tifffile-20131103/0000755000175000017500000000000012243436556013422 5ustar mathieumathieutifffile-20131103/tifffile.py0000644000175000017500000037554612243436556015610 0ustar mathieumathieu#!/usr/bin/env python # -*- coding: utf-8 -*- # tifffile.py # Copyright (c) 2008-2013, Christoph Gohlke # Copyright (c) 2008-2013, The Regents of the University of California # Produced at the Laboratory for Fluorescence Dynamics # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holders nor the names of any # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Read and write image data from and to TIFF files. Image and meta-data can be read from TIFF, BigTIFF, OME-TIFF, STK, LSM, NIH, ImageJ, MicroManager, FluoView, SEQ and GEL files. Only a subset of the TIFF specification is supported, mainly uncompressed and losslessly compressed 2**(0 to 6) bit integer, 16, 32 and 64-bit float, grayscale and RGB(A) images, which are commonly used in bio-scientific imaging. Specifically, reading JPEG/CCITT compressed image data or EXIF/IPTC/GPS/XMP meta-data is not implemented. Only primary info records are read for STK, FluoView, MicroManager, and NIH image formats. TIFF, the Tagged Image File Format, is under the control of Adobe Systems. BigTIFF allows for files greater than 4 GB. STK, LSM, FluoView, SEQ, GEL, and OME-TIFF, are custom extensions defined by MetaMorph, Carl Zeiss MicroImaging, Olympus, Media Cybernetics, Molecular Dynamics, and the Open Microscopy Environment consortium respectively. For command line usage run ``python tifffile.py --help`` :Author: `Christoph Gohlke `_ :Organization: Laboratory for Fluorescence Dynamics, University of California, Irvine :Version: 2013.11.03 Requirements ------------ * `CPython 2.7 or 3.3 `_ * `Numpy 1.7 `_ * `Matplotlib 1.3 `_ (optional for plotting) * `Tifffile.c 2013.01.18 `_ (recommended for faster decoding of PackBits and LZW encoded strings) Notes ----- The API is not stable yet and might change between revisions. Tested on little-endian platforms only. Other Python packages and modules for reading bio-scientific TIFF files: * `Imread `_ * `PyLibTiff `_ * `SimpleITK `_ * `PyLSM `_ * `PyMca.TiffIO.py `_ * `BioImageXD.Readers `_ * `Cellcognition.io `_ * `CellProfiler.bioformats `_ Acknowledgements ---------------- * Egor Zindy, University of Manchester, for cz_lsm_scan_info specifics. * Wim Lewis for a bug fix and some read_cz_lsm functions. * Hadrien Mary for help on reading MicroManager files. References ---------- (1) TIFF 6.0 Specification and Supplements. Adobe Systems Incorporated. http://partners.adobe.com/public/developer/tiff/ (2) TIFF File Format FAQ. http://www.awaresystems.be/imaging/tiff/faq.html (3) MetaMorph Stack (STK) Image File Format. http://support.meta.moleculardevices.com/docs/t10243.pdf (4) File Format Description - LSM 5xx Release 2.0. http://ibb.gsf.de/homepage/karsten.rodenacker/IDL/Lsmfile.doc (5) BioFormats. http://www.loci.wisc.edu/ome/formats.html (6) The OME-TIFF format. http://www.openmicroscopy.org/site/support/file-formats/ome-tiff (7) TiffDecoder.java http://rsbweb.nih.gov/ij/developer/source/ij/io/TiffDecoder.java.html (8) UltraQuant(r) Version 6.0 for Windows Start-Up Guide. http://www.ultralum.com/images%20ultralum/pdf/UQStart%20Up%20Guide.pdf (9) Micro-Manager File Formats. http://www.micro-manager.org/wiki/Micro-Manager_File_Formats Examples -------- >>> data = numpy.random.rand(301, 219) >>> imsave('temp.tif', data) >>> image = imread('temp.tif') >>> assert numpy.all(image == data) >>> tif = TiffFile('test.tif') >>> images = tif.asarray() >>> image0 = tif[0].asarray() >>> for page in tif: ... for tag in page.tags.values(): ... t = tag.name, tag.value ... image = page.asarray() ... if page.is_rgb: pass ... if page.is_palette: ... t = page.color_map ... if page.is_stk: ... t = page.mm_uic_tags.number_planes ... if page.is_lsm: ... t = page.cz_lsm_info >>> tif.close() """ from __future__ import division, print_function import sys import os import re import glob import math import zlib import time import json import struct import warnings import datetime import collections from fractions import Fraction from xml.etree import cElementTree as ElementTree import numpy __version__ = '2013.11.03' __docformat__ = 'restructuredtext en' __all__ = ['imsave', 'imread', 'imshow', 'TiffFile', 'TiffSequence'] def imsave(filename, data, photometric=None, planarconfig=None, resolution=None, description=None, software='tifffile.py', byteorder=None, bigtiff=False, compress=0, extratags=()): """Write image data to TIFF file. Image data are written in one stripe per plane. Dimensions larger than 2 or 3 (depending on photometric mode and planar configuration) are flattened and saved as separate pages. The 'sample_format' and 'bits_per_sample' TIFF tags are derived from the data type. Parameters ---------- filename : str Name of file to write. data : array_like Input image. The last dimensions are assumed to be image height, width, and samples. photometric : {'minisblack', 'miniswhite', 'rgb'} The color space of the image data. By default this setting is inferred from the data shape. planarconfig : {'contig', 'planar'} Specifies if samples are stored contiguous or in separate planes. By default this setting is inferred from the data shape. 'contig': last dimension contains samples. 'planar': third last dimension contains samples. resolution : (float, float) or ((int, int), (int, int)) X and Y resolution in dots per inch as float or rational numbers. description : str The subject of the image. Saved with the first page only. software : str Name of the software used to create the image. Saved with the first page only. byteorder : {'<', '>'} The endianness of the data in the file. By default this is the system's native byte order. bigtiff : bool If True, the BigTIFF format is used. By default the standard TIFF format is used for data less than 2000 MB. compress : int Values from 0 to 9 controlling the level of zlib compression. If 0, data are written uncompressed (default). extratags: sequence of tuples Additional tags as [(code, dtype, count, value, writeonce)]. code : int The TIFF tag Id. dtype : str Data type of items in `value` in Python struct format. One of B, s, H, I, 2I, b, h, i, f, d, Q, or q. count : int Number of data values. Not used for string values. value : sequence `Count` values compatible with `dtype`. writeonce : bool If True, the tag is written to the first page only. Examples -------- >>> data = numpy.ones((2, 5, 3, 301, 219), 'float32') * 0.5 >>> imsave('temp.tif', data, compress=6) >>> data = numpy.ones((5, 301, 219, 3), 'uint8') + 127 >>> value = u'{"shape": %s}' % str(list(data.shape)) >>> imsave('temp.tif', data, extratags=[(270, 's', 0, value, True)]) """ assert(photometric in (None, 'minisblack', 'miniswhite', 'rgb')) assert(planarconfig in (None, 'contig', 'planar')) assert(byteorder in (None, '<', '>')) assert(0 <= compress <= 9) if byteorder is None: byteorder = '<' if sys.byteorder == 'little' else '>' data = numpy.asarray(data, dtype=byteorder+data.dtype.char, order='C') data_shape = shape = data.shape data = numpy.atleast_2d(data) if not bigtiff and data.size * data.dtype.itemsize < 2000*2**20: bigtiff = False offset_size = 4 tag_size = 12 numtag_format = 'H' offset_format = 'I' val_format = '4s' else: bigtiff = True offset_size = 8 tag_size = 20 numtag_format = 'Q' offset_format = 'Q' val_format = '8s' # unify shape of data samplesperpixel = 1 extrasamples = 0 if photometric is None: if data.ndim > 2 and (shape[-3] in (3, 4) or shape[-1] in (3, 4)): photometric = 'rgb' else: photometric = 'minisblack' if photometric == 'rgb': if len(shape) < 3: raise ValueError("not a RGB(A) image") if planarconfig is None: planarconfig = 'planar' if shape[-3] in (3, 4) else 'contig' if planarconfig == 'contig': if shape[-1] not in (3, 4): raise ValueError("not a contiguous RGB(A) image") data = data.reshape((-1, 1) + shape[-3:]) samplesperpixel = shape[-1] else: if shape[-3] not in (3, 4): raise ValueError("not a planar RGB(A) image") data = data.reshape((-1, ) + shape[-3:] + (1, )) samplesperpixel = shape[-3] if samplesperpixel == 4: extrasamples = 1 elif planarconfig and len(shape) > 2: if planarconfig == 'contig': data = data.reshape((-1, 1) + shape[-3:]) samplesperpixel = shape[-1] else: data = data.reshape((-1, ) + shape[-3:] + (1, )) samplesperpixel = shape[-3] extrasamples = samplesperpixel - 1 else: planarconfig = None # remove trailing 1s while len(shape) > 2 and shape[-1] == 1: shape = shape[:-1] data = data.reshape((-1, 1) + shape[-2:] + (1, )) shape = data.shape # (pages, planes, height, width, contig samples) bytestr = bytes if sys.version[0] == '2' else ( lambda x: bytes(x, 'utf-8') if isinstance(x, str) else x) tifftypes = {'B': 1, 's': 2, 'H': 3, 'I': 4, '2I': 5, 'b': 6, 'h': 8, 'i': 9, 'f': 11, 'd': 12, 'Q': 16, 'q': 17} tifftags = { 'new_subfile_type': 254, 'subfile_type': 255, 'image_width': 256, 'image_length': 257, 'bits_per_sample': 258, 'compression': 259, 'photometric': 262, 'fill_order': 266, 'document_name': 269, 'image_description': 270, 'strip_offsets': 273, 'orientation': 274, 'samples_per_pixel': 277, 'rows_per_strip': 278, 'strip_byte_counts': 279, 'x_resolution': 282, 'y_resolution': 283, 'planar_configuration': 284, 'page_name': 285, 'resolution_unit': 296, 'software': 305, 'datetime': 306, 'predictor': 317, 'color_map': 320, 'extra_samples': 338, 'sample_format': 339} tags = [] # list of (code, ifdentry, ifdvalue, writeonce) def pack(fmt, *val): return struct.pack(byteorder+fmt, *val) def addtag(code, dtype, count, value, writeonce=False): # compute ifdentry and ifdvalue bytes from code, dtype, count, value # append (code, ifdentry, ifdvalue, writeonce) to tags list code = tifftags[code] if code in tifftags else int(code) if dtype not in tifftypes: raise ValueError("unknown dtype %s" % dtype) if dtype == 's': value = bytestr(value) + b'\0' count = len(value) value = (value, ) if len(dtype) > 1: count *= int(dtype[:-1]) dtype = dtype[-1] ifdentry = [pack('HH', code, tifftypes[dtype]), pack(offset_format, count)] ifdvalue = None if count == 1: if isinstance(value, (tuple, list)): value = value[0] ifdentry.append(pack(val_format, pack(dtype, value))) elif struct.calcsize(dtype) * count <= offset_size: ifdentry.append(pack(val_format, pack(str(count)+dtype, *value))) else: ifdentry.append(pack(offset_format, 0)) ifdvalue = pack(str(count)+dtype, *value) tags.append((code, b''.join(ifdentry), ifdvalue, writeonce)) def rational(arg, max_denominator=1000000): # return nominator and denominator from float or two integers try: f = Fraction.from_float(arg) except TypeError: f = Fraction(arg[0], arg[1]) f = f.limit_denominator(max_denominator) return f.numerator, f.denominator if software: addtag('software', 's', 0, software, writeonce=True) if description: addtag('image_description', 's', 0, description, writeonce=True) elif shape != data_shape: addtag('image_description', 's', 0, "shape=(%s)" % (",".join('%i' % i for i in data_shape)), writeonce=True) addtag('datetime', 's', 0, datetime.datetime.now().strftime("%Y:%m:%d %H:%M:%S"), writeonce=True) addtag('compression', 'H', 1, 32946 if compress else 1) addtag('orientation', 'H', 1, 1) addtag('image_width', 'I', 1, shape[-2]) addtag('image_length', 'I', 1, shape[-3]) addtag('new_subfile_type', 'I', 1, 0 if shape[0] == 1 else 2) addtag('sample_format', 'H', 1, {'u': 1, 'i': 2, 'f': 3, 'c': 6}[data.dtype.kind]) addtag('photometric', 'H', 1, {'miniswhite': 0, 'minisblack': 1, 'rgb': 2}[photometric]) addtag('samples_per_pixel', 'H', 1, samplesperpixel) if planarconfig: addtag('planar_configuration', 'H', 1, 1 if planarconfig=='contig' else 2) addtag('bits_per_sample', 'H', samplesperpixel, (data.dtype.itemsize * 8, ) * samplesperpixel) else: addtag('bits_per_sample', 'H', 1, data.dtype.itemsize * 8) if extrasamples: if photometric == 'rgb': addtag('extra_samples', 'H', 1, 1) # alpha channel else: addtag('extra_samples', 'H', extrasamples, (0, ) * extrasamples) if resolution: addtag('x_resolution', '2I', 1, rational(resolution[0])) addtag('y_resolution', '2I', 1, rational(resolution[1])) addtag('resolution_unit', 'H', 1, 2) addtag('rows_per_strip', 'I', 1, shape[-3]) # use one strip per plane strip_byte_counts = (data[0, 0].size * data.dtype.itemsize, ) * shape[1] addtag('strip_byte_counts', offset_format, shape[1], strip_byte_counts) addtag('strip_offsets', offset_format, shape[1], (0, ) * shape[1]) # add extra tags from users for t in extratags: addtag(*t) # the entries in an IFD must be sorted in ascending order by tag code tags = sorted(tags, key=lambda x: x[0]) with open(filename, 'wb') as fh: seek = fh.seek tell = fh.tell def write(arg, *args): fh.write(pack(arg, *args) if args else arg) write({'<': b'II', '>': b'MM'}[byteorder]) if bigtiff: write('HHH', 43, 8, 0) else: write('H', 42) ifd_offset = tell() write(offset_format, 0) # first IFD for pageindex in range(shape[0]): # update pointer at ifd_offset pos = tell() seek(ifd_offset) write(offset_format, pos) seek(pos) # write ifdentries write(numtag_format, len(tags)) tag_offset = tell() write(b''.join(t[1] for t in tags)) ifd_offset = tell() write(offset_format, 0) # offset to next IFD # write tag values and patch offsets in ifdentries, if necessary for tagindex, tag in enumerate(tags): if tag[2]: pos = tell() seek(tag_offset + tagindex*tag_size + offset_size + 4) write(offset_format, pos) seek(pos) if tag[0] == 273: strip_offsets_offset = pos elif tag[0] == 279: strip_byte_counts_offset = pos write(tag[2]) # write image data data_offset = tell() if compress: strip_byte_counts = [] for plane in data[pageindex]: plane = zlib.compress(plane, compress) strip_byte_counts.append(len(plane)) fh.write(plane) else: # if this fails try update Python/numpy data[pageindex].tofile(fh) fh.flush() # update strip_offsets and strip_byte_counts if necessary pos = tell() for tagindex, tag in enumerate(tags): if tag[0] == 273: # strip_offsets if tag[2]: seek(strip_offsets_offset) strip_offset = data_offset for size in strip_byte_counts: write(offset_format, strip_offset) strip_offset += size else: seek(tag_offset + tagindex*tag_size + offset_size + 4) write(offset_format, data_offset) elif tag[0] == 279: # strip_byte_counts if compress: if tag[2]: seek(strip_byte_counts_offset) for size in strip_byte_counts: write(offset_format, size) else: seek(tag_offset + tagindex*tag_size + offset_size + 4) write(offset_format, strip_byte_counts[0]) break seek(pos) fh.flush() # remove tags that should be written only once if pageindex == 0: tags = [t for t in tags if not t[-1]] def imread(files, *args, **kwargs): """Return image data from TIFF file(s) as numpy array. The first image series is returned if no arguments are provided. Parameters ---------- files : str or list File name, glob pattern, or list of file names. key : int, slice, or sequence of page indices Defines which pages to return as array. series : int Defines which series of pages in file to return as array. multifile : bool If True (default), OME-TIFF data may include pages from multiple files. pattern : str Regular expression pattern that matches axes names and indices in file names. Examples -------- >>> im = imread('test.tif', 0) >>> im.shape (256, 256, 4) >>> ims = imread(['test.tif', 'test.tif']) >>> ims.shape (2, 256, 256, 4) """ kwargs_file = {} if 'multifile' in kwargs: kwargs_file['multifile'] = kwargs['multifile'] del kwargs['multifile'] else: kwargs_file['multifile'] = True kwargs_seq = {} if 'pattern' in kwargs: kwargs_seq['pattern'] = kwargs['pattern'] del kwargs['pattern'] if isinstance(files, basestring) and any(i in files for i in '?