lme4/0000755000176200001440000000000015113602772011117 5ustar liggesuserslme4/tests/0000755000176200001440000000000015113144725012260 5ustar liggesuserslme4/tests/glmmWeights.R0000644000176200001440000000741615022107260014672 0ustar liggesusersif (.Platform$OS.type != "windows") { library(lme4) library(testthat) source(system.file("testdata/lme-tst-funs.R", package="lme4", mustWork=TRUE)) ##-> gSim(), a general simulation function ... ## hand-coded Pearson residuals {for sumFun() } mypresid <- function(x) { mu <- fitted(x) (getME(x,"y") - mu) * sqrt(weights(x)) / sqrt(x@resp$family$variance(mu)) } ## should be equal (up to numerical error) to weights(.,type="working") workingWeights <- function(mod) mod@resp$weights*(mod@resp$muEta()^2)/mod@resp$variance() ##' Sum of weighted residuals, 4 ways; the last three are identical sumFun <- function(m) { wrss1 <- m@devcomp$cmp["wrss"] wrss2 <- sum(residuals(m,type="pearson")^2) wrss3 <- sum(m@resp$wtres^2) ## compare to hand-fitted Pearson resids ... wrss4 <- sum(mypresid(m)^2) c(wrss1,wrss2,wrss3,wrss4) } ## The relative "error"/differences of the weights w[] entries rel.diff <- function(w) abs(1 - w[-1]/w[1]) set.seed(101) ## GAMMA g0 <- glmer(y~x+(1|block),data=gSim(),family=Gamma) expect_true(all(rel.diff(sumFun(g0)) < 1e-13)) expect_equal(weights(g0, type = "working"), workingWeights(g0), tolerance = 1e-4) ## FIXME: why is such a high tolerance required? ## BERNOULLI g1 <- glmer(y~x+(1|block),data=gSim(family=binomial(),nbinom=1), family=binomial) expect_true(all(rel.diff(sumFun(g1)) < 1e-13)) expect_equal(weights(g1, type = "working"), workingWeights(g1), tolerance = 1e-5) ## FIXME: why is such a high tolerance required? ## POISSON (n <- nrow(d.P <- gSim(family=poisson()))) g2 <- glmer(y ~ x + (1|block), data = d.P, family=poisson) g2W <- glmer(y ~ x + (1|block), data = d.P, family=poisson, weights = rep(2,n)) expect_true(all(rel.diff(sumFun(g2 )) < 1e-13)) expect_true(all(rel.diff(sumFun(g2W)) < 1e-13)) ## correct expect_equal(weights(g2, type = "working"), workingWeights(g2), tolerance = 1e-5) ## FIXME: why is such a high tolerance required? expect_equal(weights(g2W, type = "working"), workingWeights(g2W), tolerance = 1e-5) ## FIXME: why is such a high tolerance required? ## non-Bernoulli BINOMIAL g3 <- glmer(y ~ x + (1|block), data= gSim(family=binomial(), nbinom=10), family=binomial) expect_true(all(rel.diff(sumFun(g3)) < 1e-13)) expect_equal(weights(g3, type = "working"), workingWeights(g3), tolerance = 1e-4) ## FIXME: why is such a high tolerance required? d.b.2 <- gSim(nperblk = 2, family=binomial()) g.b.2 <- glmer(y ~ x + (1|block), data=d.b.2, family=binomial) expect_true(all(rel.diff(sumFun(g.b.2 )) < 1e-13)) ## Many blocks of only 2 observations each - (but nicely balanced) ## Want this "as" https://github.com/lme4/lme4/issues/47 ## (but it "FAILS" survival already): ## ## n2 = n/2 : n2 <- 2048 if(FALSE) n2 <- 100 # for building/testing set.seed(47) dB2 <- gSim(n2, nperblk = 2, x= rep(0:1, each= n2), family=binomial()) ## -- -- --- -------- gB2 <- glmer(y ~ x + (1|block), data=dB2, family=binomial) expect_true(all(rel.diff(sumFun(gB2)) < 1e-13)) ## NB: Finite sample bias of \hat\sigma_1 and \hat\beta_1 ("Intercept") ## tend to zero only slowly for n2 -> Inf, e.g., for ## n2 = 2048, b1 ~= 4.3 (instead of 4); s1 ~= 1.3 (instead of 1) ## FAILS ----- ## library(survival) ## (gSurv.B2 <- clogit(y ~ x + strata(block), data=dB2)) ## ## --> Error in Surv(rep(1, 200L), y) : Time and status are different lengths ## summary(gSurv.B2) ## (SE.surf <- sqrt(diag(vcov(gSurv.B2)))) g3 <- glmer(y ~ x + (1|block),data=gSim(family=binomial(),nbinom=10), family=binomial) expect_equal(var(sumFun(g3)),0) ## check dispersion parameter ## (lowered tolerance to pass checks on my machine -- SCW) expect_equal(sigma(g0)^2, 0.4888248, tolerance=1e-4) } ## skip on windows (for speed) lme4/tests/dynload.R0000644000176200001440000000367114677066752014065 0ustar liggesusers## this is the simpler version of the code for testing/exercising ## https://github.com/lme4/lme4/issues/35 ## see also ../misc/issues/dynload.R for more complexity pkg <- so_name <- "lme4"; doUnload <- FALSE; doTest <- TRUE ## pkg <- so_name <- "RcppEigen"; doUnload <- TRUE; doTest <- TRUE ## need to deal with the fact that DLL name != package name for lme4.0 ... ### pkg <- "lme4.0"; so_name <- "lme4"; doUnload <- TRUE instPkgs <- as.data.frame(installed.packages(),stringsAsFactors=FALSE) Load <- function() { library(pkg,character.only=TRUE) } Unload <- function() { ld <- library.dynam() pnames <- sapply(ld,"[[","name") names(ld) <- pnames lp <- gsub("/libs/.