pax_global_header00006660000000000000000000000064132033226060014507gustar00rootroot0000000000000052 comment=198b84e6ab37a9c979435cdb8f0a27a0e9a2934f tap-plugins-1.0.0/000077500000000000000000000000001320332260600137505ustar00rootroot00000000000000tap-plugins-1.0.0/COPYING000066400000000000000000000431101320332260600150020ustar00rootroot00000000000000 GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License. tap-plugins-1.0.0/CREDITS000066400000000000000000000060711320332260600147740ustar00rootroot00000000000000The author would like to thank the following people for their help, support, comments, suggestions, patches etc. If you discover yourself in the following list and would like to remain nameless instead, please write to the author. In no particular order: Anand Kumria constantly maintains a Debian package of this software. As the author of the lrdf library, Steve Harris was kind enough to take a look at the RDF file describing these plugins. Alexander Koenig discovered that the AutoPanner (and Tremolo) didn't work at very small frequency values, and sent a patch that became the base of the solution. Forrest Cook suggested implementing an AutoPanner as a new TAP-plugin. Nick Lamb suggested using his Demolition [http://www.ecs.soton.ac.uk/~njl98r/code/ladspa/] program to sanity-check the TAP-plugins. Demolition proved essential, a must for any LADSPA plugin developer. It revealed bugs and LADSPA non-conformancies too many to mention in the TAP-plugins code, which could be fixed easily this way. Linium discovered a bug in EQ and EQ-BW: the plugins reinitialized themselves on each transport stop, which resulted in the effect disappearing after every STOP->PLAY. As a main Ardour developer, Taybin Rutkin implemented using RDF metadata to generate drop-down lists in LADSPA plugin GUIs in Ardour. This made it much easier to create good-looking and easy to use plugins; in particular TAP Reverberator and TAP Dynamics are among the "big winners". Luke Yelavich sent a patch that cleaned up the Makefile a bit by introducing the variables CFLAGS and LDFLAGS. Jan Depner suggested implementing some kind of doubler plugin, and he gave me useful pointers about the Midpoint Displacement Algorithm with which a semi-random series of numbers following a fractal pattern can be generated. Without him, the TAP Fractal Doubler would have never been written. He also helped a lot with the CPU runaway problems in TAP Reverberator, by reporting the problem and trying out my solutions. Maarten Maathuis contributed the Bauer stereophonic-to-binaural DSP plugin. NOTE: this plugin only existed in CVS between releases 0.7.0 and 0.7.1; it has been agreed to be removed from TAP-plugins and released separately. Damon Chaplin tracked down issues that caused problems on 64-bit machines, found uninitialised variables via Valgrind, and also pinned down long lurking denormal issues. Thanks! Taku Yamamoto investigated a buffer boundary related bug in Scaling Limiter and provided a patch solving the problem. And, of course, special thanks to the Ardour [https://ardour.org/] and JACK [http://jackaudio.org/] development teams for their tireless efforts in creating one of the best Linux audio engineering platforms (and besides that, the recommended host for these plugins). TAP-plugins aims to be a very small contribution to this effort. tap-plugins-1.0.0/Makefile000066400000000000000000000041301320332260600154060ustar00rootroot00000000000000# Copyright (C) 2004-2009 Tom Szilagyi # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. # # $Id: Makefile,v 1.19 2014/02/14 18:59:14 tszilagyi Exp $ ##################################################################### # PLEASE CHANGE THIS to your preferred installation location! # # Change this if you want to install somewhere else. In particular # you may wish to remove the middle "local/" part of the path. INSTALL_PLUGINS_DIR = /usr/local/lib/ladspa/ INSTALL_LRDF_DIR = /usr/local/share/ladspa/rdf/ # NO EDITING below this line is required # if all you want to do is install and use the plugins. ##################################################################### # GENERAL CC = gcc CFLAGS = -I. -O3 -Wall -fomit-frame-pointer -fstrength-reduce -funroll-loops -ffast-math -c -fPIC -DPIC LDFLAGS = -nostartfiles -shared -Wl,-Bsymbolic -lc -lm -lrt MODULES = $(wildcard *.c) all: $(MODULES:%.c=%.so) # RULES TO BUILD PLUGINS FROM C CODE tap_reverb.o: tap_reverb.h tap_reverb_presets.h tap_dynamics_m.o: tap_dynamics_presets.h tap_dynamics_st.o: tap_dynamics_presets.h %.o: %.c tap_utils.h ladspa.h $(CC) $(CFLAGS) $< -o $@ %.so: %.o $(CC) -o $@ $< $(LDFLAGS) # OTHER TARGETS install: all -mkdir -p $(INSTALL_PLUGINS_DIR) cp *.so $(INSTALL_PLUGINS_DIR) -mkdir -p $(INSTALL_LRDF_DIR) cp tap-plugins.rdf $(INSTALL_LRDF_DIR) cp tap_reverb.rdf $(INSTALL_LRDF_DIR) clean: -rm -f *.so *.o *~ .PHONY: all install clean tap-plugins-1.0.0/README000066400000000000000000000033611320332260600146330ustar00rootroot00000000000000TAP-plugins (Tom's Audio Processing plugins) -------------------------------------------- AUTHOR: Tom Szilagyi WEBPAGE: http://tap-plugins.sf.net Welcome! TAP-plugins is a bunch of LADSPA plugins for audio processing. It runs on the GNU/Linux operating system, and possibly other UNIX-like operating systems. LADSPA stands for Linux Audio Developers Simple Plugin API. Learn more about LADSPA at http://www.ladspa.org You need a LADSPA-aware host program to use these plugins. I recommend using Ardour, which is a professional multichannel hard disc recorder and digital audio workstation for Linux. These plugins were developed and tested using Ardour, but they should work with any LADSPA-capable host. Learn more about Ardour at http://ardour.org Installation and usage of the plugins is very simple. Please take a moment to edit the top of the Makefile if you wish to install the plugins in a directory other than /usr/local/lib/ladspa (the default place for plugins). A destination directory for RDF metadata is also set there (defaults to /usr/local/share/ladspa/rdf) which you may also want to change. Then run "make" and (as root) "make install". No special packages are needed to compile these plugins, so there is no ./configure script. A thorough manual is provided in html format. It is identical to the project website. There is no need to save that manually, though: it is provided as a separate package called tap-plugins-doc. After downloading and untarring it, just open index.html with your favorite Any Browser to view it. Questions, comments, suggestions, bugreports and fixes are always welcome at: Have fun, turn up the volume and kick the shit out of your neighbours! tap-plugins-1.0.0/ladspa.h000066400000000000000000000657111320332260600153770ustar00rootroot00000000000000/* ladspa.h Linux Audio Developer's Simple Plugin API Version 1.1[LGPL]. Copyright (C) 2000-2002 Richard W.E. Furse, Paul Barton-Davis, Stefan Westerfeld. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #ifndef LADSPA_INCLUDED #define LADSPA_INCLUDED #define LADSPA_VERSION "1.1" #define LADSPA_VERSION_MAJOR 1 #define LADSPA_VERSION_MINOR 1 #ifdef __cplusplus extern "C" { #endif /*****************************************************************************/ /* Overview: There is a large number of synthesis packages in use or development on the Linux platform at this time. This API (`The Linux Audio Developer's Simple Plugin API') attempts to give programmers the ability to write simple `plugin' audio processors in C/C++ and link them dynamically (`plug') into a range of these packages (`hosts'). It should be possible for any host and any plugin to communicate completely through this interface. This API is deliberately short and simple. To achieve compatibility with a range of promising Linux sound synthesis packages it attempts to find the `greatest common divisor' in their logical behaviour. Having said this, certain limiting decisions are implicit, notably the use of a fixed type (LADSPA_Data) for all data transfer and absence of a parameterised `initialisation' phase. See below for the LADSPA_Data typedef. Plugins are expected to distinguish between control and audio data. Plugins have `ports' that are inputs or outputs for audio or control data and each plugin is `run' for a `block' corresponding to a short time interval measured in samples. Audio data is communicated using arrays of LADSPA_Data, allowing a block of audio to be processed by the plugin in a single pass. Control data is communicated using single LADSPA_Data values. Control data has a single value at the start of a call to the `run()' or `run_adding()' function, and may be considered to remain this value for its duration. The plugin may assume that all its input and output ports have been connected to the relevant data location (see the `connect_port()' function below) before it is asked to run. Plugins will reside in shared object files suitable for dynamic linking by dlopen() and family. The file will provide a number of `plugin types' that can be used to instantiate actual plugins (sometimes known as `plugin instances') that can be connected together to perform tasks. This API contains very limited error-handling. */ /*****************************************************************************/ /* Fundamental data type passed in and out of plugin. This data type is used to communicate audio samples and control values. It is assumed that the plugin will work sensibly given any numeric input value although it may have a preferred range (see hints below). For audio it is generally assumed that 1.0f is the `0dB' reference amplitude and is a `normal' signal level. */ typedef float LADSPA_Data; /*****************************************************************************/ /* Special Plugin Properties: Optional features of the plugin type are encapsulated in the LADSPA_Properties type. This is assembled by ORing individual properties together. */ typedef int LADSPA_Properties; /* Property LADSPA_PROPERTY_REALTIME indicates that the plugin has a real-time dependency (e.g. listens to a MIDI device) and so its output must not be cached or subject to significant latency. */ #define LADSPA_PROPERTY_REALTIME 0x1 /* Property LADSPA_PROPERTY_INPLACE_BROKEN indicates that the plugin may cease to work correctly if the host elects to use the same data location for both input and output (see connect_port()). This should be avoided as enabling this flag makes it impossible for hosts to use the plugin to process audio `in-place.' */ #define LADSPA_PROPERTY_INPLACE_BROKEN 0x2 /* Property LADSPA_PROPERTY_HARD_RT_CAPABLE indicates that the plugin is capable of running not only in a conventional host but also in a `hard real-time' environment. To qualify for this the plugin must satisfy all of the following: (1) The plugin must not use malloc(), free() or other heap memory management within its run() or run_adding() functions. All new memory used in run() must be managed via the stack. These restrictions only apply to the run() function. (2) The plugin will not attempt to make use of any library functions with the exceptions of functions in the ANSI standard C and C maths libraries, which the host is expected to provide. (3) The plugin will not access files, devices, pipes, sockets, IPC or any other mechanism that might result in process or thread blocking. (4) The plugin will take an amount of time to execute a run() or run_adding() call approximately of form (A+B*SampleCount) where A and B depend on the machine and host in use. This amount of time may not depend on input signals or plugin state. The host is left the responsibility to perform timings to estimate upper bounds for A and B. */ #define LADSPA_PROPERTY_HARD_RT_CAPABLE 0x4 #define LADSPA_IS_REALTIME(x) ((x) & LADSPA_PROPERTY_REALTIME) #define LADSPA_IS_INPLACE_BROKEN(x) ((x) & LADSPA_PROPERTY_INPLACE_BROKEN) #define LADSPA_IS_HARD_RT_CAPABLE(x) ((x) & LADSPA_PROPERTY_HARD_RT_CAPABLE) /*****************************************************************************/ /* Plugin Ports: Plugins have `ports' that are inputs or outputs for audio or data. Ports can communicate arrays of LADSPA_Data (for audio inputs/outputs) or single LADSPA_Data values (for control input/outputs). This information is encapsulated in the LADSPA_PortDescriptor type which is assembled by ORing individual properties together. Note that a port must be an input or an output port but not both and that a port must be a control or audio port but not both. */ typedef int LADSPA_PortDescriptor; /* Property LADSPA_PORT_INPUT indicates that the port is an input. */ #define LADSPA_PORT_INPUT 0x1 /* Property LADSPA_PORT_OUTPUT indicates that the port is an output. */ #define LADSPA_PORT_OUTPUT 0x2 /* Property LADSPA_PORT_CONTROL indicates that the port is a control port. */ #define LADSPA_PORT_CONTROL 0x4 /* Property LADSPA_PORT_AUDIO indicates that the port is a audio port. */ #define LADSPA_PORT_AUDIO 0x8 #define LADSPA_IS_PORT_INPUT(x) ((x) & LADSPA_PORT_INPUT) #define LADSPA_IS_PORT_OUTPUT(x) ((x) & LADSPA_PORT_OUTPUT) #define LADSPA_IS_PORT_CONTROL(x) ((x) & LADSPA_PORT_CONTROL) #define LADSPA_IS_PORT_AUDIO(x) ((x) & LADSPA_PORT_AUDIO) /*****************************************************************************/ /* Plugin Port Range Hints: The host may wish to provide a representation of data entering or leaving a plugin (e.g. to generate a GUI automatically). To make this more meaningful, the plugin should provide `hints' to the host describing the usual values taken by the data. Note that these are only hints. The host may ignore them and the plugin must not assume that data supplied to it is meaningful. If the plugin receives invalid input data it is expected to continue to run without failure and, where possible, produce a sensible output (e.g. a high-pass filter given a negative cutoff frequency might switch to an all-pass mode). Hints are meaningful for all input and output ports but hints for input control ports are expected to be particularly useful. More hint information is encapsulated in the LADSPA_PortRangeHintDescriptor type which is assembled by ORing individual hint types together. Hints may require further LowerBound and UpperBound information. All the hint information for a particular port is aggregated in the LADSPA_PortRangeHint structure. */ typedef int LADSPA_PortRangeHintDescriptor; /* Hint LADSPA_HINT_BOUNDED_BELOW indicates that the LowerBound field of the LADSPA_PortRangeHint should be considered meaningful. The value in this field should be considered the (inclusive) lower bound of the valid range. If LADSPA_HINT_SAMPLE_RATE is also specified then the value of LowerBound should be multiplied by the sample rate. */ #define LADSPA_HINT_BOUNDED_BELOW 0x1 /* Hint LADSPA_HINT_BOUNDED_ABOVE indicates that the UpperBound field of the LADSPA_PortRangeHint should be considered meaningful. The value in this field should be considered the (inclusive) upper bound of the valid range. If LADSPA_HINT_SAMPLE_RATE is also specified then the value of UpperBound should be multiplied by the sample rate. */ #define LADSPA_HINT_BOUNDED_ABOVE 0x2 /* Hint LADSPA_HINT_TOGGLED indicates that the data item should be considered a Boolean toggle. Data less than or equal to zero should be considered `off' or `false,' and data above zero should be considered `on' or `true.' LADSPA_HINT_TOGGLED may not be used in conjunction with any other hint except LADSPA_HINT_DEFAULT_0 or LADSPA_HINT_DEFAULT_1. */ #define LADSPA_HINT_TOGGLED 0x4 /* Hint LADSPA_HINT_SAMPLE_RATE indicates that any bounds specified should be interpreted as multiples of the sample rate. For instance, a frequency range from 0Hz to the Nyquist frequency (half the sample rate) could be requested by this hint in conjunction with LowerBound = 0 and UpperBound = 0.5. Hosts that support bounds at all must support this hint to retain meaning. */ #define LADSPA_HINT_SAMPLE_RATE 0x8 /* Hint LADSPA_HINT_LOGARITHMIC indicates that it is likely that the user will find it more intuitive to view values using a logarithmic scale. This is particularly useful for frequencies and gains. */ #define LADSPA_HINT_LOGARITHMIC 0x10 /* Hint LADSPA_HINT_INTEGER indicates that a user interface would probably wish to provide a stepped control taking only integer values. Any bounds set should be slightly wider than the actual integer range required to avoid floating point rounding errors. For instance, the integer set {0,1,2,3} might be described as [-0.1, 3.1]. */ #define LADSPA_HINT_INTEGER 0x20 /* The various LADSPA_HINT_HAS_DEFAULT_* hints indicate a `normal' value for the port that is sensible as a default. For instance, this value is suitable for use as an initial value in a user interface or as a value the host might assign to a control port when the user has not provided one. Defaults are encoded using a mask so only one default may be specified for a port. Some of the hints make use of lower and upper bounds, in which case the relevant bound or bounds must be available and LADSPA_HINT_SAMPLE_RATE must be applied as usual. The resulting default must be rounded if LADSPA_HINT_INTEGER is present. Default values were introduced in LADSPA v1.1. */ #define LADSPA_HINT_DEFAULT_MASK 0x3C0 /* This default values indicates that no default is provided. */ #define LADSPA_HINT_DEFAULT_NONE 0x0 /* This default hint indicates that the suggested lower bound for the port should be used. */ #define LADSPA_HINT_DEFAULT_MINIMUM 0x40 /* This default hint indicates that a low value between the suggested lower and upper bounds should be chosen. For ports with LADSPA_HINT_LOGARITHMIC, this should be exp(log(lower) * 0.75 + log(upper) * 0.25). Otherwise, this should be (lower * 0.75 + upper * 0.25). */ #define LADSPA_HINT_DEFAULT_LOW 0x80 /* This default hint indicates that a middle value between the suggested lower and upper bounds should be chosen. For ports with LADSPA_HINT_LOGARITHMIC, this should be exp(log(lower) * 0.5 + log(upper) * 0.5). Otherwise, this should be (lower * 0.5 + upper * 0.5). */ #define LADSPA_HINT_DEFAULT_MIDDLE 0xC0 /* This default hint indicates that a high value between the suggested lower and upper bounds should be chosen. For ports with LADSPA_HINT_LOGARITHMIC, this should be exp(log(lower) * 0.25 + log(upper) * 0.75). Otherwise, this should be (lower * 0.25 + upper * 0.75). */ #define LADSPA_HINT_DEFAULT_HIGH 0x100 /* This default hint indicates that the suggested upper bound for the port should be used. */ #define LADSPA_HINT_DEFAULT_MAXIMUM 0x140 /* This default hint indicates that the number 0 should be used. Note that this default may be used in conjunction with LADSPA_HINT_TOGGLED. */ #define LADSPA_HINT_DEFAULT_0 0x200 /* This default hint indicates that the number 1 should be used. Note that this default may be used in conjunction with LADSPA_HINT_TOGGLED. */ #define LADSPA_HINT_DEFAULT_1 0x240 /* This default hint indicates that the number 100 should be used. */ #define LADSPA_HINT_DEFAULT_100 0x280 /* This default hint indicates that the Hz frequency of `concert A' should be used. This will be 440 unless the host uses an unusual tuning convention, in which case it may be within a few Hz. */ #define LADSPA_HINT_DEFAULT_440 0x2C0 #define LADSPA_IS_HINT_BOUNDED_BELOW(x) ((x) & LADSPA_HINT_BOUNDED_BELOW) #define LADSPA_IS_HINT_BOUNDED_ABOVE(x) ((x) & LADSPA_HINT_BOUNDED_ABOVE) #define LADSPA_IS_HINT_TOGGLED(x) ((x) & LADSPA_HINT_TOGGLED) #define LADSPA_IS_HINT_SAMPLE_RATE(x) ((x) & LADSPA_HINT_SAMPLE_RATE) #define LADSPA_IS_HINT_LOGARITHMIC(x) ((x) & LADSPA_HINT_LOGARITHMIC) #define LADSPA_IS_HINT_INTEGER(x) ((x) & LADSPA_HINT_INTEGER) #define LADSPA_IS_HINT_HAS_DEFAULT(x) ((x) & LADSPA_HINT_DEFAULT_MASK) #define LADSPA_IS_HINT_DEFAULT_MINIMUM(x) (((x) & LADSPA_HINT_DEFAULT_MASK) \ == LADSPA_HINT_DEFAULT_MINIMUM) #define LADSPA_IS_HINT_DEFAULT_LOW(x) (((x) & LADSPA_HINT_DEFAULT_MASK) \ == LADSPA_HINT_DEFAULT_LOW) #define LADSPA_IS_HINT_DEFAULT_MIDDLE(x) (((x) & LADSPA_HINT_DEFAULT_MASK) \ == LADSPA_HINT_DEFAULT_MIDDLE) #define LADSPA_IS_HINT_DEFAULT_HIGH(x) (((x) & LADSPA_HINT_DEFAULT_MASK) \ == LADSPA_HINT_DEFAULT_HIGH) #define LADSPA_IS_HINT_DEFAULT_MAXIMUM(x) (((x) & LADSPA_HINT_DEFAULT_MASK) \ == LADSPA_HINT_DEFAULT_MAXIMUM) #define LADSPA_IS_HINT_DEFAULT_0(x) (((x) & LADSPA_HINT_DEFAULT_MASK) \ == LADSPA_HINT_DEFAULT_0) #define LADSPA_IS_HINT_DEFAULT_1(x) (((x) & LADSPA_HINT_DEFAULT_MASK) \ == LADSPA_HINT_DEFAULT_1) #define LADSPA_IS_HINT_DEFAULT_100(x) (((x) & LADSPA_HINT_DEFAULT_MASK) \ == LADSPA_HINT_DEFAULT_100) #define LADSPA_IS_HINT_DEFAULT_440(x) (((x) & LADSPA_HINT_DEFAULT_MASK) \ == LADSPA_HINT_DEFAULT_440) typedef struct _LADSPA_PortRangeHint { /* Hints about the port. */ LADSPA_PortRangeHintDescriptor HintDescriptor; /* Meaningful when hint LADSPA_HINT_BOUNDED_BELOW is active. When LADSPA_HINT_SAMPLE_RATE is also active then this value should be multiplied by the relevant sample rate. */ LADSPA_Data LowerBound; /* Meaningful when hint LADSPA_HINT_BOUNDED_ABOVE is active. When LADSPA_HINT_SAMPLE_RATE is also active then this value should be multiplied by the relevant sample rate. */ LADSPA_Data UpperBound; } LADSPA_PortRangeHint; /*****************************************************************************/ /* Plugin Handles: This plugin handle indicates a particular instance of the plugin concerned. It is valid to compare this to NULL (0 for C++) but otherwise the host should not attempt to interpret it. The plugin may use it to reference internal instance data. */ typedef void * LADSPA_Handle; /*****************************************************************************/ /* Descriptor for a Type of Plugin: This structure is used to describe a plugin type. It provides a number of functions to examine the type, instantiate it, link it to buffers and workspaces and to run it. */ typedef struct _LADSPA_Descriptor { /* This numeric identifier indicates the plugin type uniquely. Plugin programmers may reserve ranges of IDs from a central body to avoid clashes. Hosts may assume that IDs are below 0x1000000. */ unsigned long UniqueID; /* This identifier can be used as a unique, case-sensitive identifier for the plugin type within the plugin file. Plugin types should be identified by file and label rather than by index or plugin name, which may be changed in new plugin versions. Labels must not contain white-space characters. */ const char * Label; /* This indicates a number of properties of the plugin. */ LADSPA_Properties Properties; /* This member points to the null-terminated name of the plugin (e.g. "Sine Oscillator"). */ const char * Name; /* This member points to the null-terminated string indicating the maker of the plugin. This can be an empty string but not NULL. */ const char * Maker; /* This member points to the null-terminated string indicating any copyright applying to the plugin. If no Copyright applies the string "None" should be used. */ const char * Copyright; /* This indicates the number of ports (input AND output) present on the plugin. */ unsigned long PortCount; /* This member indicates an array of port descriptors. Valid indices vary from 0 to PortCount-1. */ const LADSPA_PortDescriptor * PortDescriptors; /* This member indicates an array of null-terminated strings describing ports (e.g. "Frequency (Hz)"). Valid indices vary from 0 to PortCount-1. */ const char * const * PortNames; /* This member indicates an array of range hints for each port (see above). Valid indices vary from 0 to PortCount-1. */ const LADSPA_PortRangeHint * PortRangeHints; /* This may be used by the plugin developer to pass any custom implementation data into an instantiate call. It must not be used or interpreted by the host. It is expected that most plugin writers will not use this facility as LADSPA_Handle should be used to hold instance data. */ void * ImplementationData; /* This member is a function pointer that instantiates a plugin. A handle is returned indicating the new plugin instance. The instantiation function accepts a sample rate as a parameter. The plugin descriptor from which this instantiate function was found must also be passed. This function must return NULL if instantiation fails. Note that instance initialisation should generally occur in activate() rather than here. */ LADSPA_Handle (*instantiate)(const struct _LADSPA_Descriptor * Descriptor, unsigned long SampleRate); /* This member is a function pointer that connects a port on an instantiated plugin to a memory location at which a block of data for the port will be read/written. The data location is expected to be an array of LADSPA_Data for audio ports or a single LADSPA_Data value for control ports. Memory issues will be managed by the host. The plugin must read/write the data at these locations every time run() or run_adding() is called and the data present at the time of this connection call should not be considered meaningful. connect_port() may be called more than once for a plugin instance to allow the host to change the buffers that the plugin is reading or writing. These calls may be made before or after activate() or deactivate() calls. connect_port() must be called at least once for each port before run() or run_adding() is called. When working with blocks of LADSPA_Data the plugin should pay careful attention to the block size passed to the run function as the block allocated may only just be large enough to contain the block of samples. Plugin writers should be aware that the host may elect to use the same buffer for more than one port and even use the same buffer for both input and output (see LADSPA_PROPERTY_INPLACE_BROKEN). However, overlapped buffers or use of a single buffer for both audio and control data may result in unexpected behaviour. */ void (*connect_port)(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * DataLocation); /* This member is a function pointer that initialises a plugin instance and activates it for use. This is separated from instantiate() to aid real-time support and so that hosts can reinitialise a plugin instance by calling deactivate() and then activate(). In this case the plugin instance must reset all state information dependent on the history of the plugin instance except for any data locations provided by connect_port() and any gain set by set_run_adding_gain(). If there is nothing for activate() to do then the plugin writer may provide a NULL rather than an empty function. When present, hosts must call this function once before run() (or run_adding()) is called for the first time. This call should be made as close to the run() call as possible and indicates to real-time plugins that they are now live. Plugins should not rely on a prompt call to run() after activate(). activate() may not be called again unless deactivate() is called first. Note that connect_port() may be called before or after a call to activate(). */ void (*activate)(LADSPA_Handle Instance); /* This method is a function pointer that runs an instance of a plugin for a block. Two parameters are required: the first is a handle to the particular instance to be run and the second indicates the block size (in samples) for which the plugin instance may run. Note that if an activate() function exists then it must be called before run() or run_adding(). If deactivate() is called for a plugin instance then the plugin instance may not be reused until activate() has been called again. If the plugin has the property LADSPA_PROPERTY_HARD_RT_CAPABLE then there are various things that the plugin should not do within the run() or run_adding() functions (see above). */ void (*run)(LADSPA_Handle Instance, unsigned long SampleCount); /* This method is a function pointer that runs an instance of a plugin for a block. This has identical behaviour to run() except in the way data is output from the plugin. When run() is used, values are written directly to the memory areas associated with the output ports. However when run_adding() is called, values must be added to the values already present in the memory areas. Furthermore, output values written must be scaled by the current gain set by set_run_adding_gain() (see below) before addition. run_adding() is optional. When it is not provided by a plugin, this function pointer must be set to NULL. When it is provided, the function set_run_adding_gain() must be provided also. */ void (*run_adding)(LADSPA_Handle Instance, unsigned long SampleCount); /* This method is a function pointer that sets the output gain for use when run_adding() is called (see above). If this function is never called the gain is assumed to default to 1. Gain information should be retained when activate() or deactivate() are called. This function should be provided by the plugin if and only if the run_adding() function is provided. When it is absent this function pointer must be set to NULL. */ void (*set_run_adding_gain)(LADSPA_Handle Instance, LADSPA_Data Gain); /* This is the counterpart to activate() (see above). If there is nothing for deactivate() to do then the plugin writer may provide a NULL rather than an empty function. Hosts must deactivate all activated units after they have been run() (or run_adding()) for the last time. This call should be made as close to the last run() call as possible and indicates to real-time plugins that they are no longer live. Plugins should not rely on prompt deactivation. Note that connect_port() may be called before or after a call to deactivate(). Deactivation is not similar to pausing as the plugin instance will be reinitialised when activate() is called to reuse it. */ void (*deactivate)(LADSPA_Handle Instance); /* Once an instance of a plugin has been finished with it can be deleted using the following function. The instance handle passed ceases to be valid after this call. If activate() was called for a plugin instance then a corresponding call to deactivate() must be made before cleanup() is called. */ void (*cleanup)(LADSPA_Handle Instance); } LADSPA_Descriptor; /**********************************************************************/ /* Accessing a Plugin: */ /* The exact mechanism by which plugins are loaded is host-dependent, however all most hosts will need to know is the name of shared object file containing the plugin types. To allow multiple hosts to share plugin types, hosts may wish to check for environment variable LADSPA_PATH. If present, this should contain a colon-separated path indicating directories that should be searched (in order) when loading plugin types. A plugin programmer must include a function called "ladspa_descriptor" with the following function prototype within the shared object file. This function will have C-style linkage (if you are using C++ this is taken care of by the `extern "C"' clause at the top of the file). A host will find the plugin shared object file by one means or another, find the ladspa_descriptor() function, call it, and proceed from there. Plugin types are accessed by index (not ID) using values from 0 upwards. Out of range indexes must result in this function returning NULL, so the plugin count can be determined by checking for the least index that results in NULL being returned. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index); /* Datatype corresponding to the ladspa_descriptor() function. */ typedef const LADSPA_Descriptor * (*LADSPA_Descriptor_Function)(unsigned long Index); /**********************************************************************/ #ifdef __cplusplus } #endif #endif /* LADSPA_INCLUDED */ /* EOF */ tap-plugins-1.0.0/tap-plugins.rdf000066400000000000000000001414361320332260600167210ustar00rootroot00000000000000 ]> Tom Szilagyi TAP Equalizer Tom Szilagyi TAP Stereo Echo Tom Szilagyi TAP Tremolo Tom Szilagyi TAP Scaling Limiter Tom Szilagyi TAP AutoPanner Tom Szilagyi TAP DeEsser Tom Szilagyi TAP Vibrato Tom Szilagyi TAP Rotary Speaker Tom Szilagyi TAP Pitch Shifter Tom Szilagyi TAP Equalizer/BW Tom Szilagyi TAP Dynamics (M) Tom Szilagyi TAP Dynamics (St) Tom Szilagyi TAP Reflector Tom Szilagyi TAP Pink/Fractal Noise Tom Szilagyi TAP Fractal Doubler Tom Szilagyi TAP Sigmoid Booster Tom Szilagyi TAP TubeWarmth Tom Szilagyi TAP Chorus/Flanger tap-plugins-1.0.0/tap_autopan.c000066400000000000000000000234561320332260600164410ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi Patches were received from: Alexander Koenig This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "tap_utils.h" /* The Unique ID of the plugin: */ #define ID_STEREO 2146 /* The port numbers for the plugin: */ #define CONTROL_FREQ 0 #define CONTROL_DEPTH 1 #define CONTROL_GAIN 2 #define INPUT_L 3 #define INPUT_R 4 #define OUTPUT_L 5 #define OUTPUT_R 6 /* Total number of ports */ #define PORTCOUNT_STEREO 7 /* cosine table for fast computations */ LADSPA_Data cos_table[1024]; /* The structure used to hold port connection information and state */ typedef struct { LADSPA_Data * freq; LADSPA_Data * depth; LADSPA_Data * gain; LADSPA_Data * input_L; LADSPA_Data * input_R; LADSPA_Data * output_L; LADSPA_Data * output_R; unsigned long SampleRate; LADSPA_Data Phase; LADSPA_Data run_adding_gain; } AutoPan; /* Construct a new plugin instance. */ LADSPA_Handle instantiate_AutoPan(const LADSPA_Descriptor * Descriptor, unsigned long SampleRate) { LADSPA_Handle * ptr; if ((ptr = malloc(sizeof(AutoPan))) != NULL) { ((AutoPan *)ptr)->SampleRate = SampleRate; ((AutoPan *)ptr)->run_adding_gain = 1.0; return ptr; } return NULL; } void activate_AutoPan(LADSPA_Handle Instance) { AutoPan * ptr; ptr = (AutoPan *)Instance; ptr->Phase = 0.0f; } /* Connect a port to a data location. */ void connect_port_AutoPan(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * DataLocation) { AutoPan * ptr; ptr = (AutoPan *)Instance; switch (Port) { case CONTROL_FREQ: ptr->freq = DataLocation; break; case CONTROL_DEPTH: ptr->depth = DataLocation; break; case CONTROL_GAIN: ptr->gain = DataLocation; break; case INPUT_L: ptr->input_L = DataLocation; break; case INPUT_R: ptr->input_R = DataLocation; break; case OUTPUT_L: ptr->output_L = DataLocation; break; case OUTPUT_R: ptr->output_R = DataLocation; break; } } void run_AutoPan(LADSPA_Handle Instance, unsigned long SampleCount) { AutoPan * ptr = (AutoPan *)Instance; LADSPA_Data * input_L = ptr->input_L; LADSPA_Data * input_R = ptr->input_R; LADSPA_Data * output_L = ptr->output_L; LADSPA_Data * output_R = ptr->output_R; LADSPA_Data freq = LIMIT(*(ptr->freq),0.0f,20.0f); LADSPA_Data depth = LIMIT(*(ptr->depth),0.0f,100.0f); LADSPA_Data gain = db2lin(LIMIT(*(ptr->gain),-70.0f,20.0f)); unsigned long sample_index; LADSPA_Data phase_L = 0; LADSPA_Data phase_R = 0; for (sample_index = 0; sample_index < SampleCount; sample_index++) { phase_L = 1024.0f * freq * sample_index / ptr->SampleRate + ptr->Phase; while (phase_L >= 1024.0f) phase_L -= 1024.0f; phase_R = phase_L + 512.0f; while (phase_R >= 1024.0f) phase_R -= 1024.0f; *(output_L++) = *(input_L++) * gain * (1 - 0.5*depth/100 + 0.5 * depth/100 * cos_table[(unsigned long) phase_L]); *(output_R++) = *(input_R++) * gain * (1 - 0.5*depth/100 + 0.5 * depth/100 * cos_table[(unsigned long) phase_R]); } ptr->Phase = phase_L; while (ptr->Phase >= 1024.0f) ptr->Phase -= 1024.0f; } void set_run_adding_gain_AutoPan(LADSPA_Handle Instance, LADSPA_Data gain) { AutoPan * ptr; ptr = (AutoPan *)Instance; ptr->run_adding_gain = gain; } void run_adding_AutoPan(LADSPA_Handle Instance, unsigned long SampleCount) { AutoPan * ptr = (AutoPan *)Instance; LADSPA_Data * input_L = ptr->input_L; LADSPA_Data * input_R = ptr->input_R; LADSPA_Data * output_L = ptr->output_L; LADSPA_Data * output_R = ptr->output_R; LADSPA_Data freq = LIMIT(*(ptr->freq),0.0f,20.0f); LADSPA_Data depth = LIMIT(*(ptr->depth),0.0f,100.0f); LADSPA_Data gain = db2lin(LIMIT(*(ptr->gain),-70.0f,20.0f)); unsigned long sample_index; LADSPA_Data phase_L = 0; LADSPA_Data phase_R = 0; for (sample_index = 0; sample_index < SampleCount; sample_index++) { phase_L = 1024.0f * freq * sample_index / ptr->SampleRate + ptr->Phase; while (phase_L >= 1024.0f) phase_L -= 1024.0f; phase_R = phase_L + 512.0f; while (phase_R >= 1024.0f) phase_R -= 1024.0f; *(output_L++) += *(input_L++) * gain * ptr->run_adding_gain * (1 - 0.5*depth/100 + 0.5 * depth/100 * cos_table[(unsigned long) phase_L]); *(output_R++) += *(input_R++) * gain * ptr->run_adding_gain * (1 - 0.5*depth/100 + 0.5 * depth/100 * cos_table[(unsigned long) phase_R]); } ptr->Phase = phase_L; while (ptr->Phase >= 1024.0f) ptr->Phase -= 1024.0f; } /* Throw away an AutoPan effect instance. */ void cleanup_AutoPan(LADSPA_Handle Instance) { free(Instance); } LADSPA_Descriptor * mono_descriptor = NULL; /* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first loaded. */ void __attribute__((constructor)) tap_init() { int i; char ** port_names; LADSPA_PortDescriptor * port_descriptors; LADSPA_PortRangeHint * port_range_hints; if ((mono_descriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL) exit(1); for (i = 0; i < 1024; i++) cos_table[i] = cosf(i * M_PI / 512.0f); mono_descriptor->UniqueID = ID_STEREO; mono_descriptor->Label = strdup("tap_autopan"); mono_descriptor->Properties = LADSPA_PROPERTY_HARD_RT_CAPABLE; mono_descriptor->Name = strdup("TAP AutoPanner"); mono_descriptor->Maker = strdup("Tom Szilagyi"); mono_descriptor->Copyright = strdup("GPL"); mono_descriptor->PortCount = PORTCOUNT_STEREO; if ((port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortDescriptor))) == NULL) exit(1); mono_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_descriptors[CONTROL_FREQ] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[CONTROL_DEPTH] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[CONTROL_GAIN] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[INPUT_L] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[INPUT_R] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT_L] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT_R] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; if ((port_names = (char **)calloc(PORTCOUNT_STEREO, sizeof(char *))) == NULL) exit(1); mono_descriptor->PortNames = (const char **)port_names; port_names[CONTROL_FREQ] = strdup("Frequency [Hz]"); port_names[CONTROL_DEPTH] = strdup("Depth [%]"); port_names[CONTROL_GAIN] = strdup("Gain [dB]"); port_names[INPUT_L] = strdup("Input L"); port_names[INPUT_R] = strdup("Input R"); port_names[OUTPUT_L] = strdup("Output L"); port_names[OUTPUT_R] = strdup("Output R"); if ((port_range_hints = ((LADSPA_PortRangeHint *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortRangeHint)))) == NULL) exit(1); mono_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_range_hints[CONTROL_FREQ].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[CONTROL_DEPTH].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[CONTROL_GAIN].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[CONTROL_FREQ].LowerBound = 0; port_range_hints[CONTROL_FREQ].UpperBound = 20; port_range_hints[CONTROL_DEPTH].LowerBound = 0; port_range_hints[CONTROL_DEPTH].UpperBound = 100; port_range_hints[CONTROL_GAIN].LowerBound = -70; port_range_hints[CONTROL_GAIN].UpperBound = 20; port_range_hints[INPUT_L].HintDescriptor = 0; port_range_hints[INPUT_R].HintDescriptor = 0; port_range_hints[OUTPUT_L].HintDescriptor = 0; port_range_hints[OUTPUT_R].HintDescriptor = 0; mono_descriptor->instantiate = instantiate_AutoPan; mono_descriptor->connect_port = connect_port_AutoPan; mono_descriptor->activate = activate_AutoPan; mono_descriptor->run = run_AutoPan; mono_descriptor->run_adding = run_adding_AutoPan; mono_descriptor->set_run_adding_gain = set_run_adding_gain_AutoPan; mono_descriptor->deactivate = NULL; mono_descriptor->cleanup = cleanup_AutoPan; } void delete_descriptor(LADSPA_Descriptor * descriptor) { unsigned long index; if (descriptor) { free((char *)descriptor->Label); free((char *)descriptor->Name); free((char *)descriptor->Maker); free((char *)descriptor->Copyright); free((LADSPA_PortDescriptor *)descriptor->PortDescriptors); for (index = 0; index < descriptor->PortCount; index++) free((char *)(descriptor->PortNames[index])); free((char **)descriptor->PortNames); free((LADSPA_PortRangeHint *)descriptor->PortRangeHints); free(descriptor); } } /* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */ void __attribute__((destructor)) tap_fini() { delete_descriptor(mono_descriptor); } /* Return a descriptor of the requested plugin type. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index) { switch (Index) { case 0: return mono_descriptor; default: return NULL; } } tap-plugins-1.0.0/tap_chorusflanger.c000066400000000000000000000415051320332260600176270ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include "tap_utils.h" /* The Unique ID of the plugin: */ #define ID_STEREO 2159 /* The port numbers for the plugin: */ #define FREQ 0 #define PHASE 1 #define DEPTH 2 #define DELAY 3 #define CONTOUR 4 #define DRYLEVEL 5 #define WETLEVEL 6 #define INPUT_L 7 #define INPUT_R 8 #define OUTPUT_L 9 #define OUTPUT_R 10 /* Total number of ports */ #define PORTCOUNT_STEREO 11 /* * Largest buffer lengths needed (at 192 kHz). * These are summed up to determine the size of *one* buffer per channel. */ #define DEPTH_BUFLEN 450 #define DELAY_BUFLEN 19200 /* Max. frequency setting */ #define MAX_FREQ 5.0f /* bandwidth of highpass filters (in octaves) */ #define HP_BW 1 /* cosine table for fast computations */ #define COS_TABLE_SIZE 1024 LADSPA_Data cos_table[COS_TABLE_SIZE]; /* The structure used to hold port connection information and state */ typedef struct { LADSPA_Data * freq; LADSPA_Data * phase; LADSPA_Data * depth; LADSPA_Data * delay; LADSPA_Data * contour; LADSPA_Data * drylevel; LADSPA_Data * wetlevel; LADSPA_Data * input_L; LADSPA_Data * input_R; LADSPA_Data * output_L; LADSPA_Data * output_R; LADSPA_Data * ring_L; unsigned long buflen_L; unsigned long pos_L; LADSPA_Data * ring_R; unsigned long buflen_R; unsigned long pos_R; biquad highpass_L; biquad highpass_R; float cm_phase; float dm_phase; unsigned long sample_rate; LADSPA_Data run_adding_gain; } ChorusFlanger; /* Construct a new plugin instance. */ LADSPA_Handle instantiate_ChorusFlanger(const LADSPA_Descriptor * Descriptor, unsigned long sample_rate) { LADSPA_Handle * ptr; if ((ptr = malloc(sizeof(ChorusFlanger))) != NULL) { ((ChorusFlanger *)ptr)->sample_rate = sample_rate; ((ChorusFlanger *)ptr)->run_adding_gain = 1.0f; if ((((ChorusFlanger *)ptr)->ring_L = calloc((DEPTH_BUFLEN + DELAY_BUFLEN) * sample_rate / 192000, sizeof(LADSPA_Data))) == NULL) return NULL; ((ChorusFlanger *)ptr)->buflen_L = (DEPTH_BUFLEN + DELAY_BUFLEN) * sample_rate / 192000; ((ChorusFlanger *)ptr)->pos_L = 0; if ((((ChorusFlanger *)ptr)->ring_R = calloc((DEPTH_BUFLEN + DELAY_BUFLEN) * sample_rate / 192000, sizeof(LADSPA_Data))) == NULL) return NULL; ((ChorusFlanger *)ptr)->buflen_R = (DEPTH_BUFLEN + DELAY_BUFLEN) * sample_rate / 192000; ((ChorusFlanger *)ptr)->pos_R = 0; ((ChorusFlanger *)ptr)->cm_phase = 0.0f; ((ChorusFlanger *)ptr)->dm_phase = 0.0f; return ptr; } return NULL; } void activate_ChorusFlanger(LADSPA_Handle Instance) { ChorusFlanger * ptr = (ChorusFlanger *)Instance; unsigned long i; for (i = 0; i < (DEPTH_BUFLEN + DELAY_BUFLEN) * ptr->sample_rate / 192000; i++) { ptr->ring_L[i] = 0.0f; ptr->ring_R[i] = 0.0f; } biquad_init(&ptr->highpass_L); biquad_init(&ptr->highpass_R); } /* Connect a port to a data location. */ void connect_port_ChorusFlanger(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * data) { ChorusFlanger * ptr = (ChorusFlanger *)Instance; switch (Port) { case FREQ: ptr->freq = data; break; case PHASE: ptr->phase = data; break; case DEPTH: ptr->depth = data; break; case DELAY: ptr->delay = data; break; case CONTOUR: ptr->contour = data; break; case DRYLEVEL: ptr->drylevel = data; break; case WETLEVEL: ptr->wetlevel = data; break; case INPUT_L: ptr->input_L = data; break; case INPUT_R: ptr->input_R = data; break; case OUTPUT_L: ptr->output_L = data; break; case OUTPUT_R: ptr->output_R = data; break; } } void run_ChorusFlanger(LADSPA_Handle Instance, unsigned long SampleCount) { ChorusFlanger * ptr = (ChorusFlanger *)Instance; LADSPA_Data freq = LIMIT(*(ptr->freq), 0.0f, MAX_FREQ); LADSPA_Data phase = LIMIT(*(ptr->phase), 0.0f, 180.0f) / 180.0f; LADSPA_Data depth = 100.0f * ptr->sample_rate / 44100.0f * LIMIT(*(ptr->depth),0.0f,100.0f) / 100.0f; LADSPA_Data delay = LIMIT(*(ptr->delay),0.0f,100.0f); LADSPA_Data contour = LIMIT(*(ptr->contour), 20.0f, 20000.0f); LADSPA_Data drylevel = db2lin(LIMIT(*(ptr->drylevel),-90.0f,20.0f)); LADSPA_Data wetlevel = db2lin(LIMIT(*(ptr->wetlevel),-90.0f,20.0f)); LADSPA_Data * input_L = ptr->input_L; LADSPA_Data * input_R = ptr->input_R; LADSPA_Data * output_L = ptr->output_L; LADSPA_Data * output_R = ptr->output_R; unsigned long sample_index; unsigned long sample_count = SampleCount; LADSPA_Data in_L = 0.0f; LADSPA_Data in_R = 0.0f; LADSPA_Data d_L = 0.0f; LADSPA_Data d_R = 0.0f; LADSPA_Data f_L = 0.0f; LADSPA_Data f_R = 0.0f; LADSPA_Data out_L = 0.0f; LADSPA_Data out_R = 0.0f; float phase_L = 0.0f; float phase_R = 0.0f; float fpos_L = 0.0f; float fpos_R = 0.0f; float n_L = 0.0f; float n_R = 0.0f; float rem_L = 0.0f; float rem_R = 0.0f; float s_a_L, s_a_R, s_b_L, s_b_R; float d_pos = 0.0f; if (delay < 1.0f) delay = 1.0f; delay = 100.0f - delay; hp_set_params(&ptr->highpass_L, contour, HP_BW, ptr->sample_rate); hp_set_params(&ptr->highpass_R, contour, HP_BW, ptr->sample_rate); for (sample_index = 0; sample_index < sample_count; sample_index++) { in_L = *(input_L++); in_R = *(input_R++); push_buffer(in_L, ptr->ring_L, ptr->buflen_L, &(ptr->pos_L)); push_buffer(in_R, ptr->ring_R, ptr->buflen_R, &(ptr->pos_R)); ptr->cm_phase += freq / ptr->sample_rate * COS_TABLE_SIZE; while (ptr->cm_phase >= COS_TABLE_SIZE) ptr->cm_phase -= COS_TABLE_SIZE; ptr->dm_phase = phase * COS_TABLE_SIZE / 2.0f; phase_L = ptr->cm_phase; phase_R = ptr->cm_phase + ptr->dm_phase; while (phase_R >= COS_TABLE_SIZE) phase_R -= COS_TABLE_SIZE; d_pos = delay * ptr->sample_rate / 1000.0f; fpos_L = d_pos + depth * (0.5f + 0.5f * cos_table[(unsigned long)phase_L]); fpos_R = d_pos + depth * (0.5f + 0.5f * cos_table[(unsigned long)phase_R]); n_L = floorf(fpos_L); n_R = floorf(fpos_R); rem_L = fpos_L - n_L; rem_R = fpos_R - n_R; s_a_L = read_buffer(ptr->ring_L, ptr->buflen_L, ptr->pos_L, (unsigned long) n_L); s_b_L = read_buffer(ptr->ring_L, ptr->buflen_L, ptr->pos_L, (unsigned long) n_L + 1); s_a_R = read_buffer(ptr->ring_R, ptr->buflen_R, ptr->pos_R, (unsigned long) n_R); s_b_R = read_buffer(ptr->ring_R, ptr->buflen_R, ptr->pos_R, (unsigned long) n_R + 1); d_L = ((1 - rem_L) * s_a_L + rem_L * s_b_L); d_R = ((1 - rem_R) * s_a_R + rem_R * s_b_R); f_L = biquad_run(&ptr->highpass_L, d_L); f_R = biquad_run(&ptr->highpass_R, d_R); out_L = drylevel * in_L + wetlevel * f_L; out_R = drylevel * in_R + wetlevel * f_R; *(output_L++) = out_L; *(output_R++) = out_R; } } void set_run_adding_gain_ChorusFlanger(LADSPA_Handle Instance, LADSPA_Data gain) { ChorusFlanger * ptr = (ChorusFlanger *)Instance; ptr->run_adding_gain = gain; } void run_adding_ChorusFlanger(LADSPA_Handle Instance, unsigned long SampleCount) { ChorusFlanger * ptr = (ChorusFlanger *)Instance; LADSPA_Data freq = LIMIT(*(ptr->freq), 0.0f, MAX_FREQ); LADSPA_Data phase = LIMIT(*(ptr->phase), 0.0f, 180.0f) / 180.0f; LADSPA_Data depth = 100.0f * ptr->sample_rate / 44100.0f * LIMIT(*(ptr->depth),0.0f,100.0f) / 100.0f; LADSPA_Data delay = LIMIT(*(ptr->delay),0.0f,100.0f); LADSPA_Data contour = LIMIT(*(ptr->contour), 20.0f, 20000.0f); LADSPA_Data drylevel = db2lin(LIMIT(*(ptr->drylevel),-90.0f,20.0f)); LADSPA_Data wetlevel = db2lin(LIMIT(*(ptr->wetlevel),-90.0f,20.0f)); LADSPA_Data * input_L = ptr->input_L; LADSPA_Data * input_R = ptr->input_R; LADSPA_Data * output_L = ptr->output_L; LADSPA_Data * output_R = ptr->output_R; unsigned long sample_index; unsigned long sample_count = SampleCount; LADSPA_Data in_L = 0.0f; LADSPA_Data in_R = 0.0f; LADSPA_Data d_L = 0.0f; LADSPA_Data d_R = 0.0f; LADSPA_Data f_L = 0.0f; LADSPA_Data f_R = 0.0f; LADSPA_Data out_L = 0.0f; LADSPA_Data out_R = 0.0f; float phase_L = 0.0f; float phase_R = 0.0f; float fpos_L = 0.0f; float fpos_R = 0.0f; float n_L = 0.0f; float n_R = 0.0f; float rem_L = 0.0f; float rem_R = 0.0f; float s_a_L, s_a_R, s_b_L, s_b_R; float d_pos = 0.0f; if (delay < 1.0f) delay = 1.0f; delay = 100.0f - delay; hp_set_params(&ptr->highpass_L, contour, HP_BW, ptr->sample_rate); hp_set_params(&ptr->highpass_R, contour, HP_BW, ptr->sample_rate); for (sample_index = 0; sample_index < sample_count; sample_index++) { in_L = *(input_L++); in_R = *(input_R++); push_buffer(in_L, ptr->ring_L, ptr->buflen_L, &(ptr->pos_L)); push_buffer(in_R, ptr->ring_R, ptr->buflen_R, &(ptr->pos_R)); ptr->cm_phase += freq / ptr->sample_rate * COS_TABLE_SIZE; while (ptr->cm_phase >= COS_TABLE_SIZE) ptr->cm_phase -= COS_TABLE_SIZE; ptr->dm_phase = phase * COS_TABLE_SIZE / 2.0f; phase_L = ptr->cm_phase; phase_R = ptr->cm_phase + ptr->dm_phase; while (phase_R >= COS_TABLE_SIZE) phase_R -= COS_TABLE_SIZE; d_pos = delay * ptr->sample_rate / 1000.0f; fpos_L = d_pos + depth * (0.5f + 0.5f * cos_table[(unsigned long)phase_L]); fpos_R = d_pos + depth * (0.5f + 0.5f * cos_table[(unsigned long)phase_R]); n_L = floorf(fpos_L); n_R = floorf(fpos_R); rem_L = fpos_L - n_L; rem_R = fpos_R - n_R; s_a_L = read_buffer(ptr->ring_L, ptr->buflen_L, ptr->pos_L, (unsigned long) n_L); s_b_L = read_buffer(ptr->ring_L, ptr->buflen_L, ptr->pos_L, (unsigned long) n_L + 1); s_a_R = read_buffer(ptr->ring_R, ptr->buflen_R, ptr->pos_R, (unsigned long) n_R); s_b_R = read_buffer(ptr->ring_R, ptr->buflen_R, ptr->pos_R, (unsigned long) n_R + 1); d_L = ((1 - rem_L) * s_a_L + rem_L * s_b_L); d_R = ((1 - rem_R) * s_a_R + rem_R * s_b_R); f_L = biquad_run(&ptr->highpass_L, d_L); f_R = biquad_run(&ptr->highpass_R, d_R); out_L = drylevel * in_L + wetlevel * f_L; out_R = drylevel * in_R + wetlevel * f_R; *(output_L++) += ptr->run_adding_gain * out_L; *(output_R++) += ptr->run_adding_gain * out_R; } } /* Throw away a ChorusFlanger effect instance. */ void cleanup_ChorusFlanger(LADSPA_Handle Instance) { ChorusFlanger * ptr = (ChorusFlanger *)Instance; free(ptr->ring_L); free(ptr->ring_R); free(Instance); } LADSPA_Descriptor * stereo_descriptor = NULL; /* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first loaded. */ void __attribute__((constructor)) tap_init() { char ** port_names; LADSPA_PortDescriptor * port_descriptors; LADSPA_PortRangeHint * port_range_hints; int i; if ((stereo_descriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL) exit(1); for (i = 0; i < COS_TABLE_SIZE; i++) cos_table[i] = cosf(i * 2.0f * M_PI / COS_TABLE_SIZE); stereo_descriptor->UniqueID = ID_STEREO; stereo_descriptor->Label = strdup("tap_chorusflanger"); stereo_descriptor->Properties = LADSPA_PROPERTY_HARD_RT_CAPABLE; stereo_descriptor->Name = strdup("TAP Chorus/Flanger"); stereo_descriptor->Maker = strdup("Tom Szilagyi"); stereo_descriptor->Copyright = strdup("GPL"); stereo_descriptor->PortCount = PORTCOUNT_STEREO; if ((port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortDescriptor))) == NULL) exit(1); stereo_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_descriptors[FREQ] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[PHASE] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[DEPTH] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[DELAY] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[CONTOUR] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[DRYLEVEL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[WETLEVEL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[INPUT_L] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[INPUT_R] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT_L] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT_R] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; if ((port_names = (char **)calloc(PORTCOUNT_STEREO, sizeof(char *))) == NULL) exit(1); stereo_descriptor->PortNames = (const char **)port_names; port_names[FREQ] = strdup("Frequency [Hz]"); port_names[PHASE] = strdup("L/R Phase Shift [deg]"); port_names[DEPTH] = strdup("Depth [%]"); port_names[DELAY] = strdup("Delay [ms]"); port_names[CONTOUR] = strdup("Contour [Hz]"); port_names[DRYLEVEL] = strdup("Dry Level [dB]"); port_names[WETLEVEL] = strdup("Wet Level [dB]"); port_names[INPUT_L] = strdup("Input_L"); port_names[INPUT_R] = strdup("Input_R"); port_names[OUTPUT_L] = strdup("Output_L"); port_names[OUTPUT_R] = strdup("Output_R"); if ((port_range_hints = ((LADSPA_PortRangeHint *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortRangeHint)))) == NULL) exit(1); stereo_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_range_hints[FREQ].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_LOW); port_range_hints[PHASE].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MIDDLE); port_range_hints[DEPTH].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_HIGH); port_range_hints[DELAY].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_LOW); port_range_hints[CONTOUR].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_100); port_range_hints[DRYLEVEL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[WETLEVEL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[FREQ].LowerBound = 0.0f; port_range_hints[FREQ].UpperBound = MAX_FREQ; port_range_hints[PHASE].LowerBound = 0.0f; port_range_hints[PHASE].UpperBound = 180.0f; port_range_hints[DEPTH].LowerBound = 0.0f; port_range_hints[DEPTH].UpperBound = 100.0f; port_range_hints[DELAY].LowerBound = 0.0f; port_range_hints[DELAY].UpperBound = 100.0f; port_range_hints[CONTOUR].LowerBound = 20.0f; port_range_hints[CONTOUR].UpperBound = 20000.0f; port_range_hints[DRYLEVEL].LowerBound = -90.0f; port_range_hints[DRYLEVEL].UpperBound = +20.0f; port_range_hints[WETLEVEL].LowerBound = -90.0f; port_range_hints[WETLEVEL].UpperBound = +20.0f; port_range_hints[INPUT_L].HintDescriptor = 0; port_range_hints[INPUT_R].HintDescriptor = 0; port_range_hints[OUTPUT_L].HintDescriptor = 0; port_range_hints[OUTPUT_R].HintDescriptor = 0; stereo_descriptor->instantiate = instantiate_ChorusFlanger; stereo_descriptor->connect_port = connect_port_ChorusFlanger; stereo_descriptor->activate = activate_ChorusFlanger; stereo_descriptor->run = run_ChorusFlanger; stereo_descriptor->run_adding = run_adding_ChorusFlanger; stereo_descriptor->set_run_adding_gain = set_run_adding_gain_ChorusFlanger; stereo_descriptor->deactivate = NULL; stereo_descriptor->cleanup = cleanup_ChorusFlanger; } void delete_descriptor(LADSPA_Descriptor * descriptor) { unsigned long index; if (descriptor) { free((char *)descriptor->Label); free((char *)descriptor->Name); free((char *)descriptor->Maker); free((char *)descriptor->Copyright); free((LADSPA_PortDescriptor *)descriptor->PortDescriptors); for (index = 0; index < descriptor->PortCount; index++) free((char *)(descriptor->PortNames[index])); free((char **)descriptor->PortNames); free((LADSPA_PortRangeHint *)descriptor->PortRangeHints); free(descriptor); } } /* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */ void __attribute__((destructor)) tap_fini() { delete_descriptor(stereo_descriptor); } /* Return a descriptor of the requested plugin type. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index) { switch (Index) { case 0: return stereo_descriptor; default: return NULL; } } tap-plugins-1.0.0/tap_deesser.c000066400000000000000000000306611320332260600164200ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "tap_utils.h" /* The Unique ID of the plugin: */ #define ID_MONO 2147 /* The port numbers for the plugin: */ #define THRESHOLD 0 #define FREQ 1 #define SIDECHAIN 2 #define MONITOR 3 #define ATTENUAT 4 #define INPUT 5 #define OUTPUT 6 /* Total number of ports */ #define PORTCOUNT_MONO 7 /* Bandwidth of sidechain lowpass/highpass filters */ #define SIDECH_BW 0.3f /* Used to hold 10 ms gain data, enough for sample rates up to 192 kHz */ #define RINGBUF_SIZE 2000 /* 4 digits precision from 1.000 to 9.999 */ LADSPA_Data log10_table[9000]; /* The structure used to hold port connection information and state */ typedef struct { LADSPA_Data * threshold; LADSPA_Data * audiomode; LADSPA_Data * freq; LADSPA_Data * sidechain; LADSPA_Data * monitor; LADSPA_Data * attenuat; LADSPA_Data * input; LADSPA_Data * output; biquad sidech_lo_filter; biquad sidech_hi_filter; LADSPA_Data * ringbuffer; unsigned long buflen; unsigned long pos; LADSPA_Data sum; LADSPA_Data old_freq; unsigned long sample_rate; LADSPA_Data run_adding_gain; } DeEsser; /* fast linear to decibel conversion using log10_table[] */ LADSPA_Data fast_lin2db(LADSPA_Data lin) { unsigned long k; int exp = 0; LADSPA_Data mant = ABS(lin); /* sanity checks */ if (mant == 0.0f) return(-1.0f/0.0f); /* -inf */ if (mant == 1.0f/0.0f) /* +inf */ return(mant); while (mant < 1.0f) { mant *= 10; exp --; } while (mant >= 10.0f) { mant /= 10; exp ++; } k = (mant - 0.999999f) * 1000.0f; return 20.0f * (log10_table[k] + exp); } /* Construct a new plugin instance. */ LADSPA_Handle instantiate_DeEsser(const LADSPA_Descriptor * Descriptor, unsigned long SampleRate) { LADSPA_Handle * ptr; if ((ptr = malloc(sizeof(DeEsser))) != NULL) { ((DeEsser *)ptr)->sample_rate = SampleRate; ((DeEsser *)ptr)->run_adding_gain = 1.0f; /* init filters */ biquad_init(&((DeEsser *)ptr)->sidech_lo_filter); biquad_init(&((DeEsser *)ptr)->sidech_hi_filter); /* alloc mem for ringbuffer */ if ((((DeEsser *)ptr)->ringbuffer = calloc(RINGBUF_SIZE, sizeof(LADSPA_Data))) == NULL) return NULL; /* 10 ms attenuation data is stored */ ((DeEsser *)ptr)->buflen = ((DeEsser *)ptr)->sample_rate / 100; ((DeEsser *)ptr)->pos = 0; ((DeEsser *)ptr)->sum = 0.0f; ((DeEsser *)ptr)->old_freq = 0; return ptr; } return NULL; } void activate_DeEsser(LADSPA_Handle Instance) { DeEsser * ptr = (DeEsser *)Instance; unsigned long i; for (i = 0; i < RINGBUF_SIZE; i++) ptr->ringbuffer[i] = 0.0f; } /* Connect a port to a data location. */ void connect_port_DeEsser(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * DataLocation) { DeEsser * ptr; ptr = (DeEsser *)Instance; switch (Port) { case THRESHOLD: ptr->threshold = DataLocation; break; case FREQ: ptr->freq = DataLocation; break; case SIDECHAIN: ptr->sidechain = DataLocation; break; case MONITOR: ptr->monitor = DataLocation; break; case ATTENUAT: ptr->attenuat = DataLocation; *(ptr->attenuat) = 0.0f; break; case INPUT: ptr->input = DataLocation; break; case OUTPUT: ptr->output = DataLocation; break; } } void run_DeEsser(LADSPA_Handle Instance, unsigned long SampleCount) { DeEsser * ptr = (DeEsser *)Instance; LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; LADSPA_Data threshold = LIMIT(*(ptr->threshold),-50.0f,10.0f); LADSPA_Data freq = LIMIT(*(ptr->freq),2000.0f,16000.0f); LADSPA_Data sidechain = LIMIT(*(ptr->sidechain),0.0f,1.0f); LADSPA_Data monitor = LIMIT(*(ptr->monitor),0.0f,1.0f); unsigned long sample_index; LADSPA_Data in = 0; LADSPA_Data out = 0; LADSPA_Data sidech = 0; LADSPA_Data ampl_db = 0.0f; LADSPA_Data attn = 0.0f; LADSPA_Data max_attn = 0.0f; if (ptr->old_freq != freq) { lp_set_params(&ptr->sidech_lo_filter, freq, SIDECH_BW, ptr->sample_rate); hp_set_params(&ptr->sidech_hi_filter, freq, SIDECH_BW, ptr->sample_rate); ptr->old_freq = freq; } for (sample_index = 0; sample_index < SampleCount; sample_index++) { in = *(input++); /* process sidechain filters */ sidech = biquad_run(&ptr->sidech_hi_filter, in); if (sidechain > 0.1f) sidech = biquad_run(&ptr->sidech_lo_filter, sidech); ampl_db = fast_lin2db(sidech); if (ampl_db <= threshold) attn = 0.0f; else attn = -0.5f * (ampl_db - threshold); ptr->sum += attn; ptr->sum -= push_buffer(attn, ptr->ringbuffer, ptr->buflen, &ptr->pos); if (-1.0f * ptr->sum > max_attn) max_attn = -0.01f * ptr->sum; in *= db2lin(ptr->sum / 100.0f); /* output selector */ if (monitor > 0.1f) out = sidech; else out = in; *(output++) = out; *(ptr->attenuat) = LIMIT(max_attn,0,10); } } void set_run_adding_gain_DeEsser(LADSPA_Handle Instance, LADSPA_Data gain) { DeEsser * ptr = (DeEsser *)Instance; ptr->run_adding_gain = gain; } void run_adding_DeEsser(LADSPA_Handle Instance, unsigned long SampleCount) { DeEsser * ptr = (DeEsser *)Instance; LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; LADSPA_Data threshold = LIMIT(*(ptr->threshold),-50.0f,10.0f); LADSPA_Data freq = LIMIT(*(ptr->freq),2000.0f,16000.0f); LADSPA_Data sidechain = LIMIT(*(ptr->sidechain),0.0f,1.0f); LADSPA_Data monitor = LIMIT(*(ptr->monitor),0.0f,1.0f); unsigned long sample_index; LADSPA_Data in = 0; LADSPA_Data out = 0; LADSPA_Data sidech = 0; LADSPA_Data ampl_db = 0.0f; LADSPA_Data attn = 0.0f; LADSPA_Data max_attn = 0.0f; if (ptr->old_freq != freq) { lp_set_params(&ptr->sidech_lo_filter, freq, SIDECH_BW, ptr->sample_rate); hp_set_params(&ptr->sidech_hi_filter, freq, SIDECH_BW, ptr->sample_rate); ptr->old_freq = freq; } for (sample_index = 0; sample_index < SampleCount; sample_index++) { in = *(input++); /* process sidechain filters */ sidech = biquad_run(&ptr->sidech_hi_filter, in); if (sidechain > 0.1f) sidech = biquad_run(&ptr->sidech_lo_filter, sidech); ampl_db = 20.0f * log10f(sidech); if (ampl_db <= threshold) attn = 0.0f; else attn = -0.5f * (ampl_db - threshold); ptr->sum += attn; ptr->sum -= push_buffer(attn, ptr->ringbuffer, ptr->buflen, &ptr->pos); if (-1.0f * ptr->sum > max_attn) max_attn = -0.01f * ptr->sum; in *= db2lin(ptr->sum / 100.0f); /* output selector */ if (monitor > 0.1f) out = sidech; else out = in; *(output++) += ptr->run_adding_gain * out; *(ptr->attenuat) = LIMIT(max_attn,0,10); } } /* Throw away a DeEsser effect instance. */ void cleanup_DeEsser(LADSPA_Handle Instance) { DeEsser * ptr = (DeEsser *)Instance; free(ptr->ringbuffer); free(Instance); } LADSPA_Descriptor * mono_descriptor = NULL; /* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first loaded. */ void __attribute__((constructor)) tap_init() { int i; char ** port_names; LADSPA_PortDescriptor * port_descriptors; LADSPA_PortRangeHint * port_range_hints; if ((mono_descriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL) exit(1); /* compute the log10 table */ for (i = 0; i < 9000; i++) log10_table[i] = log10f(1.0f + i / 1000.0f); mono_descriptor->UniqueID = ID_MONO; mono_descriptor->Label = strdup("tap_deesser"); mono_descriptor->Properties = 0; mono_descriptor->Name = strdup("TAP DeEsser"); mono_descriptor->Maker = strdup("Tom Szilagyi"); mono_descriptor->Copyright = strdup("GPL"); mono_descriptor->PortCount = PORTCOUNT_MONO; if ((port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortDescriptor))) == NULL) exit(1); mono_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_descriptors[THRESHOLD] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[FREQ] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[SIDECHAIN] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[MONITOR] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[ATTENUAT] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL; port_descriptors[INPUT] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; if ((port_names = (char **)calloc(PORTCOUNT_MONO, sizeof(char *))) == NULL) exit(1); mono_descriptor->PortNames = (const char **)port_names; port_names[THRESHOLD] = strdup("Threshold Level [dB]"); port_names[FREQ] = strdup("Frequency [Hz]"); port_names[SIDECHAIN] = strdup("Sidechain Filter"); port_names[MONITOR] = strdup("Monitor"); port_names[ATTENUAT] = strdup("Attenuation [dB]"); port_names[INPUT] = strdup("Input"); port_names[OUTPUT] = strdup("Output"); if ((port_range_hints = ((LADSPA_PortRangeHint *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortRangeHint)))) == NULL) exit(1); mono_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_range_hints[THRESHOLD].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[FREQ].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_LOW); port_range_hints[SIDECHAIN].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_INTEGER | LADSPA_HINT_DEFAULT_0); port_range_hints[MONITOR].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_INTEGER | LADSPA_HINT_DEFAULT_0); port_range_hints[ATTENUAT].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[THRESHOLD].LowerBound = -50; port_range_hints[THRESHOLD].UpperBound = 10; port_range_hints[FREQ].LowerBound = 2000; port_range_hints[FREQ].UpperBound = 16000; port_range_hints[SIDECHAIN].LowerBound = 0.0f; port_range_hints[SIDECHAIN].UpperBound = 1.01f; port_range_hints[MONITOR].LowerBound = 0.0f; port_range_hints[MONITOR].UpperBound = 1.01f; port_range_hints[ATTENUAT].LowerBound = 0.0f; port_range_hints[ATTENUAT].UpperBound = 10.0f; port_range_hints[INPUT].HintDescriptor = 0; port_range_hints[OUTPUT].HintDescriptor = 0; mono_descriptor->instantiate = instantiate_DeEsser; mono_descriptor->connect_port = connect_port_DeEsser; mono_descriptor->activate = activate_DeEsser; mono_descriptor->run = run_DeEsser; mono_descriptor->run_adding = run_adding_DeEsser; mono_descriptor->set_run_adding_gain = set_run_adding_gain_DeEsser; mono_descriptor->deactivate = NULL; mono_descriptor->cleanup = cleanup_DeEsser; } void delete_descriptor(LADSPA_Descriptor * descriptor) { unsigned long index; if (descriptor) { free((char *)descriptor->Label); free((char *)descriptor->Name); free((char *)descriptor->Maker); free((char *)descriptor->Copyright); free((LADSPA_PortDescriptor *)descriptor->PortDescriptors); for (index = 0; index < descriptor->PortCount; index++) free((char *)(descriptor->PortNames[index])); free((char **)descriptor->PortNames); free((LADSPA_PortRangeHint *)descriptor->PortRangeHints); free(descriptor); } } /* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */ void __attribute__((destructor)) tap_fini() { delete_descriptor(mono_descriptor); } /* Return a descriptor of the requested plugin type. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index) { switch (Index) { case 0: return mono_descriptor; default: return NULL; } } tap-plugins-1.0.0/tap_doubler.c000066400000000000000000000521551320332260600164240ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include "tap_utils.h" /* The Unique ID of the plugin: */ #define ID_STEREO 2156 /* The port numbers for the plugin: */ #define TIME 0 #define PITCH 1 #define DRYLEVEL 2 #define DRYPOSL 3 #define DRYPOSR 4 #define WETLEVEL 5 #define WETPOSL 6 #define WETPOSR 7 #define INPUT_L 8 #define INPUT_R 9 #define OUTPUT_L 10 #define OUTPUT_R 11 /* Total number of ports */ #define PORTCOUNT_STEREO 12 /* Number of pink noise samples to be generated at once */ #define NOISE_LEN 1024 /* * Largest buffer length needed (at 192 kHz). */ #define BUFLEN 11520 /* The structure used to hold port connection information and state */ typedef struct { LADSPA_Data * time; LADSPA_Data * pitch; LADSPA_Data * drylevel; LADSPA_Data * dryposl; LADSPA_Data * dryposr; LADSPA_Data * wetlevel; LADSPA_Data * wetposl; LADSPA_Data * wetposr; LADSPA_Data * input_L; LADSPA_Data * input_R; LADSPA_Data * output_L; LADSPA_Data * output_R; LADSPA_Data old_time; LADSPA_Data old_pitch; LADSPA_Data * ring_L; unsigned long buflen_L; unsigned long pos_L; LADSPA_Data * ring_R; unsigned long buflen_R; unsigned long pos_R; LADSPA_Data * ring_pnoise; unsigned long buflen_pnoise; unsigned long pos_pnoise; LADSPA_Data * ring_dnoise; unsigned long buflen_dnoise; unsigned long pos_dnoise; float delay; float d_delay; float p_delay; unsigned long n_delay; float pitchmod; float d_pitch; float p_pitch; unsigned long n_pitch; unsigned long p_stretch; unsigned long d_stretch; unsigned long sample_rate; LADSPA_Data run_adding_gain; } Doubler; /* generate fractal pattern using Midpoint Displacement Method * v: buffer of floats to output fractal pattern to * N: length of v, MUST be integer power of 2 (ie 128, 256, ...) * H: Hurst constant, between 0 and 0.9999 (fractal dimension) */ void fractal(LADSPA_Data * v, int N, float H) { int l = N; int k; float r = 1.0f; int c; v[0] = 0; while (l > 1) { k = N / l; for (c = 0; c < k; c++) { v[c*l + l/2] = (v[c*l] + v[((c+1) * l) % N]) / 2.0f + 2.0f * r * (rand() - (float)RAND_MAX/2.0f) / (float)RAND_MAX; v[c*l + l/2] = LIMIT(v[c*l + l/2], -1.0f, 1.0f); } l /= 2; r /= powf(2, H); } } /* Construct a new plugin instance. */ LADSPA_Handle instantiate_Doubler(const LADSPA_Descriptor * Descriptor, unsigned long sample_rate) { LADSPA_Handle * ptr; if ((ptr = malloc(sizeof(Doubler))) != NULL) { ((Doubler *)ptr)->sample_rate = sample_rate; ((Doubler *)ptr)->run_adding_gain = 1.0f; if ((((Doubler *)ptr)->ring_L = calloc(BUFLEN * sample_rate / 192000, sizeof(LADSPA_Data))) == NULL) return NULL; ((Doubler *)ptr)->buflen_L = BUFLEN * sample_rate / 192000; ((Doubler *)ptr)->pos_L = 0; if ((((Doubler *)ptr)->ring_R = calloc(BUFLEN * sample_rate / 192000, sizeof(LADSPA_Data))) == NULL) return NULL; ((Doubler *)ptr)->buflen_R = BUFLEN * sample_rate / 192000; ((Doubler *)ptr)->pos_R = 0; if ((((Doubler *)ptr)->ring_pnoise = calloc(NOISE_LEN, sizeof(LADSPA_Data))) == NULL) return NULL; ((Doubler *)ptr)->buflen_pnoise = NOISE_LEN; ((Doubler *)ptr)->pos_pnoise = 0; if ((((Doubler *)ptr)->ring_dnoise = calloc(NOISE_LEN, sizeof(LADSPA_Data))) == NULL) return NULL; ((Doubler *)ptr)->buflen_dnoise = NOISE_LEN; ((Doubler *)ptr)->pos_dnoise = 0; ((Doubler *)ptr)->d_stretch = sample_rate / 10; ((Doubler *)ptr)->p_stretch = sample_rate / 1000; ((Doubler *)ptr)->delay = 0.0f; ((Doubler *)ptr)->d_delay = 0.0f; ((Doubler *)ptr)->p_delay = 0.0f; ((Doubler *)ptr)->n_delay = ((Doubler *)ptr)->d_stretch; ((Doubler *)ptr)->pitchmod = 0.0f; ((Doubler *)ptr)->d_pitch = 0.0f; ((Doubler *)ptr)->p_pitch = 0.0f; ((Doubler *)ptr)->n_pitch = ((Doubler *)ptr)->p_stretch; return ptr; } return NULL; } void activate_Doubler(LADSPA_Handle Instance) { Doubler * ptr = (Doubler *)Instance; unsigned long i; for (i = 0; i < BUFLEN * ptr->sample_rate / 192000; i++) { ptr->ring_L[i] = 0.0f; ptr->ring_R[i] = 0.0f; } ptr->old_time = -1.0f; ptr->old_pitch = -1.0f; } /* Connect a port to a data location. */ void connect_port_Doubler(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * data) { Doubler * ptr = (Doubler *)Instance; switch (Port) { case TIME: ptr->time = data; break; case PITCH: ptr->pitch = data; break; case DRYLEVEL: ptr->drylevel = data; break; case DRYPOSL: ptr->dryposl = data; break; case DRYPOSR: ptr->dryposr = data; break; case WETLEVEL: ptr->wetlevel = data; break; case WETPOSL: ptr->wetposl = data; break; case WETPOSR: ptr->wetposr = data; break; case INPUT_L: ptr->input_L = data; break; case INPUT_R: ptr->input_R = data; break; case OUTPUT_L: ptr->output_L = data; break; case OUTPUT_R: ptr->output_R = data; break; } } void run_Doubler(LADSPA_Handle Instance, unsigned long SampleCount) { Doubler * ptr = (Doubler *)Instance; LADSPA_Data pitch = LIMIT(*(ptr->pitch),0.0f,1.0f) + 0.75f; LADSPA_Data depth = LIMIT(((1.0f - LIMIT(*(ptr->pitch),0.0f,1.0f)) * 1.75f + 0.25f) * ptr->sample_rate / 6000.0f / M_PI, 0, ptr->buflen_L / 2); LADSPA_Data time = LIMIT(*(ptr->time), 0.0f, 1.0f) + 0.5f; LADSPA_Data drylevel = db2lin(LIMIT(*(ptr->drylevel),-90.0f,20.0f)); LADSPA_Data wetlevel = db2lin(LIMIT(*(ptr->wetlevel),-90.0f,20.0f)); LADSPA_Data dryposl = 1.0f - LIMIT(*(ptr->dryposl), 0.0f, 1.0f); LADSPA_Data dryposr = LIMIT(*(ptr->dryposr), 0.0f, 1.0f); LADSPA_Data wetposl = 1.0f - LIMIT(*(ptr->wetposl), 0.0f, 1.0f); LADSPA_Data wetposr = LIMIT(*(ptr->wetposr), 0.0f, 1.0f); LADSPA_Data * input_L = ptr->input_L; LADSPA_Data * input_R = ptr->input_R; LADSPA_Data * output_L = ptr->output_L; LADSPA_Data * output_R = ptr->output_R; unsigned long sample_index; unsigned long sample_count = SampleCount; LADSPA_Data in_L = 0.0f; LADSPA_Data in_R = 0.0f; LADSPA_Data out_L = 0.0f; LADSPA_Data out_R = 0.0f; LADSPA_Data fpos = 0.0f; LADSPA_Data n = 0.0f; LADSPA_Data rem = 0.0f; LADSPA_Data s_a_L, s_a_R, s_b_L, s_b_R; LADSPA_Data prev_p_pitch = 0.0f; LADSPA_Data prev_p_delay = 0.0f; LADSPA_Data delay; LADSPA_Data drystream_L = 0.0f; LADSPA_Data drystream_R = 0.0f; LADSPA_Data wetstream_L = 0.0f; LADSPA_Data wetstream_R = 0.0f; if (ptr->old_pitch != pitch) { ptr->pitchmod = ptr->p_pitch; prev_p_pitch = ptr->p_pitch; fractal(ptr->ring_pnoise, NOISE_LEN, pitch); ptr->pos_pnoise = 0; ptr->p_pitch = push_buffer(0.0f, ptr->ring_pnoise, ptr->buflen_pnoise, &(ptr->pos_pnoise)); ptr->d_pitch = (ptr->p_pitch - prev_p_pitch) / (float)(ptr->p_stretch); ptr->n_pitch = 0; ptr->old_pitch = pitch; } if (ptr->old_time != time) { ptr->delay = ptr->p_delay; prev_p_delay = ptr->p_delay; fractal(ptr->ring_dnoise, NOISE_LEN, time); ptr->pos_dnoise = 0; ptr->p_delay = push_buffer(0.0f, ptr->ring_dnoise, ptr->buflen_dnoise, &(ptr->pos_dnoise)); ptr->d_delay = (ptr->p_delay - prev_p_delay) / (float)(ptr->d_stretch); ptr->n_delay = 0; ptr->old_time = time; } for (sample_index = 0; sample_index < sample_count; sample_index++) { in_L = *(input_L++); in_R = *(input_R++); push_buffer(in_L, ptr->ring_L, ptr->buflen_L, &(ptr->pos_L)); push_buffer(in_R, ptr->ring_R, ptr->buflen_R, &(ptr->pos_R)); if (ptr->n_pitch < ptr->p_stretch) { ptr->pitchmod += ptr->d_pitch; ptr->n_pitch++; } else { ptr->pitchmod = ptr->p_pitch; prev_p_pitch = ptr->p_pitch; if (!ptr->pos_pnoise) { fractal(ptr->ring_pnoise, NOISE_LEN, pitch); } ptr->p_pitch = push_buffer(0.0f, ptr->ring_pnoise, ptr->buflen_pnoise, &(ptr->pos_pnoise)); ptr->d_pitch = (ptr->p_pitch - prev_p_pitch) / (float)(ptr->p_stretch); ptr->n_pitch = 0; } if (ptr->n_delay < ptr->d_stretch) { ptr->delay += ptr->d_delay; ptr->n_delay++; } else { ptr->delay = ptr->p_delay; prev_p_delay = ptr->p_delay; if (!ptr->pos_dnoise) { fractal(ptr->ring_dnoise, NOISE_LEN, time); } ptr->p_delay = push_buffer(0.0f, ptr->ring_dnoise, ptr->buflen_dnoise, &(ptr->pos_dnoise)); ptr->d_delay = (ptr->p_delay - prev_p_delay) / (float)(ptr->d_stretch); ptr->n_delay = 0; } delay = (12.5f * ptr->delay + 37.5f) * ptr->sample_rate / 1000.0f; fpos = ptr->buflen_L - depth * (1.0f - ptr->pitchmod) - delay - 1.0f; n = floorf(fpos); rem = fpos - n; s_a_L = read_buffer(ptr->ring_L, ptr->buflen_L, ptr->pos_L, (unsigned long) n); s_b_L = read_buffer(ptr->ring_L, ptr->buflen_L, ptr->pos_L, (unsigned long) n + 1); s_a_R = read_buffer(ptr->ring_R, ptr->buflen_R, ptr->pos_R, (unsigned long) n); s_b_R = read_buffer(ptr->ring_R, ptr->buflen_R, ptr->pos_R, (unsigned long) n + 1); drystream_L = drylevel * in_L; drystream_R = drylevel * in_R; wetstream_L = wetlevel * ((1 - rem) * s_a_L + rem * s_b_L); wetstream_R = wetlevel * ((1 - rem) * s_a_R + rem * s_b_R); out_L = dryposl * drystream_L + (1.0f - dryposr) * drystream_R + wetposl * wetstream_L + (1.0f - wetposr) * wetstream_R; out_R = (1.0f - dryposl) * drystream_L + dryposr * drystream_R + (1.0f - wetposl) * wetstream_L + wetposr * wetstream_R; *(output_L++) = out_L; *(output_R++) = out_R; } } void set_run_adding_gain_Doubler(LADSPA_Handle Instance, LADSPA_Data gain) { Doubler * ptr = (Doubler *)Instance; ptr->run_adding_gain = gain; } void run_adding_Doubler(LADSPA_Handle Instance, unsigned long SampleCount) { Doubler * ptr = (Doubler *)Instance; LADSPA_Data pitch = LIMIT(*(ptr->pitch),0.0f,1.0f) + 0.75f; LADSPA_Data depth = LIMIT(((1.0f - LIMIT(*(ptr->pitch),0.0f,1.0f)) * 1.75f + 0.25f) * ptr->sample_rate / 6000.0f / M_PI, 0, ptr->buflen_L / 2); LADSPA_Data time = LIMIT(*(ptr->time), 0.0f, 1.0f) + 0.5f; LADSPA_Data drylevel = db2lin(LIMIT(*(ptr->drylevel),-90.0f,20.0f)); LADSPA_Data wetlevel = db2lin(LIMIT(*(ptr->wetlevel),-90.0f,20.0f)); LADSPA_Data dryposl = 1.0f - LIMIT(*(ptr->dryposl), 0.0f, 1.0f); LADSPA_Data dryposr = LIMIT(*(ptr->dryposr), 0.0f, 1.0f); LADSPA_Data wetposl = 1.0f - LIMIT(*(ptr->wetposl), 0.0f, 1.0f); LADSPA_Data wetposr = LIMIT(*(ptr->wetposr), 0.0f, 1.0f); LADSPA_Data * input_L = ptr->input_L; LADSPA_Data * input_R = ptr->input_R; LADSPA_Data * output_L = ptr->output_L; LADSPA_Data * output_R = ptr->output_R; unsigned long sample_index; unsigned long sample_count = SampleCount; LADSPA_Data in_L = 0.0f; LADSPA_Data in_R = 0.0f; LADSPA_Data out_L = 0.0f; LADSPA_Data out_R = 0.0f; LADSPA_Data fpos = 0.0f; LADSPA_Data n = 0.0f; LADSPA_Data rem = 0.0f; LADSPA_Data s_a_L, s_a_R, s_b_L, s_b_R; LADSPA_Data prev_p_pitch = 0.0f; LADSPA_Data prev_p_delay = 0.0f; LADSPA_Data delay; LADSPA_Data drystream_L = 0.0f; LADSPA_Data drystream_R = 0.0f; LADSPA_Data wetstream_L = 0.0f; LADSPA_Data wetstream_R = 0.0f; if (ptr->old_pitch != pitch) { ptr->pitchmod = ptr->p_pitch; prev_p_pitch = ptr->p_pitch; fractal(ptr->ring_pnoise, NOISE_LEN, pitch); ptr->pos_pnoise = 0; ptr->p_pitch = push_buffer(0.0f, ptr->ring_pnoise, ptr->buflen_pnoise, &(ptr->pos_pnoise)); ptr->d_pitch = (ptr->p_pitch - prev_p_pitch) / (float)(ptr->p_stretch); ptr->n_pitch = 0; ptr->old_pitch = pitch; } if (ptr->old_time != time) { ptr->delay = ptr->p_delay; prev_p_delay = ptr->p_delay; fractal(ptr->ring_dnoise, NOISE_LEN, time); ptr->pos_dnoise = 0; ptr->p_delay = push_buffer(0.0f, ptr->ring_dnoise, ptr->buflen_dnoise, &(ptr->pos_dnoise)); ptr->d_delay = (ptr->p_delay - prev_p_delay) / (float)(ptr->d_stretch); ptr->n_delay = 0; ptr->old_time = time; } for (sample_index = 0; sample_index < sample_count; sample_index++) { in_L = *(input_L++); in_R = *(input_R++); push_buffer(in_L, ptr->ring_L, ptr->buflen_L, &(ptr->pos_L)); push_buffer(in_R, ptr->ring_R, ptr->buflen_R, &(ptr->pos_R)); if (ptr->n_pitch < ptr->p_stretch) { ptr->pitchmod += ptr->d_pitch; ptr->n_pitch++; } else { ptr->pitchmod = ptr->p_pitch; prev_p_pitch = ptr->p_pitch; if (!ptr->pos_pnoise) { fractal(ptr->ring_pnoise, NOISE_LEN, pitch); } ptr->p_pitch = push_buffer(0.0f, ptr->ring_pnoise, ptr->buflen_pnoise, &(ptr->pos_pnoise)); ptr->d_pitch = (ptr->p_pitch - prev_p_pitch) / (float)(ptr->p_stretch); ptr->n_pitch = 0; } if (ptr->n_delay < ptr->d_stretch) { ptr->delay += ptr->d_delay; ptr->n_delay++; } else { ptr->delay = ptr->p_delay; prev_p_delay = ptr->p_delay; if (!ptr->pos_dnoise) { fractal(ptr->ring_dnoise, NOISE_LEN, time); } ptr->p_delay = push_buffer(0.0f, ptr->ring_dnoise, ptr->buflen_dnoise, &(ptr->pos_dnoise)); ptr->d_delay = (ptr->p_delay - prev_p_delay) / (float)(ptr->d_stretch); ptr->n_delay = 0; } delay = (12.5f * ptr->delay + 37.5f) * ptr->sample_rate / 1000.0f; fpos = ptr->buflen_L - depth * (1.0f - ptr->pitchmod) - delay - 1.0f; n = floorf(fpos); rem = fpos - n; s_a_L = read_buffer(ptr->ring_L, ptr->buflen_L, ptr->pos_L, (unsigned long) n); s_b_L = read_buffer(ptr->ring_L, ptr->buflen_L, ptr->pos_L, (unsigned long) n + 1); s_a_R = read_buffer(ptr->ring_R, ptr->buflen_R, ptr->pos_R, (unsigned long) n); s_b_R = read_buffer(ptr->ring_R, ptr->buflen_R, ptr->pos_R, (unsigned long) n + 1); drystream_L = drylevel * in_L; drystream_R = drylevel * in_R; wetstream_L = wetlevel * ((1 - rem) * s_a_L + rem * s_b_L); wetstream_R = wetlevel * ((1 - rem) * s_a_R + rem * s_b_R); out_L = dryposl * drystream_L + (1.0f - dryposr) * drystream_R + wetposl * wetstream_L + (1.0f - wetposr) * wetstream_R; out_R = (1.0f - dryposl) * drystream_L + dryposr * drystream_R + (1.0f - wetposl) * wetstream_L + wetposr * wetstream_R; *(output_L++) += ptr->run_adding_gain * out_L; *(output_R++) += ptr->run_adding_gain * out_R; } } /* Throw away a Doubler effect instance. */ void cleanup_Doubler(LADSPA_Handle Instance) { Doubler * ptr = (Doubler *)Instance; free(ptr->ring_L); free(ptr->ring_R); free(ptr->ring_pnoise); free(ptr->ring_dnoise); free(Instance); } LADSPA_Descriptor * stereo_descriptor = NULL; /* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first loaded. */ void __attribute__((constructor)) tap_init() { char ** port_names; LADSPA_PortDescriptor * port_descriptors; LADSPA_PortRangeHint * port_range_hints; if ((stereo_descriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL) exit(1); stereo_descriptor->UniqueID = ID_STEREO; stereo_descriptor->Label = strdup("tap_doubler"); stereo_descriptor->Properties = 0; stereo_descriptor->Name = strdup("TAP Fractal Doubler"); stereo_descriptor->Maker = strdup("Tom Szilagyi"); stereo_descriptor->Copyright = strdup("GPL"); stereo_descriptor->PortCount = PORTCOUNT_STEREO; if ((port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortDescriptor))) == NULL) exit(1); stereo_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_descriptors[TIME] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[PITCH] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[DRYLEVEL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[DRYPOSL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[DRYPOSR] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[WETLEVEL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[WETPOSL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[WETPOSR] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[INPUT_L] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[INPUT_R] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT_L] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT_R] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; if ((port_names = (char **)calloc(PORTCOUNT_STEREO, sizeof(char *))) == NULL) exit(1); stereo_descriptor->PortNames = (const char **)port_names; port_names[TIME] = strdup("Time Tracking"); port_names[PITCH] = strdup("Pitch Tracking"); port_names[DRYLEVEL] = strdup("Dry Level [dB]"); port_names[DRYPOSL] = strdup("Dry Left Position"); port_names[DRYPOSR] = strdup("Dry Right Position"); port_names[WETLEVEL] = strdup("Wet Level [dB]"); port_names[WETPOSL] = strdup("Wet Left Position"); port_names[WETPOSR] = strdup("Wet Right Position"); port_names[INPUT_L] = strdup("Input_L"); port_names[INPUT_R] = strdup("Input_R"); port_names[OUTPUT_L] = strdup("Output_L"); port_names[OUTPUT_R] = strdup("Output_R"); if ((port_range_hints = ((LADSPA_PortRangeHint *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortRangeHint)))) == NULL) exit(1); stereo_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_range_hints[TIME].