*'): files = glob.glob(files) if not files: raise ValueError('no files found') if len(files) == 1: files = files[0] if isinstance(files, basestring): with TiffFile(files, **kwargs_file) as tif: return tif.asarray(*args, **kwargs) else: with TiffSequence(files, **kwargs_seq) as imseq: return imseq.asarray(*args, **kwargs) class lazyattr(object): """Lazy object attribute whose value is computed on first access.""" __slots__ = ('func', ) def __init__(self, func): self.func = func def __get__(self, instance, owner): if instance is None: return self value = self.func(instance) if value is NotImplemented: return getattr(super(owner, instance), self.func.__name__) setattr(instance, self.func.__name__, value) return value class TiffFile(object): """Read image and meta-data from TIFF, STK, LSM, and FluoView files. TiffFile instances must be closed using the close method, which is automatically called when using the 'with' statement. Attributes ---------- pages : list All TIFF pages in file. series : list of Records(shape, dtype, axes, TiffPages) TIFF pages with compatible shapes and types. micromanager_metadata: dict Extra MicroManager non-TIFF metadata in the file, if exists. All attributes are read-only. Examples -------- >>> tif = TiffFile('test.tif') ... try: ... images = tif.asarray() ... except Exception as e: ... print(e) ... finally: ... tif.close() """ def __init__(self, arg, name=None, multifile=False): """Initialize instance from file. Parameters ---------- arg : str or open file Name of file or open file object. The file objects are closed in TiffFile.close(). name : str Human readable label of open file. multifile : bool If True, series may include pages from multiple files. """ if isinstance(arg, basestring): filename = os.path.abspath(arg) self._fh = open(filename, 'rb') else: filename = str(name) self._fh = arg self._fh.seek(0, 2) self._fsize = self._fh.tell() self._fh.seek(0) self.fname = os.path.basename(filename) self.fpath = os.path.dirname(filename) self._tiffs = {self.fname: self} # cache of TiffFiles self.offset_size = None self.pages = [] self._multifile = bool(multifile) try: self._fromfile() except Exception: self._fh.close() raise def close(self): """Close open file handle(s).""" for tif in self._tiffs.values(): if tif._fh: tif._fh.close() tif._fh = None self._tiffs = {} def _fromfile(self): """Read TIFF header and all page records from file.""" self._fh.seek(0) try: self.byteorder = {b'II': '<', b'MM': '>'}[self._fh.read(2)] except KeyError: raise ValueError("not a valid TIFF file") version = struct.unpack(self.byteorder+'H', self._fh.read(2))[0] if version == 43: # BigTiff self.offset_size, zero = struct.unpack(self.byteorder+'HH', self._fh.read(4)) if zero or self.offset_size != 8: raise ValueError("not a valid BigTIFF file") elif version == 42: self.offset_size = 4 else: raise ValueError("not a TIFF file") self.pages = [] while True: try: page = TiffPage(self) self.pages.append(page) except StopIteration: break if not self.pages: raise ValueError("empty TIFF file") if self.is_micromanager: # MicroManager files contain metadata not stored in TIFF tags. self.micromanager_metadata = read_micromanager_metadata(self._fh) @lazyattr def series(self): """Return series of TiffPage with compatible shape and properties.""" series = [] if self.is_ome: series = self._omeseries() elif self.is_fluoview: dims = {b'X': 'X', b'Y': 'Y', b'Z': 'Z', b'T': 'T', b'WAVELENGTH': 'C', b'TIME': 'T', b'XY': 'R', b'EVENT': 'V', b'EXPOSURE': 'L'} mmhd = list(reversed(self.pages[0].mm_header.dimensions)) series = [Record( axes=''.join(dims.get(i[0].strip().upper(), 'Q') for i in mmhd if i[1] > 1), shape=tuple(int(i[1]) for i in mmhd if i[1] > 1), pages=self.pages, dtype=numpy.dtype(self.pages[0].dtype))] elif self.is_lsm: lsmi = self.pages[0].cz_lsm_info axes = CZ_SCAN_TYPES[lsmi.scan_type] if self.pages[0].is_rgb: axes = axes.replace('C', '').replace('XY', 'XYC') axes = axes[::-1] shape = [getattr(lsmi, CZ_DIMENSIONS[i]) for i in axes] pages = [p for p in self.pages if not p.is_reduced] series = [Record(axes=axes, shape=shape, pages=pages, dtype=numpy.dtype(pages[0].dtype))] if len(pages) != len(self.pages): # reduced RGB pages pages = [p for p in self.pages if p.is_reduced] cp = 1 i = 0 while cp < len(pages) and i < len(shape)-2: cp *= shape[i] i += 1 shape = shape[:i] + list(pages[0].shape) axes = axes[:i] + 'CYX' series.append(Record(axes=axes, shape=shape, pages=pages, dtype=numpy.dtype(pages[0].dtype))) elif self.is_imagej: shape = [] axes = [] ij = self.pages[0].imagej_tags if 'frames' in ij: shape.append(ij['frames']) axes.append('T') if 'slices' in ij: shape.append(ij['slices']) axes.append('Z') if 'channels' in ij and not self.is_rgb: shape.append(ij['channels']) axes.append('C') remain = len(self.pages) // (numpy.prod(shape) if shape else 1) if remain > 1: shape.append(remain) axes.append('I') shape.extend(self.pages[0].shape) axes.extend(self.pages[0].axes) axes = ''.join(axes) series = [Record(pages=self.pages, shape=shape, axes=axes, dtype=numpy.dtype(self.pages[0].dtype))] elif self.is_nih: series = [Record(pages=self.pages, shape=(len(self.pages),) + self.pages[0].shape, axes='I' + self.pages[0].axes, dtype=numpy.dtype(self.pages[0].dtype))] elif self.pages[0].is_shaped: shape = self.pages[0].tags['image_description'].value[7:-1] shape = tuple(int(i) for i in shape.split(b',')) series = [Record(pages=self.pages, shape=shape, axes='Q' * len(shape), dtype=numpy.dtype(self.pages[0].dtype))] if not series: shapes = [] pages = {} for page in self.pages: if not page.shape: continue shape = page.shape + (page.axes, page.compression in TIFF_DECOMPESSORS) if not shape in pages: shapes.append(shape) pages[shape] = [page] else: pages[shape].append(page) series = [Record(pages=pages[s], axes=(('I' + s[-2]) if len(pages[s]) > 1 else s[-2]), dtype=numpy.dtype(pages[s][0].dtype), shape=((len(pages[s]), ) + s[:-2] if len(pages[s]) > 1 else s[:-2])) for s in shapes] return series def asarray(self, key=None, series=None, memmap=False): """Return image data of multiple TIFF pages as numpy array. By default the first image series is returned. Parameters ---------- key : int, slice, or sequence of page indices Defines which pages to return as array. series : int Defines which series of pages to return as array. memmap : bool If True, use numpy.memmap to read arrays from file if possible. """ if key is None and series is None: series = 0 if series is not None: pages = self.series[series].pages else: pages = self.pages if key is None: pass elif isinstance(key, int): pages = [pages[key]] elif isinstance(key, slice): pages = pages[key] elif isinstance(key, collections.Iterable): pages = [pages[k] for k in key] else: raise TypeError("key must be an int, slice, or sequence") if len(pages) == 1: return pages[0].asarray(memmap=memmap) elif self.is_nih: result = numpy.vstack( p.asarray(colormapped=False, squeeze=False, memmap=memmap) for p in pages) if pages[0].is_palette: result = numpy.take(pages[0].color_map, result, axis=1) result = numpy.swapaxes(result, 0, 1) else: if self.is_ome and any(p is None for p in pages): firstpage = next(p for p in pages if p) nopage = numpy.zeros_like(firstpage.asarray(memmap=memmap)) result = numpy.vstack((p.asarray(memmap=memmap) if p else nopage) for p in pages) if key is None: try: result.shape = self.series[series].shape except ValueError: warnings.warn("failed to reshape %s to %s" % ( result.shape, self.series[series].shape)) result.shape = (-1,) + pages[0].shape else: result.shape = (-1,) + pages[0].shape return result def _omeseries(self): """Return image series in OME-TIFF file(s).""" root = ElementTree.XML(self.pages[0].tags['image_description'].value) uuid = root.attrib.get('UUID', None) self._tiffs = {uuid: self} modulo = {} result = [] for element in root: if element.tag.endswith('BinaryOnly'): warnings.warn("not an OME-TIFF master file") break if element.tag.endswith('StructuredAnnotations'): for annot in element: if not annot.attrib.get('Namespace', '').endswith('modulo'): continue for value in annot: for modul in value: for along in modul: if not along.tag[:-1].endswith('Along'): continue axis = along.tag[-1] newaxis = along.attrib.get('Type', 'other') newaxis = AXES_LABELS[newaxis] if 'Start' in along.attrib: labels = range( int(along.attrib['Start']), int(along.attrib['End']) + 1, int(along.attrib.get('Step', 1))) else: labels = [label.text for label in along if label.tag.endswith('Label')] modulo[axis] = (newaxis, labels) if not element.tag.endswith('Image'): continue for pixels in element: if not pixels.tag.endswith('Pixels'): continue atr = pixels.attrib axes = "".join(reversed(atr['DimensionOrder'])) shape = list(int(atr['Size'+ax]) for ax in axes) size = numpy.prod(shape[:-2]) ifds = [None] * size for data in pixels: if not data.tag.endswith('TiffData'): continue atr = data.attrib ifd = int(atr.get('IFD', 0)) num = int(atr.get('NumPlanes', 1 if 'IFD' in atr else 0)) num = int(atr.get('PlaneCount', num)) idx = [int(atr.get('First'+ax, 0)) for ax in axes[:-2]] idx = numpy.ravel_multi_index(idx, shape[:-2]) for uuid in data: if uuid.tag.endswith('UUID'): if uuid.text not in self._tiffs: if not self._multifile: # abort reading multi file OME series return [] fn = uuid.attrib['FileName'] try: tf = TiffFile(os.path.join(self.fpath, fn)) except (IOError, ValueError): warnings.warn("failed to read %s" % fn) break self._tiffs[uuid.text] = tf pages = self._tiffs[uuid.text].pages try: for i in range(num if num else len(pages)): ifds[idx + i] = pages[ifd + i] except IndexError: warnings.warn("ome-xml: index out of range") break else: pages = self.pages try: for i in range(num if num else len(pages)): ifds[idx + i] = pages[ifd + i] except IndexError: warnings.warn("ome-xml: index out of range") result.append(Record(axes=axes, shape=shape, pages=ifds, dtype=numpy.dtype(ifds[0].dtype))) for record in result: for axis, (newaxis, labels) in modulo.items(): i = record.axes.index(axis) size = len(labels) if record.shape[i] == size: record.axes = record.axes.replace(axis, newaxis, 1) else: record.shape[i] //= size record.shape.insert(i+1, size) record.axes = record.axes.replace(axis, axis+newaxis, 1) return result def __len__(self): """Return number of image pages in file.""" return len(self.pages) def __getitem__(self, key): """Return specified page.""" return self.pages[key] def __iter__(self): """Return iterator over pages.""" return iter(self.pages) def __str__(self): """Return string containing information about file.""" result = [ self.fname.capitalize(), format_size(self._fsize), {'<': 'little endian', '>': 'big endian'}[self.byteorder]] if self.is_bigtiff: result.append("bigtiff") if len(self.pages) > 1: result.append("%i pages" % len(self.pages)) if len(self.series) > 1: result.append("%i series" % len(self.series)) if len(self._tiffs) > 1: result.append("%i files" % (len(self._tiffs))) return ", ".join(result) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() @lazyattr def fstat(self): try: return os.fstat(self._fh.fileno()) except Exception: # io.UnsupportedOperation return None @lazyattr def is_bigtiff(self): return self.offset_size != 4 @lazyattr def is_rgb(self): return all(p.is_rgb for p in self.pages) @lazyattr def is_palette(self): return all(p.is_palette for p in self.pages) @lazyattr def is_mdgel(self): return any(p.is_mdgel for p in self.pages) @lazyattr def is_mediacy(self): return any(p.is_mediacy for p in self.pages) @lazyattr def is_stk(self): return all(p.is_stk for p in self.pages) @lazyattr def is_lsm(self): return self.pages[0].is_lsm @lazyattr def is_imagej(self): return self.pages[0].is_imagej @lazyattr def is_micromanager(self): return self.pages[0].is_micromanager @lazyattr def is_nih(self): return self.pages[0].is_nih @lazyattr def is_fluoview(self): return self.pages[0].is_fluoview @lazyattr def is_ome(self): return self.pages[0].is_ome class TiffPage(object): """A TIFF image file directory (IFD). Attributes ---------- index : int Index of page in file. dtype : str {TIFF_SAMPLE_DTYPES} Data type of image, colormapped if applicable. shape : tuple Dimensions of the image array in TIFF page, colormapped and with one alpha channel if applicable. axes : str Axes label codes: 'X' width, 'Y' height, 'S' sample, 'P' plane, 'I' image series, 'Z' depth, 'C' color|em-wavelength|channel, 'E' ex-wavelength|lambda, 'T' time, 'R' region|tile, 'A' angle, 'F' phase, 'H' lifetime, 'L' exposure, 'V' event, 'Q' unknown, '_' missing tags : TiffTags Dictionary of tags in page. Tag values are also directly accessible as attributes. color_map : numpy array Color look up table, if exists. mm_uic_tags: Record(dict) Consolidated MetaMorph mm_uic# tags, if exists. cz_lsm_scan_info: Record(dict) LSM scan info attributes, if exists. imagej_tags: Record(dict) Consolidated ImageJ description and metadata tags, if exists. All attributes are read-only. """ def __init__(self, parent): """Initialize instance from file.""" self.parent = parent self.index = len(parent.pages) self.shape = self._shape = () self.dtype = self._dtype = None self.axes = "" self.tags = TiffTags() self._fromfile() self._process_tags() def _fromfile(self): """Read TIFF IFD structure and its tags from file. File cursor must be at storage position of IFD offset and is left at offset to next IFD. Raises StopIteration if offset (first bytes read) is 0. """ fh = self.parent._fh byteorder = self.parent.byteorder offset_size = self.parent.offset_size fmt = {4: 'I', 8: 'Q'}[offset_size] offset = struct.unpack(byteorder + fmt, fh.read(offset_size))[0] if not offset: raise StopIteration() # read standard tags tags = self.tags fh.seek(offset) fmt, size = {4: ('H', 2), 8: ('Q', 8)}[offset_size] try: numtags = struct.unpack(byteorder + fmt, fh.read(size))[0] except Exception: warnings.warn("corrupted page list") raise