*$","",ld[[so_name]][["path"]]) cat("unloading from",lp,"\n") library.dynam.unload(so_name, lp) } Detach <- function() { detach(paste0("package:",pkg),character.only=TRUE,unload=TRUE) if (doUnload) Unload() } tmpf <- function() { g <- getLoadedDLLs() lnames <- names(g)[is.na(instPkgs[names(g),"Priority"])] cat("loaded DLLs:",lnames,"\n") g <- g[na.omit(match(c(so_name,"nlme"),names(g)))] class(g) <- "DLLInfoList" g } test <- function() { if (doTest) { if (pkg %in% c("lme4","lme4.0")) { fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy, devFunOnly=TRUE) } if (pkg=="RcppEigen") { data(trees, package="datasets") mm <- cbind(1, log(trees$Girth)) # model matrix y <- log(trees$Volume) # response ## bare-bones direct interface flm <- fastLmPure(mm, y) } } } if (FALSE) { ## FIXME: disabled test for now for (i in 1:6) { cat("Attempt #",i,"\n",sep="") cat("loading",pkg,"\n") Load() tmpf() test() cat("detaching",pkg,"\n") Detach() cat("loading nlme\n") library("nlme") tmpf() detach("package:nlme",unload=TRUE) cat("detaching nlme\n") } } lme4/tests/nbinom.R0000644000176200001440000001513115103163201013653 0ustar liggesusersif (.Platform$OS.type != "windows") { library(lme4) cat("lme4 testing level: ", testLevel <- lme4:::testLevel(), "\n") getNBdisp <- function(x) getME(x,"glmer.nb.theta") ## for now, use hidden functions [MM: this is a sign, we should *export* them] refitNB <- lme4:::refitNB simfun <- function(sd.u=1, NBtheta=0.5, nblock = 25, fform = ~x, beta = c(1,2), nrep = 40, seed) { levelset <- c(LETTERS,letters) stopifnot(2 <= nblock, nblock <= length(levelset)) if (!missing(seed)) set.seed(seed) ntot <- nblock*nrep d1 <- data.frame(x = runif(ntot), f = factor(rep(levelset[1:nblock], each=nrep))) u_f <- rnorm(nblock, sd=sd.u) X <- model.matrix(fform, data=d1) transform(d1, z = rnbinom(ntot, mu = exp(X %*% beta + u_f[f]), size = NBtheta)) } ##' simplified logLik() so we can compare with "glmmADMB" (and other) results logLik.m <- function(x) { L <- logLik(x) attributes(L) <- attributes(L)[c("class","df","nobs")] L } if (testLevel > 1) withAutoprint({ set.seed(102) d.1 <- simfun() t1 <- system.time(g1 <- glmer.nb(z ~ x + (1|f), data=d.1, verbose=TRUE)) g1 d1 <- getNBdisp(g1) (g1B <- refitNB(g1, theta = d1)) (ddev <- deviance(g1) - deviance(g1B)) (reld <- (fixef(g1) - fixef(g1B)) / fixef(g1)) stopifnot(abs(ddev) < 1e-6, # was 6.18e-7, 1.045e-6, -6.367e-5, now 0 abs(reld) < 1e-6)# 0, then 4.63e-6, now 0 ## 2 Aug 2015: ddev==reld==0 on 32-bit Ubuntu 12.04 if(FALSE) { ## comment out to avoid R CMD check warning : ## library(glmmADMB) t2 <- system.time(g2 <- glmmadmb(z~x+(1|f), data = d.1, family="nbinom")) ## matrix not pos definite in sparse choleski t2 # 17.1 sec elapsed glmmADMB_vals <- list(fixef= fixef(g2), LL = logLik(g2), theta= g2$alpha) } else { glmmADMB_vals <- list(fixef = c("(Intercept)" = 0.928710, x = 2.05072), LL = structure(-2944.62, class = "logLik", df = 4, nobs = 1000L), theta = 0.4487) } stopifnot(exprs = { all.equal( d1, glmmADMB_vals$ theta, tolerance=0.003) # 0.0015907 all.equal(fixef(g1B), glmmADMB_vals$ fixef, tolerance=0.02)# was 0.009387 ! ## Ubuntu 12.04/32-bit: 0.0094 all.equal(logLik.m(g1B), glmmADMB_vals$ LL, tolerance=1e-4)# 1.681e-5; Ubuntu 12.04/32-b: 1.61e-5 }) })## end if( testLevel > 1 ) if(FALSE) { ## simulation study -------------------- ## library(glmmADMB) ## avoid R CMD check warning simsumfun <- function(...) { d <- simfun(...) t1 <- system.time(g1 <- glmer.nb(z~x+(1|f),data=d)) t2 <- system.time(g2 <- glmmadmb(z~x+(1|f), data=d,family="nbinom")) c(t.glmer=unname(t1["elapsed"]),nevals.glmer=g1$nevals, theta.glmer=exp(g1$minimum), t.glmmadmb=unname(t2["elapsed"]),theta.glmmadmb=g2$alpha) } ## library(plyr) ## sim50 <- raply(50,simsumfun(),.progress="text") save("sim50",file="nbinomsim1.RData") ## library(reshape) ## m1 <- melt(data.frame(run=seq(nrow(sim50)),sim50),id.var="run") ## m1 <- data.frame(m1,colsplit(m1$variable,"\\.",c("v","method"))) ## m2 <- cast(subset(m1,v=="theta",select=c(run,value,method)), ## run~method) library(ggplot2) ggplot(subset(m1,v=="theta"),aes(x=method,y=value))+ geom_boxplot()+geom_point()+geom_hline(yintercept=0.5,colour="red") ggplot(subset(m1,v=="theta"),aes(x=method,y=value))+ stat_summary(fun.data=mean_cl_normal)+ geom_hline(yintercept=0.5,colour="red") ggplot(m2,aes(x=glmer-glmmadmb))+geom_histogram() ## glmer is slightly more biased (but maybe the MLE itself is biased???) }## end{simulation study}------------------------- ### epilepsy example: data(epil, package="MASS") epil2 <- transform(epil, Visit = (period-2.5)/5, Base = log(base/4), Age = log(age), subject= factor(subject)) if(FALSE) { ## comment out to avoid R CMD check warning : ## library(glmmADMB) t3 <- system.time(g3 <- glmmadmb(y~Base*trt+Age+Visit+(Visit|subject), data=epil2, family="nbinom")) # t3 : 8.67 sec glmmADMB_epil_vals <- list(fixef= fixef(g3), LL = logLik(g3), theta= g3$alpha) } else { glmmADMB_epil_vals <- list(fixef = c("(Intercept)"= -1.33, "Base"=0.8839167, "trtprogabide"= -0.9299658, "Age"= 0.4751434, "Visit"=-0.2701603, "Base:trtprogabide"=0.3372421), LL = structure(-624.551, class = "logLik", df = 9, nobs = 236L), theta = 7.4702) } if (testLevel > 2) withAutoprint({ ## "too slow" for regular testing -- 49 (MM@lynne: 33, then 26, then 14) seconds: (t4 <- system.time(g4 <- glmer.nb(y ~ Base*trt + Age + Visit + (Visit|subject), data = epil2, verbose=TRUE))) ## 1.1-7 : Warning in checkConv().. failed .. with max|grad| = 0.0089 (tol = 0.001, comp. 4) ## 1.1-21: 2 Warnings: max|grad| = 0.00859, then 0.1176 (0.002, comp. 1) stopifnot(exprs = { all.equal(getNBdisp(g4), glmmADMB_epil_vals$ theta, tolerance= 0.03) # 0.0019777 all.equal(fixef (g4), glmmADMB_epil_vals$ fixef, tolerance= 0.04) # 0.003731 (0.00374 on U 12.04) ## FIXME: even df differ (10 vs 9) ! ## all.equal(logLik.m(g4), - glmmADMB_epil_vals$ LL, tolerance= 0.0) ## was 0.0002 all.equal(logLik.m(g4), # for now {this is not *the* truth, just our current approximation of it}: structure(-624.48418, class = "logLik", df = 10, nobs = 236L), ## tolerance loosened 24-03-2025, failed at 1.7e-4 tolerance = 5e-4) }) }) cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons'' } ## skip on windows (for speed) lme4/tests/README0000644000176200001440000000125514677066752013164 0ustar liggesusersCatalog of currently-failing examples (commented out, testsx, etc.): glmmExt.R: "fail for MM" on Gaussian/inverse examples -- seems fine for me lmer-0.R: sstudy9 example. Should *not* work; is a meaningful error message possible? prLogistic.R: Thailand/clustered-data example from ?prLogisticDelta example in prLogistic package Presumably the problem is that 100/411 random-effect levels have only zeros -- but should this mess things up? glmmML and lme4.0 give nearly identical answers profile.R: fails on CBPP profiling from testsx: testcolonizer: definite case where complete separation occurs, GLM does not really give a fit testcrabs: ?? not sure ?? lme4/tests/testcolonizer.R0000644000176200001440000000140315022107260015275 0ustar liggesusers## library(lme4.0) ## Emacs M- --> setwd() correctly ## m0.0 <- glm(colonizers~Treatment*homespecies*respspecies, data=randdat, family=poisson) ## with(randdat,tapply(colonizers,list(Treatment,homespecies,respspecies),sum)) ## summary(m1.0 <- glmer(form1, data=randdat, family=poisson)) ## summary(m2.0 <- glmer(form2, data=randdat, family=poisson)) ## detach("package:lme4.0", unload=TRUE) load(system.file("testdata","colonizer_rand.rda",package="lme4")) library("lme4") packageVersion("lme4") if (.Platform$OS.type != "windows") { m1 <- glmer(form1,data=randdat, family=poisson) ## PIRLS step failed m2 <- glmer(form1,data=randdat, family=poisson, nAGQ=0) ## OK m3 <- glmer(form2,data=randdat, family=poisson) ## ditto } ## skip on windows (for speed) lme4/tests/testcrab.R0000644000176200001440000001056215022107260014206 0ustar liggesuserslibrary("lme4") L <- load(system.file("testdata","crabs_randdata2.Rda",package="lme4")) ## randdata0: simulated data, in form suitable for plotting ## randdata: simulated data, in form suitable for analysis ## fr ## alive/dead formula ## fr2 ## proportion alive formula (use with weights=initial.snail.density) ## FIXME: there are still bigger differences than I'd like between the approaches ## (mostly in the random-effects correlation). It's not clear who's right; ## lme4 thinks its parameters are better, but ?? Could be explored further. if (FALSE) { ## library(ggplot2) ## commented to avoid triggering Suggests: requirement library(grid) zmargin <- theme(panel.margin=unit(0,"lines")) theme_set(theme_bw()) g1 <- ggplot(randdata0,aes(x=snail.size,y=surv,colour=snail.size,fill=snail.size))+ geom_hline(yintercept=1,colour="black")+ stat_sum(aes(size=factor(..n..)),alpha=0.6)+ facet_grid(.~ttt)+zmargin+ geom_boxplot(fill=NA,outlier.colour=NULL,outlier.shape=3)+ ## set outliers to same colour as points ## (hard to see which are outliers, but it doesn't really matter in this case) scale_size_discrete("# obs",range=c(2,5)) } if (.Platform$OS.type != "windows") { t1 <- system.time(glmer1 <- glmer(fr2,weights=initial.snail.density, family ="binomial", data=randdata)) t1B <- system.time(glmer1B <- glmer(fr,family ="binomial", data=randdata)) res1 <- c(fixef(glmer1),c(VarCorr(glmer1)$plot)) res1B <- c(fixef(glmer1B),c(VarCorr(glmer1B)$plot)) p1 <- unlist(getME(glmer1,c("theta","beta"))) stopifnot(all.equal(res1,res1B)) dfun <- update(glmer1,devFunOnly=TRUE) stopifnot(all.equal(dfun(p1),c(-2*logLik(glmer1)))) ## ## library(lme4.0) ## version 0.999999.2 results ## t1_lme4.0 <- system.time(glmer1X <- ## glmer(fr2,weights=initial.snail.density, ## family ="binomial", data=randdata)) ## dput(c(fixef(glmer1X),c(VarCorr(glmer1X)$plot))) ## p1X <- c(getME(glmer1X,"theta"),getME(glmer1X,"beta")) p1X <- c(0.681301656652347, -1.14775239687404, 0.436143018123226, 2.77730476938968, 0.609023583738824, -1.60055813739844, 2.0324468778545, 0.624173873057839, -1.7908793509579, -2.44540201631615, -1.42365990002708, -2.26780929006268, 0.700928084600075, -1.26220238391029, 0.369024582097804, 3.44325347343035, 2.26400391093108) stopifnot(all.equal(unname(p1),p1X,tolerance=0.03)) dfun(p1X) dfun(p1) ## ~ 1.8 seconds elapsed time lme4.0_res <- structure(c(2.77730476938968, 0.609023583738824, -1.60055813739844, 2.0324468778545, 0.624173873057839, -1.7908793509579, -2.44540201631615, -1.42365990002708, -2.26780929006268, 0.700928084600075, -1.26220238391029, 0.369024582097804, 3.44325347343035, 2.26400391093108, 0.464171947357232, -0.532754465140956, -0.532754465140956, 0.801690946568518), .Names = c("(Intercept)", "crab.speciesS", "crab.speciesW", "crab.sizeS", "crab.sizeM", "snail.sizeS", "crab.speciesS:crab.sizeS", "crab.speciesS:crab.sizeM", "crab.speciesS:snail.sizeS", "crab.speciesW:snail.sizeS", "crab.sizeS:snail.sizeS", "crab.sizeM:snail.sizeS", "crab.speciesS:crab.sizeS:snail.sizeS", "crab.speciesS:crab.sizeM:snail.sizeS", "", "", "", "")) stopifnot(all.equal(res1,lme4.0_res,tolerance=0.015)) ## library("glmmADMB") ## prop/weights formulation: ~ 7 seconds ## t1_glmmadmb <- system.time(glmer1B <- glmmadmb(fr,family ="binomial", ## corStruct="full",data=randdata)) ## dput(c(fixef(glmer1B),c(VarCorr(glmer1B)$plot))) glmmADMB_res <- structure(c(2.7773101267224, 0.609026276823218, -1.60055704634712, 2.03244174458562, 0.624171008585953, -1.79088398816641, -2.44540300134182, -1.42366043619683, -2.26780858382505, 0.700927141726545, -1.26219964572264, 0.369029052442189, 3.44326297908383, 2.26403738918967, 0.46417, -0.53253, -0.53253, 0.80169), .Names = c("(Intercept)", "crab.speciesS", "crab.speciesW", "crab.sizeS", "crab.sizeM", "snail.sizeS", "crab.speciesS:crab.sizeS", "crab.speciesS:crab.sizeM", "crab.speciesS:snail.sizeS", "crab.speciesW:snail.sizeS", "crab.sizeS:snail.sizeS", "crab.sizeM:snail.sizeS", "crab.speciesS:crab.sizeS:snail.sizeS", "crab.speciesS:crab.sizeM:snail.sizeS", "", "", "", "")) stopifnot(all.equal(res1B,glmmADMB_res,tolerance=0.015)) } ## skip on windows (for speed) lme4/tests/drop.R0000644000176200001440000000127115022107260013340 0ustar liggesusersif (.Platform$OS.type != "windows") withAutoprint({ library(lme4) fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) ## slightly weird model but plausible --- not that ## one would want to try drop1() on this model ... fm2 <- lmer(Reaction ~ 1+ (Days|Subject), sleepstudy) drop1(fm2) ## empty update(fm1, . ~ . - Days) anova(fm2) ## empty terms(fm1) terms(fm1,fixed.only=FALSE) extractAIC(fm1) drop1(fm1) drop1(fm1, test="Chisq") gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), family = binomial, data = cbpp, nAGQ=25L) drop1(gm1, test="Chisq") }) ## skip on windows (for speed) lme4/tests/vcov-etc.R0000644000176200001440000001063715022107260014130 0ustar liggesusersstopifnot(require(lme4)) (testLevel <- lme4:::testLevel()) source(system.file("testdata", "lme-tst-funs.R", package="lme4", mustWork=TRUE))# -> unn() ## "MEMSS" is just 'Suggest' -- must still work, when it's missing: if (suppressWarnings(!require(MEMSS, quietly=TRUE)) || (data(ergoStool, package="MEMSS") != "ergoStool")) { cat("'ergoStool' data from package 'MEMSS' is not available --> skipping test\n") } else { fm1 <- lmer (effort ~ Type + (1|Subject), data = ergoStool) ##sp no longer supported since ~ 2012-3: ##sp fm1.s <- lmer (effort ~ Type + (1|Subject), data = ergoStool, sparseX=TRUE) ## was segfaulting with sparseX (a while upto 2010-04-06) fe1 <- fixef(fm1) ##sp fe1.s <- fixef(fm1.s) print(s1.d <- summary(fm1)) ##sp print(s1.s <- summary(fm1.s)) Tse1.d <- c(0.57601226, rep(0.51868384, 3)) stopifnot(exprs = { ##sp all.equal(fe1, fe1.s, tolerance= 1e-12) all.equal(Tse1.d, unname(se1.d <- coef(s1.d)[,"Std. Error"]), tolerance = 1e-6) # std.err.: no too much accuracy is(V.d <- vcov(fm1), "symmetricMatrix") ##sp all.equal(se1.d, coef(s1.s)[,"Std. Error"])#, tol = 1e-10 ##sp all.equal( V.d, vcov(fm1.s))#, tol = 1e-9 all.equal(Matrix::diag(V.d), unn(se1.d)^2, tolerance= 1e-12) }) }## if( ergoStool is available from pkg MEMSS ) ### -------------------------- a "large" example ------------------------- str(InstEval) if (FALSE) { # sparse X is not currently implemented, so forget about this: system.time(## works with 'sparseX'; d has 1128 levels fm7 <- lmer(y ~ d + service + studage + lectage + (1|s), data = InstEval, sparseX=TRUE, verbose=1L, REML=FALSE) ) system.time(sfm7 <- summary(fm7)) fm7 # takes a while as it computes summary() again ! range(t.fm7 <- coef(sfm7)[,"t value"])## -10.94173 10.61535 for REML, -11.03438 10.70103 for ML m.t.7 <- mean(abs(t.fm7), trim = .01) #stopifnot(all.equal(m.t.7, 1.55326395545110, tolerance = 1.e-9)) ##REML value stopifnot(all.equal(m.t.7, 1.56642013605506, tolerance = 1.e-6)) ## ML hist.t <- cut(t.fm7, floor(min(t.fm7)) : ceiling(max(t.fm7))) cbind(table(hist.t)) }# fixed effect 'd' -- with 'sparseX' only -------------------------------- if(testLevel <= 1) { cat('Time elapsed: ', proc.time(),'\n'); q("no") } ## ELSE : (testLevel > 1) : library(lattice) source(system.file("testdata/lme-tst-funs.R", package="lme4", mustWork=TRUE)) ##--> all.equal(), isOptimized(), ... system.time( fm8.N <- lmer(y ~ service * dept + studage + lectage + (1|s) + (1|d), InstEval, REML=FALSE, control=lmerControl("Nelder_Mead"), verbose = 1L) ) ## 14 sec [MM@lynne; 2022-11] ## 62 sec [MM@lynne; 2013-11] ## 59.5 sec [nb-mm3; 2013-12-31] system.time( fm8.B <- lmer(y ~ service * dept + studage + lectage + (1|s) + (1|d), InstEval, REML=FALSE, control=lmerControl("bobyqa"), verbose = 2L) ) ## 7.8 sec [MM@lynne; 2022-11] ## 34.1 sec [nb-mm3; 2013-12-31] system.time( fm8 <- lmer(y ~ service * dept + studage + lectage + (1|s) + (1|d), InstEval, REML=FALSE, verbose = 1L) ) ## 7.8 sec [MM@lynne; 2022-11] stopifnot(isOptimized(fm8.N), isOptimized(fm8.B), isOptimized(fm8)) all.equal(fm8.B, fm8, tolerance=0)# 9.78e-9 (2022-11); both versions of bobyqa all.equal(fm8.B, fm8.N, tolerance=0) ## "Mean relative difference: 3.31 e-06" [nb-mm3; 2013-12-31] stopifnot(isOptimized(fm8.N), isOptimized(fm8.B), isOptimized(fm8)) str(baseOpti(fm8)) str(baseOpti(fm8.N)) str(baseOpti(fm8.B)) (sm8 <- summary(fm8.B)) str(r8 <- ranef(fm8.B)) noquote(sapply(r8, summary)) r.m8 <- cov2cor(vcov(sm8)) Matrix::image(r.m8, main="cor()") if(testLevel <= 2) { cat('Time elapsed: ', proc.time(),'\n'); q("no") } ## ELSE: testLevel > 2 ## Clearly smaller X, but more RE pars ## ==> currently considerably slower than the above system.time( fm9 <- lmer(y ~ studage + lectage + (1|s) + (1|d) + (1|dept:service) + (1|dept), InstEval, verbose = 1L, REML=FALSE) ) ## 25.6 secs [MM@lynne; 2022-11] ## 410 secs [MM@lynne; 2013-11] fm9 (sm9 <- summary(fm9)) rr <- ranef(fm9, condVar = TRUE) ## ~ 6 secs noquote(sapply(rr, summary)) qqr <- qqmath(rr, strip=FALSE) ## NB: x-axis range <==> scale of RE <==> "importance" of effect qqr$d qqr$s dotplot(rr,strip=FALSE)$`dept:service` cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons'' lme4/tests/prLogistic.R0000644000176200001440000000220514677066752014542 0ustar liggesusers## data set and formula extracted from ?prLogisticDelta example ## (Thailand, clustered-data) in prLogistic package load(system.file("testdata","prLogistic.RData",package="lme4")) library(lme4) (testLevel <- lme4:::testLevel()) if (testLevel > 2) { print(system.time( lme4_est <- glmer(rgi ~ sex + pped + (1|schoolid), data = dataset, family=binomial) )) lme4_results <- list(sigma= sqrt(unname(unlist(VarCorr(lme4_est)))), beta = fixef(lme4_est)) ## stored results from other pkgs glmmML_est <- list(sigma = 1.25365353546143, beta = c("(Intercept)" = -2.19478801858317, "sex" = 0.548884468743364, "pped"= -0.623835613907385)) lme4.0_est <- list(sigma = 1.25369539060849, beta = c("(Intercept)" = -2.19474529099587, "sex" = 0.548900267825802, "pped"= -0.623934772981894)) source(system.file("test-tools-1.R", package = "Matrix"))#-> assert.EQ() etc assert.EQ.(lme4_results, glmmML_est, tol=3e-3) assert.EQ.(lme4_results, lme4.0_est, tol=3e-3) print(lme4_est) } lme4/tests/hatvalues.R0000644000176200001440000000246615022107260014377 0ustar liggesusersif (.Platform$OS.type != "windows") withAutoprint({ library(lme4) source(system.file("testdata", "lme-tst-funs.R", package="lme4", mustWork=TRUE))# -> unn() m <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy) bruteForceHat <- function(object) { with(getME(object, c("Lambdat", "Lambda", "Zt", "Z", "q", "X")), { ## cp:= the cross product block matrix in (17) and (18): W <- Diagonal(x = weights(object)) I <- Diagonal(q) A.21 <- t(X) %*% W %*% Z %*% Lambda cp <- rbind(cbind(Lambdat %*% Zt %*% W %*% Z %*% Lambda + I, t(A.21)), cbind(A.21, t(X) %*% W %*% X)) mm <- cbind(Z %*% Lambda, X) ## a bit efficient: both cp and mm are typically quite sparse ## mm %*% solve(as.matrix(cp)) %*% t(mm) mm %*% solve(cp, t(mm), sparse=FALSE) }) } str(H <- bruteForceHat(m)) set.seed(7) ii <- sample(nrow(sleepstudy), 500, replace=TRUE) m2 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy[ii, ]) stopifnot(all.equal(diag(H), unn(hatvalues(m)), tol= 1e-14), all.equal(diag(bruteForceHat(m2)), unn(hatvalues(m2)), tol= 