pax_global_header00006660000000000000000000000064125660631520014520gustar00rootroot0000000000000052 comment=34c95537fdba3b89deb27532ecd6713c68e8e5d6 tifffile-2015.08.17/000077500000000000000000000000001256606315200137155ustar00rootroot00000000000000tifffile-2015.08.17/getorig.sh000077500000000000000000000013701256606315200157150ustar00rootroot00000000000000#!/bin/sh VERSIONOLD=`grep "^:Version" tifffile.py` #wget -c http://www.lfd.uci.edu/~gohlke/code/tifffile.py.html curl -s -o tifffile.py.html http://www.lfd.uci.edu/~gohlke/code/tifffile.py.html #wget -c http://www.lfd.uci.edu/~gohlke/code/tifffile.c.html curl -s -o tifffile.c.html http://www.lfd.uci.edu/~gohlke/code/tifffile.c.html links -dump tifffile.py.html > tifffile.py sed -i -e 's/^ //g' tifffile.py links -dump tifffile.c.html > tifffile.c sed -i -e 's/^ //g' tifffile.c rm *.html VERSION=`grep "^:Version" tifffile.py` echo $VERSIONOLD echo $VERSION TAG=`echo $VERSION | cut -d' ' -f2` if [ "$VERSION" != "$VERSIONOLD" ]; then echo "Different" echo "TAG: $TAG" git commit -a -m"$VERSION" git tag $TAG git push --all git push --tags fi tifffile-2015.08.17/tifffile.c000066400000000000000000000712771256606315200156670ustar00rootroot00000000000000/* tifffile.c A Python C extension module for decoding PackBits and LZW encoded TIFF data. Refer to the tifffile.py module for documentation and tests. :Author: `Christoph Gohlke `_ :Organization: Laboratory for Fluorescence Dynamics, University of California, Irvine :Version: 2015.08.17 Requirements ------------ * `CPython 2.7 or 3.4 `_ * `Numpy 1.9.2 `_ * A Python distutils compatible C compiler (build) Install ------- Use this Python distutils setup script to build the extension module:: # setup.py # Usage: ``python setup.py build_ext --inplace`` from distutils.core import setup, Extension import numpy setup(name='_tifffile', ext_modules=[Extension('_tifffile', ['tifffile.c'], include_dirs=[numpy.get_include()])]) License ------- Copyright (c) 2008-2015, Christoph Gohlke Copyright (c) 2008-2015, The Regents of the University of California Produced at the Laboratory for Fluorescence Dynamics All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holders nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define _VERSION_ "2015.08.17" #define WIN32_LEAN_AND_MEAN #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION #include "Python.h" #include "string.h" #include "numpy/arrayobject.h" /* little endian by default */ #ifndef MSB #define MSB 1 #endif #if MSB #define LSB 0 #define BOC '<' #else #define LSB 1 #define BOC '>' #endif #define NO_ERROR 0 #define VALUE_ERROR -1 #if defined(_MSC_VER) && _MSC_VER < 1600 typedef unsigned __int8 uint8_t; typedef unsigned __int16 uint16_t; typedef unsigned __int32 uint32_t; typedef unsigned __int64 uint64_t; #ifdef _WIN64 typedef __int64 ssize_t; typedef signed __int64 intptr_t; typedef unsigned __int64 uintptr_t; #else typedef int ssize_t; typedef _W64 signed int intptr_t; typedef _W64 unsigned int uintptr_t; #endif #else /* non MS compilers */ #include #include #endif #ifndef SSIZE_MAX #ifdef _WIN64 #define SSIZE_MAX (9223372036854775808L) #else #define SSIZE_MAX (2147483648) #endif #endif #define SWAP2BYTES(x) \ ((((x) >> 8) & 0x00FF) | (((x) & 0x00FF) << 8)) #define SWAP4BYTES(x) \ ((((x) >> 24) & 0x00FF) | (((x)&0x00FF) << 24) | \ (((x) >> 8 ) & 0xFF00) | (((x)&0xFF00) << 8)) #define SWAP8BYTES(x) \ ((((x) >> 56) & 0x00000000000000FF) | (((x) >> 40) & 0x000000000000FF00) | \ (((x) >> 24) & 0x0000000000FF0000) | (((x) >> 8) & 0x00000000FF000000) | \ (((x) << 8) & 0x000000FF00000000) | (((x) << 24) & 0x0000FF0000000000) | \ (((x) << 40) & 0x00FF000000000000) | (((x) << 56) & 0xFF00000000000000)) struct BYTE_STRING { unsigned int ref; /* reference count */ unsigned int len; /* length of string */ char *str; /* pointer to bytes */ }; typedef union { uint8_t b[2]; uint16_t i; } u_uint16; typedef union { uint8_t b[4]; uint32_t i; } u_uint32; typedef union { uint8_t b[8]; uint64_t i; } u_uint64; /*****************************************************************************/ /* C functions */ /* Return mask for itemsize bits */ unsigned char bitmask(const int itemsize) { unsigned char result = 0; unsigned char power = 1; int i; for (i = 0; i < itemsize; i++) { result += power; power *= 2; } return result << (8 - itemsize); } /** Unpack sequence of tigthly packed 1-32 bit integers. Native byte order will be returned. Input data array should be padded to the next 16, 32 or 64-bit boundary if itemsize not in (1, 2, 4, 8, 16, 24, 32, 64). */ int unpackbits( unsigned char *data, const ssize_t size, /** size of data in bytes */ const int itemsize, /** number of bits in integer */ ssize_t numitems, /** number of items to unpack */ unsigned char *result /** buffer to store unpacked items */ ) { ssize_t i, j, k, storagesize; unsigned char value; /* Input validation is done in wrapper function */ storagesize = (ssize_t)(ceil(itemsize / 8.0)); storagesize = storagesize < 3 ? storagesize : storagesize > 4 ? 8 : 4; switch (itemsize) { case 8: case 16: case 32: case 64: memcpy(result, data, numitems*storagesize); return NO_ERROR; case 1: for (i = 0, j = 0; i < numitems/8; i++) { value = data[i]; result[j++] = (value & (unsigned char)(128)) >> 7; result[j++] = (value & (unsigned char)(64)) >> 6; result[j++] = (value & (unsigned char)(32)) >> 5; result[j++] = (value & (unsigned char)(16)) >> 4; result[j++] = (value & (unsigned char)(8)) >> 3; result[j++] = (value & (unsigned char)(4)) >> 2; result[j++] = (value & (unsigned char)(2)) >> 1; result[j++] = (value & (unsigned char)(1)); } if (numitems % 8) { value = data[i]; switch (numitems % 8) { case 7: result[j+6] = (value & (unsigned char)(2)) >> 1; case 6: result[j+5] = (value & (unsigned char)(4)) >> 2; case 5: result[j+4] = (value & (unsigned char)(8)) >> 3; case 4: result[j+3] = (value & (unsigned char)(16)) >> 4; case 3: result[j+2] = (value & (unsigned char)(32)) >> 5; case 2: result[j+1] = (value & (unsigned char)(64)) >> 6; case 1: result[j] = (value & (unsigned char)(128)) >> 7; } } return NO_ERROR; case 2: for (i = 0, j = 0; i < numitems/4; i++) { value = data[i]; result[j++] = (value & (unsigned char)(192)) >> 6; result[j++] = (value & (unsigned char)(48)) >> 4; result[j++] = (value & (unsigned char)(12)) >> 2; result[j++] = (value & (unsigned char)(3)); } if (numitems % 4) { value = data[i]; switch (numitems % 4) { case 3: result[j+2] = (value & (unsigned char)(12)) >> 2; case 2: result[j+1] = (value & (unsigned char)(48)) >> 4; case 1: result[j] = (value & (unsigned char)(192)) >> 6; } } return NO_ERROR; case 4: for (i = 0, j = 0; i < numitems/2; i++) { value = data[i]; result[j++] = (value & (unsigned char)(240)) >> 4; result[j++] = (value & (unsigned char)(15)); } if (numitems % 2) { value = data[i]; result[j] = (value & (unsigned char)(240)) >> 4; } return NO_ERROR; case 24: j = k = 0; for (i = 0; i < numitems; i++) { result[j++] = 0; result[j++] = data[k++]; result[j++] = data[k++]; result[j++] = data[k++]; } return NO_ERROR; } /* 3, 5, 6, 7 */ if (itemsize < 8) { int shr = 16; u_uint16 value, mask, tmp; j = k = 0; value.b[MSB] = data[j++]; value.b[LSB] = data[j++]; mask.b[MSB] = bitmask(itemsize); mask.b[LSB] = 0; for (i = 0; i < numitems; i++) { shr -= itemsize; tmp.i = (value.i & mask.i) >> shr; result[k++] = tmp.b[LSB]; if (shr < itemsize) { value.b[MSB] = value.b[LSB]; value.b[LSB] = data[j++]; mask.i <<= 8 - itemsize; shr += 8; } else { mask.i >>= itemsize; } } return NO_ERROR; } /* 9, 10, 11, 12, 13, 14, 15 */ if (itemsize < 16) { int shr = 32; u_uint32 value, mask, tmp; mask.i = 0; j = k = 0; #if MSB for (i = 3; i >= 0; i--) { value.b[i] = data[j++]; } mask.b[3] = 0xFF; mask.b[2] = bitmask(itemsize-8); for (i = 0; i < numitems; i++) { shr -= itemsize; tmp.i = (value.i & mask.i) >> shr; result[k++] = tmp.b[0]; /* swap bytes */ result[k++] = tmp.b[1]; if (shr < itemsize) { value.b[3] = value.b[1]; value.b[2] = value.b[0]; value.b[1] = data[j++]; value.b[0] = data[j++]; mask.i <<= 16 - itemsize; shr += 16; } else { mask.i >>= itemsize; } } #else /* not implemented */ #endif return NO_ERROR; } /* 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31 */ if (itemsize < 32) { int shr = 64; u_uint64 value, mask, tmp; mask.i = 0; j = k = 0; #if MSB for (i = 7; i >= 0; i--) { value.b[i] = data[j++]; } mask.b[7] = 0xFF; mask.b[6] = 0xFF; mask.b[5] = itemsize > 23 ? 0xFF : bitmask(itemsize-16); mask.b[4] = itemsize < 24 ? 0x00 : bitmask(itemsize-24); for (i = 0; i < numitems; i++) { shr -= itemsize; tmp.i = (value.i & mask.i) >> shr; result[k++] = tmp.b[0]; /* swap bytes */ result[k++] = tmp.b[1]; result[k++] = tmp.b[2]; result[k++] = tmp.b[3]; if (shr < itemsize) { value.b[7] = value.b[3]; value.b[6] = value.b[2]; value.b[5] = value.b[1]; value.b[4] = value.b[0]; value.b[3] = data[j++]; value.b[2] = data[j++]; value.b[1] = data[j++]; value.b[0] = data[j++]; mask.i <<= 32 - itemsize; shr += 32; } else { mask.i >>= itemsize; } } #else /* Not implemented */ #endif return NO_ERROR; } return VALUE_ERROR; } /*****************************************************************************/ /* Python functions */ /** Unpack tightly packed integers. */ char py_unpackints_doc[] = "Unpack groups of bits into numpy array."; static PyObject* py_unpackints(PyObject *obj, PyObject *args, PyObject *kwds) { PyObject *byteobj = NULL; PyArrayObject *result = NULL; PyArray_Descr *dtype = NULL; char *encoded = NULL; char *decoded = NULL; Py_ssize_t encoded_len = 0; Py_ssize_t decoded_len = 0; Py_ssize_t runlen = 0; Py_ssize_t i; int storagesize, bytesize; int itemsize = 0; int skipbits = 0; static char *kwlist[] = {"data", "dtype", "itemsize", "runlen", NULL}; if (!PyArg_ParseTupleAndKeywords(args, kwds, "OO&i|i", kwlist, &byteobj, PyArray_DescrConverter, &dtype, &itemsize, &runlen)) return NULL; Py_INCREF(byteobj); if (((itemsize < 1) || (itemsize > 32)) && (itemsize != 64)) { PyErr_Format(PyExc_ValueError, "itemsize out of range"); goto _fail; } if (!PyBytes_Check(byteobj)) { PyErr_Format(PyExc_TypeError, "expected byte string as input"); goto _fail; } encoded = PyBytes_AS_STRING(byteobj); encoded_len = PyBytes_GET_SIZE(byteobj); bytesize = (int)ceil(itemsize / 8.0); storagesize = bytesize < 3 ? bytesize : bytesize > 4 ? 8 : 4; if ((encoded_len < bytesize) || (encoded_len > SSIZE_MAX / storagesize)) { PyErr_Format(PyExc_ValueError, "data size out of range"); goto _fail; } if (dtype->elsize != storagesize) { PyErr_Format(PyExc_TypeError, "dtype.elsize doesn't fit itemsize"); goto _fail; } if (runlen == 0) { runlen = (Py_ssize_t)(((uint64_t)encoded_len*8) / (uint64_t)itemsize); } skipbits = (Py_ssize_t)(((uint64_t)runlen * (uint64_t)itemsize) % 8); if (skipbits > 0) { skipbits = 8 - skipbits; } decoded_len = (Py_ssize_t)((uint64_t)runlen * (((uint64_t)encoded_len*8) / ((uint64_t)runlen*(uint64_t)itemsize + (uint64_t)skipbits))); result = (PyArrayObject *)PyArray_SimpleNew(1, &decoded_len, dtype->type_num); if (result == NULL) { PyErr_Format(PyExc_MemoryError, "unable to allocate output array"); goto _fail; } decoded = (char *)PyArray_DATA(result); for (i = 0; i < decoded_len; i+=runlen) { if (NO_ERROR != unpackbits((unsigned char *) encoded, (ssize_t) encoded_len, (int) itemsize, (ssize_t) runlen, (unsigned char *) decoded)) { PyErr_Format(PyExc_ValueError, "unpackbits() failed"); goto _fail; } encoded += (Py_ssize_t)(((uint64_t)runlen * (uint64_t)itemsize + (uint64_t)skipbits) / 8); decoded += runlen * storagesize; } if ((dtype->byteorder != BOC) && (itemsize % 8 == 0)) { switch (dtype->elsize) { case 2: { uint16_t *d = (uint16_t *)PyArray_DATA(result); for (i = 0; i < PyArray_SIZE(result); i++) { *d = SWAP2BYTES(*d); d++; } break; } case 4: { uint32_t *d = (uint32_t *)PyArray_DATA(result); for (i = 0; i < PyArray_SIZE(result); i++) { *d = SWAP4BYTES(*d); d++; } break; } case 8: { uint64_t *d = (uint64_t *)PyArray_DATA(result); for (i = 0; i < PyArray_SIZE(result); i++) { *d = SWAP8BYTES(*d); d++; } break; } } } Py_DECREF(byteobj); Py_DECREF(dtype); return PyArray_Return(result); _fail: Py_XDECREF(byteobj); Py_XDECREF(result); Py_XDECREF(dtype); return NULL; } /** Decode TIFF PackBits encoded string. */ char py_decodepackbits_doc[] = "Return TIFF PackBits decoded string."; static PyObject * py_decodepackbits(PyObject *obj, PyObject *args) { int n; char e; char *decoded = NULL; char *encoded = NULL; char *encoded_end = NULL; char *encoded_pos = NULL; unsigned int encoded_len; unsigned int decoded_len; PyObject *byteobj = NULL; PyObject *result = NULL; if (!PyArg_ParseTuple(args, "O", &byteobj)) return NULL; if (!PyBytes_Check(byteobj)) { PyErr_Format(PyExc_TypeError, "expected byte string as input"); goto _fail; } Py_INCREF(byteobj); encoded = PyBytes_AS_STRING(byteobj); encoded_len = (unsigned int)PyBytes_GET_SIZE(byteobj); /* release GIL: byte/string objects are immutable */ Py_BEGIN_ALLOW_THREADS /* determine size of decoded string */ encoded_pos = encoded; encoded_end = encoded + encoded_len; decoded_len = 0; while (encoded_pos < encoded_end) { n = (int)*encoded_pos++; if (n >= 0) { n++; if (encoded_pos+n > encoded_end) n = (int)(encoded_end - encoded_pos); encoded_pos += n; decoded_len += n; } else if (n > -128) { encoded_pos++; decoded_len += 1-n; } } Py_END_ALLOW_THREADS result = PyBytes_FromStringAndSize(0, decoded_len); if (result == NULL) { PyErr_Format(PyExc_MemoryError, "failed to allocate decoded string"); goto _fail; } decoded = PyBytes_AS_STRING(result); Py_BEGIN_ALLOW_THREADS /* decode string */ encoded_end = encoded + encoded_len; while (encoded < encoded_end) { n = (int)*encoded++; if (n >= 0) { n++; if (encoded+n > encoded_end) n = (int)(encoded_end - encoded); /* memmove(decoded, encoded, n); decoded += n; encoded += n; */ while (n--) *decoded++ = *encoded++; } else if (n > -128) { n = 1 - n; e = *encoded++; /* memset(decoded, e, n); decoded += n; */ while (n--) *decoded++ = e; } } Py_END_ALLOW_THREADS Py_DECREF(byteobj); return result; _fail: Py_XDECREF(byteobj); Py_XDECREF(result); return NULL; } /** Decode TIFF LZW encoded string. */ char py_decodelzw_doc[] = "Return TIFF LZW decoded string."; static PyObject * py_decodelzw(PyObject *obj, PyObject *args) { PyThreadState *_save = NULL; PyObject *byteobj = NULL; PyObject *result = NULL; int i, j; unsigned int encoded_len = 0; unsigned int decoded_len = 0; unsigned int result_len = 0; unsigned int table_len = 0; unsigned int len; unsigned int code, c, oldcode, mask, shr; uint64_t bitcount, bitw; char *encoded = NULL; char *result_ptr = NULL; char *table2 = NULL; char *cptr; struct BYTE_STRING *decoded = NULL; struct BYTE_STRING *decoded_ptr = NULL; struct BYTE_STRING *table[4096]; struct BYTE_STRING *newentry, *newresult, *t; int little_endian = 0; if (!PyArg_ParseTuple(args, "O", &byteobj)) return NULL; if (!PyBytes_Check(byteobj)) { PyErr_Format(PyExc_TypeError, "expected byte string as input"); goto _fail; } Py_INCREF(byteobj); encoded = PyBytes_AS_STRING(byteobj); encoded_len = (unsigned int)PyBytes_GET_SIZE(byteobj); /* if (encoded_len >= 512 * 1024 * 1024) { PyErr_Format(PyExc_ValueError, "encoded data > 512 MB not supported"); goto _fail; } */ /* release GIL: byte/string objects are immutable */ _save = PyEval_SaveThread(); if ((*encoded != -128) || ((*(encoded+1) & 128))) { PyEval_RestoreThread(_save); PyErr_Format(PyExc_ValueError, "strip must begin with CLEAR code"); goto _fail; } little_endian = (*(unsigned short *)encoded) & 128; /* allocate buffer for codes and pointers */ decoded_len = 0; len = (encoded_len + encoded_len/9) * sizeof(decoded); decoded = PyMem_Malloc(len * sizeof(void *)); if (decoded == NULL) { PyEval_RestoreThread(_save); PyErr_Format(PyExc_MemoryError, "failed to allocate decoded"); goto _fail; } memset((void *)decoded, 0, len * sizeof(void *)); decoded_ptr = decoded; /* cache strings of length 2 */ cptr = table2 = PyMem_Malloc(256*256*2 * sizeof(char)); if (table2 == NULL) { PyEval_RestoreThread(_save); PyErr_Format(PyExc_MemoryError, "failed to allocate table2"); goto _fail; } for (i = 0; i < 256; i++) { for (j = 0; j < 256; j++) { *cptr++ = (char)i; *cptr++ = (char)j; } } memset(table, 0, sizeof(table)); table_len = 258; bitw = 9; shr = 23; mask = 4286578688u; bitcount = 0; result_len = 0; code = 0; oldcode = 0; while ((unsigned int)((bitcount + bitw) / 8) <= encoded_len) { /* read next code */ code = *((unsigned int *)((void *)(encoded + (bitcount / 8)))); if (little_endian) code = SWAP4BYTES(code); code <<= (unsigned int)(bitcount % 8); code &= mask; code >>= shr; bitcount += bitw; if (code == 257) /* end of information */ break; if (code == 256) { /* clearcode */ /* initialize table and switch to 9 bit */ while (table_len > 258) { t = table[--table_len]; t->ref--; if (t->ref == 0) { if (t->len > 2) PyMem_Free(t->str); PyMem_Free(t); } } bitw = 9; shr = 23; mask = 4286578688u; /* read next code, skip clearcodes */ /* TODO: bounds checking */ do { code = *((unsigned int *)((void *)(encoded + (bitcount / 8)))); if (little_endian) code = SWAP4BYTES(code); code <<= bitcount % 8; code &= mask; code >>= shr; bitcount += bitw; } while (code == 256); if (code == 257) /* end of information */ break; /* decoded.append(table[code]) */ if (code < 256) { result_len++; *((int *)decoded_ptr++) = code; } else { newresult = table[code]; newresult->ref++; result_len += newresult->len; *(struct BYTE_STRING **)decoded_ptr++ = newresult; } } else { if (code < table_len) { /* code is in table */ /* newresult = table[code]; */ /* newentry = table[oldcode] + table[code][0] */ /* decoded.append(newresult); table.append(newentry) */ if (code < 256) { c = code; *((unsigned int *)decoded_ptr++) = code; result_len++; } else { newresult = table[code]; newresult->ref++; c = (unsigned int) *newresult->str; *(struct BYTE_STRING **)decoded_ptr++ = newresult; result_len += newresult->len; } newentry = PyMem_Malloc(sizeof(struct BYTE_STRING)); newentry->ref = 1; if (oldcode < 256) { newentry->len = 2; newentry->str = table2 + (oldcode << 9) + ((unsigned char)c << 1); } else { len = table[oldcode]->len; newentry->len = len + 1; newentry->str = PyMem_Malloc(newentry->len); if (newentry->str == NULL) break; memmove(newentry->str, table[oldcode]->str, len); newentry->str[len] = c; } table[table_len++] = newentry; } else { /* code is not in table */ /* newentry = newresult = table[oldcode] + table[oldcode][0] */ /* decoded.append(newresult); table.append(newentry) */ newresult = PyMem_Malloc(sizeof(struct BYTE_STRING)); newentry = newresult; newentry->ref = 2; if (oldcode < 256) { newentry->len = 2; newentry->str = table2 + 514*oldcode; } else { len = table[oldcode]->len; newentry->len = len + 1; newentry->str = PyMem_Malloc(newentry->len); if (newentry->str == NULL) break; memmove(newentry->str, table[oldcode]->str, len); newentry->str[len] = *table[oldcode]->str; } table[table_len++] = newentry; *(struct BYTE_STRING **)decoded_ptr++ = newresult; result_len += newresult->len; } } oldcode = code; /* increase bit-width if necessary */ switch (table_len) { case 511: bitw = 10; shr = 22; mask = 4290772992u; break; case 1023: bitw = 11; shr = 21; mask = 4292870144u; break; case 2047: bitw = 12; shr = 20; mask = 4293918720u; } } PyEval_RestoreThread(_save); if (code != 257) { PyErr_WarnEx(NULL, "py_decodelzw encountered unexpected end of stream", 1); } /* result = ''.join(decoded) */ decoded_len = (unsigned int)(decoded_ptr - decoded); decoded_ptr = decoded; result = PyBytes_FromStringAndSize(0, result_len); if (result == NULL) { PyErr_Format(PyExc_MemoryError, "failed to allocate decoded string"); goto _fail; } result_ptr = PyBytes_AS_STRING(result); _save = PyEval_SaveThread(); while (decoded_len--) { code = *((unsigned int *)decoded_ptr); if (code < 256) { *result_ptr++ = (char)code; } else { t = *((struct BYTE_STRING **)decoded_ptr); memmove(result_ptr, t->str, t->len); result_ptr += t->len; if (--t->ref == 0) { if (t->len > 2) PyMem_Free(t->str); PyMem_Free(t); } } decoded_ptr++; } PyMem_Free(decoded); while (table_len-- > 258) { t = table[table_len]; if (t->len > 2) PyMem_Free(t->str); PyMem_Free(t); } PyMem_Free(table2); PyEval_RestoreThread(_save); Py_DECREF(byteobj); return result; _fail: if (table2 != NULL) PyMem_Free(table2); if (decoded != NULL) { /* Bug? are decoded_ptr and decoded_len correct? */ while (decoded_len--) { code = *((unsigned int *) decoded_ptr); if (code > 258) { t = *((struct BYTE_STRING **) decoded_ptr); if (--t->ref == 0) { if (t->len > 2) PyMem_Free(t->str); PyMem_Free(t); } } } PyMem_Free(decoded); } while (table_len-- > 258) { t = table[table_len]; if (t->len > 2) PyMem_Free(t->str); PyMem_Free(t); } Py_XDECREF(byteobj); Py_XDECREF(result); return NULL; } /*****************************************************************************/ /* Create Python module */ char module_doc[] = "A Python C extension module for decoding PackBits and LZW encoded " "TIFF data.\n\n" "Refer to the tifffile.py module for documentation and tests.