StopIteration() tagcode = 0 for _ in range(numtags): try: tag = TiffTag(self.parent) except TiffTag.Error as e: warnings.warn(str(e)) finally: if tagcode > tag.code: warnings.warn("tags are not ordered by code") tagcode = tag.code if not tag.name in tags: tags[tag.name] = tag else: # some files contain multiple IFD with same code # e.g. MicroManager files contain two image_description for ext in ('_1', '_2', '_3'): name = tag.name + ext if not name in tags: tags[name] = tag break # read LSM info subrecords if self.is_lsm: pos = fh.tell() for name, reader in CZ_LSM_INFO_READERS.items(): try: offset = self.cz_lsm_info['offset_'+name] except KeyError: continue if not offset: continue fh.seek(offset) try: setattr(self, 'cz_lsm_'+name, reader(fh, byteorder)) except ValueError: pass fh.seek(pos) def _process_tags(self): """Validate standard tags and initialize attributes. Raise ValueError if tag values are not supported. """ tags = self.tags for code, (name, default, dtype, count, validate) in TIFF_TAGS.items(): if not (name in tags or default is None): tags[name] = TiffTag(code, dtype=dtype, count=count, value=default, name=name) if name in tags and validate: try: if tags[name].count == 1: setattr(self, name, validate[tags[name].value]) else: setattr(self, name, tuple( validate[value] for value in tags[name].value)) except KeyError: raise ValueError("%s.value (%s) not supported" % (name, tags[name].value)) tag = tags['bits_per_sample'] if tag.count == 1: self.bits_per_sample = tag.value else: value = tag.value[:self.samples_per_pixel] if any((v-value[0] for v in value)): self.bits_per_sample = value else: self.bits_per_sample = value[0] tag = tags['sample_format'] if tag.count == 1: self.sample_format = TIFF_SAMPLE_FORMATS[tag.value] else: value = tag.value[:self.samples_per_pixel] if any((v-value[0] for v in value)): self.sample_format = [TIFF_SAMPLE_FORMATS[v] for v in value] else: self.sample_format = TIFF_SAMPLE_FORMATS[value[0]] if not 'photometric' in tags: self.photometric = None if 'image_length' in tags: self.strips_per_image = int(math.floor( float(self.image_length + self.rows_per_strip - 1) / self.rows_per_strip)) else: self.strips_per_image = 0 key = (self.sample_format, self.bits_per_sample) self.dtype = self._dtype = TIFF_SAMPLE_DTYPES.get(key, None) if self.is_imagej: # consolidate imagej meta data if 'image_description_1' in self.tags: # MicroManager adict = imagej_description(tags['image_description_1'].value) else: adict = imagej_description(tags['image_description'].value) if 'imagej_metadata' in tags: try: adict.update(imagej_metadata( tags['imagej_metadata'].value, tags['imagej_byte_counts'].value, self.parent.byteorder)) except Exception as e: warnings.warn(str(e)) self.imagej_tags = Record(adict) if not 'image_length' in self.tags or not 'image_width' in self.tags: # some GEL file pages are missing image data self.image_length = 0 self.image_width = 0 self.strip_offsets = 0 self._shape = () self.shape = () self.axes = '' if self.is_palette: self.dtype = self.tags['color_map'].dtype[1] self.color_map = numpy.array(self.color_map, self.dtype) dmax = self.color_map.max() if dmax < 256: self.dtype = numpy.uint8 self.color_map = self.color_map.astype(self.dtype) #else: # self.dtype = numpy.uint8 # self.color_map >>= 8 # self.color_map = self.color_map.astype(self.dtype) self.color_map.shape = (3, -1) if self.is_stk: # consolidate mm_uci tags planes = tags['mm_uic2'].count self.mm_uic_tags = Record(tags['mm_uic2'].value) for key in ('mm_uic3', 'mm_uic4', 'mm_uic1'): if key in tags: self.mm_uic_tags.update(tags[key].value) if self.planar_configuration == 'contig': self._shape = (planes, 1, self.image_length, self.image_width, self.samples_per_pixel) self.shape = tuple(self._shape[i] for i in (0, 2, 3, 4)) self.axes = 'PYXS' else: self._shape = (planes, self.samples_per_pixel, self.image_length, self.image_width, 1) self.shape = self._shape[:4] self.axes = 'PSYX' if self.is_palette and (self.color_map.shape[1] >= 2**self.bits_per_sample): self.shape = (3, planes, self.image_length, self.image_width) self.axes = 'CPYX' else: warnings.warn("palette cannot be applied") self.is_palette = False elif self.is_palette: samples = 1 if 'extra_samples' in self.tags: samples += len(self.extra_samples) if self.planar_configuration == 'contig': self._shape = ( 1, 1, self.image_length, self.image_width, samples) else: self._shape = ( 1, samples, self.image_length, self.image_width, 1) if self.color_map.shape[1] >= 2**self.bits_per_sample: self.shape = (3, self.image_length, self.image_width) self.axes = 'CYX' else: warnings.warn("palette cannot be applied") self.is_palette = False self.shape = (self.image_length, self.image_width) self.axes = 'YX' elif self.is_rgb or self.samples_per_pixel > 1: if self.planar_configuration == 'contig': self._shape = (1, 1, self.image_length, self.image_width, self.samples_per_pixel) self.shape = (self.image_length, self.image_width, self.samples_per_pixel) self.axes = 'YXS' else: self._shape = (1, self.samples_per_pixel, self.image_length, self.image_width, 1) self.shape = self._shape[1:-1] self.axes = 'SYX' if self.is_rgb and 'extra_samples' in self.tags: extra_samples = self.extra_samples if self.tags['extra_samples'].count == 1: extra_samples = (extra_samples, ) for exs in extra_samples: if exs in ('unassalpha', 'assocalpha', 'unspecified'): if self.planar_configuration == 'contig': self.shape = self.shape[:2] + (4,) else: self.shape = (4,) + self.shape[1:] break else: self._shape = (1, 1, self.image_length, self.image_width, 1) self.shape = self._shape[2:4] self.axes = 'YX' if not self.compression and not 'strip_byte_counts' in tags: self.strip_byte_counts = numpy.prod(self.shape) * ( self.bits_per_sample // 8) def asarray(self, squeeze=True, colormapped=True, rgbonly=True, memmap=False): """Read image data from file and return as numpy array. Raise ValueError if format is unsupported. If any argument is False, the shape of the returned array might be different from the page shape. Parameters ---------- squeeze : bool If True, all length-1 dimensions (except X and Y) are squeezed out from result. colormapped : bool If True, color mapping is applied for palette-indexed images. rgbonly : bool If True, return RGB(A) image without additional extra samples. memmap : bool If True, use numpy.memmap to read array if possible. """ fh = self.parent._fh if not fh: raise IOError("TIFF file is not open") if self.dtype is None: raise ValueError("data type not supported: %s%i" % ( self.sample_format, self.bits_per_sample)) if self.compression not in TIFF_DECOMPESSORS: raise ValueError("cannot decompress %s" % self.compression) if ('ycbcr_subsampling' in self.tags and self.tags['ycbcr_subsampling'].value not in (1, (1, 1))): raise ValueError("YCbCr subsampling not supported") tag = self.tags['sample_format'] if tag.count != 1 and any((i-tag.value[0] for i in tag.value)): raise ValueError("sample formats don't match %s" % str(tag.value)) dtype = self._dtype shape = self._shape if not shape: return None image_width = self.image_width image_length = self.image_length typecode = self.parent.byteorder + dtype bits_per_sample = self.bits_per_sample byteorder_is_native = ({'big': '>', 'little': '<'}[sys.byteorder] == self.parent.byteorder) if self.is_tiled: if 'tile_offsets' in self.tags: byte_counts = self.tile_byte_counts offsets = self.tile_offsets else: byte_counts = self.strip_byte_counts offsets = self.strip_offsets tile_width = self.tile_width tile_length = self.tile_length tw = (image_width + tile_width - 1) // tile_width tl = (image_length + tile_length - 1) // tile_length shape = shape[:-3] + (tl*tile_length, tw*tile_width, shape[-1]) tile_shape = (tile_length, tile_width, shape[-1]) runlen = tile_width else: byte_counts = self.strip_byte_counts offsets = self.strip_offsets runlen = image_width try: offsets[0] except TypeError: offsets = (offsets, ) byte_counts = (byte_counts, ) if any(o < 2 for o in offsets): raise ValueError("corrupted page") if (not self.is_tiled and (self.is_stk or (not self.compression and bits_per_sample in (8, 16, 32, 64) and all(offsets[i] == offsets[i+1] - byte_counts[i] for i in range(len(offsets)-1))))): # contiguous data if (memmap and not (self.is_tiled or self.predictor or ('extra_samples' in self.tags) or (colormapped and self.is_palette) or (not byteorder_is_native))): result = numpy.memmap(fh, typecode, 'r', offsets[0], shape) else: fh.seek(offsets[0]) result = numpy_fromfile(fh, typecode, numpy.prod(shape)) result = result.astype('=' + dtype) else: if self.planar_configuration == 'contig': runlen *= self.samples_per_pixel if bits_per_sample in (8, 16, 32, 64, 128): if (bits_per_sample * runlen) % 8: raise ValueError("data and sample size mismatch") def unpack(x): return numpy.fromstring(x, typecode) elif isinstance(bits_per_sample, tuple): def unpack(x): return unpackrgb(x, typecode, bits_per_sample) else: def unpack(x): return unpackints(x, typecode, bits_per_sample, runlen) decompress = TIFF_DECOMPESSORS[self.compression] if self.is_tiled: result = numpy.empty(shape, dtype) tw, tl, pl = 0, 0, 0 for offset, bytecount in zip(offsets, byte_counts): fh.seek(offset) tile = unpack(decompress(fh.read(bytecount))) tile.shape = tile_shape if self.predictor == 'horizontal': numpy.cumsum(tile, axis=-2, dtype=dtype, out=tile) result[0, pl, tl:tl+tile_length, tw:tw+tile_width, :] = tile del tile tw += tile_width if tw >= shape[-2]: tw, tl = 0, tl + tile_length if tl >= shape[-3]: tl, pl = 0, pl + 1 result = result[..., :image_length, :image_width, :] else: strip_size = (self.rows_per_strip * self.image_width * self.samples_per_pixel) result = numpy.empty(shape, dtype).reshape(-1) index = 0 for offset, bytecount in zip(offsets, byte_counts): fh.seek(offset) strip = fh.read(bytecount) strip = unpack(decompress(strip)) size = min(result.size, strip.size, strip_size, result.size - index) result[index:index+size] = strip[:size] del strip index += size result.shape = self._shape if self.predictor == 'horizontal' and not self.is_tiled: # work around bug in LSM510 software if not (self.parent.is_lsm and not self.compression): numpy.cumsum(result, axis=-2, dtype=dtype, out=result) if colormapped and self.is_palette: if self.color_map.shape[1] >= 2**bits_per_sample: # FluoView and LSM might fail here result = numpy.take(self.color_map, result[:, 0, :, :, 0], axis=1) elif rgbonly and self.is_rgb and 'extra_samples' in self.tags: # return only RGB and first alpha channel if exists extra_samples = self.extra_samples if self.tags['extra_samples'].count == 1: extra_samples = (extra_samples, ) for i, exs in enumerate(extra_samples): if exs in ('unassalpha', 'assocalpha', 'unspecified'): if self.planar_configuration == 'contig': result = result[..., [0, 1, 2, 3+i]] else: result = result[:, [0, 1, 2, 3+i]] break else: if self.planar_configuration == 'contig': result = result[..., :3] else: result = result[:, :3] if squeeze: try: result.shape = self.shape except ValueError: warnings.warn("failed to reshape from %s to %s" % ( str(result.shape), str(self.shape))) return result def __str__(self): """Return string containing information about page.""" s = ', '.join(s for s in ( ' x '.join(str(i) for i in self.shape), str(numpy.dtype(self.dtype)), '%s bit' % str(self.bits_per_sample), self.photometric if 'photometric' in self.tags else '', self.compression if self.compression else 'raw', '|'.join(t[3:] for t in ( 'is_stk', 'is_lsm', 'is_nih', 'is_ome', 'is_imagej', 'is_micromanager', 'is_fluoview', 'is_mdgel', 'is_mediacy', 'is_reduced', 'is_tiled') if getattr(self, t))) if s) return "Page %i: %s" % (self.index, s) def __getattr__(self, name): """Return tag value.""" if name in self.tags: value = self.tags[name].value setattr(self, name, value) return value raise AttributeError(name) @lazyattr def is_rgb(self): """True if page contains a RGB image.""" return ('photometric' in self.tags and self.tags['photometric'].value == 2) @lazyattr def is_palette(self): """True if page contains a palette-colored image.""" return ('photometric' in self.tags and self.tags['photometric'].value == 3) @lazyattr def is_tiled(self): """True if page contains tiled image.""" return 'tile_width' in self.tags @lazyattr def is_reduced(self): """True if page is a reduced image of another image.""" return bool(self.tags['new_subfile_type'].value & 1) @lazyattr def is_mdgel(self): """True if page contains md_file_tag tag.""" return 'md_file_tag' in self.tags @lazyattr def is_mediacy(self): """True if page contains Media Cybernetics Id tag.""" return ('mc_id' in self.tags and self.tags['mc_id'].value.startswith(b'MC TIFF')) @lazyattr def is_stk(self): """True if page contains MM_UIC2 tag.""" return 'mm_uic2' in self.tags @lazyattr def is_lsm(self): """True if page contains LSM CZ_LSM_INFO tag.""" return 'cz_lsm_info' in self.tags @lazyattr def is_fluoview(self): """True if page contains FluoView MM_STAMP tag.""" return 'mm_stamp' in self.tags @lazyattr def is_nih(self): """True if page contains NIH image header.""" return 'nih_image_header' in self.tags @lazyattr def is_ome(self): """True if page contains OME-XML in image_description tag.""" return ('image_description' in self.tags and self.tags[ 'image_description'].value.startswith(b' parent.offset_size or code in CUSTOM_TAGS: pos = fh.tell() tof = {4: 'I', 8: 'Q'}[parent.offset_size] self.value_offset = offset = struct.unpack(byteorder+tof, value)[0] if offset < 0 or offset > parent._fsize: raise TiffTag.Error("corrupt file - invalid tag value offset") elif offset < 4: raise TiffTag.Error("corrupt value offset for tag %i" % code) fh.seek(offset) if code in CUSTOM_TAGS: readfunc = CUSTOM_TAGS[code][1] value = readfunc(fh, byteorder, dtype, count) fh.seek(0, 2) # bug in numpy/Python 3.x ? if isinstance(value, dict): # numpy.core.records.record value = Record(value) elif code in TIFF_TAGS or dtype[-1] == 's': value = struct.unpack(fmt, fh.read(size)) else: value = read_numpy(fh, byteorder, dtype, count) fh.seek(0, 2) # bug in numpy/Python 3.x ? fh.seek(pos) else: value = struct.unpack(fmt, value[:size]) if not code in CUSTOM_TAGS: if len(value) == 1: value = value[0] if dtype.endswith('s') and isinstance(value, bytes): value = stripnull(value) self.code = code self.name = name self.dtype = dtype self.count = count self.value = value def __str__(self): """Return string containing information about tag.""" return ' '.join(str(getattr(self, s)) for s in self.