1e-14) ) }) ## skip on windows (for speed) lme4/tests/glmerWarn.R0000644000176200001440000000450515022107260014335 0ustar liggesusersif (.Platform$OS.type != "windows") { library(lme4) library(testthat) ## [glmer(*, gaussian) warns to rather use lmer()] m3 <- suppressWarnings(glmer(Reaction ~ Days + (Days|Subject), sleepstudy)) m4 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) m5 <- suppressWarnings(glmer(Reaction ~ Days + (Days|Subject), sleepstudy, family=gaussian)) expect_equal(fixef(m3),fixef(m5)) ## hack call -- comes out unimportantly different m4@call[[1]] <- quote(lme4::lmer) expect_equal(m3,m4) expect_equal(m3,m5) ## would like m3==m5 != m4 ?? expect_equal(VarCorr(m4), VarCorr(m5), tolerance = 1e-14) print(th4 <- getME(m4,"theta")) expect_equal(th4, getME(m5,"theta"), tolerance = 1e-14) ## glmer() - poly() + interaction if (requireNamespace("mlmRev")) withAutoprint({ data(Contraception, package="mlmRev") ## ch := with child Contraception <- within(Contraception, ch <- livch != "0") ## gmC1 <- glmer(use ~ poly(age,2) + ch + age:ch + urban + (1|district), ## Contraception, binomial) ### not a 'warning' per se {cannot suppressWarnings(.)}: ### fixed-effect model matrix is rank deficient so dropping 1 column / coefficient ### also printed with print(): labeled as "fit warnings" ## ==> from ../R/modular.R chkRank.drop.cols() ## --> Use control = glmerControl(check.rankX = "ignore+drop.cols")) ## because further investigation shows "the problem" is really already ## in model.matrix(): set.seed(101) dd <- data.frame(ch = c("Y","N")[1+rbinom(12, 1, 0.7)], age = rlnorm(12, 16)) colnames(mm1 <- model.matrix( ~ poly(age,2) + ch + age:ch, dd)) ## "(Int.)" "poly(age, 2)1" "poly(age, 2)2" "chY" "chN:age" "chY:age" ## If we make the poly() columns to regular variables, can interact: d2 <- within(dd, { p2 <- poly(age,2); ageL <- p2[,1]; ageQ <- p2[,2]; rm(p2)}) ## then, we can easily get what want (mm2 <- model.matrix( ~ ageL+ageQ + ch + ageL:ch, d2)) ## actually even more compactly now ("drawback": 'ageQ' at end): (mm2. <- model.matrix( ~ ageL*ch + ageQ, d2)) cn2 <- colnames(mm2) stopifnot(identical(mm2[,cn2], mm2.[,cn2])) }) } ## skip on windows (for speed) lme4/tests/optimizer.R0000644000176200001440000000500415022107260014414 0ustar liggesuserslibrary(lme4) source(system.file("test-tools-1.R", package = "Matrix"), keep.source = FALSE) ## N.B. is.all.equal4() and assert.EQ() use 'tol', not 'tolerance' ## should be able to run any example with any bounds-constrained optimizer ... ## Nelder_Mead, bobyqa built in; optimx/nlminb, optimx/L-BFGS-B ## optimx/Rcgmin will require a bit more wrapping/interface work (requires gradient) if (.Platform$OS.type != "windows") { fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) ## Nelder_Mead fm1B <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy, control=lmerControl(optimizer="bobyqa")) stopifnot(all.equal(fixef(fm1),fixef(fm1B))) require(optimx) lmerCtrl.optx <- function(method, ...) lmerControl(optimizer="optimx", ..., optCtrl=list(method=method)) glmerCtrl.optx <- function(method, ...) glmerControl(optimizer="optimx", ..., optCtrl=list(method=method)) (testLevel <- lme4:::testLevel()) ## FAILS on Windows (on r-forge only, not win-builder)... 'function is infeasible at initial parameters' ## (can we test whether we are on r-forge??) if (.Platform$OS.type != "windows") { fm1C <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy, control=lmerCtrl.optx(method="nlminb")) fm1D <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy, control=lmerCtrl.optx(method="L-BFGS-B")) stopifnot(is.all.equal4(fixef(fm1),fixef(fm1B),fixef(fm1C),fixef(fm1D))) fm1E <- update(fm1,control=lmerCtrl.optx(method=c("nlminb","L-BFGS-B"))) ## hack equivalence of call and optinfo fm1E@call <- fm1C@call fm1E@optinfo <- fm1C@optinfo assert.EQ(fm1C,fm1E, tol=1e-5, giveRE=TRUE)# prints unless tolerance=0--equality } gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial, control=glmerControl(tolPwrss=1e-13)) gm1B <- update(gm1, control=glmerControl (tolPwrss=1e-13, optimizer="bobyqa")) gm1C <- update(gm1, control=glmerCtrl.optx(tolPwrss=1e-13, method="nlminb")) gm1D <- update(gm1, control=glmerCtrl.optx(tolPwrss=1e-13, method="L-BFGS-B")) stopifnot(is.all.equal4(fixef(gm1),fixef(gm1B),fixef(gm1C),fixef(gm1D), tol=1e-5)) if (testLevel > 1) { gm1E <- update(gm1, control= glmerCtrl.optx(tolPwrss=1e-13, method=c("nlminb","L-BFGS-B"))) ## hack equivalence of call and optinfo gm1E@call <- gm1C@call gm1E@optinfo <- gm1C@optinfo assert.EQ(gm1E,gm1C, tol=1e-5, giveRE=TRUE)# prints unless tol=0--equality } } ## skip on windows (for speed) lme4/tests/varcorr.R0000644000176200001440000000113615022107260014052 0ustar liggesuserslibrary(lme4) if (.Platform$OS.type != "windows") { data(Orthodont, package="nlme") fm1 <- lmer(distance ~ age + (age|Subject), data = Orthodont) VarCorr(fm1) fm2ML <- lmer(diameter ~ 1 + (1|plate) + (1|sample), Penicillin, REML=0) VarCorr(fm2ML) gm1 <- glmer(cbind(incidence,size-incidence) ~ period + (1|herd),data=cbpp, family=binomial) VarCorr(gm1) cbpp$obs <- factor(seq(nrow(cbpp))) gm2 <- update(gm1,.