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MIDDLE); port_range_hints[PITCH].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MIDDLE); port_range_hints[DRYLEVEL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[DRYPOSL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MINIMUM); port_range_hints[DRYPOSR].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MAXIMUM); port_range_hints[WETLEVEL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[WETPOSL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MINIMUM); port_range_hints[WETPOSR].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MAXIMUM); port_range_hints[TIME].LowerBound = 0.0f; port_range_hints[TIME].UpperBound = 1.0f; port_range_hints[PITCH].LowerBound = 0.0f; port_range_hints[PITCH].UpperBound = 1.0f; port_range_hints[DRYLEVEL].LowerBound = -90.0f; port_range_hints[DRYLEVEL].UpperBound = +20.0f; port_range_hints[DRYPOSL].LowerBound = 0.0f; port_range_hints[DRYPOSL].UpperBound = 1.0f; port_range_hints[DRYPOSR].LowerBound = 0.0f; port_range_hints[DRYPOSR].UpperBound = 1.0f; port_range_hints[WETLEVEL].LowerBound = -90.0f; port_range_hints[WETLEVEL].UpperBound = +20.0f; port_range_hints[WETPOSL].LowerBound = 0.0f; port_range_hints[WETPOSL].UpperBound = 1.0f; port_range_hints[WETPOSR].LowerBound = 0.0f; port_range_hints[WETPOSR].UpperBound = 1.0f; port_range_hints[INPUT_L].HintDescriptor = 0; port_range_hints[INPUT_R].HintDescriptor = 0; port_range_hints[OUTPUT_L].HintDescriptor = 0; port_range_hints[OUTPUT_R].HintDescriptor = 0; stereo_descriptor->instantiate = instantiate_Doubler; stereo_descriptor->connect_port = connect_port_Doubler; stereo_descriptor->activate = activate_Doubler; stereo_descriptor->run = run_Doubler; stereo_descriptor->run_adding = run_adding_Doubler; stereo_descriptor->set_run_adding_gain = set_run_adding_gain_Doubler; stereo_descriptor->deactivate = NULL; stereo_descriptor->cleanup = cleanup_Doubler; } void delete_descriptor(LADSPA_Descriptor * descriptor) { unsigned long index; if (descriptor) { free((char *)descriptor->Label); free((char *)descriptor->Name); free((char *)descriptor->Maker); free((char *)descriptor->Copyright); free((LADSPA_PortDescriptor *)descriptor->PortDescriptors); for (index = 0; index < descriptor->PortCount; index++) free((char *)(descriptor->PortNames[index])); free((char **)descriptor->PortNames); free((LADSPA_PortRangeHint *)descriptor->PortRangeHints); free(descriptor); } } /* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */ void __attribute__((destructor)) tap_fini() { delete_descriptor(stereo_descriptor); } /* Return a descriptor of the requested plugin type. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index) { switch (Index) { case 0: return stereo_descriptor; default: return NULL; } } tap-plugins-1.0.0/tap_dynamics_m.c000066400000000000000000000420031320332260600171020ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include "tap_utils.h" /* ***** VERY IMPORTANT! ***** * * If you enable this, the plugin will use float arithmetics in DSP * calculations. This usually yields lower average CPU usage, but * occasionaly may result in high CPU peaks which cause trouble to you * and your JACK server. The default is to use fixpoint arithmetics * (with the following #define commented out). But (depending on the * processor on which you run the code) you may find floating point * mode usable. */ /*#define DYN_CALC_FLOAT*/ typedef signed int sample; /* coefficient for float to sample (signed int) conversion */ #define F2S 2147483 #ifdef DYN_CALC_FLOAT typedef LADSPA_Data dyn_t; typedef float rms_t; #else typedef sample dyn_t; typedef int64_t rms_t; #endif /* The Unique ID of the plugin: */ #define ID_MONO 2152 /* The port numbers for the plugin: */ #define ATTACK 0 #define RELEASE 1 #define OFFSGAIN 2 #define MUGAIN 3 #define RMSENV 4 #define MODGAIN 5 #define MODE 6 #define INPUT 7 #define OUTPUT 8 /* Total number of ports */ #define PORTCOUNT_MONO 9 #define TABSIZE 256 #define RMSSIZE 64 typedef struct { rms_t buffer[RMSSIZE]; unsigned int pos; rms_t sum; } rms_env; /* max. number of breakpoints on in/out dB graph */ #define MAX_POINTS 20 typedef struct { LADSPA_Data x; LADSPA_Data y; } GRAPH_POINT; typedef struct { unsigned long num_points; GRAPH_POINT points[MAX_POINTS]; } DYNAMICS_DATA; #include "tap_dynamics_presets.h" /* The structure used to hold port connection information and state */ typedef struct { LADSPA_Data * attack; LADSPA_Data * release; LADSPA_Data * offsgain; LADSPA_Data * mugain; LADSPA_Data * rmsenv; LADSPA_Data * modgain; LADSPA_Data * mode; LADSPA_Data * input; LADSPA_Data * output; unsigned long sample_rate; float * as; unsigned long count; dyn_t amp; dyn_t env; float gain; float gain_out; rms_env * rms; rms_t sum; DYNAMICS_DATA graph; LADSPA_Data run_adding_gain; } Dynamics; /* RMS envelope stuff, grabbed without a second thought from Steve Harris's swh-plugins, util/rms.c */ /* Adapted, though, to be able to use fixed-point arithmetics as well. */ rms_env * rms_env_new(void) { rms_env * new = (rms_env *)calloc(1, sizeof(rms_env)); return new; } void rms_env_reset(rms_env *r) { unsigned int i; for (i = 0; i < RMSSIZE; i++) { r->buffer[i] = 0.0f; } r->pos = 0; r->sum = 0.0f; } inline static dyn_t rms_env_process(rms_env *r, const rms_t x) { r->sum -= r->buffer[r->pos]; r->sum += x; r->buffer[r->pos] = x; r->pos = (r->pos + 1) & (RMSSIZE - 1); #ifdef DYN_CALC_FLOAT return sqrt(r->sum / (float)RMSSIZE); #else return sqrt(r->sum / RMSSIZE); #endif } inline LADSPA_Data get_table_gain(int mode, LADSPA_Data level) { LADSPA_Data x1 = -80.0f; LADSPA_Data y1 = -80.0f; LADSPA_Data x2 = 0.0f; LADSPA_Data y2 = 0.0f; unsigned int i = 0; if (level <= -80.0f) return get_table_gain(mode, -79.9f); while (i < dyn_data[mode].num_points && dyn_data[mode].points[i].x < level) { x1 = dyn_data[mode].points[i].x; y1 = dyn_data[mode].points[i].y; i++; } if (i < dyn_data[mode].num_points) { x2 = dyn_data[mode].points[i].x; y2 = dyn_data[mode].points[i].y; } else return 0.0f; return y1 + ((level - x1) * (y2 - y1) / (x2 - x1)) - level; } /* Construct a new plugin instance. */ LADSPA_Handle instantiate_Dynamics(const LADSPA_Descriptor * Descriptor, unsigned long sample_rate) { LADSPA_Handle * ptr; float * as = NULL; unsigned int count = 0; dyn_t amp = 0.0f; dyn_t env = 0.0f; float gain = 0.0f; float gain_out = 0.0f; rms_env * rms = NULL; rms_t sum = 0; int i; if ((ptr = malloc(sizeof(Dynamics))) == NULL) return NULL; ((Dynamics *)ptr)->sample_rate = sample_rate; ((Dynamics *)ptr)->run_adding_gain = 1.0; if ((rms = rms_env_new()) == NULL) return NULL; if ((as = malloc(TABSIZE * sizeof(float))) == NULL) return NULL; as[0] = 1.0f; for (i = 1; i < TABSIZE; i++) { as[i] = expf(-1.0f / (sample_rate * (float)i / (float)TABSIZE)); } ((Dynamics *)ptr)->as = as; ((Dynamics *)ptr)->count = count; ((Dynamics *)ptr)->amp = amp; ((Dynamics *)ptr)->env = env; ((Dynamics *)ptr)->gain = gain; ((Dynamics *)ptr)->gain_out = gain_out; ((Dynamics *)ptr)->rms = rms; ((Dynamics *)ptr)->sum = sum; return ptr; } /* Connect a port to a data location. */ void connect_port_Dynamics(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * DataLocation) { Dynamics * ptr = (Dynamics *)Instance; switch (Port) { case ATTACK: ptr->attack = DataLocation; break; case RELEASE: ptr->release = DataLocation; break; case OFFSGAIN: ptr->offsgain = DataLocation; break; case MUGAIN: ptr->mugain = DataLocation; break; case RMSENV: ptr->rmsenv = DataLocation; *(ptr->rmsenv) = -60.0f; break; case MODGAIN: ptr->modgain = DataLocation; *(ptr->modgain) = 0.0f; break; case MODE: ptr->mode = DataLocation; break; case INPUT: ptr->input = DataLocation; break; case OUTPUT: ptr->output = DataLocation; break; } } void run_Dynamics(LADSPA_Handle Instance, unsigned long sample_count) { Dynamics * ptr = (Dynamics *)Instance; LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; const float attack = LIMIT(*(ptr->attack), 4.0f, 500.0f); const float release = LIMIT(*(ptr->release), 4.0f, 1000.0f); const float offsgain = LIMIT(*(ptr->offsgain), -20.0f, 20.0f); const float mugain = db2lin(LIMIT(*(ptr->mugain), -20.0f, 20.0f)); const int mode = LIMIT(*(ptr->mode), 0, NUM_MODES-1); unsigned long sample_index; dyn_t amp = ptr->amp; dyn_t env = ptr->env; float * as = ptr->as; unsigned int count = ptr->count; float gain = ptr->gain; float gain_out = ptr->gain_out; rms_env * rms = ptr->rms; rms_t sum = ptr->sum; const float ga = as[(unsigned int)(attack * 0.001f * (float)(TABSIZE-1))]; const float gr = as[(unsigned int)(release * 0.001f * (float)(TABSIZE-1))]; const float ef_a = ga * 0.25f; const float ef_ai = 1.0f - ef_a; float level = 0.0f; float adjust = 0.0f; for (sample_index = 0; sample_index < sample_count; sample_index++) { #ifdef DYN_CALC_FLOAT sum += input[sample_index] * input[sample_index]; if (amp > env) { env = env * ga + amp * (1.0f - ga); } else { env = env * gr + amp * (1.0f - gr); } #else sum += (rms_t)(input[sample_index] * F2S * input[sample_index] * F2S); if (amp) { if (amp > env) { env = (double)env * ga + (double)amp * (1.0f - ga); } else { env = (double)env * gr + (double)amp * (1.0f - gr); } } else env = 0; #endif if (count++ % 4 == 3) { #ifdef DYN_CALC_FLOAT amp = rms_env_process(rms, sum / 4); #else if (sum) amp = rms_env_process(rms, sum / 4); else amp = 0; #endif #ifdef DYN_CALC_FLOAT if (isnan(amp)) amp = 0.0f; #endif sum = 0; /* set gain_out according to the difference between the envelope volume level (env) and the corresponding output level (from graph) */ #ifdef DYN_CALC_FLOAT level = 20 * log10f(2 * env); #else level = 20 * log10f(2 * (double)env / (double)F2S); #endif adjust = get_table_gain(mode, level + offsgain); gain_out = db2lin(adjust); } gain = gain * ef_a + gain_out * ef_ai; output[sample_index] = input[sample_index] * gain * mugain; } ptr->sum = sum; ptr->amp = amp; ptr->gain = gain; ptr->gain_out = gain_out; ptr->env = env; ptr->count = count; *(ptr->rmsenv) = LIMIT(level, -60.0f, 20.0f); *(ptr->modgain) = LIMIT(adjust, -60.0f, 20.0f); } void set_run_adding_gain_Dynamics(LADSPA_Handle Instance, LADSPA_Data gain) { Dynamics * ptr = (Dynamics *)Instance; ptr->run_adding_gain = gain; } void run_adding_Dynamics(LADSPA_Handle Instance, unsigned long sample_count) { Dynamics * ptr = (Dynamics *)Instance; LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; const float attack = LIMIT(*(ptr->attack), 4.0f, 500.0f); const float release = LIMIT(*(ptr->release), 4.0f, 1000.0f); const float offsgain = LIMIT(*(ptr->offsgain), -20.0f, 20.0f); const float mugain = db2lin(LIMIT(*(ptr->mugain), -20.0f, 20.0f)); const int mode = LIMIT(*(ptr->mode), 0, NUM_MODES-1); unsigned long sample_index; dyn_t amp = ptr->amp; dyn_t env = ptr->env; float * as = ptr->as; unsigned int count = ptr->count; float gain = ptr->gain; float gain_out = ptr->gain_out; rms_env * rms = ptr->rms; rms_t sum = ptr->sum; const float ga = as[(unsigned int)(attack * 0.001f * (float)(TABSIZE-1))]; const float gr = as[(unsigned int)(release * 0.001f * (float)(TABSIZE-1))]; const float ef_a = ga * 0.25f; const float ef_ai = 1.0f - ef_a; float level = 0.0f; float adjust = 0.0f; for (sample_index = 0; sample_index < sample_count; sample_index++) { #ifdef DYN_CALC_FLOAT sum += input[sample_index] * input[sample_index]; if (amp > env) { env = env * ga + amp * (1.0f - ga); } else { env = env * gr + amp * (1.0f - gr); } #else sum += (rms_t)(input[sample_index] * F2S * input[sample_index] * F2S); if (amp) { if (amp > env) { env = (double)env * ga + (double)amp * (1.0f - ga); } else { env = (double)env * gr + (double)amp * (1.0f - gr); } } else env = 0; #endif if (count++ % 4 == 3) { #ifdef DYN_CALC_FLOAT amp = rms_env_process(rms, sum / 4); #else if (sum) amp = rms_env_process(rms, sum / 4); else amp = 0; #endif #ifdef DYN_CALC_FLOAT if (isnan(amp)) amp = 0.0f; #endif sum = 0; /* set gain_out according to the difference between the envelope volume level (env) and the corresponding output level (from graph) */ #ifdef DYN_CALC_FLOAT level = 20 * log10f(2 * env); #else level = 20 * log10f(2 * (double)env / (double)F2S); #endif adjust = get_table_gain(mode, level + offsgain); gain_out = db2lin(adjust); } gain = gain * ef_a + gain_out * ef_ai; output[sample_index] += ptr->run_adding_gain * input[sample_index] * gain * mugain; } ptr->sum = sum; ptr->amp = amp; ptr->gain = gain; ptr->gain_out = gain_out; ptr->env = env; ptr->count = count; *(ptr->rmsenv) = LIMIT(level, -60.0f, 20.0f); *(ptr->modgain) = LIMIT(adjust, -60.0f, 20.0f); } /* Throw away a Dynamics effect instance. */ void cleanup_Dynamics(LADSPA_Handle Instance) { Dynamics * ptr = (Dynamics *)Instance; free(ptr->rms); free(ptr->as); free(Instance); } LADSPA_Descriptor * mono_descriptor = NULL; /* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first loaded. */ void __attribute__((constructor)) tap_init() { char ** port_names; LADSPA_PortDescriptor * port_descriptors; LADSPA_PortRangeHint * port_range_hints; if ((mono_descriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL) exit(1); mono_descriptor->UniqueID = ID_MONO; mono_descriptor->Label = strdup("tap_dynamics_m"); mono_descriptor->Properties = 0; mono_descriptor->Name = strdup("TAP Dynamics (M)"); mono_descriptor->Maker = strdup("Tom Szilagyi"); mono_descriptor->Copyright = strdup("GPL"); mono_descriptor->PortCount = PORTCOUNT_MONO; if ((port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortDescriptor))) == NULL) exit(1); mono_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_descriptors[ATTACK] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[RELEASE] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[OFFSGAIN] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[MUGAIN] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[MODE] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[RMSENV] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL; port_descriptors[MODGAIN] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL; port_descriptors[INPUT] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; if ((port_names = (char **)calloc(PORTCOUNT_MONO, sizeof(char *))) == NULL) exit(1); mono_descriptor->PortNames = (const char **)port_names; port_names[ATTACK] = strdup("Attack [ms]"); port_names[RELEASE] = strdup("Release [ms]"); port_names[OFFSGAIN] = strdup("Offset Gain [dB]"); port_names[MUGAIN] = strdup("Makeup Gain [dB]"); port_names[MODE] = strdup("Function"); port_names[RMSENV] = strdup("Envelope Volume [dB]"); port_names[MODGAIN] = strdup("Gain Adjustment [dB]"); port_names[INPUT] = strdup("Input"); port_names[OUTPUT] = strdup("Output"); if ((port_range_hints = ((LADSPA_PortRangeHint *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortRangeHint)))) == NULL) exit(1); mono_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_range_hints[ATTACK].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_LOW); port_range_hints[RELEASE].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MIDDLE); port_range_hints[OFFSGAIN].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[MUGAIN].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[RMSENV].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[MODGAIN].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[MODE].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_INTEGER | LADSPA_HINT_DEFAULT_0); port_range_hints[ATTACK].LowerBound = 4.0f; port_range_hints[ATTACK].UpperBound = 500.0f; port_range_hints[RELEASE].LowerBound = 4.0f; port_range_hints[RELEASE].UpperBound = 1000.0f; port_range_hints[OFFSGAIN].LowerBound = -20.0f; port_range_hints[OFFSGAIN].UpperBound = 20.0f; port_range_hints[MUGAIN].LowerBound = -20.0f; port_range_hints[MUGAIN].UpperBound = 20.0f; port_range_hints[RMSENV].LowerBound = -60.0f; port_range_hints[RMSENV].UpperBound = 20.0f; port_range_hints[MODGAIN].LowerBound = -60.0f; port_range_hints[MODGAIN].UpperBound = 20.0f; port_range_hints[MODE].LowerBound = 0; port_range_hints[MODE].UpperBound = NUM_MODES - 0.9f; port_range_hints[INPUT].HintDescriptor = 0; port_range_hints[OUTPUT].HintDescriptor = 0; mono_descriptor->instantiate = instantiate_Dynamics; mono_descriptor->connect_port = connect_port_Dynamics; mono_descriptor->activate = NULL; mono_descriptor->run = run_Dynamics; mono_descriptor->run_adding = run_adding_Dynamics; mono_descriptor->set_run_adding_gain = set_run_adding_gain_Dynamics; mono_descriptor->deactivate = NULL; mono_descriptor->cleanup = cleanup_Dynamics; } void delete_descriptor(LADSPA_Descriptor * descriptor) { unsigned long index; if (descriptor) { free((char *)descriptor->Label); free((char *)descriptor->Name); free((char *)descriptor->Maker); free((char *)descriptor->Copyright); free((LADSPA_PortDescriptor *)descriptor->PortDescriptors); for (index = 0; index < descriptor->PortCount; index++) free((char *)(descriptor->PortNames[index])); free((char **)descriptor->PortNames); free((LADSPA_PortRangeHint *)descriptor->PortRangeHints); free(descriptor); } } /* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */ void __attribute__((destructor)) tap_fini() { delete_descriptor(mono_descriptor); } /* Return a descriptor of the requested plugin type. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index) { switch (Index) { case 0: return mono_descriptor; default: return NULL; } } tap-plugins-1.0.0/tap_dynamics_presets.h000066400000000000000000000063571320332260600203540ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Number of dynamics presets */ #define NUM_MODES 15 /* Dynamics presets data */ DYNAMICS_DATA dyn_data[NUM_MODES] = { { /* 2:1 compression starting at -6 dB */ 4, { {-80.0f, -80.0f}, {-6.0f, -6.0f}, {0.0f, -3.8f}, {20.0f, 3.5f}, }, }, { /* 2:1 compression starting at -9 dB */ 4, { {-80.0f, -80.0f}, {-9.0f, -9.0f}, {0.0f, -5.3f}, {20.0f, 2.9f}, }, }, { /* 2:1 compression starting at -12 dB */ 4, { {-80.0f, -80.0f}, {-12.0f, -12.0f}, {0.0f, -6.8f}, {20.0f, 1.9f}, }, }, { /* 2:1 compression starting at -18 dB */ 4, { {-80.0f, -80.0f}, {-18.0f, -18.0f}, {0.0f, -9.8f}, {20.0f, -0.7f}, }, }, { /* 2.5:1 compression starting at -12 dB */ 4, { {-80.0f, -80.0f}, {-12.0f, -12.0f}, {0.0f, -7.5f}, {20.0f, 0.0f}, }, }, { /* 3:1 compression starting at -12 dB */ 4, { {-80.0f, -80.0f}, {-12.0f, -12.0f}, {0.0f, -9.0f}, {20.0f, -4.0f}, }, }, { /* 3:1 compression starting at -15 dB */ 4, { {-80.0f, -80.0f}, {-15.0f, -15.0f}, {0.0f, -10.8f}, {20.0f, -5.2f}, }, }, { /* Compressor/Gate */ 5, { {-80.0f, -105.0f}, {-62.0f, -80.0f}, {-15.4f, -15.4f}, {0.0f, -12.0f}, {20.0f, -7.6f}, }, }, { /* Expander */ 8, { {-80.0f, -169.0f}, {-54.0f, -80.0f}, {-49.5f, -64.6f}, {-41.1f, -41.1f}, {-25.8f, -15.0f}, {-10.8f, -4.5f}, {0.0f, 0.0f}, {20.0f, 8.3f}, }, }, { /* Hard limiter at -6 dB */ 3, { {-80.0f, -80.0f}, {-6.0f, -6.0f}, {20.0f, -6.0f}, }, }, { /* Hard limiter at -12 dB */ 3, { {-80.0f, -80.0f}, {-12.0f, -12.0f}, {20.0f, -12.0f}, }, }, { /* Hard noise gate at -35 dB */ 4, { {-80.0f, -115.0f}, {-35.1f, -80.0f}, {-35.0f, -35.0f}, {20.0f, 20.0f}, }, }, { /* Soft limiter */ 5, { {-80.0f, -80.0f}, {-12.4f, -12.4f}, {-6.0f, -8.0f}, {0.0f, -6.8f}, {20.0f, -2.8f}, }, }, { /* Soft knee comp/gate (-24 dB threshold) */ 8, { {-80.0f, -113.7f}, {-46.3f, -80.0f}, {-42.0f, -56.8f}, {-33.6f, -36.3f}, {-24.0f, -24.0f}, {-11.1f, -15.4f}, {0.0f, -12.0f}, {20.0f, -5.8f}, }, }, { /* Soft noise gate below -36 dB */ 7, { {-80.0f, -104.0f}, {-56.0f, -80.0f}, {-51.8f, -67.2f}, {-44.7f, -49.3f}, {-34.0f, -34.0f}, {0.0f, 0.0f}, {20.0f, 20.0f}, }, }, /* You can add your own presets here. * Please read the docs about the format. */ }; tap-plugins-1.0.0/tap_dynamics_st.c000066400000000000000000000611621320332260600173030ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include "tap_utils.h" /* ***** VERY IMPORTANT! ***** * * If you enable this, the plugin will use float arithmetics in DSP * calculations. This usually yields lower average CPU usage, but * occasionaly may result in high CPU peaks which cause trouble to you * and your JACK server. The default is to use fixpoint arithmetics * (with the following #define commented out). But (depending on the * processor on which you run the code) you may find floating point * mode usable. */ /*#define DYN_CALC_FLOAT*/ typedef signed int sample; /* coefficient for float to sample (signed int) conversion */ /* this allows for about 60 dB headroom above 0dB, if 0 dB is equivalent to 1.0f */ /* As 2^31 equals more than 180 dB, about 120 dB dynamics remains below 0 dB */ #define F2S 2147483 #ifdef DYN_CALC_FLOAT typedef LADSPA_Data dyn_t; typedef float rms_t; #else typedef sample dyn_t; typedef int64_t rms_t; #endif /* The Unique ID of the plugin: */ #define ID_STEREO 2153 /* The port numbers for the plugin: */ #define ATTACK 0 #define RELEASE 1 #define OFFSGAIN 2 #define MUGAIN 3 #define RMSENV_L 4 #define RMSENV_R 5 #define MODGAIN_L 6 #define MODGAIN_R 7 #define STEREO 8 #define MODE 9 #define INPUT_L 10 #define INPUT_R 11 #define OUTPUT_L 12 #define OUTPUT_R 13 /* Total number of ports */ #define PORTCOUNT_STEREO 14 #define TABSIZE 256 #define RMSSIZE 64 typedef struct { rms_t buffer[RMSSIZE]; unsigned int pos; rms_t sum; } rms_env; /* max. number of breakpoints on in/out dB graph */ #define MAX_POINTS 20 typedef struct { LADSPA_Data x; LADSPA_Data y; } GRAPH_POINT; typedef struct { unsigned long num_points; GRAPH_POINT points[MAX_POINTS]; } DYNAMICS_DATA; #include "tap_dynamics_presets.h" /* The structure used to hold port connection information and state */ typedef struct { LADSPA_Data * attack; LADSPA_Data * release; LADSPA_Data * offsgain; LADSPA_Data * mugain; LADSPA_Data * rmsenv_L; LADSPA_Data * rmsenv_R; LADSPA_Data * modgain_L; LADSPA_Data * modgain_R; LADSPA_Data * stereo; LADSPA_Data * mode; LADSPA_Data * input_L; LADSPA_Data * output_L; LADSPA_Data * input_R; LADSPA_Data * output_R; unsigned long sample_rate; float * as; unsigned long count; dyn_t amp_L; dyn_t amp_R; dyn_t env_L; dyn_t env_R; float gain_L; float gain_R; float gain_out_L; float gain_out_R; rms_env * rms_L; rms_env * rms_R; rms_t sum_L; rms_t sum_R; DYNAMICS_DATA graph; LADSPA_Data run_adding_gain; } Dynamics; /* RMS envelope stuff, grabbed without a second thought from Steve Harris's swh-plugins, util/rms.c */ /* Adapted, though, to be able to use fixed-point arithmetics as well. */ rms_env * rms_env_new(void) { rms_env * new = (rms_env *)calloc(1, sizeof(rms_env)); return new; } void rms_env_reset(rms_env *r) { unsigned int i; for (i = 0; i < RMSSIZE; i++) { r->buffer[i] = 0.0f; } r->pos = 0; r->sum = 0.0f; } inline static dyn_t rms_env_process(rms_env *r, const rms_t x) { r->sum -= r->buffer[r->pos]; r->sum += x; r->buffer[r->pos] = x; r->pos = (r->pos + 1) & (RMSSIZE - 1); #ifdef DYN_CALC_FLOAT return sqrt(r->sum / (float)RMSSIZE); #else return sqrt(r->sum / RMSSIZE); #endif } inline LADSPA_Data get_table_gain(int mode, LADSPA_Data level) { LADSPA_Data x1 = -80.0f; LADSPA_Data y1 = -80.0f; LADSPA_Data x2 = 0.0f; LADSPA_Data y2 = 0.0f; unsigned int i = 0; if (level <= -80.0f) return get_table_gain(mode, -79.9f); while (i < dyn_data[mode].num_points && dyn_data[mode].points[i].x < level) { x1 = dyn_data[mode].points[i].x; y1 = dyn_data[mode].points[i].y; i++; } if (i < dyn_data[mode].num_points) { x2 = dyn_data[mode].points[i].x; y2 = dyn_data[mode].points[i].y; } else return 0.0f; return y1 + ((level - x1) * (y2 - y1) / (x2 - x1)) - level; } /* Construct a new plugin instance. */ LADSPA_Handle instantiate_Dynamics(const LADSPA_Descriptor * Descriptor, unsigned long sample_rate) { LADSPA_Handle * ptr; float * as = NULL; unsigned int count = 0; dyn_t amp_L = 0.0f; dyn_t amp_R = 0.0f; dyn_t env_L = 0.0f; dyn_t env_R = 0.0f; float gain_L = 0.0f; float gain_R = 0.0f; float gain_out_L = 0.0f; float gain_out_R = 0.0f; rms_env * rms_L = NULL; rms_env * rms_R = NULL; rms_t sum_L = 0.0f; rms_t sum_R = 0.0f; int i; if ((ptr = malloc(sizeof(Dynamics))) == NULL) return NULL; ((Dynamics *)ptr)->sample_rate = sample_rate; ((Dynamics *)ptr)->run_adding_gain = 1.0; if ((rms_L = rms_env_new()) == NULL) return NULL; if ((rms_R = rms_env_new()) == NULL) return NULL; if ((as = malloc(TABSIZE * sizeof(float))) == NULL) return NULL; as[0] = 1.0f; for (i = 1; i < TABSIZE; i++) { as[i] = expf(-1.0f / (sample_rate * (float)i / (float)TABSIZE)); } ((Dynamics *)ptr)->as = as; ((Dynamics *)ptr)->count = count; ((Dynamics *)ptr)->amp_L = amp_L; ((Dynamics *)ptr)->amp_R = amp_R; ((Dynamics *)ptr)->env_L = env_L; ((Dynamics *)ptr)->env_R = env_R; ((Dynamics *)ptr)->gain_L = gain_L; ((Dynamics *)ptr)->gain_R = gain_R; ((Dynamics *)ptr)->gain_out_L = gain_out_L; ((Dynamics *)ptr)->gain_out_R = gain_out_R; ((Dynamics *)ptr)->rms_L = rms_L; ((Dynamics *)ptr)->rms_R = rms_R; ((Dynamics *)ptr)->sum_L = sum_L; ((Dynamics *)ptr)->sum_R = sum_R; return ptr; } /* Connect a port to a data location. */ void connect_port_Dynamics(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * DataLocation) { Dynamics * ptr = (Dynamics *)Instance; switch (Port) { case ATTACK: ptr->attack = DataLocation; break; case RELEASE: ptr->release = DataLocation; break; case OFFSGAIN: ptr->offsgain = DataLocation; break; case MUGAIN: ptr->mugain = DataLocation; break; case RMSENV_L: ptr->rmsenv_L = DataLocation; *(ptr->rmsenv_L) = -60.0f; break; case RMSENV_R: ptr->rmsenv_R = DataLocation; *(ptr->rmsenv_R) = -60.0f; break; case MODGAIN_L: ptr->modgain_L = DataLocation; *(ptr->modgain_L) = 0.0f; break; case MODGAIN_R: ptr->modgain_R = DataLocation; *(ptr->modgain_R) = 0.0f; break; case STEREO: ptr->stereo = DataLocation; break; case MODE: ptr->mode = DataLocation; break; case INPUT_L: ptr->input_L = DataLocation; break; case OUTPUT_L: ptr->output_L = DataLocation; break; case INPUT_R: ptr->input_R = DataLocation; break; case OUTPUT_R: ptr->output_R = DataLocation; break; } } void run_Dynamics(LADSPA_Handle Instance, unsigned long sample_count) { Dynamics * ptr = (Dynamics *)Instance; LADSPA_Data * input_L = ptr->input_L; LADSPA_Data * output_L = ptr->output_L; LADSPA_Data * input_R = ptr->input_R; LADSPA_Data * output_R = ptr->output_R; const float attack = LIMIT(*(ptr->attack), 4.0f, 500.0f); const float release = LIMIT(*(ptr->release), 4.0f, 1000.0f); const float offsgain = LIMIT(*(ptr->offsgain), -20.0f, 20.0f); const float mugain = db2lin(LIMIT(*(ptr->mugain), -20.0f, 20.0f)); const int stereo = LIMIT(*(ptr->stereo), 0, 2); const int mode = LIMIT(*(ptr->mode), 0, NUM_MODES-1); unsigned long sample_index; dyn_t amp_L = ptr->amp_L; dyn_t amp_R = ptr->amp_R; dyn_t env_L = ptr->env_L; dyn_t env_R = ptr->env_R; float * as = ptr->as; unsigned int count = ptr->count; float gain_L = ptr->gain_L; float gain_R = ptr->gain_R; float gain_out_L = ptr->gain_out_L; float gain_out_R = ptr->gain_out_R; rms_env * rms_L = ptr->rms_L; rms_env * rms_R = ptr->rms_R; rms_t sum_L = ptr->sum_L; rms_t sum_R = ptr->sum_R; const float ga = as[(unsigned int)(attack * 0.001f * (LADSPA_Data)(TABSIZE-1))]; const float gr = as[(unsigned int)(release * 0.001f * (LADSPA_Data)(TABSIZE-1))]; const float ef_a = ga * 0.25f; const float ef_ai = 1.0f - ef_a; float level_L = 0.0f; float level_R = 0.0f; float adjust_L = 0.0f; float adjust_R = 0.0f; for (sample_index = 0; sample_index < sample_count; sample_index++) { #ifdef DYN_CALC_FLOAT sum_L += input_L[sample_index] * input_L[sample_index]; sum_R += input_R[sample_index] * input_R[sample_index]; if (amp_L > env_L) { env_L = env_L * ga + amp_L * (1.0f - ga); } else { env_L = env_L * gr + amp_L * (1.0f - gr); } if (amp_R > env_R) { env_R = env_R * ga + amp_R * (1.0f - ga); } else { env_R = env_R * gr + amp_R * (1.0f - gr); } #else sum_L += (rms_t)(input_L[sample_index] * F2S) * (rms_t)(input_L[sample_index] * F2S); sum_R += (rms_t)(input_R[sample_index] * F2S) * (rms_t)(input_R[sample_index] * F2S); if (amp_L) { if (amp_L > env_L) { env_L = (double)env_L * ga + (double)amp_L * (1.0f - ga); } else { env_L = (double)env_L * gr + (double)amp_L * (1.0f - gr); } } else env_L = 0; if (amp_R) { if (amp_R > env_R) { env_R = (double)env_R * ga + (double)amp_R * (1.0f - ga); } else { env_R = (double)env_R * gr + (double)amp_R * (1.0f - gr); } } else env_R = 0; #endif if (count++ % 4 == 3) { #ifdef DYN_CALC_FLOAT amp_L = rms_env_process(rms_L, sum_L * 0.25f); amp_R = rms_env_process(rms_R, sum_R * 0.25f); #else if (sum_L) amp_L = rms_env_process(rms_L, sum_L * 0.25f); else amp_L = 0; if (sum_R) amp_R = rms_env_process(rms_R, sum_R * 0.25f); else amp_R = 0; #endif #ifdef DYN_CALC_FLOAT if (isnan(amp_L)) amp_L = 0.0f; if (isnan(amp_R)) amp_R = 0.0f; #endif sum_L = sum_R = 0; /* set gain_out according to the difference between the envelope volume level (env) and the corresponding output level (from graph) */ #ifdef DYN_CALC_FLOAT level_L = 20 * log10f(2 * env_L); level_R = 20 * log10f(2 * env_R); #else level_L = 20 * log10f(2 * (double)env_L / (double)F2S); level_R = 20 * log10f(2 * (double)env_R / (double)F2S); #endif adjust_L = get_table_gain(mode, level_L + offsgain); adjust_R = get_table_gain(mode, level_R + offsgain); /* set gains according to stereo mode */ switch (stereo) { case 0: gain_out_L = db2lin(adjust_L); gain_out_R = db2lin(adjust_R); break; case 1: adjust_L = adjust_R = (adjust_L + adjust_R) / 2.0f; gain_out_L = gain_out_R = db2lin(adjust_L); break; case 2: adjust_L = adjust_R = (adjust_L > adjust_R) ? adjust_L : adjust_R; gain_out_L = gain_out_R = db2lin(adjust_L); break; } } gain_L = gain_L * ef_a + gain_out_L * ef_ai; gain_R = gain_R * ef_a + gain_out_R * ef_ai; output_L[sample_index] = input_L[sample_index] * gain_L * mugain; output_R[sample_index] = input_R[sample_index] * gain_R * mugain; } ptr->sum_L = sum_L; ptr->sum_R = sum_R; ptr->amp_L = amp_L; ptr->amp_R = amp_R; ptr->gain_L = gain_L; ptr->gain_R = gain_R; ptr->gain_out_L = gain_out_L; ptr->gain_out_R = gain_out_R; ptr->env_L = env_L; ptr->env_R = env_R; ptr->count = count; *(ptr->rmsenv_L) = LIMIT(level_L, -60.0f, 20.0f); *(ptr->rmsenv_R) = LIMIT(level_R, -60.0f, 20.0f); *(ptr->modgain_L) = LIMIT(adjust_L, -60.0f, 20.0f); *(ptr->modgain_R) = LIMIT(adjust_R, -60.0f, 20.0f); } void set_run_adding_gain_Dynamics(LADSPA_Handle Instance, LADSPA_Data gain) { Dynamics * ptr = (Dynamics *)Instance; ptr->run_adding_gain = gain; } void run_adding_Dynamics(LADSPA_Handle Instance, unsigned long sample_count) { Dynamics * ptr = (Dynamics *)Instance; LADSPA_Data * input_L = ptr->input_L; LADSPA_Data * output_L = ptr->output_L; LADSPA_Data * input_R = ptr->input_R; LADSPA_Data * output_R = ptr->output_R; const float attack = LIMIT(*(ptr->attack), 4.0f, 500.0f); const float release = LIMIT(*(ptr->release), 4.0f, 1000.0f); const float offsgain = LIMIT(*(ptr->offsgain), -20.0f, 20.0f); const float mugain = db2lin(LIMIT(*(ptr->mugain), -20.0f, 20.0f)); const int stereo = LIMIT(*(ptr->stereo), 0, 2); const int mode = LIMIT(*(ptr->mode), 0, NUM_MODES-1); unsigned long sample_index; dyn_t amp_L = ptr->amp_L; dyn_t amp_R = ptr->amp_R; dyn_t env_L = ptr->env_L; dyn_t env_R = ptr->env_R; float * as = ptr->as; unsigned int count = ptr->count; float gain_L = ptr->gain_L; float gain_R = ptr->gain_R; float gain_out_L = ptr->gain_out_L; float gain_out_R = ptr->gain_out_R; rms_env * rms_L = ptr->rms_L; rms_env * rms_R = ptr->rms_R; rms_t sum_L = ptr->sum_L; rms_t sum_R = ptr->sum_R; const float ga = as[(unsigned int)(attack * 0.001f * (LADSPA_Data)(TABSIZE-1))]; const float gr = as[(unsigned int)(release * 0.001f * (LADSPA_Data)(TABSIZE-1))]; const float ef_a = ga * 0.25f; const float ef_ai = 1.0f - ef_a; float level_L = 0.0f; float level_R = 0.0f; float adjust_L = 0.0f; float adjust_R = 0.0f; for (sample_index = 0; sample_index < sample_count; sample_index++) { #ifdef DYN_CALC_FLOAT sum_L += input_L[sample_index] * input_L[sample_index]; sum_R += input_R[sample_index] * input_R[sample_index]; if (amp_L > env_L) { env_L = env_L * ga + amp_L * (1.0f - ga); } else { env_L = env_L * gr + amp_L * (1.0f - gr); } if (amp_R > env_R) { env_R = env_R * ga + amp_R * (1.0f - ga); } else { env_R = env_R * gr + amp_R * (1.0f - gr); } #else sum_L += (rms_t)(input_L[sample_index] * F2S) * (rms_t)(input_L[sample_index] * F2S); sum_R += (rms_t)(input_R[sample_index] * F2S) * (rms_t)(input_R[sample_index] * F2S); if (amp_L) { if (amp_L > env_L) { env_L = (double)env_L * ga + (double)amp_L * (1.0f - ga); } else { env_L = (double)env_L * gr + (double)amp_L * (1.0f - gr); } } else env_L = 0; if (amp_R) { if (amp_R > env_R) { env_R = (double)env_R * ga + (double)amp_R * (1.0f - ga); } else { env_R = (double)env_R * gr + (double)amp_R * (1.0f - gr); } } else env_R = 0; #endif if (count++ % 4 == 3) { #ifdef DYN_CALC_FLOAT amp_L = rms_env_process(rms_L, sum_L * 0.25f); amp_R = rms_env_process(rms_R, sum_R * 0.25f); #else if (sum_L) amp_L = rms_env_process(rms_L, sum_L * 0.25f); else amp_L = 0; if (sum_R) amp_R = rms_env_process(rms_R, sum_R * 0.25f); else amp_R = 0; #endif #ifdef DYN_CALC_FLOAT if (isnan(amp_L)) amp_L = 0.0f; if (isnan(amp_R)) amp_R = 0.0f; #endif sum_L = sum_R = 0; /* set gain_out according to the difference between the envelope volume level (env) and the corresponding output level (from graph) */ #ifdef DYN_CALC_FLOAT level_L = 20 * log10f(2 * env_L); level_R = 20 * log10f(2 * env_R); #else level_L = 20 * log10f(2 * (double)env_L / (double)F2S); level_R = 20 * log10f(2 * (double)env_R / (double)F2S); #endif adjust_L = get_table_gain(mode, level_L + offsgain); adjust_R = get_table_gain(mode, level_R + offsgain); /* set gains according to stereo mode */ switch (stereo) { case 0: gain_out_L = db2lin(adjust_L); gain_out_R = db2lin(adjust_R); break; case 1: adjust_L = adjust_R = (adjust_L + adjust_R) / 2.0f; gain_out_L = gain_out_R = db2lin(adjust_L); break; case 2: adjust_L = adjust_R = (adjust_L > adjust_R) ? adjust_L : adjust_R; gain_out_L = gain_out_R = db2lin(adjust_L); break; } } gain_L = gain_L * ef_a + gain_out_L * ef_ai; gain_R = gain_R * ef_a + gain_out_R * ef_ai; output_L[sample_index] += ptr->run_adding_gain * input_L[sample_index] * gain_L * mugain; output_R[sample_index] += ptr->run_adding_gain * input_R[sample_index] * gain_R * mugain; } ptr->sum_L = sum_L; ptr->sum_R = sum_R; ptr->amp_L = amp_L; ptr->amp_R = amp_R; ptr->gain_L = gain_L; ptr->gain_R = gain_R; ptr->gain_out_L = gain_out_L; ptr->gain_out_R = gain_out_R; ptr->env_L = env_L; ptr->env_R = env_R; ptr->count = count; *(ptr->rmsenv_L) = LIMIT(level_L, -60.0f, 20.0f); *(ptr->rmsenv_R) = LIMIT(level_R, -60.0f, 20.0f); *(ptr->modgain_L) = LIMIT(adjust_L, -60.0f, 20.0f); *(ptr->modgain_R) = LIMIT(adjust_R, -60.0f, 20.0f); } /* Throw away a Dynamics effect instance. */ void cleanup_Dynamics(LADSPA_Handle Instance) { Dynamics * ptr = (Dynamics *)Instance; free(ptr->rms_L); free(ptr->rms_R); free(ptr->as); free(Instance); } LADSPA_Descriptor * stereo_descriptor = NULL; /* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first loaded. */ void __attribute__((constructor)) tap_init() { char ** port_names; LADSPA_PortDescriptor * port_descriptors; LADSPA_PortRangeHint * port_range_hints; if ((stereo_descriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL) exit(1); stereo_descriptor->UniqueID = ID_STEREO; stereo_descriptor->Label = strdup("tap_dynamics_st"); stereo_descriptor->Properties = 0; stereo_descriptor->Name = strdup("TAP Dynamics (St)"); stereo_descriptor->Maker = strdup("Tom Szilagyi"); stereo_descriptor->Copyright = strdup("GPL"); stereo_descriptor->PortCount = PORTCOUNT_STEREO; if ((port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortDescriptor))) == NULL) exit(1); stereo_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_descriptors[ATTACK] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[RELEASE] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[OFFSGAIN] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[MUGAIN] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[STEREO] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[MODE] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[RMSENV_L] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL; port_descriptors[RMSENV_R] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL; port_descriptors[MODGAIN_L] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL; port_descriptors[MODGAIN_R] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL; port_descriptors[INPUT_L] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[INPUT_R] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT_L] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT_R] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; if ((port_names = (char **)calloc(PORTCOUNT_STEREO, sizeof(char *))) == NULL) exit(1); stereo_descriptor->PortNames = (const char **)port_names; port_names[ATTACK] = strdup("Attack [ms]"); port_names[RELEASE] = strdup("Release [ms]"); port_names[OFFSGAIN] = strdup("Offset Gain [dB]"); port_names[MUGAIN] = strdup("Makeup Gain [dB]"); port_names[STEREO] = strdup("Stereo Mode"); port_names[MODE] = strdup("Function"); port_names[RMSENV_L] = strdup("Envelope Volume (L) [dB]"); port_names[RMSENV_R] = strdup("Envelope Volume (R) [dB]"); port_names[MODGAIN_L] = strdup("Gain Adjustment (L) [dB]"); port_names[MODGAIN_R] = strdup("Gain Adjustment (R) [dB]"); port_names[INPUT_L] = strdup("Input Left"); port_names[INPUT_R] = strdup("Input Right"); port_names[OUTPUT_L] = strdup("Output Left"); port_names[OUTPUT_R] = strdup("Output Right"); if ((port_range_hints = ((LADSPA_PortRangeHint *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortRangeHint)))) == NULL) exit(1); stereo_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_range_hints[ATTACK].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_LOW); port_range_hints[RELEASE].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MIDDLE); port_range_hints[OFFSGAIN].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[MUGAIN].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[RMSENV_L].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[RMSENV_R].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[MODGAIN_L].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[MODGAIN_R].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[STEREO].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_INTEGER | LADSPA_HINT_DEFAULT_0); port_range_hints[MODE].