__slots__) class TiffSequence(object): """Sequence of image files. Properties ---------- files : list List of file names. shape : tuple Shape of image sequence. axes : str Labels of axes in shape. Examples -------- >>> ims = TiffSequence("test.oif.files/*.tif") >>> ims = ims.asarray() >>> ims.shape (2, 100, 256, 256) """ _axes_pattern = """ # matches Olympus OIF and Leica TIFF series _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4})) _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? """ class _ParseError(Exception): pass def __init__(self, files, imread=TiffFile, pattern='axes'): """Initialize instance from multiple files. Parameters ---------- files : str, or sequence of str Glob pattern or sequence of file names. imread : function or class Image read function or class with asarray function returning numpy array from single file. pattern : str Regular expression pattern that matches axes names and sequence indices in file names. """ if isinstance(files, basestring): files = natural_sorted(glob.glob(files)) files = list(files) if not files: raise ValueError("no files found") #if not os.path.isfile(files[0]): # raise ValueError("file not found") self.files = files if hasattr(imread, 'asarray'): _imread = imread def imread(fname, *args, **kwargs): with _imread(fname) as im: return im.asarray(*args, **kwargs) self.imread = imread self.pattern = self._axes_pattern if pattern == 'axes' else pattern try: self._parse() if not self.axes: self.axes = 'I' except self._ParseError: self.axes = 'I' self.shape = (len(files),) self._start_index = (0,) self._indices = ((i,) for i in range(len(files))) def __str__(self): """Return string with information about image sequence.""" return "\n".join([ self.files[0], '* files: %i' % len(self.files), '* axes: %s' % self.axes, '* shape: %s' % str(self.shape)]) def __len__(self): return len(self.files) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): pass def asarray(self, *args, **kwargs): """Read image data from all files and return as single numpy array. Raise IndexError if image shapes don't match. """ im = self.imread(self.files[0]) result_shape = self.shape + im.shape result = numpy.zeros(result_shape, dtype=im.dtype) result = result.reshape(-1, *im.shape) for index, fname in zip(self._indices, self.files): index = [i-j for i, j in zip(index, self._start_index)] index = numpy.ravel_multi_index(index, self.shape) im = self.imread(fname, *args, **kwargs) result[index] = im result.shape = result_shape return result def _parse(self): """Get axes and shape from file names.""" if not self.pattern: raise self._ParseError("invalid pattern") pattern = re.compile(self.pattern, re.IGNORECASE | re.VERBOSE) matches = pattern.findall(self.files[0]) if not matches: raise self._ParseError("pattern doesn't match file names") matches = matches[-1] if len(matches) % 2: raise self._ParseError("pattern doesn't match axis name and index") axes = ''.join(m for m in matches[::2] if m) if not axes: raise self._ParseError("pattern doesn't match file names") indices = [] for fname in self.files: matches = pattern.findall(fname)[-1] if axes != ''.join(m for m in matches[::2] if m): raise ValueError("axes don't match within the image sequence") indices.append([int(m) for m in matches[1::2] if m]) shape = tuple(numpy.max(indices, axis=0)) start_index = tuple(numpy.min(indices, axis=0)) shape = tuple(i-j+1 for i, j in zip(shape, start_index)) if numpy.prod(shape) != len(self.files): warnings.warn("files are missing. Missing data are zeroed") self.axes = axes.upper() self.shape = shape self._indices = indices self._start_index = start_index class Record(dict): """Dictionary with attribute access. Can also be initialized with numpy.core.records.record. """ __slots__ = () def __init__(self, arg=None, **kwargs): if kwargs: arg = kwargs elif arg is None: arg = {} try: dict.__init__(self, arg) except (TypeError, ValueError): for i, name in enumerate(arg.dtype.names): v = arg[i] self[name] = v if v.dtype.char != 'S' else stripnull(v) def __getattr__(self, name): return self[name] def __setattr__(self, name, value): self.__setitem__(name, value) def __str__(self): """Pretty print Record.""" s = [] lists = [] for k in sorted(self): if k.startswith('_'): # does not work with byte continue v = self[k] if isinstance(v, (list, tuple)) and len(v): if isinstance(v[0], Record): lists.append((k, v)) continue elif isinstance(v[0], TiffPage): v = [i.index for i in v if i] s.append( ("* %s: %s" % (k, str(v))).split("\n", 1)[0] [:PRINT_LINE_LEN].rstrip()) for k, v in lists: l = [] for i, w in enumerate(v): l.append("* %s[%i]\n %s" % (k, i, str(w).replace("\n", "\n "))) s.append('\n'.join(l)) return '\n'.join(s) class TiffTags(Record): """Dictionary of TiffTags with attribute access.""" def __str__(self): """Return string with information about all tags.""" s = [] for tag in sorted(self.values(), key=lambda x: x.code): typecode = "%i%s" % (tag.count * int(tag.dtype[0]), tag.dtype[1]) line = "* %i %s (%s) %s" % (tag.code, tag.name, typecode, str(tag.value).split('\n', 1)[0]) s.append(line[:PRINT_LINE_LEN].lstrip()) return '\n'.join(s) def read_bytes(fh, byteorder, dtype, count): """Read tag data from file and return as byte string.""" return numpy_fromfile(fh, byteorder+dtype[-1], count).tostring() def read_numpy(fh, byteorder, dtype, count): """Read tag data from file and return as numpy array.""" return numpy_fromfile(fh, byteorder+dtype[-1], count) def read_json(fh, byteorder, dtype, count): """Read tag data from file and return as object.""" return json.loads(unicode(stripnull(fh.read(count)), 'utf-8')) def read_mm_header(fh, byteorder, dtype, count): """Read MM_HEADER tag from file and return as numpy.rec.array.""" return numpy.rec.fromfile(fh, MM_HEADER, 1, byteorder=byteorder)[0] def read_mm_stamp(fh, byteorder, dtype, count): """Read MM_STAMP tag from file and return as numpy.array.""" return numpy_fromfile(fh, byteorder+'8f8', 1)[0] def read_mm_uic1(fh, byteorder, dtype, count): """Read MM_UIC1 tag from file and return as dictionary.""" t = fh.read(8*count) t = struct.unpack('%s%iI' % (byteorder, 2*count), t) return dict((MM_TAG_IDS[k], v) for k, v in zip(t[::2], t[1::2]) if k in MM_TAG_IDS) def read_mm_uic2(fh, byteorder, dtype, count): """Read MM_UIC2 tag from file and return as dictionary.""" result = {'number_planes': count} values = numpy_fromfile(fh, byteorder+'I', 6*count) result['z_distance'] = values[0::6] // values[1::6] #result['date_created'] = tuple(values[2::6]) #result['time_created'] = tuple(values[3::6]) #result['date_modified'] = tuple(values[4::6]) #result['time_modified'] = tuple(values[5::6]) return result def read_mm_uic3(fh, byteorder, dtype, count): """Read MM_UIC3 tag from file and return as dictionary.""" t = numpy_fromfile(fh, byteorder+'I', 2*count) return {'wavelengths': t[0::2] // t[1::2]} def read_mm_uic4(fh, byteorder, dtype, count): """Read MM_UIC4 tag from file and return as dictionary.""" t = struct.unpack(byteorder + 'hI'*count, fh.read(6*count)) return dict((MM_TAG_IDS[k], v) for k, v in zip(t[::2], t[1::2]) if k in MM_TAG_IDS) def read_cz_lsm_info(fh, byteorder, dtype, count): """Read CS_LSM_INFO tag from file and return as numpy.rec.array.""" result = numpy.rec.fromfile(fh, CZ_LSM_INFO, 1, byteorder=byteorder)[0] {50350412: '1.3', 67127628: '2.0'}[result.magic_number] # validation return result def read_cz_lsm_time_stamps(fh, byteorder): """Read LSM time stamps from file and return as list.""" size, count = struct.unpack(byteorder+'II', fh.read(8)) if size != (8 + 8 * count): raise ValueError("lsm_time_stamps block is too short") return struct.unpack(('%s%dd' % (byteorder, count)), fh.read(8*count)) def read_cz_lsm_event_list(fh, byteorder): """Read LSM events from file and return as list of (time, type, text).""" count = struct.unpack(byteorder+'II', fh.read(8))[1] events = [] while count > 0: esize, etime, etype = struct.unpack(byteorder+'IdI', fh.read(16)) etext = stripnull(fh.read(esize - 16)) events.append((etime, etype, etext)) count -= 1 return events def read_cz_lsm_scan_info(fh, byteorder): """Read LSM scan information from file and return as Record.""" block = Record() blocks = [block] unpack = struct.unpack if 0x10000000 != struct.unpack(byteorder+"I", fh.read(4))[0]: raise ValueError("not a lsm_scan_info structure") fh.read(8) while True: entry, dtype, size = unpack(byteorder+"III", fh.read(12)) if dtype == 2: value = stripnull(fh.read(size)) elif dtype == 4: value = unpack(byteorder+"i", fh.read(4))[0] elif dtype == 5: value = unpack(byteorder+"d", fh.read(8))[0] else: value = 0 if entry in CZ_LSM_SCAN_INFO_ARRAYS: blocks.append(block) name = CZ_LSM_SCAN_INFO_ARRAYS[entry] newobj = [] setattr(block, name, newobj) block = newobj elif entry in CZ_LSM_SCAN_INFO_STRUCTS: blocks.append(block) newobj = Record() block.append(newobj) block = newobj elif entry in CZ_LSM_SCAN_INFO_ATTRIBUTES: name = CZ_LSM_SCAN_INFO_ATTRIBUTES[entry] setattr(block, name, value) elif entry == 0xffffffff: block = blocks.pop() else: setattr(block, "unknown_%x" % entry, value) if not blocks: break return block def read_nih_image_header(fh, byteorder, dtype, count): """Read NIH_IMAGE_HEADER tag from file and return as numpy.rec.array.""" a = numpy.rec.fromfile(fh, NIH_IMAGE_HEADER, 1, byteorder=byteorder)[0] a = a.newbyteorder(byteorder) a.xunit = a.xunit[:a._xunit_len] a.um = a.um[:a._um_len] return a def imagej_metadata(data, bytecounts, byteorder): """Return dict from ImageJ meta data tag value.""" _str = str if sys.version_info[0] < 3 else lambda x: str(x, 'cp1252') def read_string(data, byteorder): return _str(stripnull(data[0 if byteorder == '<' else 1::2])) def read_double(data, byteorder): return struct.unpack(byteorder+('d' * (len(data) // 8)), data) def read_bytes(data, byteorder): #return struct.unpack('b' * len(data), data) return numpy.fromstring(data, 'uint8') metadata_types = { # big endian b'info': ('info', read_string), b'labl': ('labels', read_string), b'rang': ('ranges', read_double), b'luts': ('luts', read_bytes), b'roi ': ('roi', read_bytes), b'over': ('overlays', read_bytes)} metadata_types.update( # little endian dict((k[::-1], v) for k, v in metadata_types.items())) if not bytecounts: raise ValueError("no ImageJ meta data") if not data[:4] in (b'IJIJ', b'JIJI'): raise ValueError("invalid ImageJ meta data") header_size = bytecounts[0] if header_size < 12 or header_size > 804: raise ValueError("invalid ImageJ meta data header size") ntypes = (header_size - 4) // 8 header = struct.unpack(byteorder+'4sI'*ntypes, data[4:4+ntypes*8]) pos = 4 + ntypes * 8 counter = 0 result = {} for mtype, count in zip(header[::2], header[1::2]): values = [] name, func = metadata_types.get(mtype, (_str(mtype), read_bytes)) for _ in range(count): counter += 1 pos1 = pos + bytecounts[counter] values.append(func(data[pos:pos1], byteorder)) pos = pos1 result[name.strip()] = values[0] if count == 1 else values return result def imagej_description(description): """Return dict from ImageJ image_description tag.""" def _bool(val): return {b'true': True, b'false': False}[val.lower()] _str = str if sys.version_info[0] < 3 else lambda x: str(x, 'cp1252') result = {} for line in description.splitlines(): try: key, val = line.split(b'=') except Exception: continue key = key.strip() val = val.strip() for dtype in (int, float, _bool, _str): try: val = dtype(val) break except Exception: pass result[_str(key)] = val return result def read_micromanager_metadata(fh): """Read MicroManager non-TIFF settings from open file and return as dict. The settings can be used to read image data without parsing the TIFF file. Raise ValueError if file does not contain valid MicroManager metadata. """ fh.seek(0) try: byteorder = {b'II': '<', b'MM': '>'}[fh.read(2)] except IndexError: raise ValueError("not a MicroManager TIFF file") results = {} fh.seek(8) (index_header, index_offset, display_header, display_offset, comments_header, comments_offset, summary_header, summary_length ) = struct.unpack(byteorder + "IIIIIIII", fh.read(32)) if summary_header != 2355492: raise ValueError("invalid MicroManager summary_header") results['summary'] = read_json(fh, byteorder, None, summary_length) if index_header != 54773648: raise ValueError("invalid MicroManager index_header") fh.seek(index_offset) header, count = struct.unpack(byteorder + "II", fh.read(8)) if header != 3453623: raise ValueError("invalid MicroManager index_header") data = struct.unpack(byteorder + "IIIII"*count, fh.read(20*count)) results['index_map'] = { 'channel': data[::5], 'slice': data[1::5], 'frame': data[2::5], 'position': data[3::5], 'offset': data[4::5]} if display_header != 483765892: raise ValueError("invalid MicroManager display_header") fh.seek(display_offset) header, count = struct.unpack(byteorder + "II", fh.read(8)) if header != 347834724: raise ValueError("invalid MicroManager display_header") results['display_settings'] = read_json(fh, byteorder, None, count) if comments_header != 99384722: raise ValueError("invalid MicroManager comments_header") fh.seek(comments_offset) header, count = struct.unpack(byteorder + "II", fh.read(8)) if header != 84720485: raise ValueError("invalid MicroManager comments_header") results['comments'] = read_json(fh, byteorder, None, count) return results def _replace_by(module_function, package=None, warn=True): """Try replace decorated function by module.function.""" try: from importlib import import_module except ImportError: warnings.warn('Could not import module importlib') return lambda func: func def decorate(func, module_function=module_function, warn=warn): try: module, function = module_function.split('.') if not package: module = import_module(module) else: module = import_module('.' + module, package=package) func, oldfunc = getattr(module, function), func globals()['__old_' + func.