\n\n" "Authors:\n Christoph Gohlke \n" " Laboratory for Fluorescence Dynamics, University of California, Irvine." "\n\nVersion: %s\n"; static PyMethodDef module_methods[] = { #if MSB {"unpack_ints", (PyCFunction)py_unpackints, METH_VARARGS|METH_KEYWORDS, py_unpackints_doc}, #endif {"decode_lzw", (PyCFunction)py_decodelzw, METH_VARARGS, py_decodelzw_doc}, {"decode_packbits", (PyCFunction)py_decodepackbits, METH_VARARGS, py_decodepackbits_doc}, {NULL, NULL, 0, NULL} /* Sentinel */ }; #if PY_MAJOR_VERSION >= 3 struct module_state { PyObject *error; }; #define GETSTATE(m) ((struct module_state*)PyModule_GetState(m)) static int module_traverse(PyObject *m, visitproc visit, void *arg) { Py_VISIT(GETSTATE(m)->error); return 0; } static int module_clear(PyObject *m) { Py_CLEAR(GETSTATE(m)->error); return 0; } static struct PyModuleDef moduledef = { PyModuleDef_HEAD_INIT, "_tifffile", NULL, sizeof(struct module_state), module_methods, NULL, module_traverse, module_clear, NULL }; #define INITERROR return NULL PyMODINIT_FUNC PyInit__tifffile(void) #else #define INITERROR return PyMODINIT_FUNC init_tifffile(void) #endif { PyObject *module; char *doc = (char *)PyMem_Malloc(sizeof(module_doc) + sizeof(_VERSION_)); PyOS_snprintf(doc, sizeof(module_doc) + sizeof(_VERSION_), module_doc, _VERSION_); #if PY_MAJOR_VERSION >= 3 moduledef.m_doc = doc; module = PyModule_Create(&moduledef); #else module = Py_InitModule3("_tifffile", module_methods, doc); #endif PyMem_Free(doc); if (module == NULL) INITERROR; if (_import_array() < 0) { Py_DECREF(module); INITERROR; } { #if PY_MAJOR_VERSION < 3 PyObject *s = PyString_FromString(_VERSION_); #else PyObject *s = PyUnicode_FromString(_VERSION_); #endif PyObject *dict = PyModule_GetDict(module); PyDict_SetItemString(dict, "__version__", s); Py_DECREF(s); } #if PY_MAJOR_VERSION >= 3 return module; #endif } tifffile-2015.08.17/tifffile.py000066400000000000000000006173021256606315200160700ustar00rootroot00000000000000#!/usr/bin/env python # -*- coding: utf-8 -*- # tifffile.py # Copyright (c) 2008-2015, Christoph Gohlke # Copyright (c) 2008-2015, The Regents of the University of California # Produced at the Laboratory for Fluorescence Dynamics # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holders nor the names of any # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Read image and meta data from (bio)TIFF files. Save numpy arrays as TIFF. Image and metadata can be read from TIFF, BigTIFF, OME-TIFF, STK, LSM, NIH, SGI, ImageJ, MicroManager, FluoView, SEQ and GEL files. Only a subset of the TIFF specification is supported, mainly uncompressed and losslessly compressed 2**(0 to 6) bit integer, 16, 32 and 64-bit float, grayscale and RGB(A) images, which are commonly used in bio-scientific imaging. Specifically, reading JPEG and CCITT compressed image data or EXIF, IPTC, GPS, and XMP metadata is not implemented. Only primary info records are read for STK, FluoView, MicroManager, and NIH Image formats. TIFF, the Tagged Image File Format, is under the control of Adobe Systems. BigTIFF allows for files greater than 4 GB. STK, LSM, FluoView, SGI, SEQ, GEL, and OME-TIFF, are custom extensions defined by Molecular Devices (Universal Imaging Corporation), Carl Zeiss MicroImaging, Olympus, Silicon Graphics International, Media Cybernetics, Molecular Dynamics, and the Open Microscopy Environment consortium respectively. For command line usage run `python tifffile.py --help` :Author: `Christoph Gohlke `_ :Organization: Laboratory for Fluorescence Dynamics, University of California, Irvine :Version: 2015.08.17 Requirements ------------ * `CPython 2.7 or 3.4 `_ (64 bit recommended) * `Numpy 1.9.2 `_ * `Matplotlib 1.4.3 `_ (optional for plotting) * `Tifffile.c 2015.08.17 `_ (recommended for faster decoding of PackBits and LZW encoded strings) Revisions --------- 2015.08.17 Pass 1906 tests. Write ImageJ hyperstacks (optional). Read and write LZMA compressed data. Specify datetime when saving (optional). Save tiled and color-mapped images (optional). Ignore void byte_counts and offsets if possible. Ignore bogus image_depth tag created by ISS Vista software. Decode floating point horizontal differencing (not tiled). Save image data contiguously if possible. Only read first IFD from ImageJ files if possible. Read ImageJ 'raw' format (files larger than 4 GB). TiffPageSeries class for pages with compatible shape and data type. Try to read incomplete tiles. Open file dialog if no filename is passed on command line. Ignore errors when decoding OME-XML. Rename decoder functions (backwards incompatible) 2014.08.24 TiffWriter class for incremental writing images. Simplified examples. 2014.08.19 Add memmap function to FileHandle. Add function to determine if image data in TiffPage is memory-mappable. Do not close files if multifile_close parameter is False. 2014.08.10 Pass 1730 tests. Return all extrasamples by default (backwards incompatible). Read data from series of pages into memory-mapped array (optional). Squeeze OME dimensions (backwards incompatible). Workaround missing EOI code in strips. Support image and tile depth tags (SGI extension). Better handling of STK/UIC tags (backwards incompatible). Disable color mapping for STK. Julian to datetime converter. TIFF ASCII type may be NULL separated. Unwrap strip offsets for LSM files greater than 4 GB. Correct strip byte counts in compressed LSM files. Skip missing files in OME series. Read embedded TIFF files. 2014.02.05 Save rational numbers as type 5 (bug fix). 2013.12.20 Keep other files in OME multi-file series closed. FileHandle class to abstract binary file handle. Disable color mapping for bad OME-TIFF produced by bio-formats. Read bad OME-XML produced by ImageJ when cropping. 2013.11.03 Allow zlib compress data in imsave function (optional). Memory-map contiguous image data (optional). 2013.10.28 Read MicroManager metadata and little endian ImageJ tag. Save extra tags in imsave function. Save tags in ascending order by code (bug fix). 2012.10.18 Accept file like objects (read from OIB files). 2012.08.21 Rename TIFFfile to TiffFile and TIFFpage to TiffPage. TiffSequence class for reading sequence of TIFF files. Read UltraQuant tags. Allow float numbers as resolution in imsave function. 2012.08.03 Read MD GEL tags and NIH Image header. 2012.07.25 Read ImageJ tags. ... Notes ----- The API is not stable yet and might change between revisions. Tested on little-endian platforms only. Other Python packages and modules for reading bio-scientific TIFF files: * `Imread `_ * `PyLibTiff `_ * `SimpleITK `_ * `PyLSM `_ * `PyMca.TiffIO.py `_ (same as fabio.TiffIO) * `BioImageXD.Readers `_ * `Cellcognition.io `_ * `CellProfiler.bioformats `_ Acknowledgements ---------------- * Egor Zindy, University of Manchester, for cz_lsm_scan_info specifics. * Wim Lewis for a bug fix and some read_cz_lsm functions. * Hadrien Mary for help on reading MicroManager files. * Christian Kliche for help writing tiled and color-mapped files. References ---------- (1) TIFF 6.0 Specification and Supplements. Adobe Systems Incorporated. http://partners.adobe.com/public/developer/tiff/ (2) TIFF File Format FAQ. http://www.awaresystems.be/imaging/tiff/faq.html (3) MetaMorph Stack (STK) Image File Format. http://support.meta.moleculardevices.com/docs/t10243.pdf (4) Image File Format Description LSM 5/7 Release 6.0 (ZEN 2010). Carl Zeiss MicroImaging GmbH. BioSciences. May 10, 2011 (5) File Format Description - LSM 5xx Release 2.0. http://ibb.gsf.de/homepage/karsten.rodenacker/IDL/Lsmfile.doc (6) The OME-TIFF format. http://www.openmicroscopy.org/site/support/file-formats/ome-tiff (7) UltraQuant(r) Version 6.0 for Windows Start-Up Guide. http://www.ultralum.com/images%20ultralum/pdf/UQStart%20Up%20Guide.pdf (8) Micro-Manager File Formats. http://www.micro-manager.org/wiki/Micro-Manager_File_Formats (9) Tags for TIFF and Related Specifications. Digital Preservation. http://www.digitalpreservation.gov/formats/content/tiff_tags.shtml Examples -------- >>> data = numpy.random.rand(5, 301, 219) >>> imsave('temp.tif', data) >>> image = imread('temp.tif') >>> numpy.testing.assert_array_equal(image, data) >>> with TiffFile('temp.tif') as tif: ... images = tif.asarray() ... for page in tif: ... for tag in page.tags.values(): ... t = tag.name, tag.value ... image = page.asarray() """ from __future__ import division, print_function import sys import os import re import glob import math import zlib import time import json import struct import warnings import tempfile import datetime import collections from fractions import Fraction from xml.etree import cElementTree as etree import numpy try: import lzma except ImportError: try: import backports.lzma as lzma except ImportError: lzma = None try: if __package__: from . import _tifffile else: import _tifffile except ImportError: warnings.warn( "failed to import the optional _tifffile C extension module.\n" "Loading of some compressed images will be very slow.\n" "Tifffile.c can be obtained at http://www.lfd.uci.edu/~gohlke/") __version__ = '2015.08.17' __docformat__ = 'restructuredtext en' __all__ = ( 'imsave', 'imread', 'imshow', 'TiffFile', 'TiffWriter', 'TiffSequence', # utility functions used in oiffile and czifile 'FileHandle', 'lazyattr', 'natural_sorted', 'decode_lzw', 'stripnull') def imsave(filename, data, **kwargs): """Write image data to TIFF file. Refer to the TiffWriter class and member functions for documentation. Parameters ---------- filename : str Name of file to write. data : array_like Input image. The last dimensions are assumed to be image depth, height, width, and samples. kwargs : dict Parameters 'byteorder', 'bigtiff', 'software', and 'imagej', are passed to the TiffWriter class. Parameters 'photometric', 'planarconfig', 'resolution', 'compress', 'colormap', 'tile', 'description', 'datetime', 'metadata', 'contiguous' and 'extratags' are passed to the TiffWriter.save function. Examples -------- >>> data = numpy.random.rand(2, 5, 3, 301, 219) >>> metadata = {'axes': 'TZCYX'} >>> imsave('temp.tif', data, compress=6, metadata={'axes': 'TZCYX'}) """ tifargs = {} for key in ('byteorder', 'bigtiff', 'software', 'imagej'): if key in kwargs: tifargs[key] = kwargs[key] del kwargs[key] if 'bigtiff' not in tifargs and 'imagej' not in tifargs and ( data.size*data.dtype.itemsize > 2000*2**20): tifargs['bigtiff'] = True with TiffWriter(filename, **tifargs) as tif: tif.save(data, **kwargs) class TiffWriter(object): """Write image data to TIFF file. TiffWriter instances must be closed using the 'close' method, which is automatically called when using the 'with' statement. Examples -------- >>> data = numpy.random.rand(2, 5, 3, 301, 219) >>> with TiffWriter('temp.tif', bigtiff=True) as tif: ... for i in range(data.shape[0]): ... tif.save(data[i], compress=6) """ TYPES = {'B': 1, 's': 2, 'H': 3, 'I': 4, '2I': 5, 'b': 6, 'h': 8, 'i': 9, 'f': 11, 'd': 12, 'Q': 16, 'q': 17} TAGS = { 'new_subfile_type': 254, 'subfile_type': 255, 'image_width': 256, 'image_length': 257, 'bits_per_sample': 258, 'compression': 259, 'photometric': 262, 'fill_order': 266, 'document_name': 269, 'image_description': 270, 'strip_offsets': 273, 'orientation': 274, 'samples_per_pixel': 277, 'rows_per_strip': 278, 'strip_byte_counts': 279, 'x_resolution': 282, 'y_resolution': 283, 'planar_configuration': 284, 'page_name': 285, 'resolution_unit': 296, 'software': 305, 'datetime': 306, 'predictor': 317, 'color_map': 320, 'tile_width': 322, 'tile_length': 323, 'tile_offsets': 324, 'tile_byte_counts': 325, 'extra_samples': 338, 'sample_format': 339, 'image_depth': 32997, 'tile_depth': 32998} def __init__(self, filename, bigtiff=False, byteorder=None, software='tifffile.py', imagej=False): """Create a new TIFF file for writing. Use bigtiff=True when creating files greater than 2 GB. Parameters ---------- filename : str Name of file to write. bigtiff : bool If True, the BigTIFF format is used. byteorder : {'<', '>'} The endianness of the data in the file. By default this is the system's native byte order. software : str Name of the software used to create the file. Saved with the first page in the file only. imagej : bool If True, write an ImageJ hyperstack compatible file. This format can handle data types uint8, uint16, or float32 and data shapes up to 6 dimensions in TZCYXS order. RGB images (S=3 or S=4) must be uint8. ImageJ's default byte order is big endian but this implementation uses the system's native byte order by default. ImageJ doesn't support BigTIFF format or LZMA compression. The ImageJ file format is undocumented. """ if byteorder not in (None, '<', '>'): raise ValueError("invalid byteorder %s" % byteorder) if byteorder is None: byteorder = '<' if sys.byteorder == 'little' else '>' if imagej and bigtiff: warnings.warn("writing incompatible bigtiff ImageJ") self._byteorder = byteorder self._software = software self._imagej = bool(imagej) self._metadata = None self._colormap = None self._description_offset = 0 self._description_len_offset = 0 self._description_len = 0 self._tags = None self._shape = None # normalized shape of data in consecutive pages self._data_shape = None # shape of data in consecutive pages self._data_dtype = None # data type self._data_offset = None # offset to data self._data_byte_counts = None # byte counts per plane self._tag_offsets = None # strip or tile offset tag code self._fh = open(filename, 'wb') self._fh.write({'<': b'II', '>': b'MM'}[byteorder]) if bigtiff: self._bigtiff = True self._offset_size = 8 self._tag_size = 20 self._numtag_format = 'Q' self._offset_format = 'Q' self._value_format = '8s' self._fh.write(struct.pack(byteorder+'HHH', 43, 8, 0)) else: self._bigtiff = False self._offset_size = 4 self._tag_size = 12 self._numtag_format = 'H' self._offset_format = 'I' self._value_format = '4s' self._fh.write(struct.pack(byteorder+'H', 42)) # first IFD self._ifd_offset = self._fh.tell() self._fh.write(struct.pack(byteorder+self._offset_format, 0)) def save(self, data, photometric=None, planarconfig=None, resolution=None, compress=0, colormap=None, tile=None, datetime=None, description='', metadata=None, contiguous=True, extratags=()): """Write image data and tags to TIFF file. Image data are written in one stripe per plane by default. Dimensions larger than 2 to 4 (depending on photometric mode, planar configuration, and SGI mode) are flattened and saved as separate pages. The 'sample_format' and 'bits_per_sample' tags are derived from the data type. Parameters ---------- data : numpy.ndarray Input image. The last dimensions are assumed to be image depth, height (length), width, and samples. If a colormap is provided, the dtype must be uint8 or uint16 and the data values are indices into the last dimension of the colormap. photometric : {'minisblack', 'miniswhite', 'rgb', 'palette'} The color space of the image data. By default this setting is inferred from the data shape and the value of colormap. planarconfig : {'contig', 'planar'} Specifies if samples are stored contiguous or in separate planes. By default this setting is inferred from the data shape. 'contig': last dimension contains samples. 'planar': third last dimension contains samples. resolution : (float, float) or ((int, int), (int, int)) X and Y resolution in dots per inch as float or rational numbers. compress : int or 'lzma' Values from 0 to 9 controlling the level of zlib compression. If 0, data are written uncompressed (default). Compression cannot be used to write contiguous files. If 'lzma', LZMA compression is used, which is not available on all platforms. colormap : numpy.ndarray RGB color values for the corresponding data value. Must be of shape (3, 2**(data.itemsize*8)) and dtype uint16. tile : tuple of int The shape (depth, length, width) of image tiles to write. If None (default), image data are written in one stripe per plane. The tile length and width must be a multiple of 16. If the tile depth is provided, the SGI image_depth and tile_depth tags are used to save volume data. Few software can read the SGI format, e.g. MeVisLab. datetime : datetime Date and time of image creation. Saved with the first page only. If None (default), the current date and time is used. description : str The subject of the image. Saved with the first page only. Cannot be used with the ImageJ format. If None (default), the data shape and metadata are saved in JSON or ImageJ format. metadata : dict Additional meta data passed to the image description functions. contiguous : bool If True (default) and the data and parameters are compatible with previous ones, if any, the data are stored contiguously after the previous one. Parameters 'photometric' and 'planarconfig' are ignored. extratags : sequence of tuples Additional tags as [(code, dtype, count, value, writeonce)]. code : int The TIFF tag Id. dtype : str Data type of items in 'value' in Python struct format. One of B, s, H, I, 2I, b, h, i, f, d, Q, or q. count : int Number of data values. Not used for string values. value : sequence 'Count' values compatible with 'dtype'. writeonce : bool If True, the tag is written to the first page only. """ # TODO: refactor this function fh = self._fh byteorder = self._byteorder numtag_format = self._numtag_format value_format = self._value_format offset_format = self._offset_format offset_size = self._offset_size tag_size = self._tag_size data = numpy.asarray(data, dtype=byteorder+data.dtype.char, order='C') # just append contiguous data if possible if self._data_shape: if (not contiguous or self._data_shape[1:] != data.shape or self._data_dtype != data.dtype or (compress and self._tags) or tile or not numpy.array_equal(colormap, self._colormap)): # incompatible shape, dtype, compression mode, or colormap self._write_remaining_pages() self._write_image_description() self._description_offset = 0 self._description_len_offset = 0 self._data_shape = None self._colormap = None if self._imagej: raise ValueError( "ImageJ does not support non-contiguous data") else: # consecutive mode self._data_shape = (self._data_shape[0] + 1,) + data.shape if not compress: # write contiguous data, write ifds/tags later data.tofile(fh) return if photometric not in (None, 'minisblack', 'miniswhite', 'rgb', 'palette'): raise ValueError("invalid photometric %s" % photometric) if planarconfig not in (None, 'contig', 'planar'): raise ValueError("invalid planarconfig %s" % planarconfig) # prepare compression if not compress: compress = False compress_tag = 1 elif compress == 'lzma': compress = lzma.compress compress_tag = 34925 if self._imagej: raise ValueError("ImageJ can't handle LZMA compression") elif not 0 <= compress <= 9: raise ValueError("invalid compression level %s" % compress) elif compress: def compress(data, level=compress): return zlib.compress(data, level) compress_tag = 32946 # prepare ImageJ format if self._imagej: if description: warnings.warn("not writing description to ImageJ file") description = None volume = False if data.dtype.char not in 'BHhf': raise ValueError("ImageJ does not support data type '%s'" % data.dtype.char) ijrgb = photometric == 'rgb' if photometric else None if data.dtype.char not in 'B': ijrgb = False ijshape = imagej_shape(data.shape, ijrgb) if ijshape[-1] in (3, 4): photometric = 'rgb' if data.dtype.char not in 'B': raise ValueError("ImageJ does not support data type '%s' " "for RGB" % data.dtype.char) elif photometric is None: photometric = 'minisblack' planarconfig = None if planarconfig == 'planar': raise ValueError("ImageJ does not support planar images") else: planarconfig = 'contig' if ijrgb else None # verify colormap and indices if colormap is not None: if data.dtype.char not in 'BH': raise ValueError("invalid data dtype for palette mode") colormap = numpy.asarray(colormap, dtype=byteorder+'H') if colormap.shape != (3, 2**(data.itemsize * 8)): raise ValueError("invalid color map shape") self._colormap = colormap # verify tile shape if tile: tile = tuple(int(i) for i in tile[:3]) volume = len(tile) == 3 if (len(tile) < 2 or tile[-1] % 16 or tile[-2] % 16 or any(i < 1 for i in tile)): raise ValueError("invalid tile shape") else: tile = () volume = False # normalize data shape to 5D or 6D, depending on volume: # (pages, planar_samples, [depth,] height, width, contig_samples) data_shape = shape = data.shape data = numpy.atleast_2d(data) samplesperpixel = 1 extrasamples = 0 if volume and data.ndim < 3: volume = False if colormap is not None: photometric = 'palette' planarconfig = None if photometric is None: if planarconfig: photometric = 'rgb' elif data.ndim > 2 and shape[-1] in (3, 4): photometric = 'rgb' elif self._imagej: photometric = 'minisblack' elif volume and data.ndim > 3 and shape[-4] in (3, 4): photometric = 'rgb' elif data.ndim > 2 and shape[-3] in (3, 4): photometric = 'rgb' else: photometric = 'minisblack' if planarconfig and len(shape) <= (3 if volume else 2): planarconfig = None photometric = 'minisblack' if photometric == 'rgb': if len(shape) < 3: raise ValueError("not a RGB(A) image") if len(shape) < 4: volume = False if planarconfig is None: if shape[-1] in (3, 4): planarconfig = 'contig' elif shape[-4 if volume else -3] in (3, 4): planarconfig = 'planar' elif shape[-1] > shape[-4 if volume else -3]: planarconfig = 'planar' else: planarconfig = 'contig' if planarconfig == 'contig': data = data.reshape((-1, 1) + shape[(-4 if volume else -3):]) samplesperpixel = data.shape[-1] else: data = data.reshape( (-1,) + shape[(-4 if volume else -3):] + (1,)) samplesperpixel = data.shape[1] if samplesperpixel > 3: extrasamples = samplesperpixel - 3 elif planarconfig and len(shape) > (3 if volume