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_INTEGER | LADSPA_HINT_DEFAULT_0); port_range_hints[ATTACK].LowerBound = 4.0f; port_range_hints[ATTACK].UpperBound = 500.0f; port_range_hints[RELEASE].LowerBound = 4.0f; port_range_hints[RELEASE].UpperBound = 1000.0f; port_range_hints[OFFSGAIN].LowerBound = -20.0f; port_range_hints[OFFSGAIN].UpperBound = 20.0f; port_range_hints[MUGAIN].LowerBound = -20.0f; port_range_hints[MUGAIN].UpperBound = 20.0f; port_range_hints[RMSENV_L].LowerBound = -60.0f; port_range_hints[RMSENV_L].UpperBound = 20.0f; port_range_hints[RMSENV_R].LowerBound = -60.0f; port_range_hints[RMSENV_R].UpperBound = 20.0f; port_range_hints[MODGAIN_L].LowerBound = -60.0f; port_range_hints[MODGAIN_L].UpperBound = 20.0f; port_range_hints[MODGAIN_R].LowerBound = -60.0f; port_range_hints[MODGAIN_R].UpperBound = 20.0f; port_range_hints[STEREO].LowerBound = 0; port_range_hints[STEREO].UpperBound = 2.1f; port_range_hints[MODE].LowerBound = 0; port_range_hints[MODE].UpperBound = NUM_MODES - 0.9f; port_range_hints[INPUT_L].HintDescriptor = 0; port_range_hints[INPUT_R].HintDescriptor = 0; port_range_hints[OUTPUT_L].HintDescriptor = 0; port_range_hints[OUTPUT_R].HintDescriptor = 0; stereo_descriptor->instantiate = instantiate_Dynamics; stereo_descriptor->connect_port = connect_port_Dynamics; stereo_descriptor->activate = NULL; stereo_descriptor->run = run_Dynamics; stereo_descriptor->run_adding = run_adding_Dynamics; stereo_descriptor->set_run_adding_gain = set_run_adding_gain_Dynamics; stereo_descriptor->deactivate = NULL; stereo_descriptor->cleanup = cleanup_Dynamics; } void delete_descriptor(LADSPA_Descriptor * descriptor) { unsigned long index; if (descriptor) { free((char *)descriptor->Label); free((char *)descriptor->Name); free((char *)descriptor->Maker); free((char *)descriptor->Copyright); free((LADSPA_PortDescriptor *)descriptor->PortDescriptors); for (index = 0; index < descriptor->PortCount; index++) free((char *)(descriptor->PortNames[index])); free((char **)descriptor->PortNames); free((LADSPA_PortRangeHint *)descriptor->PortRangeHints); free(descriptor); } } /* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */ void __attribute__((destructor)) tap_fini() { delete_descriptor(stereo_descriptor); } /* Return a descriptor of the requested plugin type. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index) { switch (Index) { case 0: return stereo_descriptor; default: return NULL; } } tap-plugins-1.0.0/tap_echo.c000066400000000000000000000404671320332260600157110ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "tap_utils.h" /* The Unique ID of the plugin: */ #define ID_STEREO 2143 /* The port numbers for the plugin: */ #define DELAYTIME_L 0 #define FEEDBACK_L 1 #define DELAYTIME_R 2 #define FEEDBACK_R 3 #define STRENGTH_L 4 #define STRENGTH_R 5 #define DRYLEVEL 6 #define MODE 7 #define HAAS 8 #define REV_OUTCH 9 #define INPUT_L 10 #define OUTPUT_L 11 #define INPUT_R 12 #define OUTPUT_R 13 /* Total number of ports */ #define PORTCOUNT_STEREO 14 /* Maximum delay (ms) */ #define MAX_DELAY 2000 /* The structure used to hold port connection information and state */ typedef struct { LADSPA_Data * delaytime_L; LADSPA_Data * delaytime_R; LADSPA_Data * feedback_L; LADSPA_Data * feedback_R; LADSPA_Data * strength_L; LADSPA_Data * strength_R; LADSPA_Data * drylevel; LADSPA_Data * mode; LADSPA_Data * haas; LADSPA_Data * rev_outch; LADSPA_Data * input_L; LADSPA_Data * output_L; LADSPA_Data * input_R; LADSPA_Data * output_R; unsigned long sample_rate; LADSPA_Data mpx_out_L; LADSPA_Data mpx_out_R; LADSPA_Data * ringbuffer_L; LADSPA_Data * ringbuffer_R; unsigned long * buffer_pos_L; unsigned long * buffer_pos_R; LADSPA_Data run_adding_gain; } Echo; /* Construct a new plugin instance. */ LADSPA_Handle instantiate_Echo(const LADSPA_Descriptor * Descriptor, unsigned long SampleRate) { LADSPA_Handle * ptr; if ((ptr = malloc(sizeof(Echo))) != NULL) { ((Echo *)ptr)->sample_rate = SampleRate; ((Echo *)ptr)->run_adding_gain = 1.0f; /* allocate memory for ringbuffers and related dynamic vars */ if ((((Echo *)ptr)->ringbuffer_L = calloc(MAX_DELAY * ((Echo *)ptr)->sample_rate / 1000, sizeof(LADSPA_Data))) == NULL) exit(1); if ((((Echo *)ptr)->ringbuffer_R = calloc(MAX_DELAY * ((Echo *)ptr)->sample_rate / 1000, sizeof(LADSPA_Data))) == NULL) exit(1); if ((((Echo *)ptr)->buffer_pos_L = calloc(1, sizeof(unsigned long))) == NULL) exit(1); if ((((Echo *)ptr)->buffer_pos_R = calloc(1, sizeof(unsigned long))) == NULL) exit(1); *(((Echo *)ptr)->buffer_pos_L) = 0; *(((Echo *)ptr)->buffer_pos_R) = 0; return ptr; } return NULL; } /* activate a plugin instance */ void activate_Echo(LADSPA_Handle Instance) { Echo * ptr = (Echo *)Instance; unsigned int i; ptr->mpx_out_L = 0; ptr->mpx_out_R = 0; *(ptr->buffer_pos_L) = 0; *(ptr->buffer_pos_R) = 0; for (i = 0; i < MAX_DELAY * ptr->sample_rate / 1000; i++) { ptr->ringbuffer_L[i] = 0.0f; ptr->ringbuffer_R[i] = 0.0f; } } /* Connect a port to a data location. */ void connect_port_Echo(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * DataLocation) { Echo * ptr; ptr = (Echo *)Instance; switch (Port) { case DELAYTIME_L: ptr->delaytime_L = DataLocation; break; case DELAYTIME_R: ptr->delaytime_R = DataLocation; break; case FEEDBACK_L: ptr->feedback_L = DataLocation; break; case FEEDBACK_R: ptr->feedback_R = DataLocation; break; case STRENGTH_L: ptr->strength_L = DataLocation; break; case STRENGTH_R: ptr->strength_R = DataLocation; break; case MODE: ptr->mode = DataLocation; break; case HAAS: ptr->haas = DataLocation; break; case REV_OUTCH: ptr->rev_outch = DataLocation; break; case DRYLEVEL: ptr->drylevel = DataLocation; break; case INPUT_L: ptr->input_L = DataLocation; break; case OUTPUT_L: ptr->output_L = DataLocation; break; case INPUT_R: ptr->input_R = DataLocation; break; case OUTPUT_R: ptr->output_R = DataLocation; break; } } #define EPS 0.00000001f static inline float M(float x) { if ((x > EPS) || (x < -EPS)) return x; else return 0.0f; } void run_Echo(LADSPA_Handle Instance, unsigned long SampleCount) { Echo * ptr; unsigned long sample_index; LADSPA_Data delaytime_L; LADSPA_Data delaytime_R; LADSPA_Data feedback_L; LADSPA_Data feedback_R; LADSPA_Data strength_L; LADSPA_Data strength_R; LADSPA_Data drylevel; LADSPA_Data mode; LADSPA_Data haas; LADSPA_Data rev_outch; LADSPA_Data * input_L; LADSPA_Data * output_L; LADSPA_Data * input_R; LADSPA_Data * output_R; unsigned long sample_rate; unsigned long buflen_L; unsigned long buflen_R; LADSPA_Data out_L = 0; LADSPA_Data out_R = 0; LADSPA_Data in_L = 0; LADSPA_Data in_R = 0; ptr = (Echo *)Instance; delaytime_L = LIMIT(*(ptr->delaytime_L),0.0f,2000.0f); delaytime_R = LIMIT(*(ptr->delaytime_R),0.0f,2000.0f); feedback_L = LIMIT(*(ptr->feedback_L) / 100.0, 0.0f, 100.0f); feedback_R = LIMIT(*(ptr->feedback_R) / 100.0, 0.0f, 100.0f); strength_L = db2lin(LIMIT(*(ptr->strength_L),-70.0f,10.0f)); strength_R = db2lin(LIMIT(*(ptr->strength_R),-70.0f,10.0f)); drylevel = db2lin(LIMIT(*(ptr->drylevel),-70.0f,10.0f)); mode = LIMIT(*(ptr->mode),-2.0f,2.0f); haas = LIMIT(*(ptr->haas),-2.0f,2.0f); rev_outch = LIMIT(*(ptr->rev_outch),-2.0f,2.0f); input_L = ptr->input_L; output_L = ptr->output_L; input_R = ptr->input_R; output_R = ptr->output_R; sample_rate = ptr->sample_rate; buflen_L = delaytime_L * sample_rate / 1000; buflen_R = delaytime_R * sample_rate / 1000; for (sample_index = 0; sample_index < SampleCount; sample_index++) { in_L = *(input_L++); in_R = *(input_R++); out_L = in_L * drylevel + ptr->mpx_out_L * strength_L; out_R = in_R * drylevel + ptr->mpx_out_R * strength_R; if (haas > 0.0f) in_R = 0.0f; if (mode <= 0.0f) { ptr->mpx_out_L = M(push_buffer(in_L + ptr->mpx_out_L * feedback_L, ptr->ringbuffer_L, buflen_L, ptr->buffer_pos_L)); ptr->mpx_out_R = M(push_buffer(in_R + ptr->mpx_out_R * feedback_R, ptr->ringbuffer_R, buflen_R, ptr->buffer_pos_R)); } else { ptr->mpx_out_R = M(push_buffer(in_L + ptr->mpx_out_L * feedback_L, ptr->ringbuffer_L, buflen_L, ptr->buffer_pos_L)); ptr->mpx_out_L = M(push_buffer(in_R + ptr->mpx_out_R * feedback_R, ptr->ringbuffer_R, buflen_R, ptr->buffer_pos_R)); } if (rev_outch <= 0.0f) { *(output_L++) = out_L; *(output_R++) = out_R; } else { *(output_L++) = out_R; *(output_R++) = out_L; } } } void set_run_adding_gain(LADSPA_Handle Instance, LADSPA_Data gain){ Echo * ptr; ptr = (Echo *)Instance; ptr->run_adding_gain = gain; } void run_adding_gain_Echo(LADSPA_Handle Instance, unsigned long SampleCount) { Echo * ptr; unsigned long sample_index; LADSPA_Data delaytime_L; LADSPA_Data delaytime_R; LADSPA_Data feedback_L; LADSPA_Data feedback_R; LADSPA_Data strength_L; LADSPA_Data strength_R; LADSPA_Data drylevel; LADSPA_Data mode; LADSPA_Data haas; LADSPA_Data rev_outch; LADSPA_Data * input_L; LADSPA_Data * output_L; LADSPA_Data * input_R; LADSPA_Data * output_R; unsigned long sample_rate; unsigned long buflen_L; unsigned long buflen_R; LADSPA_Data out_L = 0; LADSPA_Data out_R = 0; LADSPA_Data in_L = 0; LADSPA_Data in_R = 0; ptr = (Echo *)Instance; delaytime_L = LIMIT(*(ptr->delaytime_L),0.0f,2000.0f); delaytime_R = LIMIT(*(ptr->delaytime_R),0.0f,2000.0f); feedback_L = LIMIT(*(ptr->feedback_L) / 100.0, 0.0f, 100.0f); feedback_R = LIMIT(*(ptr->feedback_R) / 100.0, 0.0f, 100.0f); strength_L = db2lin(LIMIT(*(ptr->strength_L),-70.0f,10.0f)); strength_R = db2lin(LIMIT(*(ptr->strength_R),-70.0f,10.0f)); drylevel = db2lin(LIMIT(*(ptr->drylevel),-70.0f,10.0f)); mode = LIMIT(*(ptr->mode),-2.0f,2.0f); haas = LIMIT(*(ptr->haas),-2.0f,2.0f); rev_outch = LIMIT(*(ptr->rev_outch),-2.0f,2.0f); input_L = ptr->input_L; output_L = ptr->output_L; input_R = ptr->input_R; output_R = ptr->output_R; sample_rate = ptr->sample_rate; buflen_L = delaytime_L * sample_rate / 1000; buflen_R = delaytime_R * sample_rate / 1000; for (sample_index = 0; sample_index < SampleCount; sample_index++) { in_L = *(input_L++); in_R = *(input_R++); out_L = in_L * drylevel + ptr->mpx_out_L * strength_L; out_R = in_R * drylevel + ptr->mpx_out_R * strength_R; if (haas > 0.0f) in_R = 0.0f; if (mode <= 0.0f) { ptr->mpx_out_L = M(push_buffer(in_L + ptr->mpx_out_L * feedback_L, ptr->ringbuffer_L, buflen_L, ptr->buffer_pos_L)); ptr->mpx_out_R = M(push_buffer(in_R + ptr->mpx_out_R * feedback_R, ptr->ringbuffer_R, buflen_R, ptr->buffer_pos_R)); } else { ptr->mpx_out_R = M(push_buffer(in_L + ptr->mpx_out_L * feedback_L, ptr->ringbuffer_L, buflen_L, ptr->buffer_pos_L)); ptr->mpx_out_L = M(push_buffer(in_R + ptr->mpx_out_R * feedback_R, ptr->ringbuffer_R, buflen_R, ptr->buffer_pos_R)); } if (rev_outch <= 0.0f) { *(output_L++) += out_L * ptr->run_adding_gain; *(output_R++) += out_R * ptr->run_adding_gain; } else { *(output_L++) += out_R * ptr->run_adding_gain; *(output_R++) += out_L * ptr->run_adding_gain; } } } /* Throw away an Echo effect instance. */ void cleanup_Echo(LADSPA_Handle Instance) { Echo * ptr = (Echo *)Instance; free(ptr->ringbuffer_L); free(ptr->ringbuffer_R); free(ptr->buffer_pos_L); free(ptr->buffer_pos_R); free(Instance); } LADSPA_Descriptor * stereo_descriptor = NULL; /* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first loaded. */ void __attribute__((constructor)) tap_init() { char ** port_names; LADSPA_PortDescriptor * port_descriptors; LADSPA_PortRangeHint * port_range_hints; if ((stereo_descriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL) exit(1); /* init the stereo Echo */ stereo_descriptor->UniqueID = ID_STEREO; stereo_descriptor->Label = strdup("tap_stereo_echo"); stereo_descriptor->Properties = LADSPA_PROPERTY_HARD_RT_CAPABLE; stereo_descriptor->Name = strdup("TAP Stereo Echo"); stereo_descriptor->Maker = strdup("Tom Szilagyi"); stereo_descriptor->Copyright = strdup("GPL"); stereo_descriptor->PortCount = PORTCOUNT_STEREO; if ((port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortDescriptor))) == NULL) exit(1); stereo_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_descriptors[DELAYTIME_L] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[DELAYTIME_R] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[FEEDBACK_L] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[FEEDBACK_R] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[STRENGTH_L] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[STRENGTH_R] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[DRYLEVEL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[MODE] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[HAAS] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[REV_OUTCH] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[INPUT_L] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT_L] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; port_descriptors[INPUT_R] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT_R] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; if ((port_names = (char **)calloc(PORTCOUNT_STEREO, sizeof(char *))) == NULL) exit(1); stereo_descriptor->PortNames = (const char **)port_names; port_names[DELAYTIME_L] = strdup("L Delay [ms]"); port_names[DELAYTIME_R] = strdup("R/Haas Delay [ms]"); port_names[FEEDBACK_L] = strdup("L Feedback [%]"); port_names[FEEDBACK_R] = strdup("R/Haas Feedback [%]"); port_names[STRENGTH_L] = strdup("L Echo Level [dB]"); port_names[STRENGTH_R] = strdup("R Echo Level [dB]"); port_names[DRYLEVEL] = strdup("Dry Level [dB]"); port_names[MODE] = strdup("Cross Mode"); port_names[HAAS] = strdup("Haas Effect"); port_names[REV_OUTCH] = strdup("Swap Outputs"); port_names[INPUT_L] = strdup("Input Left"); port_names[OUTPUT_L] = strdup("Output Left"); port_names[INPUT_R] = strdup("Input Right"); port_names[OUTPUT_R] = strdup("Output Right"); if ((port_range_hints = ((LADSPA_PortRangeHint *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortRangeHint)))) == NULL) exit(1); stereo_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_range_hints[DELAYTIME_L].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_100); port_range_hints[DELAYTIME_L].LowerBound = 0; port_range_hints[DELAYTIME_L].UpperBound = MAX_DELAY; port_range_hints[DELAYTIME_R].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_100); port_range_hints[DELAYTIME_R].LowerBound = 0; port_range_hints[DELAYTIME_R].UpperBound = MAX_DELAY; port_range_hints[FEEDBACK_L].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[FEEDBACK_L].LowerBound = 0; port_range_hints[FEEDBACK_L].UpperBound = 100; port_range_hints[FEEDBACK_R].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[FEEDBACK_R].LowerBound = 0; port_range_hints[FEEDBACK_R].UpperBound = 100; port_range_hints[STRENGTH_L].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[STRENGTH_L].LowerBound = -70; port_range_hints[STRENGTH_L].UpperBound = 10; port_range_hints[STRENGTH_R].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[STRENGTH_R].LowerBound = -70; port_range_hints[STRENGTH_R].UpperBound = 10; port_range_hints[MODE].HintDescriptor = (LADSPA_HINT_TOGGLED | LADSPA_HINT_DEFAULT_0); port_range_hints[HAAS].HintDescriptor = (LADSPA_HINT_TOGGLED | LADSPA_HINT_DEFAULT_0); port_range_hints[REV_OUTCH].HintDescriptor = (LADSPA_HINT_TOGGLED | LADSPA_HINT_DEFAULT_0); port_range_hints[DRYLEVEL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[DRYLEVEL].LowerBound = -70; port_range_hints[DRYLEVEL].UpperBound = 10; port_range_hints[INPUT_L].HintDescriptor = 0; port_range_hints[OUTPUT_L].HintDescriptor = 0; port_range_hints[INPUT_R].HintDescriptor = 0; port_range_hints[OUTPUT_R].HintDescriptor = 0; stereo_descriptor->instantiate = instantiate_Echo; stereo_descriptor->connect_port = connect_port_Echo; stereo_descriptor->activate = activate_Echo; stereo_descriptor->run = run_Echo; stereo_descriptor->run_adding = run_adding_gain_Echo; stereo_descriptor->set_run_adding_gain = set_run_adding_gain; stereo_descriptor->deactivate = NULL; stereo_descriptor->cleanup = cleanup_Echo; } void delete_descriptor(LADSPA_Descriptor * descriptor) { unsigned long index; if (descriptor) { free((char *)descriptor->Label); free((char *)descriptor->Name); free((char *)descriptor->Maker); free((char *)descriptor->Copyright); free((LADSPA_PortDescriptor *)descriptor->PortDescriptors); for (index = 0; index < descriptor->PortCount; index++) free((char *)(descriptor->PortNames[index])); free((char **)descriptor->PortNames); free((LADSPA_PortRangeHint *)descriptor->PortRangeHints); free(descriptor); } } /* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */ void __attribute__((destructor)) tap_fini() { delete_descriptor(stereo_descriptor); } /* Return a descriptor of the requested plugin type. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index) { switch (Index) { case 0: return stereo_descriptor; default: return NULL; } } tap-plugins-1.0.0/tap_eq.c000066400000000000000000000501361320332260600153720ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Please note that this plugin was inspired by and its code based upon Steve Harris's "DJ EQ" plugin (no. 1901). While I give him credit for his excellent work, I reserve myself to be blamed for any bugs or malfunction. */ #include #include #include #include #include "tap_utils.h" /* The Unique ID of the plugin */ #define ID_MONO 2141 /* Bandwidth of EQ filters in octaves */ #define BWIDTH 1.0f /* Port numbers */ #define EQ_CH0G 0 #define EQ_CH1G 1 #define EQ_CH2G 2 #define EQ_CH3G 3 #define EQ_CH4G 4 #define EQ_CH5G 5 #define EQ_CH6G 6 #define EQ_CH7G 7 #define EQ_CH0F 8 #define EQ_CH1F 9 #define EQ_CH2F 10 #define EQ_CH3F 11 #define EQ_CH4F 12 #define EQ_CH5F 13 #define EQ_CH6F 14 #define EQ_CH7F 15 #define EQ_INPUT 16 #define EQ_OUTPUT 17 /* Total number of ports */ #define PORTCOUNT_MONO 18 static LADSPA_Descriptor *eqDescriptor = NULL; typedef struct { LADSPA_Data *ch0f; LADSPA_Data *ch0g; LADSPA_Data *ch1f; LADSPA_Data *ch1g; LADSPA_Data *ch2f; LADSPA_Data *ch2g; LADSPA_Data *ch3f; LADSPA_Data *ch3g; LADSPA_Data *ch4f; LADSPA_Data *ch4g; LADSPA_Data *ch5f; LADSPA_Data *ch5g; LADSPA_Data *ch6f; LADSPA_Data *ch6g; LADSPA_Data *ch7f; LADSPA_Data *ch7g; LADSPA_Data *input; LADSPA_Data *output; biquad * filters; float fs; LADSPA_Data old_ch0f; LADSPA_Data old_ch0g; LADSPA_Data old_ch1f; LADSPA_Data old_ch1g; LADSPA_Data old_ch2f; LADSPA_Data old_ch2g; LADSPA_Data old_ch3f; LADSPA_Data old_ch3g; LADSPA_Data old_ch4f; LADSPA_Data old_ch4g; LADSPA_Data old_ch5f; LADSPA_Data old_ch5g; LADSPA_Data old_ch6f; LADSPA_Data old_ch6g; LADSPA_Data old_ch7f; LADSPA_Data old_ch7g; LADSPA_Data run_adding_gain; } eq; const LADSPA_Descriptor * ladspa_descriptor(unsigned long index) { switch (index) { case 0: return eqDescriptor; default: return NULL; } } static void activate_eq(LADSPA_Handle instance) { eq *ptr = (eq *)instance; biquad *filters = ptr->filters; biquad_init(&filters[0]); biquad_init(&filters[1]); biquad_init(&filters[2]); biquad_init(&filters[3]); biquad_init(&filters[4]); biquad_init(&filters[5]); biquad_init(&filters[6]); biquad_init(&filters[7]); } static void cleanup_eq(LADSPA_Handle instance) { eq *plugin_data = (eq *)instance; free(plugin_data->filters); free(instance); } static void connectPort_eq(LADSPA_Handle instance, unsigned long port, LADSPA_Data *data) { eq *plugin; plugin = (eq *)instance; switch (port) { case EQ_CH0F: plugin->ch0f = data; break; case EQ_CH0G: plugin->ch0g = data; break; case EQ_CH1F: plugin->ch1f = data; break; case EQ_CH1G: plugin->ch1g = data; break; case EQ_CH2F: plugin->ch2f = data; break; case EQ_CH2G: plugin->ch2g = data; break; case EQ_CH3F: plugin->ch3f = data; break; case EQ_CH3G: plugin->ch3g = data; break; case EQ_CH4F: plugin->ch4f = data; break; case EQ_CH4G: plugin->ch4g = data; break; case EQ_CH5F: plugin->ch5f = data; break; case EQ_CH5G: plugin->ch5g = data; break; case EQ_CH6F: plugin->ch6f = data; break; case EQ_CH6G: plugin->ch6g = data; break; case EQ_CH7F: plugin->ch7f = data; break; case EQ_CH7G: plugin->ch7g = data; break; case EQ_INPUT: plugin->input = data; break; case EQ_OUTPUT: plugin->output = data; break; } } static LADSPA_Handle instantiate_eq(const LADSPA_Descriptor *descriptor, unsigned long s_rate) { eq *ptr = (eq *)malloc(sizeof(eq)); biquad *filters = NULL; float fs; fs = s_rate; memset(ptr, 0, sizeof(eq)); filters = calloc(8, sizeof(biquad)); ptr->filters = filters; ptr->fs = fs; ptr->run_adding_gain = 1.0f; ptr->old_ch0f = 100.0f; ptr->old_ch0g = 0; ptr->old_ch1f = 200.0f; ptr->old_ch1g = 0; ptr->old_ch2f = 400.0f; ptr->old_ch2g = 0; ptr->old_ch3f = 1000.0f; ptr->old_ch3g = 0; ptr->old_ch4f = 3000.0f; ptr->old_ch4g = 0; ptr->old_ch5f = 6000.0f; ptr->old_ch5g = 0; ptr->old_ch6f = 12000.0f; ptr->old_ch6g = 0; ptr->old_ch7f = 15000.0f; ptr->old_ch7g = 0; eq_set_params(&filters[0], 100.0f, 0.0f, BWIDTH, fs); eq_set_params(&filters[1], 200.0f, 0.0f, BWIDTH, fs); eq_set_params(&filters[2], 400.0f, 0.0f, BWIDTH, fs); eq_set_params(&filters[3], 1000.0f, 0.0f, BWIDTH, fs); eq_set_params(&filters[4], 3000.0f, 0.0f, BWIDTH, fs); eq_set_params(&filters[5], 6000.0f, 0.0f, BWIDTH, fs); eq_set_params(&filters[6], 12000.0f, 0.0f, BWIDTH, fs); eq_set_params(&filters[7], 15000.0f, 0.0f, BWIDTH, fs); return (LADSPA_Handle)ptr; } static void run_eq(LADSPA_Handle instance, unsigned long sample_count) { eq * ptr = (eq *)instance; const LADSPA_Data ch0f = LIMIT(*(ptr->ch0f),40.0f,280.0f); const LADSPA_Data ch0g = LIMIT(*(ptr->ch0g),-50.0f,20.0f); const LADSPA_Data ch1f = LIMIT(*(ptr->ch1f),100.0f,500.0f); const LADSPA_Data ch1g = LIMIT(*(ptr->ch1g),-50.0f,20.0f); const LADSPA_Data ch2f = LIMIT(*(ptr->ch2f),200.0f,1000.0f); const LADSPA_Data ch2g = LIMIT(*(ptr->ch2g),-50.0f,20.0f); const LADSPA_Data ch3f = LIMIT(*(ptr->ch3f),400.0f,2800.0f); const LADSPA_Data ch3g = LIMIT(*(ptr->ch3g),-50.0f,20.0f); const LADSPA_Data ch4f = LIMIT(*(ptr->ch4f),1000.0f,5000.0f); const LADSPA_Data ch4g = LIMIT(*(ptr->ch4g),-50.0f,20.0f); const LADSPA_Data ch5f = LIMIT(*(ptr->ch5f),3000.0f,9000.0f); const LADSPA_Data ch5g = LIMIT(*(ptr->ch5g),-50.0f,20.0f); const LADSPA_Data ch6f = LIMIT(*(ptr->ch6f),6000.0f,18000.0f); const LADSPA_Data ch6g = LIMIT(*(ptr->ch6g),-50.0f,20.0f); const LADSPA_Data ch7f = LIMIT(*(ptr->ch7f),10000.0f,20000.0f); const LADSPA_Data ch7g = LIMIT(*(ptr->ch7g),-50.0f,20.0f); const LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; biquad * filters = ptr->filters; float fs = ptr->fs; unsigned long pos; float samp; if ((ch0f != ptr->old_ch0f) || (ch0g != ptr->old_ch0g)) { ptr->old_ch0f = ch0f; ptr->old_ch0g = ch0g; eq_set_params(&filters[0], ch0f, ch0g, BWIDTH, fs); } if ((ch1f != ptr->old_ch1f) || (ch1g != ptr->old_ch1g)) { ptr->old_ch1f = ch1f; ptr->old_ch1g = ch1g; eq_set_params(&filters[1], ch1f, ch1g, BWIDTH, fs); } if ((ch2f != ptr->old_ch2f) || (ch2g != ptr->old_ch2g)) { ptr->old_ch2f = ch2f; ptr->old_ch2g = ch2g; eq_set_params(&filters[2], ch2f, ch2g, BWIDTH, fs); } if ((ch3f != ptr->old_ch3f) || (ch3g != ptr->old_ch3g)) { ptr->old_ch3f = ch3f; ptr->old_ch3g = ch3g; eq_set_params(&filters[3], ch3f, ch3g, BWIDTH, fs); } if ((ch4f != ptr->old_ch4f) || (ch4g != ptr->old_ch4g)) { ptr->old_ch4f = ch4f; ptr->old_ch4g = ch4g; eq_set_params(&filters[4], ch4f, ch4g, BWIDTH, fs); } if ((ch5f != ptr->old_ch5f) || (ch5g != ptr->old_ch5g)) { ptr->old_ch5f = ch5f; ptr->old_ch5g = ch5g; eq_set_params(&filters[5], ch5f, ch5g, BWIDTH, fs); } if ((ch6f != ptr->old_ch6f) || (ch6g != ptr->old_ch6g)) { ptr->old_ch6f = ch6f; ptr->old_ch6g = ch6g; eq_set_params(&filters[6], ch6f, ch6g, BWIDTH, fs); } if ((ch7f != ptr->old_ch7f) || (ch7g != ptr->old_ch7g)) { ptr->old_ch7f = ch7f; ptr->old_ch7g = ch7g; eq_set_params(&filters[7], ch7f, ch7g, BWIDTH, fs); } for (pos = 0; pos < sample_count; pos++) { samp = input[pos]; if (ch0g != 0.0f) samp = biquad_run(&filters[0], samp); if (ch1g != 0.0f) samp = biquad_run(&filters[1], samp); if (ch2g != 0.0f) samp = biquad_run(&filters[2], samp); if (ch3g != 0.0f) samp = biquad_run(&filters[3], samp); if (ch4g != 0.0f) samp = biquad_run(&filters[4], samp); if (ch5g != 0.0f) samp = biquad_run(&filters[5], samp); if (ch6g != 0.0f) samp = biquad_run(&filters[6], samp); if (ch7g != 0.0f) samp = biquad_run(&filters[7], samp); output[pos] = samp; } } void set_run_adding_gain(LADSPA_Handle instance, LADSPA_Data gain) { eq * ptr = (eq *)instance; ptr->run_adding_gain = gain; } static void run_adding_eq(LADSPA_Handle instance, unsigned long sample_count) { eq * ptr = (eq *)instance; const LADSPA_Data ch0f = LIMIT(*(ptr->ch0f),40.0f,280.0f); const LADSPA_Data ch0g = LIMIT(*(ptr->ch0g),-50.0f,20.0f); const LADSPA_Data ch1f = LIMIT(*(ptr->ch1f),100.0f,500.0f); const LADSPA_Data ch1g = LIMIT(*(ptr->ch1g),-50.0f,20.0f); const LADSPA_Data ch2f = LIMIT(*(ptr->ch2f),200.0f,1000.0f); const LADSPA_Data ch2g = LIMIT(*(ptr->ch2g),-50.0f,20.0f); const LADSPA_Data ch3f = LIMIT(*(ptr->ch3f),400.0f,2800.0f); const LADSPA_Data ch3g = LIMIT(*(ptr->ch3g),-50.0f,20.0f); const LADSPA_Data ch4f = LIMIT(*(ptr->ch4f),1000.0f,5000.0f); const LADSPA_Data ch4g = LIMIT(*(ptr->ch4g),-50.0f,20.0f); const LADSPA_Data ch5f = LIMIT(*(ptr->ch5f),3000.0f,9000.0f); const LADSPA_Data ch5g = LIMIT(*(ptr->ch5g),-50.0f,20.0f); const LADSPA_Data ch6f = LIMIT(*(ptr->ch6f),6000.0f,18000.0f); const LADSPA_Data ch6g = LIMIT(*(ptr->ch6g),-50.0f,20.0f); const LADSPA_Data ch7f = LIMIT(*(ptr->ch7f),10000.0f,20000.0f); const LADSPA_Data ch7g = LIMIT(*(ptr->ch7g),-50.0f,20.0f); const LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; biquad * filters = ptr->filters; float fs = ptr->fs; unsigned long pos; float samp; if ((ch0f != ptr->old_ch0f) || (ch0g != ptr->old_ch0g)) { ptr->old_ch0f = ch0f; ptr->old_ch0g = ch0g; eq_set_params(&filters[0], ch0f, ch0g, BWIDTH, fs); } if ((ch1f != ptr->old_ch1f) || (ch1g != ptr->old_ch1g)) { ptr->old_ch1f = ch1f; ptr->old_ch1g = ch1g; eq_set_params(&filters[1], ch1f, ch1g, BWIDTH, fs); } if ((ch2f != ptr->old_ch2f) || (ch2g != ptr->old_ch2g)) { ptr->old_ch2f = ch2f; ptr->old_ch2g = ch2g; eq_set_params(&filters[2], ch2f, ch2g, BWIDTH, fs); } if ((ch3f != ptr->old_ch3f) || (ch3g != ptr->old_ch3g)) { ptr->old_ch3f = ch3f; ptr->old_ch3g = ch3g; eq_set_params(&filters[3], ch3f, ch3g, BWIDTH, fs); } if ((ch4f != ptr->old_ch4f) || (ch4g != ptr->old_ch4g)) { ptr->old_ch4f = ch4f; ptr->old_ch4g = ch4g; eq_set_params(&filters[4], ch4f, ch4g, BWIDTH, fs); } if ((ch5f != ptr->old_ch5f) || (ch5g != ptr->old_ch5g)) { ptr->old_ch5f = ch5f; ptr->old_ch5g = ch5g; eq_set_params(&filters[5], ch5f, ch5g, BWIDTH, fs); } if ((ch6f != ptr->old_ch6f) || (ch6g != ptr->old_ch6g)) { ptr->old_ch6f = ch6f; ptr->old_ch6g = ch6g; eq_set_params(&filters[6], ch6f, ch6g, BWIDTH, fs); } if ((ch7f != ptr->old_ch7f) || (ch7g != ptr->old_ch7g)) { ptr->old_ch7f = ch7f; ptr->old_ch7g = ch7g; eq_set_params(&filters[7], ch7f, ch7g, BWIDTH, fs); } for (pos = 0; pos < sample_count; pos++) { samp = input[pos]; if (ch0g != 0.0f) samp = biquad_run(&filters[0], samp); if (ch1g != 0.0f) samp = biquad_run(&filters[1], samp); if (ch2g != 0.0f) samp = biquad_run(&filters[2], samp); if (ch3g != 0.0f) samp = biquad_run(&filters[3], samp); if (ch4g != 0.0f) samp = biquad_run(&filters[4], samp); if (ch5g != 0.0f) samp = biquad_run(&filters[5], samp); if (ch6g != 0.0f) samp = biquad_run(&filters[6], samp); if (ch7g != 0.0f) samp = biquad_run(&filters[7], samp); output[pos] += ptr->run_adding_gain * samp; } } void __attribute__((constructor)) tap_init() { char **port_names; LADSPA_PortDescriptor *port_descriptors; LADSPA_PortRangeHint *port_range_hints; eqDescriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor)); if (eqDescriptor) { eqDescriptor->UniqueID = ID_MONO; eqDescriptor->Label = "tap_equalizer"; eqDescriptor->Properties = 0; eqDescriptor->Name = "TAP Equalizer"; eqDescriptor->Maker = "Tom Szilagyi"; eqDescriptor->Copyright = "GPL"; eqDescriptor->PortCount = PORTCOUNT_MONO; port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortDescriptor)); eqDescriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_range_hints = (LADSPA_PortRangeHint *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortRangeHint)); eqDescriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_names = (char **)calloc(PORTCOUNT_MONO, sizeof(char*)); eqDescriptor->PortNames = (const char **)port_names; /* Parameters for CH0 freq [Hz] */ port_descriptors[EQ_CH0F] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH0F] = "Band 1 Freq [Hz]"; port_range_hints[EQ_CH0F].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_LOW; port_range_hints[EQ_CH0F].LowerBound = 40; port_range_hints[EQ_CH0F].UpperBound = 280; /* Parameters for CH0 gain [dB] */ port_descriptors[EQ_CH0G] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH0G] = "Band 1 Gain [dB]"; port_range_hints[EQ_CH0G].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0; port_range_hints[EQ_CH0G].LowerBound = -50; port_range_hints[EQ_CH0G].UpperBound = +20; /* Parameters for CH1 freq [Hz] */ port_descriptors[EQ_CH1F] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH1F] = "Band 2 Freq [Hz]"; port_range_hints[EQ_CH1F].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_LOW; port_range_hints[EQ_CH1F].LowerBound = 100; port_range_hints[EQ_CH1F].UpperBound = 500; /* Parameters for CH1 gain [dB] */ port_descriptors[EQ_CH1G] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH1G] = "Band 2 Gain [dB]"; port_range_hints[EQ_CH1G].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0; port_range_hints[EQ_CH1G].LowerBound = -50; port_range_hints[EQ_CH1G].UpperBound = +20; /* Parameters for CH2 freq [Hz] */ port_descriptors[EQ_CH2F] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH2F] = "Band 3 Freq [Hz]"; port_range_hints[EQ_CH2F].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_LOW; port_range_hints[EQ_CH2F].LowerBound = 200; port_range_hints[EQ_CH2F].UpperBound = 1000; /* Parameters for CH2 gain [dB] */ port_descriptors[EQ_CH2G] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH2G] = "Band 3 Gain [dB]"; port_range_hints[EQ_CH2G].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0; port_range_hints[EQ_CH2G].LowerBound = -50; port_range_hints[EQ_CH2G].UpperBound = +20; /* Parameters for CH3 freq [Hz] */ port_descriptors[EQ_CH3F] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH3F] = "Band 4 Freq [Hz]"; port_range_hints[EQ_CH3F].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_LOW; port_range_hints[EQ_CH3F].LowerBound = 400; port_range_hints[EQ_CH3F].UpperBound = 2800; /* Parameters for CH3 gain [dB] */ port_descriptors[EQ_CH3G] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH3G] = "Band 4 Gain [dB]"; port_range_hints[EQ_CH3G].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0; port_range_hints[EQ_CH3G].LowerBound = -50; port_range_hints[EQ_CH3G].UpperBound = +20; /* Parameters for CH4 freq [Hz] */ port_descriptors[EQ_CH4F] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH4F] = "Band 5 Freq [Hz]"; port_range_hints[EQ_CH4F].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MIDDLE; port_range_hints[EQ_CH4F].LowerBound = 1000; port_range_hints[EQ_CH4F].UpperBound = 5000; /* Parameters for CH4 gain [dB] */ port_descriptors[EQ_CH4G] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH4G] = "Band 5 Gain [dB]"; port_range_hints[EQ_CH4G].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0; port_range_hints[EQ_CH4G].LowerBound = -50; port_range_hints[EQ_CH4G].UpperBound = +20; /* Parameters for CH5 freq [Hz] */ port_descriptors[EQ_CH5F] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH5F] = "Band 6 Freq [Hz]"; port_range_hints[EQ_CH5F].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MIDDLE; port_range_hints[EQ_CH5F].LowerBound = 3000; port_range_hints[EQ_CH5F].UpperBound = 9000; /* Parameters for CH5 gain [dB] */ port_descriptors[EQ_CH5G] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH5G] = "Band 6 Gain [dB]"; port_range_hints[EQ_CH5G].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0; port_range_hints[EQ_CH5G].LowerBound = -50; port_range_hints[EQ_CH5G].UpperBound = +20; /* Parameters for CH6 freq [Hz] */ port_descriptors[EQ_CH6F] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH6F] = "Band 7 Freq [Hz]"; port_range_hints[EQ_CH6F].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MIDDLE; port_range_hints[EQ_CH6F].LowerBound = 6000; port_range_hints[EQ_CH6F].UpperBound = 18000; /* Parameters for CH6 gain [dB] */ port_descriptors[EQ_CH6G] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH6G] = "Band 7 Gain [dB]"; port_range_hints[EQ_CH6G].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0; port_range_hints[EQ_CH6G].LowerBound = -50; port_range_hints[EQ_CH6G].UpperBound = +20; /* Parameters for CH7 freq [Hz] */ port_descriptors[EQ_CH7F] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH7F] = "Band 8 Freq [Hz]"; port_range_hints[EQ_CH7F].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MIDDLE; port_range_hints[EQ_CH7F].LowerBound = 10000; port_range_hints[EQ_CH7F].UpperBound = 20000; /* Parameters for CH7 gain [dB] */ port_descriptors[EQ_CH7G] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH7G] = "Band 8 Gain [dB]"; port_range_hints[EQ_CH7G].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0; port_range_hints[EQ_CH7G].LowerBound = -50; port_range_hints[EQ_CH7G].UpperBound = +20; /* Parameters for Input */ port_descriptors[EQ_INPUT] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_names[EQ_INPUT] = "Input"; port_range_hints[EQ_INPUT].HintDescriptor = 0; /* Parameters for Output */ port_descriptors[EQ_OUTPUT] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; port_names[EQ_OUTPUT] = "Output"; port_range_hints[EQ_OUTPUT].HintDescriptor = 0; eqDescriptor->activate = activate_eq; eqDescriptor->cleanup = cleanup_eq; eqDescriptor->connect_port = connectPort_eq; eqDescriptor->deactivate = NULL; eqDescriptor->instantiate = instantiate_eq; eqDescriptor->run = run_eq; eqDescriptor->run_adding = run_adding_eq; eqDescriptor->set_run_adding_gain = set_run_adding_gain; } } void __attribute__((destructor)) tap_fini() { if (eqDescriptor) { free((LADSPA_PortDescriptor *)eqDescriptor->PortDescriptors); free((char **)eqDescriptor->PortNames); free((LADSPA_PortRangeHint *)eqDescriptor->PortRangeHints); free(eqDescriptor); } } tap-plugins-1.0.0/tap_eqbw.c000066400000000000000000000642251320332260600157270ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* This plugin is identical to TAP Equalizer (2141), but it has * separate user controls for setting the bandwidth of every filter. */ #include #include #include #include #include "tap_utils.h" /* The Unique ID of the plugin */ #define ID_MONO 2151 /* Default bandwidth of EQ filters in octaves */ #define BWIDTH 1.0f /* Port numbers */ #define EQ_CH0G 0 #define EQ_CH1G 1 #define EQ_CH2G 2 #define EQ_CH3G 3 #define EQ_CH4G 4 #define EQ_CH5G 5 #define EQ_CH6G 6 #define EQ_CH7G 7 #define EQ_CH0F 8 #define EQ_CH1F 9 #define EQ_CH2F 10 #define EQ_CH3F 11 #define EQ_CH4F 12 #define EQ_CH5F 13 #define EQ_CH6F 14 #define EQ_CH7F 15 #define EQ_CH0B 16 #define EQ_CH1B 17 #define EQ_CH2B 18 #define EQ_CH3B 19 #define EQ_CH4B 20 #define EQ_CH5B 21 #define EQ_CH6B 22 #define EQ_CH7B 23 #define EQ_INPUT 24 #define EQ_OUTPUT 25 /* Total number of ports */ #define PORTCOUNT_MONO 26 static LADSPA_Descriptor *eqDescriptor = NULL; typedef struct { LADSPA_Data *ch0f; LADSPA_Data *ch0g; LADSPA_Data *ch0b; LADSPA_Data *ch1f; LADSPA_Data *ch1g; LADSPA_Data *ch1b; LADSPA_Data *ch2f; LADSPA_Data *ch2g; LADSPA_Data *ch2b; LADSPA_Data *ch3f; LADSPA_Data *ch3g; LADSPA_Data *ch3b; LADSPA_Data *ch4f; LADSPA_Data *ch4g; LADSPA_Data *ch4b; LADSPA_Data *ch5f; LADSPA_Data *ch5g; LADSPA_Data *ch5b; LADSPA_Data *ch6f; LADSPA_Data *ch6g; LADSPA_Data *ch6b; LADSPA_Data *ch7f; LADSPA_Data *ch7g; LADSPA_Data *ch7b; LADSPA_Data *input; LADSPA_Data *output; biquad * filters; float fs; LADSPA_Data old_ch0f; LADSPA_Data old_ch0g; LADSPA_Data old_ch0b; LADSPA_Data old_ch1f; LADSPA_Data old_ch1g; LADSPA_Data old_ch1b; LADSPA_Data old_ch2f; LADSPA_Data old_ch2g; LADSPA_Data old_ch2b; LADSPA_Data old_ch3f; LADSPA_Data old_ch3g; LADSPA_Data old_ch3b; LADSPA_Data old_ch4f; LADSPA_Data old_ch4g; LADSPA_Data old_ch4b; LADSPA_Data old_ch5f; LADSPA_Data old_ch5g; LADSPA_Data old_ch5b; LADSPA_Data old_ch6f; LADSPA_Data old_ch6g; LADSPA_Data old_ch6b; LADSPA_Data old_ch7f; LADSPA_Data old_ch7g; LADSPA_Data old_ch7b; LADSPA_Data run_adding_gain; } eq; const LADSPA_Descriptor * ladspa_descriptor(unsigned long index) { switch (index) { case 0: return eqDescriptor; default: return NULL; } } static void activate_eq(LADSPA_Handle instance) { eq *ptr = (eq *)instance; biquad *filters = ptr->filters; biquad_init(&filters[0]); biquad_init(&filters[1]); biquad_init(&filters[2]); biquad_init(&filters[3]); biquad_init(&filters[4]); biquad_init(&filters[5]); biquad_init(&filters[6]); biquad_init(&filters[7]); } static void cleanup_eq(LADSPA_Handle instance) { eq *plugin_data = (eq *)instance; free(plugin_data->filters); free(instance); } static void connectPort_eq(LADSPA_Handle instance, unsigned long port, LADSPA_Data *data) { eq *plugin; plugin = (eq *)instance; switch (port) { case EQ_CH0F: plugin->ch0f = data; break; case EQ_CH0G: plugin->ch0g = data; break; case EQ_CH0B: plugin->ch0b = data; break; case EQ_CH1F: plugin->ch1f = data; break; case EQ_CH1G: plugin->ch1g = data; break; case EQ_CH1B: plugin->ch1b = data; break; case EQ_CH2F: plugin->ch2f = data; break; case EQ_CH2G: plugin->ch2g = data; break; case EQ_CH2B: plugin->ch2b = data; break; case EQ_CH3F: plugin->ch3f = data; break; case EQ_CH3G: plugin->ch3g = data; break; case EQ_CH3B: plugin->ch3b = data; break; case EQ_CH4F: plugin->ch4f = data; break; case EQ_CH4G: plugin->ch4g = data; break; case EQ_CH4B: plugin->ch4b = data; break; case EQ_CH5F: plugin->ch5f = data; break; case EQ_CH5G: plugin->ch5g = data; break; case EQ_CH5B: plugin->ch5b = data; break; case EQ_CH6F: plugin->ch6f = data; break; case EQ_CH6G: plugin->ch6g = data; break; case EQ_CH6B: plugin->ch6b = data; break; case EQ_CH7F: plugin->ch7f = data; break; case EQ_CH7G: plugin->ch7g = data; break; case EQ_CH7B: plugin->ch7b = data; break; case EQ_INPUT: plugin->input = data; break; case EQ_OUTPUT: plugin->output = data; break; } } static LADSPA_Handle instantiate_eq(const LADSPA_Descriptor *descriptor, unsigned long s_rate) { eq *ptr = (eq *)malloc(sizeof(eq)); biquad *filters = NULL; float fs; fs = s_rate; memset(ptr, 0, sizeof(eq)); filters = calloc(8, sizeof(biquad)); ptr->filters = filters; ptr->fs = fs; ptr->run_adding_gain = 1.0f; ptr->old_ch0f = 100.0f; ptr->old_ch0g = 0.0f; ptr->old_ch0b = BWIDTH; ptr->old_ch1f = 200.0f; ptr->old_ch1g = 0.0f; ptr->old_ch1b = BWIDTH; ptr->old_ch2f = 400.0f; ptr->old_ch2g = 0.0f; ptr->old_ch2b = BWIDTH; ptr->old_ch3f = 1000.0f; ptr->old_ch3g = 0.0f; ptr->old_ch3b = BWIDTH; ptr->old_ch4f = 3000.0f; ptr->old_ch4g = 0.0f; ptr->old_ch4b = BWIDTH; ptr->old_ch5f = 6000.0f; ptr->old_ch5g = 0.0f; ptr->old_ch5b = BWIDTH; ptr->old_ch6f = 12000.0f; ptr->old_ch6g = 0.0f; ptr->old_ch6b = BWIDTH; ptr->old_ch7f = 15000.0f; ptr->old_ch7g = 0.0f; ptr->old_ch7b = BWIDTH; eq_set_params(&filters[0], 100.0f, 0.0f, BWIDTH, fs); eq_set_params(&filters[1], 200.0f, 0.0f, BWIDTH, fs); eq_set_params(&filters[2], 400.0f, 0.0f, BWIDTH, fs); eq_set_params(&filters[3], 1000.0f, 0.0f, BWIDTH, fs); eq_set_params(&filters[4], 3000.0f, 0.0f, BWIDTH, fs); eq_set_params(&filters[5], 6000.0f, 0.0f, BWIDTH, fs); eq_set_params(&filters[6], 12000.0f, 0.0f, BWIDTH, fs); eq_set_params(&filters[7], 15000.0f, 0.0f, BWIDTH, fs); return (LADSPA_Handle)ptr; } static void run_eq(LADSPA_Handle instance, unsigned long sample_count) { eq * ptr = (eq *)instance; const LADSPA_Data ch0f = LIMIT(*(ptr->ch0f),40.0f,280.0f); const LADSPA_Data ch0g = LIMIT(*(ptr->ch0g),-50.0f,20.0f); const LADSPA_Data ch0b = LIMIT(*(ptr->ch0b),0.1f,5.0f); const LADSPA_Data ch1f = LIMIT(*(ptr->ch1f),100.0f,500.0f); const LADSPA_Data ch1g = LIMIT(*(ptr->ch1g),-50.0f,20.0f); const LADSPA_Data ch1b = LIMIT(*(ptr->ch1b),0.1f,5.0f); const LADSPA_Data ch2f = LIMIT(*(ptr->ch2f),200.0f,1000.0f); const LADSPA_Data ch2g = LIMIT(*(ptr->ch2g),-50.0f,20.0f); const LADSPA_Data ch2b = LIMIT(*(ptr->ch2b),0.1f,5.0f); const LADSPA_Data ch3f = LIMIT(*(ptr->ch3f),400.0f,2800.0f); const LADSPA_Data ch3g = LIMIT(*(ptr->ch3g),-50.0f,20.0f); const LADSPA_Data ch3b = LIMIT(*(ptr->ch3b),0.1f,5.0f); const LADSPA_Data ch4f = LIMIT(*(ptr->ch4f),1000.0f,5000.0f); const LADSPA_Data ch4g = LIMIT(*(ptr->ch4g),-50.0f,20.0f); const LADSPA_Data ch4b = LIMIT(*(ptr->ch4b),0.1f,5.0f); const LADSPA_Data ch5f = LIMIT(*(ptr->ch5f),3000.0f,9000.0f); const LADSPA_Data ch5g = LIMIT(*(ptr->ch5g),-50.0f,20.0f); const LADSPA_Data ch5b = LIMIT(*(ptr->ch5b),0.1f,5.0f); const LADSPA_Data ch6f = LIMIT(*(ptr->ch6f),6000.0f,18000.0f); const LADSPA_Data ch6g = LIMIT(*(ptr->ch6g),-50.0f,20.0f); const LADSPA_Data ch6b = LIMIT(*(ptr->ch6b),0.1f,5.0f); const LADSPA_Data ch7f = LIMIT(*(ptr->ch7f),10000.0f,20000.0f); const LADSPA_Data ch7g = LIMIT(*(ptr->ch7g),-50.0f,20.0f); const LADSPA_Data ch7b = LIMIT(*(ptr->ch7b),0.1f,5.0f); const LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; biquad * filters = ptr->filters; float fs = ptr->fs; unsigned long pos; float samp; if ((ch0f != ptr->old_ch0f) || (ch0g != ptr->old_ch0g) || (ch0b != ptr->old_ch0b)) { ptr->old_ch0f = ch0f; ptr->old_ch0g = ch0g; ptr->old_ch0b = ch0b; eq_set_params(&filters[0], ch0f, ch0g, ch0b, fs); } if ((ch1f != ptr->old_ch1f) || (ch1g != ptr->old_ch1g) || (ch1b != ptr->old_ch1b)) { ptr->old_ch1f = ch1f; ptr->old_ch1g = ch1g; ptr->old_ch1b = ch1b; eq_set_params(&filters[1], ch1f, ch1g, ch1b, fs); } if ((ch2f != ptr->old_ch2f) || (ch2g != ptr->old_ch2g) || (ch2b != ptr->old_ch2b)) { ptr->old_ch2f = ch2f; ptr->old_ch2g = ch2g; ptr->old_ch2b = ch2b; eq_set_params(&filters[2], ch2f, ch2g, ch2b, fs); } if ((ch3f != ptr->old_ch3f) || (ch3g != ptr->old_ch3g) || (ch3b != ptr->old_ch3b)) { ptr->old_ch3f = ch3f; ptr->old_ch3g = ch3g; ptr->old_ch3b = ch3b; eq_set_params(&filters[3], ch3f, ch3g, ch3b, fs); } if ((ch4f != ptr->old_ch4f) || (ch4g != ptr->old_ch4g) || (ch4b != ptr->old_ch4b)) { ptr->old_ch4f = ch4f; ptr->old_ch4g = ch4g; ptr->old_ch4b = ch4b; eq_set_params(&filters[4], ch4f, ch4g, ch4b, fs); } if ((ch5f != ptr->old_ch5f) || (ch5g != ptr->old_ch5g) || (ch5b != ptr->old_ch5b)) { ptr->old_ch5f = ch5f; ptr->old_ch5g = ch5g; ptr->old_ch5b = ch5b; eq_set_params(&filters[5], ch5f, ch5g, ch5b, fs); } if ((ch6f != ptr->old_ch6f) || (ch6g != ptr->old_ch6g) || (ch6b != ptr->old_ch6b)) { ptr->old_ch6f = ch6f; ptr->old_ch6g = ch6g; ptr->old_ch6b = ch6b; eq_set_params(&filters[6], ch6f, ch6g, ch6b, fs); } if ((ch7f != ptr->old_ch7f) || (ch7g != ptr->old_ch7g) || (ch7b != ptr->old_ch7b)) { ptr->old_ch7f = ch7f; ptr->old_ch7g = ch7g; ptr->old_ch7b = ch7b; eq_set_params(&filters[7], ch7f, ch7g, ch7b, fs); } for (pos = 0; pos < sample_count; pos++) { samp = input[pos]; if (ch0g != 0.0f) samp = biquad_run(&filters[0], samp); if (ch1g != 0.0f) samp = biquad_run(&filters[1], samp); if (ch2g != 0.0f) samp = biquad_run(&filters[2], samp); if (ch3g != 0.0f) samp = biquad_run(&filters[3], samp); if (ch4g != 0.0f) samp = biquad_run(&filters[4], samp); if (ch5g != 0.0f) samp = biquad_run(&filters[5], samp); if (ch6g != 0.0f) samp = biquad_run(&filters[6], samp); if (ch7g != 0.0f) samp = biquad_run(&filters[7], samp); output[pos] = samp; } } void set_run_adding_gain(LADSPA_Handle instance, LADSPA_Data gain) { eq * ptr = (eq *)instance; ptr->run_adding_gain = gain; } static void run_adding_eq(LADSPA_Handle instance, unsigned long sample_count) { eq * ptr = (eq *)instance; const LADSPA_Data ch0f = LIMIT(*(ptr->ch0f),40.0f,280.0f); const LADSPA_Data ch0g = LIMIT(*(ptr->ch0g),-50.0f,20.0f); const LADSPA_Data ch0b = LIMIT(*(ptr->ch0b),0.1f,5.0f); const LADSPA_Data ch1f = LIMIT(*(ptr->ch1f),100.0f,500.0f); const LADSPA_Data ch1g = LIMIT(*(ptr->ch1g),-50.0f,20.0f); const LADSPA_Data ch1b = LIMIT(*(ptr->ch1b),0.1f,5.0f); const LADSPA_Data ch2f = LIMIT(*(ptr->ch2f),200.0f,1000.0f); const LADSPA_Data ch2g = LIMIT(*(ptr->ch2g),-50.0f,20.0f); const LADSPA_Data ch2b = LIMIT(*(ptr->ch2b),0.1f,5.0f); const LADSPA_Data ch3f = LIMIT(*(ptr->ch3f),400.0f,2800.0f); const LADSPA_Data ch3g = LIMIT(*(ptr->ch3g),-50.0f,20.0f); const LADSPA_Data ch3b = LIMIT(*(ptr->ch3b),0.1f,5.0f); const LADSPA_Data ch4f = LIMIT(*(ptr->ch4f),1000.0f,5000.0f); const LADSPA_Data ch4g = LIMIT(*(ptr->ch4g),-50.0f,20.0f); const LADSPA_Data ch4b = LIMIT(*(ptr->ch4b),0.1f,5.0f); const LADSPA_Data ch5f = LIMIT(*(ptr->ch5f),3000.0f,9000.0f); const LADSPA_Data ch5g = LIMIT(*(ptr->ch5g),-50.0f,20.0f); const LADSPA_Data ch5b = LIMIT(*(ptr->ch5b),0.1f,5.0f); const LADSPA_Data ch6f = LIMIT(*(ptr->ch6f),6000.0f,18000.0f); const LADSPA_Data ch6g = LIMIT(*(ptr->ch6g),-50.0f,20.0f); const LADSPA_Data ch6b = LIMIT(*(ptr->ch6b),0.1f,5.0f); const LADSPA_Data ch7f = LIMIT(*(ptr->ch7f),10000.0f,20000.0f); const LADSPA_Data ch7g = LIMIT(*(ptr->ch7g),-50.0f,20.0f); const LADSPA_Data ch7b = LIMIT(*(ptr->ch7b),0.1f,5.0f); const LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; biquad * filters = ptr->filters; float fs = ptr->fs; unsigned long pos; float samp; if ((ch0f != ptr->old_ch0f) || (ch0g != ptr->old_ch0g) || (ch0b != ptr->old_ch0b)) { ptr->old_ch0f = ch0f; ptr->old_ch0g = ch0g; ptr->old_ch0b = ch0b; eq_set_params(&filters[0], ch0f, ch0g, ch0b, fs); } if ((ch1f != ptr->old_ch1f) || (ch1g != ptr->old_ch1g) || (ch1b != ptr->old_ch1b)) { ptr->old_ch1f = ch1f; ptr->old_ch1g = ch1g; ptr->old_ch1b = ch1b; eq_set_params(&filters[1], ch1f, ch1g, ch1b, fs); } if ((ch2f != ptr->old_ch2f) || (ch2g != ptr->old_ch2g) || (ch2b != ptr->old_ch2b)) { ptr->old_ch2f = ch2f; ptr->old_ch2g = ch2g; ptr->old_ch2b = ch2b; eq_set_params(&filters[2], ch2f, ch2g, ch2b, fs); } if ((ch3f != ptr->old_ch3f) || (ch3g != ptr->old_ch3g) || (ch3b != ptr->old_ch3b)) { ptr->old_ch3f = ch3f; ptr->old_ch3g = ch3g; ptr->old_ch3b = ch3b; eq_set_params(&filters[3], ch3f, ch3g, ch3b, fs); } if ((ch4f != ptr->old_ch4f) || (ch4g != ptr->old_ch4g) || (ch4b != ptr->old_ch4b)) { ptr->old_ch4f = ch4f; ptr->old_ch4g = ch4g; ptr->old_ch4b = ch4b; eq_set_params(&filters[4], ch4f, ch4g, ch4b, fs); } if ((ch5f != ptr->old_ch5f) || (ch5g != ptr->old_ch5g) || (ch5b != ptr->old_ch5b)) { ptr->old_ch5f = ch5f; ptr->old_ch5g = ch5g; ptr->old_ch5b = ch5b; eq_set_params(&filters[5], ch5f, ch5g, ch5b, fs); } if ((ch6f != ptr->old_ch6f) || (ch6g != ptr->old_ch6g) || (ch6b != ptr->old_ch6b)) { ptr->old_ch6f = ch6f; ptr->old_ch6g = ch6g; ptr->old_ch6b = ch6b; eq_set_params(&filters[6], ch6f, ch6g, ch6b, fs); } if ((ch7f != ptr->old_ch7f) || (ch7g != ptr->old_ch7g) || (ch7b != ptr->old_ch7b)) { ptr->old_ch7f = ch7f; ptr->old_ch7g = ch7g; ptr->old_ch7b = ch7b; eq_set_params(&filters[7], ch7f, ch7g, ch7b, fs); } for (pos = 0; pos < sample_count; pos++) { samp = input[pos]; if (ch0g != 0.0f) samp = biquad_run(&filters[0], samp); if (ch1g != 0.0f) samp = biquad_run(&filters[1], samp); if (ch2g != 0.0f) samp = biquad_run(&filters[2], samp); if (ch3g != 0.0f) samp = biquad_run(&filters[3], samp); if (ch4g != 0.0f) samp = biquad_run(&filters[4], samp); if (ch5g != 0.0f) samp = biquad_run(&filters[5], samp); if (ch6g != 0.0f) samp = biquad_run(&filters[6], samp); if (ch7g != 0.0f) samp = biquad_run(&filters[7], samp); output[pos] += ptr->run_adding_gain * samp; } } void __attribute__((constructor)) tap_init() { char **port_names; LADSPA_PortDescriptor *port_descriptors; LADSPA_PortRangeHint *port_range_hints; eqDescriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor)); if (eqDescriptor) { eqDescriptor->UniqueID = ID_MONO; eqDescriptor->Label = "tap_equalizer_bw"; eqDescriptor->Properties = 0; eqDescriptor->Name = "TAP Equalizer/BW"; eqDescriptor->Maker = "Tom Szilagyi"; eqDescriptor->Copyright = "GPL"; eqDescriptor->PortCount = PORTCOUNT_MONO; port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortDescriptor)); eqDescriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_range_hints = (LADSPA_PortRangeHint *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortRangeHint)); eqDescriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_names = (char **)calloc(PORTCOUNT_MONO, sizeof(char*)); eqDescriptor->PortNames = (const char **)port_names; /* Parameters for CH0 freq [Hz] */ port_descriptors[EQ_CH0F] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH0F] = "Band 1 Freq [Hz]"; port_range_hints[EQ_CH0F].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_LOW; port_range_hints[EQ_CH0F].LowerBound = 40; port_range_hints[EQ_CH0F].UpperBound = 280; /* Parameters for CH0 gain [dB] */ port_descriptors[EQ_CH0G] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH0G] = "Band 1 Gain [dB]"; port_range_hints[EQ_CH0G].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0; port_range_hints[EQ_CH0G].LowerBound = -50; port_range_hints[EQ_CH0G].UpperBound = +20; /* Parameters for CH0 bandwidth [octaves] */ port_descriptors[EQ_CH0B] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH0B] = "Band 1 Bandwidth [octaves]"; port_range_hints[EQ_CH0B].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_1; port_range_hints[EQ_CH0B].LowerBound = 0.1f; port_range_hints[EQ_CH0B].UpperBound = 5.0f; /* Parameters for CH1 freq [Hz] */ port_descriptors[EQ_CH1F] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH1F] = "Band 2 Freq [Hz]"; port_range_hints[EQ_CH1F].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_LOW; port_range_hints[EQ_CH1F].LowerBound = 100; port_range_hints[EQ_CH1F].UpperBound = 500; /* Parameters for CH1 gain [dB] */ port_descriptors[EQ_CH1G] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH1G] = "Band 2 Gain [dB]"; port_range_hints[EQ_CH1G].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0; port_range_hints[EQ_CH1G].LowerBound = -50; port_range_hints[EQ_CH1G].UpperBound = +20; /* Parameters for CH1 bandwidth [octaves] */ port_descriptors[EQ_CH1B] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH1B] = "Band 2 Bandwidth [octaves]"; port_range_hints[EQ_CH1B].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_1; port_range_hints[EQ_CH1B].LowerBound = 0.1f; port_range_hints[EQ_CH1B].UpperBound = 5.0f; /* Parameters for CH2 freq [Hz] */ port_descriptors[EQ_CH2F] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH2F] = "Band 3 Freq [Hz]"; port_range_hints[EQ_CH2F].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_LOW; port_range_hints[EQ_CH2F].LowerBound = 200; port_range_hints[EQ_CH2F].UpperBound = 1000; /* Parameters for CH2 gain [dB] */ port_descriptors[EQ_CH2G] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH2G] = "Band 3 Gain [dB]"; port_range_hints[EQ_CH2G].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0; port_range_hints[EQ_CH2G].LowerBound = -50; port_range_hints[EQ_CH2G].UpperBound = +20; /* Parameters for CH2 bandwidth [octaves] */ port_descriptors[EQ_CH2B] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH2B] = "Band 3 Bandwidth [octaves]"; port_range_hints[EQ_CH2B].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_1; port_range_hints[EQ_CH2B].LowerBound = 0.1f; port_range_hints[EQ_CH2B].UpperBound = 5.0f; /* Parameters for CH3 freq [Hz] */ port_descriptors[EQ_CH3F] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH3F] = "Band 4 Freq [Hz]"; port_range_hints[EQ_CH3F].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_LOW; port_range_hints[EQ_CH3F].LowerBound = 400; port_range_hints[EQ_CH3F].UpperBound = 2800; /* Parameters for CH3 gain [dB] */ port_descriptors[EQ_CH3G] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH3G] = "Band 4 Gain [dB]"; port_range_hints[EQ_CH3G].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0; port_range_hints[EQ_CH3G].LowerBound = -50; port_range_hints[EQ_CH3G].UpperBound = +20; /* Parameters for CH3 bandwidth [octaves] */ port_descriptors[EQ_CH3B] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH3B] = "Band 4 Bandwidth [octaves]"; port_range_hints[EQ_CH3B].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_1; port_range_hints[EQ_CH3B].LowerBound = 0.1f; port_range_hints[EQ_CH3B].UpperBound = 5.0f; /* Parameters for CH4 freq [Hz] */ port_descriptors[EQ_CH4F] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH4F] = "Band 5 Freq [Hz]"; port_range_hints[EQ_CH4F].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MIDDLE; port_range_hints[EQ_CH4F].LowerBound = 1000; port_range_hints[EQ_CH4F].UpperBound = 5000; /* Parameters for CH4 gain [dB] */ port_descriptors[EQ_CH4G] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH4G] = "Band 5 Gain [dB]"; port_range_hints[EQ_CH4G].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0; port_range_hints[EQ_CH4G].LowerBound = -50; port_range_hints[EQ_CH4G].UpperBound = +20; /* Parameters for CH4 bandwidth [octaves] */ port_descriptors[EQ_CH4B] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH4B] = "Band 5 Bandwidth [octaves]"; port_range_hints[EQ_CH4B].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_1; port_range_hints[EQ_CH4B].LowerBound = 0.1f; port_range_hints[EQ_CH4B].UpperBound = 5.0f; /* Parameters for CH5 freq [Hz] */ port_descriptors[EQ_CH5F] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH5F] = "Band 6 Freq [Hz]"; port_range_hints[EQ_CH5F].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MIDDLE; port_range_hints[EQ_CH5F].LowerBound = 3000; port_range_hints[EQ_CH5F].UpperBound = 9000; /* Parameters for CH5 gain [dB] */ port_descriptors[EQ_CH5G] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH5G] = "Band 6 Gain [dB]"; port_range_hints[EQ_CH5G].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0; port_range_hints[EQ_CH5G].LowerBound = -50; port_range_hints[EQ_CH5G].UpperBound = +20; /* Parameters for CH5 bandwidth [octaves] */ port_descriptors[EQ_CH5B] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH5B] = "Band 6 Bandwidth [octaves]"; port_range_hints[EQ_CH5B].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_1; port_range_hints[EQ_CH5B].LowerBound = 0.1f; port_range_hints[EQ_CH5B].UpperBound = 5.0f; /* Parameters for CH6 freq [Hz] */ port_descriptors[EQ_CH6F] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH6F] = "Band 7 Freq [Hz]"; port_range_hints[EQ_CH6F].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MIDDLE; port_range_hints[EQ_CH6F].LowerBound = 6000; port_range_hints[EQ_CH6F].UpperBound = 18000; /* Parameters for CH6 gain [dB] */ port_descriptors[EQ_CH6G] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH6G] = "Band 7 Gain [dB]"; port_range_hints[EQ_CH6G].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0; port_range_hints[EQ_CH6G].LowerBound = -50; port_range_hints[EQ_CH6G].UpperBound = +20; /* Parameters for CH6 bandwidth [octaves] */ port_descriptors[EQ_CH6B] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH6B] = "Band 7 Bandwidth [octaves]"; port_range_hints[EQ_CH6B].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_1; port_range_hints[EQ_CH6B].LowerBound = 0.1f; port_range_hints[EQ_CH6B].UpperBound = 5.0f; /* Parameters for CH7 freq [Hz] */ port_descriptors[EQ_CH7F] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH7F] = "Band 8 Freq [Hz]"; port_range_hints[EQ_CH7F].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MIDDLE; port_range_hints[EQ_CH7F].LowerBound = 10000; port_range_hints[EQ_CH7F].UpperBound = 20000; /* Parameters for CH7 gain [dB] */ port_descriptors[EQ_CH7G] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH7G] = "Band 8 Gain [dB]"; port_range_hints[EQ_CH7G].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0; port_range_hints[EQ_CH7G].LowerBound = -50; port_range_hints[EQ_CH7G].UpperBound = +20; /* Parameters for CH7 bandwidth [octaves] */ port_descriptors[EQ_CH7B] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_names[EQ_CH7B] = "Band 8 Bandwidth [octaves]"; port_range_hints[EQ_CH7B].HintDescriptor = LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_1; port_range_hints[EQ_CH7B].LowerBound = 0.1f; port_range_hints[EQ_CH7B].UpperBound = 5.0f; /* Parameters for Input */ port_descriptors[EQ_INPUT] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_names[EQ_INPUT] = "Input"; port_range_hints[EQ_INPUT].HintDescriptor = 0; /* Parameters for Output */ port_descriptors[EQ_OUTPUT] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; port_names[EQ_OUTPUT] = "Output"; port_range_hints[EQ_OUTPUT].HintDescriptor = 0; eqDescriptor->activate = activate_eq; eqDescriptor->cleanup = cleanup_eq; eqDescriptor->connect_port = connectPort_eq; eqDescriptor->deactivate = NULL; eqDescriptor->instantiate = instantiate_eq; eqDescriptor->run = run_eq; eqDescriptor->run_adding = run_adding_eq; eqDescriptor->set_run_adding_gain = set_run_adding_gain; } } void __attribute__((destructor)) tap_fini() { if (eqDescriptor) { free((LADSPA_PortDescriptor *)eqDescriptor->PortDescriptors); free((char **)eqDescriptor->PortNames); free((LADSPA_PortRangeHint *)eqDescriptor->PortRangeHints); free(eqDescriptor); } } tap-plugins-1.0.0/tap_limiter.c000066400000000000000000000302151320332260600164260ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "tap_utils.h" /* The Unique ID of the plugin: */ #define ID_MONO 2145 /* The port numbers for the plugin: */ #define LIMIT_VOL 0 #define OUT_VOL 1 #define LATENCY 2 #define INPUT 3 #define OUTPUT 4 /* Total number of ports */ #define PORTCOUNT_MONO 5 /* Size of a ringbuffer that must be large enough to hold audio * between two zero-crosses in any case (or you'll hear * distortion). 40 Hz sound at 192kHz yields a half-period of 2400 * samples, so this should be enough. */ #define RINGBUF_SIZE 2500 /* The structure used to hold port connection information and state */ typedef struct { LADSPA_Data * limit_vol; LADSPA_Data * out_vol; LADSPA_Data * latency; LADSPA_Data * input; LADSPA_Data * output; LADSPA_Data * ringbuffer; unsigned long buflen; unsigned long pos; unsigned long ready_num; unsigned long sample_rate; LADSPA_Data run_adding_gain; } Limiter; /* Construct a new plugin instance. */ LADSPA_Handle instantiate_Limiter(const LADSPA_Descriptor * Descriptor, unsigned long sample_rate) { LADSPA_Handle * ptr; if ((ptr = malloc(sizeof(Limiter))) != NULL) { ((Limiter *)ptr)->sample_rate = sample_rate; ((Limiter *)ptr)->run_adding_gain = 1.0f; if ((((Limiter *)ptr)->ringbuffer = calloc(RINGBUF_SIZE, sizeof(LADSPA_Data))) == NULL) return NULL; /* 80 Hz is the lowest frequency with which zero-crosses were * observed to occur (this corresponds to 40 Hz signal frequency). */ ((Limiter *)ptr)->buflen = ((Limiter *)ptr)->sample_rate / 80; ((Limiter *)ptr)->pos = 0; ((Limiter *)ptr)->ready_num = 0; return ptr; } return NULL; } void activate_Limiter(LADSPA_Handle Instance) { Limiter * ptr = (Limiter *)Instance; unsigned long i; for (i = 0; i < RINGBUF_SIZE; i++) ptr->ringbuffer[i] = 0.0f; } /* Connect a port to a data location. */ void connect_port_Limiter(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * DataLocation) { Limiter * ptr = (Limiter *)Instance; switch (Port) { case LIMIT_VOL: ptr->limit_vol = DataLocation; break; case OUT_VOL: ptr->out_vol = DataLocation; break; case LATENCY: ptr->latency = DataLocation; *(ptr->latency) = ptr->buflen; /* IS THIS LEGAL? */ break; case INPUT: ptr->input = DataLocation; break; case OUTPUT: ptr->output = DataLocation; break; } } void run_Limiter(LADSPA_Handle Instance, unsigned long SampleCount) { Limiter * ptr = (Limiter *)Instance; LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; LADSPA_Data limit_vol = db2lin(LIMIT(*(ptr->limit_vol),-30.0f,20.0f)); LADSPA_Data out_vol = db2lin(LIMIT(*(ptr->out_vol),-30.0f,20.0f)); unsigned long sample_index; unsigned long sample_count = SampleCount; unsigned long index_offs = 0; unsigned long i; LADSPA_Data max_value = 0; LADSPA_Data section_gain = 0; unsigned long run_length; unsigned long total_length = 0; while (total_length < sample_count) { run_length = ptr->buflen; if (total_length + run_length > sample_count) run_length = sample_count - total_length; while (ptr->ready_num < run_length) { if (read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, ptr->ready_num) >= 0.0f) { index_offs = 0; while ((read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, ptr->ready_num + index_offs) >= 0.0f) && (ptr->ready_num + index_offs < run_length)) { index_offs++; } } else { index_offs = 0; while ((read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, ptr->ready_num + index_offs) <= 0.0f) && (ptr->ready_num + index_offs < run_length)) { index_offs++; } } /* search for max value in scanned halfcycle */ max_value = 0; for (i = ptr->ready_num; i < ptr->ready_num + index_offs; i++) { if (fabs(read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, i)) > max_value) max_value = fabs(read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, i)); } section_gain = limit_vol / max_value; if (max_value > limit_vol) for (i = ptr->ready_num; i < ptr->ready_num + index_offs; i++) { write_buffer(read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, i) * section_gain, ptr->ringbuffer, ptr->buflen, ptr->pos, i); } ptr->ready_num += index_offs; } /* push run_length values out of ringbuffer, feed with input */ for (sample_index = 0; sample_index < run_length; sample_index++) { *(output++) = out_vol * push_buffer(*(input++), ptr->ringbuffer, ptr->buflen, &(ptr->pos)); } ptr->ready_num -= run_length; total_length += run_length; } *(ptr->latency) = ptr->buflen; } void set_run_adding_gain_Limiter(LADSPA_Handle Instance, LADSPA_Data gain) { Limiter * ptr = (Limiter *)Instance; ptr->run_adding_gain = gain; } void run_adding_Limiter(LADSPA_Handle Instance, unsigned long SampleCount) { Limiter * ptr = (Limiter *)Instance; LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; LADSPA_Data limit_vol = db2lin(LIMIT(*(ptr->limit_vol),-30.0f,20.0f)); LADSPA_Data out_vol = db2lin(LIMIT(*(ptr->out_vol),-30.0f,20.0f)); unsigned long sample_index; unsigned long sample_count = SampleCount; unsigned long index_offs = 0; unsigned long i; LADSPA_Data max_value = 0; LADSPA_Data section_gain = 0; unsigned long run_length; unsigned long total_length = 0; while (total_length < sample_count) { run_length = ptr->buflen; if (total_length + run_length > sample_count) run_length = sample_count - total_length; while (ptr->ready_num < run_length) { if (read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, ptr->ready_num) >= 0.0f) { index_offs = 0; while ((read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, ptr->ready_num + index_offs) >= 0.0f) && (ptr->ready_num + index_offs < run_length)) { index_offs++; } } else { index_offs = 0; while ((read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, ptr->ready_num + index_offs) <= 0.0f) && (ptr->ready_num + index_offs < run_length)) { index_offs++; } } /* search for max value in scanned halfcycle */ max_value = 0; for (i = ptr->ready_num; i < ptr->ready_num + index_offs; i++) { if (fabs(read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, i)) > max_value) max_value = fabs(read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, i)); } section_gain = limit_vol / max_value; if (max_value > limit_vol) for (i = ptr->ready_num; i < ptr->ready_num + index_offs; i++) { write_buffer(read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, i) * section_gain, ptr->ringbuffer, ptr->buflen, ptr->pos, i); } ptr->ready_num += index_offs; } /* push run_length values out of ringbuffer, feed with input */ for (sample_index = 0; sample_index < run_length; sample_index++) { *(output++) += ptr->run_adding_gain * out_vol * push_buffer(*(input++), ptr->ringbuffer, ptr->buflen, &(ptr->pos)); } ptr->ready_num -= run_length; total_length += run_length; } *(ptr->latency) = ptr->buflen; } /* Throw away a Limiter effect instance. */ void cleanup_Limiter(LADSPA_Handle Instance) { Limiter * ptr = (Limiter *)Instance; free(ptr->ringbuffer); free(Instance); } LADSPA_Descriptor * mono_descriptor = NULL; /* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first loaded. */ void __attribute__((constructor)) tap_init() { char ** port_names; LADSPA_PortDescriptor * port_descriptors; LADSPA_PortRangeHint * port_range_hints; if ((mono_descriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL) exit(1); mono_descriptor->UniqueID = ID_MONO; mono_descriptor->Label = strdup("tap_limiter"); mono_descriptor->Properties = 0; mono_descriptor->Name = strdup("TAP Scaling Limiter"); mono_descriptor->Maker = strdup("Tom Szilagyi"); mono_descriptor->Copyright = strdup("GPL"); mono_descriptor->PortCount = PORTCOUNT_MONO; if ((port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortDescriptor))) == NULL) exit(1); mono_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_descriptors[LIMIT_VOL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[OUT_VOL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[LATENCY] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL; port_descriptors[INPUT] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; if ((port_names = (char **)calloc(PORTCOUNT_MONO, sizeof(char *))) == NULL) exit(1); mono_descriptor->PortNames = (const char **)port_names; port_names[LIMIT_VOL] = strdup("Limit Level [dB]"); port_names[OUT_VOL] = strdup("Output Volume [dB]"); port_names[LATENCY] = strdup("latency"); port_names[INPUT] = strdup("Input"); port_names[OUTPUT] = strdup("Output"); if ((port_range_hints = ((LADSPA_PortRangeHint *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortRangeHint)))) == NULL) exit(1); mono_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_range_hints[LIMIT_VOL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[OUT_VOL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[LATENCY].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MAXIMUM); port_range_hints[LIMIT_VOL].LowerBound = -30; port_range_hints[LIMIT_VOL].UpperBound = +20; port_range_hints[OUT_VOL].LowerBound = -30; port_range_hints[OUT_VOL].UpperBound = +20; port_range_hints[LATENCY].LowerBound = 0; port_range_hints[LATENCY].UpperBound = RINGBUF_SIZE + 0.1f; port_range_hints[INPUT].HintDescriptor = 0; port_range_hints[OUTPUT].HintDescriptor = 0; mono_descriptor->instantiate = instantiate_Limiter; mono_descriptor->connect_port = connect_port_Limiter; mono_descriptor->activate = activate_Limiter; mono_descriptor->run = run_Limiter; mono_descriptor->run_adding = run_adding_Limiter; mono_descriptor->set_run_adding_gain = set_run_adding_gain_Limiter; mono_descriptor->deactivate = NULL; mono_descriptor->cleanup = cleanup_Limiter; } void delete_descriptor(LADSPA_Descriptor * descriptor) { unsigned long index; if (descriptor) { free((char *)descriptor->Label); free((char *)descriptor->Name); free((char *)descriptor->Maker); free((char *)descriptor->Copyright); free((LADSPA_PortDescriptor *)descriptor->PortDescriptors); for (index = 0; index < descriptor->PortCount; index++) free((char *)(descriptor->PortNames[index])); free((char **)descriptor->PortNames); free((LADSPA_PortRangeHint *)descriptor->PortRangeHints); free(descriptor); } } /* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */ void __attribute__((destructor)) tap_fini() { delete_descriptor(mono_descriptor); } /* Return a descriptor of the requested plugin type. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index) { switch (Index) { case 0: return mono_descriptor; default: return NULL; } } tap-plugins-1.0.0/tap_pinknoise.c000066400000000000000000000217001320332260600167570ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include "tap_utils.h" /* The Unique ID of the plugin: */ #define ID_MONO 2155 /* The port numbers for the plugin: */ #define HURST 0 #define SIGNAL 1 #define NOISE 2 #define INPUT 3 #define OUTPUT 4 /* Total number of ports */ #define PORTCOUNT_MONO 5 #define NOISE_LEN 1024 /* The structure used to hold port connection information and state */ typedef struct { LADSPA_Data * hurst; LADSPA_Data * signal; LADSPA_Data * noise; LADSPA_Data * input; LADSPA_Data * output; LADSPA_Data * ring; unsigned long buflen; unsigned long pos; unsigned long sample_rate; LADSPA_Data run_adding_gain; } Pinknoise; /* generate fractal pattern using Midpoint Displacement Method * v: buffer of floats to output fractal pattern to * N: length of v, MUST be integer power of 2 (ie 128, 256, ...) * H: Hurst constant, between 0 and 0.9999 (fractal dimension) */ void fractal(LADSPA_Data * v, int N, float H) { int l = N; int k; float r = 2.0f * H*H + 0.3f; int c; v[0] = 0; while (l > 1) { k = N / l; for (c = 0; c < k; c++) { v[c*l + l/2] = (v[c*l] + v[((c+1) * l) % N]) / 2.0f + 2.0f * r * (rand() - (float)RAND_MAX/2.0f) / (float)RAND_MAX; v[c*l + l/2] = LIMIT(v[c*l + l/2], -1.0f, 1.0f); } l /= 2; r /= powf(2, H); } } /* Construct a new plugin instance. */ LADSPA_Handle instantiate_Pinknoise(const LADSPA_Descriptor * Descriptor, unsigned long SampleRate) { LADSPA_Handle * ptr; if ((ptr = malloc(sizeof(Pinknoise))) != NULL) { ((Pinknoise *)ptr)->sample_rate = SampleRate; ((Pinknoise *)ptr)->run_adding_gain = 1.0; if ((((Pinknoise *)ptr)->ring = calloc(NOISE_LEN, sizeof(LADSPA_Data))) == NULL) return NULL; ((Pinknoise *)ptr)->buflen = NOISE_LEN; ((Pinknoise *)ptr)->pos = 0; return ptr; } return NULL; } /* Connect a port to a data location. */ void connect_port_Pinknoise(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * data) { Pinknoise * ptr; ptr = (Pinknoise *)Instance; switch (Port) { case HURST: ptr->hurst = data; break; case SIGNAL: ptr->signal = data; break; case NOISE: ptr->noise = data; break; case INPUT: ptr->input = data; break; case OUTPUT: ptr->output = data; break; } } void run_Pinknoise(LADSPA_Handle Instance, unsigned long SampleCount) { Pinknoise * ptr = (Pinknoise *)Instance; LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; LADSPA_Data hurst = LIMIT(*(ptr->hurst), 0.0f, 1.0f); LADSPA_Data signal = db2lin(LIMIT(*(ptr->signal), -90.0f, 20.0f)); LADSPA_Data noise = db2lin(LIMIT(*(ptr->noise), -90.0f, 20.0f)); unsigned long sample_index; for (sample_index = 0; sample_index < SampleCount; sample_index++) { if (!ptr->pos) fractal(ptr->ring, NOISE_LEN, hurst); *(output++) = signal * *(input++) + noise * push_buffer(0.0f, ptr->ring, ptr->buflen, &(ptr->pos)); } } void set_run_adding_gain_Pinknoise(LADSPA_Handle Instance, LADSPA_Data gain) { Pinknoise * ptr; ptr = (Pinknoise *)Instance; ptr->run_adding_gain = gain; } void run_adding_Pinknoise(LADSPA_Handle Instance, unsigned long SampleCount) { Pinknoise * ptr = (Pinknoise *)Instance; LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; LADSPA_Data hurst = LIMIT(*(ptr->hurst), 0.0f, 1.0f); LADSPA_Data signal = db2lin(LIMIT(*(ptr->signal), -90.0f, 20.0f)); LADSPA_Data noise = db2lin(LIMIT(*(ptr->noise), -90.0f, 20.0f)); unsigned long sample_index; for (sample_index = 0; sample_index < SampleCount; sample_index++) { if (!ptr->pos) fractal(ptr->ring, NOISE_LEN, hurst); *(output++) += ptr->run_adding_gain * (signal * *(input++) + noise * push_buffer(0.0f, ptr->ring, ptr->buflen, &(ptr->pos))); } } /* Throw away a Pinknoise effect instance. */ void cleanup_Pinknoise(LADSPA_Handle Instance) { Pinknoise * ptr = (Pinknoise *)Instance; free(ptr->ring); free(Instance); } LADSPA_Descriptor * mono_descriptor = NULL; /* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first loaded. */ void __attribute__((constructor)) tap_init() { char ** port_names; LADSPA_PortDescriptor * port_descriptors; LADSPA_PortRangeHint * port_range_hints; if ((mono_descriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL) exit(1); #ifndef TAP_DISABLE_SRAND /* initialize RNG */ srand(time(0)); #endif mono_descriptor->UniqueID = ID_MONO; mono_descriptor->Label = strdup("tap_pinknoise"); mono_descriptor->Properties = LADSPA_PROPERTY_HARD_RT_CAPABLE; mono_descriptor->Name = strdup("TAP Pink/Fractal Noise"); mono_descriptor->Maker = strdup("Tom Szilagyi"); mono_descriptor->Copyright = strdup("GPL"); mono_descriptor->PortCount = PORTCOUNT_MONO; if ((port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortDescriptor))) == NULL) exit(1); mono_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_descriptors[HURST] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[SIGNAL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[NOISE] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[INPUT] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; if ((port_names = (char **)calloc(PORTCOUNT_MONO, sizeof(char *))) == NULL) exit(1); mono_descriptor->PortNames = (const char **)port_names; port_names[HURST] = strdup("Fractal Dimension"); port_names[SIGNAL] = strdup("Signal Level [dB]"); port_names[NOISE] = strdup("Noise Level [dB]"); port_names[INPUT] = strdup("Input"); port_names[OUTPUT] = strdup("Output"); if ((port_range_hints = ((LADSPA_PortRangeHint *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortRangeHint)))) == NULL) exit(1); mono_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_range_hints[HURST].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MIDDLE); port_range_hints[SIGNAL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[NOISE].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MINIMUM); port_range_hints[HURST].LowerBound = 0.0f; port_range_hints[HURST].UpperBound = 1.0f; port_range_hints[SIGNAL].LowerBound = -90.0f; port_range_hints[SIGNAL].UpperBound = 20.0f; port_range_hints[NOISE].LowerBound = -90.0f; port_range_hints[NOISE].UpperBound = 20.0f; port_range_hints[INPUT].HintDescriptor = 0; port_range_hints[OUTPUT].HintDescriptor = 0; mono_descriptor->instantiate = instantiate_Pinknoise; mono_descriptor->connect_port = connect_port_Pinknoise; mono_descriptor->activate = NULL; mono_descriptor->run = run_Pinknoise; mono_descriptor->run_adding = run_adding_Pinknoise; mono_descriptor->set_run_adding_gain = set_run_adding_gain_Pinknoise; mono_descriptor->deactivate = NULL; mono_descriptor->cleanup = cleanup_Pinknoise; } void delete_descriptor(LADSPA_Descriptor * descriptor) { unsigned long index; if (descriptor) { free((char *)descriptor->Label); free((char *)descriptor->Name); free((char *)descriptor->Maker); free((char *)descriptor->Copyright); free((LADSPA_PortDescriptor *)descriptor->PortDescriptors); for (index = 0; index < descriptor->PortCount; index++) free((char *)(descriptor->PortNames[index])); free((char **)descriptor->PortNames); free((LADSPA_PortRangeHint *)descriptor->PortRangeHints); free(descriptor); } } /* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */ void __attribute__((destructor)) tap_fini() { delete_descriptor(mono_descriptor); } /* Return a descriptor of the requested plugin type. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index) { switch (Index) { case 0: return mono_descriptor; default: return NULL; } } tap-plugins-1.0.0/tap_pitch.c000066400000000000000000000372401320332260600160750ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "tap_utils.h" /* The Unique ID of the plugin: */ #define ID_MONO 2150 /* The port numbers for the plugin: */ #define SEMITONE 0 #define RATE 1 #define DRYLEVEL 2 #define WETLEVEL 3 #define LATENCY 4 #define INPUT 5 #define OUTPUT 6 /* Total number of ports */ #define PORTCOUNT_MONO 7 /* depth of phase mod (yes, this is a magic number) */ #define PM_DEPTH 3681.0f /* another magic number, derived from the above one */ #define PM_BUFLEN 16027 /* frequency of the modulation signal (Hz) */ #define PM_FREQ 6.0f #define COS_TABLE_SIZE 1024 LADSPA_Data cos_table[COS_TABLE_SIZE]; /* \sqrt{12}{2} used for key frequency computing */ #define ROOT_12_2 1.059463094f /* The structure used to hold port connection information and state */ typedef struct { LADSPA_Data * rate; LADSPA_Data * semitone; LADSPA_Data * drylevel; LADSPA_Data * wetlevel; LADSPA_Data * latency; LADSPA_Data * input; LADSPA_Data * output; LADSPA_Data * ringbuffer; unsigned long buflen; unsigned long pos; LADSPA_Data phase; unsigned long sample_rate; LADSPA_Data run_adding_gain; } Pitch; /* Construct a new plugin instance. */ LADSPA_Handle instantiate_Pitch(const LADSPA_Descriptor * Descriptor, unsigned long sample_rate) { LADSPA_Handle * ptr; if ((ptr = malloc(sizeof(Pitch))) != NULL) { ((Pitch *)ptr)->sample_rate = sample_rate; ((Pitch *)ptr)->run_adding_gain = 1.0f; if ((((Pitch *)ptr)->ringbuffer = calloc(2 * PM_BUFLEN, sizeof(LADSPA_Data))) == NULL) return NULL; ((Pitch *)ptr)->buflen = 2 * PM_BUFLEN * sample_rate / 192000; ((Pitch *)ptr)->pos = 0; return ptr; } return NULL; } void activate_Pitch(LADSPA_Handle Instance) { Pitch * ptr = (Pitch *)Instance; unsigned long i; for (i = 0; i < ptr->buflen; i++) ptr->ringbuffer[i] = 0.0f; ptr->phase = 0.0f; } /* Connect a port to a data location. */ void connect_port_Pitch(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * DataLocation) { Pitch * ptr = (Pitch *)Instance; switch (Port) { case RATE: ptr->rate = DataLocation; break; case SEMITONE: ptr->semitone = DataLocation; break; case DRYLEVEL: ptr->drylevel = DataLocation; break; case WETLEVEL: ptr->wetlevel = DataLocation; break; case LATENCY: ptr->latency = DataLocation; *(ptr->latency) = ptr->buflen / 2; /* IS THIS LEGAL? */ break; case INPUT: ptr->input = DataLocation; break; case OUTPUT: ptr->output = DataLocation; break; } } void run_Pitch(LADSPA_Handle Instance, unsigned long SampleCount) { Pitch * ptr = (Pitch *)Instance; LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; LADSPA_Data drylevel = db2lin(LIMIT(*(ptr->drylevel),-90.0f,20.0f)); LADSPA_Data wetlevel = 0.333333f * db2lin(LIMIT(*(ptr->wetlevel),-90.0f,20.0f)); LADSPA_Data buflen = ptr->buflen / 2.0f; LADSPA_Data semitone = LIMIT(*(ptr->semitone),-12.0f,12.0f); LADSPA_Data rate; LADSPA_Data r; LADSPA_Data depth; unsigned long sample_index; unsigned long sample_count = SampleCount; LADSPA_Data in = 0.0f; LADSPA_Data sign = 1.0f; LADSPA_Data phase_0 = 0.0f; LADSPA_Data phase_am_0 = 0.0f; LADSPA_Data phase_1 = 0.0f; LADSPA_Data phase_am_1 = 0.0f; LADSPA_Data phase_2 = 0.0f; LADSPA_Data phase_am_2 = 0.0f; LADSPA_Data fpos_0 = 0.0f, fpos_1 = 0.0f, fpos_2 = 0.0f; LADSPA_Data n_0 = 0.0f, n_1 = 0.0f, n_2 = 0.0f; LADSPA_Data rem_0 = 0.0f, rem_1 = 0.0f, rem_2 = 0.0f; LADSPA_Data sa_0, sb_0, sa_1, sb_1, sa_2, sb_2; if (semitone == 0.0f) rate = LIMIT(*(ptr->rate),-50.0f,100.0f); else rate = 100.0f * (powf(ROOT_12_2,semitone) - 1.0f); r = -1.0f * ABS(rate); depth = buflen * LIMIT(ABS(r) / 100.0f, 0.0f, 1.0f); if (rate > 0.0f) sign = -1.0f; for (sample_index = 0; sample_index < sample_count; sample_index++) { in = *(input++); phase_0 = COS_TABLE_SIZE * PM_FREQ * sample_index / ptr->sample_rate + ptr->phase; while (phase_0 >= COS_TABLE_SIZE) phase_0 -= COS_TABLE_SIZE; phase_am_0 = phase_0 + COS_TABLE_SIZE/2; while (phase_am_0 >= COS_TABLE_SIZE) phase_am_0 -= COS_TABLE_SIZE; phase_1 = phase_0 + COS_TABLE_SIZE/3.0f; while (phase_1 >= COS_TABLE_SIZE) phase_1 -= COS_TABLE_SIZE; phase_am_1 = phase_1 + COS_TABLE_SIZE/2; while (phase_am_1 >= COS_TABLE_SIZE) phase_am_1 -= COS_TABLE_SIZE; phase_2 = phase_0 + 2.0f*COS_TABLE_SIZE/3.0f; while (phase_2 >= COS_TABLE_SIZE) phase_2 -= COS_TABLE_SIZE; phase_am_2 = phase_2 + COS_TABLE_SIZE/2; while (phase_am_2 >= COS_TABLE_SIZE) phase_am_2 -= COS_TABLE_SIZE; push_buffer(in, ptr->ringbuffer, ptr->buflen, &(ptr->pos)); fpos_0 = depth * (1.0f - sign * (2.0f * phase_0 / COS_TABLE_SIZE - 1.0f)); n_0 = floorf(fpos_0); rem_0 = fpos_0 - n_0; fpos_1 = depth * (1.0f - sign * (2.0f * phase_1 / COS_TABLE_SIZE - 1.0f)); n_1 = floorf(fpos_1); rem_1 = fpos_1 - n_1; fpos_2 = depth * (1.0f - sign * (2.0f * phase_2 / COS_TABLE_SIZE - 1.0f)); n_2 = floorf(fpos_2); rem_2 = fpos_2 - n_2; sa_0 = read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) n_0); sb_0 = read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) n_0 + 1); sa_1 = read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) n_1); sb_1 = read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) n_1 + 1); sa_2 = read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) n_2); sb_2 = read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) n_2 + 1); *(output++) = wetlevel * ((1.0f + cos_table[(unsigned long) phase_am_0]) * ((1 - rem_0) * sa_0 + rem_0 * sb_0) + (1.0f + cos_table[(unsigned long) phase_am_1]) * ((1 - rem_1) * sa_1 + rem_1 * sb_1) + (1.0f + cos_table[(unsigned long) phase_am_2]) * ((1 - rem_2) * sa_2 + rem_2 * sb_2)) + drylevel * read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) depth); } ptr->phase += COS_TABLE_SIZE * PM_FREQ * sample_index / ptr->sample_rate; while (ptr->phase >= COS_TABLE_SIZE) ptr->phase -= COS_TABLE_SIZE; *(ptr->latency) = buflen - (unsigned long) depth; } void set_run_adding_gain_Pitch(LADSPA_Handle Instance, LADSPA_Data gain) { Pitch * ptr = (Pitch *)Instance; ptr->run_adding_gain = gain; } void run_adding_Pitch(LADSPA_Handle Instance, unsigned long SampleCount) { Pitch * ptr = (Pitch *)Instance; LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; LADSPA_Data drylevel = db2lin(LIMIT(*(ptr->drylevel),-90.0f,20.0f)); LADSPA_Data wetlevel = 0.333333f * db2lin(LIMIT(*(ptr->wetlevel),-90.0f,20.0f)); LADSPA_Data buflen = ptr->buflen / 2.0f; LADSPA_Data semitone = LIMIT(*(ptr->semitone),-12.0f,12.0f); LADSPA_Data rate; LADSPA_Data r; LADSPA_Data depth; unsigned long sample_index; unsigned long sample_count = SampleCount; LADSPA_Data in = 0.0f; LADSPA_Data sign = 1.0f; LADSPA_Data phase_0 = 0.0f; LADSPA_Data phase_am_0 = 0.0f; LADSPA_Data phase_1 = 0.0f; LADSPA_Data phase_am_1 = 0.0f; LADSPA_Data phase_2 = 0.0f; LADSPA_Data phase_am_2 = 0.0f; LADSPA_Data fpos_0 = 0.0f, fpos_1 = 0.0f, fpos_2 = 0.0f; LADSPA_Data n_0 = 0.0f, n_1 = 0.0f, n_2 = 0.0f; LADSPA_Data rem_0 = 0.0f, rem_1 = 0.0f, rem_2 = 0.0f; LADSPA_Data sa_0, sb_0, sa_1, sb_1, sa_2, sb_2; if (semitone == 0.0f) rate = LIMIT(*(ptr->rate),-50.0f,100.0f); else rate = 100.0f * (powf(ROOT_12_2,semitone) - 1.0f); r = -1.0f * ABS(rate); depth = buflen * LIMIT(ABS(r) / 100.0f, 0.0f, 1.0f); if (rate > 0.0f) sign = -1.0f; for (sample_index = 0; sample_index < sample_count; sample_index++) { in = *(input++); phase_0 = COS_TABLE_SIZE * PM_FREQ * sample_index / ptr->sample_rate + ptr->phase; while (phase_0 >= COS_TABLE_SIZE) phase_0 -= COS_TABLE_SIZE; phase_am_0 = phase_0 + COS_TABLE_SIZE/2; while (phase_am_0 >= COS_TABLE_SIZE) phase_am_0 -= COS_TABLE_SIZE; phase_1 = phase_0 + COS_TABLE_SIZE/3.0f; while (phase_1 >= COS_TABLE_SIZE) phase_1 -= COS_TABLE_SIZE; phase_am_1 = phase_1 + COS_TABLE_SIZE/2; while (phase_am_1 >= COS_TABLE_SIZE) phase_am_1 -= COS_TABLE_SIZE; phase_2 = phase_0 + 2.0f*COS_TABLE_SIZE/3.0f; while (phase_2 >= COS_TABLE_SIZE) phase_2 -= COS_TABLE_SIZE; phase_am_2 = phase_2 + COS_TABLE_SIZE/2; while (phase_am_2 >= COS_TABLE_SIZE) phase_am_2 -= COS_TABLE_SIZE; push_buffer(in, ptr->ringbuffer, ptr->buflen, &(ptr->pos)); fpos_0 = depth * (1.0f - sign * (2.0f * phase_0 / COS_TABLE_SIZE - 1.0f)); n_0 = floorf(fpos_0); rem_0 = fpos_0 - n_0; fpos_1 = depth * (1.0f - sign * (2.0f * phase_1 / COS_TABLE_SIZE - 1.0f)); n_1 = floorf(fpos_1); rem_1 = fpos_1 - n_1; fpos_2 = depth * (1.0f - sign * (2.0f * phase_2 / COS_TABLE_SIZE - 1.0f)); n_2 = floorf(fpos_2); rem_2 = fpos_2 - n_2; sa_0 = read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) n_0); sb_0 = read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) n_0 + 1); sa_1 = read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) n_1); sb_1 = read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) n_1 + 1); sa_2 = read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) n_2); sb_2 = read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) n_2 + 1); *(output++) += ptr->run_adding_gain * wetlevel * ((1.0f + cos_table[(unsigned long) phase_am_0]) * ((1 - rem_0) * sa_0 + rem_0 * sb_0) + (1.0f + cos_table[(unsigned long) phase_am_1]) * ((1 - rem_1) * sa_1 + rem_1 * sb_1) + (1.0f + cos_table[(unsigned long) phase_am_2]) * ((1 - rem_2) * sa_2 + rem_2 * sb_2)) + drylevel * read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) depth); } ptr->phase += COS_TABLE_SIZE * PM_FREQ * sample_index / ptr->sample_rate; while (ptr->phase >= COS_TABLE_SIZE) ptr->phase -= COS_TABLE_SIZE; *(ptr->latency) = buflen - (unsigned long) depth; } /* Throw away a Pitch effect instance. */ void cleanup_Pitch(LADSPA_Handle Instance) { Pitch * ptr = (Pitch *)Instance; free(ptr->ringbuffer); free(Instance); } LADSPA_Descriptor * mono_descriptor = NULL; /* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first loaded. */ void __attribute__((constructor)) tap_init() { int i; char ** port_names; LADSPA_PortDescriptor * port_descriptors; LADSPA_PortRangeHint * port_range_hints; if ((mono_descriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL) exit(1); for (i = 0; i < COS_TABLE_SIZE; i++) cos_table[i] = cosf(i * 2.0f * M_PI / COS_TABLE_SIZE); mono_descriptor->UniqueID = ID_MONO; mono_descriptor->Label = strdup("tap_pitch"); mono_descriptor->Properties = LADSPA_PROPERTY_HARD_RT_CAPABLE; mono_descriptor->Name = strdup("TAP Pitch Shifter"); mono_descriptor->Maker = strdup("Tom Szilagyi"); mono_descriptor->Copyright = strdup("GPL"); mono_descriptor->PortCount = PORTCOUNT_MONO; if ((port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortDescriptor))) == NULL) exit(1); mono_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_descriptors[RATE] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[SEMITONE] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[DRYLEVEL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[WETLEVEL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[LATENCY] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL; port_descriptors[INPUT] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; if ((port_names = (char **)calloc(PORTCOUNT_MONO, sizeof(char *))) == NULL) exit(1); mono_descriptor->PortNames = (const char **)port_names; port_names[SEMITONE] = strdup("Semitone Shift"); port_names[RATE] = strdup("Rate Shift [%]"); port_names[DRYLEVEL] = strdup("Dry Level [dB]"); port_names[WETLEVEL] = strdup("Wet Level [dB]"); port_names[LATENCY] = strdup("latency"); port_names[INPUT] = strdup("Input"); port_names[OUTPUT] = strdup("Output"); if ((port_range_hints = ((LADSPA_PortRangeHint *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortRangeHint)))) == NULL) exit(1); mono_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_range_hints[RATE].