__name__] = oldfunc except Exception: if warn: warnings.warn("failed to import %s" % module_function) return func return decorate @_replace_by('_tifffile.decodepackbits') def decodepackbits(encoded): """Decompress PackBits encoded byte string. PackBits is a simple byte-oriented run-length compression scheme. """ func = ord if sys.version[0] == '2' else lambda x: x result = [] result_extend = result.extend i = 0 try: while True: n = func(encoded[i]) + 1 i += 1 if n < 129: result_extend(encoded[i:i+n]) i += n elif n > 129: result_extend(encoded[i:i+1] * (258-n)) i += 1 except IndexError: pass return b''.join(result) if sys.version[0] == '2' else bytes(result) @_replace_by('_tifffile.decodelzw') def decodelzw(encoded): """Decompress LZW (Lempel-Ziv-Welch) encoded TIFF strip (byte string). The strip must begin with a CLEAR code and end with an EOI code. This is an implementation of the LZW decoding algorithm described in (1). It is not compatible with old style LZW compressed files like quad-lzw.tif. """ len_encoded = len(encoded) bitcount_max = len_encoded * 8 unpack = struct.unpack if sys.version[0] == '2': newtable = [chr(i) for i in range(256)] else: newtable = [bytes([i]) for i in range(256)] newtable.extend((0, 0)) def next_code(): """Return integer of `bitw` bits at `bitcount` position in encoded.""" start = bitcount // 8 s = encoded[start:start+4] try: code = unpack('>I', s)[0] except Exception: code = unpack('>I', s + b'\x00'*(4-len(s)))[0] code <<= bitcount % 8 code &= mask return code >> shr switchbitch = { # code: bit-width, shr-bits, bit-mask 255: (9, 23, int(9*'1'+'0'*23, 2)), 511: (10, 22, int(10*'1'+'0'*22, 2)), 1023: (11, 21, int(11*'1'+'0'*21, 2)), 2047: (12, 20, int(12*'1'+'0'*20, 2)), } bitw, shr, mask = switchbitch[255] bitcount = 0 if len_encoded < 4: raise ValueError("strip must be at least 4 characters long") if next_code() != 256: raise ValueError("strip must begin with CLEAR code") code = 0 oldcode = 0 result = [] result_append = result.append while True: code = next_code() # ~5% faster when inlining this function bitcount += bitw if code == 257 or bitcount >= bitcount_max: # EOI break if code == 256: # CLEAR table = newtable[:] table_append = table.append lentable = 258 bitw, shr, mask = switchbitch[255] code = next_code() bitcount += bitw if code == 257: # EOI break result_append(table[code]) else: if code < lentable: decoded = table[code] newcode = table[oldcode] + decoded[:1] else: newcode = table[oldcode] newcode += newcode[:1] decoded = newcode result_append(decoded) table_append(newcode) lentable += 1 oldcode = code if lentable in switchbitch: bitw, shr, mask = switchbitch[lentable] if code != 257: warnings.warn( "decodelzw encountered unexpected end of stream (code %i)" % code) return b''.join(result) @_replace_by('_tifffile.unpackints') def unpackints(data, dtype, itemsize, runlen=0): """Decompress byte string to array of integers of any bit size <= 32. Parameters ---------- data : byte str Data to decompress. dtype : numpy.dtype or str A numpy boolean or integer type. itemsize : int Number of bits per integer. runlen : int Number of consecutive integers, after which to start at next byte. """ if itemsize == 1: # bitarray data = numpy.fromstring(data, '|B') data = numpy.unpackbits(data) if runlen % 8: data = data.reshape(-1, runlen + (8 - runlen % 8)) data = data[:, :runlen].reshape(-1) return data.astype(dtype) dtype = numpy.dtype(dtype) if itemsize in (8, 16, 32, 64): return numpy.fromstring(data, dtype) if itemsize < 1 or itemsize > 32: raise ValueError("itemsize out of range: %i" % itemsize) if dtype.kind not in "biu": raise ValueError("invalid dtype") itembytes = next(i for i in (1, 2, 4, 8) if 8 * i >= itemsize) if itembytes != dtype.itemsize: raise ValueError("dtype.itemsize too small") if runlen == 0: runlen = len(data) // itembytes skipbits = runlen*itemsize % 8 if skipbits: skipbits = 8 - skipbits shrbits = itembytes*8 - itemsize bitmask = int(itemsize*'1'+'0'*shrbits, 2) dtypestr = '>' + dtype.char # dtype always big endian? unpack = struct.unpack l = runlen * (len(data)*8 // (runlen*itemsize + skipbits)) result = numpy.empty((l, ), dtype) bitcount = 0 for i in range(len(result)): start = bitcount // 8 s = data[start:start+itembytes] try: code = unpack(dtypestr, s)[0] except Exception: code = unpack(dtypestr, s + b'\x00'*(itembytes-len(s)))[0] code <<= bitcount % 8 code &= bitmask result[i] = code >> shrbits bitcount += itemsize if (i+1) % runlen == 0: bitcount += skipbits return result def unpackrgb(data, dtype='>> data = struct.pack('BBBB', 0x21, 0x08, 0xff, 0xff) >>> print(unpackrgb(data, '>> print(unpackrgb(data, '>> print(unpackrgb(data, '= bits) data = numpy.fromstring(data, dtype.byteorder+dt) result = numpy.empty((data.size, len(bitspersample)), dtype.char) for i, bps in enumerate(bitspersample): t = data >> int(numpy.sum(bitspersample[i+1:])) t &= int('0b'+'1'*bps, 2) if rescale: o = ((dtype.itemsize * 8) // bps + 1) * bps if o > data.dtype.itemsize * 8: t = t.astype('I') t *= (2**o - 1) // (2**bps - 1) t //= 2**(o - (dtype.itemsize * 8)) result[:, i] = t return result.reshape(-1) def reorient(image, orientation): """Return reoriented view of image array. Parameters ---------- image : numpy array Non-squeezed output of asarray() functions. Axes -3 and -2 must be image length and width respectively. orientation : int or str One of TIFF_ORIENTATIONS keys or values. """ o = TIFF_ORIENTATIONS.get(orientation, orientation) if o == 'top_left': return image elif o == 'top_right': return image[..., ::-1, :] elif o == 'bottom_left': return image[..., ::-1, :, :] elif o == 'bottom_right': return image[..., ::-1, ::-1, :] elif o == 'left_top': return numpy.swapaxes(image, -3, -2) elif o == 'right_top': return numpy.swapaxes(image, -3, -2)[..., ::-1, :] elif o == 'left_bottom': return numpy.swapaxes(image, -3, -2)[..., ::-1, :, :] elif o == 'right_bottom': return numpy.swapaxes(image, -3, -2)[..., ::-1, ::-1, :] def numpy_fromfile(arg, dtype=float, count=-1, sep=''): """Return array from data in binary file. Work around numpy issue #2230, "numpy.fromfile does not accept StringIO object" https://github.com/numpy/numpy/issues/2230. """ try: return numpy.fromfile(arg, dtype, count, sep) except IOError: if count < 0: size = 2**30 else: size = count * numpy.dtype(dtype).itemsize data = arg.read(int(size)) return numpy.fromstring(data, dtype, count, sep) def stripnull(string): """Return string truncated at first null character.""" i = string.find(b'\x00') return string if (i < 0) else string[:i] def format_size(size): """Return file size as string from byte size.""" for unit in ('B', 'KB', 'MB', 'GB', 'TB'): if size < 2048: return "%.f %s" % (size, unit) size /= 1024.0 def natural_sorted(iterable): """Return human sorted list of strings. >>> natural_sorted(['f1', 'f2', 'f10']) ['f1', 'f2', 'f10'] """ def sortkey(x): return [(int(c) if c.isdigit() else c) for c in re.split(numbers, x)] numbers = re.compile('(\d+)') return sorted(iterable, key=sortkey) def datetime_from_timestamp(n, epoch=datetime.datetime.fromordinal(693594)): """Return datetime object from timestamp in Excel serial format. Examples -------- >>> datetime_from_timestamp(40237.029999999795) datetime.datetime(2010, 2, 28, 0, 43, 11, 999982) """ return epoch + datetime.timedelta(n) def test_tifffile(directory='testimages', verbose=True): """Read all images in directory. Print error message on failure. Examples -------- >>> test_tifffile(verbose=False) """ successful = 0 failed = 0 start = time.time() for f in glob.glob(os.path.join(directory, '*.*')): if verbose: print("\n%s>\n" % f.lower(), end='') t0 = time.time() try: tif = TiffFile(f, multifile=True) except Exception as e: if not verbose: print(f, end=' ') print("ERROR:", e) failed += 1 continue try: img = tif.asarray() except ValueError: try: img = tif[0].asarray() except Exception as e: if not verbose: print(f, end=' ') print("ERROR:", e) failed += 1 continue finally: tif.close() successful += 1 if verbose: print("%s, %s %s, %s, %.0f ms" % ( str(tif), str(img.shape), img.dtype, tif[0].compression, (time.time()-t0) * 1e3)) if verbose: print("\nSuccessfully read %i of %i files in %.3f s\n" % ( successful, successful+failed, time.time()-start)) class TIFF_SUBFILE_TYPES(object): def __getitem__(self, key): result = [] if key & 1: result.append('reduced_image') if key & 2: result.append('page') if key & 4: result.append('mask') return tuple(result) TIFF_PHOTOMETRICS = { 0: 'miniswhite', 1: 'minisblack', 2: 'rgb', 3: 'palette', 4: 'mask', 5: 'separated', 6: 'cielab', 7: 'icclab', 8: 'itulab', 32844: 'logl', 32845: 'logluv', } TIFF_COMPESSIONS = { 1: None, 2: 'ccittrle', 3: 'ccittfax3', 4: 'ccittfax4', 5: 'lzw', 6: 'ojpeg', 7: 'jpeg', 8: 'adobe_deflate', 9: 't85', 10: 't43', 32766: 'next', 32771: 'ccittrlew', 32773: 'packbits', 32809: 'thunderscan', 32895: 'it8ctpad', 32896: 'it8lw', 32897: 'it8mp', 32898: 'it8bl', 32908: 'pixarfilm', 32909: 'pixarlog', 32946: 'deflate', 32947: 'dcs', 34661: 'jbig', 34676: 'sgilog', 34677: 'sgilog24', 34712: 'jp2000', 34713: 'nef', } TIFF_DECOMPESSORS = { None: lambda x: x, 'adobe_deflate': zlib.decompress, 'deflate': zlib.decompress, 'packbits': decodepackbits, 'lzw': decodelzw, } TIFF_DATA_TYPES = { 1: '1B', # BYTE 8-bit unsigned integer. 2: '1s', # ASCII 8-bit byte that contains a 7-bit ASCII code; # the last byte must be NULL (binary zero). 3: '1H', # SHORT 16-bit (2-byte) unsigned integer 4: '1I', # LONG 32-bit (4-byte) unsigned integer. 5: '2I', # RATIONAL Two LONGs: the first represents the numerator of # a fraction; the second, the denominator. 6: '1b', # SBYTE An 8-bit signed (twos-complement) integer. 7: '1B', # UNDEFINED An 8-bit byte that may contain anything, # depending on the definition of the field. 8: '1h', # SSHORT A 16-bit (2-byte) signed (twos-complement) integer. 9: '1i', # SLONG A 32-bit (4-byte) signed (twos-complement) integer. 10: '2i', # SRATIONAL Two SLONGs: the first represents the numerator # of a fraction, the second the denominator. 11: '1f', # FLOAT Single precision (4-byte) IEEE format. 12: '1d', # DOUBLE Double precision (8-byte) IEEE format. 13: '1I', # IFD unsigned 4 byte IFD offset. #14: '', # UNICODE #15: '', # COMPLEX 16: '1Q', # LONG8 unsigned 8 byte integer (BigTiff) 17: '1q', # SLONG8 signed 8 byte integer (BigTiff) 18: '1Q', # IFD8 unsigned 8 byte IFD offset (BigTiff) } TIFF_SAMPLE_FORMATS = { 1: 'uint', 2: 'int', 3: 'float', #4: 'void', #5: 'complex_int', 6: 'complex', } TIFF_SAMPLE_DTYPES = { ('uint', 1): '?', # bitmap ('uint', 2): 'B', ('uint', 3): 'B', ('uint', 4): 'B', ('uint', 5): 'B', ('uint', 6): 'B', ('uint', 7): 'B', ('uint', 8): 'B', ('uint', 9): 'H', ('uint', 10): 'H', ('uint', 11): 'H', ('uint', 12): 'H', ('uint', 13): 'H', ('uint', 14): 'H', ('uint', 15): 'H', ('uint', 16): 'H', ('uint', 17): 'I', ('uint', 18): 'I', ('uint', 19): 'I', ('uint', 20): 'I', ('uint', 21): 'I', ('uint', 22): 'I', ('uint', 23): 'I', ('uint', 24): 'I', ('uint', 25): 'I', ('uint', 26): 'I', ('uint', 27): 'I', ('uint', 28): 'I', ('uint', 29): 'I', ('uint', 30): 'I', ('uint', 31): 'I', ('uint', 32): 'I', ('uint', 64): 'Q', ('int', 8): 'b', ('int', 16): 'h', ('int', 32): 'i', ('int', 64): 'q', ('float', 16): 'e', ('float', 32): 'f', ('float', 64): 'd', ('complex', 64): 'F', ('complex', 128): 'D', ('uint', (5, 6, 5)): 'B', } TIFF_ORIENTATIONS = { 1: 'top_left', 2: 'top_right', 3: 'bottom_right', 4: 'bottom_left', 5: 'left_top', 6: 'right_top', 7: 'right_bottom', 8: 'left_bottom', } AXES_LABELS = { 'X': 'width', 'Y': 'height', 'Z': 'depth', 'S': 'sample', # rgb(a) 'P': 'plane', # page 'T': 'time', 'C': 'channel', # color, emission wavelength 'A': 'angle', 'F': 'phase', 'R': 'tile', # region, point 'H': 'lifetime', # histogram 'E': 'lambda', # excitation wavelength 'L': 'exposure', # lux 'V': 'event', 'Q': 'other', } AXES_LABELS.update(dict((v, k) for k, v in AXES_LABELS.items())) # NIH Image PicHeader v1.63 NIH_IMAGE_HEADER = [ ('fileid', 'a8'), ('nlines', 'i2'), ('pixelsperline', 'i2'), ('version', 'i2'), ('oldlutmode', 'i2'), ('oldncolors', 'i2'), ('colors', 'u1', (3, 32)), ('oldcolorstart', 'i2'), ('colorwidth', 'i2'), ('extracolors', 'u2', (6, 3)), ('nextracolors', 'i2'), ('foregroundindex', 'i2'), ('backgroundindex', 'i2'), ('xscale', 'f8'), ('_x0', 'i2'), ('_x1', 'i2'), ('units_t', 'i2'), ('p1', [('x', 'i2'), ('y', 'i2')]), ('p2', [('x', 'i2'), ('y', 'i2')]), ('curvefit_t', 'i2'), ('ncoefficients', 'i2'), ('coeff', 'f8', 6), ('_um_len', 'u1'), ('um', 'a15'), ('_x2', 'u1'), ('binarypic', 'b1'), ('slicestart', 'i2'), ('sliceend', 'i2'), ('scalemagnification', 'f4'), ('nslices', 'i2'), ('slicespacing', 'f4'), ('currentslice', 'i2'), ('frameinterval', 'f4'), ('pixelaspectratio', 'f4'), ('colorstart', 'i2'), ('colorend', 'i2'), ('ncolors', 'i2'), ('fill1', '3u2'), ('fill2', '3u2'), ('colortable_t', 'u1'), ('lutmode_t', 'u1'), ('invertedtable', 'b1'), ('zeroclip', 'b1'), ('_xunit_len', 'u1'), ('xunit', 'a11'), ('stacktype_t', 'i2'), ] #NIH_COLORTABLE_TYPE = ( # 'CustomTable', 'AppleDefault', 'Pseudo20', 'Pseudo32', 'Rainbow', # 'Fire1', 'Fire2', 'Ice', 'Grays', 'Spectrum') #NIH_LUTMODE_TYPE = ( # 'PseudoColor', 'OldAppleDefault', 'OldSpectrum', 'GrayScale', # 'ColorLut', 'CustomGrayscale') #NIH_CURVEFIT_TYPE = ( # 'StraightLine', 'Poly2', 'Poly3', 'Poly4', 'Poly5', 'ExpoFit', # 'PowerFit', 'LogFit', 'RodbardFit', 'SpareFit1', 'Uncalibrated', # 'UncalibratedOD') #NIH_UNITS_TYPE = ( # 'Nanometers', 'Micrometers', 'Millimeters', 'Centimeters', 'Meters', # 'Kilometers', 'Inches', 'Feet', 'Miles', 'Pixels', 'OtherUnits') #NIH_STACKTYPE_TYPE = ( # 'VolumeStack', 'RGBStack', 'MovieStack', 'HSVStack') # MetaMorph STK tags MM_TAG_IDS = { 0: 'auto_scale', 1: 'min_scale', 2: 'max_scale', 3: 'spatial_calibration', #4: 'x_calibration', #5: 'y_calibration', #6: 'calibration_units', #7: 'name', 8: 'thresh_state', 9: 'thresh_state_red', 11: 'thresh_state_green', 12: 'thresh_state_blue', 13: 'thresh_state_lo', 14: 'thresh_state_hi', 15: 'zoom', #16: 'create_time', #17: 'last_saved_time', 18: 'current_buffer', 19: 'gray_fit', 20: 'gray_point_count', #21: 'gray_x', #22: 'gray_y', #23: 'gray_min', #24: 'gray_max', #25: 'gray_unit_name', 26: 'standard_lut', 27: 'wavelength', #28: 'stage_position', #29: 'camera_chip_offset', #30: 'overlay_mask', #31: 'overlay_compress', #32: 'overlay', #33: 'special_overlay_mask', #34: 'special_overlay_compress', #35: 'special_overlay', 36: 'image_property', #37: 'stage_label', #38: 'autoscale_lo_info', #39: 'autoscale_hi_info', #40: 'absolute_z', #41: 'absolute_z_valid', #42: 'gamma', #43: 'gamma_red', #44: 'gamma_green', #45: 'gamma_blue', #46: 'camera_bin', 47: 'new_lut', #48: 'image_property_ex', 49: 'plane_property', #50: 'user_lut_table', 51: 'red_autoscale_info', #52: 'red_autoscale_lo_info', #53: 'red_autoscale_hi_info', 54: 'red_minscale_info', 55: 'red_maxscale_info', 56: 'green_autoscale_info', #57: 'green_autoscale_lo_info', #58: 'green_autoscale_hi_info', 59: 'green_minscale_info', 60: 'green_maxscale_info', 61: 'blue_autoscale_info', #62: 'blue_autoscale_lo_info', #63: 'blue_autoscale_hi_info', 64: 'blue_min_scale_info', 65: 'blue_max_scale_info', #66: 'overlay_plane_color' } # Olympus FluoView MM_DIMENSION = [ ('name', 'a16'), ('size', 'i4'), ('origin', 'f8'), ('resolution', 'f8'), ('unit', 'a64'), ] MM_HEADER = [ ('header_flag', 'i2'), ('image_type', 'u1'), ('image_name', 'a257'), ('offset_data', 'u4'), ('palette_size', 'i4'), ('offset_palette0', 'u4'), ('offset_palette1', 'u4'), ('comment_size', 'i4'), ('offset_comment', 'u4'), ('dimensions', MM_DIMENSION, 10), ('offset_position', 'u4'), ('map_type', 'i2'), ('map_min', 'f8'), ('map_max', 'f8'), ('min_value', 'f8'), ('max_value', 'f8'), ('offset_map', 'u4'), ('gamma', 'f8'), ('offset', 'f8'), ('gray_channel', MM_DIMENSION), ('offset_thumbnail', 'u4'), ('voice_field', 'i4'), ('offset_voice_field', 'u4'), ] # Carl Zeiss LSM CZ_LSM_INFO = [ ('magic_number', 'i4'), ('structure_size', 