else 2): if planarconfig == 'contig': data = data.reshape((-1, 1) + shape[(-4 if volume else -3):]) samplesperpixel = data.shape[-1] else: data = data.reshape( (-1,) + shape[(-4 if volume else -3):] + (1,)) samplesperpixel = data.shape[1] extrasamples = samplesperpixel - 1 else: planarconfig = None # remove trailing 1s while len(shape) > 2 and shape[-1] == 1: shape = shape[:-1] if len(shape) < 3: volume = False if False and ( photometric != 'palette' and len(shape) > (3 if volume else 2) and shape[-1] < 5 and all(shape[-1] < i for i in shape[(-4 if volume else -3):-1])): # DISABLED: non-standard TIFF, e.g. (220, 320, 2) planarconfig = 'contig' samplesperpixel = shape[-1] data = data.reshape((-1, 1) + shape[(-4 if volume else -3):]) else: data = data.reshape( (-1, 1) + shape[(-3 if volume else -2):] + (1,)) # normalize shape to 6D assert len(data.shape) in (5, 6) if len(data.shape) == 5: data = data.reshape(data.shape[:2] + (1,) + data.shape[2:]) shape = data.shape if tile and not volume: tile = (1, tile[-2], tile[-1]) if photometric == 'palette': if (samplesperpixel != 1 or extrasamples or shape[1] != 1 or shape[-1] != 1): raise ValueError("invalid data shape for palette mode") if samplesperpixel == 2: warnings.warn("writing non-standard TIFF (samplesperpixel 2)") bytestr = bytes if sys.version[0] == '2' else ( lambda x: bytes(x, 'utf-8') if isinstance(x, str) else x) tags = [] # list of (code, ifdentry, ifdvalue, writeonce) strip_or_tile = 'tile' if tile else 'strip' tag_byte_counts = TiffWriter.TAGS[strip_or_tile + '_byte_counts'] tag_offsets = TiffWriter.TAGS[strip_or_tile + '_offsets'] self._tag_offsets = tag_offsets def pack(fmt, *val): return struct.pack(byteorder+fmt, *val) def addtag(code, dtype, count, value, writeonce=False): # Compute ifdentry & ifdvalue bytes from code, dtype, count, value # Append (code, ifdentry, ifdvalue, writeonce) to tags list code = int(TiffWriter.TAGS.get(code, code)) try: tifftype = TiffWriter.TYPES[dtype] except KeyError: raise ValueError("unknown dtype %s" % dtype) rawcount = count if dtype == 's': value = bytestr(value) + b'\0' count = rawcount = len(value) rawcount = value.find(b'\0\0') if rawcount < 0: rawcount = count else: rawcount += 1 # length of string without buffer value = (value,) if len(dtype) > 1: count *= int(dtype[:-1]) dtype = dtype[-1] ifdentry = [pack('HH', code, tifftype), pack(offset_format, rawcount)] ifdvalue = None if count == 1: if isinstance(value, (tuple, list, numpy.ndarray)): value = value[0] ifdentry.append(pack(value_format, pack(dtype, value))) elif struct.calcsize(dtype) * count <= offset_size: ifdentry.append(pack(value_format, pack(str(count)+dtype, *value))) else: ifdentry.append(pack(offset_format, 0)) if isinstance(value, numpy.ndarray): assert value.size == count assert value.dtype.char == dtype ifdvalue = value.tobytes() else: ifdvalue = pack(str(count)+dtype, *value) tags.append((code, b''.join(ifdentry), ifdvalue, writeonce)) def rational(arg, max_denominator=1000000): # return nominator and denominator from float or two integers try: f = Fraction.from_float(arg) except TypeError: f = Fraction(arg[0], arg[1]) f = f.limit_denominator(max_denominator) return f.numerator, f.denominator if description: # user provided description addtag('image_description', 's', 0, description, writeonce=True) # always write shape and metadata to image_description self._metadata = {} if metadata is None else metadata if self._imagej: description = imagej_description( data_shape, shape[-1] in (3, 4), self._colormap is not None, **self._metadata) else: description = image_description( data_shape, self._colormap is not None, **self._metadata) if description: # add 32 bytes buffer # the image description might be updated later with the final shape description += b'\0'*32 self._description_len = len(description) addtag('image_description', 's', 0, description, writeonce=True) if self._software: addtag('software', 's', 0, self._software, writeonce=True) self._software = None # only save to first page in file if datetime is None: datetime = self._now() addtag('datetime', 's', 0, datetime.strftime("%Y:%m:%d %H:%M:%S"), writeonce=True) addtag('compression', 'H', 1, compress_tag) addtag('image_width', 'I', 1, shape[-2]) addtag('image_length', 'I', 1, shape[-3]) if tile: addtag('tile_width', 'I', 1, tile[-1]) addtag('tile_length', 'I', 1, tile[-2]) if tile[0] > 1: addtag('image_depth', 'I', 1, shape[-4]) addtag('tile_depth', 'I', 1, tile[0]) addtag('new_subfile_type', 'I', 1, 0) addtag('sample_format', 'H', 1, {'u': 1, 'i': 2, 'f': 3, 'c': 6}[data.dtype.kind]) addtag('photometric', 'H', 1, {'miniswhite': 0, 'minisblack': 1, 'rgb': 2, 'palette': 3}[photometric]) if colormap is not None: addtag('color_map', 'H', colormap.size, colormap) addtag('samples_per_pixel', 'H', 1, samplesperpixel) if planarconfig and samplesperpixel > 1: addtag('planar_configuration', 'H', 1, 1 if planarconfig == 'contig' else 2) addtag('bits_per_sample', 'H', samplesperpixel, (data.dtype.itemsize * 8,) * samplesperpixel) else: addtag('bits_per_sample', 'H', 1, data.dtype.itemsize * 8) if extrasamples: if photometric == 'rgb' and extrasamples == 1: addtag('extra_samples', 'H', 1, 1) # associated alpha channel else: addtag('extra_samples', 'H', extrasamples, (0,) * extrasamples) if resolution: addtag('x_resolution', '2I', 1, rational(resolution[0])) addtag('y_resolution', '2I', 1, rational(resolution[1])) addtag('resolution_unit', 'H', 1, 2) if not tile: addtag('rows_per_strip', 'I', 1, shape[-3]) # * shape[-4] if tile: # use one chunk per tile per plane tiles = ((shape[2] + tile[0] - 1) // tile[0], (shape[3] + tile[1] - 1) // tile[1], (shape[4] + tile[2] - 1) // tile[2]) numtiles = product(tiles) * shape[1] strip_byte_counts = [ product(tile) * shape[-1] * data.dtype.itemsize] * numtiles addtag(tag_byte_counts, offset_format, numtiles, strip_byte_counts) addtag(tag_offsets, offset_format, numtiles, [0] * numtiles) # allocate tile buffer chunk = numpy.empty(tile + (shape[-1],), dtype=data.dtype) else: # use one strip per plane strip_byte_counts = [ data[0, 0].size * data.dtype.itemsize] * shape[1] addtag(tag_byte_counts, offset_format, shape[1], strip_byte_counts) addtag(tag_offsets, offset_format, shape[1], [0] * shape[1]) # add extra tags from user for t in extratags: addtag(*t) # TODO: check TIFFReadDirectoryCheckOrder warning in files containing # multiple tags of same code # the entries in an IFD must be sorted in ascending order by tag code tags = sorted(tags, key=lambda x: x[0]) if not (self._bigtiff or self._imagej) and ( fh.tell() + data.size*data.dtype.itemsize > 2**31-1): raise ValueError("data too large for standard TIFF file") # if not compressed or tiled, write the first ifd and then all data # contiguously; else, write all ifds and data interleaved for pageindex in range(shape[0] if (compress or tile) else 1): # update pointer at ifd_offset pos = fh.tell() fh.seek(self._ifd_offset) fh.write(pack(offset_format, pos)) fh.seek(pos) # write ifdentries fh.write(pack(numtag_format, len(tags))) tag_offset = fh.tell() fh.write(b''.join(t[1] for t in tags)) self._ifd_offset = fh.tell() fh.write(pack(offset_format, 0)) # offset to next IFD # write tag values and patch offsets in ifdentries, if necessary for tagindex, tag in enumerate(tags): if tag[2]: pos = fh.tell() fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, pos)) fh.seek(pos) if tag[0] == tag_offsets: strip_offsets_offset = pos elif tag[0] == tag_byte_counts: strip_byte_counts_offset = pos elif tag[0] == 270 and tag[2].endswith(b'\0\0\0\0'): # image description buffer self._description_offset = pos self._description_len_offset = ( tag_offset + tagindex * tag_size + 4) fh.write(tag[2]) # write image data data_offset = fh.tell() if compress: strip_byte_counts = [] if tile: for plane in data[pageindex]: for tz in range(tiles[0]): for ty in range(tiles[1]): for tx in range(tiles[2]): c0 = min(tile[0], shape[2] - tz*tile[0]) c1 = min(tile[1], shape[3] - ty*tile[1]) c2 = min(tile[2], shape[4] - tx*tile[2]) chunk[c0:, c1:, c2:] = 0 chunk[:c0, :c1, :c2] = plane[ tz*tile[0]:tz*tile[0]+c0, ty*tile[1]:ty*tile[1]+c1, tx*tile[2]:tx*tile[2]+c2] if compress: t = compress(chunk) strip_byte_counts.append(len(t)) fh.write(t) else: chunk.tofile(fh) fh.flush() elif compress: for plane in data[pageindex]: plane = compress(plane) strip_byte_counts.append(len(plane)) fh.write(plane) else: data.tofile(fh) # if this fails try update Python and numpy # update strip/tile offsets and byte_counts if necessary pos = fh.tell() for tagindex, tag in enumerate(tags): if tag[0] == tag_offsets: # strip/tile offsets if tag[2]: fh.seek(strip_offsets_offset) strip_offset = data_offset for size in strip_byte_counts: fh.write(pack(offset_format, strip_offset)) strip_offset += size else: fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, data_offset)) elif tag[0] == tag_byte_counts: # strip/tile byte_counts if compress: if tag[2]: fh.seek(strip_byte_counts_offset) for size in strip_byte_counts: fh.write(pack(offset_format, size)) else: fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, strip_byte_counts[0])) break fh.seek(pos) fh.flush() # remove tags that should be written only once if pageindex == 0: tags = [tag for tag in tags if not tag[-1]] # if uncompressed, write remaining ifds/tags later if not (compress or tile): self._tags = tags self._shape = shape self._data_shape = (1,) + data_shape self._data_dtype = data.dtype self._data_offset = data_offset self._data_byte_counts = strip_byte_counts def _write_remaining_pages(self): """Write outstanding IFDs and tags to file.""" if not self._tags: return fh = self._fh byteorder = self._byteorder numtag_format = self._numtag_format offset_format = self._offset_format offset_size = self._offset_size tag_size = self._tag_size data_offset = self._data_offset page_data_size = sum(self._data_byte_counts) tag_bytes = b''.join(t[1] for t in self._tags) numpages = self._shape[0] * self._data_shape[0] - 1 pos = fh.tell() if not self._bigtiff and pos + len(tag_bytes) * numpages > 2**32 - 256: if self._imagej: warnings.warn("truncating ImageJ file") return raise ValueError("data too large for non-bigtiff file") def pack(fmt, *val): return struct.pack(byteorder+fmt, *val) for _ in range(numpages): # update pointer at ifd_offset pos = fh.tell() fh.seek(self._ifd_offset) fh.write(pack(offset_format, pos)) fh.seek(pos) # write ifd entries fh.write(pack(numtag_format, len(self._tags))) tag_offset = fh.tell() fh.write(tag_bytes) self._ifd_offset = fh.tell() fh.write(pack(offset_format, 0)) # offset to next IFD # offset to image data data_offset += page_data_size # write tag values and patch offsets in ifdentries, if necessary for tagindex, tag in enumerate(self._tags): if tag[2]: pos = fh.tell() fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, pos)) fh.seek(pos) if tag[0] == self._tag_offsets: strip_offsets_offset = pos fh.write(tag[2]) # update strip/tile offsets if necessary pos = fh.tell() for tagindex, tag in enumerate(self._tags): if tag[0] == self._tag_offsets: # strip/tile offsets if tag[2]: fh.seek(strip_offsets_offset) strip_offset = data_offset for size in self._data_byte_counts: fh.write(pack(offset_format, strip_offset)) strip_offset += size else: fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, data_offset)) break fh.seek(pos) self._tags = None self._data_dtype = None self._data_offset = None self._data_byte_counts = None # do not reset _shape or _data_shape def _write_image_description(self): """Write meta data to image_description tag.""" if (not self._data_shape or self._data_shape[0] == 1 or self._description_offset <= 0): return colormapped = self._colormap is not None if self._imagej: isrgb = self._shape[-1] in (3, 4) description = imagej_description( self._data_shape, isrgb, colormapped, **self._metadata) else: description = image_description( self._data_shape, colormapped, **self._metadata) # rewrite description and its length to file description = description[:self._description_len-1] pos = self._fh.tell() self._fh.seek(self._description_offset) self._fh.write(description) self._fh.seek(self._description_len_offset) self._fh.write(struct.pack(self._byteorder+self._offset_format, len(description)+1)) self._fh.seek(pos) self._description_offset = 0 self._description_len_offset = 0 self._description_len = 0 def _now(self): """Return current date and time.""" return datetime.datetime.now() def close(self, truncate=False): """Write remaining pages (if not truncate) and close file handle.""" if not truncate: self._write_remaining_pages() self._write_image_description() self._fh.close() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def imread(files, **kwargs): """Return image data from TIFF file(s) as numpy array. The first image series is returned if no arguments are provided. Parameters ---------- files : str or list File name, glob pattern, or list of file names. key : int, slice, or sequence of page indices Defines which pages to return as array. series : int Defines which series of pages in file to return as array. multifile : bool If True (default), OME-TIFF data may include pages from multiple files. pattern : str Regular expression pattern that matches axes names and indices in file names. kwargs : dict Additional parameters passed to the TiffFile or TiffSequence asarray function. Examples -------- >>> imsave('temp.tif', numpy.random.rand(3, 4, 301, 219)) >>> im = imread('temp.tif', key=0) >>> im.shape (4, 301, 219) >>> ims = imread(['temp.tif', 'temp.tif']) >>> ims.shape (2, 3, 4, 301, 219) """ kwargs_file = {} if 'multifile' in kwargs: kwargs_file['multifile'] = kwargs['multifile'] del kwargs['multifile'] else: kwargs_file['multifile'] = True kwargs_seq = {} if 'pattern' in kwargs: kwargs_seq['pattern'] = kwargs['pattern'] del kwargs['pattern'] if isinstance(files, basestring) and any(i in files for i in '?*'): files = glob.glob(files) if not files: raise ValueError('no files found') if len(files) == 1: files = files[0] if isinstance(files, basestring): with TiffFile(files, **kwargs_file) as tif: return tif.asarray(**kwargs) else: with TiffSequence(files, **kwargs_seq) as imseq: return imseq.asarray(**kwargs) class lazyattr(object): """Lazy object attribute whose value is computed on first access.""" __slots__ = ('func',) def __init__(self, func): self.func = func def __get__(self, instance, owner): if instance is None: return self value = self.func(instance) if value is NotImplemented: return getattr(super(owner, instance), self.func.__name__) setattr(instance, self.func.__name__, value) return value class TiffFile(object): """Read image and metadata from TIFF, STK, LSM, and FluoView files. TiffFile instances must be closed using the 'close' method, which is automatically called when using the 'with' statement. Attributes ---------- pages : list of TiffPage All TIFF pages in file. series : list of TiffPageSeries TIFF pages with compatible shapes and types. micromanager_metadata: dict Extra MicroManager non-TIFF metadata in the file, if exists. All attributes are read-only. Examples -------- >>> with TiffFile('temp.tif') as tif: ... data = tif.asarray() ... data.shape (5, 301, 219) """ def __init__(self, arg, name=None, offset=None, size=None, multifile=True, multifile_close=True, maxpages=None, fastij=True): """Initialize instance from file. Parameters ---------- arg : str or open file Name of file or open file object. The file objects are closed in TiffFile.close(). name : str Optional name of file in case 'arg' is a file handle. offset : int Optional start position of embedded file. By default this is the current file position. size : int Optional size of embedded file. By default this is the number of bytes from the 'offset' to the end of the file. multifile : bool If True (default), series may include pages from multiple files. Currently applies to OME-TIFF only. multifile_close : bool If True (default), keep the handles of other files in multifile series closed. This is inefficient when few files refer to many pages. If False, the C runtime may run out of resources. maxpages : int Number of pages to read (default: no limit). fastij : bool If True (default), try to use only the metadata from the first page of ImageJ files. Significantly speeds up loading movies with thousands of pages. """ self._fh = FileHandle(arg, name=name, offset=offset, size=size) self.offset_size = None self.pages = [] self._multifile = bool(multifile) self._multifile_close = bool(multifile_close) self._files = {self._fh.name: self} # cache of TiffFiles try: self._fromfile(maxpages, fastij) except Exception: self._fh.close() raise @property def filehandle(self): """Return file handle.""" return self._fh @property def filename(self): """Return name of file handle.""" return self._fh.name def close(self): """Close open file handle(s).""" for tif in self._files.values(): tif._fh.close() self._files = {} def _fromfile(self, maxpages=None, fastij=True): """Read TIFF header and all page records from file.""" self._fh.seek(0) try: self.byteorder = {b'II': '<', b'MM': '>'}[self._fh.read(2)] except KeyError: raise ValueError("not a valid TIFF file") self._is_native = self.byteorder == {'big': '>', 'little': '<'}[sys.byteorder] version = struct.unpack(self.byteorder+'H', self._fh.read(2))[0] if version == 43: # BigTiff self.offset_size, zero = struct.unpack(self.byteorder+'HH', self._fh.read(4)) if zero or self.offset_size != 8: raise ValueError("not a valid BigTIFF file") elif version == 42: self.offset_size = 4 else: raise ValueError("not a TIFF file") self.pages = [] while True: try: page = TiffPage(self) self.pages.append(page) except StopIteration: break if maxpages and len(self.pages) > maxpages: break if fastij and page.is_imagej: if page._patch_imagej(): break # only read the first page of ImageJ files fastij = False if not self.pages: raise ValueError("empty TIFF file") # TODO? sort pages by page_number value if self.is_micromanager: # MicroManager files contain metadata not stored in TIFF tags. self.micromanager_metadata = read_micromanager_metadata(self._fh) if self.is_lsm: self._fix_lsm_strip_offsets() self._fix_lsm_strip_byte_counts() def _fix_lsm_strip_offsets(self): """Unwrap strip offsets for LSM files greater than 4 GB.""" for series in self.series: wrap = 0 previous_offset = 0 for page in series.pages: strip_offsets = [] for current_offset in page.strip_offsets: if current_offset < previous_offset: wrap += 2**32 strip_offsets.append(current_offset + wrap) previous_offset = current_offset page.strip_offsets = tuple(strip_offsets) def _fix_lsm_strip_byte_counts(self): """Set strip_byte_counts to size of compressed data. The strip_byte_counts tag in LSM files contains the number of bytes for the uncompressed data. """ if not self.pages: return strips = {} for page in self.pages: assert len(page.strip_offsets) == len(page.strip_byte_counts) for offset, bytecount in zip(page.strip_offsets, page.strip_byte_counts): strips[offset] = bytecount offsets = sorted(strips.keys()) offsets.append(min(offsets[-1] + strips[offsets[-1]], self._fh.size)) for i, offset in enumerate(offsets[:-1]): strips[offset] = min(strips[offset], offsets[i+1] - offset) for page in self.pages: if page.compression: page.strip_byte_counts = tuple( strips[offset] for offset in page.strip_offsets) def asarray(self, key=None, series=None, memmap=False): """Return image data from multiple TIFF pages as numpy array. By default the first image series is returned. Parameters ---------- key : int, slice, or sequence of page indices Defines which pages to return as array. series : int or TiffPageSeries Defines which series of pages to return as array. memmap : bool If True, return an array stored in a binary file on disk if possible. """ if key is None and series is None: series = 0 if series is not None: try: series = self.series[series] except (KeyError, TypeError): pass pages = series.pages else: pages = self.pages if key is None: pass elif isinstance(key, int): pages = [pages[key]] elif isinstance(key, slice): pages = pages[key] elif isinstance(key, collections.Iterable): pages = [pages[k] for k in key] else: raise TypeError("key must be an int, slice, or sequence") if not len(pages): raise ValueError("no pages selected") if self.is_nih: if pages[0].is_palette: result = stack_pages(pages, colormapped=False, squeeze=False) result = numpy.take(pages[0].color_map, result, axis=1) result = numpy.swapaxes(result, 0, 1) else: result = stack_pages(pages, memmap=memmap, colormapped=False, squeeze=False) elif len(pages) == 1: result = pages[0].asarray(memmap=memmap) elif self.is_ome: assert not self.is_palette, "color mapping disabled for ome-tiff" if any(p is None for p in pages): # zero out missing pages firstpage = next(p for p in pages if p) nopage = numpy.zeros_like( firstpage.asarray(memmap=False)) if memmap: with tempfile.NamedTemporaryFile() as fh: result = numpy.memmap(fh, series.dtype, shape=series.shape) result = result.reshape(-1) else: result = numpy.empty(series.shape, series.dtype).reshape(-1) index = 0 class KeepOpen: # keep Tiff files open between consecutive pages def __init__(self, parent, close): self.master = parent self.parent = parent self._close = close def open(self, page): if self._close and page and page.parent != self.parent: if self.parent != self.master: self.parent.filehandle.close() self.parent = page.parent self.parent.filehandle.open() def close(self): if self._close and self.parent != self.master: self.parent.filehandle.close() keep = KeepOpen(self, self._multifile_close) for page in pages: keep.open(page) if page: a = page.asarray(memmap=False, colormapped=False, reopen=False) else: a = nopage try: result[index:index + a.size] = a.reshape(-1) except ValueError as e: warnings.warn("ome-tiff: %s" % e) break index += a.size keep.close() else: result = stack_pages(pages, memmap=memmap) if key is None: try: result.shape = series.shape except ValueError: try: warnings.warn("failed to reshape %s to %s" % ( result.shape, series.shape)) # try series of expected shapes result.shape = (-1,) + series.shape except ValueError: # revert to generic shape result.shape = (-1,) + pages[0].shape elif len(pages) == 1: result.shape = pages[0].shape else: result.shape = (-1,) + pages[0].shape return result @lazyattr def series(self): """Return series of TiffPage with compatible shape and properties.""" if not self.pages: return [] series = [] if self.is_ome: series = self._ome_series() elif self.is_fluoview: series = self._fluoview_series() elif self.is_lsm: series = self._lsm_series() elif self.is_imagej: series = self._imagej_series() elif self.is_nih: series = self._nih_series() if not series: # generic detection of series shapes = [] pages = {} index = 0 for page in self.pages: if not page.shape: continue if page.is_shaped: index += 1 # shape starts a new series shape = page.shape + (index, page.axes, page.compression in TIFF_DECOMPESSORS) if shape in pages: pages[shape].append(page) else: shapes.append(shape) pages[shape] = [page] series = [] for s in shapes: shape = ((len(pages[s]),) + s[:-3] if len(pages[s]) > 1 else s[:-3]) axes = (('I' + s[-2]) if len(pages[s]) > 1 else s[-2]) page0 = pages[s][0] if page0.is_shaped: description = page0.is_shaped metadata = image_description_dict(description) if product(metadata.get('shape', shape)) == product(shape): shape = metadata.get('shape', shape) else: warnings.warn( "metadata shape doesn't match data shape") if 'axes' in metadata: axes = metadata['axes'] if len(axes) != len(shape): warnings.warn("axes don't match shape") axes = 'Q'*(len(shape)-len(axes)) + axes[-len(shape):] series.append( TiffPageSeries(pages[s], shape, page0.dtype, axes)) # remove empty series, e.g. in MD Gel files series = [s for s in series if sum(s.shape) > 0] return series def _fluoview_series(self): """Return image series in FluoView file.""" page0 = self.pages[0] dims = { b'X': 'X', b'Y': 'Y', b'Z': 'Z', b'T': 'T', b'WAVELENGTH': 'C', b'TIME': 'T', b'XY': 'R', b'EVENT': 'V', b'EXPOSURE': 'L'} mmhd = list(reversed(page0.mm_header.dimensions)) axes = ''.join(dims.get(i[0].strip().upper(), 'Q') for i in mmhd if i[1] > 1) shape = tuple(int(i[1]) for i in mmhd if i[1] > 1) return [TiffPageSeries(self.pages, shape, page0.dtype, axes)] def _lsm_series(self): """Return image series in LSM file.""" page0 = self.pages[0] lsmi = page0.cz_lsm_info axes = CZ_SCAN_TYPES[lsmi.scan_type] if page0.is_rgb: axes = axes.replace('C', '').replace('XY', 'XYC') axes = axes[::-1] shape = tuple(getattr(lsmi, CZ_DIMENSIONS[i]) for i in axes) pages = [p for p in self.pages if not p.is_reduced] dtype = pages[0].dtype series = [TiffPageSeries(pages, shape, dtype, axes)] if len(pages) != len(self.pages): # reduced RGB pages pages = [p for p in self.pages if p.is_reduced] cp = 1 i = 0 while cp < len(pages) and i < len(shape)-2: cp *= shape[i] i += 1 shape = shape[:i] + pages[0].shape axes = axes[:i] + 'CYX' dtype = pages[0].dtype series.append(TiffPageSeries(pages, shape, dtype, axes)) return series def _imagej_series(self): """Return image series in ImageJ file.""" # ImageJ's dimension order is always TZCYXS # TODO: fix loading of color, composite or palette images shape = [] axes = [] page0 = self.pages[0] ij = page0.imagej_tags if 'frames' in ij: shape.append(ij['frames']) axes.append('T') if 'slices' in ij: shape.append(ij['slices']) axes.append('Z') if 'channels' in ij and not (self.is_rgb and not ij.get('hyperstack', False)): shape.append(ij['channels']) axes.append('C') remain = ij.get('images', len(self.pages)) // (product(shape) if shape else 1) if remain > 1: shape.append(remain) axes.append('I') if page0.axes[0] == 'I': # contiguous multiple images shape.extend(page0.shape[1:]) axes.extend(page0.axes[1:]) elif page0.axes[:2] == 'SI': # color-mapped contiguous multiple images shape = page0.shape[0:1] + tuple(shape) + page0.shape[2:] axes = list(page0.axes[0]) + axes + list(page0.axes[2:]) else: shape.extend(page0.shape) axes.extend(page0.axes) return [TiffPageSeries(self.pages, shape, page0.dtype, axes)] def _nih_series(self): """Return image series in NIH file.""" page0 = self.pages[0] if len(self.pages) == 1: shape = page0.shape axes = page0.axes else: shape = (len(self.pages),) + page0.shape axes = 'I' + page0.axes return [TiffPageSeries(self.pages, shape, page0.dtype, axes)] def _ome_series(self): """Return image series in OME-TIFF file(s).""" omexml = self.pages[0].tags['image_description'].value omexml = omexml.decode('UTF-8', 'ignore') root = etree.fromstring(omexml) uuid = root.attrib.get('UUID', None) self._files = {uuid: self} dirname = self._fh.dirname modulo = {} series = [] for element in root: if element.tag.endswith('BinaryOnly'): warnings.warn("ome-xml: not an ome-tiff master file") break if element.tag.endswith('StructuredAnnotations'): for annot in element: if not annot.attrib.get('Namespace', '').endswith('modulo'): continue for value in annot: for modul in value: for along in modul: if not along.tag[:-1].endswith('Along'): continue axis = along.tag[-1] newaxis = along.attrib.get('Type', 'other') newaxis = AXES_LABELS[newaxis] if 'Start' in along.attrib: labels = range( int(along.attrib['Start']), int(along.attrib['End']) + 1, int(along.attrib.get('Step', 1))) else: labels = [label.text for label in along if label.tag.endswith('Label')] modulo[axis] = (newaxis, labels) if not element.tag.endswith('Image'): continue for pixels in element: if not pixels.tag.endswith('Pixels'): continue atr = pixels.attrib dtype = atr.get('Type', None) axes = ''.join(reversed(atr['DimensionOrder'])) shape = list(int(atr['Size'+ax]) for ax in axes) size = product(shape[:-2]) ifds = [None] * size for data in pixels: if not data.tag.endswith('TiffData'): continue atr = data.attrib ifd = int(atr.get('IFD', 0)) num = int(atr.get('NumPlanes', 1 if 'IFD' in atr else 0)) num = int(atr.get('PlaneCount', num)) idx = [int(atr.get('First'+ax, 0)) for ax in axes[:-2]] try: idx = numpy.ravel_multi_index(idx, shape[:-2]) except ValueError: # ImageJ produces invalid ome-xml when cropping warnings.warn("ome-xml: invalid TiffData index") continue for uuid in data: if not uuid.tag.endswith('UUID'): continue if uuid.text not in self._files: if not self._multifile: # abort reading multifile OME series # and fall back to generic series return [] fname = uuid.attrib['FileName'] try: tif = TiffFile(os.path.join(dirname, fname)) except (IOError, ValueError): tif.close() warnings.warn( "ome-xml: failed to read '%s'" % fname) break self._files[uuid.text] = tif if self._multifile_close: tif.close() pages = self._files[uuid.text].pages try: for i in range(num if num else len(pages)): ifds[idx + i] = pages[ifd + i] except IndexError: warnings.warn("ome-xml: index out of range") # only process first uuid break else: pages = self.pages try: for i in range(num if num else len(pages)): ifds[idx + i] = pages[ifd + i] except IndexError: warnings.warn("ome-xml: index out of range") if all(i is None for i in ifds): # skip images without data continue dtype = next(i for i in ifds if i).dtype series.append(TiffPageSeries(ifds, shape, dtype, axes, self)) for serie in series: shape = list(serie.shape) for axis, (newaxis, labels) in modulo.items(): i = serie.axes.index(axis) size = len(labels) if shape[i] == size: serie.axes = serie.axes.replace(axis, newaxis, 1) else: shape[i] //= size shape.insert(i+1, size) serie.axes = serie.axes.replace(axis, axis+newaxis, 1) serie.shape = tuple(shape) # squeeze dimensions for serie in series: serie.shape, serie.axes = squeeze_axes(serie.shape, serie.axes) return series def __len__(self): """Return number of image pages in file.""" return len(self.pages) def __getitem__(self, key): """Return specified page.""" return self.pages[key] def __iter__(self): """Return iterator over pages.""" return iter(self.pages) def __str__(self): """Return string containing information about file.""" result = [ self._fh.name.capitalize(), format_size(self._fh.size), {'<': 'little endian', '>': 'big endian'}[self.byteorder]] if self.is_bigtiff: result.append("bigtiff") if len(self.pages) > 1: result.append("%i pages" % len(self.pages)) if len(self.series) > 1: result.append("%i series" % len(self.series)) if len(self._files) > 1: result.append("%i files" % (len(self._files))) return ", ".join(result) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() @lazyattr def fstat(self): try: return os.fstat(self._fh.fileno()) except Exception: # io.UnsupportedOperation return None @lazyattr def is_bigtiff(self): """File has BigTIFF format.""" return self.offset_size != 4 @lazyattr def is_rgb(self): """File contains only RGB images.""" return all(p.is_rgb for p in self.pages) @lazyattr def is_palette(self): """File contains only color-mapped images.""" return all(p.is_palette for p in self.pages) @lazyattr def is_mdgel(self): """File has MD Gel format.""" return any(p.is_mdgel for p in self.pages) @lazyattr def is_mediacy(self): """File was created by Media Cybernetics software.""" return any(p.is_mediacy for p in self.pages) @lazyattr def is_stk(self): """File has MetaMorph STK format.""" return all(p.is_stk for p in self.pages) @lazyattr def is_lsm(self): """File was created by Carl Zeiss software.""" return len(self.pages) and self.pages[0].is_lsm @lazyattr def is_vista(self): """File was created by ISS Vista.""" return len(self.pages) and self.pages[0].is_vista @lazyattr def is_imagej(self): """File has ImageJ format.""" return len(self.pages) and self.pages[0].is_imagej @lazyattr def is_micromanager(self): """File was created by MicroManager.""" return len(self.pages) and self.pages[0].is_micromanager @lazyattr def is_nih(self): """File has NIH Image format.""" return len(self.pages) and self.pages[0].is_nih @lazyattr def is_fluoview(self): """File was created by Olympus FluoView.""" return len(self.pages) and self.pages[0].is_fluoview @lazyattr def is_ome(self): """File has OME-TIFF format.""" return len(self.pages) and self.pages[0].is_ome class TiffPage(object): """A TIFF image file directory (IFD). Attributes ---------- index : int Index of page in file. dtype : str {TIFF_SAMPLE_DTYPES} Data type of image, color-mapped if applicable. shape : tuple Dimensions of the image array in TIFF page, color-mapped and with extra samples if applicable. axes : str Axes label codes: 'X' width, 'Y' height, 'S' sample, 'I' image series|page|plane, 'Z' depth, 'C' color|em-wavelength|channel, 'E' ex-wavelength|lambda, 'T' time, 'R' region|tile, 'A' angle, 'P' phase, 'H' lifetime, 'L' exposure, 'V' event, 'Q' unknown, '_' missing tags : TiffTags Dictionary of tags in page. Tag values are also directly accessible as attributes. color_map : numpy.ndarray Color look up table, if exists. cz_lsm_scan_info: Record(dict) LSM scan info attributes, if exists. imagej_tags: Record(dict) Consolidated ImageJ description and metadata tags, if exists. uic_tags: Record(dict) Consolidated MetaMorph STK/UIC tags, if exists. All attributes are read-only. Notes ----- The internal, normalized '_shape' attribute is 6 dimensional: 0. number planes/images (stk, ij). 1. planar samples_per_pixel. 2. image_depth Z (sgi). 3. image_length Y. 4. image_width X. 5. contig samples_per_pixel. """ def __init__(self, parent): """Initialize instance from file.""" self.parent = parent self.index = len(parent.pages) self.shape = self._shape = () self.dtype = self._dtype = None self.axes = "" self.tags = TiffTags() self._offset = 0 self._fromfile() self._process_tags() def _fromfile(self): """Read TIFF IFD structure and its tags from file. File cursor must be at storage position of IFD offset and is left at offset to next IFD. Raises StopIteration if offset (first bytes read) is 0 or a corrupted page list is encountered. """ fh = self.parent.filehandle byteorder = self.parent.byteorder offset_size = self.parent.offset_size # read offset to this IFD fmt = {4: 'I', 8: 'Q'}[offset_size] offset = struct.unpack(byteorder + fmt, fh.read(offset_size))[0] if not offset: raise StopIteration() if offset >= fh.size: warnings.warn("invalid page offset > file size") raise StopIteration() self._offset = offset # read standard tags tags = self.tags fh.seek(offset) fmt, size = {4: ('H', 2), 8: ('Q', 8)}[offset_size] try: numtags = struct.unpack(byteorder + fmt, fh.read(size))[0] if numtags > 4096: raise ValueError("suspicious number of tags") except Exception: warnings.warn("corrupted page list at offset %i" % offset) raise StopIteration() tagcode = 0 for _ in range(numtags): try: tag = TiffTag(self.parent) except TiffTag.Error as e: warnings.warn(str(e)) continue if tagcode > tag.code: # expected for early LSM and tifffile versions warnings.warn("tags are not ordered by code") tagcode = tag.code if tag.name not in tags: tags[tag.name] = tag else: # some files contain multiple IFD with same code # e.g. MicroManager files contain two image_description i = 1 while True: name = "%s_%i" % (tag.name, i) if name not in tags: tags[name] = tag break pos = fh.tell() # where offset to next IFD can be found if self.is_lsm or (self.index and self.parent.is_lsm): # correct non standard LSM bitspersample tags self.tags['bits_per_sample']._fix_lsm_bitspersample(self) if self.is_lsm: # read LSM info subrecords for name, reader in CZ_LSM_INFO_READERS.items(): try: offset = self.cz_lsm_info['offset_'+name] except KeyError: continue if offset < 8: # older LSM revision continue fh.seek(offset) try: setattr(self, 'cz_lsm_'+name, reader(fh)) except ValueError: pass elif self.is_stk and 'uic1tag' in tags and not tags['uic1tag'].value: # read uic1tag now that plane count is known uic1tag = tags['uic1tag'] fh.seek(uic1tag.value_offset) tags['uic1tag'].value = Record( read_uic1tag(fh, byteorder, uic1tag.dtype, uic1tag.count, tags['uic2tag'].count)) fh.seek(pos) def _process_tags(self): """Validate standard tags and initialize attributes. Raise ValueError if tag values are not supported. """ tags = self.tags for code, (name, default, dtype, count, validate) in TIFF_TAGS.items(): if not (name in tags or default is None): tags[name] = TiffTag(code, dtype=dtype, count=count, value=default, name=name) if name in tags and validate: try: if tags[name].count == 1: setattr(self, name, validate[tags[name].value]) else: setattr(self, name, tuple( validate[value] for value in tags[name].value)) except KeyError: raise ValueError("%s.value (%s) not supported" % (name, tags[name].value)) tag = tags['bits_per_sample'] if tag.count == 1: self.bits_per_sample = tag.value else: # LSM might list more items than samples_per_pixel value = tag.value[:self.samples_per_pixel] if any((v-value[0] for v in value)): self.bits_per_sample = value else: self.bits_per_sample = value[0] tag = tags['sample_format'] if tag.count == 1: self.sample_format = TIFF_SAMPLE_FORMATS[tag.value] else: value = tag.value[:self.samples_per_pixel] if any((v-value[0] for v in value)): self.sample_format = [TIFF_SAMPLE_FORMATS[v] for v in value] else: self.sample_format = TIFF_SAMPLE_FORMATS[value[0]] if 'photometric' not in tags: self.photometric = None if 'image_depth' not in tags: self.image_depth = 1 if 'image_length' in tags: self.strips_per_image = int(math.floor( float(self.image_length + self.rows_per_strip - 1) / self.rows_per_strip)) else: self.strips_per_image = 0 key = (self.sample_format, self.bits_per_sample) self.dtype = self._dtype = TIFF_SAMPLE_DTYPES.get(key, None) if 'image_length' not in self.tags or 'image_width' not in self.tags: # some GEL file pages are missing image data self.image_length = 0 self.image_width = 0 self.image_depth = 0 self.strip_offsets = 0 self._shape = () self.shape = () self.axes = '' if self.is_vista or self.parent.is_vista: # ISS Vista writes wrong image_depth tag self.image_depth = 1 if self.is_palette: self.dtype = self.tags['color_map'].dtype[1] self.color_map = numpy.array(self.color_map, self.dtype) dmax = self.color_map.max() if dmax < 256: self.dtype = numpy.uint8 self.color_map = self.color_map.astype(self.dtype) #else: # self.dtype = numpy.uint8 # self.color_map >>= 8 # self.color_map = self.color_map.astype(self.dtype) self.color_map.shape = (3, -1) # determine shape of data image_length = self.image_length image_width = self.image_width image_depth = self.image_depth samples_per_pixel = self.samples_per_pixel if self.is_stk: assert self.image_depth == 1 planes = self.tags['uic2tag'].count if self.is_contig: self._shape = (planes, 1, 1, image_length, image_width, samples_per_pixel) if samples_per_pixel == 1: self.shape = (planes, image_length, image_width) self.axes = 'YX' else: self.shape = (planes, image_length, image_width, samples_per_pixel) self.axes = 'YXS' else: self._shape = (planes, samples_per_pixel, 1, image_length, image_width, 1) if samples_per_pixel == 1: self.shape = (planes, image_length, image_width) self.axes = 'YX' else: self.shape = (planes, samples_per_pixel, image_length, image_width) self.axes = 'SYX' # detect type of series if planes == 1: self.shape = self.shape[1:] elif numpy.all(self.uic2tag.z_distance != 0): self.axes = 'Z' + self.axes elif numpy.all(numpy.diff(self.uic2tag.time_created) != 0): self.axes = 'T' + self.axes else: self.axes = 'I' + self.axes # DISABLED if self.is_palette: assert False, "color mapping disabled for stk" if self.color_map.shape[1] >= 2**self.bits_per_sample: if image_depth == 1: self.shape = (3, planes, image_length, image_width) else: self.shape = (3, planes, image_depth, image_length, image_width) self.axes = 'S' + self.axes else: warnings.warn("palette cannot be applied") self.is_palette = False elif self.is_palette: samples = 1 if 'extra_samples' in self.tags: samples += len(self.extra_samples) if self.is_contig: self._shape = (1, 1, image_depth, image_length, image_width, samples) else: self._shape = (1, samples, image_depth, image_length, image_width, 1) if self.color_map.shape[1] >= 2**self.bits_per_sample: if image_depth == 1: self.shape = (3, image_length, image_width) self.axes = 'SYX' else: self.shape = (3, image_depth, image_length, image_width) self.axes = 'SZYX' else: warnings.warn("palette cannot be applied") self.is_palette = False if image_depth == 1: self.shape = (image_length, image_width) self.axes = 'YX' else: self.shape = (image_depth, image_length, image_width) self.axes = 'ZYX' elif self.is_rgb or samples_per_pixel > 1: if self.is_contig: self._shape = (1, 1, image_depth, image_length, image_width, samples_per_pixel) if image_depth == 1: self.shape = (image_length, image_width, samples_per_pixel) self.axes = 'YXS' else: self.shape = (image_depth, image_length, image_width, samples_per_pixel) self.axes = 'ZYXS' else: self._shape = (1, samples_per_pixel, image_depth, image_length, image_width, 1) if image_depth == 1: self.shape = (samples_per_pixel, image_length, image_width) self.axes = 'SYX' else: self.shape = (samples_per_pixel, image_depth, image_length, image_width) self.axes = 'SZYX' if False and self.is_rgb and 'extra_samples' in self.tags: # DISABLED: only use RGB and first alpha channel if exists extra_samples = self.extra_samples if self.tags['extra_samples'].count == 1: extra_samples = (extra_samples,) for exs in extra_samples: if exs in ('unassalpha', 'assocalpha', 'unspecified'): if self.is_contig: self.shape = self.shape[:-1] + (4,) else: self.shape = (4,) + self.shape[1:] break else: self._shape = (1, 1, image_depth, image_length, image_width, 1) if image_depth == 1: self.shape = (image_length, image_width) self.axes = 'YX' else: self.shape = (image_depth, image_length, image_width) self.axes = 'ZYX' if not self.compression and 'strip_byte_counts' not in tags: self.strip_byte_counts = ( product(self.shape) * (self.bits_per_sample // 8),) assert len(self.shape) == len(self.axes) def _patch_imagej(self): """Return if ImageJ data are contiguous and adjust page attributes. Patch 'strip_offsets' and 'strip_byte_counts' tags to span the complete contiguous data. ImageJ stores all image metadata in the first page and image data is stored contiguously before the second page, if any. No need to read other pages. """ if not self.is_imagej or not self.is_contiguous: return images = self.imagej_tags.get('images', 0) if images <= 1: return pre = 'tile' if self.is_tiled else 'strip' self.tags[pre+'_offsets'].value = (self.is_contiguous[0],) self.tags[pre+'_byte_counts'].value = (self.is_contiguous[1] * images,) self.shape = (images,) + self.shape self._shape = (images,) + self._shape[1:] self.axes = 'I' + self.axes if self.is_palette: # swap first two dimensions self.axes = self.axes[1::-1] + self.axes[2:] self.shape = self.shape[1::-1] + self.shape[2:] return