKey Database. Adapted from http://gis.ess.washington.edu/data/raster/drg/docs/geotiff.txt """ import enum class Proj(enum.IntEnum): """Projection Codes.""" Undefined = 0 User_Defined = 32767 Alabama_CS27_East = 10101 Alabama_CS27_West = 10102 Alabama_CS83_East = 10131 Alabama_CS83_West = 10132 Arizona_Coordinate_System_east = 10201 Arizona_Coordinate_System_Central = 10202 Arizona_Coordinate_System_west = 10203 Arizona_CS83_east = 10231 Arizona_CS83_Central = 10232 Arizona_CS83_west = 10233 Arkansas_CS27_North = 10301 Arkansas_CS27_South = 10302 Arkansas_CS83_North = 10331 Arkansas_CS83_South = 10332 California_CS27_I = 10401 California_CS27_II = 10402 California_CS27_III = 10403 California_CS27_IV = 10404 California_CS27_V = 10405 California_CS27_VI = 10406 California_CS27_VII = 10407 California_CS83_1 = 10431 California_CS83_2 = 10432 California_CS83_3 = 10433 California_CS83_4 = 10434 California_CS83_5 = 10435 California_CS83_6 = 10436 Colorado_CS27_North = 10501 Colorado_CS27_Central = 10502 Colorado_CS27_South = 10503 Colorado_CS83_North = 10531 Colorado_CS83_Central = 10532 Colorado_CS83_South = 10533 Connecticut_CS27 = 10600 Connecticut_CS83 = 10630 Delaware_CS27 = 10700 Delaware_CS83 = 10730 Florida_CS27_East = 10901 Florida_CS27_West = 10902 Florida_CS27_North = 10903 Florida_CS83_East = 10931 Florida_CS83_West = 10932 Florida_CS83_North = 10933 Georgia_CS27_East = 11001 Georgia_CS27_West = 11002 Georgia_CS83_East = 11031 Georgia_CS83_West = 11032 Idaho_CS27_East = 11101 Idaho_CS27_Central = 11102 Idaho_CS27_West = 11103 Idaho_CS83_East = 11131 Idaho_CS83_Central = 11132 Idaho_CS83_West = 11133 Illinois_CS27_East = 11201 Illinois_CS27_West = 11202 Illinois_CS83_East = 11231 Illinois_CS83_West = 11232 Indiana_CS27_East = 11301 Indiana_CS27_West = 11302 Indiana_CS83_East = 11331 Indiana_CS83_West = 11332 Iowa_CS27_North = 11401 Iowa_CS27_South = 11402 Iowa_CS83_North = 11431 Iowa_CS83_South = 11432 Kansas_CS27_North = 11501 Kansas_CS27_South = 11502 Kansas_CS83_North = 11531 Kansas_CS83_South = 11532 Kentucky_CS27_North = 11601 Kentucky_CS27_South = 11602 Kentucky_CS83_North = 15303 Kentucky_CS83_South = 11632 Louisiana_CS27_North = 11701 Louisiana_CS27_South = 11702 Louisiana_CS83_North = 11731 Louisiana_CS83_South = 11732 Maine_CS27_East = 11801 Maine_CS27_West = 11802 Maine_CS83_East = 11831 Maine_CS83_West = 11832 Maryland_CS27 = 11900 Maryland_CS83 = 11930 Massachusetts_CS27_Mainland = 12001 Massachusetts_CS27_Island = 12002 Massachusetts_CS83_Mainland = 12031 Massachusetts_CS83_Island = 12032 Michigan_State_Plane_East = 12101 Michigan_State_Plane_Old_Central = 12102 Michigan_State_Plane_West = 12103 Michigan_CS27_North = 12111 Michigan_CS27_Central = 12112 Michigan_CS27_South = 12113 Michigan_CS83_North = 12141 Michigan_CS83_Central = 12142 Michigan_CS83_South = 12143 Minnesota_CS27_North = 12201 Minnesota_CS27_Central = 12202 Minnesota_CS27_South = 12203 Minnesota_CS83_North = 12231 Minnesota_CS83_Central = 12232 Minnesota_CS83_South = 12233 Mississippi_CS27_East = 12301 Mississippi_CS27_West = 12302 Mississippi_CS83_East = 12331 Mississippi_CS83_West = 12332 Missouri_CS27_East = 12401 Missouri_CS27_Central = 12402 Missouri_CS27_West = 12403 Missouri_CS83_East = 12431 Missouri_CS83_Central = 12432 Missouri_CS83_West = 12433 Montana_CS27_North = 12501 Montana_CS27_Central = 12502 Montana_CS27_South = 12503 Montana_CS83 = 12530 Nebraska_CS27_North = 12601 Nebraska_CS27_South = 12602 Nebraska_CS83 = 12630 Nevada_CS27_East = 12701 Nevada_CS27_Central = 12702 Nevada_CS27_West = 12703 Nevada_CS83_East = 12731 Nevada_CS83_Central = 12732 Nevada_CS83_West = 12733 New_Hampshire_CS27 = 12800 New_Hampshire_CS83 = 12830 New_Jersey_CS27 = 12900 New_Jersey_CS83 = 12930 New_Mexico_CS27_East = 13001 New_Mexico_CS27_Central = 13002 New_Mexico_CS27_West = 13003 New_Mexico_CS83_East = 13031 New_Mexico_CS83_Central = 13032 New_Mexico_CS83_West = 13033 New_York_CS27_East = 13101 New_York_CS27_Central = 13102 New_York_CS27_West = 13103 New_York_CS27_Long_Island = 13104 New_York_CS83_East = 13131 New_York_CS83_Central = 13132 New_York_CS83_West = 13133 New_York_CS83_Long_Island = 13134 North_Carolina_CS27 = 13200 North_Carolina_CS83 = 13230 North_Dakota_CS27_North = 13301 North_Dakota_CS27_South = 13302 North_Dakota_CS83_North = 13331 North_Dakota_CS83_South = 13332 Ohio_CS27_North = 13401 Ohio_CS27_South = 13402 Ohio_CS83_North = 13431 Ohio_CS83_South = 13432 Oklahoma_CS27_North = 13501 Oklahoma_CS27_South = 13502 Oklahoma_CS83_North = 13531 Oklahoma_CS83_South = 13532 Oregon_CS27_North = 13601 Oregon_CS27_South = 13602 Oregon_CS83_North = 13631 Oregon_CS83_South = 13632 Pennsylvania_CS27_North = 13701 Pennsylvania_CS27_South = 13702 Pennsylvania_CS83_North = 13731 Pennsylvania_CS83_South = 13732 Rhode_Island_CS27 = 13800 Rhode_Island_CS83 = 13830 South_Carolina_CS27_North = 13901 South_Carolina_CS27_South = 13902 South_Carolina_CS83 = 13930 South_Dakota_CS27_North = 14001 South_Dakota_CS27_South = 14002 South_Dakota_CS83_North = 14031 South_Dakota_CS83_South = 14032 Tennessee_CS27 = 15302 Tennessee_CS83 = 14130 Texas_CS27_North = 14201 Texas_CS27_North_Central = 14202 Texas_CS27_Central = 14203 Texas_CS27_South_Central = 14204 Texas_CS27_South = 14205 Texas_CS83_North = 14231 Texas_CS83_North_Central = 14232 Texas_CS83_Central = 14233 Texas_CS83_South_Central = 14234 Texas_CS83_South = 14235 Utah_CS27_North = 14301 Utah_CS27_Central = 14302 Utah_CS27_South = 14303 Utah_CS83_North = 14331 Utah_CS83_Central = 14332 Utah_CS83_South = 14333 Vermont_CS27 = 14400 Vermont_CS83 = 14430 Virginia_CS27_North = 14501 Virginia_CS27_South = 14502 Virginia_CS83_North = 14531 Virginia_CS83_South = 14532 Washington_CS27_North = 14601 Washington_CS27_South = 14602 Washington_CS83_North = 14631 Washington_CS83_South = 14632 West_Virginia_CS27_North = 14701 West_Virginia_CS27_South = 14702 West_Virginia_CS83_North = 14731 West_Virginia_CS83_South = 14732 Wisconsin_CS27_North = 14801 Wisconsin_CS27_Central = 14802 Wisconsin_CS27_South = 14803 Wisconsin_CS83_North = 14831 Wisconsin_CS83_Central = 14832 Wisconsin_CS83_South = 14833 Wyoming_CS27_East = 14901 Wyoming_CS27_East_Central = 14902 Wyoming_CS27_West_Central = 14903 Wyoming_CS27_West = 14904 Wyoming_CS83_East = 14931 Wyoming_CS83_East_Central = 14932 Wyoming_CS83_West_Central = 14933 Wyoming_CS83_West = 14934 Alaska_CS27_1 = 15001 Alaska_CS27_2 = 15002 Alaska_CS27_3 = 15003 Alaska_CS27_4 = 15004 Alaska_CS27_5 = 15005 Alaska_CS27_6 = 15006 Alaska_CS27_7 = 15007 Alaska_CS27_8 = 15008 Alaska_CS27_9 = 15009 Alaska_CS27_10 = 15010 Alaska_CS83_1 = 15031 Alaska_CS83_2 = 15032 Alaska_CS83_3 = 15033 Alaska_CS83_4 = 15034 Alaska_CS83_5 = 15035 Alaska_CS83_6 = 15036 Alaska_CS83_7 = 15037 Alaska_CS83_8 = 15038 Alaska_CS83_9 = 15039 Alaska_CS83_10 = 15040 Hawaii_CS27_1 = 15101 Hawaii_CS27_2 = 15102 Hawaii_CS27_3 = 15103 Hawaii_CS27_4 = 15104 Hawaii_CS27_5 = 15105 Hawaii_CS83_1 = 15131 Hawaii_CS83_2 = 15132 Hawaii_CS83_3 = 15133 Hawaii_CS83_4 = 15134 Hawaii_CS83_5 = 15135 Puerto_Rico_CS27 = 15201 St_Croix = 15202 Puerto_Rico_Virgin_Is = 15230 BLM_14N_feet = 15914 BLM_15N_feet = 15915 BLM_16N_feet = 15916 BLM_17N_feet = 15917 UTM_zone_1N = 16001 UTM_zone_2N = 16002 UTM_zone_3N = 16003 UTM_zone_4N = 16004 UTM_zone_5N = 16005 UTM_zone_6N = 16006 UTM_zone_7N = 16007 UTM_zone_8N = 16008 UTM_zone_9N = 16009 UTM_zone_10N = 16010 UTM_zone_11N = 16011 UTM_zone_12N = 16012 UTM_zone_13N = 16013 UTM_zone_14N = 16014 UTM_zone_15N = 16015 UTM_zone_16N = 16016 UTM_zone_17N = 16017 UTM_zone_18N = 16018 UTM_zone_19N = 16019 UTM_zone_20N = 16020 UTM_zone_21N = 16021 UTM_zone_22N = 16022 UTM_zone_23N = 16023 UTM_zone_24N = 16024 UTM_zone_25N = 16025 UTM_zone_26N = 16026 UTM_zone_27N = 16027 UTM_zone_28N = 16028 UTM_zone_29N = 16029 UTM_zone_30N = 16030 UTM_zone_31N = 16031 UTM_zone_32N = 16032 UTM_zone_33N = 16033 UTM_zone_34N = 16034 UTM_zone_35N = 16035 UTM_zone_36N = 16036 UTM_zone_37N = 16037 UTM_zone_38N = 16038 UTM_zone_39N = 16039 UTM_zone_40N = 16040 UTM_zone_41N = 16041 UTM_zone_42N = 16042 UTM_zone_43N = 16043 UTM_zone_44N = 16044 UTM_zone_45N = 16045 UTM_zone_46N = 16046 UTM_zone_47N = 16047 UTM_zone_48N = 16048 UTM_zone_49N = 16049 UTM_zone_50N = 16050 UTM_zone_51N = 16051 UTM_zone_52N = 16052 UTM_zone_53N = 16053 UTM_zone_54N = 16054 UTM_zone_55N = 16055 UTM_zone_56N = 16056 UTM_zone_57N = 16057 UTM_zone_58N = 16058 UTM_zone_59N = 16059 UTM_zone_60N = 16060 UTM_zone_1S = 16101 UTM_zone_2S = 16102 UTM_zone_3S = 16103 UTM_zone_4S = 16104 UTM_zone_5S = 16105 UTM_zone_6S = 16106 UTM_zone_7S = 16107 UTM_zone_8S = 16108 UTM_zone_9S = 16109 UTM_zone_10S = 16110 UTM_zone_11S = 16111 UTM_zone_12S = 16112 UTM_zone_13S = 16113 UTM_zone_14S = 16114 UTM_zone_15S = 16115 UTM_zone_16S = 16116 UTM_zone_17S = 16117 UTM_zone_18S = 16118 UTM_zone_19S = 16119 UTM_zone_20S = 16120 UTM_zone_21S = 16121 UTM_zone_22S = 16122 UTM_zone_23S = 16123 UTM_zone_24S = 16124 UTM_zone_25S = 16125 UTM_zone_26S = 16126 UTM_zone_27S = 16127 UTM_zone_28S = 16128 UTM_zone_29S = 16129 UTM_zone_30S = 16130 UTM_zone_31S = 16131 UTM_zone_32S = 16132 UTM_zone_33S = 16133 UTM_zone_34S = 16134 UTM_zone_35S = 16135 UTM_zone_36S = 16136 UTM_zone_37S = 16137 UTM_zone_38S = 16138 UTM_zone_39S = 16139 UTM_zone_40S = 16140 UTM_zone_41S = 16141 UTM_zone_42S = 16142 UTM_zone_43S = 16143 UTM_zone_44S = 16144 UTM_zone_45S = 16145 UTM_zone_46S = 16146 UTM_zone_47S = 16147 UTM_zone_48S = 16148 UTM_zone_49S = 16149 UTM_zone_50S = 16150 UTM_zone_51S = 16151 UTM_zone_52S = 16152 UTM_zone_53S = 16153 UTM_zone_54S = 16154 UTM_zone_55S = 16155 UTM_zone_56S = 16156 UTM_zone_57S = 16157 UTM_zone_58S = 16158 UTM_zone_59S = 16159 UTM_zone_60S = 16160 Gauss_Kruger_zone_0 = 16200 Gauss_Kruger_zone_1 = 16201 Gauss_Kruger_zone_2 = 16202 Gauss_Kruger_zone_3 = 16203 Gauss_Kruger_zone_4 = 16204 Gauss_Kruger_zone_5 = 16205 Map_Grid_of_Australia_48 = 17348 Map_Grid_of_Australia_49 = 17349 Map_Grid_of_Australia_50 = 17350 Map_Grid_of_Australia_51 = 17351 Map_Grid_of_Australia_52 = 17352 Map_Grid_of_Australia_53 = 17353 Map_Grid_of_Australia_54 = 17354 Map_Grid_of_Australia_55 = 17355 Map_Grid_of_Australia_56 = 17356 Map_Grid_of_Australia_57 = 17357 Map_Grid_of_Australia_58 = 17358 Australian_Map_Grid_48 = 17448 Australian_Map_Grid_49 = 17449 Australian_Map_Grid_50 = 17450 Australian_Map_Grid_51 = 17451 Australian_Map_Grid_52 = 17452 Australian_Map_Grid_53 = 17453 Australian_Map_Grid_54 = 17454 Australian_Map_Grid_55 = 17455 Australian_Map_Grid_56 = 17456 Australian_Map_Grid_57 = 17457 Australian_Map_Grid_58 = 17458 Argentina_1 = 18031 Argentina_2 = 18032 Argentina_3 = 18033 Argentina_4 = 18034 Argentina_5 = 18035 Argentina_6 = 18036 Argentina_7 = 18037 Colombia_3W = 18051 Colombia_Bogota = 18052 Colombia_3E = 18053 Colombia_6E = 18054 Egypt_Red_Belt = 18072 Egypt_Purple_Belt = 18073 Extended_Purple_Belt = 18074 New_Zealand_North_Island_Nat_Grid = 18141 New_Zealand_South_Island_Nat_Grid = 18142 Bahrain_Grid = 19900 Netherlands_E_Indies_Equatorial = 19905 RSO_Borneo = 19912 Stereo_70 = 19926 class PCS(enum.IntEnum): """Projected CS Type Codes.""" Undefined = 0 User_Defined = 32767 Adindan_UTM_zone_37N = 20137 Adindan_UTM_zone_38N = 20138 AGD66_AMG_zone_48 = 20248 AGD66_AMG_zone_49 = 20249 AGD66_AMG_zone_50 = 20250 AGD66_AMG_zone_51 = 20251 AGD66_AMG_zone_52 = 20252 AGD66_AMG_zone_53 = 20253 AGD66_AMG_zone_54 = 20254 AGD66_AMG_zone_55 = 20255 AGD66_AMG_zone_56 = 20256 AGD66_AMG_zone_57 = 20257 AGD66_AMG_zone_58 = 20258 AGD84_AMG_zone_48 = 20348 AGD84_AMG_zone_49 = 20349 AGD84_AMG_zone_50 = 20350 AGD84_AMG_zone_51 = 20351 AGD84_AMG_zone_52 = 20352 AGD84_AMG_zone_53 = 20353 AGD84_AMG_zone_54 = 20354 AGD84_AMG_zone_55 = 20355 AGD84_AMG_zone_56 = 20356 AGD84_AMG_zone_57 = 20357 AGD84_AMG_zone_58 = 20358 Ain_el_Abd_UTM_zone_37N = 20437 Ain_el_Abd_UTM_zone_38N = 20438 Ain_el_Abd_UTM_zone_39N = 20439 Ain_el_Abd_Bahrain_Grid = 20499 Afgooye_UTM_zone_38N = 20538 Afgooye_UTM_zone_39N = 20539 Lisbon_Portugese_Grid = 20700 Aratu_UTM_zone_22S = 20822 Aratu_UTM_zone_23S = 20823 Aratu_UTM_zone_24S = 20824 Arc_1950_Lo13 = 20973 Arc_1950_Lo15 = 20975 Arc_1950_Lo17 = 20977 Arc_1950_Lo19 = 20979 Arc_1950_Lo21 = 20981 Arc_1950_Lo23 = 20983 Arc_1950_Lo25 = 20985 Arc_1950_Lo27 = 20987 Arc_1950_Lo29 = 20989 Arc_1950_Lo31 = 20991 Arc_1950_Lo33 = 20993 Arc_1950_Lo35 = 20995 Batavia_NEIEZ = 21100 Batavia_UTM_zone_48S = 21148 Batavia_UTM_zone_49S = 21149 Batavia_UTM_zone_50S = 21150 Beijing_Gauss_zone_13 = 21413 Beijing_Gauss_zone_14 = 21414 Beijing_Gauss_zone_15 = 21415 Beijing_Gauss_zone_16 = 21416 Beijing_Gauss_zone_17 = 21417 Beijing_Gauss_zone_18 = 21418 Beijing_Gauss_zone_19 = 21419 Beijing_Gauss_zone_20 = 21420 Beijing_Gauss_zone_21 = 21421 Beijing_Gauss_zone_22 = 21422 Beijing_Gauss_zone_23 = 21423 Beijing_Gauss_13N = 21473 Beijing_Gauss_14N = 21474 Beijing_Gauss_15N = 21475 Beijing_Gauss_16N = 21476 Beijing_Gauss_17N = 21477 Beijing_Gauss_18N = 21478 Beijing_Gauss_19N = 21479 Beijing_Gauss_20N = 21480 Beijing_Gauss_21N = 21481 Beijing_Gauss_22N = 21482 Beijing_Gauss_23N = 21483 Belge_Lambert_50 = 21500 Bern_1898_Swiss_Old = 21790 Bogota_UTM_zone_17N = 21817 Bogota_UTM_zone_18N = 21818 Bogota_Colombia_3W = 21891 Bogota_Colombia_Bogota = 21892 Bogota_Colombia_3E = 21893 Bogota_Colombia_6E = 21894 Camacupa_UTM_32S = 22032 Camacupa_UTM_33S = 22033 C_Inchauspe_Argentina_1 = 22191 C_Inchauspe_Argentina_2 = 22192 C_Inchauspe_Argentina_3 = 22193 C_Inchauspe_Argentina_4 = 22194 C_Inchauspe_Argentina_5 = 22195 C_Inchauspe_Argentina_6 = 22196 C_Inchauspe_Argentina_7 = 22197 Carthage_UTM_zone_32N = 22332 Carthage_Nord_Tunisie = 22391 Carthage_Sud_Tunisie = 22392 Corrego_Alegre_UTM_23S = 22523 Corrego_Alegre_UTM_24S = 22524 Douala_UTM_zone_32N = 22832 Egypt_1907_Red_Belt = 22992 Egypt_1907_Purple_Belt = 22993 Egypt_1907_Ext_Purple = 22994 ED50_UTM_zone_28N = 23028 ED50_UTM_zone_29N = 23029 ED50_UTM_zone_30N = 23030 ED50_UTM_zone_31N = 23031 ED50_UTM_zone_32N = 23032 ED50_UTM_zone_33N = 23033 ED50_UTM_zone_34N = 23034 ED50_UTM_zone_35N = 23035 ED50_UTM_zone_36N = 23036 ED50_UTM_zone_37N = 23037 ED50_UTM_zone_38N = 23038 Fahud_UTM_zone_39N = 23239 Fahud_UTM_zone_40N = 23240 Garoua_UTM_zone_33N = 23433 ID74_UTM_zone_46N = 23846 ID74_UTM_zone_47N = 23847 ID74_UTM_zone_48N = 23848 ID74_UTM_zone_49N = 23849 ID74_UTM_zone_50N = 23850 ID74_UTM_zone_51N = 23851 ID74_UTM_zone_52N = 23852 ID74_UTM_zone_53N = 23853 ID74_UTM_zone_46S = 23886 ID74_UTM_zone_47S = 23887 ID74_UTM_zone_48S = 23888 ID74_UTM_zone_49S = 23889 ID74_UTM_zone_50S = 23890 ID74_UTM_zone_51S = 23891 ID74_UTM_zone_52S = 23892 ID74_UTM_zone_53S = 23893 ID74_UTM_zone_54S = 23894 Indian_1954_UTM_47N = 23947 Indian_1954_UTM_48N = 23948 Indian_1975_UTM_47N = 24047 Indian_1975_UTM_48N = 24048 Jamaica_1875_Old_Grid = 24100 JAD69_Jamaica_Grid = 24200 Kalianpur_India_0 = 24370 Kalianpur_India_I = 24371 Kalianpur_India_IIa = 24372 Kalianpur_India_IIIa = 24373 Kalianpur_India_IVa = 24374 Kalianpur_India_IIb = 24382 Kalianpur_India_IIIb = 24383 Kalianpur_India_IVb = 24384 Kertau_Singapore_Grid = 24500 Kertau_UTM_zone_47N = 24547 Kertau_UTM_zone_48N = 24548 La_Canoa_UTM_zone_20N = 24720 La_Canoa_UTM_zone_21N = 24721 PSAD56_UTM_zone_18N = 24818 PSAD56_UTM_zone_19N = 24819 PSAD56_UTM_zone_20N = 24820 PSAD56_UTM_zone_21N = 24821 PSAD56_UTM_zone_17S = 24877 PSAD56_UTM_zone_18S = 24878 PSAD56_UTM_zone_19S = 24879 PSAD56_UTM_zone_20S = 24880 PSAD56_Peru_west_zone = 24891 PSAD56_Peru_central = 24892 PSAD56_Peru_east_zone = 24893 Leigon_Ghana_Grid = 25000 Lome_UTM_zone_31N = 25231 Luzon_Philippines_I = 25391 Luzon_Philippines_II = 25392 Luzon_Philippines_III = 25393 Luzon_Philippines_IV = 25394 Luzon_Philippines_V = 25395 Makassar_NEIEZ = 25700 Malongo_1987_UTM_32S = 25932 Merchich_Nord_Maroc = 26191 Merchich_Sud_Maroc = 26192 Merchich_Sahara = 26193 Massawa_UTM_zone_37N = 26237 Minna_UTM_zone_31N = 26331 Minna_UTM_zone_32N = 26332 Minna_Nigeria_West = 26391 Minna_Nigeria_Mid_Belt = 26392 Minna_Nigeria_East = 26393 Mhast_UTM_zone_32S = 26432 Monte_Mario_Italy_1 = 26591 Monte_Mario_Italy_2 = 26592 M_poraloko_UTM_32N = 26632 M_poraloko_UTM_32S = 26692 NAD27_UTM_zone_3N = 26703 NAD27_UTM_zone_4N = 26704 NAD27_UTM_zone_5N = 26705 NAD27_UTM_zone_6N = 26706 NAD27_UTM_zone_7N = 26707 NAD27_UTM_zone_8N = 26708 NAD27_UTM_zone_9N = 26709 NAD27_UTM_zone_10N = 26710 NAD27_UTM_zone_11N = 26711 NAD27_UTM_zone_12N = 26712 NAD27_UTM_zone_13N = 26713 NAD27_UTM_zone_14N = 26714 NAD27_UTM_zone_15N = 26715 NAD27_UTM_zone_16N = 26716 NAD27_UTM_zone_17N = 26717 NAD27_UTM_zone_18N = 26718 NAD27_UTM_zone_19N = 26719 NAD27_UTM_zone_20N = 26720 NAD27_UTM_zone_21N = 26721 NAD27_UTM_zone_22N = 26722 NAD27_Alabama_East = 26729 NAD27_Alabama_West = 26730 NAD27_Alaska_zone_1 = 26731 NAD27_Alaska_zone_2 = 26732 NAD27_Alaska_zone_3 = 26733 NAD27_Alaska_zone_4 = 26734 NAD27_Alaska_zone_5 = 26735 NAD27_Alaska_zone_6 = 26736 NAD27_Alaska_zone_7 = 26737 NAD27_Alaska_zone_8 = 26738 NAD27_Alaska_zone_9 = 26739 NAD27_Alaska_zone_10 = 26740 NAD27_California_I = 26741 NAD27_California_II = 26742 NAD27_California_III = 26743 NAD27_California_IV = 26744 NAD27_California_V = 26745 NAD27_California_VI = 26746 NAD27_California_VII = 26747 NAD27_Arizona_East = 26748 NAD27_Arizona_Central = 26749 NAD27_Arizona_West = 26750 NAD27_Arkansas_North = 26751 NAD27_Arkansas_South = 26752 NAD27_Colorado_North = 26753 NAD27_Colorado_Central = 26754 NAD27_Colorado_South = 26755 NAD27_Connecticut = 26756 NAD27_Delaware = 26757 NAD27_Florida_East = 26758 NAD27_Florida_West = 26759 NAD27_Florida_North = 26760 NAD27_Hawaii_zone_1 = 26761 NAD27_Hawaii_zone_2 = 26762 NAD27_Hawaii_zone_3 = 26763 NAD27_Hawaii_zone_4 = 26764 NAD27_Hawaii_zone_5 = 26765 NAD27_Georgia_East = 26766 NAD27_Georgia_West = 26767 NAD27_Idaho_East = 26768 NAD27_Idaho_Central = 26769 NAD27_Idaho_West = 26770 NAD27_Illinois_East = 26771 NAD27_Illinois_West = 26772 NAD27_Indiana_East = 26773 NAD27_BLM_14N_feet = 26774 NAD27_Indiana_West = 26774 NAD27_BLM_15N_feet = 26775 NAD27_Iowa_North = 26775 NAD27_BLM_16N_feet = 26776 NAD27_Iowa_South = 26776 NAD27_BLM_17N_feet = 26777 NAD27_Kansas_North = 26777 NAD27_Kansas_South = 26778 NAD27_Kentucky_North = 26779 NAD27_Kentucky_South = 26780 NAD27_Louisiana_North = 26781 NAD27_Louisiana_South = 26782 NAD27_Maine_East = 26783 NAD27_Maine_West = 26784 NAD27_Maryland = 26785 NAD27_Massachusetts = 26786 NAD27_Massachusetts_Is = 26787 NAD27_Michigan_North = 26788 NAD27_Michigan_Central = 26789 NAD27_Michigan_South = 26790 NAD27_Minnesota_North = 26791 NAD27_Minnesota_Cent = 26792 NAD27_Minnesota_South = 26793 NAD27_Mississippi_East = 26794 NAD27_Mississippi_West = 26795 NAD27_Missouri_East = 26796 NAD27_Missouri_Central = 26797 NAD27_Missouri_West = 26798 NAD_Michigan_Michigan_East = 26801 NAD_Michigan_Michigan_Old_Central = 26802 NAD_Michigan_Michigan_West = 26803 NAD83_UTM_zone_3N = 26903 NAD83_UTM_zone_4N = 26904 NAD83_UTM_zone_5N = 26905 NAD83_UTM_zone_6N = 26906 NAD83_UTM_zone_7N = 26907 NAD83_UTM_zone_8N = 26908 NAD83_UTM_zone_9N = 26909 NAD83_UTM_zone_10N = 26910 NAD83_UTM_zone_11N = 26911 NAD83_UTM_zone_12N = 26912 NAD83_UTM_zone_13N = 26913 NAD83_UTM_zone_14N = 26914 NAD83_UTM_zone_15N = 26915 NAD83_UTM_zone_16N = 26916 NAD83_UTM_zone_17N = 26917 NAD83_UTM_zone_18N = 26918 NAD83_UTM_zone_19N = 26919 NAD83_UTM_zone_20N = 26920 NAD83_UTM_zone_21N = 26921 NAD83_UTM_zone_22N = 26922 NAD83_UTM_zone_23N = 26923 NAD83_Alabama_East = 26929 NAD83_Alabama_West = 26930 NAD83_Alaska_zone_1 = 26931 NAD83_Alaska_zone_2 = 26932 NAD83_Alaska_zone_3 = 26933 NAD83_Alaska_zone_4 = 26934 NAD83_Alaska_zone_5 = 26935 NAD83_Alaska_zone_6 = 26936 NAD83_Alaska_zone_7 = 26937 NAD83_Alaska_zone_8 = 26938 NAD83_Alaska_zone_9 = 26939 NAD83_Alaska_zone_10 = 26940 NAD83_California_1 = 26941 NAD83_California_2 = 26942 NAD83_California_3 = 26943 NAD83_California_4 = 26944 NAD83_California_5 = 26945 NAD83_California_6 = 26946 NAD83_Arizona_East = 26948 NAD83_Arizona_Central = 26949 NAD83_Arizona_West = 26950 NAD83_Arkansas_North = 26951 NAD83_Arkansas_South = 26952 NAD83_Colorado_North = 26953 NAD83_Colorado_Central = 26954 NAD83_Colorado_South = 26955 NAD83_Connecticut = 26956 NAD83_Delaware = 26957 NAD83_Florida_East = 26958 NAD83_Florida_West = 26959 