'i4'), ('dimension_x', 'i4'), ('dimension_y', 'i4'), ('dimension_z', 'i4'), ('dimension_channels', 'i4'), ('dimension_time', 'i4'), ('dimension_data_type', 'i4'), ('thumbnail_x', 'i4'), ('thumbnail_y', 'i4'), ('voxel_size_x', 'f8'), ('voxel_size_y', 'f8'), ('voxel_size_z', 'f8'), ('origin_x', 'f8'), ('origin_y', 'f8'), ('origin_z', 'f8'), ('scan_type', 'u2'), ('spectral_scan', 'u2'), ('data_type', 'u4'), ('offset_vector_overlay', 'u4'), ('offset_input_lut', 'u4'), ('offset_output_lut', 'u4'), ('offset_channel_colors', 'u4'), ('time_interval', 'f8'), ('offset_channel_data_types', 'u4'), ('offset_scan_information', 'u4'), ('offset_ks_data', 'u4'), ('offset_time_stamps', 'u4'), ('offset_event_list', 'u4'), ('offset_roi', 'u4'), ('offset_bleach_roi', 'u4'), ('offset_next_recording', 'u4'), ('display_aspect_x', 'f8'), ('display_aspect_y', 'f8'), ('display_aspect_z', 'f8'), ('display_aspect_time', 'f8'), ('offset_mean_of_roi_overlay', 'u4'), ('offset_topo_isoline_overlay', 'u4'), ('offset_topo_profile_overlay', 'u4'), ('offset_linescan_overlay', 'u4'), ('offset_toolbar_flags', 'u4'), ] # Import functions for LSM_INFO sub-records CZ_LSM_INFO_READERS = { 'scan_information': read_cz_lsm_scan_info, 'time_stamps': read_cz_lsm_time_stamps, 'event_list': read_cz_lsm_event_list, } # Map cz_lsm_info.scan_type to dimension order CZ_SCAN_TYPES = { 0: 'XYZCT', # x-y-z scan 1: 'XYZCT', # z scan (x-z plane) 2: 'XYZCT', # line scan 3: 'XYTCZ', # time series x-y 4: 'XYZTC', # time series x-z 5: 'XYTCZ', # time series 'Mean of ROIs' 6: 'XYZTC', # time series x-y-z 7: 'XYCTZ', # spline scan 8: 'XYCZT', # spline scan x-z 9: 'XYTCZ', # time series spline plane x-z 10: 'XYZCT', # point mode } # Map dimension codes to cz_lsm_info attribute CZ_DIMENSIONS = { 'X': 'dimension_x', 'Y': 'dimension_y', 'Z': 'dimension_z', 'C': 'dimension_channels', 'T': 'dimension_time', } # Descriptions of cz_lsm_info.data_type CZ_DATA_TYPES = { 0: 'varying data types', 2: '12 bit unsigned integer', 5: '32 bit float', } CZ_LSM_SCAN_INFO_ARRAYS = { 0x20000000: "tracks", 0x30000000: "lasers", 0x60000000: "detectionchannels", 0x80000000: "illuminationchannels", 0xa0000000: "beamsplitters", 0xc0000000: "datachannels", 0x13000000: "markers", 0x11000000: "timers", } CZ_LSM_SCAN_INFO_STRUCTS = { 0x40000000: "tracks", 0x50000000: "lasers", 0x70000000: "detectionchannels", 0x90000000: "illuminationchannels", 0xb0000000: "beamsplitters", 0xd0000000: "datachannels", 0x14000000: "markers", 0x12000000: "timers", } CZ_LSM_SCAN_INFO_ATTRIBUTES = { 0x10000001: "name", 0x10000002: "description", 0x10000003: "notes", 0x10000004: "objective", 0x10000005: "processing_summary", 0x10000006: "special_scan_mode", 0x10000007: "oledb_recording_scan_type", 0x10000008: "oledb_recording_scan_mode", 0x10000009: "number_of_stacks", 0x1000000a: "lines_per_plane", 0x1000000b: "samples_per_line", 0x1000000c: "planes_per_volume", 0x1000000d: "images_width", 0x1000000e: "images_height", 0x1000000f: "images_number_planes", 0x10000010: "images_number_stacks", 0x10000011: "images_number_channels", 0x10000012: "linscan_xy_size", 0x10000013: "scan_direction", 0x10000014: "time_series", 0x10000015: "original_scan_data", 0x10000016: "zoom_x", 0x10000017: "zoom_y", 0x10000018: "zoom_z", 0x10000019: "sample_0x", 0x1000001a: "sample_0y", 0x1000001b: "sample_0z", 0x1000001c: "sample_spacing", 0x1000001d: "line_spacing", 0x1000001e: "plane_spacing", 0x1000001f: "plane_width", 0x10000020: "plane_height", 0x10000021: "volume_depth", 0x10000023: "nutation", 0x10000034: "rotation", 0x10000035: "precession", 0x10000036: "sample_0time", 0x10000037: "start_scan_trigger_in", 0x10000038: "start_scan_trigger_out", 0x10000039: "start_scan_event", 0x10000040: "start_scan_time", 0x10000041: "stop_scan_trigger_in", 0x10000042: "stop_scan_trigger_out", 0x10000043: "stop_scan_event", 0x10000044: "stop_scan_time", 0x10000045: "use_rois", 0x10000046: "use_reduced_memory_rois", 0x10000047: "user", 0x10000048: "use_bccorrection", 0x10000049: "position_bccorrection1", 0x10000050: "position_bccorrection2", 0x10000051: "interpolation_y", 0x10000052: "camera_binning", 0x10000053: "camera_supersampling", 0x10000054: "camera_frame_width", 0x10000055: "camera_frame_height", 0x10000056: "camera_offset_x", 0x10000057: "camera_offset_y", # lasers 0x50000001: "name", 0x50000002: "acquire", 0x50000003: "power", # tracks 0x40000001: "multiplex_type", 0x40000002: "multiplex_order", 0x40000003: "sampling_mode", 0x40000004: "sampling_method", 0x40000005: "sampling_number", 0x40000006: "acquire", 0x40000007: "sample_observation_time", 0x4000000b: "time_between_stacks", 0x4000000c: "name", 0x4000000d: "collimator1_name", 0x4000000e: "collimator1_position", 0x4000000f: "collimator2_name", 0x40000010: "collimator2_position", 0x40000011: "is_bleach_track", 0x40000012: "is_bleach_after_scan_number", 0x40000013: "bleach_scan_number", 0x40000014: "trigger_in", 0x40000015: "trigger_out", 0x40000016: "is_ratio_track", 0x40000017: "bleach_count", 0x40000018: "spi_center_wavelength", 0x40000019: "pixel_time", 0x40000021: "condensor_frontlens", 0x40000023: "field_stop_value", 0x40000024: "id_condensor_aperture", 0x40000025: "condensor_aperture", 0x40000026: "id_condensor_revolver", 0x40000027: "condensor_filter", 0x40000028: "id_transmission_filter1", 0x40000029: "id_transmission1", 0x40000030: "id_transmission_filter2", 0x40000031: "id_transmission2", 0x40000032: "repeat_bleach", 0x40000033: "enable_spot_bleach_pos", 0x40000034: "spot_bleach_posx", 0x40000035: "spot_bleach_posy", 0x40000036: "spot_bleach_posz", 0x40000037: "id_tubelens", 0x40000038: "id_tubelens_position", 0x40000039: "transmitted_light", 0x4000003a: "reflected_light", 0x4000003b: "simultan_grab_and_bleach", 0x4000003c: "bleach_pixel_time", # detection_channels 0x70000001: "integration_mode", 0x70000002: "special_mode", 0x70000003: "detector_gain_first", 0x70000004: "detector_gain_last", 0x70000005: "amplifier_gain_first", 0x70000006: "amplifier_gain_last", 0x70000007: "amplifier_offs_first", 0x70000008: "amplifier_offs_last", 0x70000009: "pinhole_diameter", 0x7000000a: "counting_trigger", 0x7000000b: "acquire", 0x7000000c: "point_detector_name", 0x7000000d: "amplifier_name", 0x7000000e: "pinhole_name", 0x7000000f: "filter_set_name", 0x70000010: "filter_name", 0x70000013: "integrator_name", 0x70000014: "detection_channel_name", 0x70000015: "detection_detector_gain_bc1", 0x70000016: "detection_detector_gain_bc2", 0x70000017: "detection_amplifier_gain_bc1", 0x70000018: "detection_amplifier_gain_bc2", 0x70000019: "detection_amplifier_offset_bc1", 0x70000020: "detection_amplifier_offset_bc2", 0x70000021: "detection_spectral_scan_channels", 0x70000022: "detection_spi_wavelength_start", 0x70000023: "detection_spi_wavelength_stop", 0x70000026: "detection_dye_name", 0x70000027: "detection_dye_folder", # illumination_channels 0x90000001: "name", 0x90000002: "power", 0x90000003: "wavelength", 0x90000004: "aquire", 0x90000005: "detchannel_name", 0x90000006: "power_bc1", 0x90000007: "power_bc2", # beam_splitters 0xb0000001: "filter_set", 0xb0000002: "filter", 0xb0000003: "name", # data_channels 0xd0000001: "name", 0xd0000003: "acquire", 0xd0000004: "color", 0xd0000005: "sample_type", 0xd0000006: "bits_per_sample", 0xd0000007: "ratio_type", 0xd0000008: "ratio_track1", 0xd0000009: "ratio_track2", 0xd000000a: "ratio_channel1", 0xd000000b: "ratio_channel2", 0xd000000c: "ratio_const1", 0xd000000d: "ratio_const2", 0xd000000e: "ratio_const3", 0xd000000f: "ratio_const4", 0xd0000010: "ratio_const5", 0xd0000011: "ratio_const6", 0xd0000012: "ratio_first_images1", 0xd0000013: "ratio_first_images2", 0xd0000014: "dye_name", 0xd0000015: "dye_folder", 0xd0000016: "spectrum", 0xd0000017: "acquire", # markers 0x14000001: "name", 0x14000002: "description", 0x14000003: "trigger_in", 0x14000004: "trigger_out", # timers 0x12000001: "name", 0x12000002: "description", 0x12000003: "interval", 0x12000004: "trigger_in", 0x12000005: "trigger_out", 0x12000006: "activation_time", 0x12000007: "activation_number", } # Map TIFF tag code to attribute name, default value, type, count, validator TIFF_TAGS = { 254: ('new_subfile_type', 0, 4, 1, TIFF_SUBFILE_TYPES()), 255: ('subfile_type', None, 3, 1, {0: 'undefined', 1: 'image', 2: 'reduced_image', 3: 'page'}), 256: ('image_width', None, 4, 1, None), 257: ('image_length', None, 4, 1, None), 258: ('bits_per_sample', 1, 3, 1, None), 259: ('compression', 1, 3, 1, TIFF_COMPESSIONS), 262: ('photometric', None, 3, 1, TIFF_PHOTOMETRICS), 266: ('fill_order', 1, 3, 1, {1: 'msb2lsb', 2: 'lsb2msb'}), 269: ('document_name', None, 2, None, None), 270: ('image_description', None, 2, None, None), 271: ('make', None, 2, None, None), 272: ('model', None, 2, None, None), 273: ('strip_offsets', None, 4, None, None), 274: ('orientation', 1, 3, 1, TIFF_ORIENTATIONS), 277: ('samples_per_pixel', 1, 3, 1, None), 278: ('rows_per_strip', 2**32-1, 4, 1, None), 279: ('strip_byte_counts', None, 4, None, None), 280: ('min_sample_value', None, 3, None, None), 281: ('max_sample_value', None, 3, None, None), # 2**bits_per_sample 282: ('x_resolution', None, 5, 1, None), 283: ('y_resolution', None, 5, 1, None), 284: ('planar_configuration', 1, 3, 1, {1: 'contig', 2: 'separate'}), 285: ('page_name', None, 2, None, None), 286: ('x_position', None, 5, 1, None), 287: ('y_position', None, 5, 1, None), 296: ('resolution_unit', 2, 4, 1, {1: 'none', 2: 'inch', 3: 'centimeter'}), 297: ('page_number', None, 3, 2, None), 305: ('software', None, 2, None, None), 306: ('datetime', None, 2, None, None), 315: ('artist', None, 2, None, None), 316: ('host_computer', None, 2, None, None), 317: ('predictor', 1, 3, 1, {1: None, 2: 'horizontal'}), 320: ('color_map', None, 3, None, None), 322: ('tile_width', None, 4, 1, None), 323: ('tile_length', None, 4, 1, None), 324: ('tile_offsets', None, 4, None, None), 325: ('tile_byte_counts', None, 4, None, None), 338: ('extra_samples', None, 3, None, {0: 'unspecified', 1: 'assocalpha', 2: 'unassalpha'}), 339: ('sample_format', 1, 3, 1, TIFF_SAMPLE_FORMATS), 347: ('jpeg_tables', None, None, None, None), 530: ('ycbcr_subsampling', 1, 3, 2, None), 531: ('ycbcr_positioning', 1, 3, 1, None), 32997: ('image_depth', None, 4, 1, None), 32998: ('tile_depth', None, 4, 1, None), 33432: ('copyright', None, 1, None, None), 33445: ('md_file_tag', None, 4, 1, None), 33446: ('md_scale_pixel', None, 5, 1, None), 33447: ('md_color_table', None, 3, None, None), 33448: ('md_lab_name', None, 2, None, None), 33449: ('md_sample_info', None, 2, None, None), 33450: ('md_prep_date', None, 2, None, None), 33451: ('md_prep_time', None, 2, None, None), 33452: ('md_file_units', None, 2, None, None), 33550: ('model_pixel_scale', None, 12, 3, None), 33922: ('model_tie_point', None, 12, None, None), 37510: ('user_comment', None, None, None, None), 34665: ('exif_ifd', None, None, 1, None), 34735: ('geo_key_directory', None, 3, None, None), 34736: ('geo_double_params', None, 12, None, None), 34737: ('geo_ascii_params', None, 2, None, None), 34853: ('gps_ifd', None, None, 1, None), 42112: ('gdal_metadata', None, 2, None, None), 42113: ('gdal_nodata', None, 2, None, None), 50838: ('imagej_byte_counts', None, None, None, None), 50289: ('mc_xy_position', None, 12, 2, None), 50290: ('mc_z_position', None, 12, 1, None), 50291: ('mc_xy_calibration', None, 12, 3, None), 50292: ('mc_lens_lem_na_n', None, 12, 3, None), 50293: ('mc_channel_name', None, 1, None, None), 50294: ('mc_ex_wavelength', None, 12, 1, None), 50295: ('mc_time_stamp', None, 12, 1, None), 65200: ('flex_xml', None, 2, None, None), # code: (attribute name, default value, type, count, validator) } # Map custom TIFF tag codes to attribute names and import functions CUSTOM_TAGS = { 700: ('xmp', read_bytes), 34377: ('photoshop', read_numpy), 33723: ('iptc', read_bytes), 34675: ('icc_profile', read_numpy), 33628: ('mm_uic1', read_mm_uic1), 33629: ('mm_uic2', read_mm_uic2), 33630: ('mm_uic3', read_mm_uic3), 33631: ('mm_uic4', read_mm_uic4), 34361: ('mm_header', read_mm_header), 34362: ('mm_stamp', read_mm_stamp), 34386: ('mm_user_block', read_bytes), 34412: ('cz_lsm_info', read_cz_lsm_info), 43314: ('nih_image_header', read_nih_image_header), # 40001: ('mc_ipwinscal', read_bytes), 40100: ('mc_id_old', read_bytes), 50288: ('mc_id', read_bytes), 50296: ('mc_frame_properties', read_bytes), 50839: ('imagej_metadata', read_bytes), 51123: ('micromanager_metadata', read_json), } # Max line length of printed output PRINT_LINE_LEN = 79 def imshow(data, title=None, vmin=0, vmax=None, cmap=None, bitspersample=None, photometric='rgb', interpolation='nearest', dpi=96, figure=None, subplot=111, maxdim=8192, **kwargs): """Plot n-dimensional images using matplotlib.pyplot. Return figure, subplot and plot axis. Requires pyplot already imported ``from matplotlib import pyplot``. Parameters ---------- bitspersample : int or None Number of bits per channel in integer RGB images. photometric : {'miniswhite', 'minisblack', 'rgb', or 'palette'} The color space of the image data. title : str Window and subplot title. figure : matplotlib.figure.Figure (optional). Matplotlib to use for plotting. subplot : int A matplotlib.pyplot.subplot axis. maxdim : int maximum image size in any dimension. kwargs : optional Arguments for matplotlib.pyplot.imshow. """ #if photometric not in ('miniswhite', 'minisblack', 'rgb', 'palette'): # raise ValueError("Can't handle %s photometrics" % photometric) # TODO: handle photometric == 'separated' (CMYK) isrgb = photometric in ('rgb', 'palette') data = numpy.atleast_2d(data.squeeze()) data = data[(slice(0, maxdim), ) * len(data.shape)] dims = data.ndim if dims < 2: raise ValueError("not an image") elif dims == 2: dims = 0 isrgb = False else: if isrgb and data.shape[-3] in (3, 4): data = numpy.swapaxes(data, -3, -2) data = numpy.swapaxes(data, -2, -1) elif not isrgb and data.shape[-1] in (3, 4): data = numpy.swapaxes(data, -3, -1) data = numpy.swapaxes(data, -2, -1) isrgb = isrgb and data.shape[-1] in (3, 4) dims -= 3 if isrgb else 2 if photometric == 'palette' and isrgb: datamax = data.max() if datamax > 255: data >>= 8 # possible precision loss data = data.astype('B') elif data.dtype.kind in 'ui': if not (isrgb and data.dtype.itemsize <= 1) or bitspersample is None: try: bitspersample = int(math.ceil(math.log(data.max(), 2))) except Exception: bitspersample = data.dtype.itemsize * 8 elif not isinstance(bitspersample, int): # bitspersample can be tuple, e.g. (5, 6, 5) bitspersample = data.dtype.itemsize * 8 datamax = 2**bitspersample if isrgb: if bitspersample < 8: data <<= 8 - bitspersample elif bitspersample > 8: data >>= bitspersample - 8 # precision loss data = data.astype('B') elif data.dtype.kind == 'f': datamax = data.max() if isrgb and datamax > 