True def asarray(self, squeeze=True, colormapped=True, rgbonly=False, scale_mdgel=False, memmap=False, reopen=True, maxsize=64*1024*1024*1024): """Read image data from file and return as numpy array. Raise ValueError if format is unsupported. If any of 'squeeze', 'colormapped', or 'rgbonly' are not the default, the shape of the returned array might be different from the page shape. Parameters ---------- squeeze : bool If True, all length-1 dimensions (except X and Y) are squeezed out from result. colormapped : bool If True, color mapping is applied for palette-indexed images. rgbonly : bool If True, return RGB(A) image without additional extra samples. memmap : bool If True, use numpy.memmap to read arrays from file if possible. For use on 64 bit systems and files with few huge contiguous data. reopen : bool If True and the parent file handle is closed, the file is temporarily re-opened (and closed if no exception occurs). scale_mdgel : bool If True, MD Gel data will be scaled according to the private metadata in the second TIFF page. The dtype will be float32. maxsize: int or None Maximum size of data before a ValueError is raised. Can be used to catch DOS. Default: 64 GB. """ if not self._shape: return if maxsize and product(self._shape) > maxsize: raise ValueError("data is too large %s" % str(self._shape)) if self.dtype is None: raise ValueError("data type not supported: %s%i" % ( self.sample_format, self.bits_per_sample)) if self.compression not in TIFF_DECOMPESSORS: raise ValueError("cannot decompress %s" % self.compression) tag = self.tags['sample_format'] if tag.count != 1 and any((i-tag.value[0] for i in tag.value)): raise ValueError("sample formats don't match %s" % str(tag.value)) fh = self.parent.filehandle closed = fh.closed if closed: if reopen: fh.open() else: raise IOError("file handle is closed") dtype = self._dtype shape = self._shape image_width = self.image_width image_length = self.image_length image_depth = self.image_depth typecode = self.parent.byteorder + dtype bits_per_sample = self.bits_per_sample byte_counts, offsets = self._byte_counts_offsets if self.is_tiled: tile_width = self.tile_width tile_length = self.tile_length tile_depth = self.tile_depth if 'tile_depth' in self.tags else 1 tw = (image_width + tile_width - 1) // tile_width tl = (image_length + tile_length - 1) // tile_length td = (image_depth + tile_depth - 1) // tile_depth shape = (shape[0], shape[1], td*tile_depth, tl*tile_length, tw*tile_width, shape[-1]) tile_shape = (tile_depth, tile_length, tile_width, shape[-1]) runlen = tile_width else: runlen = image_width if memmap and self._is_memmappable(rgbonly, colormapped): result = fh.memmap_array(typecode, shape, offset=offsets[0]) elif self.is_contiguous: fh.seek(offsets[0]) result = fh.read_array(typecode, product(shape)) result = result.astype('=' + dtype) else: if self.is_contig: runlen *= self.samples_per_pixel if bits_per_sample in (8, 16, 32, 64, 128): if (bits_per_sample * runlen) % 8: raise ValueError("data and sample size mismatch") def unpack(x, typecode=typecode): if self.predictor == 'float': # the floating point horizontal differencing decoder # needs the raw byte order typecode = dtype try: return numpy.fromstring(x, typecode) except ValueError as e: # strips may be missing EOI warnings.warn("unpack: %s" % e) xlen = ((len(x) // (bits_per_sample // 8)) * (bits_per_sample // 8)) return numpy.fromstring(x[:xlen], typecode) elif isinstance(bits_per_sample, tuple): def unpack(x): return unpack_rgb(x, typecode, bits_per_sample) else: def unpack(x): return unpack_ints(x, typecode, bits_per_sample, runlen) decompress = TIFF_DECOMPESSORS[self.compression] if self.compression == 'jpeg': table = self.jpeg_tables if 'jpeg_tables' in self.tags else b'' def decompress(x): return decode_jpeg(x, table, self.photometric) if self.is_tiled: result = numpy.empty(shape, dtype) tw, tl, td, pl = 0, 0, 0, 0 for offset, bytecount in zip(offsets, byte_counts): fh.seek(offset) tile = unpack(decompress(fh.read(bytecount))) try: tile.shape = tile_shape except ValueError: # incomplete tiles; see gdal issue #1179 warnings.warn("invalid tile data") t = numpy.zeros(tile_shape, dtype).reshape(-1) s = min(tile.size, t.size) t[:s] = tile[:s] tile = t.reshape(tile_shape) if self.predictor == 'horizontal': numpy.cumsum(tile, axis=-2, dtype=dtype, out=tile) elif self.predictor == 'float': raise NotImplementedError() result[0, pl, td:td+tile_depth, tl:tl+tile_length, tw:tw+tile_width, :] = tile del tile tw += tile_width if tw >= shape[4]: tw, tl = 0, tl + tile_length if tl >= shape[3]: tl, td = 0, td + tile_depth if td >= shape[2]: td, pl = 0, pl + 1 result = result[..., :image_depth, :image_length, :image_width, :] else: strip_size = (self.rows_per_strip * self.image_width * self.samples_per_pixel) result = numpy.empty(shape, dtype).reshape(-1) index = 0 for offset, bytecount in zip(offsets, byte_counts): fh.seek(offset) strip = fh.read(bytecount) strip = decompress(strip) strip = unpack(strip) size = min(result.size, strip.size, strip_size, result.size - index) result[index:index+size] = strip[:size] del strip index += size result.shape = self._shape if self.predictor and not (self.is_tiled and not self.is_contiguous): if self.parent.is_lsm and not self.compression: pass # work around bug in LSM510 software elif self.predictor == 'horizontal': numpy.cumsum(result, axis=-2, dtype=dtype, out=result) elif self.predictor == 'float': result = decode_floats(result) if colormapped and self.is_palette: if self.color_map.shape[1] >= 2**bits_per_sample: # FluoView and LSM might fail here result = numpy.take(self.color_map, result[:, 0:1, :, :, :, 0:1], axis=1) elif rgbonly and self.is_rgb and 'extra_samples' in self.tags: # return only RGB and first alpha channel if exists extra_samples = self.extra_samples if self.tags['extra_samples'].count == 1: extra_samples = (extra_samples,) for i, exs in enumerate(extra_samples): if exs in ('unassalpha', 'assocalpha', 'unspecified'): if self.is_contig: result = result[..., [0, 1, 2, 3+i]] else: result = result[:, [0, 1, 2, 3+i]] break else: if self.is_contig: result = result[..., :3] else: result = result[:, :3] if squeeze: try: result.shape = self.shape except ValueError: warnings.warn("failed to reshape from %s to %s" % ( str(result.shape), str(self.shape))) if scale_mdgel and self.parent.is_mdgel: # MD Gel stores private metadata in the second page tags = self.parent.pages[1] if tags.md_file_tag in (2, 128): scale = tags.md_scale_pixel scale = scale[0] / scale[1] # rational result = result.astype('float32') if tags.md_file_tag == 2: result **= 2 # squary root data format result *= scale if closed: # TODO: file should remain open if an exception occurred above fh.close() return result @lazyattr def _byte_counts_offsets(self): """Return simplified byte_counts and offsets.""" if 'tile_offsets' in self.tags: byte_counts = self.tile_byte_counts offsets = self.tile_offsets else: byte_counts = self.strip_byte_counts offsets = self.strip_offsets j = 0 for i, (b, o) in enumerate(zip(byte_counts, offsets)): if b > 0 and o > 0: if i > j: byte_counts[j] = b offsets[j] = o j += 1 elif b > 0 and o <= 0: raise ValueError("invalid offset") else: warnings.warn("empty byte count") if j == 0: j = 1 return byte_counts[:j], offsets[:j] def _is_memmappable(self, rgbonly, colormapped): """Return if page's image data in file can be memory-mapped.""" return (self.parent.filehandle.is_file and self.is_contiguous and (self.bits_per_sample == 8 or self.parent._is_native) and not self.predictor and not (rgbonly and 'extra_samples' in self.tags) and not (colormapped and self.is_palette)) @lazyattr def is_contiguous(self): """Return offset and size of contiguous data, else None. Excludes prediction and colormapping. """ if self.compression or self.bits_per_sample not in (8, 16, 32, 64): return if self.is_tiled: if (self.image_width != self.tile_width or self.image_length % self.tile_length or self.tile_width % 16 or self.tile_length % 16): return if ('image_depth' in self.tags and 'tile_depth' in self.tags and (self.image_length != self.tile_length or self.image_depth % self.tile_depth)): return offsets = self.tile_offsets byte_counts = self.tile_byte_counts else: offsets = self.strip_offsets byte_counts = self.strip_byte_counts if len(offsets) == 1: return offsets[0], byte_counts[0] if self.is_stk or all(offsets[i] + byte_counts[i] == offsets[i+1] or byte_counts[i+1] == 0 # no data/ignore offset for i in range(len(offsets)-1)): return offsets[0], sum(byte_counts) def __str__(self): """Return string containing information about page.""" s = ', '.join(s for s in ( ' x '.join(str(i) for i in self.shape), str(numpy.dtype(self.dtype)), '%s bit' % str(self.bits_per_sample), self.photometric if 'photometric' in self.tags else '', self.compression if self.compression else 'raw', '|'.join(t[3:] for t in ( 'is_stk', 'is_lsm', 'is_nih', 'is_ome', 'is_imagej', 'is_micromanager', 'is_fluoview', 'is_mdgel', 'is_mediacy', 'is_sgi', 'is_reduced', 'is_tiled', 'is_contiguous') if getattr(self, t))) if s) return "Page %i: %s" % (self.index, s) def __getattr__(self, name): """Return tag value.""" if name in self.tags: value = self.tags[name].value setattr(self, name, value) return value raise AttributeError(name) @lazyattr def uic_tags(self): """Consolidate UIC tags.""" if not self.is_stk: raise AttributeError("uic_tags") tags = self.tags result = Record() result.number_planes = tags['uic2tag'].count if 'image_description' in tags: result.plane_descriptions = self.image_description.split(b'\x00') if 'uic1tag' in tags: result.update(tags['uic1tag'].value) if 'uic3tag' in tags: result.update(tags['uic3tag'].value) # wavelengths if 'uic4tag' in tags: result.update(tags['uic4tag'].value) # override uic1 tags uic2tag = tags['uic2tag'].value result.z_distance = uic2tag.z_distance result.time_created = uic2tag.time_created result.time_modified = uic2tag.time_modified try: result.datetime_created = [ julian_datetime(*dt) for dt in zip(uic2tag.date_created, uic2tag.time_created)] result.datetime_modified = [ julian_datetime(*dt) for dt in zip(uic2tag.date_modified, uic2tag.time_modified)] except ValueError as e: warnings.warn("uic_tags: %s" % e) return result @lazyattr def imagej_tags(self): """Consolidate ImageJ metadata.""" if not self.is_imagej: raise AttributeError("imagej_tags") result = imagej_description_dict(self.is_imagej) if 'imagej_metadata' in self.tags: try: result.update(imagej_metadata( self.tags['imagej_metadata'].value, self.tags['imagej_byte_counts'].value, self.parent.byteorder)) except Exception as e: warnings.warn(str(e)) return Record(result) @lazyattr def is_rgb(self): """Page contains a RGB image.""" return ('photometric' in self.tags and self.tags['photometric'].value == 2) @lazyattr def is_contig(self): """Page contains contiguous image.""" return ('planar_configuration' in self.tags and self.tags['planar_configuration'].value == 1) @lazyattr def is_palette(self): """Page contains palette-colored image and is not OME or STK.""" # turn off color mapping for OME-TIFF and STK if self.is_stk or self.is_ome or self.parent.is_ome: return False return ('photometric' in self.tags and self.tags['photometric'].value == 3) @lazyattr def is_tiled(self): """Page contains tiled image.""" return 'tile_width' in self.tags @lazyattr def is_reduced(self): """Page is reduced image of another image.""" return bool(self.tags['new_subfile_type'].value & 1) @lazyattr def is_mdgel(self): """Page contains md_file_tag tag.""" return 'md_file_tag' in self.tags @lazyattr def is_mediacy(self): """Page contains Media Cybernetics Id tag.""" return ('mc_id' in self.tags and self.tags['mc_id'].value.startswith(b'MC TIFF')) @lazyattr def is_stk(self): """Page contains UIC2Tag tag.""" return 'uic2tag' in self.tags @lazyattr def is_lsm(self): """Page contains LSM CZ_LSM_INFO tag.""" return 'cz_lsm_info' in self.tags @lazyattr def is_fluoview(self): """Page contains FluoView MM_STAMP tag.""" return 'mm_stamp' in self.tags @lazyattr def is_nih(self): """Page contains NIH image header.""" return 'nih_image_header' in self.tags @lazyattr def is_sgi(self): """Page contains SGI image and tile depth tags.""" return 'image_depth' in self.tags and 'tile_depth' in self.tags @lazyattr def is_vista(self): """Software tag is 'ISS Vista'.""" return ('software' in self.tags and self.tags['software'].value == b'ISS Vista') @lazyattr def is_ome(self): """Page contains OME-XML in image_description tag.""" if 'image_description' not in self.tags: return False d = self.tags['image_description'].value.strip() return d.startswith(b'') @lazyattr def is_shaped(self): """Return description containing shape if exists, else None.""" if 'image_description' in self.tags: description = self.tags['image_description'].value if b'"shape":' in description or b'shape=(' in description: return description if 'image_description_1' in self.tags: description = self.tags['image_description_1'].value if b'"shape":' in description or b'shape=(' in description: return description @lazyattr def is_imagej(self): """Return ImageJ description if exists, else None.""" if 'image_description' in self.tags: description = self.tags['image_description'].value if description.startswith(b'ImageJ='): return description if 'image_description_1' in self.tags: # Micromanager description = self.tags['image_description_1'].value if description.startswith(b'ImageJ='): return description @lazyattr def is_micromanager(self): """Page contains Micro-Manager metadata.""" return 'micromanager_metadata' in self.tags class TiffTag(object): """A TIFF tag structure. Attributes ---------- name : string Attribute name of tag. code : int Decimal code of tag. dtype : str Datatype of tag data. One of TIFF_DATA_TYPES. count : int Number of values. value : various types Tag data as Python object. value_offset : int Location of value in file, if any. All attributes are read-only. """ __slots__ = ('code', 'name', 'count', 'dtype', 'value', 'value_offset', '_offset', '_value', '_type') class Error(Exception): pass def __init__(self, arg, **kwargs): """Initialize instance from file or arguments.""" self._offset = None if hasattr(arg, '_fh'): self._fromfile(arg, **kwargs) else: self._fromdata(arg, **kwargs) def _fromdata(self, code, dtype, count, value, name=None): """Initialize instance from arguments.""" self.code = int(code) self.name = name if name else str(code) self.dtype = TIFF_DATA_TYPES[dtype] self.count = int(count) self.value = value self._value = value self._type = dtype def _fromfile(self, parent): """Read tag structure from open file. Advance file cursor.""" fh = parent.filehandle byteorder = parent.byteorder self._offset = fh.tell() self.value_offset = self._offset + parent.offset_size + 4 fmt, size = {4: ('HHI4s', 12), 8: ('HHQ8s', 20)}[parent.offset_size] data = fh.read(size) code, dtype = struct.unpack(byteorder + fmt[:2], data[:4]) count, value = struct.unpack(byteorder + fmt[2:], data[4:]) self._value = value self._type = dtype if code in TIFF_TAGS: name = TIFF_TAGS[code][0] elif code in CUSTOM_TAGS: name = CUSTOM_TAGS[code][0] else: name = str(code) try: dtype = TIFF_DATA_TYPES[self._type] except KeyError: raise TiffTag.Error("unknown tag data type %i" % self._type) fmt = '%s%i%s' % (byteorder, count*int(dtype[0]), dtype[1]) size = struct.calcsize(fmt) if size > parent.offset_size or code in CUSTOM_TAGS: pos = fh.tell() tof = {4: 'I', 8: 'Q'}[parent.offset_size] self.value_offset = offset = struct.unpack(byteorder+tof, value)[0] if offset < 0 or offset > parent.filehandle.size: raise TiffTag.Error("corrupt file - invalid tag value offset") elif offset < 4: raise TiffTag.Error("corrupt value offset for tag %i" % code) fh.seek(offset) if code in CUSTOM_TAGS: readfunc = CUSTOM_TAGS[code][1] value = readfunc(fh, byteorder, dtype, count) if isinstance(value, dict): # numpy.core.records.record value = Record(value) elif code in TIFF_TAGS or dtype[-1] == 's': value = struct.unpack(fmt, fh.read(size)) else: value = read_numpy(fh, byteorder, dtype, count) fh.seek(pos) else: value = struct.unpack(fmt, value[:size]) if code not in CUSTOM_TAGS and code not in (273, 279, 324, 325): # scalar value if not strip/tile offsets/byte_counts if len(value) == 1: value = value[0] if (dtype.endswith('s') and isinstance(value, bytes) and self._type != 7): # TIFF ASCII fields can contain multiple strings, # each terminated with a NUL value = stripascii(value) self.code = code self.name = name self.dtype = dtype self.count = count self.value = value def _fix_lsm_bitspersample(self, parent): """Correct LSM bitspersample tag. Old LSM writers may use a separate region for two 16-bit values, although they fit into the tag value element of the tag. """ if self.code == 258 and self.count == 2: # TODO: test this case; need example file warnings.warn("correcting LSM bitspersample tag") fh = parent.filehandle tof = {4: '') def __str__(self): """Return string containing information about tag.""" return ' '.join(str(getattr(self, s)) for s in self.__slots__) class TiffPageSeries(object): """Series of TIFF pages with compatible shape and data type. Attributes ---------- pages : list of TiffPage Sequence of TiffPages in series. dtype : numpy.dtype or str Data type of the image array in series. shape : tuple Dimensions of the image array in series. axes : str Labels of axes in shape. See TiffPage.axes. """ __slots__ = 'pages', 'shape', 'dtype', 'axes', 'parent' def __init__(self, pages, shape, dtype, axes, parent=None): self.pages = pages self.shape = tuple(shape) self.axes = ''.join(axes) self.dtype = numpy.dtype(dtype) if parent: self.parent = parent elif len(pages): self.parent = pages[0].parent else: self.parent = None def asarray(self, memmap=False): """Return image data from series of TIFF pages as numpy array. Parameters ---------- memmap : bool If True, return an array stored in a binary file on disk if possible. """ if self.parent: return self.parent.asarray(series=self, memmap=memmap) def __len__(self): """Return number of TiffPages in series.""" return len(self.pages) def __getitem__(self, key): """Return specified TiffPage.""" return self.pages[key] def __iter__(self): """Return iterator over TiffPages in series.""" return iter(self.pages) def __str__(self): """Return string with information about series.""" return "* pages: %i\n* dtype: %s\n* shape: %s\n* axes: %s" % ( len(self.pages), str(self.dtype), str(self.shape), self.axes) class TiffSequence(object): """Sequence of image files. The data shape and dtype of all files must match. Attributes ---------- files : list List of file names. shape : tuple Shape of image sequence. axes : str Labels of axes in shape. Examples -------- >>> tifs = TiffSequence("test.oif.files/*.tif") >>> tifs.shape, tifs.axes ((2, 100), 'CT') >>> data = tifs.asarray() >>> data.shape (2, 100, 256, 256) """ _patterns = { 'axes': r""" # matches Olympus OIF and Leica TIFF series _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4})) _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? """} class ParseError(Exception): pass def __init__(self, files, imread=TiffFile, pattern='axes', *args, **kwargs): """Initialize instance from multiple files. Parameters ---------- files : str, or sequence of str Glob pattern or sequence of file names. imread : function or class Image read function or class with asarray function returning numpy array from single file. pattern : str Regular expression pattern that matches axes names and sequence indices in file names. By default this matches Olympus OIF and Leica TIFF series. """ if isinstance(files, basestring): files = natural_sorted(glob.glob(files)) files = list(files) if not files: raise ValueError("no files found") #if not os.path.isfile(files[0]): # raise ValueError("file not found") self.files = files if hasattr(imread, 'asarray'): # redefine imread _imread = imread def imread(fname, *args, **kwargs): with _imread(fname) as im: return im.asarray(*args, **kwargs) self.imread = imread self.pattern = self._patterns.get(pattern, pattern) try: self._parse() if not self.axes: self.axes = 'I' except self.ParseError: self.axes = 'I' self.shape = (len(files),) self._start_index = (0,) self._indices = tuple((i,) for i in range(len(files))) def __str__(self): """Return string with information about image sequence.""" return "\n".join([ self.files[0], '* files: %i' % len(self.files), '* axes: %s' % self.axes, '* shape: %s' % str(self.shape)]) def __len__(self): return len(self.files) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): pass def asarray(self, memmap=False, *args, **kwargs): """Read image data from all files and return as single numpy array. If memmap is True, return an array stored in a binary file on disk. The args and kwargs parameters are passed to the imread function. Raise IndexError or ValueError if image shapes don't match. """ im = self.imread(self.files[0], *args, **kwargs) shape = self.shape + im.shape if memmap: with tempfile.NamedTemporaryFile() as fh: result = numpy.memmap(fh, dtype=im.dtype, shape=shape) else: result = numpy.zeros(shape, dtype=im.dtype) result = result.reshape(-1, *im.shape) for index, fname in zip(self._indices, self.files): index = [i-j for i, j in zip(index, self._start_index)] index = numpy.ravel_multi_index(index, self.shape) im = self.imread(fname, *args, **kwargs) result[index] = im result.shape = shape return result def _parse(self): """Get axes and shape from file names.""" if not self.pattern: raise self.ParseError("invalid pattern") pattern = re.compile(self.pattern, re.IGNORECASE | re.VERBOSE) matches = pattern.findall(self.files[0]) if not matches: raise self.ParseError("pattern doesn't match file names") matches = matches[-1] if len(matches) % 2: raise self.ParseError("pattern doesn't match axis name and index") axes = ''.join(m for m in matches[::2] if m) if not axes: raise self.ParseError("pattern doesn't match file names") indices = [] for fname in self.files: matches = pattern.findall(fname)[-1] if axes != ''.join(m for m in matches[::2] if m): raise ValueError("axes don't match within the image sequence") indices.append([int(m) for m in matches[1::2] if m]) shape = tuple(numpy.max(indices, axis=0)) start_index = tuple(numpy.min(indices, axis=0)) shape = tuple(i-j+1 for i, j in zip(shape, start_index)) if product(shape) != len(self.files): warnings.warn("files are missing. Missing data are zeroed") self.axes = axes.upper() self.shape = shape self._indices = indices self._start_index = start_index class Record(dict): """Dictionary with attribute access. Can also be initialized with numpy.core.records.record. """ __slots__ = () def __init__(self, arg=None, **kwargs): if kwargs: arg = kwargs elif arg is None: arg = {} try: dict.