NAD83_Florida_North = 26960 NAD83_Hawaii_zone_1 = 26961 NAD83_Hawaii_zone_2 = 26962 NAD83_Hawaii_zone_3 = 26963 NAD83_Hawaii_zone_4 = 26964 NAD83_Hawaii_zone_5 = 26965 NAD83_Georgia_East = 26966 NAD83_Georgia_West = 26967 NAD83_Idaho_East = 26968 NAD83_Idaho_Central = 26969 NAD83_Idaho_West = 26970 NAD83_Illinois_East = 26971 NAD83_Illinois_West = 26972 NAD83_Indiana_East = 26973 NAD83_Indiana_West = 26974 NAD83_Iowa_North = 26975 NAD83_Iowa_South = 26976 NAD83_Kansas_North = 26977 NAD83_Kansas_South = 26978 NAD83_Kentucky_North = 2205 NAD83_Kentucky_South = 26980 NAD83_Louisiana_North = 26981 NAD83_Louisiana_South = 26982 NAD83_Maine_East = 26983 NAD83_Maine_West = 26984 NAD83_Maryland = 26985 NAD83_Massachusetts = 26986 NAD83_Massachusetts_Is = 26987 NAD83_Michigan_North = 26988 NAD83_Michigan_Central = 26989 NAD83_Michigan_South = 26990 NAD83_Minnesota_North = 26991 NAD83_Minnesota_Cent = 26992 NAD83_Minnesota_South = 26993 NAD83_Mississippi_East = 26994 NAD83_Mississippi_West = 26995 NAD83_Missouri_East = 26996 NAD83_Missouri_Central = 26997 NAD83_Missouri_West = 26998 Nahrwan_1967_UTM_38N = 27038 Nahrwan_1967_UTM_39N = 27039 Nahrwan_1967_UTM_40N = 27040 Naparima_UTM_20N = 27120 GD49_NZ_Map_Grid = 27200 GD49_North_Island_Grid = 27291 GD49_South_Island_Grid = 27292 Datum_73_UTM_zone_29N = 27429 ATF_Nord_de_Guerre = 27500 NTF_France_I = 27581 NTF_France_II = 27582 NTF_France_III = 27583 NTF_Nord_France = 27591 NTF_Centre_France = 27592 NTF_Sud_France = 27593 British_National_Grid = 27700 Point_Noire_UTM_32S = 28232 GDA94_MGA_zone_48 = 28348 GDA94_MGA_zone_49 = 28349 GDA94_MGA_zone_50 = 28350 GDA94_MGA_zone_51 = 28351 GDA94_MGA_zone_52 = 28352 GDA94_MGA_zone_53 = 28353 GDA94_MGA_zone_54 = 28354 GDA94_MGA_zone_55 = 28355 GDA94_MGA_zone_56 = 28356 GDA94_MGA_zone_57 = 28357 GDA94_MGA_zone_58 = 28358 Pulkovo_Gauss_zone_4 = 28404 Pulkovo_Gauss_zone_5 = 28405 Pulkovo_Gauss_zone_6 = 28406 Pulkovo_Gauss_zone_7 = 28407 Pulkovo_Gauss_zone_8 = 28408 Pulkovo_Gauss_zone_9 = 28409 Pulkovo_Gauss_zone_10 = 28410 Pulkovo_Gauss_zone_11 = 28411 Pulkovo_Gauss_zone_12 = 28412 Pulkovo_Gauss_zone_13 = 28413 Pulkovo_Gauss_zone_14 = 28414 Pulkovo_Gauss_zone_15 = 28415 Pulkovo_Gauss_zone_16 = 28416 Pulkovo_Gauss_zone_17 = 28417 Pulkovo_Gauss_zone_18 = 28418 Pulkovo_Gauss_zone_19 = 28419 Pulkovo_Gauss_zone_20 = 28420 Pulkovo_Gauss_zone_21 = 28421 Pulkovo_Gauss_zone_22 = 28422 Pulkovo_Gauss_zone_23 = 28423 Pulkovo_Gauss_zone_24 = 28424 Pulkovo_Gauss_zone_25 = 28425 Pulkovo_Gauss_zone_26 = 28426 Pulkovo_Gauss_zone_27 = 28427 Pulkovo_Gauss_zone_28 = 28428 Pulkovo_Gauss_zone_29 = 28429 Pulkovo_Gauss_zone_30 = 28430 Pulkovo_Gauss_zone_31 = 28431 Pulkovo_Gauss_zone_32 = 28432 Pulkovo_Gauss_4N = 28464 Pulkovo_Gauss_5N = 28465 Pulkovo_Gauss_6N = 28466 Pulkovo_Gauss_7N = 28467 Pulkovo_Gauss_8N = 28468 Pulkovo_Gauss_9N = 28469 Pulkovo_Gauss_10N = 28470 Pulkovo_Gauss_11N = 28471 Pulkovo_Gauss_12N = 28472 Pulkovo_Gauss_13N = 28473 Pulkovo_Gauss_14N = 28474 Pulkovo_Gauss_15N = 28475 Pulkovo_Gauss_16N = 28476 Pulkovo_Gauss_17N = 28477 Pulkovo_Gauss_18N = 28478 Pulkovo_Gauss_19N = 28479 Pulkovo_Gauss_20N = 28480 Pulkovo_Gauss_21N = 28481 Pulkovo_Gauss_22N = 28482 Pulkovo_Gauss_23N = 28483 Pulkovo_Gauss_24N = 28484 Pulkovo_Gauss_25N = 28485 Pulkovo_Gauss_26N = 28486 Pulkovo_Gauss_27N = 28487 Pulkovo_Gauss_28N = 28488 Pulkovo_Gauss_29N = 28489 Pulkovo_Gauss_30N = 28490 Pulkovo_Gauss_31N = 28491 Pulkovo_Gauss_32N = 28492 Qatar_National_Grid = 28600 RD_Netherlands_Old = 28991 RD_Netherlands_New = 28992 SAD69_UTM_zone_18N = 29118 SAD69_UTM_zone_19N = 29119 SAD69_UTM_zone_20N = 29120 SAD69_UTM_zone_21N = 29121 SAD69_UTM_zone_22N = 29122 SAD69_UTM_zone_17S = 29177 SAD69_UTM_zone_18S = 29178 SAD69_UTM_zone_19S = 29179 SAD69_UTM_zone_20S = 29180 SAD69_UTM_zone_21S = 29181 SAD69_UTM_zone_22S = 29182 SAD69_UTM_zone_23S = 29183 SAD69_UTM_zone_24S = 29184 SAD69_UTM_zone_25S = 29185 Sapper_Hill_UTM_20S = 29220 Sapper_Hill_UTM_21S = 29221 Schwarzeck_UTM_33S = 29333 Sudan_UTM_zone_35N = 29635 Sudan_UTM_zone_36N = 29636 Tananarive_Laborde = 29700 Tananarive_UTM_38S = 29738 Tananarive_UTM_39S = 29739 Timbalai_1948_Borneo = 29800 Timbalai_1948_UTM_49N = 29849 Timbalai_1948_UTM_50N = 29850 TM65_Irish_Nat_Grid = 29900 Trinidad_1903_Trinidad = 30200 TC_1948_UTM_zone_39N = 30339 TC_1948_UTM_zone_40N = 30340 Voirol_N_Algerie_ancien = 30491 Voirol_S_Algerie_ancien = 30492 Voirol_Unifie_N_Algerie = 30591 Voirol_Unifie_S_Algerie = 30592 Bern_1938_Swiss_New = 30600 Nord_Sahara_UTM_29N = 30729 Nord_Sahara_UTM_30N = 30730 Nord_Sahara_UTM_31N = 30731 Nord_Sahara_UTM_32N = 30732 Yoff_UTM_zone_28N = 31028 Zanderij_UTM_zone_21N = 31121 MGI_Austria_West = 31291 MGI_Austria_Central = 31292 MGI_Austria_East = 31293 Belge_Lambert_72 = 31300 DHDN_Germany_zone_1 = 31491 DHDN_Germany_zone_2 = 31492 DHDN_Germany_zone_3 = 31493 DHDN_Germany_zone_4 = 31494 DHDN_Germany_zone_5 = 31495 NAD27_Montana_North = 32001 NAD27_Montana_Central = 32002 NAD27_Montana_South = 32003 NAD27_Nebraska_North = 32005 NAD27_Nebraska_South = 32006 NAD27_Nevada_East = 32007 NAD27_Nevada_Central = 32008 NAD27_Nevada_West = 32009 NAD27_New_Hampshire = 32010 NAD27_New_Jersey = 32011 NAD27_New_Mexico_East = 32012 NAD27_New_Mexico_Cent = 32013 NAD27_New_Mexico_West = 32014 NAD27_New_York_East = 32015 NAD27_New_York_Central = 32016 NAD27_New_York_West = 32017 NAD27_New_York_Long_Is = 32018 NAD27_North_Carolina = 32019 NAD27_North_Dakota_N = 32020 NAD27_North_Dakota_S = 32021 NAD27_Ohio_North = 32022 NAD27_Ohio_South = 32023 NAD27_Oklahoma_North = 32024 NAD27_Oklahoma_South = 32025 NAD27_Oregon_North = 32026 NAD27_Oregon_South = 32027 NAD27_Pennsylvania_N = 32028 NAD27_Pennsylvania_S = 32029 NAD27_Rhode_Island = 32030 NAD27_South_Carolina_N = 32031 NAD27_South_Carolina_S = 32033 NAD27_South_Dakota_N = 32034 NAD27_South_Dakota_S = 32035 NAD27_Tennessee = 2204 NAD27_Texas_North = 32037 NAD27_Texas_North_Cen = 32038 NAD27_Texas_Central = 32039 NAD27_Texas_South_Cen = 32040 NAD27_Texas_South = 32041 NAD27_Utah_North = 32042 NAD27_Utah_Central = 32043 NAD27_Utah_South = 32044 NAD27_Vermont = 32045 NAD27_Virginia_North = 32046 NAD27_Virginia_South = 32047 NAD27_Washington_North = 32048 NAD27_Washington_South = 32049 NAD27_West_Virginia_N = 32050 NAD27_West_Virginia_S = 32051 NAD27_Wisconsin_North = 32052 NAD27_Wisconsin_Cen = 32053 NAD27_Wisconsin_South = 32054 NAD27_Wyoming_East = 32055 NAD27_Wyoming_E_Cen = 32056 NAD27_Wyoming_W_Cen = 32057 NAD27_Wyoming_West = 32058 NAD27_Puerto_Rico = 32059 NAD27_St_Croix = 32060 NAD83_Montana = 32100 NAD83_Nebraska = 32104 NAD83_Nevada_East = 32107 NAD83_Nevada_Central = 32108 NAD83_Nevada_West = 32109 NAD83_New_Hampshire = 32110 NAD83_New_Jersey = 32111 NAD83_New_Mexico_East = 32112 NAD83_New_Mexico_Cent = 32113 NAD83_New_Mexico_West = 32114 NAD83_New_York_East = 32115 NAD83_New_York_Central = 32116 NAD83_New_York_West = 32117 NAD83_New_York_Long_Is = 32118 NAD83_North_Carolina = 32119 NAD83_North_Dakota_N = 32120 NAD83_North_Dakota_S = 32121 NAD83_Ohio_North = 32122 NAD83_Ohio_South = 32123 NAD83_Oklahoma_North = 32124 NAD83_Oklahoma_South = 32125 NAD83_Oregon_North = 32126 NAD83_Oregon_South = 32127 NAD83_Pennsylvania_N = 32128 NAD83_Pennsylvania_S = 32129 NAD83_Rhode_Island = 32130 NAD83_South_Carolina = 32133 NAD83_South_Dakota_N = 32134 NAD83_South_Dakota_S = 32135 NAD83_Tennessee = 32136 NAD83_Texas_North = 32137 NAD83_Texas_North_Cen = 32138 NAD83_Texas_Central = 32139 NAD83_Texas_South_Cen = 32140 NAD83_Texas_South = 32141 NAD83_Utah_North = 32142 NAD83_Utah_Central = 32143 NAD83_Utah_South = 32144 NAD83_Vermont = 32145 NAD83_Virginia_North = 32146 NAD83_Virginia_South = 32147 NAD83_Washington_North = 32148 NAD83_Washington_South = 32149 NAD83_West_Virginia_N = 32150 NAD83_West_Virginia_S = 32151 NAD83_Wisconsin_North = 32152 NAD83_Wisconsin_Cen = 32153 NAD83_Wisconsin_South = 32154 NAD83_Wyoming_East = 32155 NAD83_Wyoming_E_Cen = 32156 NAD83_Wyoming_W_Cen = 32157 NAD83_Wyoming_West = 32158 NAD83_Puerto_Rico_Virgin_Is = 32161 WGS72_UTM_zone_1N = 32201 WGS72_UTM_zone_2N = 32202 WGS72_UTM_zone_3N = 32203 WGS72_UTM_zone_4N = 32204 WGS72_UTM_zone_5N = 32205 WGS72_UTM_zone_6N = 32206 WGS72_UTM_zone_7N = 32207 WGS72_UTM_zone_8N = 32208 WGS72_UTM_zone_9N = 32209 WGS72_UTM_zone_10N = 32210 WGS72_UTM_zone_11N = 32211 WGS72_UTM_zone_12N = 32212 WGS72_UTM_zone_13N = 32213 WGS72_UTM_zone_14N = 32214 WGS72_UTM_zone_15N = 32215 WGS72_UTM_zone_16N = 32216 WGS72_UTM_zone_17N = 32217 WGS72_UTM_zone_18N = 32218 WGS72_UTM_zone_19N = 32219 WGS72_UTM_zone_20N = 32220 WGS72_UTM_zone_21N = 32221 WGS72_UTM_zone_22N = 32222 WGS72_UTM_zone_23N = 32223 WGS72_UTM_zone_24N = 32224 WGS72_UTM_zone_25N = 32225 WGS72_UTM_zone_26N = 32226 WGS72_UTM_zone_27N = 32227 WGS72_UTM_zone_28N = 32228 WGS72_UTM_zone_29N = 32229 WGS72_UTM_zone_30N = 32230 WGS72_UTM_zone_31N = 32231 WGS72_UTM_zone_32N = 32232 WGS72_UTM_zone_33N = 32233 WGS72_UTM_zone_34N = 32234 WGS72_UTM_zone_35N = 32235 WGS72_UTM_zone_36N = 32236 WGS72_UTM_zone_37N = 32237 WGS72_UTM_zone_38N = 32238 WGS72_UTM_zone_39N = 32239 WGS72_UTM_zone_40N = 32240 WGS72_UTM_zone_41N = 32241 WGS72_UTM_zone_42N = 32242 WGS72_UTM_zone_43N = 32243 WGS72_UTM_zone_44N = 32244 WGS72_UTM_zone_45N = 32245 WGS72_UTM_zone_46N = 32246 WGS72_UTM_zone_47N = 32247 WGS72_UTM_zone_48N = 32248 WGS72_UTM_zone_49N = 32249 WGS72_UTM_zone_50N = 32250 WGS72_UTM_zone_51N = 32251 WGS72_UTM_zone_52N = 32252 WGS72_UTM_zone_53N = 32253 WGS72_UTM_zone_54N = 32254 WGS72_UTM_zone_55N = 32255 WGS72_UTM_zone_56N = 32256 WGS72_UTM_zone_57N = 32257 WGS72_UTM_zone_58N = 32258 WGS72_UTM_zone_59N = 32259 WGS72_UTM_zone_60N = 32260 WGS72_UTM_zone_1S = 32301 WGS72_UTM_zone_2S = 32302 WGS72_UTM_zone_3S = 32303 WGS72_UTM_zone_4S = 32304 WGS72_UTM_zone_5S = 32305 WGS72_UTM_zone_6S = 32306 WGS72_UTM_zone_7S = 32307 WGS72_UTM_zone_8S = 32308 WGS72_UTM_zone_9S = 32309 WGS72_UTM_zone_10S = 32310 WGS72_UTM_zone_11S = 32311 WGS72_UTM_zone_12S = 32312 WGS72_UTM_zone_13S = 32313 WGS72_UTM_zone_14S = 32314 WGS72_UTM_zone_15S = 32315 WGS72_UTM_zone_16S = 32316 WGS72_UTM_zone_17S = 32317 WGS72_UTM_zone_18S = 32318 WGS72_UTM_zone_19S = 32319 WGS72_UTM_zone_20S = 32320 WGS72_UTM_zone_21S = 32321 WGS72_UTM_zone_22S = 32322 WGS72_UTM_zone_23S = 32323 WGS72_UTM_zone_24S = 32324 WGS72_UTM_zone_25S = 32325 WGS72_UTM_zone_26S = 32326 WGS72_UTM_zone_27S = 32327 WGS72_UTM_zone_28S = 32328 WGS72_UTM_zone_29S = 32329 WGS72_UTM_zone_30S = 32330 WGS72_UTM_zone_31S = 32331 WGS72_UTM_zone_32S = 32332 WGS72_UTM_zone_33S = 32333 WGS72_UTM_zone_34S = 32334 WGS72_UTM_zone_35S = 32335 WGS72_UTM_zone_36S = 32336 WGS72_UTM_zone_37S = 32337 WGS72_UTM_zone_38S = 32338 WGS72_UTM_zone_39S = 32339 WGS72_UTM_zone_40S = 32340 WGS72_UTM_zone_41S = 32341 WGS72_UTM_zone_42S = 32342 WGS72_UTM_zone_43S = 32343 WGS72_UTM_zone_44S = 32344 WGS72_UTM_zone_45S = 32345 WGS72_UTM_zone_46S = 32346 WGS72_UTM_zone_47S = 32347 WGS72_UTM_zone_48S = 32348 WGS72_UTM_zone_49S = 32349 WGS72_UTM_zone_50S = 32350 WGS72_UTM_zone_51S = 32351 WGS72_UTM_zone_52S = 32352 WGS72_UTM_zone_53S = 32353 WGS72_UTM_zone_54S = 32354 WGS72_UTM_zone_55S = 32355 WGS72_UTM_zone_56S = 32356 WGS72_UTM_zone_57S = 32357 WGS72_UTM_zone_58S = 32358 WGS72_UTM_zone_59S = 32359 WGS72_UTM_zone_60S = 32360 WGS72BE_UTM_zone_1N = 32401 WGS72BE_UTM_zone_2N = 32402 WGS72BE_UTM_zone_3N = 32403 WGS72BE_UTM_zone_4N = 32404 WGS72BE_UTM_zone_5N = 32405 WGS72BE_UTM_zone_6N = 32406 WGS72BE_UTM_zone_7N = 32407 WGS72BE_UTM_zone_8N = 32408 WGS72BE_UTM_zone_9N = 32409 WGS72BE_UTM_zone_10N = 32410 WGS72BE_UTM_zone_11N = 32411 WGS72BE_UTM_zone_12N = 32412 WGS72BE_UTM_zone_13N = 32413 WGS72BE_UTM_zone_14N = 32414 WGS72BE_UTM_zone_15N = 32415 WGS72BE_UTM_zone_16N = 32416 WGS72BE_UTM_zone_17N = 32417 WGS72BE_UTM_zone_18N = 32418 WGS72BE_UTM_zone_19N = 32419 WGS72BE_UTM_zone_20N = 32420 WGS72BE_UTM_zone_21N = 32421 WGS72BE_UTM_zone_22N = 32422 WGS72BE_UTM_zone_23N = 32423 WGS72BE_UTM_zone_24N = 32424 WGS72BE_UTM_zone_25N = 32425 WGS72BE_UTM_zone_26N = 32426 WGS72BE_UTM_zone_27N = 32427 WGS72BE_UTM_zone_28N = 32428 WGS72BE_UTM_zone_29N = 32429 WGS72BE_UTM_zone_30N = 32430 WGS72BE_UTM_zone_31N = 32431 WGS72BE_UTM_zone_32N = 32432 WGS72BE_UTM_zone_33N = 32433 WGS72BE_UTM_zone_34N = 32434 WGS72BE_UTM_zone_35N = 32435 WGS72BE_UTM_zone_36N = 32436 WGS72BE_UTM_zone_37N = 32437 WGS72BE_UTM_zone_38N = 32438 WGS72BE_UTM_zone_39N = 32439 WGS72BE_UTM_zone_40N = 32440 WGS72BE_UTM_zone_41N = 32441 WGS72BE_UTM_zone_42N = 32442 WGS72BE_UTM_zone_43N = 32443 WGS72BE_UTM_zone_44N = 32444 WGS72BE_UTM_zone_45N = 32445 WGS72BE_UTM_zone_46N = 32446 WGS72BE_UTM_zone_47N = 32447 WGS72BE_UTM_zone_48N = 32448 WGS72BE_UTM_zone_49N = 32449 WGS72BE_UTM_zone_50N = 32450 WGS72BE_UTM_zone_51N = 32451 WGS72BE_UTM_zone_52N = 32452 WGS72BE_UTM_zone_53N = 32453 WGS72BE_UTM_zone_54N = 32454 WGS72BE_UTM_zone_55N = 32455 WGS72BE_UTM_zone_56N = 32456 WGS72BE_UTM_zone_57N = 32457 WGS72BE_UTM_zone_58N = 32458 WGS72BE_UTM_zone_59N = 32459 WGS72BE_UTM_zone_60N = 32460 WGS72BE_UTM_zone_1S = 32501 WGS72BE_UTM_zone_2S = 32502 WGS72BE_UTM_zone_3S = 32503 WGS72BE_UTM_zone_4S = 32504 WGS72BE_UTM_zone_5S = 32505 WGS72BE_UTM_zone_6S = 32506 WGS72BE_UTM_zone_7S = 32507 WGS72BE_UTM_zone_8S = 32508 WGS72BE_UTM_zone_9S = 32509 WGS72BE_UTM_zone_10S = 32510 WGS72BE_UTM_zone_11S = 32511 WGS72BE_UTM_zone_12S = 32512 WGS72BE_UTM_zone_13S = 32513 WGS72BE_UTM_zone_14S = 32514 WGS72BE_UTM_zone_15S = 32515 WGS72BE_UTM_zone_16S = 32516 WGS72BE_UTM_zone_17S = 32517 WGS72BE_UTM_zone_18S = 32518 WGS72BE_UTM_zone_19S = 32519 WGS72BE_UTM_zone_20S = 32520 WGS72BE_UTM_zone_21S = 32521 WGS72BE_UTM_zone_22S = 32522 WGS72BE_UTM_zone_23S = 32523 WGS72BE_UTM_zone_24S = 32524 WGS72BE_UTM_zone_25S = 32525 WGS72BE_UTM_zone_26S = 32526 WGS72BE_UTM_zone_27S = 32527 WGS72BE_UTM_zone_28S = 32528 WGS72BE_UTM_zone_29S = 32529 WGS72BE_UTM_zone_30S = 32530 WGS72BE_UTM_zone_31S = 32531 WGS72BE_UTM_zone_32S = 32532 WGS72BE_UTM_zone_33S = 32533 WGS72BE_UTM_zone_34S = 32534 WGS72BE_UTM_zone_35S = 32535 WGS72BE_UTM_zone_36S = 32536 WGS72BE_UTM_zone_37S = 32537 WGS72BE_UTM_zone_38S = 32538 WGS72BE_UTM_zone_39S = 32539 WGS72BE_UTM_zone_40S = 32540 WGS72BE_UTM_zone_41S = 32541 WGS72BE_UTM_zone_42S = 32542 WGS72BE_UTM_zone_43S = 32543 WGS72BE_UTM_zone_44S = 32544 WGS72BE_UTM_zone_45S = 32545 WGS72BE_UTM_zone_46S = 32546 WGS72BE_UTM_zone_47S = 32547 WGS72BE_UTM_zone_48S = 32548 WGS72BE_UTM_zone_49S = 32549 WGS72BE_UTM_zone_50S = 32550 WGS72BE_UTM_zone_51S = 32551 WGS72BE_UTM_zone_52S = 32552 WGS72BE_UTM_zone_53S = 32553 WGS72BE_UTM_zone_54S = 32554 WGS72BE_UTM_zone_55S = 32555 WGS72BE_UTM_zone_56S = 32556 WGS72BE_UTM_zone_57S = 32557 WGS72BE_UTM_zone_58S = 32558 WGS72BE_UTM_zone_59S = 32559 WGS72BE_UTM_zone_60S = 32560 WGS84_UTM_zone_1N = 32601 WGS84_UTM_zone_2N = 32602 WGS84_UTM_zone_3N = 32603 WGS84_UTM_zone_4N = 32604 WGS84_UTM_zone_5N = 32605 WGS84_UTM_zone_6N = 32606 WGS84_UTM_zone_7N = 32607 WGS84_UTM_zone_8N = 32608 WGS84_UTM_zone_9N = 32609 WGS84_UTM_zone_10N = 32610 WGS84_UTM_zone_11N = 32611 WGS84_UTM_zone_12N = 32612 WGS84_UTM_zone_13N = 32613 WGS84_UTM_zone_14N = 32614 WGS84_UTM_zone_15N = 32615 WGS84_UTM_zone_16N = 32616 WGS84_UTM_zone_17N = 32617 WGS84_UTM_zone_18N = 32618 WGS84_UTM_zone_19N = 32619 WGS84_UTM_zone_20N = 32620 WGS84_UTM_zone_21N = 32621 WGS84_UTM_zone_22N = 32622 WGS84_UTM_zone_23N = 32623 WGS84_UTM_zone_24N = 32624 WGS84_UTM_zone_25N = 32625 WGS84_UTM_zone_26N = 32626 WGS84_UTM_zone_27N = 32627 WGS84_UTM_zone_28N = 32628 WGS84_UTM_zone_29N = 32629 WGS84_UTM_zone_30N = 32630 WGS84_UTM_zone_31N = 32631 WGS84_UTM_zone_32N = 32632 WGS84_UTM_zone_33N = 32633 WGS84_UTM_zone_34N = 32634 WGS84_UTM_zone_35N = 32635 WGS84_UTM_zone_36N = 32636 WGS84_UTM_zone_37N = 32637 WGS84_UTM_zone_38N = 32638 WGS84_UTM_zone_39N = 32639 WGS84_UTM_zone_40N = 32640 WGS84_UTM_zone_41N = 32641 WGS84_UTM_zone_42N = 32642 WGS84_UTM_zone_43N = 32643 WGS84_UTM_zone_44N = 32644 WGS84_UTM_zone_45N = 32645 WGS84_UTM_zone_46N = 32646 WGS84_UTM_zone_47N = 32647 WGS84_UTM_zone_48N = 32648 WGS84_UTM_zone_49N = 32649 WGS84_UTM_zone_50N = 32650 WGS84_UTM_zone_51N = 32651 WGS84_UTM_zone_52N = 32652 WGS84_UTM_zone_53N = 32653 WGS84_UTM_zone_54N = 32654 WGS84_UTM_zone_55N = 32655 WGS84_UTM_zone_56N = 32656 WGS84_UTM_zone_57N = 32657 WGS84_UTM_zone_58N = 32658 WGS84_UTM_zone_59N = 32659 WGS84_UTM_zone_60N = 32660 WGS84_UTM_zone_1S = 32701 WGS84_UTM_zone_2S = 32702 WGS84_UTM_zone_3S = 32703 WGS84_UTM_zone_4S = 32704 WGS84_UTM_zone_5S = 32705 WGS84_UTM_zone_6S = 32706 WGS84_UTM_zone_7S = 32707 WGS84_UTM_zone_8S = 32708 WGS84_UTM_zone_9S = 32709 WGS84_UTM_zone_10S = 32710 WGS84_UTM_zone_11S = 32711 WGS84_UTM_zone_12S = 32712 WGS84_UTM_zone_13S = 32713 WGS84_UTM_zone_14S = 32714 WGS84_UTM_zone_15S = 32715 WGS84_UTM_zone_16S = 32716 WGS84_UTM_zone_17S = 32717 WGS84_UTM_zone_18S = 32718 WGS84_UTM_zone_19S = 32719 WGS84_UTM_zone_20S = 32720 WGS84_UTM_zone_21S = 32721 WGS84_UTM_zone_22S = 32722 WGS84_UTM_zone_23S = 32723 WGS84_UTM_zone_24S = 32724 WGS84_UTM_zone_25S = 32725 WGS84_UTM_zone_26S = 32726 WGS84_UTM_zone_27S = 32727 WGS84_UTM_zone_28S = 32728 WGS84_UTM_zone_29S = 32729 WGS84_UTM_zone_30S = 32730 WGS84_UTM_zone_31S = 32731 WGS84_UTM_zone_32S = 32732 WGS84_UTM_zone_33S = 32733 WGS84_UTM_zone_34S = 32734 WGS84_UTM_zone_35S = 32735 WGS84_UTM_zone_36S = 32736 WGS84_UTM_zone_37S = 32737 WGS84_UTM_zone_38S = 32738 WGS84_UTM_zone_39S = 32739 WGS84_UTM_zone_40S = 32740 WGS84_UTM_zone_41S = 32741 WGS84_UTM_zone_42S = 32742 WGS84_UTM_zone_43S = 32743 WGS84_UTM_zone_44S = 32744 WGS84_UTM_zone_45S = 32745 WGS84_UTM_zone_46S = 32746 WGS84_UTM_zone_47S = 32747 WGS84_UTM_zone_48S = 32748 WGS84_UTM_zone_49S = 32749 WGS84_UTM_zone_50S = 32750 WGS84_UTM_zone_51S = 32751 WGS84_UTM_zone_52S = 32752 WGS84_UTM_zone_53S = 32753 WGS84_UTM_zone_54S = 32754 WGS84_UTM_zone_55S = 32755 WGS84_UTM_zone_56S = 32756 WGS84_UTM_zone_57S = 32757 WGS84_UTM_zone_58S = 32758 WGS84_UTM_zone_59S = 32759 WGS84_UTM_zone_60S = 32760 # New GGRS87_Greek_Grid = 2100 KKJ_Finland_zone_1 = 2391 KKJ_Finland_zone_2 = 2392 KKJ_Finland_zone_3 = 2393 KKJ_Finland_zone_4 = 2394 RT90_2_5_gon_W = 2400 Lietuvos_Koordinoei_Sistema_1994 = 2600 Estonian_Coordinate_System_of_1992 = 3300 HD72_EOV = 23700 Dealul_Piscului_1970_Stereo_70 = 31700 # Newer Hjorsey_1955_Lambert = 3053 ISN93_Lambert_1993 = 3057 ETRS89_Poland_CS2000_zone_5 = 2176 ETRS89_Poland_CS2000_zone_6 = 2177 ETRS89_Poland_CS2000_zone_7 = 2177 ETRS89_Poland_CS2000_zone_8 = 2178 ETRS89_Poland_CS92 = 2180 class GCSE(enum.IntEnum): """Unspecified GCS based on ellipsoid.""" Undefined = 0 User_Defined = 32767 Airy1830 = 4001 AiryModified1849 = 4002 AustralianNationalSpheroid = 4003 Bessel1841 = 4004 BesselModified = 4005 BesselNamibia = 4006 Clarke1858 = 4007 Clarke1866 = 4008 Clarke1866Michigan = 4009 Clarke1880_Benoit = 4010 Clarke1880_IGN = 4011 Clarke1880_RGS = 4012 Clarke1880_Arc = 4013 Clarke1880_SGA1922 = 4014 Everest1830_1937Adjustment = 4015 Everest1830_1967Definition = 4016 Everest1830_1975Definition = 4017 Everest1830Modified = 4018 GRS1980 = 4019 Helmert1906 = 4020 IndonesianNationalSpheroid = 4021 International1924 = 4022 International1967 = 4023 Krassowsky1940 = 4024 NWL9D = 4025 NWL10D = 4026 Plessis1817 = 4027 Struve1860 = 4028 WarOffice = 4029 WGS84 = 4030 GEM10C = 4031 OSU86F = 4032 OSU91A = 4033 Clarke1880 = 4034 Sphere = 4035 class GCS(enum.IntEnum): """Geographic CS Type Codes.""" Undefined = 0 User_Defined = 32767 Adindan = 4201 AGD66 = 4202 AGD84 = 4203 Ain_el_Abd = 4204 Afgooye = 4205 Agadez = 4206 Lisbon = 4207 Aratu = 4208 Arc_1950 = 4209 Arc_1960 = 4210 Batavia = 4211 Barbados = 4212 Beduaram = 4213 Beijing_1954 = 4214 Belge_1950 = 4215 Bermuda_1957 = 4216 Bern_1898 = 4217 Bogota = 4218 Bukit_Rimpah = 4219 Camacupa = 4220 Campo_Inchauspe = 4221 Cape = 4222 Carthage = 4223 Chua = 4224 Corrego_Alegre = 4225 Cote_d_Ivoire = 4226 Deir_ez_Zor = 4227 Douala = 4228 Egypt_1907 = 4229 ED50 = 4230 ED87 = 4231 Fahud = 4232 Gandajika_1970 = 4233 Garoua = 4234 Guyane_Francaise = 4235 Hu_Tzu_Shan = 4236 HD72 = 4237 ID74 = 4238 Indian_1954 = 4239 Indian_1975 = 4240 Jamaica_1875 = 4241 JAD69 = 4242 Kalianpur = 4243 Kandawala = 4244 Kertau = 4245 KOC = 4246 La_Canoa = 4247 PSAD56 = 4248 Lake = 4249 Leigon = 4250 Liberia_1964 = 4251 Lome = 