1.0: if data.dtype.char == 'd': data = data.astype('f') data /= datamax elif data.dtype.kind == 'b': datamax = 1 elif data.dtype.kind == 'c': raise NotImplementedError("complex type") # TODO: handle complex types if not isrgb: if vmax is None: vmax = datamax if vmin is None: if data.dtype.kind == 'i': dtmin = numpy.iinfo(data.dtype).min vmin = numpy.min(data) if vmin == dtmin: vmin = numpy.min(data > dtmin) if data.dtype.kind == 'f': dtmin = numpy.finfo(data.dtype).min vmin = numpy.min(data) if vmin == dtmin: vmin = numpy.min(data > dtmin) else: vmin = 0 pyplot = sys.modules['matplotlib.pyplot'] if figure is None: pyplot.rc('font', family='sans-serif', weight='normal', size=8) figure = pyplot.figure(dpi=dpi, figsize=(10.3, 6.3), frameon=True, facecolor='1.0', edgecolor='w') try: figure.canvas.manager.window.title(title) except Exception: pass pyplot.subplots_adjust(bottom=0.03*(dims+2), top=0.9, left=0.1, right=0.95, hspace=0.05, wspace=0.0) subplot = pyplot.subplot(subplot) if title: try: title = unicode(title, 'Windows-1252') except TypeError: pass pyplot.title(title, size=11) if cmap is None: if data.dtype.kind in 'ub' and vmin == 0: cmap = 'gray' else: cmap = 'coolwarm' if photometric == 'miniswhite': cmap += '_r' image = pyplot.imshow(data[(0, ) * dims].squeeze(), vmin=vmin, vmax=vmax, cmap=cmap, interpolation=interpolation, **kwargs) if not isrgb: pyplot.colorbar() # panchor=(0.55, 0.5), fraction=0.05 def format_coord(x, y): # callback function to format coordinate display in toolbar x = int(x + 0.5) y = int(y + 0.5) try: if dims: return "%s @ %s [%4i, %4i]" % (cur_ax_dat[1][y, x], current, x, y) else: return "%s @ [%4i, %4i]" % (data[y, x], x, y) except IndexError: return "" pyplot.gca().format_coord = format_coord if dims: current = list((0, ) * dims) cur_ax_dat = [0, data[tuple(current)].squeeze()] sliders = [pyplot.Slider( pyplot.axes([0.125, 0.03*(axis+1), 0.725, 0.025]), 'Dimension %i' % axis, 0, data.shape[axis]-1, 0, facecolor='0.5', valfmt='%%.0f [%i]' % data.shape[axis]) for axis in range(dims)] for slider in sliders: slider.drawon = False def set_image(current, sliders=sliders, data=data): # change image and redraw canvas cur_ax_dat[1] = data[tuple(current)].squeeze() image.set_data(cur_ax_dat[1]) for ctrl, index in zip(sliders, current): ctrl.eventson = False ctrl.set_val(index) ctrl.eventson = True figure.canvas.draw() def on_changed(index, axis, data=data, current=current): # callback function for slider change event index = int(round(index)) cur_ax_dat[0] = axis if index == current[axis]: return if index >= data.shape[axis]: index = 0 elif index < 0: index = data.shape[axis] - 1 current[axis] = index set_image(current) def on_keypressed(event, data=data, current=current): # callback function for key press event key = event.key axis = cur_ax_dat[0] if str(key) in '0123456789': on_changed(key, axis) elif key == 'right': on_changed(current[axis] + 1, axis) elif key == 'left': on_changed(current[axis] - 1, axis) elif key == 'up': cur_ax_dat[0] = 0 if axis == len(data.shape)-1 else axis + 1 elif key == 'down': cur_ax_dat[0] = len(data.shape)-1 if axis == 0 else axis - 1 elif key == 'end': on_changed(data.shape[axis] - 1, axis) elif key == 'home': on_changed(0, axis) figure.canvas.mpl_connect('key_press_event', on_keypressed) for axis, ctrl in enumerate(sliders): ctrl.on_changed(lambda k, a=axis: on_changed(k, a)) return figure, subplot, image def _app_show(): """Block the GUI. For use as skimage plugin.""" pyplot = sys.modules['matplotlib.pyplot'] pyplot.show() def main(argv=None): """Command line usage main function.""" if float(sys.version[0:3]) < 2.6: print("This script requires Python version 2.6 or better.") print("This is Python version %s" % sys.version) return 0 if argv is None: argv = sys.argv import optparse search_doc = lambda r, d: re.search(r, __doc__).group(1) if __doc__ else d parser = optparse.OptionParser( usage="usage: %prog [options] path", description=search_doc("\n\n([^|]*?)\n\n", ''), version="%%prog %s" % search_doc(":Version: (.*)", "Unknown")) opt = parser.add_option opt('-p', '--page', dest='page', type='int', default=-1, help="display single page") opt('-s', '--series', dest='series', type='int', default=-1, help="display series of pages of same shape") opt('--nomultifile', dest='nomultifile', action='store_true', default=False, help="don't read OME series from multiple files") opt('--noplot', dest='noplot', action='store_true', default=False, help="don't display images") opt('--interpol', dest='interpol', metavar='INTERPOL', default='bilinear', help="image interpolation method") opt('--dpi', dest='dpi', type='int', default=96, help="set plot resolution") opt('--debug', dest='debug', action='store_true', default=False, help="raise exception on failures") opt('--test', dest='test', action='store_true', default=False, help="try read all images in path") opt('--doctest', dest='doctest', action='store_true', default=False, help="runs the internal tests") opt('-v', '--verbose', dest='verbose', action='store_true', default=True) opt('-q', '--quiet', dest='verbose', action='store_false') settings, path = parser.parse_args() path = ' '.join(path) if settings.doctest: import doctest doctest.testmod() return 0 if not path: parser.error("No file specified") if settings.test: test_tifffile(path, settings.verbose) return 0 if any(i in path for i in '?*'): path = glob.glob(path) if not path: print('no files match the pattern') return 0 # TODO: handle image sequences #if len(path) == 1: path = path[0] print("Reading file structure...", end=' ') start = time.time() try: tif = TiffFile(path, multifile=not settings.nomultifile) except Exception as e: if settings.debug: raise else: print("\n", e) sys.exit(0) print("%.3f ms" % ((time.time()-start) * 1e3)) if tif.is_ome: settings.norgb = True images = [(None, tif[0 if settings.page < 0 else settings.page])] if not settings.noplot: print("Reading image data... ", end=' ') def notnone(x): return next(i for i in x if i is not None) start = time.time() try: if settings.page >= 0: images = [(tif.asarray(key=settings.page), tif[settings.page])] elif settings.series >= 0: images = [(tif.asarray(series=settings.series), notnone(tif.series[settings.series].pages))] else: images = [] for i, s in enumerate(tif.series): try: images.append( (tif.asarray(series=i), notnone(s.pages))) except ValueError as e: images.append((None, notnone(s.pages))) if settings.debug: raise else: print("\n* series %i failed: %s... " % (i, e), end='') print("%.3f ms" % ((time.time()-start) * 1e3)) except Exception as e: if settings.debug: raise else: print(e) tif.close() print("\nTIFF file:", tif) print() for i, s in enumerate(tif.series): print ("Series %i" % i) print(s) print() for i, page in images: print(page) print(page.tags) if page.is_palette: print("\nColor Map:", page.color_map.shape, page.color_map.dtype) for attr in ('cz_lsm_info', 'cz_lsm_scan_information', 'mm_uic_tags', 'mm_header', 'imagej_tags', 'micromanager_metadata', 'nih_image_header'): if hasattr(page, attr): print("", attr.upper(), Record(getattr(page, attr)), sep="\n") print() if page.is_micromanager: print('MICROMANAGER_FILE_METADATA') print(Record(tif.micromanager_metadata)) if images and not settings.noplot: try: import matplotlib matplotlib.use('TkAgg') from matplotlib import pyplot except ImportError as e: warnings.warn("failed to import matplotlib.\n%s" % e) else: for img, page in images: if img is None: continue vmin, vmax = None, None if 'gdal_nodata' in page.tags: vmin = numpy.min(img[img > float(page.gdal_nodata)]) if page.is_stk: try: vmin = page.mm_uic_tags['min_scale'] vmax = page.mm_uic_tags['max_scale'] except KeyError: pass else: if vmax <= vmin: vmin, vmax = None, None title = "%s\n %s" % (str(tif), str(page)) imshow(img, title=title, vmin=vmin, vmax=vmax, bitspersample=page.bits_per_sample, photometric=page.photometric, interpolation=settings.interpol, dpi=settings.dpi) pyplot.show() TIFFfile = TiffFile # backwards compatibility if sys.version_info[0] > 2: basestring = str, bytes unicode = str if __name__ == "__main__": sys.exit(main()) tifffile-20131103/tifffile.c0000644000175000017500000007041512243436556015365 0ustar mathieumathieu/* tifffile.c A Python C extension module for decoding PackBits and LZW encoded TIFF data. Refer to the tifffile.py module for documentation and tests. :Author: `Christoph Gohlke `_ :Organization: Laboratory for Fluorescence Dynamics, University of California, Irvine :Version: 2013.11.05 Install ------- Use this Python distutils setup script to build the extension module:: # setup.py # Usage: ``python setup.py build_ext --inplace`` from distutils.core import setup, Extension import numpy setup(name='_tifffile', ext_modules=[Extension('_tifffile', ['tifffile.c'], include_dirs=[numpy.get_include()])]) License ------- Copyright (c) 2008-2013, Christoph Gohlke Copyright (c) 2008-2013, The Regents of the University of California Produced at the Laboratory for Fluorescence Dynamics All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holders nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define _VERSION_ "2013.11.05" #define WIN32_LEAN_AND_MEAN #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION #include "Python.h" #include "string.h" #include "numpy/arrayobject.h" /* little endian by default */ #ifndef MSB #define MSB 1 #endif #if MSB #define LSB 0 #define BOC '<' #else #define LSB 1 #define BOC '>' #endif #define NO_ERROR 0 #define VALUE_ERROR -1 #ifdef _MSC_VER typedef unsigned __int8 uint8_t; typedef unsigned __int16 uint16_t; typedef unsigned __int32 uint32_t; typedef unsigned __int64 uint64_t; #ifdef _WIN64 typedef __int64 ssize_t; typedef signed __int64 intptr_t; typedef unsigned __int64 uintptr_t; #define SSIZE_MAX (9223372036854775808) #else typedef int ssize_t; typedef _W64 signed int intptr_t; typedef _W64 unsigned int uintptr_t; #define SSIZE_MAX (2147483648) #endif #else /* non MS compilers */ #include #include #endif #define SWAP2BYTES(x) \ ((((x) >> 8) & 0x00FF) | (((x) & 0x00FF) << 8)) #define SWAP4BYTES(x) \ ((((x) >> 24) & 0x00FF) | (((x)&0x00FF) << 24) | \ (((x) >> 8 ) & 0xFF00) | (((x)&0xFF00) << 8)) #define SWAP8BYTES(x) \ ((((x) >> 56) & 0x00000000000000FF) | (((x) >> 40) & 0x000000000000FF00) | \ (((x) >> 24) & 0x0000000000FF0000) | (((x) >> 8) & 0x00000000FF000000) | \ (((x) << 8) & 0x000000FF00000000) | (((x) << 24) & 0x0000FF0000000000) | \ (((x) << 40) & 0x00FF000000000000) | (((x) << 56) & 0xFF00000000000000)) struct BYTE_STRING { unsigned int ref; /* reference count */ unsigned int len; /* length of string */ char *str; /* pointer to bytes */ }; typedef union { uint8_t b[2]; uint16_t i; } u_uint16; typedef union { uint8_t b[4]; uint32_t i; } u_uint32; typedef union { uint8_t b[8]; uint64_t i; } u_uint64; /*****************************************************************************/ /* C functions */ /* Return mask for itemsize bits */ unsigned char bitmask(const int itemsize) { unsigned char result = 0; unsigned char power = 1; int i; for (i = 0; i < itemsize; i++) { result += power; power *= 2; } return result << (8 - itemsize); } /** Unpack sequence of tigthly packed 1-32 bit integers. Native byte order will be returned. Input data array should be padded to the next 16, 32 or 64-bit boundary if itemsize not in (1, 2, 4, 8, 16, 24, 32, 64). */ int unpackbits( unsigned char *data, const ssize_t size, /** size of data in bytes */ const int itemsize, /** number of bits in integer */ ssize_t numitems, /** number of items to unpack */ unsigned char *result /** buffer to store unpacked items */ ) { ssize_t i, j, k, storagesize; unsigned char value; /* Input validation is done in wrapper function */ storagesize = (ssize_t)(ceil(itemsize / 8.0)); storagesize = storagesize < 3 ? storagesize : storagesize > 4 ? 8 : 4; switch (itemsize) { case 8: case 16: case 32: case 64: memcpy(result, data, numitems*storagesize); return NO_ERROR; case 1: for (i = 0, j = 0; i < numitems/8; i++) { value = data[i]; result[j++] = (value & (unsigned char)(128)) >> 7; result[j++] = (value & (unsigned char)(64)) >> 6; result[j++] = (value & (unsigned char)(32)) >> 5; result[j++] = (value & (unsigned char)(16)) >> 4; result[j++] = (value & (unsigned char)(8)) >> 3; result[j++] = (value & (unsigned char)(4)) >> 2; result[j++] = (value & (unsigned char)(2)) >> 1; result[j++] = (value & (unsigned char)(1)); } if (numitems % 8) { value = data[i]; switch (numitems % 8) { case 7: result[j+6] = (value & (unsigned char)(2)) >> 1; case 6: result[j+5] = (value & (unsigned char)(4)) >> 2; case 5: result[j+4] = (value & (unsigned char)(8)) >> 3; case 4: result[j+3] = (value & (unsigned char)(16)) >> 4; case 3: result[j+2] = (value & (unsigned char)(32)) >> 5; case 2: result[j+1] = (value & (unsigned char)(64)) >> 6; case 1: result[j] = (value & (unsigned char)(128)) >> 7; } } return NO_ERROR; case 2: for (i = 0, j = 0; i < numitems/4; i++) { value = data[i]; result[j++] = (value & (unsigned char)(192)) >> 6; result[j++] = (value & (unsigned char)(48)) >> 4; result[j++] = (value & (unsigned char)(12)) >> 2; result[j++] = (value & (unsigned char)(3)); } if (numitems % 4) { value = data[i]; switch (numitems % 4) { case 3: result[j+2] = (value & (unsigned char)(12)) >> 2; case 2: result[j+1] = (value & (unsigned char)(48)) >> 4; case 1: result[j] = (value & (unsigned char)(192)) >> 6; } } return NO_ERROR; case 4: for (i = 0, j = 0; i < numitems/2; i++) { value = data[i]; result[j++] = (value & (unsigned char)(240)) >> 4; result[j++] = (value & (unsigned char)(15)); } if (numitems % 2) { value = data[i]; result[j] = (value & (unsigned char)(240)) >> 4; } return NO_ERROR; case 24: j = k = 0; for (i = 0; i < numitems; i++) { result[j++] = 0; result[j++] = data[k++]; result[j++] = data[k++]; result[j++] = data[k++]; } return NO_ERROR; } /* 3, 5, 6, 7 */ if (itemsize < 8) { int shr = 16; u_uint16 value, mask, tmp; j = k = 0; value.b[MSB] = data[j++]; value.b[LSB] = data[j++]; mask.b[MSB] = bitmask(itemsize); mask.b[LSB] = 0; for (i = 0; i < numitems; i++) { shr -= itemsize; tmp.i = (value.i & mask.i) >> shr; result[k++] = tmp.b[LSB]; if (shr < itemsize) { value.b[MSB] = value.b[LSB]; value.b[LSB] = data[j++]; mask.i <<= 8 - itemsize; shr += 8; } else { mask.i >>= itemsize; } } return NO_ERROR; } /* 9, 10, 11, 12, 13, 14, 15 */ if (itemsize < 16) { int shr = 32; u_uint32 value, mask, tmp; mask.i = 0; j = k = 0; #if MSB for (i = 3; i >= 0; i--) { value.b[i] = data[j++]; } mask.b[3] = 0xFF; mask.b[2] = bitmask(itemsize-8); for (i = 0; i < numitems; i++) { shr -= itemsize; tmp.i = (value.i & mask.i) >> shr; result[k++] = tmp.b[0]; /* swap bytes */ result[k++] = tmp.b[1]; if (shr < itemsize) { value.b[3] = value.b[1]; value.b[2] = value.b[0]; value.b[1] = data[j++]; value.b[0] = data[j++]; mask.i <<= 16 - itemsize; shr += 16; } else { mask.i >>= itemsize; } } #else /* not implemented */ #endif return NO_ERROR; } /* 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31 */ if (itemsize < 32) { int shr = 64; u_uint64 value, mask, tmp; mask.i = 0; j = k = 0; #if MSB for (i = 7; i >= 0; i--) { value.b[i] = data[j++]; } mask.b[7] = 0xFF; mask.b[6] = 0xFF; mask.b[5] = itemsize > 23 ? 