__init__(self, arg) except (TypeError, ValueError): for i, name in enumerate(arg.dtype.names): v = arg[i] self[name] = v if v.dtype.char != 'S' else stripnull(v) def __getattr__(self, name): return self[name] def __setattr__(self, name, value): self.__setitem__(name, value) def __str__(self): """Pretty print Record.""" s = [] lists = [] for k in sorted(self): try: if k.startswith('_'): # does not work with byte continue except AttributeError: pass v = self[k] if isinstance(v, (list, tuple)) and len(v): if isinstance(v[0], Record): lists.append((k, v)) continue elif isinstance(v[0], TiffPage): v = [i.index for i in v if i] s.append( ("* %s: %s" % (k, str(v))).split("\n", 1)[0] [:PRINT_LINE_LEN].rstrip()) for k, v in lists: l = [] for i, w in enumerate(v): l.append("* %s[%i]\n %s" % (k, i, str(w).replace("\n", "\n "))) s.append('\n'.join(l)) return '\n'.join(s) class TiffTags(Record): """Dictionary of TiffTag with attribute access.""" def __str__(self): """Return string with information about all tags.""" s = [] for tag in sorted(self.values(), key=lambda x: x.code): typecode = "%i%s" % (tag.count * int(tag.dtype[0]), tag.dtype[1]) line = "* %i %s (%s) %s" % ( tag.code, tag.name, typecode, tag.as_str()) s.append(line[:PRINT_LINE_LEN].lstrip()) return '\n'.join(s) class FileHandle(object): """Binary file handle. * Handle embedded files (for CZI within CZI files). * Allow to re-open closed files (for multi file formats such as OME-TIFF). * Read numpy arrays and records from file like objects. Only binary read, seek, tell, and close are supported on embedded files. When initialized from another file handle, do not use it unless this FileHandle is closed. Attributes ---------- name : str Name of the file. path : str Absolute path to file. size : int Size of file in bytes. is_file : bool If True, file has a filno and can be memory-mapped. All attributes are read-only. """ __slots__ = ('_fh', '_arg', '_mode', '_name', '_dir', '_offset', '_size', '_close', 'is_file') def __init__(self, arg, mode='rb', name=None, offset=None, size=None): """Initialize file handle from file name or another file handle. Parameters ---------- arg : str, File, or FileHandle File name or open file handle. mode : str File open mode in case 'arg' is a file name. name : str Optional name of file in case 'arg' is a file handle. offset : int Optional start position of embedded file. By default this is the current file position. size : int Optional size of embedded file. By default this is the number of bytes from the 'offset' to the end of the file. """ self._fh = None self._arg = arg self._mode = mode self._name = name self._dir = '' self._offset = offset self._size = size self._close = True self.is_file = False self.open() def open(self): """Open or re-open file.""" if self._fh: return # file is open if isinstance(self._arg, basestring): # file name self._arg = os.path.abspath(self._arg) self._dir, self._name = os.path.split(self._arg) self._fh = open(self._arg, self._mode) self._close = True if self._offset is None: self._offset = 0 elif isinstance(self._arg, FileHandle): # FileHandle self._fh = self._arg._fh if self._offset is None: self._offset = 0 self._offset += self._arg._offset self._close = False if not self._name: if self._offset: name, ext = os.path.splitext(self._arg._name) self._name = "%s@%i%s" % (name, self._offset, ext) else: self._name = self._arg._name self._dir = self._arg._dir else: # open file object self._fh = self._arg if self._offset is None: self._offset = self._arg.tell() self._close = False if not self._name: try: self._dir, self._name = os.path.split(self._fh.name) except AttributeError: self._name = "Unnamed stream" if self._offset: self._fh.seek(self._offset) if self._size is None: pos = self._fh.tell() self._fh.seek(self._offset, 2) self._size = self._fh.tell() self._fh.seek(pos) try: self._fh.fileno() self.is_file = True except Exception: self.is_file = False def read(self, size=-1): """Read 'size' bytes from file, or until EOF is reached.""" if size < 0 and self._offset: size = self._size return self._fh.read(size) def memmap_array(self, dtype, shape, offset=0, mode='r', order='C'): """Return numpy.memmap of data stored in file.""" if not self.is_file: raise ValueError("Can not memory-map file without fileno.") return numpy.memmap(self._fh, dtype=dtype, mode=mode, offset=self._offset + offset, shape=shape, order=order) def read_array(self, dtype, count=-1, sep=""): """Return numpy array from file. Work around numpy issue #2230, "numpy.fromfile does not accept StringIO object" https://github.com/numpy/numpy/issues/2230. """ try: return numpy.fromfile(self._fh, dtype, count, sep) except IOError: if count < 0: size = self._size else: size = count * numpy.dtype(dtype).itemsize data = self._fh.read(size) return numpy.fromstring(data, dtype, count, sep) def read_record(self, dtype, shape=1, byteorder=None): """Return numpy record from file.""" try: rec = numpy.rec.fromfile(self._fh, dtype, shape, byteorder=byteorder) except Exception: dtype = numpy.dtype(dtype) if shape is None: shape = self._size // dtype.itemsize size = product(sequence(shape)) * dtype.itemsize data = self._fh.read(size) return numpy.rec.fromstring(data, dtype, shape, byteorder=byteorder) return rec[0] if shape == 1 else rec def tell(self): """Return file's current position.""" return self._fh.tell() - self._offset def seek(self, offset, whence=0): """Set file's current position.""" if self._offset: if whence == 0: self._fh.seek(self._offset + offset, whence) return elif whence == 2: self._fh.seek(self._offset + self._size + offset, 0) return self._fh.seek(offset, whence) def close(self): """Close file.""" if self._close and self._fh: self._fh.close() self._fh = None self.is_file = False def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def __getattr__(self, name): """Return attribute from underlying file object.""" if self._offset: warnings.warn( "FileHandle: '%s' not implemented for embedded files" % name) return getattr(self._fh, name) @property def name(self): return self._name @property def dirname(self): return self._dir @property def path(self): return os.path.join(self._dir, self._name) @property def size(self): return self._size @property def closed(self): return self._fh is None def read_bytes(fh, byteorder, dtype, count): """Read tag data from file and return as byte string.""" dtype = 'b' if dtype[-1] == 's' else byteorder+dtype[-1] return fh.read_array(dtype, count).tostring() def read_numpy(fh, byteorder, dtype, count): """Read tag data from file and return as numpy array.""" dtype = 'b' if dtype[-1] == 's' else byteorder+dtype[-1] return fh.read_array(dtype, count) def read_json(fh, byteorder, dtype, count): """Read JSON tag data from file and return as object.""" data = fh.read(count) try: return json.loads(unicode(stripnull(data), 'utf-8')) except ValueError: warnings.warn("invalid JSON '%s'" % data) def read_mm_header(fh, byteorder, dtype, count): """Read MM_HEADER tag from file and return as numpy.rec.array.""" return fh.read_record(MM_HEADER, byteorder=byteorder) def read_mm_stamp(fh, byteorder, dtype, count): """Read MM_STAMP tag from file and return as numpy.ndarray.""" return fh.read_array(byteorder+'f8', 8) def read_uic1tag(fh, byteorder, dtype, count, plane_count=None): """Read MetaMorph STK UIC1Tag from file and return as dictionary. Return empty dictionary if plane_count is unknown. """ assert dtype in ('2I', '1I') and byteorder == '<' result = {} if dtype == '2I': # pre MetaMorph 2.5 (not tested) values = fh.read_array(' structure_size: break cz_lsm_info.append((name, dtype)) else: cz_lsm_info = CZ_LSM_INFO return fh.read_record(cz_lsm_info, byteorder=byteorder) def read_cz_lsm_floatpairs(fh): """Read LSM sequence of float pairs from file and return as list.""" size = struct.unpack(' 0: esize, etime, etype = struct.unpack(''}[fh.read(2)] except IndexError: raise ValueError("not a MicroManager TIFF file") results = {} fh.seek(8) (index_header, index_offset, display_header, display_offset, comments_header, comments_offset, summary_header, summary_length ) = struct.unpack(byteorder + "IIIIIIII", fh.read(32)) if summary_header != 2355492: raise ValueError("invalid MicroManager summary_header") results['summary'] = read_json(fh, byteorder, None, summary_length) if index_header != 54773648: raise ValueError("invalid MicroManager index_header") fh.seek(index_offset) header, count = struct.unpack(byteorder + "II", fh.read(8)) if header != 3453623: raise ValueError("invalid MicroManager index_header") data = struct.unpack(byteorder + "IIIII"*count, fh.read(20*count)) results['index_map'] = { 'channel': data[::5], 'slice': data[1::5], 'frame': data[2::5], 'position': data[3::5], 'offset': data[4::5]} if display_header != 483765892: raise ValueError("invalid MicroManager display_header") fh.seek(display_offset) header, count = struct.unpack(byteorder + "II", fh.read(8)) if header != 347834724: raise ValueError("invalid MicroManager display_header") results['display_settings'] = read_json(fh, byteorder, None, count) if comments_header != 99384722: raise ValueError("invalid MicroManager comments_header") fh.seek(comments_offset) header, count = struct.unpack(byteorder + "II", fh.read(8)) if header != 84720485: raise ValueError("invalid MicroManager comments_header") results['comments'] = read_json(fh, byteorder, None, count) return results def imagej_metadata(data, bytecounts, byteorder): """Return dictionary from ImageJ metadata tag value.""" _str = str if sys.version_info[0] < 3 else lambda x: str(x, 'cp1252') def read_string(data, byteorder): return _str(stripnull(data[0 if byteorder == '<' else 1::2])) def read_double(data, byteorder): return struct.unpack(byteorder+('d' * (len(data) // 8)), data) def read_bytes(data, byteorder): #return struct.unpack('b' * len(data), data) return numpy.fromstring(data, 'uint8') metadata_types = { # big endian b'info': ('info', read_string), b'labl': ('labels', read_string), b'rang': ('ranges', read_double), b'luts': ('luts', read_bytes), b'roi ': ('roi', read_bytes), b'over': ('overlays', read_bytes)} metadata_types.update( # little endian dict((k[::-1], v) for k, v in metadata_types.items())) if not bytecounts: raise ValueError("no ImageJ metadata") if not data[:4] in (b'IJIJ', b'JIJI'): raise ValueError("invalid ImageJ metadata") header_size = bytecounts[0] if header_size < 12 or header_size > 804: raise ValueError("invalid ImageJ metadata header size") ntypes = (header_size - 4) // 8 header = struct.unpack(byteorder+'4sI'*ntypes, data[4:4+ntypes*8]) pos = 4 + ntypes * 8 counter = 0 result = {} for mtype, count in zip(header[::2], header[1::2]): values = [] name, func = metadata_types.get(mtype, (_str(mtype), read_bytes)) for _ in range(count): counter += 1 pos1 = pos + bytecounts[counter] values.append(func(data[pos:pos1], byteorder)) pos = pos1 result[name.strip()] = values[0] if count == 1 else values return result def imagej_description_dict(description): """Return dictionary from ImageJ image description byte string. Raise ValueError if not a valid ImageJ description. >>> description = b'ImageJ=1.11a\\nimages=510\\nhyperstack=true\\n' >>> imagej_description_dict(description) # doctest: +SKIP {'ImageJ': '1.11a', 'images': 510, 'hyperstack': True} """ def _bool(val): return {b'true': True, b'false': False}[val.lower()] _str = str if sys.version_info[0] < 3 else lambda x: str(x, 'cp1252') result = {} for line in description.splitlines(): try: key, val = line.split(b'=') except Exception: continue key = key.strip() val = val.strip() for dtype in (int, float, _bool, _str): try: val = dtype(val) break except Exception: pass result[_str(key)] = val if 'ImageJ' not in result: raise ValueError("not a ImageJ image description") return result def imagej_description(shape, rgb=None, colormaped=False, version='1.11a', hyperstack=None, mode=None, loop=None, kwargs={}): """Return ImageJ image decription from data shape as byte string. ImageJ can handle up to 6 dimensions in order TZCYXS. >>> imagej_description((51, 5, 2, 196, 171)) # doctest: +SKIP ImageJ=1.11a images=510 channels=2 slices=5 frames=51 hyperstack=true mode=grayscale loop=false """ if colormaped: raise NotImplementedError("ImageJ colormapping not supported") shape = imagej_shape(shape, rgb=rgb) rgb = shape[-1] in (3, 4) result = ['ImageJ=%s' % version] append = [] result.append('images=%i' % product(shape[:-3])) if hyperstack is None: #if product(shape[:-3]) > 1: hyperstack = True append.append('hyperstack=true') else: append.append('hyperstack=%s' % bool(hyperstack)) if shape[2] > 1: result.append('channels=%i' % shape[2]) if mode is None and not rgb: mode = 'grayscale' if hyperstack and mode: append.append('mode=%s' % mode) if shape[1] > 1: result.append('slices=%i' % shape[1]) if shape[0] > 1: result.append("frames=%i" % shape[0]) if loop is None: append.append('loop=false') if loop is not None: append.append('loop=%s' % bool(loop)) for key, value in kwargs.items(): append.append('%s=%s' % (key.lower(), value)) return str2bytes('\n'.join(result + append + [''])) def imagej_shape(shape, rgb=None): """Return shape normalized to 6D ImageJ hyperstack TZCYXS. Raise ValueError if not a valid ImageJ hyperstack shape. >>> imagej_shape((2, 3, 4, 5, 3), False) (2, 3, 4, 5, 3, 1) """ shape = tuple(int(i) for i in shape) ndim = len(shape) if 1 > ndim > 6: raise ValueError("invalid ImageJ hyperstack: not 2 to 6 dimensional") if rgb is None: rgb = shape[-1] in (3, 4) and ndim > 2 if rgb and shape[-1] not in (3, 4): raise ValueError("invalid ImageJ hyperstack: not a RGB image") if not rgb and ndim == 6 and shape[-1] != 1: raise ValueError("invalid ImageJ hyperstack: not a non-RGB image") if rgb or shape[-1] == 1: return (1, ) * (6 - ndim) + shape else: return (1, ) * (5 - ndim) + shape + (1,) def image_description_dict(description): """Return dictionary from image description byte string. Raise ValuError if description is of unknown format. >>> image_description_dict(b'shape=(256, 256, 3)') {'shape': (256, 256, 3)} >>> description = b'{"shape": [256, 256, 3], "axes": "YXS"}' >>> image_description_dict(description) # doctest: +SKIP {'shape': [256, 256, 3], 'axes': 'YXS'} """ if description.startswith(b'shape='): # old style 'shaped' description shape = tuple(int(i) for i in description[7:-1].split(b',')) return dict(shape=shape) if description.startswith(b'{') and description.endswith(b'}'): # JSON description return json.loads(description.decode('utf-8')) raise ValueError("unknown image description") def image_description(shape, colormaped=False, **metadata): """Return image description from data shape and meta data. Return UTF-8 encoded JSON. >>> image_description((256, 256, 3), axes='YXS') # doctest: +SKIP b'{"shape": [256, 256, 3], "axes": "YXS"}' """ if colormaped: shape = (3,) + shape metadata.update({'shape': shape}) return json.dumps(metadata).encode('utf-8') def _replace_by(module_function, package=__package__, warn=False): """Try replace decorated function by module.function.""" try: from importlib import import_module except ImportError: warnings.warn('could not import module importlib') return lambda func: func def decorate(func, module_function=module_function, warn=warn): try: module, function = module_function.split('.') if package: module = import_module('.' + module, package=package) else: module = import_module(module) func, oldfunc = getattr(module, function), func globals()['__old_' + func.__name__] = oldfunc except Exception: if warn: warnings.warn("failed to import %s" % module_function) return func return decorate def decode_floats(data): """Decode floating point horizontal differencing. The TIFF predictor type 3 reorders the bytes of the image values and applies horizontal byte differencing to improve compression of floating point images. The ordering of interleaved color channels is preserved. Parameters ---------- data : numpy.ndarray The image to be decoded. The dtype must be a floating point. The shape must include the number of contiguous samples per pixel even if 1. """ shape = data.shape dtype = data.dtype if len(shape) < 3: raise ValueError('invalid data shape') if dtype.char not in 'dfe': raise ValueError('not a floating point image') littleendian = data.dtype.byteorder == '<' or ( sys.byteorder == 'little' and data.dtype.byteorder == '=') # undo horizontal byte differencing data = data.view('uint8') data.shape = shape[:-2] + (-1,) + shape[-1:] numpy.cumsum(data, axis=-2, dtype='uint8', out=data) # reorder bytes if littleendian: data.shape = shape[:-2] + (-1,) + shape[-2:] data = numpy.swapaxes(data, -3, -2) data = numpy.swapaxes(data, -2, -1) data = data[..., ::-1] # back to float data = numpy.ascontiguousarray(data) data = data.view(dtype) data.shape = shape return data def decode_jpeg(encoded, tables=b'', photometric=None, ycbcr_subsampling=None, ycbcr_positioning=None): """Decode JPEG encoded byte string (using _czifile extension module).""" from czifile import _czifile image = _czifile.decode_jpeg(encoded, tables) if photometric == 'rgb' and ycbcr_subsampling and ycbcr_positioning: # TODO: convert YCbCr to RGB pass return image.tostring() @_replace_by('_tifffile.decode_packbits') def decode_packbits(encoded): """Decompress PackBits encoded byte string. PackBits is a simple byte-oriented run-length compression scheme. """ func = ord if sys.version[0] == '2' else lambda x: x result = [] result_extend = result.extend i = 0 try: while True: n = func(encoded[i]) + 1 i += 1 if n < 129: result_extend(encoded[i:i+n]) i += n elif n > 129: result_extend(encoded[i:i+1] * (258-n)) i += 1 except IndexError: pass return b''.join(result) if sys.version[0] == '2' else bytes(result) @_replace_by('_tifffile.decode_lzw') def decode_lzw(encoded): """Decompress LZW (Lempel-Ziv-Welch) encoded TIFF strip (byte string). The strip must begin with a CLEAR code and end with an EOI code. This is an implementation of the LZW decoding algorithm described in (1). It is not compatible with old style LZW compressed files like quad-lzw.tif. """ len_encoded = len(encoded) bitcount_max = len_encoded * 8 unpack = struct.unpack if sys.version[0] == '2': newtable = [chr(i) for i in range(256)] else: newtable = [bytes([i]) for i in range(256)] newtable.extend((0, 0)) def next_code(): """Return integer of 'bitw' bits at 'bitcount' position in encoded.""" start = bitcount // 8 s = encoded[start:start+4] try: code = unpack('>I', s)[0] except Exception: code = unpack('>I', s + b'\x00'*(4-len(s)))[0] code <<= bitcount % 8 code &= mask return code >> shr switchbitch = { # code: bit-width, shr-bits, bit-mask 255: (9, 23, int(9*'1'+'0'*23, 2)), 511: (10, 22, int(10*'1'+'0'*22, 2)), 1023: (11, 21, int(11*'1'+'0'*21, 2)), 2047: (12, 20, int(12*'1'+'0'*20, 2)), } bitw, shr, mask = switchbitch[255] bitcount = 0 if len_encoded < 4: raise ValueError("strip must be at least 4 characters long") if next_code() != 256: raise ValueError("strip must begin with CLEAR code") code = 0 oldcode = 0 result = [] result_append = result.append while True: code = next_code() # ~5% faster when inlining this function bitcount += bitw if code == 257 or bitcount >= bitcount_max: # EOI break if code == 256: # CLEAR table = newtable[:] table_append = table.append lentable = 258 bitw, shr, mask = switchbitch[255] code = next_code() bitcount += bitw if code == 257: # EOI break result_append(table[code]) else: if code < lentable: decoded = table[code] newcode = table[oldcode] + decoded[:1] else: newcode = table[oldcode] newcode += newcode[:1] decoded = newcode result_append(decoded) table_append(newcode) lentable += 1 oldcode = code if lentable in switchbitch: bitw, shr, mask = switchbitch[lentable] if code != 257: warnings.warn("unexpected end of lzw stream (code %i)" % code) return b''.join(result) @_replace_by('_tifffile.unpack_ints') def