4252 Luzon_1911 = 4253 Hito_XVIII_1963 = 4254 Herat_North = 4255 Mahe_1971 = 4256 Makassar = 4257 EUREF89 = 4258 Malongo_1987 = 4259 Manoca = 4260 Merchich = 4261 Massawa = 4262 Minna = 4263 Mhast = 4264 Monte_Mario = 4265 M_poraloko = 4266 NAD27 = 4267 NAD_Michigan = 4268 NAD83 = 4269 Nahrwan_1967 = 4270 Naparima_1972 = 4271 GD49 = 4272 NGO_1948 = 4273 Datum_73 = 4274 NTF = 4275 NSWC_9Z_2 = 4276 OSGB_1936 = 4277 OSGB70 = 4278 OS_SN80 = 4279 Padang = 4280 Palestine_1923 = 4281 Pointe_Noire = 4282 GDA94 = 4283 Pulkovo_1942 = 4284 Qatar = 4285 Qatar_1948 = 4286 Qornoq = 4287 Loma_Quintana = 4288 Amersfoort = 4289 RT38 = 4290 SAD69 = 4291 Sapper_Hill_1943 = 4292 Schwarzeck = 4293 Segora = 4294 Serindung = 4295 Sudan = 4296 Tananarive = 4297 Timbalai_1948 = 4298 TM65 = 4299 TM75 = 4300 Tokyo = 4301 Trinidad_1903 = 4302 TC_1948 = 4303 Voirol_1875 = 4304 Voirol_Unifie = 4305 Bern_1938 = 4306 Nord_Sahara_1959 = 4307 Stockholm_1938 = 4308 Yacare = 4309 Yoff = 4310 Zanderij = 4311 MGI = 4312 Belge_1972 = 4313 DHDN = 4314 Conakry_1905 = 4315 WGS_72 = 4322 WGS_72BE = 4324 WGS_84 = 4326 Bern_1898_Bern = 4801 Bogota_Bogota = 4802 Lisbon_Lisbon = 4803 Makassar_Jakarta = 4804 MGI_Ferro = 4805 Monte_Mario_Rome = 4806 NTF_Paris = 4807 Padang_Jakarta = 4808 Belge_1950_Brussels = 4809 Tananarive_Paris = 4810 Voirol_1875_Paris = 4811 Voirol_Unifie_Paris = 4812 Batavia_Jakarta = 4813 ATF_Paris = 4901 NDG_Paris = 4902 # New GCS Greek = 4120 GGRS87 = 4121 KKJ = 4123 RT90 = 4124 EST92 = 4133 Dealul_Piscului_1970 = 4317 Greek_Athens = 4815 class Ellipse(enum.IntEnum): """Ellipsoid Codes.""" Undefined = 0 User_Defined = 32767 Airy_1830 = 7001 Airy_Modified_1849 = 7002 Australian_National_Spheroid = 7003 Bessel_1841 = 7004 Bessel_Modified = 7005 Bessel_Namibia = 7006 Clarke_1858 = 7007 Clarke_1866 = 7008 Clarke_1866_Michigan = 7009 Clarke_1880_Benoit = 7010 Clarke_1880_IGN = 7011 Clarke_1880_RGS = 7012 Clarke_1880_Arc = 7013 Clarke_1880_SGA_1922 = 7014 Everest_1830_1937_Adjustment = 7015 Everest_1830_1967_Definition = 7016 Everest_1830_1975_Definition = 7017 Everest_1830_Modified = 7018 GRS_1980 = 7019 Helmert_1906 = 7020 Indonesian_National_Spheroid = 7021 International_1924 = 7022 International_1967 = 7023 Krassowsky_1940 = 7024 NWL_9D = 7025 NWL_10D = 7026 Plessis_1817 = 7027 Struve_1860 = 7028 War_Office = 7029 WGS_84 = 7030 GEM_10C = 7031 OSU86F = 7032 OSU91A = 7033 Clarke_1880 = 7034 Sphere = 7035 class DatumE(enum.IntEnum): """Ellipsoid-Only Geodetic Datum Codes.""" Undefined = 0 User_Defined = 32767 Airy1830 = 6001 AiryModified1849 = 6002 AustralianNationalSpheroid = 6003 Bessel1841 = 6004 BesselModified = 6005 BesselNamibia = 6006 Clarke1858 = 6007 Clarke1866 = 6008 Clarke1866Michigan = 6009 Clarke1880_Benoit = 6010 Clarke1880_IGN = 6011 Clarke1880_RGS = 6012 Clarke1880_Arc = 6013 Clarke1880_SGA1922 = 6014 Everest1830_1937Adjustment = 6015 Everest1830_1967Definition = 6016 Everest1830_1975Definition = 6017 Everest1830Modified = 6018 GRS1980 = 6019 Helmert1906 = 6020 IndonesianNationalSpheroid = 6021 International1924 = 6022 International1967 = 6023 Krassowsky1960 = 6024 NWL9D = 6025 NWL10D = 6026 Plessis1817 = 6027 Struve1860 = 6028 WarOffice = 6029 WGS84 = 6030 GEM10C = 6031 OSU86F = 6032 OSU91A = 6033 Clarke1880 = 6034 Sphere = 6035 class Datum(enum.IntEnum): """Geodetic Datum Codes.""" Undefined = 0 User_Defined = 32767 Adindan = 6201 Australian_Geodetic_Datum_1966 = 6202 Australian_Geodetic_Datum_1984 = 6203 Ain_el_Abd_1970 = 6204 Afgooye = 6205 Agadez = 6206 Lisbon = 6207 Aratu = 6208 Arc_1950 = 6209 Arc_1960 = 6210 Batavia = 6211 Barbados = 6212 Beduaram = 6213 Beijing_1954 = 6214 Reseau_National_Belge_1950 = 6215 Bermuda_1957 = 6216 Bern_1898 = 6217 Bogota = 6218 Bukit_Rimpah = 6219 Camacupa = 6220 Campo_Inchauspe = 6221 Cape = 6222 Carthage = 6223 Chua = 6224 Corrego_Alegre = 6225 Cote_d_Ivoire = 6226 Deir_ez_Zor = 6227 Douala = 6228 Egypt_1907 = 6229 European_Datum_1950 = 6230 European_Datum_1987 = 6231 Fahud = 6232 Gandajika_1970 = 6233 Garoua = 6234 Guyane_Francaise = 6235 Hu_Tzu_Shan = 6236 Hungarian_Datum_1972 = 6237 Indonesian_Datum_1974 = 6238 Indian_1954 = 6239 Indian_1975 = 6240 Jamaica_1875 = 6241 Jamaica_1969 = 6242 Kalianpur = 6243 Kandawala = 6244 Kertau = 6245 Kuwait_Oil_Company = 6246 La_Canoa = 6247 Provisional_S_American_Datum_1956 = 6248 Lake = 6249 Leigon = 6250 Liberia_1964 = 6251 Lome = 6252 Luzon_1911 = 6253 Hito_XVIII_1963 = 6254 Herat_North = 6255 Mahe_1971 = 6256 Makassar = 6257 European_Reference_System_1989 = 6258 Malongo_1987 = 6259 Manoca = 6260 Merchich = 6261 Massawa = 6262 Minna = 6263 Mhast = 6264 Monte_Mario = 6265 M_poraloko = 6266 North_American_Datum_1927 = 6267 NAD_Michigan = 6268 North_American_Datum_1983 = 6269 Nahrwan_1967 = 6270 Naparima_1972 = 6271 New_Zealand_Geodetic_Datum_1949 = 6272 NGO_1948 = 6273 Datum_73 = 6274 Nouvelle_Triangulation_Francaise = 6275 NSWC_9Z_2 = 6276 OSGB_1936 = 6277 OSGB_1970_SN = 6278 OS_SN_1980 = 6279 Padang_1884 = 6280 Palestine_1923 = 6281 Pointe_Noire = 6282 Geocentric_Datum_of_Australia_1994 = 6283 Pulkovo_1942 = 6284 Qatar = 6285 Qatar_1948 = 6286 Qornoq = 6287 Loma_Quintana = 6288 Amersfoort = 6289 RT38 = 6290 South_American_Datum_1969 = 6291 Sapper_Hill_1943 = 6292 Schwarzeck = 6293 Segora = 6294 Serindung = 6295 Sudan = 6296 Tananarive_1925 = 6297 Timbalai_1948 = 6298 TM65 = 6299 TM75 = 6300 Tokyo = 6301 Trinidad_1903 = 6302 Trucial_Coast_1948 = 6303 Voirol_1875 = 6304 Voirol_Unifie_1960 = 6305 Bern_1938 = 6306 Nord_Sahara_1959 = 6307 Stockholm_1938 = 6308 Yacare = 6309 Yoff = 6310 Zanderij = 6311 Militar_Geographische_Institut = 6312 Reseau_National_Belge_1972 = 6313 Deutsche_Hauptdreiecksnetz = 6314 Conakry_1905 = 6315 Dealul_Piscului_1930 = 6316 Dealul_Piscului_1970 = 6317 WGS72 = 6322 WGS72_Transit_Broadcast_Ephemeris = 6324 WGS84 = 6326 Ancienne_Triangulation_Francaise = 6901 Nord_de_Guerre = 6902 class ModelType(enum.IntEnum): """Model Type Codes.""" Undefined = 0 User_Defined = 32767 Projected = 1 Geographic = 2 Geocentric = 3 class RasterPixel(enum.IntEnum): """Raster Type Codes.""" Undefined = 0 User_Defined = 32767 IsArea = 1 IsPoint = 2 class Linear(enum.IntEnum): """Linear Units.""" Undefined = 0 User_Defined = 32767 Meter = 9001 Foot = 9002 Foot_US_Survey = 9003 Foot_Modified_American = 9004 Foot_Clarke = 9005 Foot_Indian = 9006 Link = 9007 Link_Benoit = 9008 Link_Sears = 9009 Chain_Benoit = 9010 Chain_Sears = 9011 Yard_Sears = 9012 Yard_Indian = 9013 Fathom = 9014 Mile_International_Nautical = 9015 class Angular(enum.IntEnum): """Angular Units.""" Undefined = 0 User_Defined = 32767 Radian = 9101 Degree = 9102 Arc_Minute = 9103 Arc_Second = 9104 Grad = 9105 Gon = 9106 DMS = 9107 DMS_Hemisphere = 9108 class PM(enum.IntEnum): """Prime Meridian Codes.""" Undefined = 0 User_Defined = 32767 Greenwich = 8901 Lisbon = 8902 Paris = 8903 Bogota = 8904 Madrid = 8905 Rome = 8906 Bern = 8907 Jakarta = 8908 Ferro = 8909 Brussels = 8910 Stockholm = 8911 class CT(enum.IntEnum): """Coordinate Transformation Codes.""" Undefined = 0 User_Defined = 32767 TransverseMercator = 1 TransvMercator_Modified_Alaska = 2 ObliqueMercator = 3 ObliqueMercator_Laborde = 4 ObliqueMercator_Rosenmund = 5 ObliqueMercator_Spherical = 6 Mercator = 7 LambertConfConic_2SP = 8 LambertConfConic_Helmert = 9 LambertAzimEqualArea = 10 AlbersEqualArea = 11 AzimuthalEquidistant = 12 EquidistantConic = 13 Stereographic = 14 PolarStereographic = 15 ObliqueStereographic = 16 Equirectangular = 17 CassiniSoldner = 18 Gnomonic = 19 MillerCylindrical = 20 Orthographic = 21 Polyconic = 22 Robinson = 23 Sinusoidal = 24 VanDerGrinten = 25 NewZealandMapGrid = 26 TransvMercator_SouthOriented = 27 CylindricalEqualArea = 28 HotineObliqueMercatorAzimuthCenter = 9815 class VertCS(enum.IntEnum): """Vertical CS Type Codes.""" Undefined = 0 User_Defined = 32767 Airy_1830_ellipsoid = 5001 Airy_Modified_1849_ellipsoid = 5002 ANS_ellipsoid = 5003 Bessel_1841_ellipsoid = 5004 Bessel_Modified_ellipsoid = 5005 Bessel_Namibia_ellipsoid = 5006 Clarke_1858_ellipsoid = 5007 Clarke_1866_ellipsoid = 5008 Clarke_1880_Benoit_ellipsoid = 5010 Clarke_1880_IGN_ellipsoid = 5011 Clarke_1880_RGS_ellipsoid = 5012 Clarke_1880_Arc_ellipsoid = 5013 Clarke_1880_SGA_1922_ellipsoid = 5014 Everest_1830_1937_Adjustment_ellipsoid = 5015 Everest_1830_1967_Definition_ellipsoid = 5016 Everest_1830_1975_Definition_ellipsoid = 5017 Everest_1830_Modified_ellipsoid = 5018 GRS_1980_ellipsoid = 5019 Helmert_1906_ellipsoid = 5020 INS_ellipsoid = 5021 International_1924_ellipsoid = 5022 International_1967_ellipsoid = 5023 Krassowsky_1940_ellipsoid = 5024 NWL_9D_ellipsoid = 5025 NWL_10D_ellipsoid = 5026 Plessis_1817_ellipsoid = 5027 Struve_1860_ellipsoid = 5028 War_Office_ellipsoid = 5029 WGS_84_ellipsoid = 5030 GEM_10C_ellipsoid = 5031 OSU86F_ellipsoid = 5032 OSU91A_ellipsoid = 5033 # Orthometric Vertical CS Newlyn = 5101 North_American_Vertical_Datum_1929 = 5102 North_American_Vertical_Datum_1988 = 5103 Yellow_Sea_1956 = 5104 Baltic_Sea = 5105 Caspian_Sea = 5106 class GeoKeys(enum.IntEnum): """Geo keys.""" GTModelTypeGeoKey = 1024 GTRasterTypeGeoKey = 1025 GTCitationGeoKey = 1026 GeographicTypeGeoKey = 2048 GeogCitationGeoKey = 2049 GeogGeodeticDatumGeoKey = 2050 GeogPrimeMeridianGeoKey = 2051 GeogLinearUnitsGeoKey = 2052 GeogLinearUnitSizeGeoKey = 2053 GeogAngularUnitsGeoKey = 2054 GeogAngularUnitsSizeGeoKey = 2055 GeogEllipsoidGeoKey = 2056 GeogSemiMajorAxisGeoKey = 2057 GeogSemiMinorAxisGeoKey = 2058 GeogInvFlatteningGeoKey = 2059 GeogAzimuthUnitsGeoKey = 2060 GeogPrimeMeridianLongGeoKey = 2061 GeogTOWGS84GeoKey = 2062 ProjLinearUnitsInterpCorrectGeoKey = 3059 # GDAL ProjectedCSTypeGeoKey = 3072 PCSCitationGeoKey = 3073 ProjectionGeoKey = 3074 ProjCoordTransGeoKey = 3075 ProjLinearUnitsGeoKey = 3076 ProjLinearUnitSizeGeoKey = 3077 ProjStdParallel1GeoKey = 3078 ProjStdParallel2GeoKey = 3079 ProjNatOriginLongGeoKey = 3080 ProjNatOriginLatGeoKey = 3081 ProjFalseEastingGeoKey = 3082 ProjFalseNorthingGeoKey = 3083 ProjFalseOriginLongGeoKey = 3084 ProjFalseOriginLatGeoKey = 3085 ProjFalseOriginEastingGeoKey = 3086 ProjFalseOriginNorthingGeoKey = 3087 ProjCenterLongGeoKey = 3088 ProjCenterLatGeoKey = 3089 ProjCenterEastingGeoKey = 3090 ProjCenterNorthingGeoKey = 3091 ProjScaleAtNatOriginGeoKey = 3092 ProjScaleAtCenterGeoKey = 3093 ProjAzimuthAngleGeoKey = 3094 ProjStraightVertPoleLongGeoKey = 3095 ProjRectifiedGridAngleGeoKey = 3096 VerticalCSTypeGeoKey = 4096 VerticalCitationGeoKey = 4097 VerticalDatumGeoKey = 4098 VerticalUnitsGeoKey = 4099 GEO_CODES = { GeoKeys.GTModelTypeGeoKey: ModelType, GeoKeys.GTRasterTypeGeoKey: RasterPixel, GeoKeys.GeographicTypeGeoKey: GCS, GeoKeys.GeogPrimeMeridianGeoKey: PM, GeoKeys.GeogLinearUnitsGeoKey: Linear, GeoKeys.GeogAngularUnitsGeoKey: Angular, GeoKeys.GeogEllipsoidGeoKey: Ellipse, GeoKeys.GeogAzimuthUnitsGeoKey: Angular, GeoKeys.ProjectedCSTypeGeoKey: PCS, GeoKeys.ProjectionGeoKey: Proj, GeoKeys.ProjCoordTransGeoKey: CT, GeoKeys.ProjLinearUnitsGeoKey: Linear, GeoKeys.VerticalCSTypeGeoKey: VertCS, # GeoKeys.VerticalDatumGeoKey: VertCS, GeoKeys.VerticalUnitsGeoKey: Linear, } ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1644445976.2450676 tifffile-2022.2.9/tifffile.egg-info/0000777000000000000000000000000000000000000013715 5ustar00././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1644445975.0 tifffile-2022.2.9/tifffile.egg-info/PKG-INFO0000666000000000000000000007416200000000000015024 0ustar00Metadata-Version: 2.1 Name: tifffile Version: 2022.2.9 Summary: Read and write TIFF files Home-page: https://www.lfd.uci.edu/~gohlke/ Author: Christoph Gohlke Author-email: cgohlke@uci.edu License: BSD Project-URL: Bug Tracker, https://github.com/cgohlke/tifffile/issues Project-URL: Source Code, https://github.com/cgohlke/tifffile Platform: any Classifier: Development Status :: 4 - Beta Classifier: License :: OSI Approved :: BSD License Classifier: Intended Audience :: Science/Research Classifier: Intended Audience :: Developers Classifier: Operating System :: OS Independent Classifier: Programming Language :: Python :: 3 :: Only Classifier: Programming Language :: Python :: 3.8 Classifier: Programming Language :: Python :: 3.9 Classifier: Programming Language :: Python :: 3.10 Requires-Python: >=3.8 Provides-Extra: all License-File: LICENSE Read and write TIFF files ========================= Tifffile is a Python library to (1) store numpy arrays in TIFF (Tagged Image File Format) files, and (2) read image and metadata from TIFF-like files used in bioimaging. Image and metadata can be read from TIFF, BigTIFF, OME-TIFF, STK, LSM, SGI, NIHImage, ImageJ, MicroManager, FluoView, ScanImage, SEQ, GEL, SVS, SCN, SIS, BIF, ZIF (Zoomable Image File Format), QPTIFF (QPI), NDPI, and GeoTIFF files. Image data can be read as numpy arrays or zarr arrays/groups from strips, tiles, pages (IFDs), SubIFDs, higher order series, and pyramidal levels. Numpy arrays can be written to TIFF, BigTIFF, OME-TIFF, and ImageJ hyperstack compatible files in multi-page, volumetric, pyramidal, memory-mappable, tiled, predicted, or compressed form. A subset of the TIFF specification is supported, mainly 8, 16, 32 and 64-bit integer, 16, 32 and 64-bit float, grayscale and multi-sample images. Specifically, CCITT and OJPEG compression, chroma subsampling without JPEG compression, color space transformations, samples with differing types, or IPTC, ICC, and XMP metadata are not implemented. TIFF, the Tagged Image File Format, was created by the Aldus Corporation and Adobe Systems Incorporated. BigTIFF allows for files larger than 4 GB. STK, LSM, FluoView, SGI, SEQ, GEL, QPTIFF, NDPI, SCN, SVS, ZIF, BIF, and OME-TIFF, are custom extensions defined by Molecular Devices (Universal Imaging Corporation), Carl Zeiss MicroImaging, Olympus, Silicon Graphics International, Media Cybernetics, Molecular Dynamics, PerkinElmer, Hamamatsu, Leica, ObjectivePathology, Roche Digital Pathology, and the Open Microscopy Environment consortium, respectively. For command line usage run ``python -m tifffile --help`` :Author: `Christoph Gohlke `_ :Organization: Laboratory for Fluorescence Dynamics, University of California, Irvine :License: BSD 3-Clause :Version: 2022.2.9 Requirements ------------ This release has been tested with the following requirements and dependencies (other versions may work): * `CPython 3.8.10, 3.9.10, 3.10.2, 64-bit `_ * `Numpy 1.21.5 `_ * `Imagecodecs 2021.11.20 `_ (required only for encoding or decoding LZW, JPEG, etc.) * `Matplotlib 3.4.3 `_ (required only for plotting) * `Lxml 4.7.1 `_ (required only for validating and printing XML) * `Zarr 2.11.0 `_ (required only for opening zarr storage) Revisions --------- 2022.2.9 Pass 4734 tests. Fix ValueError using multiscale ZarrStore with zarr >= 2.11.0. Raise KeyError if ZarrStore does not contain key. Limit number of warnings for missing files in multifile series. Allow to save colormap to 32-bit ImageJ files (#115). 2022.2.2 Fix TypeError when second ImageDescription tag contains non-ASCII (#112). Fix parsing IJMetadata with many IJMetadataByteCounts (#111). Detect MicroManager NDTiffv2 header (not tested). Remove cache from ZarrFileSequenceStore (use zarr.LRUStoreCache). Raise limit on maximum number of pages. Use J2K format when encoding JPEG2000 segments. Formally deprecate imsave and TiffWriter.save. Drop support for Python 3.7 and numpy < 1.19 (NEP29). 2021.11.2 Lazy-load non-essential tag values (breaking). Warn when reading from closed file. Support ImageJ 'prop' metadata type (#103). Support writing indexed ImageJ format. Fix multi-threaded access of multi-page Zarr stores with chunkmode 2. Raise error if truncate is used with compression, packints, or tile. Read STK metadata without UIC2tag. Improve log and warning messages (WIP). Improve string representation of large tag values. 2021.10.12 Revert renaming of 'file' parameter in FileSequence.asarray (breaking). Deprecate 'file' parameter in FileSequence.asarray. 2021.10.10 Disallow letters as indices in FileSequence; use categories (breaking). Do not warn of missing files in FileSequence; use files_missing property. Support predictors in ZarrTiffStore.write_fsspec. Add option to specify zarr group name in write_fsspec. Add option to specify categories for FileSequence patterns (#76). Add option to specify chunk shape and dtype for ZarrFileSequenceStore. Add option to tile ZarrFileSequenceStore and FileSequence.asarray. Add option to pass additional zattrs to Zarr stores. Detect Roche BIF files. 2021.8.30 Fix horizontal differencing with non-native byte order. Fix multi-threaded access of memory-mappable, multi-page Zarr stores (#67). 2021.8.8 Fix tag offset and valueoffset for NDPI > 4 GB (#96). 2021.7.30 Deprecate first parameter to TiffTag.overwrite (no longer required). TiffTag init API change (breaking). Detect Ventana BIF series and warn that tiles are not stitched. Enable reading PreviewImage from RAW formats (#93, #94). Work around numpy.ndarray.tofile is very slow for non-contiguous arrays. Fix issues with PackBits compression (requires imagecodecs 2021.7.30). 2021.7.2 Decode complex integer images found in SAR GeoTIFF. Support reading NDPI with JPEG-XR compression. Deprecate TiffWriter RGB auto-detection, except for RGB24/48 and RGBA32/64. 2021.6.14 Set stacklevel for deprecation warnings (#89). Fix svs_description_metadata for SVS with double header (#88, breaking). Fix reading JPEG compressed CMYK images. Support ALT_JPEG and JPEG_2000_LOSSY compression found in Bio-Formats. Log warning if TiffWriter auto-detects RGB mode (specify photometric). 2021.6.6 Fix TIFF.COMPESSOR typo (#85). Round resolution numbers that do not fit in 64-bit rationals (#81). Add support for JPEG XL compression. Add numcodecs compatible TIFF codec. Rename ZarrFileStore to ZarrFileSequenceStore (breaking). Add method to export fsspec ReferenceFileSystem from ZarrFileStore. Fix fsspec ReferenceFileSystem v1 for multifile series. Fix creating OME-TIFF with micron character in OME-XML. 2021.4.8 Fix reading OJPEG with wrong photometric or samplesperpixel tags (#75). Fix fsspec ReferenceFileSystem v1 and JPEG compression. Use TiffTagRegistry for NDPI_TAGS, EXIF_TAGS, GPS_TAGS, IOP_TAGS constants. Make TIFF.GEO_KEYS an Enum (breaking). 2021.3.31 Use JPEG restart markers as tile offsets in NDPI. Support version 1 and more codecs in fsspec ReferenceFileSystem (untested). 2021.3.17 Fix regression reading multi-file OME-TIFF with missing files (#72). Fix fsspec ReferenceFileSystem with non-native byte order (#56). 2021.3.16 TIFF is no longer a defended trademark. Add method to export fsspec ReferenceFileSystem from ZarrTiffStore (#56). 2021.3.5 Preliminary support for EER format (#68). Do not warn about unknown compression (#68). 2021.3.4 Fix reading multi-file, multi-series OME-TIFF (#67). Detect ScanImage 2021 files (#46). Shape new version ScanImage series according to metadata (breaking). Remove Description key from TiffFile.scanimage_metadata dict (breaking). Also return ScanImage version from read_scanimage_metadata (breaking). Fix docstrings. 2021.2.26 Squeeze axes of LSM series by default (breaking). Add option to preserve single dimensions when reading from series (WIP). Do not allow appending to OME-TIFF files. Fix reading STK files without name attribute in metadata. Make TIFF constants multi-thread safe and pickleable (#64). Add detection of NDTiffStorage MajorVersion to read_micromanager_metadata. Support ScanImage v4 files in read_scanimage_metadata. 2021.2.1 Fix multi-threaded access of ZarrTiffStores using same TiffFile instance. Use fallback zlib and lzma codecs with imagecodecs lite builds. Open Olympus and Panasonic RAW files for parsing, albeit not supported. Support X2 and X4 differencing found in DNG. Support reading JPEG_LOSSY compression found in DNG. 2021.1.14 Try ImageJ series if OME series fails (#54) Add option to use pages as chunks in ZarrFileStore (experimental). Fix reading from file objects with no readinto function. 2021.1.11 Fix test errors on PyPy. Fix decoding bitorder with imagecodecs >= 2021.1.11. 2021.1.8 Decode float24 using imagecodecs >= 2021.1.8. Consolidate reading of segments if possible. 