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[SEMITONE].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[DRYLEVEL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MINIMUM); port_range_hints[WETLEVEL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[LATENCY].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MAXIMUM); port_range_hints[RATE].LowerBound = -50.0f; port_range_hints[RATE].UpperBound = 100.0f; port_range_hints[SEMITONE].LowerBound = -12.0f; port_range_hints[SEMITONE].UpperBound = 12.0f; port_range_hints[DRYLEVEL].LowerBound = -90.0f; port_range_hints[DRYLEVEL].UpperBound = 20.0f; port_range_hints[WETLEVEL].LowerBound = -90.0f; port_range_hints[WETLEVEL].UpperBound = 20.0f; port_range_hints[LATENCY].LowerBound = 0; port_range_hints[LATENCY].UpperBound = PM_BUFLEN; port_range_hints[INPUT].HintDescriptor = 0; port_range_hints[OUTPUT].HintDescriptor = 0; mono_descriptor->instantiate = instantiate_Pitch; mono_descriptor->connect_port = connect_port_Pitch; mono_descriptor->activate = activate_Pitch; mono_descriptor->run = run_Pitch; mono_descriptor->run_adding = run_adding_Pitch; mono_descriptor->set_run_adding_gain = set_run_adding_gain_Pitch; mono_descriptor->deactivate = NULL; mono_descriptor->cleanup = cleanup_Pitch; } void delete_descriptor(LADSPA_Descriptor * descriptor) { unsigned long index; if (descriptor) { free((char *)descriptor->Label); free((char *)descriptor->Name); free((char *)descriptor->Maker); free((char *)descriptor->Copyright); free((LADSPA_PortDescriptor *)descriptor->PortDescriptors); for (index = 0; index < descriptor->PortCount; index++) free((char *)(descriptor->PortNames[index])); free((char **)descriptor->PortNames); free((LADSPA_PortRangeHint *)descriptor->PortRangeHints); free(descriptor); } } /* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */ void __attribute__((destructor)) tap_fini() { delete_descriptor(mono_descriptor); } /* Return a descriptor of the requested plugin type. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index) { switch (Index) { case 0: return mono_descriptor; default: return NULL; } } tap-plugins-1.0.0/tap_reflector.c000066400000000000000000000342531320332260600167540ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "tap_utils.h" /* The Unique ID of the plugin: */ #define ID_MONO 2154 /* The port numbers for the plugin: */ #define FRAGMENT 0 #define DRYLEVEL 1 #define WETLEVEL 2 #define INPUT 3 #define OUTPUT 4 /* Total number of ports */ #define PORTCOUNT_MONO 5 /* minimum & maximum fragment length [ms] */ #define MIN_FRAGMENT_LEN 20 #define MAX_FRAGMENT_LEN 1600 /* in kHz */ #define MAX_SAMPLE_RATE 192 #define COS_TABLE_SIZE 1024 LADSPA_Data cos_table[COS_TABLE_SIZE]; /* The structure used to hold port connection information and state */ typedef struct { LADSPA_Data * fragment; LADSPA_Data * drylevel; LADSPA_Data * wetlevel; LADSPA_Data * input; LADSPA_Data * output; LADSPA_Data * ring0; unsigned long buflen0; unsigned long pos0; LADSPA_Data * ring1; unsigned long buflen1; unsigned long pos1; LADSPA_Data * delay1; unsigned long delay_buflen1; unsigned long delay_pos1; LADSPA_Data * ring2; unsigned long buflen2; unsigned long pos2; LADSPA_Data * delay2; unsigned long delay_buflen2; unsigned long delay_pos2; unsigned long fragment_pos; unsigned long sample_rate; LADSPA_Data run_adding_gain; } Reflector; /* Construct a new plugin instance. */ LADSPA_Handle instantiate_Reflector(const LADSPA_Descriptor * Descriptor, unsigned long sample_rate) { LADSPA_Handle * ptr; if ((ptr = malloc(sizeof(Reflector))) != NULL) { ((Reflector *)ptr)->sample_rate = sample_rate; ((Reflector *)ptr)->run_adding_gain = 1.0f; if ((((Reflector *)ptr)->ring0 = calloc(2 * MAX_FRAGMENT_LEN * MAX_SAMPLE_RATE, sizeof(LADSPA_Data))) == NULL) return NULL; ((Reflector *)ptr)->buflen0 = 2 * MAX_FRAGMENT_LEN * sample_rate / 1000; ((Reflector *)ptr)->pos0 = 0; if ((((Reflector *)ptr)->ring1 = calloc(2 * MAX_FRAGMENT_LEN * MAX_SAMPLE_RATE, sizeof(LADSPA_Data))) == NULL) return NULL; ((Reflector *)ptr)->buflen1 = 2 * MAX_FRAGMENT_LEN * sample_rate / 1000; ((Reflector *)ptr)->pos1 = 0; if ((((Reflector *)ptr)->delay1 = calloc(2 * MAX_FRAGMENT_LEN * MAX_SAMPLE_RATE, sizeof(LADSPA_Data))) == NULL) return NULL; ((Reflector *)ptr)->delay_buflen1 = 2 * MAX_FRAGMENT_LEN * sample_rate / 3000; ((Reflector *)ptr)->pos1 = 0; if ((((Reflector *)ptr)->ring2 = calloc(2 * MAX_FRAGMENT_LEN * MAX_SAMPLE_RATE, sizeof(LADSPA_Data))) == NULL) return NULL; ((Reflector *)ptr)->buflen2 = 2 * MAX_FRAGMENT_LEN * sample_rate / 1000; ((Reflector *)ptr)->pos2 = 0; if ((((Reflector *)ptr)->delay2 = calloc(2 * MAX_FRAGMENT_LEN * MAX_SAMPLE_RATE, sizeof(LADSPA_Data))) == NULL) return NULL; ((Reflector *)ptr)->delay_buflen2 = 4 * MAX_FRAGMENT_LEN * sample_rate / 3000; ((Reflector *)ptr)->pos2 = 0; return ptr; } return NULL; } void activate_Reflector(LADSPA_Handle Instance) { Reflector * ptr = (Reflector *)Instance; unsigned long i; for (i = 0; i < ptr->buflen0; i++) ptr->ring0[i] = 0.0f; ptr->pos0 = 0; for (i = 0; i < ptr->buflen1; i++) ptr->ring1[i] = 0.0f; ptr->pos1 = 0; for (i = 0; i < ptr->buflen2; i++) ptr->ring2[i] = 0.0f; ptr->pos2 = 0; for (i = 0; i < ptr->delay_buflen1; i++) ptr->delay1[i] = 0.0f; ptr->delay_pos1 = 0; for (i = 0; i < ptr->delay_buflen2; i++) ptr->delay2[i] = 0.0f; ptr->delay_pos2 = 0; ptr->fragment_pos = 0; } /* Connect a port to a data location. */ void connect_port_Reflector(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * DataLocation) { Reflector * ptr = (Reflector *)Instance; switch (Port) { case FRAGMENT: ptr->fragment = DataLocation; break; case DRYLEVEL: ptr->drylevel = DataLocation; break; case WETLEVEL: ptr->wetlevel = DataLocation; break; case INPUT: ptr->input = DataLocation; break; case OUTPUT: ptr->output = DataLocation; break; } } void run_Reflector(LADSPA_Handle Instance, unsigned long SampleCount) { Reflector * ptr = (Reflector *)Instance; LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; LADSPA_Data drylevel = db2lin(LIMIT(*(ptr->drylevel),-90.0f,20.0f)); LADSPA_Data wetlevel = 0.333333f * db2lin(LIMIT(*(ptr->wetlevel),-90.0f,20.0f)); LADSPA_Data fragment = LIMIT(*(ptr->fragment),(float)MIN_FRAGMENT_LEN,(float)MAX_FRAGMENT_LEN); unsigned long sample_index; unsigned long sample_count = SampleCount; LADSPA_Data in = 0.0f; LADSPA_Data in1 = 0.0f; LADSPA_Data in2 = 0.0f; LADSPA_Data out_0 = 0.0f; LADSPA_Data out_1 = 0.0f; LADSPA_Data out_2 = 0.0f; unsigned long fragment_pos1 = 0; unsigned long fragment_pos2 = 0; unsigned long arg_0 = 0; LADSPA_Data am_0 = 0.0f; unsigned long arg_1 = 0; LADSPA_Data am_1 = 0.0f; unsigned long arg_2 = 0; LADSPA_Data am_2 = 0.0f; ptr->buflen0 = 2 * fragment * ptr->sample_rate / 1000.0f; ptr->buflen1 = ptr->buflen0; ptr->buflen2 = ptr->buflen0; ptr->delay_buflen1 = ptr->buflen0 / 3; ptr->delay_buflen2 = 2 * ptr->buflen0 / 3; for (sample_index = 0; sample_index < sample_count; sample_index++) { in = *(input++); in1 = push_buffer(in, ptr->delay1, ptr->delay_buflen1, &(ptr->delay_pos1)); in2 = push_buffer(in, ptr->delay2, ptr->delay_buflen2, &(ptr->delay_pos2)); push_buffer(in2, ptr->ring0, ptr->buflen0, &(ptr->pos0)); push_buffer(in1, ptr->ring1, ptr->buflen1, &(ptr->pos1)); push_buffer(in, ptr->ring2, ptr->buflen2, &(ptr->pos2)); fragment_pos1 = (ptr->fragment_pos + ptr->buflen0 / 3) % ptr->buflen0; fragment_pos2 = (ptr->fragment_pos + 2 * ptr->buflen1 / 3) % ptr->buflen1; out_0 = read_buffer(ptr->ring0, ptr->buflen0, ptr->pos0, ptr->buflen0 - ptr->fragment_pos - 1); out_1 = read_buffer(ptr->ring1, ptr->buflen1, ptr->pos1, ptr->buflen1 - fragment_pos1 - 1); out_2 = read_buffer(ptr->ring2, ptr->buflen2, ptr->pos2, ptr->buflen2 - fragment_pos2 - 1); ptr->fragment_pos += 2; if (ptr->fragment_pos >= ptr->buflen0) ptr->fragment_pos = 0; arg_0 = (float)ptr->fragment_pos / (float)ptr->buflen0 * COS_TABLE_SIZE; am_0 = 1.0f - cos_table[arg_0]; arg_1 = (float)fragment_pos1 / (float)ptr->buflen1 * COS_TABLE_SIZE; am_1 = 1.0f - cos_table[arg_1]; arg_2 = (float)fragment_pos2 / (float)ptr->buflen2 * COS_TABLE_SIZE; am_2 = 1.0f - cos_table[arg_2]; *(output++) = drylevel * in + wetlevel * (am_0 * out_0 + am_1 * out_1 + am_2 * out_2); } } void set_run_adding_gain_Reflector(LADSPA_Handle Instance, LADSPA_Data gain) { Reflector * ptr = (Reflector *)Instance; ptr->run_adding_gain = gain; } void run_adding_Reflector(LADSPA_Handle Instance, unsigned long SampleCount) { Reflector * ptr = (Reflector *)Instance; LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; LADSPA_Data drylevel = db2lin(LIMIT(*(ptr->drylevel),-90.0f,20.0f)); LADSPA_Data wetlevel = 0.333333f * db2lin(LIMIT(*(ptr->wetlevel),-90.0f,20.0f)); LADSPA_Data fragment = LIMIT(*(ptr->fragment),(float)MIN_FRAGMENT_LEN,(float)MAX_FRAGMENT_LEN); unsigned long sample_index; unsigned long sample_count = SampleCount; LADSPA_Data in = 0.0f; LADSPA_Data in1 = 0.0f; LADSPA_Data in2 = 0.0f; LADSPA_Data out_0 = 0.0f; LADSPA_Data out_1 = 0.0f; LADSPA_Data out_2 = 0.0f; unsigned long fragment_pos1 = 0; unsigned long fragment_pos2 = 0; unsigned long arg_0 = 0; LADSPA_Data am_0 = 0.0f; unsigned long arg_1 = 0; LADSPA_Data am_1 = 0.0f; unsigned long arg_2 = 0; LADSPA_Data am_2 = 0.0f; ptr->buflen0 = 2 * fragment * ptr->sample_rate / 1000.0f; ptr->buflen1 = ptr->buflen0; ptr->buflen2 = ptr->buflen0; ptr->delay_buflen1 = ptr->buflen0 / 3; ptr->delay_buflen2 = 2 * ptr->buflen0 / 3; for (sample_index = 0; sample_index < sample_count; sample_index++) { in = *(input++); in1 = push_buffer(in, ptr->delay1, ptr->delay_buflen1, &(ptr->delay_pos1)); in2 = push_buffer(in, ptr->delay2, ptr->delay_buflen2, &(ptr->delay_pos2)); push_buffer(in2, ptr->ring0, ptr->buflen0, &(ptr->pos0)); push_buffer(in1, ptr->ring1, ptr->buflen1, &(ptr->pos1)); push_buffer(in, ptr->ring2, ptr->buflen2, &(ptr->pos2)); fragment_pos1 = (ptr->fragment_pos + ptr->buflen0 / 3) % ptr->buflen0; fragment_pos2 = (ptr->fragment_pos + 2 * ptr->buflen1 / 3) % ptr->buflen1; out_0 = read_buffer(ptr->ring0, ptr->buflen0, ptr->pos0, ptr->buflen0 - ptr->fragment_pos - 1); out_1 = read_buffer(ptr->ring1, ptr->buflen1, ptr->pos1, ptr->buflen1 - fragment_pos1 - 1); out_2 = read_buffer(ptr->ring2, ptr->buflen2, ptr->pos2, ptr->buflen2 - fragment_pos2 - 1); ptr->fragment_pos += 2; if (ptr->fragment_pos >= ptr->buflen0) ptr->fragment_pos = 0; arg_0 = (float)ptr->fragment_pos / (float)ptr->buflen0 * COS_TABLE_SIZE; am_0 = 1.0f - cos_table[arg_0]; arg_1 = (float)fragment_pos1 / (float)ptr->buflen1 * COS_TABLE_SIZE; am_1 = 1.0f - cos_table[arg_1]; arg_2 = (float)fragment_pos2 / (float)ptr->buflen2 * COS_TABLE_SIZE; am_2 = 1.0f - cos_table[arg_2]; *(output++) += ptr->run_adding_gain * (drylevel * in + wetlevel * (am_0 * out_0 + am_1 * out_1 + am_2 * out_2)); } } /* Throw away a Reflector effect instance. */ void cleanup_Reflector(LADSPA_Handle Instance) { Reflector * ptr = (Reflector *)Instance; free(ptr->ring0); free(ptr->ring1); free(ptr->ring2); free(ptr->delay1); free(ptr->delay2); free(Instance); } LADSPA_Descriptor * mono_descriptor = NULL; /* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first loaded. */ void __attribute__((constructor)) tap_init() { int i; char ** port_names; LADSPA_PortDescriptor * port_descriptors; LADSPA_PortRangeHint * port_range_hints; if ((mono_descriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL) exit(1); for (i = 0; i < COS_TABLE_SIZE; i++) cos_table[i] = cosf(i * 2.0f * M_PI / COS_TABLE_SIZE); mono_descriptor->UniqueID = ID_MONO; mono_descriptor->Label = strdup("tap_reflector"); mono_descriptor->Properties = LADSPA_PROPERTY_HARD_RT_CAPABLE; mono_descriptor->Name = strdup("TAP Reflector"); mono_descriptor->Maker = strdup("Tom Szilagyi"); mono_descriptor->Copyright = strdup("GPL"); mono_descriptor->PortCount = PORTCOUNT_MONO; if ((port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortDescriptor))) == NULL) exit(1); mono_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_descriptors[FRAGMENT] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[DRYLEVEL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[WETLEVEL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[INPUT] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; if ((port_names = (char **)calloc(PORTCOUNT_MONO, sizeof(char *))) == NULL) exit(1); mono_descriptor->PortNames = (const char **)port_names; port_names[FRAGMENT] = strdup("Fragment Length [ms]"); port_names[DRYLEVEL] = strdup("Dry Level [dB]"); port_names[WETLEVEL] = strdup("Wet Level [dB]"); port_names[INPUT] = strdup("Input"); port_names[OUTPUT] = strdup("Output"); if ((port_range_hints = ((LADSPA_PortRangeHint *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortRangeHint)))) == NULL) exit(1); mono_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_range_hints[FRAGMENT].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_LOW); port_range_hints[DRYLEVEL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MINIMUM); port_range_hints[WETLEVEL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[FRAGMENT].LowerBound = (float)MIN_FRAGMENT_LEN; port_range_hints[FRAGMENT].UpperBound = (float)MAX_FRAGMENT_LEN; port_range_hints[DRYLEVEL].LowerBound = -90.0f; port_range_hints[DRYLEVEL].UpperBound = 20.0f; port_range_hints[WETLEVEL].LowerBound = -90.0f; port_range_hints[WETLEVEL].UpperBound = 20.0f; port_range_hints[INPUT].HintDescriptor = 0; port_range_hints[OUTPUT].HintDescriptor = 0; mono_descriptor->instantiate = instantiate_Reflector; mono_descriptor->connect_port = connect_port_Reflector; mono_descriptor->activate = activate_Reflector; mono_descriptor->run = run_Reflector; mono_descriptor->run_adding = run_adding_Reflector; mono_descriptor->set_run_adding_gain = set_run_adding_gain_Reflector; mono_descriptor->deactivate = NULL; mono_descriptor->cleanup = cleanup_Reflector; } void delete_descriptor(LADSPA_Descriptor * descriptor) { unsigned long index; if (descriptor) { free((char *)descriptor->Label); free((char *)descriptor->Name); free((char *)descriptor->Maker); free((char *)descriptor->Copyright); free((LADSPA_PortDescriptor *)descriptor->PortDescriptors); for (index = 0; index < descriptor->PortCount; index++) free((char *)(descriptor->PortNames[index])); free((char **)descriptor->PortNames); free((LADSPA_PortRangeHint *)descriptor->PortRangeHints); free(descriptor); } } /* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */ void __attribute__((destructor)) tap_fini() { delete_descriptor(mono_descriptor); } /* Return a descriptor of the requested plugin type. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index) { switch (Index) { case 0: return mono_descriptor; default: return NULL; } } tap-plugins-1.0.0/tap_reverb.c000066400000000000000000000601731320332260600162540ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include /* ***** VERY IMPORTANT! ***** * * If you enable this, the plugin will use float arithmetics in DSP * calculations. This usually yields lower average CPU usage, but * occasionaly may result in high CPU peaks which cause trouble to you * and your JACK server. The default is to use fixpoint arithmetics * (with the following #define commented out). But (depending on the * processor on which you run the code) you may find floating point * mode usable. */ /* #define REVERB_CALC_FLOAT */ #ifndef REVERB_CALC_FLOAT typedef signed int sample; #endif #ifndef REVERB_CALC_FLOAT typedef sample rev_t; #else typedef LADSPA_Data rev_t; #endif #include "tap_reverb_presets.h" #ifdef REVERB_CALC_FLOAT #define DENORM(x) (((unsigned char)(((*(unsigned int*)&(x))&0x7f800000)>>23))<103)?0.0f:(x) #else /* coefficient for float to sample (signed int) conversion */ /* this allows for about 60 dB headroom above 0dB, if 0 dB is equivalent to 1.0f */ /* As 2^31 equals more than 180 dB, about 120 dB dynamics remains below 0 dB */ #define F2S 2147483 #endif /* load plugin data from reverb_data[] into an instance */ void load_plugin_data(LADSPA_Handle Instance) { Reverb * ptr = (Reverb *)Instance; unsigned long m; unsigned int i; m = LIMIT(*(ptr->mode),0,NUM_MODES-1); /* load combs data */ ptr->num_combs = 2 * reverb_data[m].num_combs; for (i = 0; i < reverb_data[m].num_combs; i++) { ((COMB_FILTER *)(ptr->combs + 2*i))->buflen = reverb_data[m].combs[i].delay * ptr->sample_rate; ((COMB_FILTER *)(ptr->combs + 2*i))->feedback = reverb_data[m].combs[i].feedback; ((COMB_FILTER *)(ptr->combs + 2*i))->freq_resp = LIMIT(reverb_data[m].combs[i].freq_resp * powf(ptr->sample_rate / 44100.0f, 0.8f), 0.0f, 1.0f); ((COMB_FILTER *)(ptr->combs + 2*i+1))->buflen = ((COMB_FILTER *)(ptr->combs + 2*i))->buflen; ((COMB_FILTER *)(ptr->combs + 2*i+1))->feedback = ((COMB_FILTER *)(ptr->combs + 2*i))->feedback; ((COMB_FILTER *)(ptr->combs + 2*i+1))->feedback = ((COMB_FILTER *)(ptr->combs + 2*i))->freq_resp; /* set initial values: */ *(((COMB_FILTER *)(ptr->combs + 2*i))->buffer_pos) = 0; *(((COMB_FILTER *)(ptr->combs + 2*i+1))->buffer_pos) = 0; ((COMB_FILTER *)(ptr->combs + 2*i))->last_out = 0; ((COMB_FILTER *)(ptr->combs + 2*i+1))->last_out = 0; lp_set_params(((COMB_FILTER *)(ptr->combs + 2*i))->filter, 2000.0f + 13000.0f * (1 - reverb_data[m].combs[i].freq_resp) * ptr->sample_rate / 44100.0f, BANDPASS_BWIDTH, ptr->sample_rate); lp_set_params(((COMB_FILTER *)(ptr->combs + 2*i+1))->filter, 2000.0f + 13000.0f * (1 - reverb_data[m].combs[i].freq_resp) * ptr->sample_rate / 44100.0f, BANDPASS_BWIDTH, ptr->sample_rate); } /* load allps data */ ptr->num_allps = 2 * reverb_data[m].num_allps; for (i = 0; i < reverb_data[m].num_allps; i++) { ((ALLP_FILTER *)(ptr->allps + 2*i))->buflen = reverb_data[m].allps[i].delay * ptr->sample_rate; ((ALLP_FILTER *)(ptr->allps + 2*i))->feedback = reverb_data[m].allps[i].feedback; ((ALLP_FILTER *)(ptr->allps + 2*i+1))->buflen = ((ALLP_FILTER *)(ptr->allps + 2*i))->buflen; ((ALLP_FILTER *)(ptr->allps + 2*i+1))->feedback = ((ALLP_FILTER *)(ptr->allps + 2*i))->feedback; /* set initial values: */ *(((ALLP_FILTER *)(ptr->allps + 2*i))->buffer_pos) = 0; *(((ALLP_FILTER *)(ptr->allps + 2*i+1))->buffer_pos) = 0; ((ALLP_FILTER *)(ptr->allps + 2*i))->last_out = 0; ((ALLP_FILTER *)(ptr->allps + 2*i+1))->last_out = 0; } /* init bandpass filters */ lp_set_params((biquad *)(ptr->low_pass), reverb_data[m].bandpass_high, BANDPASS_BWIDTH, ptr->sample_rate); hp_set_params((biquad *)(ptr->high_pass), reverb_data[m].bandpass_low, BANDPASS_BWIDTH, ptr->sample_rate); lp_set_params((biquad *)(ptr->low_pass + 1), reverb_data[m].bandpass_high, BANDPASS_BWIDTH, ptr->sample_rate); hp_set_params((biquad *)(ptr->high_pass + 1), reverb_data[m].bandpass_low, BANDPASS_BWIDTH, ptr->sample_rate); } /* push a sample into a comb filter and return the sample falling out */ rev_t comb_run(rev_t insample, COMB_FILTER * comb) { rev_t outsample; rev_t pushin; pushin = comb->fb_gain * insample + biquad_run(comb->filter, comb->fb_gain * comb->last_out); #ifdef REVERB_CALC_FLOAT pushin = DENORM(pushin); #endif outsample = push_buffer(pushin, comb->ringbuffer, comb->buflen, comb->buffer_pos); #ifdef REVERB_CALC_FLOAT outsample = DENORM(outsample); #endif comb->last_out = outsample; return outsample; } /* push a sample into an allpass filter and return the sample falling out */ rev_t allp_run(rev_t insample, ALLP_FILTER * allp) { rev_t outsample; rev_t pushin; pushin = allp->in_gain * allp->fb_gain * insample + allp->fb_gain * allp->last_out; #ifdef REVERB_CALC_FLOAT pushin = DENORM(pushin); #endif outsample = push_buffer(pushin, allp->ringbuffer, allp->buflen, allp->buffer_pos); #ifdef REVERB_CALC_FLOAT outsample = DENORM(outsample); #endif allp->last_out = outsample; return outsample; } /* compute user-input-dependent reverberator coefficients */ void comp_coeffs(LADSPA_Handle Instance) { Reverb * ptr = (Reverb *)Instance; unsigned int i; if (*(ptr->mode) != ptr->old_mode) load_plugin_data(Instance); for (i = 0; i < ptr->num_combs / 2; i++) { ((COMB_FILTER *)(ptr->combs + 2*i))->fb_gain = powf(0.001f, 1000.0f * ((COMB_FILTER *)(ptr->combs + 2*i))->buflen * (1 + FR_R_COMP * ((COMB_FILTER *)(ptr->combs + 2*i))->freq_resp) / powf(((COMB_FILTER *)(ptr->combs + 2*i))->feedback/100.0f, 0.89f) / *(ptr->decay) / ptr->sample_rate); ((COMB_FILTER *)(ptr->combs + 2*i+1))->fb_gain = ((COMB_FILTER *)(ptr->combs + 2*i))->fb_gain; if (*(ptr->stereo_enh) > 0.0f) { if (i % 2 == 0) ((COMB_FILTER *)(ptr->combs + 2*i+1))->buflen = ENH_STEREO_RATIO * ((COMB_FILTER *)(ptr->combs + 2*i))->buflen; else ((COMB_FILTER *)(ptr->combs + 2*i))->buflen = ENH_STEREO_RATIO * ((COMB_FILTER *)(ptr->combs + 2*i+1))->buflen; } else { if (i % 2 == 0) ((COMB_FILTER *)(ptr->combs + 2*i+1))->buflen = ((COMB_FILTER *)(ptr->combs + 2*i))->buflen; else ((COMB_FILTER *)(ptr->combs + 2*i))->buflen = ((COMB_FILTER *)(ptr->combs + 2*i+1))->buflen; } } for (i = 0; i < ptr->num_allps / 2; i++) { ((ALLP_FILTER *)(ptr->allps + 2*i))->fb_gain = powf(0.001f, 11000.0f * ((ALLP_FILTER *)(ptr->allps + 2*i))->buflen / powf(((ALLP_FILTER *)(ptr->allps + 2*i))->feedback/100.0f, 0.88f) / *(ptr->decay) / ptr->sample_rate); ((ALLP_FILTER *)(ptr->allps + 2*i+1))->fb_gain = ((ALLP_FILTER *)(ptr->allps + 2*i))->fb_gain; ((ALLP_FILTER *)(ptr->allps + 2*i))->in_gain = -0.06f / (((ALLP_FILTER *)(ptr->allps + 2 * i))->feedback/100.0f) / powf((*(ptr->decay) + 3500.0f) / 10000.0f, 1.5f); ((ALLP_FILTER *)(ptr->allps + 2*i+1))->in_gain = ((ALLP_FILTER *)(ptr->allps + 2*i))->in_gain; if (*(ptr->stereo_enh) > 0.0f) { if (i % 2 == 0) ((ALLP_FILTER *)(ptr->allps + 2*i+1))->buflen = ENH_STEREO_RATIO * ((ALLP_FILTER *)(ptr->allps + 2*i))->buflen; else ((ALLP_FILTER *)(ptr->allps + 2*i))->buflen = ENH_STEREO_RATIO * ((ALLP_FILTER *)(ptr->allps + 2*i+1))->buflen; } else { if (i % 2 == 0) ((ALLP_FILTER *)(ptr->allps + 2*i+1))->buflen = ((ALLP_FILTER *)(ptr->allps + 2*i))->buflen; else ((ALLP_FILTER *)(ptr->allps + 2*i))->buflen = ((ALLP_FILTER *)(ptr->allps + 2*i+1))->buflen; } } } /* Construct a new plugin instance. */ LADSPA_Handle instantiate_Reverb(const LADSPA_Descriptor * Descriptor, unsigned long SampleRate) { unsigned long i; LADSPA_Handle * p; Reverb * ptr = NULL; if ((p = malloc(sizeof(Reverb))) != NULL) { ((Reverb *)p)->sample_rate = SampleRate; ((Reverb *)p)->run_adding_gain = 1.0f; ptr = (Reverb *)p; /* allocate memory for comb/allpass filters and other dynamic vars */ if ((ptr->combs = calloc(2 * MAX_COMBS, sizeof(COMB_FILTER))) == NULL) return NULL; for (i = 0; i < 2 * MAX_COMBS; i++) { if ((((COMB_FILTER *)(ptr->combs + i))->ringbuffer = calloc((unsigned long)MAX_COMB_DELAY * ptr->sample_rate / 1000, sizeof(LADSPA_Data))) == NULL) return NULL; if ((((COMB_FILTER *)(ptr->combs + i))->buffer_pos = calloc(1, sizeof(unsigned long))) == NULL) return NULL; if ((((COMB_FILTER *)(ptr->combs + i))->filter = calloc(1, sizeof(biquad))) == NULL) return NULL; } if ((ptr->allps = calloc(2 * MAX_ALLPS, sizeof(ALLP_FILTER))) == NULL) return NULL; for (i = 0; i < 2 * MAX_ALLPS; i++) { if ((((ALLP_FILTER *)(ptr->allps + i))->ringbuffer = calloc((unsigned long)MAX_ALLP_DELAY * ptr->sample_rate / 1000, sizeof(LADSPA_Data))) == NULL) return NULL; if ((((ALLP_FILTER *)(ptr->allps + i))->buffer_pos = calloc(1, sizeof(unsigned long))) == NULL) return NULL; } if ((ptr->low_pass = calloc(2, sizeof(biquad))) == NULL) return NULL; if ((ptr->high_pass = calloc(2, sizeof(biquad))) == NULL) return NULL; return p; } return NULL; } /* activate a plugin instance */ void activate_Reverb(LADSPA_Handle Instance) { Reverb * ptr = (Reverb *)Instance; unsigned long i,j; for (i = 0; i < 2 * MAX_COMBS; i++) { for (j = 0; j < (unsigned long)MAX_COMB_DELAY * ptr->sample_rate / 1000; j++) ((COMB_FILTER *)(ptr->combs + i))->ringbuffer[j] = 0.0f; *(((COMB_FILTER *)(ptr->combs + i))->buffer_pos) = 0; ((COMB_FILTER *)(ptr->combs + i))->last_out = 0; biquad_init(((COMB_FILTER *)(ptr->combs + i))->filter); } for (i = 0; i < 2 * MAX_ALLPS; i++) { for (j = 0; j < (unsigned long)MAX_ALLP_DELAY * ptr->sample_rate / 1000; j++) ((ALLP_FILTER *)(ptr->allps + i))->ringbuffer[j] = 0.0f; *(((ALLP_FILTER *)(ptr->allps + i))->buffer_pos) = 0; ((ALLP_FILTER *)(ptr->allps + i))->last_out = 0; } biquad_init(ptr->low_pass); biquad_init((biquad *)(ptr->low_pass + 1)); biquad_init(ptr->high_pass); biquad_init((biquad *)(ptr->high_pass + 1)); ptr->old_decay = -10.0f; ptr->old_stereo_enh = -10.0f; ptr->old_mode = -10.0f; } /* Connect a port to a data location. */ void connect_port_Reverb(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * DataLocation) { Reverb * ptr = (Reverb *)Instance; switch (Port) { case DECAY: ptr->decay = DataLocation; break; case DRYLEVEL: ptr->drylevel = DataLocation; break; case WETLEVEL: ptr->wetlevel = DataLocation; break; case COMBS_EN: ptr->combs_en = DataLocation; break; case ALLPS_EN: ptr->allps_en = DataLocation; break; case BANDPASS_EN: ptr->bandpass_en = DataLocation; break; case STEREO_ENH: ptr->stereo_enh = DataLocation; break; case MODE: ptr->mode = DataLocation; break; case INPUT_L: ptr->input_L = DataLocation; break; case OUTPUT_L: ptr->output_L = DataLocation; break; case INPUT_R: ptr->input_R = DataLocation; break; case OUTPUT_R: ptr->output_R = DataLocation; break; } } void run_Reverb(LADSPA_Handle Instance, unsigned long SampleCount) { Reverb * ptr = (Reverb *)Instance; unsigned long sample_index; unsigned int i; LADSPA_Data decay = LIMIT(*(ptr->decay),0.0f,10000.0f); LADSPA_Data drylevel = db2lin(LIMIT(*(ptr->drylevel),-70.0f,10.0f)); LADSPA_Data wetlevel = db2lin(LIMIT(*(ptr->wetlevel),-70.0f,10.0f)); LADSPA_Data combs_en = LIMIT(*(ptr->combs_en),-2.0f,2.0f); LADSPA_Data allps_en = LIMIT(*(ptr->allps_en),-2.0f,2.0f); LADSPA_Data bandpass_en = LIMIT(*(ptr->bandpass_en),-2.0f,2.0f); LADSPA_Data stereo_enh = LIMIT(*(ptr->stereo_enh),-2.0f,2.0f); LADSPA_Data mode = LIMIT(*(ptr->mode),0,NUM_MODES-1); LADSPA_Data * input_L = ptr->input_L; LADSPA_Data * output_L = ptr->output_L; LADSPA_Data * input_R = ptr->input_R; LADSPA_Data * output_R = ptr->output_R; rev_t out_L = 0; rev_t out_R = 0; rev_t in_L = 0; rev_t in_R = 0; rev_t combs_out_L = 0; rev_t combs_out_R = 0; /* see if the user changed any control since last run */ if ((ptr->old_decay != decay) || (ptr->old_stereo_enh != stereo_enh) || (ptr->old_mode != mode)) { /* re-compute reverberator coefficients */ comp_coeffs(Instance); /* save new values */ ptr->old_decay = decay; ptr->old_stereo_enh = stereo_enh; ptr->old_mode = mode; } for (sample_index = 0; sample_index < SampleCount; sample_index++) { #ifdef REVERB_CALC_FLOAT in_L = *(input_L++); in_R = *(input_R++); #else in_L = (sample)((float)F2S * *(input_L++)); in_R = (sample)((float)F2S * *(input_R++)); #endif combs_out_L = in_L; combs_out_R = in_R; /* process comb filters */ if (combs_en > 0.0f) { for (i = 0; i < ptr->num_combs / 2; i++) { combs_out_L += comb_run(in_L, ((COMB_FILTER *)(ptr->combs + 2*i))); combs_out_R += comb_run(in_R, ((COMB_FILTER *)(ptr->combs + 2*i+1))); } } /* process allpass filters */ if (allps_en > 0.0f) { for (i = 0; i < ptr->num_allps / 2; i++) { combs_out_L += allp_run(combs_out_L, ((ALLP_FILTER *)(ptr->allps + 2*i))); combs_out_R += allp_run(combs_out_R, ((ALLP_FILTER *)(ptr->allps + 2*i+1))); } } /* process bandpass filters */ if (bandpass_en > 0.0f) { combs_out_L = biquad_run(((biquad *)(ptr->low_pass)), combs_out_L); combs_out_L = biquad_run(((biquad *)(ptr->high_pass)), combs_out_L); combs_out_R = biquad_run(((biquad *)(ptr->low_pass + 1)), combs_out_R); combs_out_R = biquad_run(((biquad *)(ptr->high_pass + 1)), combs_out_R); } #ifdef REVERB_CALC_FLOAT out_L = in_L * drylevel + combs_out_L * wetlevel; out_R = in_R * drylevel + combs_out_R * wetlevel; *(output_L++) = out_L; *(output_R++) = out_R; #else out_L = (sample)((float)in_L * drylevel + (float)combs_out_L * wetlevel); out_R = (sample)((float)in_R * drylevel + (float)combs_out_R * wetlevel); *(output_L++) = (float)out_L / (float)F2S; *(output_R++) = (float)out_R / (float)F2S; #endif } } void set_run_adding_gain(LADSPA_Handle Instance, LADSPA_Data gain){ Reverb * ptr; ptr = (Reverb *)Instance; ptr->run_adding_gain = gain; } void run_adding_gain_Reverb(LADSPA_Handle Instance, unsigned long SampleCount) { Reverb * ptr = (Reverb *)Instance; unsigned long sample_index; unsigned int i; LADSPA_Data decay = LIMIT(*(ptr->decay),0.0f,10000.0f); LADSPA_Data drylevel = db2lin(LIMIT(*(ptr->drylevel),-70.0f,10.0f)); LADSPA_Data wetlevel = db2lin(LIMIT(*(ptr->wetlevel),-70.0f,10.0f)); LADSPA_Data combs_en = LIMIT(*(ptr->combs_en),-2.0f,2.0f); LADSPA_Data allps_en = LIMIT(*(ptr->allps_en),-2.0f,2.0f); LADSPA_Data bandpass_en = LIMIT(*(ptr->bandpass_en),-2.0f,2.0f); LADSPA_Data stereo_enh = LIMIT(*(ptr->stereo_enh),-2.0f,2.0f); LADSPA_Data mode = LIMIT(*(ptr->mode),0,NUM_MODES-1); LADSPA_Data * input_L = ptr->input_L; LADSPA_Data * output_L = ptr->output_L; LADSPA_Data * input_R = ptr->input_R; LADSPA_Data * output_R = ptr->output_R; rev_t out_L = 0; rev_t out_R = 0; rev_t in_L = 0; rev_t in_R = 0; rev_t combs_out_L = 0; rev_t combs_out_R = 0; /* see if the user changed any control since last run */ if ((ptr->old_decay != decay) || (ptr->old_stereo_enh != stereo_enh) || (ptr->old_mode != mode)) { /* re-compute reverberator coefficients */ comp_coeffs(Instance); /* save new values */ ptr->old_decay = decay; ptr->old_stereo_enh = stereo_enh; ptr->old_mode = mode; } for (sample_index = 0; sample_index < SampleCount; sample_index++) { #ifdef REVERB_CALC_FLOAT in_L = *(input_L++); in_R = *(input_R++); #else in_L = (sample)((float)F2S * *(input_L++)); in_R = (sample)((float)F2S * *(input_R++)); #endif combs_out_L = in_L; combs_out_R = in_R; /* process comb filters */ if (combs_en > 0.0f) { for (i = 0; i < ptr->num_combs / 2; i++) { combs_out_L += comb_run(in_L, ((COMB_FILTER *)(ptr->combs + 2*i))); combs_out_R += comb_run(in_R, ((COMB_FILTER *)(ptr->combs + 2*i+1))); } } /* process allpass filters */ if (allps_en > 0.0f) { for (i = 0; i < ptr->num_allps / 2; i++) { combs_out_L += allp_run(combs_out_L, ((ALLP_FILTER *)(ptr->allps + 2*i))); combs_out_R += allp_run(combs_out_R, ((ALLP_FILTER *)(ptr->allps + 2*i+1))); } } /* process bandpass filters */ if (bandpass_en > 0.0f) { combs_out_L = biquad_run(((biquad *)(ptr->low_pass)), combs_out_L); combs_out_L = biquad_run(((biquad *)(ptr->high_pass)), combs_out_L); combs_out_R = biquad_run(((biquad *)(ptr->low_pass + 1)), combs_out_R); combs_out_R = biquad_run(((biquad *)(ptr->high_pass + 1)), combs_out_R); } #ifdef REVERB_CALC_FLOAT out_L = in_L * drylevel + combs_out_L * wetlevel; out_R = in_R * drylevel + combs_out_R * wetlevel; *(output_L++) += out_L * ptr->run_adding_gain; *(output_R++) += out_R * ptr->run_adding_gain; #else out_L = (sample)((float)in_L * drylevel + (float)combs_out_L * wetlevel); out_R = (sample)((float)in_R * drylevel + (float)combs_out_R * wetlevel); *(output_L++) += (float)out_L * ptr->run_adding_gain / (float)F2S; *(output_R++) += (float)out_R * ptr->run_adding_gain / (float)F2S; #endif } } /* Throw away a Reverb effect instance. */ void cleanup_Reverb(LADSPA_Handle Instance) { int i; Reverb * ptr = (Reverb *)Instance; /* free memory allocated for comb/allpass filters & co. in instantiate_Reverb() */ for (i = 0; i < 2 * MAX_COMBS; i++) { free(((COMB_FILTER *)(ptr->combs + i))->ringbuffer); free(((COMB_FILTER *)(ptr->combs + i))->buffer_pos); free(((COMB_FILTER *)(ptr->combs + i))->filter); } for (i = 0; i < 2 * MAX_ALLPS; i++) { free(((ALLP_FILTER *)(ptr->allps + i))->ringbuffer); free(((ALLP_FILTER *)(ptr->allps + i))->buffer_pos); } free(ptr->combs); free(ptr->allps); free(ptr->low_pass); free(ptr->high_pass); free(Instance); } LADSPA_Descriptor * stereo_descriptor = NULL; /* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first loaded. */ void __attribute__((constructor)) tap_init() { char ** port_names; LADSPA_PortDescriptor * port_descriptors; LADSPA_PortRangeHint * port_range_hints; if ((stereo_descriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL) exit(1); /* init the stereo Reverb */ stereo_descriptor->UniqueID = ID_STEREO; stereo_descriptor->Label = strdup("tap_reverb"); stereo_descriptor->Properties = 0; stereo_descriptor->Name = strdup("TAP Reverberator"); stereo_descriptor->Maker = strdup("Tom Szilagyi"); stereo_descriptor->Copyright = strdup("GPL"); stereo_descriptor->PortCount = PORTCOUNT_STEREO; if ((port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortDescriptor))) == NULL) exit(1); stereo_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_descriptors[DECAY] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[DRYLEVEL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[WETLEVEL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[COMBS_EN] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[ALLPS_EN] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[BANDPASS_EN] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[STEREO_ENH] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[MODE] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[INPUT_L] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT_L] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; port_descriptors[INPUT_R] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT_R] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; if ((port_names = (char **)calloc(PORTCOUNT_STEREO, sizeof(char *))) == NULL) exit(1); stereo_descriptor->PortNames = (const char **)port_names; port_names[DECAY] = strdup("Decay [ms]"); port_names[DRYLEVEL] = strdup("Dry Level [dB]"); port_names[WETLEVEL] = strdup("Wet Level [dB]"); port_names[COMBS_EN] = strdup("Comb Filters"); port_names[ALLPS_EN] = strdup("Allpass Filters"); port_names[BANDPASS_EN] = strdup("Bandpass Filter"); port_names[STEREO_ENH] = strdup("Enhanced Stereo"); port_names[MODE] = strdup("Reverb Type"); port_names[INPUT_L] = strdup("Input Left"); port_names[OUTPUT_L] = strdup("Output Left"); port_names[INPUT_R] = strdup("Input Right"); port_names[OUTPUT_R] = strdup("Output Right"); if ((port_range_hints = ((LADSPA_PortRangeHint *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortRangeHint)))) == NULL) exit(1); stereo_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_range_hints[DECAY].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_LOW); port_range_hints[DECAY].LowerBound = 0; port_range_hints[DECAY].UpperBound = MAX_DECAY; port_range_hints[DRYLEVEL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[DRYLEVEL].LowerBound = -70.0f; port_range_hints[DRYLEVEL].UpperBound = +10.0f; port_range_hints[WETLEVEL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[WETLEVEL].LowerBound = -70.0f; port_range_hints[WETLEVEL].UpperBound = +10.0f; port_range_hints[COMBS_EN].HintDescriptor = (LADSPA_HINT_TOGGLED | LADSPA_HINT_DEFAULT_1); port_range_hints[ALLPS_EN].HintDescriptor = (LADSPA_HINT_TOGGLED | LADSPA_HINT_DEFAULT_1); port_range_hints[BANDPASS_EN].HintDescriptor = (LADSPA_HINT_TOGGLED | LADSPA_HINT_DEFAULT_1); port_range_hints[STEREO_ENH].HintDescriptor = (LADSPA_HINT_TOGGLED | LADSPA_HINT_DEFAULT_1); port_range_hints[MODE].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_INTEGER | LADSPA_HINT_DEFAULT_0); port_range_hints[MODE].LowerBound = 0; port_range_hints[MODE].UpperBound = NUM_MODES - 0.9f; port_range_hints[INPUT_L].HintDescriptor = 0; port_range_hints[OUTPUT_L].HintDescriptor = 0; port_range_hints[INPUT_R].HintDescriptor = 0; port_range_hints[OUTPUT_R].HintDescriptor = 0; stereo_descriptor->instantiate = instantiate_Reverb; stereo_descriptor->connect_port = connect_port_Reverb; stereo_descriptor->activate = activate_Reverb; stereo_descriptor->run = run_Reverb; stereo_descriptor->run_adding = run_adding_gain_Reverb; stereo_descriptor->set_run_adding_gain = set_run_adding_gain; stereo_descriptor->deactivate = NULL; stereo_descriptor->cleanup = cleanup_Reverb; } void delete_descriptor(LADSPA_Descriptor * descriptor) { unsigned long index; if (descriptor) { free((char *)descriptor->Label); free((char *)descriptor->Name); free((char *)descriptor->Maker); free((char *)descriptor->Copyright); free((LADSPA_PortDescriptor *)descriptor->PortDescriptors); for (index = 0; index < descriptor->PortCount; index++) free((char *)(descriptor->PortNames[index])); free((char **)descriptor->PortNames); free((LADSPA_PortRangeHint *)descriptor->PortRangeHints); free(descriptor); } } /* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */ void __attribute__((destructor)) tap_fini() { delete_descriptor(stereo_descriptor); } /* Return a descriptor of the requested plugin type. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index) { switch (Index) { case 0: return stereo_descriptor; default: return NULL; } } tap-plugins-1.0.0/tap_reverb.h000066400000000000000000000162551320332260600162630ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifndef _ISOC99_SOURCE #define _ISOC99_SOURCE #endif #include /* The Unique ID of the plugin: */ #define ID_STEREO 2142 /* The port numbers for the plugin: */ #define DECAY 0 #define DRYLEVEL 1 #define WETLEVEL 2 #define COMBS_EN 3 /* comb filters on/off */ #define ALLPS_EN 4 /* allpass filters on/off */ #define BANDPASS_EN 5 /* bandpass filters on/off */ #define STEREO_ENH 6 /* stereo enhanced mode on/off */ #define MODE 7 #define INPUT_L 8 #define OUTPUT_L 9 #define INPUT_R 10 #define OUTPUT_R 11 /* Total number of ports */ #define PORTCOUNT_STEREO 12 /* Global constants (times in ms, bwidth in octaves) */ #define MAX_COMBS 20 #define MAX_ALLPS 20 #define MAX_DECAY 10000.0f #define MAX_COMB_DELAY 250.0f #define MAX_ALLP_DELAY 20.0f #define BANDPASS_BWIDTH 1.5f #define FREQ_RESP_BWIDTH 3.0f #define ENH_STEREO_RATIO 0.998f /* compensation ratio of freq_resp in fb_gain calc */ #define FR_R_COMP 0.75f #ifndef M_PI #define M_PI 3.14159265358979323846264338327 #endif /* push a sample into a ringbuffer and return the sample falling out */ static inline rev_t push_buffer(rev_t insample, rev_t * buffer, unsigned long buflen, unsigned long * pos) { rev_t outsample; outsample = buffer[*pos]; buffer[(*pos)++] = insample; if (*pos >= buflen) *pos = 0; return outsample; } /* read a value from a ringbuffer. * n == 0 returns the oldest sample from the buffer. * n == buflen-1 returns the sample written to the buffer * at the last push_buffer call. * n must not exceed buflen-1, or your computer will explode. */ static inline rev_t read_buffer(rev_t * buffer, unsigned long buflen, unsigned long pos, unsigned long n) { while (n + pos >= buflen) n -= buflen; return buffer[n + pos]; } /* overwrites a value in a ringbuffer, but pos stays the same. * n == 0 overwrites the oldest sample pushed in the buffer. * n == buflen-1 overwrites the sample written to the buffer * at the last push_buffer call. * n must not exceed buflen-1, or your computer... you know. */ static inline void write_buffer(rev_t insample, rev_t * buffer, unsigned long buflen, unsigned long pos, unsigned long n) { while (n + pos >= buflen) n -= buflen; buffer[n + pos] = insample; } #define db2lin(x) ((x) > -90.0f ? powf(10.0f, (x) * 0.05f) : 0.0f) #define ABS(x) (x)>0.0f?(x):-1.0f*(x) #define LN_2_2 0.34657359f #define LIMIT(v,l,u) ((v)<(l)?(l):((v)>(u)?(u):(v))) #define BIQUAD_TYPE float typedef BIQUAD_TYPE bq_t; typedef struct { bq_t a1; bq_t a2; bq_t b0; bq_t b1; bq_t b2; rev_t x1; rev_t x2; rev_t y1; rev_t y2; } biquad; static inline void biquad_init(biquad *f) { f->x1 = 0.0f; f->x2 = 0.0f; f->y1 = 0.0f; f->y2 = 0.0f; } static inline void eq_set_params(biquad *f, bq_t fc, bq_t gain, bq_t bw, bq_t fs) { bq_t w = 2.0f * M_PI * LIMIT(fc, 1.0f, fs/2.0f) / fs; bq_t cw = cosf(w); bq_t sw = sinf(w); bq_t J = pow(10.0f, gain * 0.025f); bq_t g = sw * sinhf(LN_2_2 * LIMIT(bw, 0.0001f, 4.0f) * w / sw); bq_t a0r = 1.0f / (1.0f + (g / J)); f->b0 = (1.0f + (g * J)) * a0r; f->b1 = (-2.0f * cw) * a0r; f->b2 = (1.0f - (g * J)) * a0r; f->a1 = -(f->b1); f->a2 = ((g / J) - 1.0f) * a0r; } static inline void lp_set_params(biquad *f, bq_t fc, bq_t bw, bq_t fs) { bq_t omega = 2.0 * M_PI * fc/fs; bq_t sn = sin(omega); bq_t cs = cos(omega); bq_t alpha = sn * sinh(M_LN2 / 2.0 * bw * omega / sn); const float a0r = 1.0 / (1.0 + alpha); f->b0 = a0r * (1.0 - cs) * 0.5; f->b1 = a0r * (1.0 - cs); f->b2 = a0r * (1.0 - cs) * 0.5; f->a1 = a0r * (2.0 * cs); f->a2 = a0r * (alpha - 1.0); } static inline void hp_set_params(biquad *f, bq_t fc, bq_t bw, bq_t fs) { bq_t omega = 2.0 * M_PI * fc/fs; bq_t sn = sin(omega); bq_t cs = cos(omega); bq_t alpha = sn * sinh(M_LN2 / 2.0 * bw * omega / sn); const float a0r = 1.0 / (1.0 + alpha); f->b0 = a0r * (1.0 + cs) * 0.5; f->b1 = a0r * -(1.0 + cs); f->b2 = a0r * (1.0 + cs) * 0.5; f->a1 = a0r * (2.0 * cs); f->a2 = a0r * (alpha - 1.0); } static inline rev_t biquad_run(biquad *f, rev_t x) { union { rev_t y; uint32_t y_int; } u; u.y = f->b0 * x + f->b1 * f->x1 + f->b2 * f->x2 + f->a1 * f->y1 + f->a2 * f->y2; #ifdef REVERB_CALC_FLOAT if ((u.y_int & 0x7f800000) == 0) u.y = 0.0f; #endif f->x2 = f->x1; f->x1 = x; f->y2 = f->y1; f->y1 = u.y; return u.y; } typedef struct { float feedback; float fb_gain; float freq_resp; rev_t * ringbuffer; unsigned long buflen; unsigned long * buffer_pos; biquad * filter; rev_t last_out; } COMB_FILTER; typedef struct { float feedback; float fb_gain; float in_gain; rev_t * ringbuffer; unsigned long buflen; unsigned long * buffer_pos; rev_t last_out; } ALLP_FILTER; /* The structure used to hold port connection information and state */ typedef struct { unsigned long num_combs; /* total number of comb filters */ unsigned long num_allps; /* total number of allpass filters */ COMB_FILTER * combs; ALLP_FILTER * allps; biquad * low_pass; /* ptr to 2 low-pass filters */ biquad * high_pass; /* ptr to 2 high-pass filters */ unsigned long sample_rate; LADSPA_Data * decay; LADSPA_Data * drylevel; LADSPA_Data * wetlevel; LADSPA_Data * combs_en; /* on/off */ LADSPA_Data * allps_en; /* on/off */ LADSPA_Data * bandpass_en; /* on/off */ LADSPA_Data * stereo_enh; /* on/off */ LADSPA_Data * mode; LADSPA_Data * input_L; LADSPA_Data * output_L; LADSPA_Data * input_R; LADSPA_Data * output_R; LADSPA_Data old_decay; LADSPA_Data old_stereo_enh; LADSPA_Data old_mode; LADSPA_Data run_adding_gain; } Reverb; typedef struct { LADSPA_Data delay; LADSPA_Data feedback; LADSPA_Data freq_resp; } COMB_DATA; typedef struct { LADSPA_Data delay; LADSPA_Data feedback; } ALLP_DATA; typedef struct { unsigned long num_combs; unsigned long num_allps; COMB_DATA combs[MAX_COMBS]; ALLP_DATA allps[MAX_ALLPS]; LADSPA_Data bandpass_low; LADSPA_Data bandpass_high; } REVERB_DATA; tap-plugins-1.0.0/tap_reverb.rdf000066400000000000000000000224301320332260600165770ustar00rootroot00000000000000 ]> Tom Szilagyi TAP Reverberator tap-plugins-1.0.0/tap_reverb_presets.h000066400000000000000000000734321320332260600200300ustar00rootroot00000000000000/* Copyright (C) 2004 Tom Szilagyi This file is the output of TAP Reverb Editor, and is part of TAP Reverberator. Please use TAP Reverb Editor to re-generate this file, rather than editing by hand. Visit http://tap-plugins.sf.net for more info. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "tap_reverb.h" /* Number of reverb presets */ #define NUM_MODES 43 /* Reverb Type data */ REVERB_DATA reverb_data[NUM_MODES] = { { 5, 5, { {0.1015f, 70.22f, 0.4845f}, {0.1042f, 80.76f, 0.4000f}, {0.1108f, 65.25f, 0.4000f}, {0.1309f, 80.00f, 0.5342f}, {0.1386f, 52.84f, 0.4000f}, }, { {0.0067f, 65.00f}, {0.0061f, 65.00f}, {0.0059f, 65.00f}, {0.0055f, 65.00f}, {0.0101f, 80.00f}, }, 400.0f, 10000.0f, }, { 5, 5, { {0.1077f, 70.22f, 0.4845f}, {0.1124f, 80.76f, 0.4000f}, {0.1185f, 65.25f, 0.4000f}, {0.1866f, 80.00f, 0.5342f}, {0.1943f, 52.84f, 0.4000f}, }, { {0.0067f, 65.00f}, {0.0061f, 65.00f}, {0.0059f, 65.00f}, {0.0055f, 65.00f}, {0.0101f, 80.00f}, }, 400.0f, 10000.0f, }, { 6, 4, { {0.0251f, 64.80f, 0.2026f}, {0.0306f, 70.48f, 0.2731f}, {0.0350f, 67.40f, 0.5727f}, {0.0405f, 72.69f, 0.3128f}, {0.0449f, 61.23f, 0.7225f}, {0.0515f, 67.84f, 0.6167f}, }, { {0.0056f, 75.00f}, {0.0051f, 90.00f}, {0.0048f, 85.00f}, {0.0044f, 70.00f}, }, 80.0f, 15000.0f, }, { 6, 8, { {0.0251f, 64.80f, 0.2026f}, {0.0306f, 70.48f, 0.2731f}, {0.0350f, 67.40f, 0.5727f}, {0.0405f, 72.69f, 0.3128f}, {0.0449f, 61.23f, 0.7225f}, {0.0515f, 67.84f, 0.6167f}, }, { {0.0056f, 75.00f}, {0.0051f, 90.00f}, {0.0048f, 85.00f}, {0.0044f, 70.00f}, {0.0014f, 45.51f}, {0.0015f, 77.95f}, {0.0017f, 65.47f}, {0.0019f, 57.57f}, }, 80.0f, 15000.0f, }, { 8, 11, { {0.0251f, 64.80f, 0.2026f}, {0.0306f, 70.48f, 0.2731f}, {0.0350f, 67.40f, 0.5727f}, {0.0405f, 72.69f, 0.3128f}, {0.0449f, 61.23f, 0.7225f}, {0.0515f, 67.84f, 0.6167f}, {0.0800f, 53.77f, 0.7048f}, {0.0899f, 45.48f, 0.6960f}, }, { {0.0056f, 75.00f}, {0.0051f, 90.00f}, {0.0048f, 85.00f}, {0.0044f, 70.00f}, {0.0014f, 45.51f}, {0.0015f, 77.95f}, {0.0017f, 65.47f}, {0.0019f, 57.57f}, {0.0071f, 60.00f}, {0.0111f, 80.00f}, {0.0126f, 70.00f}, }, 80.0f, 15000.0f, }, { 8, 4, { {0.2236f, 62.93f, 0.3416f}, {0.2329f, 75.14f, 0.3602f}, {0.2390f, 70.34f, 0.2687f}, {0.2438f, 82.99f, 0.5093f}, {0.2499f, 89.97f, 0.2467f}, {0.2282f, 60.75f, 0.3416f}, {0.1392f, 55.00f, 0.3744f}, {0.1348f, 75.00f, 0.2467f}, }, { {0.0167f, 75.00f}, {0.0163f, 65.00f}, {0.0158f, 85.00f}, {0.0155f, 80.00f}, }, 100.0f, 6500.0f, }, { 10, 7, { {0.2236f, 62.93f, 0.3416f}, {0.2329f, 75.14f, 0.3602f}, {0.2390f, 70.34f, 0.2687f}, {0.2438f, 82.99f, 0.5093f}, {0.2499f, 89.97f, 0.2467f}, {0.2282f, 60.75f, 0.3416f}, {0.2352f, 52.90f, 0.3106f}, {0.1392f, 55.00f, 0.3744f}, {0.1469f, 68.00f, 0.5771f}, {0.1348f, 75.00f, 0.2467f}, }, { {0.0167f, 75.00f}, {0.0163f, 65.00f}, {0.0158f, 85.00f}, {0.0155f, 80.00f}, {0.0064f, 85.00f}, {0.0068f, 75.00f}, {0.0072f, 65.00f}, }, 100.0f, 6500.0f, }, { 5, 7, { {0.0520f, 70.22f, 0.4720f}, {0.0598f, 80.76f, 0.4000f}, {0.0644f, 65.25f, 0.4000f}, {0.0737f, 80.00f, 0.6957f}, {0.0845f, 52.84f, 0.7205f}, }, { {0.0049f, 67.11f}, {0.0069f, 59.05f}, {0.0073f, 87.59f}, {0.0079f, 59.67f}, {0.0085f, 65.87f}, {0.0095f, 75.18f}, {0.0100f, 71.46f}, }, 400.0f, 10000.0f, }, { 5, 4, { {0.0280f, 82.20f, 0.4720f}, {0.0303f, 80.20f, 0.5652f}, {0.0325f, 77.30f, 0.6211f}, {0.0389f, 75.30f, 0.5217f}, {0.0415f, 59.67f, 0.6522f}, }, { {0.0067f, 65.00f}, {0.0061f, 65.00f}, {0.0059f, 65.00f}, {0.0055f, 65.00f}, }, 100.0f, 10000.0f, }, { 5, 5, { {0.0280f, 82.20f, 0.4720f}, {0.0303f, 80.20f, 0.5652f}, {0.0325f, 77.30f, 0.6211f}, {0.0389f, 75.30f, 0.5217f}, {0.0415f, 59.67f, 0.6522f}, }, { {0.0067f, 75.00f}, {0.0061f, 65.00f}, {0.0059f, 65.00f}, {0.0055f, 65.00f}, {0.0071f, 75.00f}, }, 200.0f, 15000.0f, }, { 6, 5, { {0.1015f, 70.22f, 0.4845f}, {0.1042f, 80.76f, 0.4000f}, {0.1108f, 65.25f, 0.4000f}, {0.1309f, 80.00f, 0.5342f}, {0.1386f, 52.84f, 0.4000f}, {0.0520f, 72.08f, 0.4000f}, }, { {0.0067f, 65.00f}, {0.0061f, 65.00f}, {0.0059f, 65.00f}, {0.0055f, 65.00f}, {0.0101f, 80.00f}, }, 400.0f, 10000.0f, }, { 7, 4, { {0.0536f, 82.20f, 0.3416f}, {0.0629f, 52.84f, 0.3602f}, {0.0690f, 77.30f, 0.3168f}, {0.0738f, 75.30f, 0.5093f}, {0.0799f, 59.67f, 0.3106f}, {0.1634f, 80.00f, 0.5652f}, {0.1680f, 80.00f, 0.5714f}, }, { {0.0058f, 65.00f}, {0.0055f, 65.00f}, {0.0063f, 71.46f}, {0.0069f, 80.00f}, }, 600.0f, 18000.0f, }, { 7, 7, { {0.0536f, 82.20f, 0.3416f}, {0.0629f, 52.84f, 0.3602f}, {0.0690f, 77.30f, 0.3168f}, {0.0738f, 75.30f, 0.5093f}, {0.0799f, 59.67f, 0.3106f}, {0.1634f, 80.00f, 0.5652f}, {0.1680f, 80.00f, 0.5714f}, }, { {0.0058f, 65.00f}, {0.0055f, 65.00f}, {0.0063f, 71.46f}, {0.0069f, 80.00f}, {0.0121f, 80.00f}, {0.0127f, 66.49f}, {0.0137f, 88.21f}, }, 600.0f, 18000.0f, }, { 5, 4, { {0.0536f, 82.20f, 0.4783f}, {0.0629f, 52.84f, 0.4348f}, {0.0690f, 77.30f, 0.5000f}, {0.0738f, 75.30f, 0.4500f}, {0.0799f, 59.67f, 0.4500f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, }, 100.0f, 8000.0f, }, { 5, 4, { {0.0536f, 82.20f, 0.4000f}, {0.0629f, 52.84f, 0.4348f}, {0.0690f, 77.30f, 0.5000f}, {0.0738f, 75.30f, 0.4500f}, {0.0799f, 59.67f, 0.4500f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, }, 100.0f, 8000.0f, }, { 5, 4, { {0.0586f, 82.20f, 0.4000f}, {0.0679f, 52.84f, 0.4348f}, {0.0740f, 77.30f, 0.5000f}, {0.0788f, 75.30f, 0.4500f}, {0.0849f, 59.67f, 0.4500f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, }, 100.0f, 8000.0f, }, { 5, 7, { {0.0586f, 82.20f, 0.4000f}, {0.0679f, 52.84f, 0.4348f}, {0.0740f, 77.30f, 0.5000f}, {0.0788f, 75.30f, 0.4500f}, {0.0849f, 59.67f, 0.4500f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, {0.0141f, 80.00f}, {0.0133f, 57.19f}, {0.0151f, 65.25f}, }, 100.0f, 8000.0f, }, { 5, 4, { {0.0506f, 82.20f, 0.3416f}, {0.0599f, 52.84f, 0.3602f}, {0.0660f, 77.30f, 0.3168f}, {0.0708f, 75.30f, 0.5093f}, {0.0769f, 59.67f, 0.3106f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, }, 100.0f, 8000.0f, }, { 5, 4, { {0.0536f, 82.20f, 0.3416f}, {0.0629f, 52.84f, 0.3602f}, {0.0690f, 77.30f, 0.3168f}, {0.0738f, 75.30f, 0.5093f}, {0.0799f, 59.67f, 0.3106f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, }, 100.0f, 8000.0f, }, { 7, 4, { {0.0536f, 82.20f, 0.3416f}, {0.0629f, 52.84f, 0.3602f}, {0.0690f, 77.30f, 0.3168f}, {0.0738f, 75.30f, 0.5093f}, {0.0799f, 59.67f, 0.3106f}, {0.0582f, 77.66f, 0.3416f}, {0.0652f, 68.35f, 0.3106f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, }, 100.0f, 8000.0f, }, { 7, 6, { {0.0536f, 82.20f, 0.3416f}, {0.0629f, 52.84f, 0.3602f}, {0.0690f, 77.30f, 0.3168f}, {0.0738f, 75.30f, 0.5093f}, {0.0799f, 59.67f, 0.3106f}, {0.0582f, 77.66f, 0.3416f}, {0.0652f, 68.35f, 0.3106f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, {0.0126f, 70.84f}, {0.0138f, 86.35f}, }, 100.0f, 8000.0f, }, { 4, 4, { {0.0752f, 61.53f, 0.4000f}, {0.0536f, 28.64f, 0.4000f}, {0.0907f, 85.11f, 0.4000f}, {0.0660f, 47.88f, 0.4000f}, }, { {0.0039f, 80.00f}, {0.0043f, 70.84f}, {0.0045f, 58.43f}, {0.0049f, 43.53f}, }, 50.0f, 10000.0f, }, { 4, 4, { {0.1742f, 47.26f, 0.4783f}, {0.1526f, 23.06f, 0.1863f}, {0.2021f, 72.08f, 0.4000f}, {0.2175f, 90.07f, 0.4000f}, }, { {0.0039f, 80.00f}, {0.0043f, 70.84f}, {0.0045f, 58.43f}, {0.0049f, 43.53f}, }, 50.0f, 10000.0f, }, { 4, 2, { {0.0969f, 52.22f, 0.6149f}, {0.0984f, 54.70f, 0.6025f}, {0.1000f, 80.00f, 0.5217f}, {0.1015f, 53.46f, 0.2671f}, }, { {0.0017f, 46.64f}, {0.0021f, 47.88f}, }, 100.0f, 13000.0f, }, { 4, 2, { {0.1526f, 52.22f, 0.6149f}, {0.1541f, 65.87f, 0.6025f}, {0.1557f, 80.00f, 0.5217f}, {0.1572f, 53.46f, 0.2671f}, }, { {0.0075f, 46.64f}, {0.0078f, 47.88f}, }, 100.0f, 13000.0f, }, { 4, 2, { {0.2082f, 52.22f, 0.6149f}, {0.2098f, 54.70f, 0.6025f}, {0.2113f, 80.00f, 0.5217f}, {0.2129f, 53.46f, 0.2671f}, }, { {0.0075f, 46.64f}, {0.0078f, 47.88f}, }, 100.0f, 13000.0f, }, { 6, 4, { {0.0536f, 82.20f, 0.4000f}, {0.0629f, 75.80f, 0.5901f}, {0.0690f, 77.30f, 0.5000f}, {0.0738f, 75.30f, 0.4500f}, {0.0799f, 59.67f, 0.4500f}, {0.1170f, 74.56f, 0.4783f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, }, 100.0f, 13000.0f, }, { 6, 4, { {0.0536f, 82.20f, 0.4000f}, {0.0629f, 75.80f, 0.5901f}, {0.0690f, 77.30f, 0.5000f}, {0.0738f, 75.30f, 0.4500f}, {0.0799f, 59.67f, 0.4500f}, {0.1727f, 74.56f, 0.5590f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, }, 100.0f, 13000.0f, }, { 6, 4, { {0.0814f, 82.20f, 0.4000f}, {0.0892f, 75.80f, 0.5901f}, {0.0953f, 77.30f, 0.5000f}, {0.1046f, 75.30f, 0.5714f}, {0.1108f, 59.67f, 0.4500f}, {0.1912f, 39.81f, 0.6832f}, }, { {0.0073f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, }, 100.0f, 13000.0f, }, { 6, 6, { {0.0814f, 82.20f, 0.4000f}, {0.0892f, 75.80f, 0.5901f}, {0.0953f, 77.30f, 0.5000f}, {0.1046f, 75.30f, 0.5714f}, {0.1108f, 59.67f, 0.4500f}, {0.1912f, 39.81f, 0.6832f}, }, { {0.0073f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, {0.0164f, 66.49f}, {0.0181f, 56.57f}, }, 100.0f, 13000.0f, }, { 5, 4, { {0.1170f, 82.20f, 0.5466f}, {0.1232f, 75.18f, 0.4907f}, {0.1309f, 69.60f, 0.6335f}, {0.1417f, 49.74f, 0.6957f}, {0.1526f, 59.67f, 0.5528f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, }, 1000.0f, 10000.0f, }, { 5, 6, { {0.1170f, 82.20f, 0.5466f}, {0.1232f, 75.18f, 0.4907f}, {0.1309f, 69.60f, 0.6335f}, {0.1417f, 49.74f, 0.6957f}, {0.1526f, 59.67f, 0.5528f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, {0.0143f, 56.57f}, {0.0153f, 66.49f}, }, 1000.0f, 10000.0f, }, { 6, 4, { {0.1170f, 82.20f, 0.6398f}, {0.1232f, 75.18f, 0.7453f}, {0.1309f, 69.60f, 0.6398f}, {0.1417f, 49.74f, 0.6957f}, {0.1526f, 59.67f, 0.7205f}, {0.1634f, 84.49f, 0.7453f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, }, 2000.0f, 15000.0f, }, { 6, 6, { {0.1170f, 82.20f, 0.6398f}, {0.1232f, 75.18f, 0.7453f}, {0.1309f, 69.60f, 0.6398f}, {0.1417f, 49.74f, 0.6957f}, {0.1526f, 59.67f, 0.7205f}, {0.1634f, 84.49f, 0.7453f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, {0.0128f, 80.00f}, {0.0136f, 88.83f}, }, 2000.0f, 15000.0f, }, { 5, 4, { {0.0506f, 82.20f, 0.6832f}, {0.0599f, 73.94f, 0.6832f}, {0.0660f, 61.53f, 0.7453f}, {0.0708f, 75.30f, 0.7702f}, {0.0769f, 59.67f, 0.8012f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, }, 1000.0f, 7000.0f, }, { 5, 4, { {0.0536f, 82.20f, 0.6832f}, {0.0629f, 73.94f, 0.6832f}, {0.0690f, 61.53f, 0.7453f}, {0.0738f, 75.30f, 0.7702f}, {0.0799f, 59.67f, 0.8012f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, }, 1000.0f, 7000.0f, }, { 5, 4, { {0.0586f, 82.20f, 0.6832f}, {0.0679f, 73.94f, 0.6832f}, {0.0740f, 61.53f, 0.7453f}, {0.0788f, 75.30f, 0.7702f}, {0.0849f, 59.67f, 0.8012f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, }, 1000.0f, 7000.0f, }, { 5, 7, { {0.0586f, 82.20f, 0.6832f}, {0.0679f, 73.94f, 0.6832f}, {0.0740f, 61.53f, 0.7453f}, {0.0788f, 75.30f, 0.7702f}, {0.0849f, 59.67f, 0.8012f}, }, { {0.0067f, 65.00f}, {0.0063f, 65.00f}, {0.0058f, 65.00f}, {0.0055f, 65.00f}, {0.0122f, 80.00f}, {0.0138f, 65.25f}, {0.0143f, 75.00f}, }, 1000.0f, 7000.0f, }, { 5, 4, { {0.0505f, 70.22f, 0.4720f}, {0.0582f, 80.76f, 0.4000f}, {0.0629f, 65.25f, 0.4000f}, {0.0892f, 80.00f, 0.6957f}, {0.0953f, 52.84f, 0.7205f}, }, { {0.0044f, 65.00f}, {0.0037f, 67.11f}, {0.0057f, 80.00f}, {0.0060f, 56.57f}, }, 400.0f, 10000.0f, }, { 5, 6, { {0.0505f, 70.22f, 0.4720f}, {0.0582f, 80.76f, 0.4000f}, {0.0629f, 65.25f, 0.4000f}, {0.0892f, 80.00f, 0.6957f}, {0.0953f, 52.84f, 0.7205f}, }, { {0.0044f, 65.00f}, {0.0037f, 67.11f}, {0.0057f, 80.00f}, {0.0060f, 56.57f}, {0.0142f, 80.00f}, {0.0151f, 59.67f}, }, 400.0f, 10000.0f, }, { 5, 4, { {0.2051f, 52.84f, 0.7826f}, {0.2082f, 68.35f, 0.7019f}, {0.2113f, 80.00f, 0.6832f}, {0.2206f, 83.25f, 0.7081f}, {0.2237f, 67.73f, 0.5280f}, }, { {0.0067f, 65.00f}, {0.0061f, 65.00f}, {0.0059f, 65.00f}, {0.0055f, 65.00f}, }, 400.0f, 10000.0f, }, { 6, 5, { {0.0280f, 82.20f, 0.4720f}, {0.0304f, 80.20f, 0.5652f}, {0.0329f, 77.30f, 0.6211f}, {0.0389f, 75.30f, 0.5217f}, {0.0415f, 59.67f, 0.6522f}, {0.0768f, 80.00f, 0.7702f}, }, { {0.0057f, 65.00f}, {0.0062f, 65.00f}, {0.0066f, 77.04f}, {0.0050f, 65.00f}, {0.0038f, 56.57f}, }, 100.0f, 10000.0f, }, { 6, 7, { {0.0280f, 82.20f, 0.4720f}, {0.0304f, 80.20f, 0.5652f}, {0.0329f, 77.30f, 0.6211f}, {0.0389f, 75.30f, 0.5217f}, {0.0415f, 59.67f, 0.6522f}, {0.0768f, 80.00f, 0.7702f}, }, { {0.0057f, 65.00f}, {0.0062f, 65.00f}, {0.0137f, 77.04f}, {0.0050f, 65.00f}, {0.0038f, 56.57f}, {0.0147f, 60.91f}, {0.0164f, 52.84f}, }, 100.0f, 10000.0f, }, }; tap-plugins-1.0.0/tap_rotspeak.c000066400000000000000000000611451320332260600166170ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "tap_utils.h" /* The Unique ID of the plugin: */ #define ID_STEREO 2149 /* The port numbers for the plugin: */ #define BASSFREQ 0 #define HORNFREQ 1 #define STWIDTH 2 #define HRBAL 3 #define LATENCY 4 #define INPUT_L 5 #define INPUT_R 6 #define OUTPUT_L 7 #define OUTPUT_R 8 /* Total number of ports */ #define PORTCOUNT_STEREO 9 /* * This has to be bigger than 0.3f * sample_rate / (2*PI) for any sample rate. * At 192 kHz 9168 is needed so this should be enough. */ #define PM_DEPTH 9200 /* maximum phase mod freq */ #define PM_FREQ 30.0f /* splitting input signals into low and high freq components */ #define SPLIT_FREQ 1000.0f #define SPLIT_BW 1.0f /* approx. sound velocity in air [m/s] */ #define C_AIR 340.0f /* coefficient between rotating frequency and pitch mod depth (aka. Doppler effect) */ #define FREQ_PITCH 1.6f /* cosine table for fast computations */ LADSPA_Data cos_table[1024]; /* The structure used to hold port connection information and state */ typedef struct { LADSPA_Data * hornfreq; LADSPA_Data * bassfreq; LADSPA_Data * stwidth; LADSPA_Data * hrbal; LADSPA_Data * latency; LADSPA_Data * input_L; LADSPA_Data * input_R; LADSPA_Data * output_L; LADSPA_Data * output_R; LADSPA_Data * ringbuffer_h_L; unsigned long buflen_h_L; unsigned long pos_h_L; LADSPA_Data * ringbuffer_h_R; unsigned long buflen_h_R; unsigned long pos_h_R; LADSPA_Data * ringbuffer_b_L; unsigned long buflen_b_L; unsigned long pos_b_L; LADSPA_Data * ringbuffer_b_R; unsigned long buflen_b_R; unsigned long pos_b_R; biquad * eq_filter_L; biquad * lp_filter_L; biquad * hp_filter_L; biquad * eq_filter_R; biquad * lp_filter_R; biquad * hp_filter_R; unsigned long sample_rate; LADSPA_Data phase_h; LADSPA_Data phase_b; LADSPA_Data run_adding_gain; } RotSpkr; void cleanup_RotSpkr(LADSPA_Handle Instance); /* Construct a new plugin instance. */ LADSPA_Handle instantiate_RotSpkr(const LADSPA_Descriptor * Descriptor, unsigned long sample_rate) { LADSPA_Handle * ptr; if ((ptr = calloc(1, sizeof(RotSpkr))) != NULL) { RotSpkr* rotSpeak = (RotSpkr*)ptr; rotSpeak->sample_rate = sample_rate; rotSpeak->run_adding_gain = 1.0; if ((rotSpeak->ringbuffer_h_L = calloc(2 * PM_DEPTH, sizeof(LADSPA_Data))) == NULL) { cleanup_RotSpkr((LADSPA_Handle)rotSpeak); return NULL; } if ((rotSpeak->ringbuffer_h_R = calloc(2 * PM_DEPTH, sizeof(LADSPA_Data))) == NULL) { cleanup_RotSpkr((LADSPA_Handle)rotSpeak); return NULL; } rotSpeak->buflen_h_L = ceil(0.3f * sample_rate / M_PI); rotSpeak->buflen_h_R = ceil(0.3f * sample_rate / M_PI); rotSpeak->pos_h_L = 0; rotSpeak->pos_h_R = 0; if ((rotSpeak->ringbuffer_b_L = calloc(2 * PM_DEPTH, sizeof(LADSPA_Data))) == NULL) { cleanup_RotSpkr((LADSPA_Handle)rotSpeak); return NULL; } if ((rotSpeak->ringbuffer_b_R = calloc(2 * PM_DEPTH, sizeof(LADSPA_Data))) == NULL) { cleanup_RotSpkr((LADSPA_Handle)rotSpeak); return NULL; } rotSpeak->buflen_b_L = ceil(0.3f * sample_rate / M_PI); rotSpeak->buflen_b_R = ceil(0.3f * sample_rate / M_PI); rotSpeak->pos_b_L = 0; rotSpeak->pos_b_R = 0; if ((rotSpeak->eq_filter_L = calloc(1, sizeof(biquad))) == NULL) { cleanup_RotSpkr((LADSPA_Handle)rotSpeak); return NULL; } if ((rotSpeak->lp_filter_L = calloc(1, sizeof(biquad))) == NULL) { cleanup_RotSpkr((LADSPA_Handle)rotSpeak); return NULL; } if ((rotSpeak->hp_filter_L = calloc(1, sizeof(biquad))) == NULL) { cleanup_RotSpkr((LADSPA_Handle)rotSpeak); return NULL; } if ((rotSpeak->eq_filter_R = calloc(1, sizeof(biquad))) == NULL) { cleanup_RotSpkr((LADSPA_Handle)rotSpeak); return NULL; } if ((rotSpeak->lp_filter_R = calloc(1, sizeof(biquad))) == NULL) { cleanup_RotSpkr((LADSPA_Handle)rotSpeak); return NULL; } if ((rotSpeak->hp_filter_R = calloc(1, sizeof(biquad))) == NULL) { cleanup_RotSpkr((LADSPA_Handle)rotSpeak); return NULL; } return ptr; } return NULL; } void activate_RotSpkr(LADSPA_Handle Instance) { int i; RotSpkr * ptr; ptr = (RotSpkr *)Instance; for (i = 0; i < 2 * PM_DEPTH; i++) { ptr->ringbuffer_h_L[i] = 0.0f; ptr->ringbuffer_h_R[i] = 0.0f; ptr->ringbuffer_b_L[i] = 0.0f; ptr->ringbuffer_b_R[i] = 0.0f; } ptr->phase_h = 0.0f; ptr->phase_b = 0.0f; biquad_init(ptr->eq_filter_L); biquad_init(ptr->lp_filter_L); biquad_init(ptr->hp_filter_L); biquad_init(ptr->eq_filter_R); biquad_init(ptr->lp_filter_R); biquad_init(ptr->hp_filter_R); eq_set_params(ptr->eq_filter_L, SPLIT_FREQ, +8.0f, SPLIT_BW, ptr->sample_rate); eq_set_params(ptr->eq_filter_R, SPLIT_FREQ, +8.0f, SPLIT_BW, ptr->sample_rate); lp_set_params(ptr->lp_filter_L, SPLIT_FREQ, SPLIT_BW, ptr->sample_rate); lp_set_params(ptr->lp_filter_R, SPLIT_FREQ, SPLIT_BW, ptr->sample_rate); hp_set_params(ptr->hp_filter_L, SPLIT_FREQ, SPLIT_BW, ptr->sample_rate); hp_set_params(ptr->hp_filter_R, SPLIT_FREQ, SPLIT_BW, ptr->sample_rate); } /* Connect a port to a data location. */ void connect_port_RotSpkr(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * DataLocation) { RotSpkr * ptr; ptr = (RotSpkr *)Instance; switch (Port) { case HORNFREQ: ptr->hornfreq = DataLocation; break; case BASSFREQ: ptr->bassfreq = DataLocation; break; case STWIDTH: ptr->stwidth = DataLocation; break; case HRBAL: ptr->hrbal = DataLocation; break; case LATENCY: ptr->latency = DataLocation; *(ptr->latency) = ptr->buflen_h_L / 2; /* IS THIS LEGAL? YES, ONLY IF DataLocation points to valid memory location on stack/heap*/ break; case INPUT_L: ptr->input_L = DataLocation; break; case INPUT_R: ptr->input_R = DataLocation; break; case OUTPUT_L: ptr->output_L = DataLocation; break; case OUTPUT_R: ptr->output_R = DataLocation; break; } } void run_RotSpkr(LADSPA_Handle Instance, unsigned long SampleCount) { RotSpkr * ptr = (RotSpkr *)Instance; LADSPA_Data * input_L = ptr->input_L; LADSPA_Data * input_R = ptr->input_R; LADSPA_Data * output_L = ptr->output_L; LADSPA_Data * output_R = ptr->output_R; LADSPA_Data freq_h = LIMIT(*(ptr->hornfreq),0.0f,PM_FREQ); LADSPA_Data freq_b = LIMIT(*(ptr->bassfreq),0.0f,PM_FREQ); LADSPA_Data stwidth = LIMIT(*(ptr->stwidth),0.0f,100.0f); LADSPA_Data hrbal = LIMIT(*(ptr->hrbal),0.0f,1.0f); LADSPA_Data pmdepth_h = LIMIT(1.0f/(1.0f+FREQ_PITCH*freq_h/C_AIR) * ptr->sample_rate / 200.0f / M_PI / freq_h, 0, ptr->buflen_h_L / 2); LADSPA_Data pmdepth_b = LIMIT(1.0f/(1.0f+FREQ_PITCH*freq_b/C_AIR) * ptr->sample_rate / 200.0f / M_PI / freq_b, 0, ptr->buflen_b_L / 2); unsigned long sample_index; LADSPA_Data in_L = 0.0f, in_R = 0.0f; LADSPA_Data lo_L = 0.0f, lo_R = 0.0f; LADSPA_Data hi_L = 0.0f, hi_R = 0.0f; LADSPA_Data phase_h_L = 0.0f, phase_b_L = 0.0f; LADSPA_Data phase_h_R = 0.0f, phase_b_R = 0.0f; LADSPA_Data phase_pm_h_L = 0.0f, phase_pm_b_L = 0.0f; LADSPA_Data phase_pm_h_R = 0.0f, phase_pm_b_R = 0.0f; LADSPA_Data pm_h_L = 0.0f, pm_b_L = 0.0f; LADSPA_Data pm_h_R = 0.0f, pm_b_R = 0.0f; LADSPA_Data fpos_h_L = 0.0f, fpos_b_L = 0.0f, fpos_h_R = 0.0f, fpos_b_R = 0.0f; LADSPA_Data n_h_L = 0.0f, n_b_L = 0.0f, n_h_R = 0.0f, n_b_R = 0.0f; LADSPA_Data rem_h_L = 0.0f, rem_b_L = 0.0f, rem_h_R = 0.0f, rem_b_R = 0.0f; LADSPA_Data sa_h_L = 0.0f, sa_b_L = 0.0f, sb_h_L = 0.0f, sb_b_L = 0.0f; LADSPA_Data sa_h_R = 0.0f, sa_b_R = 0.0f, sb_h_R = 0.0f, sb_b_R = 0.0f; for (sample_index = 0; sample_index < SampleCount; sample_index++) { in_L = *(input_L++); in_R = *(input_R++); in_L = biquad_run(ptr->eq_filter_L, in_L); in_R = biquad_run(ptr->eq_filter_R, in_R); lo_L = biquad_run(ptr->lp_filter_L, in_L); lo_R = biquad_run(ptr->lp_filter_R, in_R); hi_L = biquad_run(ptr->hp_filter_L, in_L); hi_R = biquad_run(ptr->hp_filter_R, in_R); phase_h_L = 1024.0f * freq_h * sample_index / ptr->sample_rate + ptr->phase_h; while (phase_h_L >= 1024.0f) phase_h_L -= 1024.0f; phase_pm_h_L = phase_h_L + 256.0f; while (phase_pm_h_L >= 1024.0f) phase_pm_h_L -= 1024.0f; phase_h_R = phase_h_L + 512.0f; while (phase_h_R >= 1024.0f) phase_h_R -= 1024.0f; phase_pm_h_R = phase_h_R + 256.0f; while (phase_pm_h_R >= 1024.0f) phase_pm_h_R -= 1024.0f; phase_b_L = 1024.0f * freq_b * sample_index / ptr->sample_rate + ptr->phase_b; while (phase_b_L >= 1024.0f) phase_b_L -= 1024.0f; phase_pm_b_L = phase_b_L + 256.0f; while (phase_pm_b_L >= 1024.0f) phase_pm_b_L -= 1024.0f; phase_b_R = phase_b_L + 512.0f; while (phase_b_R >= 1024.0f) phase_b_R -= 1024.0f; phase_pm_b_R = phase_b_R + 256.0f; while (phase_pm_b_R >= 1024.0f) phase_pm_b_R -= 1024.0f; push_buffer(hi_L, ptr->ringbuffer_h_L, ptr->buflen_h_L, &(ptr->pos_h_L)); push_buffer(hi_R, ptr->ringbuffer_h_R, ptr->buflen_h_R, &(ptr->pos_h_R)); push_buffer(lo_L, ptr->ringbuffer_b_L, ptr->buflen_b_L, &(ptr->pos_b_L)); push_buffer(lo_R, ptr->ringbuffer_b_R, ptr->buflen_b_R, &(ptr->pos_b_R)); fpos_h_L = pmdepth_h * (1.0f - cos_table[(unsigned long) phase_pm_h_L]); n_h_L = floorf(fpos_h_L); rem_h_L = fpos_h_L - n_h_L; sa_h_L = read_buffer(ptr->ringbuffer_h_L, ptr->buflen_h_L, ptr->pos_h_L, (unsigned long) n_h_L); sb_h_L = read_buffer(ptr->ringbuffer_h_L, ptr->buflen_h_L, ptr->pos_h_L, (unsigned long) n_h_L + 1); pm_h_L = (1 - rem_h_L) * sa_h_L + rem_h_L * sb_h_L; fpos_h_R = pmdepth_h * (1.0f - cos_table[(unsigned long) phase_pm_h_R]); n_h_R = floorf(fpos_h_R); rem_h_R = fpos_h_R - n_h_R; sa_h_R = read_buffer(ptr->ringbuffer_h_R, ptr->buflen_h_R, ptr->pos_h_R, (unsigned long) n_h_R); sb_h_R = read_buffer(ptr->ringbuffer_h_R, ptr->buflen_h_R, ptr->pos_h_R, (unsigned long) n_h_R + 1); pm_h_R = (1 - rem_h_R) * sa_h_R + rem_h_R * sb_h_R; fpos_b_L = pmdepth_b * (1.0f - cos_table[(unsigned long) phase_pm_b_L]); n_b_L = floorf(fpos_b_L); rem_b_L = fpos_b_L - n_b_L; sa_b_L = read_buffer(ptr->ringbuffer_b_L, ptr->buflen_b_L, ptr->pos_b_L, (unsigned long) n_b_L); sb_b_L = read_buffer(ptr->ringbuffer_b_L, ptr->buflen_b_L, ptr->pos_b_L, (unsigned long) n_b_L + 1); pm_b_L = (1 - rem_b_L) * sa_b_L + rem_b_L * sb_b_L; fpos_b_R = pmdepth_b * (1.0f - cos_table[(unsigned long) phase_pm_b_R]); n_b_R = floorf(fpos_b_R); rem_b_R = fpos_b_R - n_b_R; sa_b_R = read_buffer(ptr->ringbuffer_b_R, ptr->buflen_b_R, ptr->pos_b_R, (unsigned long) n_b_R); sb_b_R = read_buffer(ptr->ringbuffer_b_R, ptr->buflen_b_R, ptr->pos_b_R, (unsigned long) n_b_R + 1); pm_b_R = (1 - rem_b_R) * sa_b_R + rem_b_R * sb_b_R; *(output_L++) = hrbal * pm_h_L * (1.0f + 0.5f * stwidth/100.0f * cos_table[(unsigned long) phase_h_L]) + (1.0f - hrbal) * pm_b_L * (1.0f + 0.5f * stwidth/100.0f * cos_table[(unsigned long) phase_b_L]); *(output_R++) = hrbal * pm_h_R * (1.0f + 0.5f * stwidth/100.0f * cos_table[(unsigned long) phase_h_R]) + (1.0f - hrbal) * pm_b_R * (1.0f + 0.5f * stwidth/100.0f * cos_table[(unsigned long) phase_b_R]); } ptr->phase_h += 1024.0f * freq_h * sample_index / ptr->sample_rate; while (ptr->phase_h >= 1024.0f) ptr->phase_h -= 1024.0f; ptr->phase_b += 1024.0f * freq_b * sample_index / ptr->sample_rate; while (ptr->phase_b >= 1024.0f) ptr->phase_b -= 1024.0f; *(ptr->latency) = ptr->buflen_h_L / 2; } void set_run_adding_gain_RotSpkr(LADSPA_Handle Instance, LADSPA_Data gain) { RotSpkr * ptr = (RotSpkr *)Instance; ptr->run_adding_gain = gain; } void run_adding_RotSpkr(LADSPA_Handle Instance, unsigned long SampleCount) { RotSpkr * ptr = (RotSpkr *)Instance; LADSPA_Data * input_L = ptr->input_L; LADSPA_Data * input_R = ptr->input_R; LADSPA_Data * output_L = ptr->output_L; LADSPA_Data * output_R = ptr->output_R; LADSPA_Data freq_h = LIMIT(*(ptr->hornfreq),0.0f,PM_FREQ); LADSPA_Data freq_b = LIMIT(*(ptr->bassfreq),0.0f,PM_FREQ); LADSPA_Data stwidth = LIMIT(*(ptr->stwidth),0.0f,100.0f); LADSPA_Data hrbal = LIMIT(*(ptr->hrbal),0.0f,1.0f); LADSPA_Data pmdepth_h = LIMIT(1.0f/(1.0f+FREQ_PITCH*freq_h/C_AIR) * ptr->sample_rate / 200.0f / M_PI / freq_h, 0, ptr->buflen_h_L / 2); LADSPA_Data pmdepth_b = LIMIT(1.0f/(1.0f+FREQ_PITCH*freq_b/C_AIR) * ptr->sample_rate / 200.0f / M_PI / freq_b, 0, ptr->buflen_b_L / 2); unsigned long sample_index; LADSPA_Data in_L = 0.0f, in_R = 0.0f; LADSPA_Data lo_L = 0.0f, lo_R = 0.0f; LADSPA_Data hi_L = 0.0f, hi_R = 0.0f; LADSPA_Data phase_h_L = 0.0f, phase_b_L = 0.0f; LADSPA_Data phase_h_R = 0.0f, phase_b_R = 0.0f; LADSPA_Data phase_pm_h_L = 0.0f, phase_pm_b_L = 0.0f; LADSPA_Data phase_pm_h_R = 0.0f, phase_pm_b_R = 0.0f; LADSPA_Data pm_h_L = 0.0f, pm_b_L = 0.0f; LADSPA_Data pm_h_R = 0.0f, pm_b_R = 0.0f; LADSPA_Data fpos_h_L = 0.0f, fpos_b_L = 0.0f, fpos_h_R = 0.0f, fpos_b_R = 0.0f; LADSPA_Data n_h_L = 0.0f, n_b_L = 0.0f, n_h_R = 0.0f, n_b_R = 0.0f; LADSPA_Data rem_h_L = 0.0f, rem_b_L = 0.0f, rem_h_R = 0.0f, rem_b_R = 0.0f; LADSPA_Data sa_h_L = 0.0f, sa_b_L = 0.0f, sb_h_L = 0.0f, sb_b_L = 0.0f; LADSPA_Data sa_h_R = 0.0f, sa_b_R = 0.0f, sb_h_R = 0.0f, sb_b_R = 0.0f; for (sample_index = 0; sample_index < SampleCount; sample_index++) { in_L = *(input_L++); in_R = *(input_R++); in_L = biquad_run(ptr->eq_filter_L, in_L); in_R = biquad_run(ptr->eq_filter_R, in_R); lo_L = biquad_run(ptr->lp_filter_L, in_L); lo_R = biquad_run(ptr->lp_filter_R, in_R); hi_L = biquad_run(ptr->hp_filter_L, in_L); hi_R = biquad_run(ptr->hp_filter_R, in_R); phase_h_L = 1024.0f * freq_h * sample_index / ptr->sample_rate + ptr->phase_h; while (phase_h_L >= 1024.0f) phase_h_L -= 1024.0f; phase_pm_h_L = phase_h_L + 256.0f; while (phase_pm_h_L >= 1024.0f) phase_pm_h_L -= 1024.0f; phase_h_R = phase_h_L + 512.0f; while (phase_h_R >= 1024.0f) phase_h_R -= 1024.0f; phase_pm_h_R = phase_h_R + 256.0f; while (phase_pm_h_R >= 1024.0f) phase_pm_h_R -= 1024.0f; phase_b_L = 1024.0f * freq_b * sample_index / ptr->sample_rate + ptr->phase_b; while (phase_b_L >= 1024.0f) phase_b_L -= 1024.0f; phase_pm_b_L = phase_b_L + 256.0f; while (phase_pm_b_L >= 1024.0f) phase_pm_b_L -= 1024.0f; phase_b_R = phase_b_L + 512.0f; while (phase_b_R >= 1024.0f) phase_b_R -= 1024.0f; phase_pm_b_R = phase_b_R + 256.0f; while (phase_pm_b_R >= 1024.0f) phase_pm_b_R -= 1024.0f; push_buffer(hi_L, ptr->ringbuffer_h_L, ptr->buflen_h_L, &(ptr->pos_h_L)); push_buffer(hi_R, ptr->ringbuffer_h_R, ptr->buflen_h_R, &(ptr->pos_h_R)); push_buffer(lo_L, ptr->ringbuffer_b_L, ptr->buflen_b_L, &(ptr->pos_b_L)); push_buffer(lo_R, ptr->ringbuffer_b_R, ptr->buflen_b_R, &(ptr->pos_b_R)); fpos_h_L = pmdepth_h * (1.0f - cos_table[(unsigned long) phase_pm_h_L]); n_h_L = floorf(fpos_h_L); rem_h_L = fpos_h_L - n_h_L; sa_h_L = read_buffer(ptr->ringbuffer_h_L, ptr->buflen_h_L, ptr->pos_h_L, (unsigned long) n_h_L); sb_h_L = read_buffer(ptr->ringbuffer_h_L, ptr->buflen_h_L, ptr->pos_h_L, (unsigned long) n_h_L + 1); pm_h_L = (1 - rem_h_L) * sa_h_L + rem_h_L * sb_h_L; fpos_h_R = pmdepth_h * (1.0f - cos_table[(unsigned long) phase_pm_h_R]); n_h_R = floorf(fpos_h_R); rem_h_R = fpos_h_R - n_h_R; sa_h_R = read_buffer(ptr->ringbuffer_h_R, ptr->buflen_h_R, ptr->pos_h_R, (unsigned long) n_h_R); sb_h_R = read_buffer(ptr->ringbuffer_h_R, ptr->buflen_h_R, ptr->pos_h_R, (unsigned long) n_h_R + 1); pm_h_R = (1 - rem_h_R) * sa_h_R + rem_h_R * sb_h_R; fpos_b_L = pmdepth_b * (1.0f - cos_table[(unsigned long) phase_pm_b_L]); n_b_L = floorf(fpos_b_L); rem_b_L = fpos_b_L - n_b_L; sa_b_L = read_buffer(ptr->ringbuffer_b_L, ptr->buflen_b_L, ptr->pos_b_L, (unsigned long) n_b_L); sb_b_L = read_buffer(ptr->ringbuffer_b_L, ptr->buflen_b_L, ptr->pos_b_L, (unsigned long) n_b_L + 1); pm_b_L = (1 - rem_b_L) * sa_b_L + rem_b_L * sb_b_L; fpos_b_R = pmdepth_b * (1.0f - cos_table[(unsigned long) phase_pm_b_R]); n_b_R = floorf(fpos_b_R); rem_b_R = fpos_b_R - n_b_R; sa_b_R = read_buffer(ptr->ringbuffer_b_R, ptr->buflen_b_R, ptr->pos_b_R, (unsigned long) n_b_R); sb_b_R = read_buffer(ptr->ringbuffer_b_R, ptr->buflen_b_R, ptr->pos_b_R, (unsigned long) n_b_R + 1); pm_b_R = (1 - rem_b_R) * sa_b_R + rem_b_R * sb_b_R; *(output_L++) += ptr->run_adding_gain * hrbal * pm_h_L * (1.0f + 0.5f * stwidth/100.0f * cos_table[(unsigned long) phase_h_L]) + (1.0f - hrbal) * pm_b_L * (1.0f + 0.5f * stwidth/100.0f * cos_table[(unsigned long) phase_b_L]); *(output_R++) += ptr->run_adding_gain * hrbal * pm_h_R * (1.0f + 0.5f * stwidth/100.0f * cos_table[(unsigned long) phase_h_R]) + (1.0f - hrbal) * pm_b_R * (1.0f + 0.5f * stwidth/100.0f * cos_table[(unsigned long) phase_b_R]); } ptr->phase_h += 1024.0f * freq_h * sample_index / ptr->sample_rate; while (ptr->phase_h >= 1024.0f) ptr->phase_h -= 1024.0f; ptr->phase_b += 1024.0f * freq_b * sample_index / ptr->sample_rate; while (ptr->phase_b >= 1024.0f) ptr->phase_b -= 1024.0f; *(ptr->latency) = ptr->buflen_h_L / 2; } /* Throw away an RotSpkr effect instance. This function should be called only when RotSpkr was allocated with calloc. */ void cleanup_RotSpkr(LADSPA_Handle Instance) { RotSpkr * ptr = (RotSpkr *)Instance; if (!ptr) return; if (ptr->ringbuffer_h_L) free(ptr->ringbuffer_h_L); if (ptr->ringbuffer_h_R) free(ptr->ringbuffer_h_R); if (ptr->ringbuffer_b_L) free(ptr->ringbuffer_b_L); if (ptr->ringbuffer_b_R) free(ptr->ringbuffer_b_R); if (ptr->eq_filter_L) free(ptr->eq_filter_L); if (ptr->eq_filter_R) free(ptr->eq_filter_R); if (ptr->lp_filter_L) free(ptr->lp_filter_L); if (ptr->lp_filter_R) free(ptr->lp_filter_R); if (ptr->hp_filter_L) free(ptr->hp_filter_L); if (ptr->hp_filter_R) free(ptr->hp_filter_R); if (Instance) free(Instance); } LADSPA_Descriptor * stereo_descriptor = NULL; /* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first loaded. */ void __attribute__((constructor)) tap_init() { int i; char ** port_names; LADSPA_PortDescriptor * port_descriptors; LADSPA_PortRangeHint * port_range_hints; if ((stereo_descriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL) exit(1); for (i = 0; i < 1024; i++) cos_table[i] = cosf(i * M_PI / 512.0f); stereo_descriptor->UniqueID = ID_STEREO; stereo_descriptor->Label = strdup("tap_rotspeak"); stereo_descriptor->Properties = LADSPA_PROPERTY_HARD_RT_CAPABLE; stereo_descriptor->Name = strdup("TAP Rotary Speaker"); stereo_descriptor->Maker = strdup("Tom Szilagyi"); stereo_descriptor->Copyright = strdup("GPL"); stereo_descriptor->PortCount = PORTCOUNT_STEREO; if ((port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortDescriptor))) == NULL) exit(1); stereo_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_descriptors[HORNFREQ] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[BASSFREQ] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[STWIDTH] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[HRBAL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[LATENCY] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL; port_descriptors[INPUT_L] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[INPUT_R] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT_L] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT_R] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; if ((port_names = (char **)calloc(PORTCOUNT_STEREO, sizeof(char *))) == NULL) exit(1); stereo_descriptor->PortNames = (const char **)port_names; port_names[HORNFREQ] = strdup("Horn Frequency [Hz]"); port_names[BASSFREQ] = strdup("Rotor Frequency [Hz]"); port_names[STWIDTH] = strdup("Mic Distance [%]"); port_names[HRBAL] = strdup("Rotor/Horn Mix"); port_names[LATENCY] = strdup("latency"); port_names[INPUT_L] = strdup("Input L"); port_names[INPUT_R] = strdup("Input R"); port_names[OUTPUT_L] = strdup("Output L"); port_names[OUTPUT_R] = strdup("Output R"); if ((port_range_hints = ((LADSPA_PortRangeHint *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortRangeHint)))) == NULL) exit(1); stereo_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_range_hints[HORNFREQ].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[BASSFREQ].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[STWIDTH].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_LOW); port_range_hints[HRBAL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MIDDLE); port_range_hints[LATENCY].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MAXIMUM); port_range_hints[HORNFREQ].LowerBound = 0; port_range_hints[HORNFREQ].UpperBound = PM_FREQ; port_range_hints[BASSFREQ].LowerBound = 0; port_range_hints[BASSFREQ].UpperBound = PM_FREQ; port_range_hints[STWIDTH].LowerBound = 0; port_range_hints[STWIDTH].UpperBound = 100.0f; port_range_hints[HRBAL].LowerBound = 0; port_range_hints[HRBAL].UpperBound = 1.0f; port_range_hints[LATENCY].LowerBound = 0; port_range_hints[LATENCY].UpperBound = PM_DEPTH; port_range_hints[INPUT_L].HintDescriptor = 0; port_range_hints[INPUT_R].HintDescriptor = 0; port_range_hints[OUTPUT_L].HintDescriptor = 0; port_range_hints[OUTPUT_R].HintDescriptor = 0; stereo_descriptor->instantiate = instantiate_RotSpkr; stereo_descriptor->connect_port = connect_port_RotSpkr; stereo_descriptor->activate = activate_RotSpkr; stereo_descriptor->run = run_RotSpkr; stereo_descriptor->run_adding = run_adding_RotSpkr; stereo_descriptor->set_run_adding_gain = set_run_adding_gain_RotSpkr; stereo_descriptor->deactivate = NULL; stereo_descriptor->cleanup = cleanup_RotSpkr; } void delete_descriptor(LADSPA_Descriptor * descriptor) { unsigned long index; if (descriptor) { free((char *)descriptor->Label); free((char *)descriptor->Name); free((char *)descriptor->Maker); free((char *)descriptor->Copyright); free((LADSPA_PortDescriptor *)descriptor->PortDescriptors); for (index = 0; index < descriptor->PortCount; index++) free((char *)(descriptor->PortNames[index])); free((char **)descriptor->PortNames); free((LADSPA_PortRangeHint *)descriptor->PortRangeHints); free(descriptor); } } /* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */ void __attribute__((destructor)) tap_fini() { delete_descriptor(stereo_descriptor); } /* Return a descriptor of the requested plugin type. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index) { switch (Index) { case 0: return stereo_descriptor; default: return NULL; } } tap-plugins-1.0.0/tap_sigmoid.c000066400000000000000000000215041320332260600164150ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "tap_utils.h" /* The Unique ID of the plugin: */ #define ID_MONO 2157 /* The port numbers for the plugin: */ #define PREGAIN 0 #define POSTGAIN 1 #define INPUT 2 #define OUTPUT 3 /* Total number of ports */ #define PORTCOUNT_MONO 4 /* The closer this is to 1.0, the slower the input parameter interpolation will be. */ #define INTERP 0.99f /* The structure used to hold port connection information and state */ typedef struct { LADSPA_Data * pregain; LADSPA_Data * postgain; LADSPA_Data * input; LADSPA_Data * output; LADSPA_Data pregain_i; LADSPA_Data postgain_i; unsigned long sample_rate; LADSPA_Data run_adding_gain; } Sigmoid; /* Construct a new plugin instance. */ LADSPA_Handle instantiate_Sigmoid(const LADSPA_Descriptor * Descriptor, unsigned long sample_rate) { LADSPA_Handle * ptr; if ((ptr = malloc(sizeof(Sigmoid))) != NULL) { ((Sigmoid *)ptr)->sample_rate = sample_rate; ((Sigmoid *)ptr)->run_adding_gain = 1.0f; return ptr; } return NULL; } /* Connect a port to a data location. */ void connect_port_Sigmoid(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * DataLocation) { Sigmoid * ptr = (Sigmoid *)Instance; switch (Port) { case PREGAIN: ptr->pregain = DataLocation; ptr->pregain_i = db2lin(LIMIT(*DataLocation,-90.0f,20.0f)); break; case POSTGAIN: ptr->postgain = DataLocation; ptr->postgain_i = db2lin(LIMIT(*DataLocation,-90.0f,20.0f)); break; case INPUT: ptr->input = DataLocation; break; case OUTPUT: ptr->output = DataLocation; break; } } void run_Sigmoid(LADSPA_Handle Instance, unsigned long SampleCount) { Sigmoid * ptr = (Sigmoid *)Instance; LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; LADSPA_Data pregain = db2lin(LIMIT(*(ptr->pregain),-90.0f,20.0f)); LADSPA_Data postgain = db2lin(LIMIT(*(ptr->postgain),-90.0f,20.0f)); LADSPA_Data pregain_i = ptr->pregain_i; LADSPA_Data postgain_i = ptr->postgain_i; unsigned long sample_index; unsigned long sample_count = SampleCount; LADSPA_Data in = 0.0f; LADSPA_Data out = 0.0f; if ((pregain_i != pregain) || (postgain_i != postgain)) { for (sample_index = 0; sample_index < sample_count; sample_index++) { pregain_i = pregain_i * INTERP + pregain * (1.0f - INTERP); postgain_i = postgain_i * INTERP + postgain * (1.0f - INTERP); in = *(input++) * pregain_i; out = 2.0f / (1.0f + exp(-5.0*in)) - 1.0f; *(output++) = out * postgain_i; } ptr->pregain_i = pregain_i; ptr->postgain_i = postgain_i; } else { for (sample_index = 0; sample_index < sample_count; sample_index++) { in = *(input++) * pregain_i; out = 2.0f / (1.0f + exp(-5.0*in)) - 1.0f; *(output++) = out * postgain_i; } ptr->pregain_i = pregain_i; ptr->postgain_i = postgain_i; } } void set_run_adding_gain_Sigmoid(LADSPA_Handle Instance, LADSPA_Data gain) { Sigmoid * ptr = (Sigmoid *)Instance; ptr->run_adding_gain = gain; } void run_adding_Sigmoid(LADSPA_Handle Instance, unsigned long SampleCount) { Sigmoid * ptr = (Sigmoid *)Instance; LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; LADSPA_Data pregain = db2lin(LIMIT(*(ptr->pregain),-90.0f,20.0f)); LADSPA_Data postgain = db2lin(LIMIT(*(ptr->postgain),-90.0f,20.0f)); LADSPA_Data pregain_i = ptr->pregain_i; LADSPA_Data postgain_i = ptr->postgain_i; unsigned long sample_index; unsigned long sample_count = SampleCount; LADSPA_Data in = 0.0f; LADSPA_Data out = 0.0f; if ((pregain_i != pregain) || (postgain_i != postgain)) { for (sample_index = 0; sample_index < sample_count; sample_index++) { pregain_i = pregain_i * INTERP + pregain * (1.0f - INTERP); postgain_i = postgain_i * INTERP + postgain * (1.0f - INTERP); in = *(input++) * pregain_i; out = 2.0f / (1.0f + exp(-5.0*in)) - 1.0f; *(output++) = out * postgain_i * ptr->run_adding_gain; } ptr->pregain_i = pregain_i; ptr->postgain_i = postgain_i; } else { for (sample_index = 0; sample_index < sample_count; sample_index++) { in = *(input++) * pregain_i; out = 2.0f / (1.0f + exp(-5.0*in)) - 1.0f; *(output++) = out * postgain_i * ptr->run_adding_gain; } } } /* Throw away a Sigmoid effect instance. */ void cleanup_Sigmoid(LADSPA_Handle Instance) { free(Instance); } LADSPA_Descriptor * mono_descriptor = NULL; /* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first loaded. */ void __attribute__((constructor)) tap_init() { char ** port_names; LADSPA_PortDescriptor * port_descriptors; LADSPA_PortRangeHint * port_range_hints; if ((mono_descriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL) exit(1); mono_descriptor->UniqueID = ID_MONO; mono_descriptor->Label = strdup("tap_sigmoid"); mono_descriptor->Properties = LADSPA_PROPERTY_HARD_RT_CAPABLE; mono_descriptor->Name = strdup("TAP Sigmoid Booster"); mono_descriptor->Maker = strdup("Tom Szilagyi"); mono_descriptor->Copyright = strdup("GPL"); mono_descriptor->PortCount = PORTCOUNT_MONO; if ((port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortDescriptor))) == NULL) exit(1); mono_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_descriptors[PREGAIN] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[POSTGAIN] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[INPUT] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; if ((port_names = (char **)calloc(PORTCOUNT_MONO, sizeof(char *))) == NULL) exit(1); mono_descriptor->PortNames = (const char **)port_names; port_names[PREGAIN] = strdup("Pre Gain [dB]"); port_names[POSTGAIN] = strdup("Post Gain [dB]"); port_names[INPUT] = strdup("Input"); port_names[OUTPUT] = strdup("Output"); if ((port_range_hints = ((LADSPA_PortRangeHint *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortRangeHint)))) == NULL) exit(1); mono_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_range_hints[PREGAIN].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[POSTGAIN].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[PREGAIN].LowerBound = -90.0f; port_range_hints[PREGAIN].UpperBound = 20.0f; port_range_hints[POSTGAIN].LowerBound = -90.0f; port_range_hints[POSTGAIN].UpperBound = 20.0f; port_range_hints[INPUT].HintDescriptor = 0; port_range_hints[OUTPUT].HintDescriptor = 0; mono_descriptor->instantiate = instantiate_Sigmoid; mono_descriptor->connect_port = connect_port_Sigmoid; mono_descriptor->activate = NULL; mono_descriptor->run = run_Sigmoid; mono_descriptor->run_adding = run_adding_Sigmoid; mono_descriptor->set_run_adding_gain = set_run_adding_gain_Sigmoid; mono_descriptor->deactivate = NULL; mono_descriptor->cleanup = cleanup_Sigmoid; } void delete_descriptor(LADSPA_Descriptor * descriptor) { unsigned long index; if (descriptor) { free((char *)descriptor->Label); free((char *)descriptor->Name); free((char *)descriptor->Maker); free((char *)descriptor->Copyright); free((LADSPA_PortDescriptor *)descriptor->PortDescriptors); for (index = 0; index < descriptor->PortCount; index++) free((char *)(descriptor->PortNames[index])); free((char **)descriptor->PortNames); free((LADSPA_PortRangeHint *)descriptor->PortRangeHints); free(descriptor); } } /* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */ void __attribute__((destructor)) tap_fini() { delete_descriptor(mono_descriptor); } /* Return a descriptor of the requested plugin type. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index) { switch (Index) { case 0: return mono_descriptor; default: return NULL; } } tap-plugins-1.0.0/tap_tremolo.c000066400000000000000000000213731320332260600164470ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "tap_utils.h" /* The Unique ID of the plugin: */ #define ID_MONO 2144 /* The port numbers for the plugin: */ #define CONTROL_FREQ 0 #define CONTROL_DEPTH 1 #define CONTROL_GAIN 2 #define INPUT_0 3 #define OUTPUT_0 4 /* Total number of ports */ #define PORTCOUNT_MONO 5 /* cosine table for fast computations */ LADSPA_Data cos_table[1024]; /* The structure used to hold port connection information and state */ typedef struct { LADSPA_Data * Control_Freq; LADSPA_Data * Control_Depth; LADSPA_Data * Control_Gain; LADSPA_Data * InputBuffer_1; LADSPA_Data * OutputBuffer_1; unsigned long SampleRate; LADSPA_Data Phase; LADSPA_Data run_adding_gain; } Tremolo; /* Construct a new plugin instance. */ LADSPA_Handle instantiate_Tremolo(const LADSPA_Descriptor * Descriptor, unsigned long SampleRate) { LADSPA_Handle * ptr; if ((ptr = malloc(sizeof(Tremolo))) != NULL) { ((Tremolo *)ptr)->SampleRate = SampleRate; ((Tremolo *)ptr)->run_adding_gain = 1.0; return ptr; } return NULL; } void activate_Tremolo(LADSPA_Handle Instance) { Tremolo * ptr; ptr = (Tremolo *)Instance; ptr->Phase = 0.0f; } /* Connect a port to a data location. */ void connect_port_Tremolo(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * DataLocation) { Tremolo * ptr; ptr = (Tremolo *)Instance; switch (Port) { case CONTROL_FREQ: ptr->Control_Freq = DataLocation; break; case CONTROL_DEPTH: ptr->Control_Depth = DataLocation; break; case CONTROL_GAIN: ptr->Control_Gain = DataLocation; break; case INPUT_0: ptr->InputBuffer_1 = DataLocation; break; case OUTPUT_0: ptr->OutputBuffer_1 = DataLocation; break; } } void run_Tremolo(LADSPA_Handle Instance, unsigned long SampleCount) { LADSPA_Data * input; LADSPA_Data * output; LADSPA_Data freq; LADSPA_Data depth; LADSPA_Data gain; Tremolo * ptr; unsigned long sample_index; LADSPA_Data phase = 0.0f; ptr = (Tremolo *)Instance; input = ptr->InputBuffer_1; output = ptr->OutputBuffer_1; freq = LIMIT(*(ptr->Control_Freq),0.0f,20.0f); depth = LIMIT(*(ptr->Control_Depth),0.0f,100.0f); gain = db2lin(LIMIT(*(ptr->Control_Gain),-70.0f,20.0f)); for (sample_index = 0; sample_index < SampleCount; sample_index++) { phase = 1024.0f * freq * sample_index / ptr->SampleRate + ptr->Phase; while (phase >= 1024.0f) phase -= 1024.0f; *(output++) = *(input++) * gain * (1 - 0.5*depth/100 + 0.5 * depth/100 * cos_table[(unsigned long) phase]); } ptr->Phase = phase; while (ptr->Phase >= 1024.0f) ptr->Phase -= 1024.0f; } void set_run_adding_gain_Tremolo(LADSPA_Handle Instance, LADSPA_Data gain) { Tremolo * ptr; ptr = (Tremolo *)Instance; ptr->run_adding_gain = gain; } void run_adding_Tremolo(LADSPA_Handle Instance, unsigned long SampleCount) { LADSPA_Data * input; LADSPA_Data * output; LADSPA_Data freq; LADSPA_Data depth; LADSPA_Data gain; Tremolo * ptr; unsigned long sample_index; LADSPA_Data phase = 0.0f; ptr = (Tremolo *)Instance; input = ptr->InputBuffer_1; output = ptr->OutputBuffer_1; freq = LIMIT(*(ptr->Control_Freq),0.0f,20.0f); depth = LIMIT(*(ptr->Control_Depth),0.0f,100.0f); gain = db2lin(LIMIT(*(ptr->Control_Gain),-70.0f,20.0f)); for (sample_index = 0; sample_index < SampleCount; sample_index++) { phase = 1024.0f * freq * sample_index / ptr->SampleRate + ptr->Phase; while (phase >= 1024.0f) phase -= 1024.0f; *(output++) += *(input++) * ptr->run_adding_gain * gain * (1 - 0.5*depth/100 + 0.5 * depth/100 * cos_table[(unsigned long) phase]); } ptr->Phase = phase; while (ptr->Phase >= 1024.0f) ptr->Phase -= 1024.0f; } /* Throw away a Tremolo effect instance. */ void cleanup_Tremolo(LADSPA_Handle Instance) { free(Instance); } LADSPA_Descriptor * mono_descriptor = NULL; /* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first loaded. */ void __attribute__((constructor)) tap_init() { char ** port_names; LADSPA_PortDescriptor * port_descriptors; LADSPA_PortRangeHint * port_range_hints; int i; if ((mono_descriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL) exit(1); for (i = 0; i < 1024; i++) cos_table[i] = cosf(i * M_PI / 512.0f); mono_descriptor->UniqueID = ID_MONO; mono_descriptor->Label = strdup("tap_tremolo"); mono_descriptor->Properties = LADSPA_PROPERTY_HARD_RT_CAPABLE; mono_descriptor->Name = strdup("TAP Tremolo"); mono_descriptor->Maker = strdup("Tom Szilagyi"); mono_descriptor->Copyright = strdup("GPL"); mono_descriptor->PortCount = PORTCOUNT_MONO; if ((port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortDescriptor))) == NULL) exit(1); mono_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_descriptors[CONTROL_FREQ] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[CONTROL_DEPTH] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[CONTROL_GAIN] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[INPUT_0] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT_0] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; if ((port_names = (char **)calloc(PORTCOUNT_MONO, sizeof(char *))) == NULL) exit(1); mono_descriptor->PortNames = (const char **)port_names; port_names[CONTROL_FREQ] = strdup("Frequency [Hz]"); port_names[CONTROL_DEPTH] = strdup("Depth [%]"); port_names[CONTROL_GAIN] = strdup("Gain [dB]"); port_names[INPUT_0] = strdup("Input_0"); port_names[OUTPUT_0] = strdup("Output_0"); if ((port_range_hints = ((LADSPA_PortRangeHint *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortRangeHint)))) == NULL) exit(1); mono_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_range_hints[CONTROL_FREQ].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[CONTROL_DEPTH].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[CONTROL_GAIN].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[CONTROL_FREQ].LowerBound = 0; port_range_hints[CONTROL_FREQ].UpperBound = 20; port_range_hints[CONTROL_DEPTH].LowerBound = 0; port_range_hints[CONTROL_DEPTH].UpperBound = 100; port_range_hints[CONTROL_GAIN].LowerBound = -70; port_range_hints[CONTROL_GAIN].UpperBound = 20; port_range_hints[INPUT_0].HintDescriptor = 0; port_range_hints[OUTPUT_0].HintDescriptor = 0; mono_descriptor->instantiate = instantiate_Tremolo; mono_descriptor->connect_port = connect_port_Tremolo; mono_descriptor->activate = activate_Tremolo; mono_descriptor->run = run_Tremolo; mono_descriptor->run_adding = run_adding_Tremolo; mono_descriptor->set_run_adding_gain = set_run_adding_gain_Tremolo; mono_descriptor->deactivate = NULL; mono_descriptor->cleanup = cleanup_Tremolo; } void delete_descriptor(LADSPA_Descriptor * descriptor) { unsigned long index; if (descriptor) { free((char *)descriptor->Label); free((char *)descriptor->Name); free((char *)descriptor->Maker); free((char *)descriptor->Copyright); free((LADSPA_PortDescriptor *)descriptor->PortDescriptors); for (index = 0; index < descriptor->PortCount; index++) free((char *)(descriptor->PortNames[index])); free((char **)descriptor->PortNames); free((LADSPA_PortRangeHint *)descriptor->PortRangeHints); free(descriptor); } } /* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */ void __attribute__((destructor)) tap_fini() { delete_descriptor(mono_descriptor); } /* Return a descriptor of the requested plugin type. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index) { switch (Index) { case 0: return mono_descriptor; default: return NULL; } } tap-plugins-1.0.0/tap_tubewarmth.c000066400000000000000000000275021320332260600171500ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "tap_utils.h" /* The Unique ID of the plugin: */ #define ID_MONO 2158 /* The port numbers for the plugin: */ #define DRIVE 0 #define BLEND 1 #define INPUT 2 #define OUTPUT 3 /* Total number of ports */ #define PORTCOUNT_MONO 4 /* The structure used to hold port connection information and state */ typedef struct { LADSPA_Data * drive; LADSPA_Data * blend; LADSPA_Data * input; LADSPA_Data * output; LADSPA_Data prev_med; LADSPA_Data prev_out; LADSPA_Data rdrive; LADSPA_Data rbdr; LADSPA_Data kpa; LADSPA_Data kpb; LADSPA_Data kna; LADSPA_Data knb; LADSPA_Data ap; LADSPA_Data an; LADSPA_Data imr; LADSPA_Data kc; LADSPA_Data srct; LADSPA_Data sq; LADSPA_Data pwrq; LADSPA_Data prev_drive; LADSPA_Data prev_blend; unsigned long sample_rate; LADSPA_Data run_adding_gain; } TubeWarmth; /* Construct a new plugin instance. */ LADSPA_Handle instantiate_TubeWarmth(const LADSPA_Descriptor * Descriptor, unsigned long sample_rate) { LADSPA_Handle * ptr; if ((ptr = malloc(sizeof(TubeWarmth))) != NULL) { ((TubeWarmth *)ptr)->sample_rate = sample_rate; ((TubeWarmth *)ptr)->run_adding_gain = 1.0f; ((TubeWarmth *)ptr)->prev_med = 0.0f; ((TubeWarmth *)ptr)->prev_out = 0.0f; ((TubeWarmth *)ptr)->rdrive = 0.0f; ((TubeWarmth *)ptr)->rbdr = 0.0f; ((TubeWarmth *)ptr)->kpa = 0.0f; ((TubeWarmth *)ptr)->kpb = 0.0f; ((TubeWarmth *)ptr)->kna = 0.0f; ((TubeWarmth *)ptr)->knb = 0.0f; ((TubeWarmth *)ptr)->ap = 0.0f; ((TubeWarmth *)ptr)->an = 0.0f; ((TubeWarmth *)ptr)->imr = 0.0f; ((TubeWarmth *)ptr)->kc = 0.0f; ((TubeWarmth *)ptr)->srct = 0.0f; ((TubeWarmth *)ptr)->sq = 0.0f; ((TubeWarmth *)ptr)->pwrq = 0.0f; /* These are out of band to force param recalc upon first run() */ ((TubeWarmth *)ptr)->prev_drive = -1.0f; ((TubeWarmth *)ptr)->prev_blend = -11.0f; return ptr; } return NULL; } /* Connect a port to a data location. */ void connect_port_TubeWarmth(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * DataLocation) { TubeWarmth * ptr = (TubeWarmth *)Instance; switch (Port) { case DRIVE: ptr->drive = DataLocation; break; case BLEND: ptr->blend = DataLocation; break; case INPUT: ptr->input = DataLocation; break; case OUTPUT: ptr->output = DataLocation; break; } } #define EPS 0.000000001f static inline float M(float x) { if ((x > EPS) || (x < -EPS)) return x; else return 0.0f; } static inline float D(float x) { if (x > EPS) return sqrt(x); else if (x < -EPS) return sqrt(-x); else return 0.0f; } void run_TubeWarmth(LADSPA_Handle Instance, unsigned long SampleCount) { TubeWarmth * ptr = (TubeWarmth *)Instance; LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; LADSPA_Data drive = LIMIT(*(ptr->drive),0.1f,10.0f); LADSPA_Data blend = LIMIT(*(ptr->blend),-10.0f,10.0f); unsigned long sample_index; unsigned long sample_count = SampleCount; unsigned long sample_rate = ptr->sample_rate; LADSPA_Data rdrive = ptr->rdrive; LADSPA_Data rbdr = ptr->rbdr; LADSPA_Data kpa = ptr->kpa; LADSPA_Data kpb = ptr->kpb; LADSPA_Data kna = ptr->kna; LADSPA_Data knb = ptr->knb; LADSPA_Data ap = ptr->ap; LADSPA_Data an = ptr->an; LADSPA_Data imr = ptr->imr; LADSPA_Data kc = ptr->kc; LADSPA_Data srct = ptr->srct; LADSPA_Data sq = ptr->sq; LADSPA_Data pwrq = ptr->pwrq; LADSPA_Data prev_med; LADSPA_Data prev_out; LADSPA_Data in; LADSPA_Data med; LADSPA_Data out; if ((ptr->prev_drive != drive) || (ptr->prev_blend != blend)) { rdrive = 12.0f / drive; rbdr = rdrive / (10.5f - blend) * 780.0f / 33.0f; kpa = D(2.0f * (rdrive*rdrive) - 1.0f) + 1.0f; kpb = (2.0f - kpa) / 2.0f; ap = ((rdrive*rdrive) - kpa + 1.0f) / 2.0f; kc = kpa / D(2.0f * D(2.0f * (rdrive*rdrive) - 1.0f) - 2.0f * rdrive*rdrive); srct = (0.1f * sample_rate) / (0.1f * sample_rate + 1.0f); sq = kc*kc + 1.0f; knb = -1.0f * rbdr / D(sq); kna = 2.0f * kc * rbdr / D(sq); an = rbdr*rbdr / sq; imr = 2.0f * knb + D(2.0f * kna + 4.0f * an - 1.0f); pwrq = 2.0f / (imr + 1.0f); ptr->prev_drive = drive; ptr->prev_blend = blend; } for (sample_index = 0; sample_index < sample_count; sample_index++) { in = *(input++); prev_med = ptr->prev_med; prev_out = ptr->prev_out; if (in >= 0.0f) { med = (D(ap + in * (kpa - in)) + kpb) * pwrq; } else { med = (D(an - in * (kna + in)) + knb) * pwrq * -1.0f; } out = srct * (med - prev_med + prev_out); if (out < -1.0f) out = -1.0f; *(output++) = out; ptr->prev_med = M(med); ptr->prev_out = M(out); } ptr->rdrive = rdrive; ptr->rbdr = rbdr; ptr->kpa = kpa; ptr->kpb = kpb; ptr->kna = kna; ptr->knb = knb; ptr->ap = ap; ptr->an = an; ptr->imr = imr; ptr->kc = kc; ptr->srct = srct; ptr->sq = sq; ptr->pwrq = pwrq; } void set_run_adding_gain_TubeWarmth(LADSPA_Handle Instance, LADSPA_Data gain) { TubeWarmth * ptr = (TubeWarmth *)Instance; ptr->run_adding_gain = gain; } void run_adding_TubeWarmth(LADSPA_Handle Instance, unsigned long SampleCount) { TubeWarmth * ptr = (TubeWarmth *)Instance; LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; LADSPA_Data drive = LIMIT(*(ptr->drive),0.1f,10.0f); LADSPA_Data blend = LIMIT(*(ptr->blend),-10.0f,10.0f); unsigned long sample_index; unsigned long sample_count = SampleCount; unsigned long sample_rate = ptr->sample_rate; LADSPA_Data rdrive = ptr->rdrive; LADSPA_Data rbdr = ptr->rbdr; LADSPA_Data kpa = ptr->kpa; LADSPA_Data kpb = ptr->kpb; LADSPA_Data kna = ptr->kna; LADSPA_Data knb = ptr->knb; LADSPA_Data ap = ptr->ap; LADSPA_Data an = ptr->an; LADSPA_Data imr = ptr->imr; LADSPA_Data kc = ptr->kc; LADSPA_Data srct = ptr->srct; LADSPA_Data sq = ptr->sq; LADSPA_Data pwrq = ptr->pwrq; LADSPA_Data prev_med; LADSPA_Data prev_out; LADSPA_Data in; LADSPA_Data med; LADSPA_Data out; if ((ptr->prev_drive != drive) || (ptr->prev_blend != blend)) { rdrive = 12.0f / drive; rbdr = rdrive / (10.5f - blend) * 780.0f / 33.0f; kpa = D(2.0f * (rdrive*rdrive) - 1.0f) + 1.0f; kpb = (2.0f - kpa) / 2.0f; ap = ((rdrive*rdrive) - kpa + 1.0f) / 2.0f; kc = kpa / D(2.0f * D(2.0f * (rdrive*rdrive) - 1.0f) - 2.0f * rdrive*rdrive); srct = (0.1f * sample_rate) / (0.1f * sample_rate + 1.0f); sq = kc*kc + 1.0f; knb = -1.0f * rbdr / D(sq); kna = 2.0f * kc * rbdr / D(sq); an = rbdr*rbdr / sq; imr = 2.0f * knb + D(2.0f * kna + 4.0f * an - 1.0f); pwrq = 2.0f / (imr + 1.0f); ptr->prev_drive = drive; ptr->prev_blend = blend; } for (sample_index = 0; sample_index < sample_count; sample_index++) { in = *(input++); prev_med = ptr->prev_med; prev_out = ptr->prev_out; if (in >= 0.0f) { med = (D(ap + in * (kpa - in)) + kpb) * pwrq; } else { med = (D(an - in * (kna + in)) + knb) * pwrq * -1.0f; } out = srct * (med - prev_med + prev_out); if (out < -1.0f) out = -1.0f; *(output++) += out * ptr->run_adding_gain; ptr->prev_med = M(med); ptr->prev_out = M(out); } ptr->rdrive = rdrive; ptr->rbdr = rbdr; ptr->kpa = kpa; ptr->kpb = kpb; ptr->kna = kna; ptr->knb = knb; ptr->ap = ap; ptr->an = an; ptr->imr = imr; ptr->kc = kc; ptr->srct = srct; ptr->sq = sq; ptr->pwrq = pwrq; } /* Throw away a TubeWarmth effect instance. */ void cleanup_TubeWarmth(LADSPA_Handle Instance) { free(Instance); } LADSPA_Descriptor * mono_descriptor = NULL; /* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first loaded. */ void __attribute__((constructor)) tap_init() { char ** port_names; LADSPA_PortDescriptor * port_descriptors; LADSPA_PortRangeHint * port_range_hints; if ((mono_descriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL) exit(1); mono_descriptor->UniqueID = ID_MONO; mono_descriptor->Label = strdup("tap_tubewarmth"); mono_descriptor->Properties = LADSPA_PROPERTY_HARD_RT_CAPABLE; mono_descriptor->Name = strdup("TAP TubeWarmth"); mono_descriptor->Maker = strdup("Tom Szilagyi"); mono_descriptor->Copyright = strdup("GPL"); mono_descriptor->PortCount = PORTCOUNT_MONO; if ((port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortDescriptor))) == NULL) exit(1); mono_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_descriptors[DRIVE] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[BLEND] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[INPUT] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; if ((port_names = (char **)calloc(PORTCOUNT_MONO, sizeof(char *))) == NULL) exit(1); mono_descriptor->PortNames = (const char **)port_names; port_names[DRIVE] = strdup("Drive"); port_names[BLEND] = strdup("Tape--Tube Blend"); port_names[INPUT] = strdup("Input"); port_names[OUTPUT] = strdup("Output"); if ((port_range_hints = ((LADSPA_PortRangeHint *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortRangeHint)))) == NULL) exit(1); mono_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_range_hints[DRIVE].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_LOW); port_range_hints[BLEND].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MAXIMUM); port_range_hints[DRIVE].LowerBound = 0.1f; port_range_hints[DRIVE].UpperBound = 10.0f; port_range_hints[BLEND].LowerBound = -10.0f; port_range_hints[BLEND].UpperBound = 10.0f; port_range_hints[INPUT].HintDescriptor = 0; port_range_hints[OUTPUT].HintDescriptor = 0; mono_descriptor->instantiate = instantiate_TubeWarmth; mono_descriptor->connect_port = connect_port_TubeWarmth; mono_descriptor->activate = NULL; mono_descriptor->run = run_TubeWarmth; mono_descriptor->run_adding = run_adding_TubeWarmth; mono_descriptor->set_run_adding_gain = set_run_adding_gain_TubeWarmth; mono_descriptor->deactivate = NULL; mono_descriptor->cleanup = cleanup_TubeWarmth; } void delete_descriptor(LADSPA_Descriptor * descriptor) { unsigned long index; if (descriptor) { free((char *)descriptor->Label); free((char *)descriptor->Name); free((char *)descriptor->Maker); free((char *)descriptor->Copyright); free((LADSPA_PortDescriptor *)descriptor->PortDescriptors); for (index = 0; index < descriptor->PortCount; index++) free((char *)(descriptor->PortNames[index])); free((char **)descriptor->PortNames); free((LADSPA_PortRangeHint *)descriptor->PortRangeHints); free(descriptor); } } /* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */ void __attribute__((destructor)) tap_fini() { delete_descriptor(mono_descriptor); } /* Return a descriptor of the requested plugin type. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index) { switch (Index) { case 0: return mono_descriptor; default: return NULL; } } tap-plugins-1.0.0/tap_utils.h000066400000000000000000000145621320332260600161350ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifndef _ISOC99_SOURCE #define _ISOC99_SOURCE #endif #include #ifndef M_PI #define M_PI 3.14159265358979323846264338327 #endif /* push a sample into a ringbuffer and return the sample falling out */ static inline LADSPA_Data push_buffer(LADSPA_Data insample, LADSPA_Data * buffer, unsigned long buflen, unsigned long * pos) { LADSPA_Data outsample; outsample = buffer[*pos]; buffer[(*pos)++] = insample; if (*pos >= buflen) *pos = 0; return outsample; } /* read a value from a ringbuffer. * n == 0 returns the oldest sample from the buffer. * n == buflen-1 returns the sample written to the buffer * at the last push_buffer call. * n must not exceed buflen-1, or your computer will explode. */ static inline LADSPA_Data read_buffer(LADSPA_Data * buffer, unsigned long buflen, unsigned long pos, unsigned long n) { while (n + pos >= buflen) n -= buflen; return buffer[n + pos]; } /* overwrites a value in a ringbuffer, but pos stays the same. * n == 0 overwrites the oldest sample pushed in the buffer. * n == buflen-1 overwrites the sample written to the buffer * at the last push_buffer call. * n must not exceed buflen-1, or your computer... you know. */ static inline void write_buffer(LADSPA_Data insample, LADSPA_Data * buffer, unsigned long buflen, unsigned long pos, unsigned long n) { while (n + pos >= buflen) n -= buflen; buffer[n + pos] = insample; } /* Please note that the majority of the definitions and helper functions below have been derived from the source code of Steve Harris's SWH plugins (particularly from the "biquad.h" file). While I give him credit for his excellent work, I reserve myself to be blamed for any bugs or malfunction. */ #define db2lin(x) ((x) > -90.0f ? powf(10.0f, (x) * 0.05f) : 0.0f) #define ABS(x) (x)>0.0f?(x):-1.0f*(x) #define LN_2_2 0.34657359f #define LIMIT(v,l,u) ((v)<(l)?(l):((v)>(u)?(u):(v))) #define BIQUAD_TYPE float typedef BIQUAD_TYPE bq_t; /* Biquad filter (adapted from lisp code by Eli Brandt, http://www.cs.cmu.edu/~eli/) */ /* The prev. comment has been preserved from Steve Harris's biquad.h */ typedef struct { bq_t a1; bq_t a2; bq_t b0; bq_t b1; bq_t b2; bq_t x1; bq_t x2; bq_t y1; bq_t y2; } biquad; static inline void biquad_init(biquad *f) { f->x1 = 0.0f; f->x2 = 0.0f; f->y1 = 0.0f; f->y2 = 0.0f; } static inline void eq_set_params(biquad *f, bq_t fc, bq_t gain, bq_t bw, bq_t fs) { bq_t w = 2.0f * M_PI * LIMIT(fc, 1.0f, fs/2.0f) / fs; bq_t cw = cosf(w); bq_t sw = sinf(w); bq_t J = pow(10.0f, gain * 0.025f); bq_t g = sw * sinhf(LN_2_2 * LIMIT(bw, 0.0001f, 4.0f) * w / sw); bq_t a0r = 1.0f / (1.0f + (g / J)); f->b0 = (1.0f + (g * J)) * a0r; f->b1 = (-2.0f * cw) * a0r; f->b2 = (1.0f - (g * J)) * a0r; f->a1 = -(f->b1); f->a2 = ((g / J) - 1.0f) * a0r; } static inline void lp_set_params(biquad *f, bq_t fc, bq_t bw, bq_t fs) { bq_t omega = 2.0 * M_PI * fc/fs; bq_t sn = sin(omega); bq_t cs = cos(omega); bq_t alpha = sn * sinh(M_LN2 / 2.0 * bw * omega / sn); const float a0r = 1.0 / (1.0 + alpha); #if 0 b0 = (1 - cs) /2; b1 = 1 - cs; b2 = (1 - cs) /2; a0 = 1 + alpha; a1 = -2 * cs; a2 = 1 - alpha; #endif f->b0 = a0r * (1.0 - cs) * 0.5; f->b1 = a0r * (1.0 - cs); f->b2 = a0r * (1.0 - cs) * 0.5; f->a1 = a0r * (2.0 * cs); f->a2 = a0r * (alpha - 1.0); } static inline void hp_set_params(biquad *f, bq_t fc, bq_t bw, bq_t fs) { bq_t omega = 2.0 * M_PI * fc/fs; bq_t sn = sin(omega); bq_t cs = cos(omega); bq_t alpha = sn * sinh(M_LN2 / 2.0 * bw * omega / sn); const float a0r = 1.0 / (1.0 + alpha); #if 0 b0 = (1 + cs) /2; b1 = -(1 + cs); b2 = (1 + cs) /2; a0 = 1 + alpha; a1 = -2 * cs; a2 = 1 - alpha; #endif f->b0 = a0r * (1.0 + cs) * 0.5; f->b1 = a0r * -(1.0 + cs); f->b2 = a0r * (1.0 + cs) * 0.5; f->a1 = a0r * (2.0 * cs); f->a2 = a0r * (alpha - 1.0); } static inline void ls_set_params(biquad *f, bq_t fc, bq_t gain, bq_t slope, bq_t fs) { bq_t w = 2.0f * M_PI * LIMIT(fc, 1.0, fs/2.0) / fs; bq_t cw = cosf(w); bq_t sw = sinf(w); bq_t A = powf(10.0f, gain * 0.025f); bq_t b = sqrt(((1.0f + A * A) / LIMIT(slope, 0.0001f, 1.0f)) - ((A - 1.0f) * (A - 1.0))); bq_t apc = cw * (A + 1.0f); bq_t amc = cw * (A - 1.0f); bq_t bs = b * sw; bq_t a0r = 1.0f / (A + 1.0f + amc + bs); f->b0 = a0r * A * (A + 1.0f - amc + bs); f->b1 = a0r * 2.0f * A * (A - 1.0f - apc); f->b2 = a0r * A * (A + 1.0f - amc - bs); f->a1 = a0r * 2.0f * (A - 1.0f + apc); f->a2 = a0r * (-A - 1.0f - amc + bs); } static inline void hs_set_params(biquad *f, bq_t fc, bq_t gain, bq_t slope, bq_t fs) { bq_t w = 2.0f * M_PI * LIMIT(fc, 1.0, fs/2.0) / fs; bq_t cw = cosf(w); bq_t sw = sinf(w); bq_t A = powf(10.0f, gain * 0.025f); bq_t b = sqrt(((1.0f + A * A) / LIMIT(slope, 0.0001f, 1.0f)) - ((A - 1.0f) * (A - 1.0f))); bq_t apc = cw * (A + 1.0f); bq_t amc = cw * (A - 1.0f); bq_t bs = b * sw; bq_t a0r = 1.0f / (A + 1.0f - amc + bs); f->b0 = a0r * A * (A + 1.0f + amc + bs); f->b1 = a0r * -2.0f * A * (A - 1.0f + apc); f->b2 = a0r * A * (A + 1.0f + amc - bs); f->a1 = a0r * -2.0f * (A - 1.0f - apc); f->a2 = a0r * (-A - 1.0f + amc + bs); } static inline bq_t biquad_run(biquad *f, bq_t x) { union { bq_t y; uint32_t y_int; } u; u.y = f->b0 * x + f->b1 * f->x1 + f->b2 * f->x2 + f->a1 * f->y1 + f->a2 * f->y2; if ((u.y_int & 0x7f800000) == 0) u.y = 0.0f; f->x2 = f->x1; f->x1 = x; f->y2 = f->y1; f->y1 = u.y; return u.y; } tap-plugins-1.0.0/tap_vibrato.c000066400000000000000000000272671320332260600164440ustar00rootroot00000000000000/* -*- linux-c -*- Copyright (C) 2004 Tom Szilagyi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "tap_utils.h" /* The Unique ID of the plugin: */ #define ID_MONO 2148 /* The port numbers for the plugin: */ #define FREQ 0 #define DEPTH 1 #define DRYLEVEL 2 #define WETLEVEL 3 #define LATENCY 4 #define INPUT 5 #define OUTPUT 6 /* Total number of ports */ #define PORTCOUNT_MONO 7 /* * This has to be bigger than 0.2f * sample_rate / (2*PI) for any sample rate. * At 192 kHz 6238 is needed so this should be enough. */ #define PM_DEPTH 6300 #define PM_FREQ 30.0f #define COS_TABLE_SIZE 1024 LADSPA_Data cos_table[COS_TABLE_SIZE]; /* The structure used to hold port connection information and state */ typedef struct { LADSPA_Data * depth; LADSPA_Data * freq; LADSPA_Data * drylevel; LADSPA_Data * wetlevel; LADSPA_Data * latency; LADSPA_Data * input; LADSPA_Data * output; LADSPA_Data * ringbuffer; unsigned long buflen; unsigned long pos; LADSPA_Data phase; unsigned long sample_rate; LADSPA_Data run_adding_gain; } Vibrato; /* Construct a new plugin instance. */ LADSPA_Handle instantiate_Vibrato(const LADSPA_Descriptor * Descriptor, unsigned long sample_rate) { LADSPA_Handle * ptr; if ((ptr = malloc(sizeof(Vibrato))) != NULL) { ((Vibrato *)ptr)->sample_rate = sample_rate; ((Vibrato *)ptr)->run_adding_gain = 1.0f; if ((((Vibrato *)ptr)->ringbuffer = calloc(2 * PM_DEPTH, sizeof(LADSPA_Data))) == NULL) { free(ptr); return NULL; } ((Vibrato *)ptr)->buflen = ceil(0.2f * sample_rate / M_PI); ((Vibrato *)ptr)->pos = 0; return ptr; } return NULL; } void activate_Vibrato(LADSPA_Handle Instance) { Vibrato * ptr = (Vibrato *)Instance; unsigned long i; for (i = 0; i < 2 * PM_DEPTH; i++) ptr->ringbuffer[i] = 0.0f; ptr->phase = 0.0f; } /* Connect a port to a data location. */ void connect_port_Vibrato(LADSPA_Handle Instance, unsigned long Port, LADSPA_Data * DataLocation) { Vibrato * ptr = (Vibrato *)Instance; switch (Port) { case DEPTH: ptr->depth = DataLocation; break; case FREQ: ptr->freq = DataLocation; break; case DRYLEVEL: ptr->drylevel = DataLocation; break; case WETLEVEL: ptr->wetlevel = DataLocation; break; case LATENCY: ptr->latency = DataLocation; *(ptr->latency) = ptr->buflen / 2; /* IS THIS LEGAL? */ break; case INPUT: ptr->input = DataLocation; break; case OUTPUT: ptr->output = DataLocation; break; } } void run_Vibrato(LADSPA_Handle Instance, unsigned long SampleCount) { Vibrato * ptr = (Vibrato *)Instance; LADSPA_Data freq = LIMIT(*(ptr->freq),0.0f,PM_FREQ); LADSPA_Data depth = LIMIT(LIMIT(*(ptr->depth),0.0f,20.0f) * ptr->sample_rate / 200.0f / M_PI / freq, 0, ptr->buflen / 2); LADSPA_Data drylevel = db2lin(LIMIT(*(ptr->drylevel),-90.0f,20.0f)); LADSPA_Data wetlevel = db2lin(LIMIT(*(ptr->wetlevel),-90.0f,20.0f)); LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; unsigned long sample_index; unsigned long sample_count = SampleCount; LADSPA_Data in = 0.0f; LADSPA_Data phase = 0.0f; LADSPA_Data fpos = 0.0f; LADSPA_Data n = 0.0f; LADSPA_Data rem = 0.0f; LADSPA_Data s_a, s_b; if (freq == 0.0f) depth = 0.0f; for (sample_index = 0; sample_index < sample_count; sample_index++) { in = *(input++); phase = COS_TABLE_SIZE * freq * sample_index / ptr->sample_rate + ptr->phase; while (phase >= COS_TABLE_SIZE) phase -= COS_TABLE_SIZE; push_buffer(in, ptr->ringbuffer, ptr->buflen, &(ptr->pos)); fpos = depth * (1.0f - cos_table[(unsigned long) phase]); n = floorf(fpos); rem = fpos - n; s_a = read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) n); s_b = read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) n + 1); *(output++) = wetlevel * ((1 - rem) * s_a + rem * s_b) + drylevel * read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, ptr->buflen / 2); } ptr->phase += COS_TABLE_SIZE * freq * sample_index / ptr->sample_rate; while (ptr->phase >= COS_TABLE_SIZE) ptr->phase -= COS_TABLE_SIZE; *(ptr->latency) = ptr->buflen / 2; } void set_run_adding_gain_Vibrato(LADSPA_Handle Instance, LADSPA_Data gain) { Vibrato * ptr = (Vibrato *)Instance; ptr->run_adding_gain = gain; } void run_adding_Vibrato(LADSPA_Handle Instance, unsigned long SampleCount) { Vibrato * ptr = (Vibrato *)Instance; LADSPA_Data freq = LIMIT(*(ptr->freq),0.0f,PM_FREQ); LADSPA_Data depth = LIMIT(LIMIT(*(ptr->depth),0.0f,20.0f) * ptr->sample_rate / 200.0f / M_PI / freq, 0, ptr->buflen / 2); LADSPA_Data drylevel = db2lin(LIMIT(*(ptr->drylevel),-90.0f,20.0f)); LADSPA_Data wetlevel = db2lin(LIMIT(*(ptr->wetlevel),-90.0f,20.0f)); LADSPA_Data * input = ptr->input; LADSPA_Data * output = ptr->output; unsigned long sample_index; unsigned long sample_count = SampleCount; LADSPA_Data in = 0.0f; LADSPA_Data phase = 0.0f; LADSPA_Data fpos = 0.0f; LADSPA_Data n = 0.0f; LADSPA_Data rem = 0.0f; LADSPA_Data s_a, s_b; if (freq == 0.0f) depth = 0.0f; for (sample_index = 0; sample_index < sample_count; sample_index++) { in = *(input++); phase = COS_TABLE_SIZE * freq * sample_index / ptr->sample_rate + ptr->phase; while (phase >= COS_TABLE_SIZE) phase -= COS_TABLE_SIZE; push_buffer(in, ptr->ringbuffer, ptr->buflen, &(ptr->pos)); fpos = depth * (1.0f - cos_table[(unsigned long) phase]); n = floorf(fpos); rem = fpos - n; s_a = read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) n); s_b = read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, (unsigned long) n + 1); *(output++) += ptr->run_adding_gain * wetlevel * ((1 - rem) * s_a + rem * s_b) + drylevel * read_buffer(ptr->ringbuffer, ptr->buflen, ptr->pos, ptr->buflen / 2); } ptr->phase += COS_TABLE_SIZE * freq * sample_index / ptr->sample_rate; while (ptr->phase >= COS_TABLE_SIZE) ptr->phase -= COS_TABLE_SIZE; *(ptr->latency) = ptr->buflen / 2; } /* Throw away a Vibrato effect instance. */ void cleanup_Vibrato(LADSPA_Handle Instance) { Vibrato * ptr = (Vibrato *)Instance; free(ptr->ringbuffer); free(Instance); } LADSPA_Descriptor * mono_descriptor = NULL; /* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first loaded. */ void __attribute__((constructor)) tap_init() { int i; char ** port_names; LADSPA_PortDescriptor * port_descriptors; LADSPA_PortRangeHint * port_range_hints; if ((mono_descriptor = (LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL) exit(1); for (i = 0; i < COS_TABLE_SIZE; i++) cos_table[i] = cosf(i * 2.0f * M_PI / COS_TABLE_SIZE); mono_descriptor->UniqueID = ID_MONO; mono_descriptor->Label = strdup("tap_vibrato"); mono_descriptor->Properties = LADSPA_PROPERTY_HARD_RT_CAPABLE; mono_descriptor->Name = strdup("TAP Vibrato"); mono_descriptor->Maker = strdup("Tom Szilagyi"); mono_descriptor->Copyright = strdup("GPL"); mono_descriptor->PortCount = PORTCOUNT_MONO; if ((port_descriptors = (LADSPA_PortDescriptor *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortDescriptor))) == NULL) exit(1); mono_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors; port_descriptors[DEPTH] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[FREQ] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[DRYLEVEL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[WETLEVEL] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL; port_descriptors[LATENCY] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL; port_descriptors[INPUT] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO; port_descriptors[OUTPUT] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO; if ((port_names = (char **)calloc(PORTCOUNT_MONO, sizeof(char *))) == NULL) exit(1); mono_descriptor->PortNames = (const char **)port_names; port_names[FREQ] = strdup("Frequency [Hz]"); port_names[DEPTH] = strdup("Depth [%]"); port_names[DRYLEVEL] = strdup("Dry Level [dB]"); port_names[WETLEVEL] = strdup("Wet Level [dB]"); port_names[LATENCY] = strdup("latency"); port_names[INPUT] = strdup("Input"); port_names[OUTPUT] = strdup("Output"); if ((port_range_hints = ((LADSPA_PortRangeHint *)calloc(PORTCOUNT_MONO, sizeof(LADSPA_PortRangeHint)))) == NULL) exit(1); mono_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints; port_range_hints[DEPTH].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[FREQ].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[DRYLEVEL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MINIMUM); port_range_hints[WETLEVEL].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_0); port_range_hints[LATENCY].HintDescriptor = (LADSPA_HINT_BOUNDED_BELOW | LADSPA_HINT_BOUNDED_ABOVE | LADSPA_HINT_DEFAULT_MAXIMUM); port_range_hints[DEPTH].LowerBound = 0; port_range_hints[DEPTH].UpperBound = 20.0f; port_range_hints[FREQ].LowerBound = 0; port_range_hints[FREQ].UpperBound = PM_FREQ; port_range_hints[DRYLEVEL].LowerBound = -90.0f; port_range_hints[DRYLEVEL].UpperBound = +20.0f; port_range_hints[WETLEVEL].LowerBound = -90.0f; port_range_hints[WETLEVEL].UpperBound = +20.0f; port_range_hints[LATENCY].LowerBound = 0; port_range_hints[LATENCY].UpperBound = PM_DEPTH; port_range_hints[INPUT].HintDescriptor = 0; port_range_hints[OUTPUT].HintDescriptor = 0; mono_descriptor->instantiate = instantiate_Vibrato; mono_descriptor->connect_port = connect_port_Vibrato; mono_descriptor->activate = activate_Vibrato; mono_descriptor->run = run_Vibrato; mono_descriptor->run_adding = run_adding_Vibrato; mono_descriptor->set_run_adding_gain = set_run_adding_gain_Vibrato; mono_descriptor->deactivate = NULL; mono_descriptor->cleanup = cleanup_Vibrato; } void delete_descriptor(LADSPA_Descriptor * descriptor) { unsigned long index; if (descriptor) { free((char *)descriptor->Label); free((char *)descriptor->Name); free((char *)descriptor->Maker); free((char *)descriptor->Copyright); free((LADSPA_PortDescriptor *)descriptor->PortDescriptors); for (index = 0; index < descriptor->PortCount; index++) free((char *)(descriptor->PortNames[index])); free((char **)descriptor->PortNames); free((LADSPA_PortRangeHint *)descriptor->PortRangeHints); free(descriptor); } } /* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */ void __attribute__((destructor)) tap_fini() { delete_descriptor(mono_descriptor); } /* Return a descriptor of the requested plugin type. */ const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index) { switch (Index) { case 0: return mono_descriptor; default: return NULL; } }