unpack_ints(data, dtype, itemsize, runlen=0): """Decompress byte string to array of integers of any bit size <= 32. Parameters ---------- data : byte str Data to decompress. dtype : numpy.dtype or str A numpy boolean or integer type. itemsize : int Number of bits per integer. runlen : int Number of consecutive integers, after which to start at next byte. """ if itemsize == 1: # bitarray data = numpy.fromstring(data, '|B') data = numpy.unpackbits(data) if runlen % 8: data = data.reshape(-1, runlen + (8 - runlen % 8)) data = data[:, :runlen].reshape(-1) return data.astype(dtype) dtype = numpy.dtype(dtype) if itemsize in (8, 16, 32, 64): return numpy.fromstring(data, dtype) if itemsize < 1 or itemsize > 32: raise ValueError("itemsize out of range: %i" % itemsize) if dtype.kind not in "biu": raise ValueError("invalid dtype") itembytes = next(i for i in (1, 2, 4, 8) if 8 * i >= itemsize) if itembytes != dtype.itemsize: raise ValueError("dtype.itemsize too small") if runlen == 0: runlen = len(data) // itembytes skipbits = runlen*itemsize % 8 if skipbits: skipbits = 8 - skipbits shrbits = itembytes*8 - itemsize bitmask = int(itemsize*'1'+'0'*shrbits, 2) dtypestr = '>' + dtype.char # dtype always big endian? unpack = struct.unpack l = runlen * (len(data)*8 // (runlen*itemsize + skipbits)) result = numpy.empty((l,), dtype) bitcount = 0 for i in range(len(result)): start = bitcount // 8 s = data[start:start+itembytes] try: code = unpack(dtypestr, s)[0] except Exception: code = unpack(dtypestr, s + b'\x00'*(itembytes-len(s)))[0] code <<= bitcount % 8 code &= bitmask result[i] = code >> shrbits bitcount += itemsize if (i+1) % runlen == 0: bitcount += skipbits return result def unpack_rgb(data, dtype='>> data = struct.pack('BBBB', 0x21, 0x08, 0xff, 0xff) >>> print(unpack_rgb(data, '>> print(unpack_rgb(data, '>> print(unpack_rgb(data, '= bits) data = numpy.fromstring(data, dtype.byteorder+dt) result = numpy.empty((data.size, len(bitspersample)), dtype.char) for i, bps in enumerate(bitspersample): t = data >> int(numpy.sum(bitspersample[i+1:])) t &= int('0b'+'1'*bps, 2) if rescale: o = ((dtype.itemsize * 8) // bps + 1) * bps if o > data.dtype.itemsize * 8: t = t.astype('I') t *= (2**o - 1) // (2**bps - 1) t //= 2**(o - (dtype.itemsize * 8)) result[:, i] = t return result.reshape(-1) def reorient(image, orientation): """Return reoriented view of image array. Parameters ---------- image : numpy.ndarray Non-squeezed output of asarray() functions. Axes -3 and -2 must be image length and width respectively. orientation : int or str One of TIFF_ORIENTATIONS keys or values. """ o = TIFF_ORIENTATIONS.get(orientation, orientation) if o == 'top_left': return image elif o == 'top_right': return image[..., ::-1, :] elif o == 'bottom_left': return image[..., ::-1, :, :] elif o == 'bottom_right': return image[..., ::-1, ::-1, :] elif o == 'left_top': return numpy.swapaxes(image, -3, -2) elif o == 'right_top': return numpy.swapaxes(image, -3, -2)[..., ::-1, :] elif o == 'left_bottom': return numpy.swapaxes(image, -3, -2)[..., ::-1, :, :] elif o == 'right_bottom': return numpy.swapaxes(image, -3, -2)[..., ::-1, ::-1, :] def squeeze_axes(shape, axes, skip='XY'): """Return shape and axes with single-dimensional entries removed. Remove unused dimensions unless their axes are listed in 'skip'. >>> squeeze_axes((5, 1, 2, 1, 1), 'TZYXC') ((5, 2, 1), 'TYX') """ if len(shape) != len(axes): raise ValueError("dimensions of axes and shape don't match") shape, axes = zip(*(i for i in zip(shape, axes) if i[0] > 1 or i[1] in skip)) return tuple(shape), ''.join(axes) def transpose_axes(data, axes, asaxes='CTZYX'): """Return data with its axes permuted to match specified axes. A view is returned if possible. >>> transpose_axes(numpy.zeros((2, 3, 4, 5)), 'TYXC', asaxes='CTZYX').shape (5, 2, 1, 3, 4) """ for ax in axes: if ax not in asaxes: raise ValueError("unknown axis %s" % ax) # add missing axes to data shape = data.shape for ax in reversed(asaxes): if ax not in axes: axes = ax + axes shape = (1,) + shape data = data.reshape(shape) # transpose axes data = data.transpose([axes.index(ax) for ax in asaxes]) return data def stack_pages(pages, memmap=False, *args, **kwargs): """Read data from sequence of TiffPage and stack them vertically. If memmap is True, return an array stored in a binary file on disk. Additional parameters are passsed to the page asarray function. """ if len(pages) == 0: raise ValueError("no pages") if len(pages) == 1: return pages[0].asarray(memmap=memmap, *args, **kwargs) result = pages[0].asarray(*args, **kwargs) shape = (len(pages),) + result.shape if memmap: with tempfile.NamedTemporaryFile() as fh: result = numpy.memmap(fh, dtype=result.dtype, shape=shape) else: result = numpy.empty(shape, dtype=result.dtype) for i, page in enumerate(pages): result[i] = page.asarray(*args, **kwargs) return result def stripnull(string): """Return string truncated at first null character. Clean NULL terminated C strings. >>> stripnull(b'string\\x00') b'string' """ i = string.find(b'\x00') return string if (i < 0) else string[:i] def stripascii(string): """Return string truncated at last byte that is 7bit ASCII. Clean NULL separated and terminated TIFF strings. >>> stripascii(b'string\\x00string\\n\\x01\\x00') b'string\\x00string\\n' >>> stripascii(b'\\x00') b'' """ # TODO: pythonize this ord_ = ord if sys.version_info[0] < 3 else lambda x: x i = len(string) while i: i -= 1 if 8 < ord_(string[i]) < 127: break else: i = -1 return string[:i+1] def format_size(size): """Return file size as string from byte size.""" for unit in ('B', 'KB', 'MB', 'GB', 'TB'): if size < 2048: return "%.f %s" % (size, unit) size /= 1024.0 def sequence(value): """Return tuple containing value if value is not a sequence. >>> sequence(1) (1,) >>> sequence([1]) [1] """ try: len(value) return value except TypeError: return (value,) def product(iterable): """Return product of sequence of numbers. Equivalent of functools.reduce(operator.mul, iterable, 1). >>> product([2**8, 2**30]) 274877906944 >>> product([]) 1 """ prod = 1 for i in iterable: prod *= i return prod def natural_sorted(iterable): """Return human sorted list of strings. E.g. for sorting file names. >>> natural_sorted(['f1', 'f2', 'f10']) ['f1', 'f2', 'f10'] """ def sortkey(x): return [(int(c) if c.isdigit() else c) for c in re.split(numbers, x)] numbers = re.compile(r'(\d+)') return sorted(iterable, key=sortkey) def excel_datetime(timestamp, epoch=datetime.datetime.fromordinal(693594)): """Return datetime object from timestamp in Excel serial format. Convert LSM time stamps. >>> excel_datetime(40237.029999999795) datetime.datetime(2010, 2, 28, 0, 43, 11, 999982) """ return epoch + datetime.timedelta(timestamp) def julian_datetime(julianday, milisecond=0): """Return datetime from days since 1/1/4713 BC and ms since midnight. Convert Julian dates according to MetaMorph. >>> julian_datetime(2451576, 54362783) datetime.datetime(2000, 2, 2, 15, 6, 2, 783) """ if julianday <= 1721423: # no datetime before year 1 return None a = julianday + 1 if a > 2299160: alpha = math.trunc((a - 1867216.25) / 36524.25) a += 1 + alpha - alpha // 4 b = a + (1524 if a > 1721423 else 1158) c = math.trunc((b - 122.1) / 365.25) d = math.trunc(365.25 * c) e = math.trunc((b - d) / 30.6001) day = b - d - math.trunc(30.6001 * e) month = e - (1 if e < 13.5 else 13) year = c - (4716 if month > 2.5 else 4715) hour, milisecond = divmod(milisecond, 1000 * 60 * 60) minute, milisecond = divmod(milisecond, 1000 * 60) second, milisecond = divmod(milisecond, 1000) return datetime.datetime(year, month, day, hour, minute, second, milisecond) def test_tifffile(directory='testimages', verbose=True): """Read all images in directory. Print error message on failure. >>> test_tifffile(verbose=False) """ successful = 0 failed = 0 start = time.time() for f in glob.glob(os.path.join(directory, '*.*')): if verbose: print("\n%s>\n" % f.lower(), end='') t0 = time.time() try: tif = TiffFile(f, multifile=True) except Exception as e: if not verbose: print(f, end=' ') print("ERROR:", e) failed += 1 continue try: img = tif.asarray() except ValueError: try: img = tif[0].asarray() except Exception as e: if not verbose: print(f, end=' ') print("ERROR:", e) failed += 1 continue finally: tif.close() successful += 1 if verbose: print("%s, %s %s, %s, %.0f ms" % ( str(tif), str(img.shape), img.dtype, tif[0].compression, (time.time()-t0) * 1e3)) if verbose: print("\nSuccessfully read %i of %i files in %.3f s\n" % ( successful, successful+failed, time.time()-start)) class TIFF_SUBFILE_TYPES(object): def __getitem__(self, key): result = [] if key & 1: result.append('reduced_image') if key & 2: result.append('page') if key & 4: result.append('mask') return tuple(result) TIFF_PHOTOMETRICS = { 0: 'miniswhite', 1: 'minisblack', 2: 'rgb', 3: 'palette', 4: 'mask', 5: 'separated', # CMYK 6: 'ycbcr', 8: 'cielab', 9: 'icclab', 10: 'itulab', 32803: 'cfa', # Color Filter Array 32844: 'logl', 32845: 'logluv', 34892: 'linear_raw' } TIFF_COMPESSIONS = { 1: None, 2: 'ccittrle', 3: 'ccittfax3', 4: 'ccittfax4', 5: 'lzw', 6: 'ojpeg', 7: 'jpeg', 8: 'adobe_deflate', 9: 't85', 10: 't43', 32766: 'next', 32771: 'ccittrlew', 32773: 'packbits', 32809: 'thunderscan', 32895: 'it8ctpad', 32896: 'it8lw', 32897: 'it8mp', 32898: 'it8bl', 32908: 'pixarfilm', 32909: 'pixarlog', 32946: 'deflate', 32947: 'dcs', 34661: 'jbig', 34676: 'sgilog', 34677: 'sgilog24', 34712: 'jp2000', 34713: 'nef', 34925: 'lzma', } TIFF_DECOMPESSORS = { None: lambda x: x, 'adobe_deflate': zlib.decompress, 'deflate': zlib.decompress, 'packbits': decode_packbits, 'lzw': decode_lzw, # 'jpeg': decode_jpeg } if lzma: TIFF_DECOMPESSORS['lzma'] = lzma.decompress TIFF_DATA_TYPES = { 1: '1B', # BYTE 8-bit unsigned integer. 2: '1s', # ASCII 8-bit byte that contains a 7-bit ASCII code; # the last byte must be NULL (binary zero). 3: '1H', # SHORT 16-bit (2-byte) unsigned integer 4: '1I', # LONG 32-bit (4-byte) unsigned integer. 5: '2I', # RATIONAL Two LONGs: the first represents the numerator of # a fraction; the second, the denominator. 6: '1b', # SBYTE An 8-bit signed (twos-complement) integer. 7: '1s', # UNDEFINED An 8-bit byte that may contain anything, # depending on the definition of the field. 8: '1h', # SSHORT A 16-bit (2-byte) signed (twos-complement) integer. 9: '1i', # SLONG A 32-bit (4-byte) signed (twos-complement) integer. 10: '2i', # SRATIONAL Two SLONGs: the first represents the numerator # of a fraction, the second the denominator. 11: '1f', # FLOAT Single precision (4-byte) IEEE format. 12: '1d', # DOUBLE Double precision (8-byte) IEEE format. 13: '1I', # IFD unsigned 4 byte IFD offset. #14: '', # UNICODE #15: '', # COMPLEX 16: '1Q', # LONG8 unsigned 8 byte integer (BigTiff) 17: '1q', # SLONG8 signed 8 byte integer (BigTiff) 18: '1Q', # IFD8 unsigned 8 byte IFD offset (BigTiff) } TIFF_SAMPLE_FORMATS = { 1: 'uint', 2: 'int', 3: 'float', #4: 'void', #5: 'complex_int', 6: 'complex', } TIFF_SAMPLE_DTYPES = { ('uint', 1): '?', # bitmap ('uint', 2): 'B', ('uint', 3): 'B', ('uint', 4): 'B', ('uint', 5): 'B', ('uint', 6): 'B', ('uint', 7): 'B', ('uint', 8): 'B', ('uint', 9): 'H', ('uint', 10): 'H', ('uint', 11): 'H', ('uint', 12): 'H', ('uint', 13): 'H', ('uint', 14): 'H', ('uint', 15): 'H', ('uint', 16): 'H', ('uint', 17): 'I', ('uint', 18): 'I', ('uint', 19): 'I', ('uint', 20): 'I', ('uint', 21): 'I', ('uint', 22): 'I', ('uint', 23): 'I', ('uint', 24): 'I', ('uint', 25): 'I', ('uint', 26): 'I', ('uint', 27): 'I', ('uint', 28): 'I', ('uint', 29): 'I', ('uint', 30): 'I', ('uint', 31): 'I', ('uint', 32): 'I', ('uint', 64): 'Q', ('int', 8): 'b', ('int', 16): 'h', ('int', 32): 'i', ('int', 64): 'q', ('float', 16): 'e', ('float', 32): 'f', ('float', 64): 'd', ('complex', 64): 'F', ('complex', 128): 'D', ('uint', (5, 6, 5)): 'B', } TIFF_ORIENTATIONS = { 1: 'top_left', 2: 'top_right', 3: 'bottom_right', 4: 'bottom_left', 5: 'left_top', 6: 'right_top', 7: 'right_bottom', 8: 'left_bottom', } # TODO: is there a standard for character axes labels? AXES_LABELS = { 'X': 'width', 'Y': 'height', 'Z': 'depth', 'S': 'sample', # rgb(a) 'I': 'series', # general sequence, plane, page, IFD 'T': 'time', 'C': 'channel', # color, emission wavelength 'A': 'angle', 'P': 'phase', # formerly F # P is Position in LSM! 'R': 'tile', # region, point, mosaic 'H': 'lifetime', # histogram 'E': 'lambda', # excitation wavelength 'L': 'exposure', # lux 'V': 'event', 'Q': 'other', #'M': 'mosaic', # LSM 6 } AXES_LABELS.update(dict((v, k) for k, v in AXES_LABELS.items())) # Map OME pixel types to numpy dtype OME_PIXEL_TYPES = { 'int8': 'i1', 'int16': 'i2', 'int32': 'i4', 'uint8': 'u1', 'uint16': 'u2', 'uint32': 'u4', 'float': 'f4', # 'bit': 'bit', 'double': 'f8', 'complex': 'c8', 'double-complex': 'c16', } # NIH Image PicHeader v1.63 NIH_IMAGE_HEADER = [ ('fileid', 'a8'), ('nlines', 'i2'), ('pixelsperline', 'i2'), ('version', 'i2'), ('oldlutmode', 'i2'), ('oldncolors', 'i2'), ('colors', 'u1', (3, 32)), ('oldcolorstart', 'i2'), ('colorwidth', 'i2'), ('extracolors', 'u2', (6, 3)), ('nextracolors', 'i2'), ('foregroundindex', 'i2'), ('backgroundindex', 'i2'), ('xscale', 'f8'), ('_x0', 'i2'), ('_x1', 'i2'), ('units_t', 'i2'), # NIH_UNITS_TYPE ('p1', [('x', 'i2'), ('y', 'i2')]), ('p2', [('x', 'i2'), ('y', 'i2')]), ('curvefit_t', 'i2'), # NIH_CURVEFIT_TYPE ('ncoefficients', 'i2'), ('coeff', 'f8', 6), ('_um_len', 'u1'), ('um', 'a15'), ('_x2', 'u1'), ('binarypic', 'b1'), ('slicestart', 'i2'), ('sliceend', 'i2'), ('scalemagnification', 'f4'), ('nslices', 'i2'), ('slicespacing', 'f4'), ('currentslice', 'i2'), ('frameinterval', 'f4'), ('pixelaspectratio', 'f4'), ('colorstart', 'i2'), ('colorend', 'i2'), ('ncolors', 'i2'), ('fill1', '3u2'), ('fill2', '3u2'), ('colortable_t', 'u1'), # NIH_COLORTABLE_TYPE ('lutmode_t', 'u1'), # NIH_LUTMODE_TYPE ('invertedtable', 'b1'), ('zeroclip', 'b1'), ('_xunit_len', 'u1'), ('xunit', 'a11'), ('stacktype_t', 'i2'), # NIH_STACKTYPE_TYPE ] NIH_COLORTABLE_TYPE = ( 'CustomTable', 'AppleDefault', 'Pseudo20', 'Pseudo32', 'Rainbow', 'Fire1', 'Fire2', 'Ice', 'Grays', 'Spectrum') NIH_LUTMODE_TYPE = ( 'PseudoColor', 'OldAppleDefault', 'OldSpectrum', 'GrayScale', 'ColorLut', 'CustomGrayscale') NIH_CURVEFIT_TYPE = ( 'StraightLine', 'Poly2', 'Poly3', 'Poly4', 'Poly5', 'ExpoFit', 'PowerFit', 'LogFit', 'RodbardFit', 'SpareFit1', 'Uncalibrated', 'UncalibratedOD') NIH_UNITS_TYPE = ( 'Nanometers', 'Micrometers', 'Millimeters', 'Centimeters', 'Meters', 'Kilometers', 'Inches', 'Feet', 'Miles', 'Pixels', 'OtherUnits') NIH_STACKTYPE_TYPE = ( 'VolumeStack', 'RGBStack', 'MovieStack', 'HSVStack') # Map Universal Imaging Corporation MetaMorph internal tag ids to name and type UIC_TAGS = { 0: ('auto_scale', int), 1: ('min_scale', int), 2: ('max_scale', int), 3: ('spatial_calibration', int), 4: ('x_calibration', Fraction), 5: ('y_calibration', Fraction), 6: ('calibration_units', str), 7: ('name', str), 8: ('thresh_state', int), 9: ('thresh_state_red', int), 10: ('tagid_10', None), # undefined 11: ('thresh_state_green', int), 12: ('thresh_state_blue', int), 13: ('thresh_state_lo', int), 14: ('thresh_state_hi', int), 15: ('zoom', int), 16: ('create_time', julian_datetime), 17: ('last_saved_time', julian_datetime), 18: ('current_buffer', int), 19: ('gray_fit', None), 20: ('gray_point_count', None), 21: ('gray_x', Fraction), 22: ('gray_y', Fraction), 23: ('gray_min', Fraction), 24: ('gray_max', Fraction), 25: ('gray_unit_name', str), 26: ('standard_lut', int), 27: ('wavelength', int), 28: ('stage_position', '(%i,2,2)u4'), # N xy positions as fractions 29: ('camera_chip_offset', '(%i,2,2)u4'), # N xy offsets as fractions 30: ('overlay_mask', None), 31: ('overlay_compress', None), 32: ('overlay', None), 33: ('special_overlay_mask', None), 34: ('special_overlay_compress', None), 35: ('special_overlay', None), 36: ('image_property', read_uic_image_property), 37: ('stage_label', '%ip'), # N str 38: ('autoscale_lo_info', Fraction), 39: ('autoscale_hi_info', Fraction), 40: ('absolute_z', '(%i,2)u4'), # N fractions 41: ('absolute_z_valid', '(%i,)u4'), # N long 42: ('gamma', int), 43: ('gamma_red', int), 44: ('gamma_green', int), 45: ('gamma_blue', int), 46: ('camera_bin', int), 47: ('new_lut', int), 48: ('image_property_ex', None), 49: ('plane_property', int), 50: ('user_lut_table', '(256,3)u1'), 51: ('red_autoscale_info', int), 52: ('red_autoscale_lo_info', Fraction), 53: ('red_autoscale_hi_info', Fraction), 54: ('red_minscale_info', int), 55: ('red_maxscale_info', int), 56: ('green_autoscale_info', int), 57: ('green_autoscale_lo_info', Fraction), 58: ('green_autoscale_hi_info', Fraction), 59: ('green_minscale_info', int), 60: ('green_maxscale_info', int), 61: ('blue_autoscale_info', int), 62: ('blue_autoscale_lo_info', Fraction), 63: ('blue_autoscale_hi_info', Fraction), 64: ('blue_min_scale_info', int), 65: ('blue_max_scale_info', int), #66: ('overlay_plane_color', read_uic_overlay_plane_color), } # Olympus FluoView MM_DIMENSION = [ ('name', 'a16'), ('size', 'i4'), ('origin', 'f8'), ('resolution', 'f8'), ('unit', 'a64'), ] MM_HEADER = [ ('header_flag', 'i2'), ('image_type', 'u1'), ('image_name', 'a257'), ('offset_data', 'u4'), ('palette_size', 'i4'), ('offset_palette0', 'u4'), ('offset_palette1', 'u4'), ('comment_size', 'i4'), ('offset_comment', 'u4'), ('dimensions', MM_DIMENSION, 10), ('offset_position', 'u4'), ('map_type', 'i2'), ('map_min', 'f8'), ('map_max', 'f8'), ('min_value', 'f8'), ('max_value', 'f8'), ('offset_map', 'u4'), ('gamma', 'f8'), ('offset', 'f8'), ('gray_channel', MM_DIMENSION), ('offset_thumbnail', 'u4'), ('voice_field', 'i4'), ('offset_voice_field', 'u4'), ] # Carl Zeiss LSM CZ_LSM_INFO = [ ('magic_number', 'u4'), ('structure_size', 'i4'), ('dimension_x', 'i4'), ('dimension_y', 'i4'), ('dimension_z', 'i4'), ('dimension_channels', 'i4'), ('dimension_time', 'i4'), ('data_type', 'i4'), # CZ_DATA_TYPES ('thumbnail_x', 'i4'), ('thumbnail_y', 'i4'), ('voxel_size_x', 'f8'), ('voxel_size_y', 'f8'), ('voxel_size_z', 'f8'), ('origin_x', 'f8'), ('origin_y', 'f8'), ('origin_z', 'f8'), ('scan_type', 'u2'), ('spectral_scan', 'u2'), ('type_of_data', 'u4'), # CZ_TYPE_OF_DATA ('offset_vector_overlay', 'u4'), ('offset_input_lut', 'u4'), ('offset_output_lut', 'u4'), ('offset_channel_colors', 'u4'), ('time_interval', 'f8'), ('offset_channel_data_types', 'u4'), ('offset_scan_info', 'u4'), # CZ_LSM_SCAN_INFO ('offset_ks_data', 'u4'), ('offset_time_stamps', 'u4'), ('offset_event_list', 'u4'), ('offset_roi', 'u4'), ('offset_bleach_roi', 'u4'), ('offset_next_recording', 'u4'), # LSM 2.0 ends here ('display_aspect_x', 'f8'), ('display_aspect_y', 'f8'), ('display_aspect_z', 'f8'), ('display_aspect_time', 'f8'), ('offset_mean_of_roi_overlay', 'u4'), ('offset_topo_isoline_overlay', 'u4'), ('offset_topo_profile_overlay', 'u4'), ('offset_linescan_overlay', 'u4'), ('offset_toolbar_flags', 'u4'), ('offset_channel_wavelength', 'u4'), ('offset_channel_factors', 'u4'), ('objective_sphere_correction', 'f8'), ('offset_unmix_parameters', 'u4'), # LSM 3.2, 4.0 end here ('offset_acquisition_parameters', 'u4'), ('offset_characteristics', 'u4'), ('offset_palette', 'u4'), ('time_difference_x', 'f8'), ('time_difference_y', 'f8'), ('time_difference_z', 'f8'), ('internal_use_1', 'u4'), ('dimension_p', 'i4'), ('dimension_m', 'i4'), ('dimensions_reserved', '16i4'), ('offset_tile_positions', 'u4'), ('reserved_1', '9u4'), ('offset_positions', 'u4'), ('reserved_2', '21u4'), # must be 0 ] # Import functions for LSM_INFO sub-records CZ_LSM_INFO_READERS = { 'scan_info': read_cz_lsm_scan_info, 'time_stamps': read_cz_lsm_time_stamps, 'event_list': read_cz_lsm_event_list, 'channel_colors': read_cz_lsm_floatpairs, 'positions': read_cz_lsm_floatpairs, 'tile_positions': read_cz_lsm_floatpairs, } # Map cz_lsm_info.scan_type to dimension order CZ_SCAN_TYPES = { 0: 'XYZCT', # x-y-z scan 1: 'XYZCT', # z scan (x-z plane) 2: 'XYZCT', # line scan 3: 'XYTCZ', # time series x-y 4: 'XYZTC', # time series x-z 5: 'XYTCZ', # time series 'Mean of ROIs' 6: 'XYZTC', # time series x-y-z 7: 'XYCTZ', # spline scan 8: 'XYCZT', # spline scan x-z 9: 'XYTCZ', # time series spline plane x-z 10: 'XYZCT', # point mode } # Map dimension codes to cz_lsm_info attribute CZ_DIMENSIONS = { 'X': 'dimension_x', 'Y': 'dimension_y', 'Z': 'dimension_z', 'C': 'dimension_channels', 'T': 'dimension_time', } # Description of cz_lsm_info.data_type CZ_DATA_TYPES = { 0: 'varying data types', 1: '8 bit unsigned integer', 2: '12 bit unsigned integer', 5: '32 bit float', } # Description of cz_lsm_info.type_of_data CZ_TYPE_OF_DATA = { 0: 'Original scan data', 1: 'Calculated data', 2: '3D reconstruction', 3: 'Topography height map', } CZ_LSM_SCAN_INFO_ARRAYS = { 0x20000000: "tracks", 0x30000000: "lasers", 0x60000000: "detection_channels", 0x80000000: "illumination_channels", 0xa0000000: "beam_splitters", 0xc0000000: "data_channels", 0x11000000: "timers", 0x13000000: "markers", } CZ_LSM_SCAN_INFO_STRUCTS = { # 0x10000000: "recording", 0x40000000: "track", 0x50000000: "laser", 0x70000000: "detection_channel", 0x90000000: "illumination_channel", 0xb0000000: "beam_splitter", 0xd0000000: "data_channel", 0x12000000: "timer", 0x14000000: "marker", } CZ_LSM_SCAN_INFO_ATTRIBUTES = { # recording 0x10000001: "name", 0x10000002: "description", 0x10000003: "notes", 0x10000004: "objective", 0x10000005: "processing_summary", 0x10000006: "special_scan_mode", 0x10000007: "scan_type", 0x10000008: "scan_mode", 0x10000009: "number_of_stacks", 0x1000000a: "lines_per_plane", 0x1000000b: "samples_per_line", 0x1000000c: "planes_per_volume", 0x1000000d: "images_width", 0x1000000e: "images_height", 0x1000000f: "images_number_planes", 0x10000010: "images_number_stacks", 0x10000011: "images_number_channels", 0x10000012: "linscan_xy_size", 0x10000013: "scan_direction", 0x10000014: "time_series", 0x10000015: "original_scan_data", 0x10000016: "zoom_x", 0x10000017: "zoom_y", 0x10000018: "zoom_z", 0x10000019: "sample_0x", 0x1000001a: "sample_0y", 0x1000001b: "sample_0z", 0x1000001c: "sample_spacing", 0x1000001d: "line_spacing", 0x1000001e: "plane_spacing", 0x1000001f: "plane_width", 0x10000020: "plane_height", 0x10000021: "volume_depth", 0x10000023: "nutation", 0x10000034: "rotation", 0x10000035: "precession", 0x10000036: "sample_0time", 0x10000037: "start_scan_trigger_in", 0x10000038: "start_scan_trigger_out", 0x10000039: "start_scan_event", 0x10000040: "start_scan_time", 0x10000041: "stop_scan_trigger_in", 0x10000042: "stop_scan_trigger_out", 0x10000043: "stop_scan_event", 0x10000044: "stop_scan_time", 0x10000045: "use_rois", 0x10000046: "use_reduced_memory_rois", 0x10000047: "user", 0x10000048: "use_bc_correction", 0x10000049: "position_bc_correction1", 0x10000050: "position_bc_correction2", 0x10000051: "interpolation_y", 0x10000052: "camera_binning", 0x10000053: "camera_supersampling", 0x10000054: "camera_frame_width", 0x10000055: "camera_frame_height", 0x10000056: "camera_offset_x", 0x10000057: "camera_offset_y", 0x10000059: "rt_binning", 0x1000005a: "rt_frame_width", 0x1000005b: "rt_frame_height", 0x1000005c: "rt_region_width", 0x1000005d: "rt_region_height", 0x1000005e: "rt_offset_x", 0x1000005f: "rt_offset_y", 0x10000060: "rt_zoom", 0x10000061: "rt_line_period", 0x10000062: "prescan", 0x10000063: "scan_direction_z", # track 0x40000001: "multiplex_type", # 0 after line; 1 after frame 0x40000002: "multiplex_order", 0x40000003: "sampling_mode", # 0 sample; 1 line average; 2 frame average 0x40000004: "sampling_method", # 1 mean; 2 sum 0x40000005: "sampling_number", 0x40000006: "acquire", 0x40000007: "sample_observation_time", 0x4000000b: "time_between_stacks", 0x4000000c: "name", 0x4000000d: "collimator1_name", 0x4000000e: "collimator1_position", 0x4000000f: "collimator2_name", 0x40000010: "collimator2_position", 0x40000011: "is_bleach_track", 0x40000012: "is_bleach_after_scan_number", 0x40000013: "bleach_scan_number", 0x40000014: "trigger_in", 0x40000015: "trigger_out", 0x40000016: "is_ratio_track", 0x40000017: "bleach_count", 0x40000018: "spi_center_wavelength", 0x40000019: "pixel_time", 0x40000021: "condensor_frontlens", 0x40000023: "field_stop_value", 0x40000024: "id_condensor_aperture", 0x40000025: "condensor_aperture", 0x40000026: "id_condensor_revolver", 0x40000027: "condensor_filter", 0x40000028: "id_transmission_filter1", 0x40000029: "id_transmission1", 0x40000030: "id_transmission_filter2", 0x40000031: "id_transmission2", 0x40000032: "repeat_bleach", 0x40000033: "enable_spot_bleach_pos", 0x40000034: "spot_bleach_posx", 0x40000035: "spot_bleach_posy", 0x40000036: "spot_bleach_posz", 0x40000037: "id_tubelens", 0x40000038: "id_tubelens_position", 0x40000039: "transmitted_light", 0x4000003a: "reflected_light", 0x4000003b: "simultan_grab_and_bleach", 0x4000003c: "bleach_pixel_time", # laser 0x50000001: "name", 0x50000002: "acquire", 0x50000003: "power", # detection_channel 0x70000001: "integration_mode", 0x70000002: "special_mode", 0x70000003: "detector_gain_first", 0x70000004: "detector_gain_last", 0x70000005: "amplifier_gain_first", 0x70000006: "amplifier_gain_last", 0x70000007: "amplifier_offs_first", 0x70000008: "amplifier_offs_last", 0x70000009: "pinhole_diameter", 0x7000000a: "counting_trigger", 0x7000000b: "acquire", 0x7000000c: "point_detector_name", 0x7000000d: "amplifier_name", 0x7000000e: "pinhole_name", 0x7000000f: "filter_set_name", 0x70000010: "filter_name", 0x70000013: "integrator_name", 0x70000014: "channel_name", 0x70000015: "detector_gain_bc1", 0x70000016: "detector_gain_bc2", 0x70000017: "amplifier_gain_bc1", 0x70000018: "amplifier_gain_bc2", 0x70000019: "amplifier_offset_bc1", 0x70000020: "amplifier_offset_bc2", 0x70000021: "spectral_scan_channels", 0x70000022: "spi_wavelength_start", 0x70000023: "spi_wavelength_stop", 0x70000026: "dye_name", 0x70000027: "dye_folder", # illumination_channel 0x90000001: "name", 0x90000002: "power", 0x90000003: "wavelength", 0x90000004: "aquire", 0x90000005: "detchannel_name", 0x90000006: "power_bc1", 0x90000007: "power_bc2", # beam_splitter 0xb0000001: "filter_set", 0xb0000002: "filter", 0xb0000003: "name", # data_channel 0xd0000001: "name", 0xd0000003: "acquire", 0xd0000004: "color", 0xd0000005: "sample_type", 0xd0000006: "bits_per_sample", 0xd0000007: "ratio_type", 0xd0000008: "ratio_track1", 0xd0000009: "ratio_track2", 0xd000000a: "ratio_channel1", 0xd000000b: "ratio_channel2", 0xd000000c: "ratio_const1", 0xd000000d: "ratio_const2", 0xd000000e: "ratio_const3", 0xd000000f: "ratio_const4", 0xd0000010: "ratio_const5", 0xd0000011: "ratio_const6", 0xd0000012: "ratio_first_images1", 0xd0000013: "ratio_first_images2", 0xd0000014: "dye_name", 0xd0000015: "dye_folder", 0xd0000016: "spectrum", 0xd0000017: "acquire", # timer 0x12000001: "name", 0x12000002: "description", 0x12000003: "interval", 0x12000004: "trigger_in", 0x12000005: "trigger_out", 0x12000006: "activation_time", 0x12000007: "activation_number", # marker 0x14000001: "name", 0x14000002: "description", 0x14000003: "trigger_in", 0x14000004: "trigger_out", } # Map TIFF tag code to attribute name, default value, type, count, validator TIFF_TAGS = { 254: ('new_subfile_type', 0, 4, 1, TIFF_SUBFILE_TYPES()), 255: ('subfile_type', None, 3, 1, {0: 'undefined', 1: 'image', 2: 'reduced_image', 3: 'page'}), 256: ('image_width', None, 4, 1, None), 257: ('image_length', None, 4, 1, None), 258: ('bits_per_sample', 1, 3, 1, None), 259: ('compression', 1, 3, 1, TIFF_COMPESSIONS), 262: ('photometric', None, 3, 1, TIFF_PHOTOMETRICS), 266: ('fill_order', 1, 3, 1, {1: 'msb2lsb', 2: 'lsb2msb'}), 269: ('document_name', None, 2, None, None), 270: ('image_description', None, 2, None, None), 271: ('make', None, 2, None, None), 272: ('model', None, 2, None, None), 273: ('strip_offsets', None, 4, None, None), 274: ('orientation', 1, 3, 1, TIFF_ORIENTATIONS), 277: ('samples_per_pixel', 1, 3, 1, None), 278: ('rows_per_strip', 2**32-1, 4, 1, None), 279: ('strip_byte_counts', None, 4, None, None), 280: ('min_sample_value', None, 3, None, None), 281: ('max_sample_value', None, 3, None, None), # 2**bits_per_sample 282: ('x_resolution', None, 5, 1, None), 283: ('y_resolution', None, 5, 1, None), 284: ('planar_configuration', 1, 3, 1, {1: 'contig', 2: 'separate'}), 285: ('page_name', None, 2, None, None), 286: ('x_position', None, 5, 1, None), 287: ('y_position', None, 5, 1, None), 296: ('resolution_unit', 2, 4, 1, {1: 'none', 2: 'inch', 3: 'centimeter'}), 297: ('page_number', None, 3, 2, None), 305: ('software', None, 2, None, None), 306: ('datetime', None, 2, None, None), 315: ('artist', None, 2, None, None), 316: ('host_computer', None, 2, None, None), 317: ('predictor', 1, 3, 1, {1: None, 2: 'horizontal', 3: 'float'}), 318: ('white_point', None, 5, 2, None), 319: ('primary_chromaticities', None, 5, 6, None), 320: ('color_map', None, 3, None, None), 322: ('tile_width', None, 4, 1, None), 323: ('tile_length', None, 4, 1, None), 324: ('tile_offsets', None, 4, None, None), 325: ('tile_byte_counts', None, 4, None, None), 338: ('extra_samples', None, 3, None, {0: 'unspecified', 1: 'assocalpha', 2: 'unassalpha'}), 339: ('sample_format', 1, 3, 1, TIFF_SAMPLE_FORMATS), 340: ('smin_sample_value', None, None, None, None), 341: ('smax_sample_value', None, None, None, None), 347: ('jpeg_tables', None, 7, None, None), 530: ('ycbcr_subsampling', 1, 3, 2, None), 531: ('ycbcr_positioning', 1, 3, 1, None), 32996: ('sgi_matteing', None, None, 1, None), # use extra_samples 32996: ('sgi_datatype', None, None, 1, None), # use sample_format 32997: ('image_depth', None, 4, 1, None), 32998: ('tile_depth', None, 4, 1, None), 33432: ('copyright', None, 1, None, None), 33445: ('md_file_tag', None, 4, 1, None), 33446: ('md_scale_pixel', None, 5, 1, None), 33447: ('md_color_table', None, 3, None, None), 33448: ('md_lab_name', None, 2, None, None), 33449: ('md_sample_info', None, 2, None, None), 33450: ('md_prep_date', None, 2, None, None), 33451: ('md_prep_time', None, 2, None, None), 33452: ('md_file_units', None, 2, None, None), 33550: ('model_pixel_scale', None, 12, 3, None), 33922: ('model_tie_point', None, 12, None, None), 34665: ('exif_ifd', None, None, 1, None), 34735: ('geo_key_directory', None, 3, None, None), 34736: ('geo_double_params', None, 12, None, None), 34737: ('geo_ascii_params', None, 2, None, None), 34853: ('gps_ifd', None, None, 1, None), 37510: ('user_comment', None, None, None, None), 42112: ('gdal_metadata', None, 2, None, None), 42113: ('gdal_nodata', None, 2, None, None), 50289: ('mc_xy_position', None, 12, 2, None), 50290: ('mc_z_position', None, 12, 1, None), 50291: ('mc_xy_calibration', None, 12, 3, None), 50292: ('mc_lens_lem_na_n', None, 12, 3, None), 50293: ('mc_channel_name', None, 1, None, None), 50294: ('mc_ex_wavelength', None, 12, 1, None), 50295: ('mc_time_stamp', None, 12, 1, None), 50838: ('imagej_byte_counts', None, None, None, None), 51023: ('fibics_xml', None, 2, None, None), 65200: ('flex_xml', None, 2, None, None), # code: (attribute name, default value, type, count, validator) } # Map custom TIFF tag codes to attribute names and import functions CUSTOM_TAGS = { 700: ('xmp', read_bytes), 34377: ('photoshop', read_numpy), 33723: ('iptc', read_bytes), 34675: ('icc_profile', read_bytes), 33628: ('uic1tag', read_uic1tag), # Universal Imaging Corporation STK 33629: ('uic2tag', read_uic2tag), 33630: ('uic3tag', read_uic3tag), 33631: ('uic4tag', read_uic4tag), 34361: ('mm_header', read_mm_header), # Olympus FluoView 34362: ('mm_stamp', read_mm_stamp), 34386: ('mm_user_block', read_bytes), 34412: ('cz_lsm_info', read_cz_lsm_info), # Carl Zeiss LSM 43314: ('nih_image_header', read_nih_image_header), # 40001: ('mc_ipwinscal', read_bytes), 40100: ('mc_id_old', read_bytes), 50288: ('mc_id', read_bytes), 50296: ('mc_frame_properties', read_bytes), 50839: ('imagej_metadata', read_bytes), 51123: ('micromanager_metadata', read_json), } # Max line length of printed output PRINT_LINE_LEN = 79 def imshow(data, title=None, vmin=0, vmax=None, cmap=None, bitspersample=None, photometric='rgb', interpolation='nearest', dpi=96, figure=None, subplot=111, maxdim=8192, **kwargs): """Plot n-dimensional images using matplotlib.pyplot. Return figure, subplot and plot axis. Requires pyplot already imported `from matplotlib import pyplot`. Parameters ---------- bitspersample : int or None Number of bits per channel in integer RGB images. photometric : {'miniswhite', 'minisblack', 'rgb', or 'palette'} The color space of the image data. title : str Window and subplot title. figure : matplotlib.figure.Figure (optional). Matplotlib to use for plotting. subplot : int A matplotlib.pyplot.subplot axis. maxdim : int maximum image width and length. kwargs : optional Arguments for matplotlib.pyplot.imshow. """ #if photometric not in ('miniswhite', 'minisblack', 'rgb', 'palette'): # raise ValueError("Can't handle %s photometrics" % photometric) # TODO: handle photometric == 'separated' (CMYK) isrgb = photometric in ('rgb', 'palette') data = numpy.atleast_2d(data.squeeze()) dims = data.ndim if dims < 2: raise ValueError("not an image") elif dims == 2: dims = 0 isrgb = False else: if isrgb and data.shape[-3] in (3, 4): data = numpy.swapaxes(data, -3, -2) data = numpy.swapaxes(data, -2, -1) elif not isrgb and (data.shape[-1] < data.shape[-2] // 8 and data.shape[-1] < data.shape[-3] // 8 and data.shape[-1] < 5): data = numpy.swapaxes(data, -3, -1) data = numpy.swapaxes(data, -2, -1) isrgb = isrgb and data.shape[-1] in (3, 4) dims -= 3 if isrgb else 2 if isrgb: data = data[..., :maxdim, :maxdim, :maxdim] else: data = data[..., :maxdim, :maxdim] if photometric == 'palette' and isrgb: datamax = data.max() if datamax > 255: data >>= 8 # possible precision loss data = data.astype('B') elif data.dtype.kind in 'ui': if not (isrgb and data.dtype.itemsize <= 1) or bitspersample is None: try: bitspersample = int(math.ceil(math.log(data.max(), 2))) except Exception: bitspersample = data.dtype.itemsize * 8 elif not isinstance(bitspersample, int): # bitspersample can be tuple, e.g. (5, 6, 5) bitspersample = data.dtype.itemsize * 8 datamax = 2**bitspersample if isrgb: if bitspersample < 8: data <<= 8 - bitspersample elif bitspersample > 8: data >>= bitspersample - 8 # precision loss data = data.astype('B') elif data.dtype.kind == 'f': datamax = data.max() if isrgb and datamax > 1.0: if data.dtype.char == 'd': data = data.astype('f') data /= datamax elif data.dtype.kind == 'b': datamax = 1 elif data.dtype.kind == 'c': # TODO: handle complex types raise NotImplementedError("complex type") if not isrgb: if vmax is None: vmax = datamax if vmin is None: if data.dtype.kind == 'i': dtmin = numpy.iinfo(data.dtype).min vmin = numpy.min(data) if vmin == dtmin: vmin = numpy.min(data > dtmin) if data.dtype.kind == 'f': dtmin = numpy.finfo(data.dtype).min vmin = numpy.min(data) if vmin == dtmin: vmin = numpy.min(data > dtmin) else: vmin = 0 pyplot = sys.modules['matplotlib.pyplot'] if figure is None: pyplot.rc('font', family='sans-serif', weight='normal', size=8) figure = pyplot.figure(dpi=dpi, figsize=(10.3, 6.3), frameon=True, facecolor='1.0', edgecolor='w') try: figure.canvas.manager.window.title(title) except Exception: pass pyplot.subplots_adjust(bottom=0.03*(dims+2), top=0.9, left=0.1, right=0.95, hspace=0.05, wspace=0.0) subplot = pyplot.subplot(subplot) if title: try: title = unicode(title, 'Windows-1252') except TypeError: pass pyplot.title(title, size=11) if cmap is None: if data.dtype.kind in 'ubf' or vmin == 0: cmap = 'cubehelix' else: cmap = 'coolwarm' if photometric == 'miniswhite': cmap += '_r' image = pyplot.imshow(data[(0,) * dims].squeeze(), vmin=vmin, vmax=vmax, cmap=cmap, interpolation=interpolation, **kwargs) if not isrgb: pyplot.colorbar() # panchor=(0.55, 0.5), fraction=0.05 def format_coord(x, y): # callback function to format coordinate display in toolbar x = int(x + 0.5) y = int(y + 0.5) try: if dims: return "%s @ %s [%4i, %4i]" % (cur_ax_dat[1][y, x], current, x, y) else: return "%s @ [%4i, %4i]" % (data[y, x], x, y) except IndexError: return "" pyplot.gca().format_coord = format_coord if dims: current = list((0,) * dims) cur_ax_dat = [0, data[tuple(current)].squeeze()] sliders = [pyplot.Slider( pyplot.axes([0.125, 0.03*(axis+1), 0.725, 0.025]), 'Dimension %i' % axis, 0, data.shape[axis]-1, 0, facecolor='0.5', valfmt='%%.0f [%i]' % data.shape[axis]) for axis in range(dims)] for slider in sliders: slider.drawon = False def set_image(current, sliders=sliders, data=data): # change image and redraw canvas cur_ax_dat[1] = data[tuple(current)].squeeze() image.set_data(cur_ax_dat[1]) for ctrl, index in zip(sliders, current): ctrl.eventson = False ctrl.set_val(index) ctrl.eventson = True figure.canvas.draw() def on_changed(index, axis, data=data, current=current): # callback function for slider change event index = int(round(index)) cur_ax_dat[0] = axis if index == current[axis]: return if index >= data.shape[axis]: index = 0 elif index < 0: index = data.shape[axis] - 1 current[axis] = index set_image(current) def on_keypressed(event, data=data, current=current): # callback function for key press event key = event.key axis = cur_ax_dat[0] if str(key) in '0123456789': on_changed(key, axis) elif key == 'right': on_changed(current[axis] + 1, axis) elif key == 'left': on_changed(current[axis] - 1, axis) elif key == 'up': cur_ax_dat[0] = 0 if axis == len(data.shape)-1 else axis + 1 elif key == 'down': cur_ax_dat[0] = len(data.shape)-1 if axis == 0 else axis - 1 elif key == 'end': on_changed(data.shape[axis] - 1, axis) elif key == 'home': on_changed(0, axis) figure.canvas.mpl_connect('key_press_event', on_keypressed) for axis, ctrl in enumerate(sliders): ctrl.on_changed(lambda k, a=axis: on_changed(k, a)) return figure, subplot, image def _app_show(): """Block the GUI. For use as skimage plugin.""" pyplot = sys.modules['matplotlib.pyplot'] pyplot.show() def main(argv=None): """Command line usage main function.""" if float(sys.version[0:3]) < 2.6: print("This script requires Python version 2.6 or better.") print("This is Python version %s" % sys.version) return 0 if argv is None: argv = sys.argv import optparse parser = optparse.OptionParser( usage="usage: %prog [options] path", description="Display image data in TIFF files.", version="%%prog %s" % __version__) opt = parser.add_option opt('-p', '--page', dest='page', type='int', default=-1, help="display single page") opt('-s', '--series', dest='series', type='int', default=-1, help="display series of pages of same shape") opt('--nomultifile', dest='nomultifile', action='store_true', default=False, help="don't read OME series from multiple files") opt('--noplot', dest='noplot', action='store_true', default=False, help="don't display images") opt('--interpol', dest='interpol', metavar='INTERPOL', default='bilinear', help="image interpolation method") opt('--dpi', dest='dpi', type='int', default=96, help="set plot resolution") opt('--debug', dest='debug', action='store_true', default=False, help="raise exception on failures") opt('--test', dest='test', action='store_true', default=False, help="try read all images in path") opt('--doctest', dest='doctest', action='store_true', default=False, help="runs the docstring examples") opt('-v', '--verbose', dest='verbose', action='store_true', default=True) opt('-q', '--quiet', dest='verbose', action='store_false') settings, path = parser.parse_args() path = ' '.join(path) if settings.doctest: import doctest doctest.testmod() return 0 if not path: try: import tkFileDialog as filedialog except ImportError: from tkinter import filedialog path = filedialog.askopenfilename(filetypes=[ ("TIF files", "*.tif"), ("LSM files", "*.lsm"), ("STK files", "*.stk"), ("allfiles", "*")]) #parser.error("No file specified") if settings.test: test_tifffile(path, settings.verbose) return 0 if any(i in path for i in '?*'): path = glob.glob(path) if not path: print('no files match the pattern') return 0 # TODO: handle image sequences #if len(path) == 1: path = path[0] print("Reading file structure...", end=' ') start = time.time() try: tif = TiffFile(path, multifile=not settings.nomultifile) except Exception as e: if settings.debug: raise else: print("\n", e) sys.exit(0) print("%.3f ms" % ((time.time()-start) * 1e3)) if tif.is_ome: settings.norgb = True images = [(None, tif[0 if settings.page < 0 else settings.page])] if not settings.noplot: print("Reading image data... ", end=' ') def notnone(x): return next(i for i in x if i is not None) start = time.time() try: if settings.page >= 0: images = [(tif.asarray(key=settings.page), tif[settings.page])] elif settings.series >= 0: images = [(tif.asarray(series=settings.series), notnone(tif.series[settings.series].pages))] else: images = [] for i, s in enumerate(tif.series): try: images.append( (tif.asarray(series=i), notnone(s.pages))) except ValueError as e: images.append((None, notnone(s.pages))) if settings.debug: raise else: print("\n* series %i failed: %s... " % (i, e), end='') print("%.3f ms" % ((time.time()-start) * 1e3)) except Exception as e: if settings.debug: raise else: print(e) tif.close() print("\nTIFF file:", tif) print() for i, s in enumerate(tif.series): print ("Series %i" % i) print(s) print() for i, page in images: print(page) print(page.tags) if page.is_palette: print("\nColor Map:", page.color_map.shape, page.color_map.dtype) for attr in ('cz_lsm_info', 'cz_lsm_scan_info', 'uic_tags', 'mm_header', 'imagej_tags', 'micromanager_metadata', 'nih_image_header'): if hasattr(page, attr): print("", attr.upper(), Record(getattr(page, attr)), sep="\n") print() if page.is_micromanager: print('MICROMANAGER_FILE_METADATA') print(Record(tif.micromanager_metadata)) if images and not settings.noplot: try: import matplotlib matplotlib.use('TkAgg') from matplotlib import pyplot except ImportError as e: warnings.warn("failed to import matplotlib.\n%s" % e) else: for img, page in images: if img is None: continue vmin, vmax = None, None if 'gdal_nodata' in page.tags: try: vmin = numpy.min(img[img > float(page.gdal_nodata)]) except ValueError: pass if page.is_stk: try: vmin = page.uic_tags['min_scale'] vmax = page.uic_tags['max_scale'] except KeyError: pass else: if vmax <= vmin: vmin, vmax = None, None title = "%s\n %s" % (str(tif), str(page)) imshow(img, title=title, vmin=vmin, vmax=vmax, bitspersample=page.bits_per_sample, photometric=page.photometric, interpolation=settings.interpol, dpi=settings.dpi) pyplot.show() TIFFfile = TiffFile # backwards compatibility if sys.version_info[0] > 2: basestring = str, bytes unicode = str def str2bytes(s, encoding="latin-1"): return s.encode(encoding) else: def str2bytes(s): return s if __name__ == "__main__": sys.exit(main())