2020.12.8 Fix corrupted ImageDescription in multi shaped series if buffer too small. Fix libtiff warning that ImageDescription contains null byte in value. Fix reading invalid files using JPEG compression with palette colorspace. 2020.12.4 Fix reading some JPEG compressed CFA images. Make index of SubIFDs a tuple. Pass through FileSequence.imread arguments in imread. Do not apply regex flags to FileSequence axes patterns (breaking). 2020.11.26 Add option to pass axes metadata to ImageJ writer. Pad incomplete tiles passed to TiffWriter.write (#38). Split TiffTag constructor (breaking). Change TiffTag.dtype to TIFF.DATATYPES (breaking). Add TiffTag.overwrite method. Add script to change ImageDescription in files. Add TiffWriter.overwrite_description method (WIP). 2020.11.18 Support writing SEPARATED color space (#37). Use imagecodecs.deflate codec if available. Fix SCN and NDPI series with Z dimensions. Add TiffReader alias for TiffFile. TiffPage.is_volumetric returns True if ImageDepth > 1. Zarr store getitem returns numpy arrays instead of bytes. 2020.10.1 Formally deprecate unused TiffFile parameters (scikit-image #4996). 2020.9.30 Allow to pass additional arguments to compression codecs. Deprecate TiffWriter.save method (use TiffWriter.write). Deprecate TiffWriter.save compress parameter (use compression). Remove multifile parameter from TiffFile (breaking). Pass all is_flag arguments from imread to TiffFile. Do not byte-swap JPEG2000, WEBP, PNG, JPEGXR segments in TiffPage.decode. 2020.9.29 Fix reading files produced by ScanImage > 2015 (#29). 2020.9.28 Derive ZarrStore from MutableMapping. Support zero shape ZarrTiffStore. Fix ZarrFileStore with non-TIFF files. Fix ZarrFileStore with missing files. Cache one chunk in ZarrFileStore. Keep track of already opened files in FileCache. Change parse_filenames function to return zero-based indices. Remove reopen parameter from asarray (breaking). Rename FileSequence.fromfile to imread (breaking). 2020.9.22 Add experimental zarr storage interface (WIP). Remove unused first dimension from TiffPage.shaped (breaking). Move reading of STK planes to series interface (breaking). Always use virtual frames for ScanImage files. Use DimensionOrder to determine axes order in OmeXml. Enable writing striped volumetric images. Keep complete dataoffsets and databytecounts for TiffFrames. Return full size tiles from Tiffpage.segments. Rename TiffPage.is_sgi property to is_volumetric (breaking). Rename TiffPageSeries.is_pyramid to is_pyramidal (breaking). Fix TypeError when passing jpegtables to non-JPEG decode method (#25). 2020.9.3 Do not write contiguous series by default (breaking). Allow to write to SubIFDs (WIP). Fix writing F-contiguous numpy arrays (#24). 2020.8.25 Do not convert EPICS timeStamp to datetime object. Read incompletely written Micro-Manager image file stack header (#23). Remove tag 51123 values from TiffFile.micromanager_metadata (breaking). 2020.8.13 Use tifffile metadata over OME and ImageJ for TiffFile.series (breaking). Fix writing iterable of pages with compression (#20). Expand error checking of TiffWriter data, dtype, shape, and tile arguments. 2020.7.24 Parse nested OmeXml metadata argument (WIP). Do not lazy load TiffFrame JPEGTables. Fix conditionally skipping some tests. 2020.7.22 Do not auto-enable OME-TIFF if description is passed to TiffWriter.save. Raise error writing empty bilevel or tiled images. Allow to write tiled bilevel images. Allow to write multi-page TIFF from iterable of single page images (WIP). Add function to validate OME-XML. Correct Philips slide width and length. 2020.7.17 Initial support for writing OME-TIFF (WIP). Return samples as separate dimension in OME series (breaking). Fix modulo dimensions for multiple OME series. Fix some test errors on big endian systems (#18). Fix BytesWarning. Allow to pass TIFF.PREDICTOR values to TiffWriter.save. 2020.7.4 Deprecate support for Python 3.6 (NEP 29). Move pyramidal subresolution series to TiffPageSeries.levels (breaking). Add parser for SVS, SCN, NDPI, and QPI pyramidal series. Read single-file OME-TIFF pyramids. Read NDPI files > 4 GB (#15). Include SubIFDs in generic series. Preliminary support for writing packed integer arrays (#11, WIP). Read more LSM info subrecords. Fix missing ReferenceBlackWhite tag for YCbCr photometrics. Fix reading lossless JPEG compressed DNG files. 2020.6.3 ... Refer to the CHANGES file for older revisions. Notes ----- The API is not stable yet and might change between revisions. Tested on little-endian platforms only. Python 32-bit versions are deprecated. Python <= 3.7 are no longer supported. Tifffile relies on the `imagecodecs `_ package for encoding and decoding LZW, JPEG, and other compressed image segments. Several TIFF-like formats do not strictly adhere to the TIFF6 specification, some of which allow file or data sizes to exceed the 4 GB limit: * *BigTIFF* is identified by version number 43 and uses different file header, IFD, and tag structures with 64-bit offsets. It adds more data types. Tifffile can read and write BigTIFF files. * *ImageJ hyperstacks* store all image data, which may exceed 4 GB, contiguously after the first IFD. Files > 4 GB contain one IFD only. The size (shape and dtype) of the up to 6-dimensional image data can be determined from the ImageDescription tag of the first IFD, which is Latin-1 encoded. Tifffile can read and write ImageJ hyperstacks. * *OME-TIFF* stores up to 8-dimensional data in one or multiple TIFF of BigTIFF files. The 8-bit UTF-8 encoded OME-XML metadata found in the ImageDescription tag of the first IFD defines the position of TIFF IFDs in the high dimensional data. Tifffile can read OME-TIFF files, except when the OME-XML metadata are stored in a separate file. Tifffile can write numpy arrays to single-file OME-TIFF. * *LSM* stores all IFDs below 4 GB but wraps around 32-bit StripOffsets. The StripOffsets of each series and position require separate unwrapping. The StripByteCounts tag contains the number of bytes for the uncompressed data. Tifffile can read large LSM files. * *STK* (MetaMorph Stack) contains additional image planes stored contiguously after the image data of the first page. The total number of planes is equal to the counts of the UIC2tag. Tifffile can read STK files. * *Hamamatsu NDPI* uses some 64-bit offsets in the file header, IFD, and tag structures. Tag values/offsets can be corrected using high bits stored after IFD structures. Tifffile can read NDPI files > 4 GB. JPEG compressed segments with dimensions >65530 or missing restart markers are not decodable with libjpeg. Tifffile works around this limitation by separately decoding the MCUs between restart markers. BitsPerSample, SamplesPerPixel, and PhotometricInterpretation tags may contain wrong values, which can be corrected using the value of tag 65441. * *Philips TIFF* slides store wrong ImageWidth and ImageLength tag values for tiled pages. The values can be corrected using the DICOM_PIXEL_SPACING attributes of the XML formatted description of the first page. Tifffile can read Philips slides. * *Ventana/Roche BIF* slides store tiles and metadata in a BigTIFF container. Tiles may overlap and require stitching based on the TileJointInfo elements in the XMP tag. Volumetric scans are stored using the ImageDepth extension. Tifffile can read BIF and decode individual tiles, but does not perform stitching. * *ScanImage* optionally allows corrupted non-BigTIFF files > 2 GB. The values of StripOffsets and StripByteCounts can be recovered using the constant differences of the offsets of IFD and tag values throughout the file. Tifffile can read such files if the image data are stored contiguously in each page. * *GeoTIFF* sparse files allow strip or tile offsets and byte counts to be 0. Such segments are implicitly set to 0 or the NODATA value on reading. Tifffile can read GeoTIFF sparse files. Other libraries for reading scientific TIFF files from Python: * `Python-bioformats `_ * `Imread `_ * `GDAL `_ * `OpenSlide-python `_ * `Slideio `_ * `PyLibTiff `_ * `SimpleITK `_ * `PyLSM `_ * `PyMca.TiffIO.py `_ (same as fabio.TiffIO) * `BioImageXD.Readers `_ * `CellCognition `_ * `pymimage `_ * `pytiff `_ * `ScanImageTiffReaderPython `_ * `bigtiff `_ * `Large Image `_ * `tiffslide `_ * `opentile `_ Some libraries are using tifffile to write OME-TIFF files: * `Zeiss Apeer OME-TIFF library `_ * `Allen Institute for Cell Science imageio `_ * `xtiff `_ Other tools for inspecting and manipulating TIFF files: * `tifftools `_ * `Tyf `_ References ---------- * TIFF 6.0 Specification and Supplements. Adobe Systems Incorporated. https://www.adobe.io/open/standards/TIFF.html * TIFF File Format FAQ. https://www.awaresystems.be/imaging/tiff/faq.html * The BigTIFF File Format. https://www.awaresystems.be/imaging/tiff/bigtiff.html * MetaMorph Stack (STK) Image File Format. http://mdc.custhelp.com/app/answers/detail/a_id/18862 * Image File Format Description LSM 5/7 Release 6.0 (ZEN 2010). Carl Zeiss MicroImaging GmbH. BioSciences. May 10, 2011 * The OME-TIFF format. https://docs.openmicroscopy.org/ome-model/latest/ * UltraQuant(r) Version 6.0 for Windows Start-Up Guide. http://www.ultralum.com/images%20ultralum/pdf/UQStart%20Up%20Guide.pdf * Micro-Manager File Formats. https://micro-manager.org/wiki/Micro-Manager_File_Formats * ScanImage BigTiff Specification - ScanImage 2019. http://scanimage.vidriotechnologies.com/display/SI2019/ ScanImage+BigTiff+Specification * ZIF, the Zoomable Image File format. http://zif.photo/ * GeoTIFF File Format https://gdal.org/drivers/raster/gtiff.html * Cloud optimized GeoTIFF. https://github.com/cogeotiff/cog-spec/blob/master/spec.md * Tags for TIFF and Related Specifications. Digital Preservation. https://www.loc.gov/preservation/digital/formats/content/tiff_tags.shtml * CIPA DC-008-2016: Exchangeable image file format for digital still cameras: Exif Version 2.31. http://www.cipa.jp/std/documents/e/DC-008-Translation-2016-E.pdf * The EER (Electron Event Representation) file format. https://github.com/fei-company/EerReaderLib * Digital Negative (DNG) Specification. Version 1.5.0.0, June 2012. https://www.adobe.com/content/dam/acom/en/products/photoshop/pdfs/ dng_spec_1.5.0.0.pdf * Roche Digital Pathology. BIF image file format for digital pathology. https://diagnostics.roche.com/content/dam/diagnostics/Blueprint/en/pdf/rmd/ Roche-Digital-Pathology-BIF-Whitepaper.pdf Examples -------- Write a numpy array to a single-page RGB TIFF file: >>> data = numpy.random.randint(0, 255, (256, 256, 3), 'uint8') >>> imwrite('temp.tif', data, photometric='rgb') Read the image from the TIFF file as numpy array: >>> image = imread('temp.tif') >>> image.shape (256, 256, 3) Write a 3D numpy array to a multi-page, 16-bit grayscale TIFF file: >>> data = numpy.random.randint(0, 2**12, (64, 301, 219), 'uint16') >>> imwrite('temp.tif', data, photometric='minisblack') Read the whole image stack from the TIFF file as numpy array: >>> image_stack = imread('temp.tif') >>> image_stack.shape (64, 301, 219) >>> image_stack.dtype dtype('uint16') Read the image from the first page in the TIFF file as numpy array: >>> image = imread('temp.tif', key=0) >>> image.shape (301, 219) Read images from a selected range of pages: >>> images = imread('temp.tif', key=range(4, 40, 2)) >>> images.shape (18, 301, 219) Iterate over all pages in the TIFF file and successively read images: >>> with TiffFile('temp.tif') as tif: ... for page in tif.pages: ... image = page.asarray() Get information about the image stack in the TIFF file without reading the image data: >>> tif = TiffFile('temp.tif') >>> len(tif.pages) # number of pages in the file 64 >>> page = tif.pages[0] # get shape and dtype of the image in the first page >>> page.shape (301, 219) >>> page.dtype dtype('uint16') >>> page.axes 'YX' >>> series = tif.series[0] # get shape and dtype of the first image series >>> series.shape (64, 301, 219) >>> series.dtype dtype('uint16') >>> series.axes 'QYX' >>> tif.close() Inspect the "XResolution" tag from the first page in the TIFF file: >>> with TiffFile('temp.tif') as tif: ... tag = tif.pages[0].tags['XResolution'] >>> tag.value (1, 1) >>> tag.name 'XResolution' >>> tag.code 282 >>> tag.count 1 >>> tag.dtype Iterate over all tags in the TIFF file: >>> with TiffFile('temp.tif') as tif: ... for page in tif.pages: ... for tag in page.tags: ... tag_name, tag_value = tag.name, tag.value Overwrite the value of an existing tag, e.g. XResolution: >>> with TiffFile('temp.tif', mode='r+b') as tif: ... _ = tif.pages[0].tags['XResolution'].overwrite((96000, 1000)) Write a floating-point ndarray and metadata using BigTIFF format, tiling, compression, and planar storage: >>> data = numpy.random.rand(2, 5, 3, 301, 219).astype('float32') >>> imwrite('temp.tif', data, bigtiff=True, photometric='minisblack', ... compression='zlib', planarconfig='separate', tile=(32, 32), ... metadata={'axes': 'TZCYX'}) Write a 10 fps time series of volumes with xyz voxel size 2.6755x2.6755x3.9474 micron^3 to an ImageJ hyperstack formatted TIFF file: >>> volume = numpy.random.randn(6, 57, 256, 256).astype('float32') >>> imwrite('temp.tif', volume, imagej=True, resolution=(1./2.6755, 1./2.6755), ... metadata={'spacing': 3.947368, 'unit': 'um', 'finterval': 1/10, ... 'axes': 'TZYX'}) Read the volume and metadata from the ImageJ file: >>> with TiffFile('temp.tif') as tif: ... volume = tif.asarray() ... axes = tif.series[0].axes ... imagej_metadata = tif.imagej_metadata >>> volume.shape (6, 57, 256, 256) >>> axes 'TZYX' >>> imagej_metadata['slices'] 57 >>> imagej_metadata['frames'] 6 Create a TIFF file containing an empty image and write to the memory-mapped numpy array: >>> memmap_image = memmap( ... 'temp.tif', shape=(256, 256, 3), dtype='float32', photometric='rgb' ... ) >>> type(memmap_image) >>> memmap_image[255, 255, 1] = 1.0 >>> memmap_image.flush() >>> del memmap_image Memory-map and read contiguous image data in the TIFF file: >>> memmap_image = memmap('temp.tif') >>> memmap_image.shape (256, 256, 3) >>> memmap_image[255, 255, 1] 1.0 >>> del memmap_image Write two numpy arrays to a multi-series TIFF file: >>> series0 = numpy.random.randint(0, 255, (32, 32, 3), 'uint8') >>> series1 = numpy.random.randint(0, 1023, (4, 256, 256), 'uint16') >>> with TiffWriter('temp.tif') as tif: ... tif.write(series0, photometric='rgb') ... tif.write(series1, photometric='minisblack') Read the second image series from the TIFF file: >>> series1 = imread('temp.tif', series=1) >>> series1.shape (4, 256, 256) Successively write the frames of one contiguous series to a TIFF file: >>> data = numpy.random.randint(0, 255, (30, 301, 219), 'uint8') >>> with TiffWriter('temp.tif') as tif: ... for frame in data: ... tif.write(frame, contiguous=True) Append an image series to the existing TIFF file: >>> data = numpy.random.randint(0, 255, (301, 219, 3), 'uint8') >>> imwrite('temp.tif', data, photometric='rgb', append=True) Create a TIFF file from a generator of tiles: >>> data = numpy.random.randint(0, 2**12, (31, 33, 3), 'uint16') >>> def tiles(data, tileshape): ... for y in range(0, data.shape[0], tileshape[0]): ... for x in range(0, data.shape[1], tileshape[1]): ... yield data[y : y + tileshape[0], x : x + tileshape[1]] >>> imwrite('temp.tif', tiles(data, (16, 16)), tile=(16, 16), ... shape=data.shape, dtype=data.dtype, photometric='rgb') Write two numpy arrays to a multi-series OME-TIFF file: >>> series0 = numpy.random.randint(0, 255, (32, 32, 3), 'uint8') >>> series1 = numpy.random.randint(0, 1023, (4, 256, 256), 'uint16') >>> with TiffWriter('temp.ome.tif') as tif: ... tif.write(series0, photometric='rgb') ... tif.write(series1, photometric='minisblack', ... metadata={'axes': 'ZYX', 'SignificantBits': 10, ... 'Plane': {'PositionZ': [0.0, 1.0, 2.0, 3.0]}}) Write a tiled, multi-resolution, pyramidal, OME-TIFF file using JPEG compression. Sub-resolution images are written to SubIFDs: >>> data = numpy.arange(1024*1024*3, dtype='uint8').reshape((1024, 1024, 3)) >>> with TiffWriter('temp.ome.tif', bigtiff=True) as tif: ... options = dict(tile=(256, 256), photometric='rgb', compression='jpeg') ... tif.write(data, subifds=2, **options) ... # save pyramid levels to the two subifds ... # in production use resampling to generate sub-resolutions ... tif.write(data[::2, ::2], subfiletype=1, **options) ... tif.write(data[::4, ::4], subfiletype=1, **options) Access the image levels in the pyramidal OME-TIFF file: >>> baseimage = imread('temp.ome.tif') >>> second_level = imread('temp.ome.tif', series=0, level=1) >>> with TiffFile('temp.ome.tif') as tif: ... baseimage = tif.series[0].asarray() ... second_level = tif.series[0].levels[1].asarray() Iterate over and decode single JPEG compressed tiles in the TIFF file: >>> with TiffFile('temp.ome.tif') as tif: ... fh = tif.filehandle ... for page in tif.pages: ... for index, (offset, bytecount) in enumerate( ... zip(page.dataoffsets, page.databytecounts) ... ): ... _ = fh.seek(offset) ... data = fh.read(bytecount) ... tile, indices, shape = page.decode( ... data, index, jpegtables=page.jpegtables ... ) Use zarr to read parts of the tiled, pyramidal images in the TIFF file: >>> import zarr >>> store = imread('temp.ome.tif', aszarr=True) >>> z = zarr.open(store, mode='r') >>> z >>> z[0] # base layer >>> z[0][256:512, 512:768].shape # read a tile from the base layer (256, 256, 3) >>> store.close() Read images from a sequence of TIFF files as numpy array: >>> imwrite('temp_C001T001.tif', numpy.random.rand(64, 64)) >>> imwrite('temp_C001T002.tif', numpy.random.rand(64, 64)) >>> image_sequence = imread(['temp_C001T001.tif', 'temp_C001T002.tif']) >>> image_sequence.shape (2, 64, 64) >>> image_sequence.dtype dtype('float64') Read an image stack from a series of TIFF files with a file name pattern as numpy or zarr arrays: >>> image_sequence = TiffSequence('temp_C0*.tif', pattern=r'_(C)(\d+)(T)(\d+)') >>> image_sequence.shape (1, 2) >>> image_sequence.axes 'CT' >>> data = image_sequence.asarray() >>> data.shape (1, 2, 64, 64) >>> with image_sequence.aszarr() as store: ... zarr.open(store, mode='r') >>> image_sequence.close() Write the zarr store to a fsspec ReferenceFileSystem in JSON format: >>> with image_sequence.aszarr() as store: ... store.write_fsspec('temp.json', url='file://') Open the fsspec ReferenceFileSystem as a zarr array: >>> import fsspec >>> import tifffile.numcodecs >>> tifffile.numcodecs.register_codec() >>> mapper = fsspec.get_mapper( ... 'reference://', fo='temp.json', target_protocol='file') >>> zarr.open(mapper, mode='r') ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1644445976.0 tifffile-2022.2.9/tifffile.egg-info/SOURCES.txt0000666000000000000000000000100000000000000015570 0ustar00ACKNOWLEDGEMENTS.rst CHANGES.rst LICENSE MANIFEST.in README.rst setup.py examples/earthbigdata.py tests/conftest.py tests/test_tifffile.py tifffile/__init__.py tifffile/__main__.py tifffile/lsm2bin.py tifffile/numcodecs.py tifffile/tiff2fsspec.py tifffile/tiffcomment.py tifffile/tifffile.py tifffile/tifffile_geodb.py tifffile.egg-info/PKG-INFO tifffile.egg-info/SOURCES.txt tifffile.egg-info/dependency_links.txt tifffile.egg-info/entry_points.txt tifffile.egg-info/requires.txt tifffile.egg-info/top_level.txt././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1644445975.0 tifffile-2022.2.9/tifffile.egg-info/dependency_links.txt0000666000000000000000000000000100000000000017763 0ustar00 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1644445975.0 tifffile-2022.2.9/tifffile.egg-info/entry_points.txt0000666000000000000000000000023400000000000017212 0ustar00[console_scripts] lsm2bin = tifffile.lsm2bin:main tiff2fsspec = tifffile.tiff2fsspec:main tiffcomment = tifffile.tiffcomment:main tifffile = tifffile:main ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1644445975.0 tifffile-2022.2.9/tifffile.egg-info/requires.txt0000666000000000000000000000010200000000000016306 0ustar00numpy>=1.19.2 [all] imagecodecs>=2021.11.20 matplotlib>=3.3 lxml ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1644445975.0 tifffile-2022.2.9/tifffile.egg-info/top_level.txt0000666000000000000000000000001100000000000016437 0ustar00tifffile