0xFF : bitmask(itemsize-16); mask.b[4] = itemsize < 24 ? 0x00 : bitmask(itemsize-24); for (i = 0; i < numitems; i++) { shr -= itemsize; tmp.i = (value.i & mask.i) >> shr; result[k++] = tmp.b[0]; /* swap bytes */ result[k++] = tmp.b[1]; result[k++] = tmp.b[2]; result[k++] = tmp.b[3]; if (shr < itemsize) { value.b[7] = value.b[3]; value.b[6] = value.b[2]; value.b[5] = value.b[1]; value.b[4] = value.b[0]; value.b[3] = data[j++]; value.b[2] = data[j++]; value.b[1] = data[j++]; value.b[0] = data[j++]; mask.i <<= 32 - itemsize; shr += 32; } else { mask.i >>= itemsize; } } #else /* Not implemented */ #endif return NO_ERROR; } return VALUE_ERROR; } /*****************************************************************************/ /* Python functions */ /** Unpack tightly packed integers. */ char py_unpackints_doc[] = "Unpack groups of bits into numpy array."; static PyObject* py_unpackints(PyObject *obj, PyObject *args, PyObject *kwds) { PyObject *byteobj = NULL; PyArrayObject *result = NULL; PyArray_Descr *dtype = NULL; char *encoded = NULL; char *decoded = NULL; Py_ssize_t encoded_len = 0; Py_ssize_t decoded_len = 0; Py_ssize_t runlen = 0; Py_ssize_t i; int storagesize, bytesize; int itemsize = 0; int skipbits = 0; static char *kwlist[] = {"data", "dtype", "itemsize", "runlen", NULL}; if (!PyArg_ParseTupleAndKeywords(args, kwds, "OO&i|i", kwlist, &byteobj, PyArray_DescrConverter, &dtype, &itemsize, &runlen)) return NULL; Py_INCREF(byteobj); if (((itemsize < 1) || (itemsize > 32)) && (itemsize != 64)) { PyErr_Format(PyExc_ValueError, "itemsize out of range"); goto _fail; } if (!PyBytes_Check(byteobj)) { PyErr_Format(PyExc_TypeError, "expected byte string as input"); goto _fail; } encoded = PyBytes_AS_STRING(byteobj); encoded_len = PyBytes_GET_SIZE(byteobj); bytesize = (int)ceil(itemsize / 8.0); storagesize = bytesize < 3 ? bytesize : bytesize > 4 ? 8 : 4; if ((encoded_len < bytesize) || (encoded_len > SSIZE_MAX / storagesize)) { PyErr_Format(PyExc_ValueError, "data size out of range"); goto _fail; } if (dtype->elsize != storagesize) { PyErr_Format(PyExc_TypeError, "dtype.elsize doesn't fit itemsize"); goto _fail; } if (runlen == 0) { runlen = (Py_ssize_t)(((uint64_t)encoded_len*8) / (uint64_t)itemsize); } skipbits = (Py_ssize_t)(((uint64_t)runlen * (uint64_t)itemsize) % 8); if (skipbits > 0) { skipbits = 8 - skipbits; } decoded_len = (Py_ssize_t)((uint64_t)runlen * (((uint64_t)encoded_len*8) / ((uint64_t)runlen*(uint64_t)itemsize + (uint64_t)skipbits))); result = (PyArrayObject *)PyArray_SimpleNew(1, &decoded_len, dtype->type_num); if (result == NULL) { PyErr_Format(PyExc_MemoryError, "unable to allocate output array"); goto _fail; } decoded = (char *)PyArray_DATA(result); for (i = 0; i < decoded_len; i+=runlen) { if (NO_ERROR != unpackbits((unsigned char *) encoded, (ssize_t) encoded_len, (int) itemsize, (ssize_t) runlen, (unsigned char *) decoded)) { PyErr_Format(PyExc_ValueError, "unpackbits() failed"); goto _fail; } encoded += (Py_ssize_t)(((uint64_t)runlen * (uint64_t)itemsize + (uint64_t)skipbits) / 8); decoded += runlen * storagesize; } if ((dtype->byteorder != BOC) && (itemsize % 8 == 0)) { switch (dtype->elsize) { case 2: { uint16_t *d = (uint16_t *)PyArray_DATA(result); for (i = 0; i < PyArray_SIZE(result); i++) { *d = SWAP2BYTES(*d); d++; } break; } case 4: { uint32_t *d = (uint32_t *)PyArray_DATA(result); for (i = 0; i < PyArray_SIZE(result); i++) { *d = SWAP4BYTES(*d); d++; } break; } case 8: { uint64_t *d = (uint64_t *)PyArray_DATA(result); for (i = 0; i < PyArray_SIZE(result); i++) { *d = SWAP8BYTES(*d); d++; } break; } } } Py_DECREF(byteobj); Py_DECREF(dtype); return PyArray_Return(result); _fail: Py_XDECREF(byteobj); Py_XDECREF(result); Py_XDECREF(dtype); return NULL; } /** Decode TIFF PackBits encoded string. */ char py_decodepackbits_doc[] = "Return TIFF PackBits decoded string."; static PyObject * py_decodepackbits(PyObject *obj, PyObject *args) { int n; char e; char *decoded = NULL; char *encoded = NULL; char *encoded_end = NULL; char *encoded_pos = NULL; unsigned int encoded_len; unsigned int decoded_len; PyObject *byteobj = NULL; PyObject *result = NULL; if (!PyArg_ParseTuple(args, "O", &byteobj)) return NULL; if (!PyBytes_Check(byteobj)) { PyErr_Format(PyExc_TypeError, "expected byte string as input"); goto _fail; } Py_INCREF(byteobj); encoded = PyBytes_AS_STRING(byteobj); encoded_len = (unsigned int)PyBytes_GET_SIZE(byteobj); /* release GIL: byte/string objects are immutable */ Py_BEGIN_ALLOW_THREADS /* determine size of decoded string */ encoded_pos = encoded; encoded_end = encoded + encoded_len; decoded_len = 0; while (encoded_pos < encoded_end) { n = (int)*encoded_pos++; if (n >= 0) { n++; if (encoded_pos+n > encoded_end) n = (int)(encoded_end - encoded_pos); encoded_pos += n; decoded_len += n; } else if (n > -128) { encoded_pos++; decoded_len += 1-n; } } Py_END_ALLOW_THREADS result = PyBytes_FromStringAndSize(0, decoded_len); if (result == NULL) { PyErr_Format(PyExc_MemoryError, "failed to allocate decoded string"); goto _fail; } decoded = PyBytes_AS_STRING(result); Py_BEGIN_ALLOW_THREADS /* decode string */ encoded_end = encoded + encoded_len; while (encoded < encoded_end) { n = (int)*encoded++; if (n >= 0) { n++; if (encoded+n > encoded_end) n = (int)(encoded_end - encoded); /* memmove(decoded, encoded, n); decoded += n; encoded += n; */ while (n--) *decoded++ = *encoded++; } else if (n > -128) { n = 1 - n; e = *encoded++; /* memset(decoded, e, n); decoded += n; */ while (n--) *decoded++ = e; } } Py_END_ALLOW_THREADS Py_DECREF(byteobj); return result; _fail: Py_XDECREF(byteobj); Py_XDECREF(result); return NULL; } /** Decode TIFF LZW encoded string. */ char py_decodelzw_doc[] = "Return TIFF LZW decoded string."; static PyObject * py_decodelzw(PyObject *obj, PyObject *args) { PyThreadState *_save = NULL; PyObject *byteobj = NULL; PyObject *result = NULL; int i, j; unsigned int encoded_len = 0; unsigned int decoded_len = 0; unsigned int result_len = 0; unsigned int table_len = 0; unsigned int len; unsigned int code, c, oldcode, mask, shr; uint64_t bitcount, bitw; char *encoded = NULL; char *result_ptr = NULL; char *table2 = NULL; char *cptr; struct BYTE_STRING *decoded = NULL; struct BYTE_STRING *decoded_ptr = NULL; struct BYTE_STRING *table[4096]; struct BYTE_STRING *newentry, *newresult, *t; int little_endian = 0; if (!PyArg_ParseTuple(args, "O", &byteobj)) return NULL; if (!PyBytes_Check(byteobj)) { PyErr_Format(PyExc_TypeError, "expected byte string as input"); goto _fail; } Py_INCREF(byteobj); encoded = PyBytes_AS_STRING(byteobj); encoded_len = (unsigned int)PyBytes_GET_SIZE(byteobj); /* if (encoded_len >= 512 * 1024 * 1024) { PyErr_Format(PyExc_ValueError, "encoded data > 512 MB not supported"); goto _fail; } */ /* release GIL: byte/string objects are immutable */ _save = PyEval_SaveThread(); if ((*encoded != -128) || ((*(encoded+1) & 128))) { PyEval_RestoreThread(_save); PyErr_Format(PyExc_ValueError, "strip must begin with CLEAR code"); goto _fail; } little_endian = (*(unsigned short *)encoded) & 128; /* allocate buffer for codes and pointers */ decoded_len = 0; len = (encoded_len + encoded_len/9) * sizeof(decoded); decoded = PyMem_Malloc(len * sizeof(void *)); if (decoded == NULL) { PyEval_RestoreThread(_save); PyErr_Format(PyExc_MemoryError, "failed to allocate decoded"); goto _fail; } memset((void *)decoded, 0, len * sizeof(void *)); decoded_ptr = decoded; /* cache strings of length 2 */ cptr = table2 = PyMem_Malloc(256*256*2 * sizeof(char)); if (table2 == NULL) { PyEval_RestoreThread(_save); PyErr_Format(PyExc_MemoryError, "failed to allocate table2"); goto _fail; } for (i = 0; i < 256; i++) { for (j = 0; j < 256; j++) { *cptr++ = (char)i; *cptr++ = (char)j; } } memset(table, 0, sizeof(table)); table_len = 258; bitw = 9; shr = 23; mask = 4286578688; bitcount = 0; result_len = 0; code = 0; oldcode = 0; while ((unsigned int)((bitcount + bitw) / 8) <= encoded_len) { /* read next code */ code = *((unsigned int *)((void *)(encoded + (bitcount / 8)))); if (little_endian) code = SWAP4BYTES(code); code <<= (unsigned int)(bitcount % 8); code &= mask; code >>= shr; bitcount += bitw; if (code == 257) /* end of information */ break; if (code == 256) { /* clearcode */ /* initialize table and switch to 9 bit */ while (table_len > 258) { t = table[--table_len]; t->ref--; if (t->ref == 0) { if (t->len > 2) PyMem_Free(t->str); PyMem_Free(t); } } bitw = 9; shr = 23; mask = 4286578688; /* read next code */ code = *((unsigned int *)((void *)(encoded + (bitcount / 8)))); if (little_endian) code = SWAP4BYTES(code); code <<= bitcount % 8; code &= mask; code >>= shr; bitcount += bitw; if (code == 257) /* end of information */ break; /* decoded.append(table[code]) */ if (code < 256) { result_len++; *((int *)decoded_ptr++) = code; } else { newresult = table[code]; newresult->ref++; result_len += newresult->len; *(struct BYTE_STRING **)decoded_ptr++ = newresult; } } else { if (code < table_len) { /* code is in table */ /* newresult = table[code]; */ /* newentry = table[oldcode] + table[code][0] */ /* decoded.append(newresult); table.append(newentry) */ if (code < 256) { c = code; *((unsigned int *)decoded_ptr++) = code; result_len++; } else { newresult = table[code]; newresult->ref++; c = (unsigned int) *newresult->str; *(struct BYTE_STRING **)decoded_ptr++ = newresult; result_len += newresult->len; } newentry = PyMem_Malloc(sizeof(struct BYTE_STRING)); newentry->ref = 1; if (oldcode < 256) { newentry->len = 2; newentry->str = table2 + (oldcode << 9) + ((unsigned char)c << 1); } else { len = table[oldcode]->len; newentry->len = len + 1; newentry->str = PyMem_Malloc(newentry->len); if (newentry->str == NULL) break; memmove(newentry->str, table[oldcode]->str, len); newentry->str[len] = c; } table[table_len++] = newentry; } else { /* code is not in table */ /* newentry = newresult = table[oldcode] + table[oldcode][0] */ /* decoded.append(newresult); table.append(newentry) */ newresult = PyMem_Malloc(sizeof(struct BYTE_STRING)); newentry = newresult; newentry->ref = 2; if (oldcode < 256) { newentry->len = 2; newentry->str = table2 + 514*oldcode; } else { len = table[oldcode]->len; newentry->len = len + 1; newentry->str = PyMem_Malloc(newentry->len); if (newentry->str == NULL) break; memmove(newentry->str, table[oldcode]->str, len); newentry->str[len] = *table[oldcode]->str; } table[table_len++] = newentry; *(struct BYTE_STRING **)decoded_ptr++ = newresult; result_len += newresult->len; } } oldcode = code; /* increase bit-width if necessary */ switch (table_len) { case 511: bitw = 10; shr = 22; mask = 4290772992; break; case 1023: bitw = 11; shr = 21; mask = 4292870144; break; case 2047: bitw = 12; shr = 20; mask = 4293918720; } } PyEval_RestoreThread(_save); if (code != 257) { PyErr_WarnEx(NULL, "py_decodelzw encountered unexpected end of stream", 1); } /* result = ''.join(decoded) */ decoded_len = (unsigned int)(decoded_ptr - decoded); decoded_ptr = decoded; result = PyBytes_FromStringAndSize(0, result_len); if (result == NULL) { PyErr_Format(PyExc_MemoryError, "failed to allocate decoded string"); goto _fail; } result_ptr = PyBytes_AS_STRING(result); _save = PyEval_SaveThread(); while (decoded_len--) { code = *((unsigned int *)decoded_ptr); if (code < 256) { *result_ptr++ = (char)code; } else { t = *((struct BYTE_STRING **)decoded_ptr); memmove(result_ptr, t->str, t->len); result_ptr += t->len; if (--t->ref == 0) { if (t->len > 2) PyMem_Free(t->str); PyMem_Free(t); } } decoded_ptr++; } PyMem_Free(decoded); while (table_len-- > 258) { t = table[table_len]; if (t->len > 2) PyMem_Free(t->str); PyMem_Free(t); } PyMem_Free(table2); PyEval_RestoreThread(_save); Py_DECREF(byteobj); return result; _fail: if (table2 != NULL) PyMem_Free(table2); if (decoded != NULL) { /* Bug? are decoded_ptr and decoded_len correct? */ while (decoded_len--) { code = *((unsigned int *) decoded_ptr); if (code > 258) { t = *((struct BYTE_STRING **) decoded_ptr); if (--t->ref == 0) { if (t->len > 2) PyMem_Free(t->str); PyMem_Free(t); } } } PyMem_Free(decoded); } while (table_len-- > 258) { t = table[table_len]; if (t->len > 2) PyMem_Free(t->str); PyMem_Free(t); } Py_XDECREF(byteobj); Py_XDECREF(result); return NULL; } /*****************************************************************************/ /* Create Python module */ char module_doc[] = "A Python C extension module for decoding PackBits and LZW encoded " "TIFF data.\n\n" "Refer to the tifffile.py module for documentation and tests.\n\n" "Authors:\n Christoph Gohlke \n" " Laboratory for Fluorescence Dynamics, University of California, Irvine." "\n\nVersion: %s\n"; static PyMethodDef module_methods[] = { #if MSB {"unpackints", (PyCFunction)py_unpackints, METH_VARARGS|METH_KEYWORDS, py_unpackints_doc}, #endif {"decodelzw", (PyCFunction)py_decodelzw, METH_VARARGS, py_decodelzw_doc}, {"decodepackbits", (PyCFunction)py_decodepackbits, METH_VARARGS, py_decodepackbits_doc}, {NULL, NULL, 0, NULL} /* Sentinel */ }; #if PY_MAJOR_VERSION >= 3 struct module_state { PyObject *error; }; #define GETSTATE(m) ((struct module_state*)PyModule_GetState(m)) static int module_traverse(PyObject *m, visitproc visit, void *arg) { Py_VISIT(GETSTATE(m)->error); return 0; } static int module_clear(PyObject *m) { Py_CLEAR(GETSTATE(m)->error); return 0; } static struct PyModuleDef moduledef = { PyModuleDef_HEAD_INIT, "_tifffile", NULL, sizeof(struct module_state), module_methods, NULL, module_traverse, module_clear, NULL }; #define INITERROR return NULL PyMODINIT_FUNC PyInit__tifffile(void) #else #define INITERROR return PyMODINIT_FUNC init_tifffile(void) #endif { PyObject *module; char *doc = (char *)PyMem_Malloc(sizeof(module_doc) + sizeof(_VERSION_)); PyOS_snprintf(doc, sizeof(doc), module_doc, _VERSION_); #if PY_MAJOR_VERSION >= 3 moduledef.m_doc = doc; module = PyModule_Create(&moduledef); #else module = Py_InitModule3("_tifffile", module_methods, doc); #endif PyMem_Free(doc); if (module == NULL) INITERROR; if (_import_array() < 0) { Py_DECREF(module); INITERROR; } { #if PY_MAJOR_VERSION < 3 PyObject *s = PyString_FromString(_VERSION_); #else PyObject *s = PyUnicode_FromString(_VERSION_); #endif PyObject *dict = PyModule_GetDict(module); PyDict_SetItemString(dict, "__version__", s); Py_DECREF(s); } #if PY_MAJOR_VERSION >= 3 return module; #endif }