~.+(1|obs)) VarCorr(gm2) if (FALSE) { ## testing lme4/lme4 incompatibility ## library(lme4) VarCorr(fm1) lme4:::VarCorr.merMod(fm1) ## OK } } ## skip on windows (for speed) lme4/tests/confint.R0000644000176200001440000000320115022107260014027 0ustar liggesusersif (lme4:::testLevel() > 1 || .Platform$OS.type != "windows") withAutoprint({ library("lme4") library("testthat") L <- load(system.file("testdata", "lme-tst-fits.rda", package="lme4", mustWork=TRUE)) ## -> "fit_*" objects fm1 <- fit_sleepstudy_2 c0 <- confint(fm1, method="Wald") c0B <- confint(fm1, method="Wald",parm="Days") expect_equal(c0["Days",],c0B["Days",]) expect_equal(c(c0B),c(7.437592,13.496980),tolerance=1e-6) set.seed(101) for (bt in c("norm", "basic", "perc")) { suppressWarnings( confint(fm1, method="boot", boot.type=bt, nsim=10,quiet=TRUE)) } for (bt in c("stud","bca","junk")) { expect_error(confint(fm1, method="boot", boot.type=bt, nsim=10), "should be one of") } if((testLevel <- lme4:::testLevel()) > 1) { pr1.56 <- profile(fm1, which = 5:6) c1 <- confint(pr1.56, method="profile") expect_equal(c0[5:6,],c1,tolerance=2e-3) ## expect Wald and profile _reasonably_ close print(c1,digits=3) ## c6 <- confint(pr1.56, "Days") expect_equal(c1[2, , drop=FALSE], c6) c2 <- confint(fm1,method="boot",nsim=50,parm=5:6) ## expect_error(confint(fm1,method="boot",nsim=50,parm="Days"), ## "must be specified as an integer") expect_equal(c1,c2,tolerance=2e-2) print(c2,digits=3) } if (testLevel > 10) { print(c1B <- confint(fm1, method="profile")) print(c2B <- confint(fm1, method="boot")) expect_equal(unname(c1B), unname(c2B), tolerance=2e-2) } }) ## skip if windows/testLevel<1 lme4/tests/refit.R0000644000176200001440000001546015022107260013512 0ustar liggesusers#### Testing refit() #### ---------------- library(lme4) set.seed(101) testLevel <- if (nzchar(s <- Sys.getenv("LME4_TEST_LEVEL"))) as.numeric(s) else 1 ## for each type of model, should be able to ## (1) refit with same data and get the same answer, ## at least structurally (small numerical differences ## are probably unavoidable) ## (2) refit with simulate()d data if (testLevel>1) { getinfo <- function(x) { c(fixef(x), logLik(x), unlist(ranef(x)), unlist(VarCorr(x))) } dropterms <- function(x) { attr(x@frame,"terms") <- NULL x } if (getRversion() >= "3.0.0") { attach(system.file("testdata", "lme-tst-fits.rda", package="lme4")) } else { ## saved fits are not safe with old R versions; just re-compute ("cheat"!): fit_sleepstudy_2 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) cbpp$obs <- factor(seq(nrow(cbpp))) ## intercept-only fixed effect fit_cbpp_0 <- glmer(cbind(incidence, size-incidence) ~ 1 + (1|herd), cbpp, family=binomial) ## include fixed effect of period fit_cbpp_1 <- update(fit_cbpp_0, . ~ . + period) if(FALSE) ## include observation-level RE fit_cbpp_2 <- update(fit_cbpp_1, . ~ . + (1|obs)) ## specify formula by proportion/weights instead fit_cbpp_3 <- update(fit_cbpp_1, incidence/size ~ period + (1 | herd), weights = size) } ## LMM fm1 <- fit_sleepstudy_2 fm1R <- refit(fm1, sleepstudy$Reaction) fm1S <- refit(fm1, simulate(fm1)[[1]]) stopifnot(all.equal(getinfo(fm1 ), getinfo(fm1R), tolerance = 6e-3), all.equal(getinfo(fm1 ), getinfo(fm1S), tolerance = 0.5) # <- simulate() ) if(FALSE) { ## show all differences sapply(slotNames(fm1), function(.) all.equal( slot(fm1,.), slot(fm1R,.), tolerance=0)) } if (getRversion() >= "3.4.0") { ## differences: FALSE for resp, theta, u, devcomp, pp, optinfo? ## FIXME: this isn't actually tested in any way ... sapply(slotNames(fm1), function(.) isTRUE(all.equal( slot(fm1,.), slot(fm1R,.), tolerance= 1.5e-5))) str(fm1 @ optinfo) str(fm1R@ optinfo) } fm1ML <- refitML(fm1) stopifnot( all.equal(getinfo(fm1), getinfo(fm1ML), tolerance=0.05)# 0.029998 ) ## binomial GLMM (two-column) gm1 <- fit_cbpp_1 gm1R <- refit(gm1, with(cbpp, cbind(incidence,size-incidence))) sim1Z <- simulate(gm1)[[1]] sim1Z[4,] <- c(0,0) (gm1. <- refit(gm1, sim1Z)) # earlier gave Error: ... PIRLS ... failed ... all.equal(getinfo(gm1), getinfo(gm1R), tolerance=0) # to see it --> 5.52e-4 # because glmer() uses Laplace approx. (? -- still, have *same* y !) stopifnot(all.equal(getinfo(gm1), getinfo(gm1R), tolerance = 1e-4)) gm1S <- refit(gm1, simulate(gm1)[[1]]) all.equal(getinfo(gm1), getinfo(gm1S), tolerance=0) # to see: stopifnot(all.equal(getinfo(gm1), getinfo(gm1S), tolerance = 0.4)) ## binomial GLMM (prob/weights) formula(gm2 <- fit_cbpp_3) ## glmer(incidence/size ~ period + (1 | herd), cbpp, binomial, weights=size) gm2R <- refit(gm2, with(cbpp, incidence/size)) all.equal(getinfo(gm2), getinfo(gm2R), tolerance= 0) stopifnot(all.equal(getinfo(gm2), getinfo(gm2R), tolerance= 6e-4)) ## FIXME: check on Windows == 2015-06: be brave gm2S <- refit(gm2, simulate(gm2)[[1]]) all.equal(getinfo(gm2), getinfo(gm2S), tolerance=0)# 0.17 .. upto 0.28 stopifnot(all.equal(getinfo(gm2), getinfo(gm2S), tolerance=0.40)) ## from Alexandra Kuznetsova set.seed(101) Y <- matrix(rnorm(1000),ncol=2) d <- data.frame(y1=Y[,1], x=rnorm(100), f=rep(1:10,10)) fit1 <- lmer(y1 ~ x+(1|f),data=d) fit2 <- refit(fit1, newresp = Y[,2], rename.response=TRUE) ## check, but ignore terms attribute of model frame ... tools::assertWarning(refit(fit1, newresp = Y[,2], junk=TRUE)) if (isTRUE(all.equal(fit1,fit2))) stop("fit1 and fit2 should not be equal") ## hack number of function evaluations u2 <- update(fit2) fit2@optinfo$feval <- u2@optinfo$feval <- NA d1 <- dropterms(fit2) d2 <- dropterms( u2 ) ## They are not "all equal", but mostly : for (i in slotNames(d1)) { ae <- all.equal(slot(d1,i), slot(d2,i)) cat(sprintf("%10s: %s\n", i, if(isTRUE(ae)) "all.equal" else paste(ae, collapse="\n "))) } all.equal(getinfo(d1), getinfo(d2), tolerance = 0)# -> 0.00126 stopifnot(all.equal(getinfo(d1), getinfo(d2), tolerance = 0.005)) ## Bernoulli GLMM (specified as factor) if (requireNamespace("mlmRev")) { data(Contraception, package="mlmRev") gm3 <- glmer(use ~ urban + age + livch + (1|district), Contraception, binomial) gm3R <- refit(gm3, Contraception$use) gm3S <- refit(gm3, simulate(gm3)[[1]]) stopifnot(all.equal(getinfo(gm3 ), getinfo(gm3R), tolerance = 1e-5),# 64b_Lx: 7.99e-7 all.equal(getinfo(gm3 ), getinfo(gm3S), tolerance = 0.05) # <- simulated data ) cat("gm3: glmer(..):\n" ); print(getinfo(gm3)) cat("gm3R: refit(*, y):\n" ); print(getinfo(gm3R)) cat("gm3S: refit(*, sim.()):\n"); print(getinfo(gm3S)) data(Mmmec, package="mlmRev") if (lme4:::testLevel() > 1) { gm4 <- glmer(deaths ~ uvb + (1|region), data=Mmmec, family = poisson, offset = log(expected)) ## FIXME: Fails to converge (with larger maxit: "downdate .. not pos.def..") try( gm4R <- refit(gm4, Mmmec $ deaths) ) try( gm4S <- refit(gm4, simulate(gm4)[[1]]) ) if(FALSE) { ## FIXME (above) cat("gm4R: refit(*,y):\n" ); print( getinfo(gm4R) ) cat("gm4S: refit(*,y):\n" ); print( getinfo(gm4S) ) stopifnot(all.equal(getinfo(gm4),getinfo(gm4R),tolerance=6e-5)) } } } ## ---------------------------------------------------------------------- ## issue: #231, http://ms.mcmaster.ca/~bolker/misc/boot_reset.html ## commits: 1a34cd0, e33d698, 53ce966, 7dbfff1, 73aa1bb, a693ba9, 8dc8cf0 ## ---------------------------------------------------------------------- formGrouse <- TICKS ~ YEAR + scale(HEIGHT) + (1 | BROOD) + (1 | INDEX) + (1 | LOCATION) gmGrouse <- glmer(formGrouse, family = "poisson", data = grouseticks) set.seed(105) simTICKS <- simulate(gmGrouse)[[1]] newdata <- transform(grouseticks, TICKS = simTICKS) gmGrouseUpdate <- update(gmGrouse, data = newdata) gmGrouseRefit <- refit(gmGrouse, newresp = simTICKS) ## compute and print tolerances all.equal(bet.U <- fixef(gmGrouseUpdate), bet.R <- fixef(gmGrouseRefit), tolerance = 0) all.equal(th.U <- getME(gmGrouseUpdate, "theta"), th.R <- getME(gmGrouseRefit, "theta"), tolerance = 0) all.equal(dev.U <- deviance(gmGrouseUpdate), dev.R <- deviance(gmGrouseRefit), tolerance = 0) stopifnot( all.equal(bet.U, bet.R, tolerance = 6e-5), # saw 1.0e-5 all.equal( th.U, th.R, tolerance = 4e-5), # saw 1.2e-5 all.equal(dev.U, dev.R, tolerance = 2e-5)) # saw 4.6e-6 } ## testLevel>1 lme4/tests/nlmer.R0000644000176200001440000000473215022107260013516 0ustar liggesuserslibrary(lme4) allEQ <- function(x,y, tolerance = 4e-4, ...) all.equal.numeric(x,y, tolerance=tolerance, ...) (nm1 <- nlmer(circumference ~ SSlogis(age, Asym, xmid, scal) ~ (Asym|Tree), Orange, start = c(Asym = 200, xmid = 725, scal = 350))) fixef(nm1) if (lme4:::testLevel() > 2) { ## 'Theoph' Data modeling Th.start <- c(lKe = -2.5, lKa = 0.5, lCl = -3) system.time(nm2 <- nlmer(conc ~ SSfol(Dose, Time,lKe, lKa, lCl) ~ (lKe+lKa+lCl|Subject), Theoph, start = Th.start, control=nlmerControl(tolPwrss=1e-8))) print(nm2, corr=FALSE) system.time(nm3 <- nlmer(conc ~ SSfol(Dose, Time,lKe, lKa, lCl) ~ (lKe|Subject) + (lKa|Subject) + (lCl|Subject), Theoph, start = Th.start)) print(nm3, corr=FALSE) ## dropping lKe from random effects: system.time(nm4 <- nlmer(conc ~ SSfol(Dose, Time,lKe, lKa, lCl) ~ (lKa+lCl|Subject), Theoph, start = Th.start, control=nlmerControl(tolPwrss=1e-8))) print(nm4, corr=FALSE) system.time(nm5 <- nlmer(conc ~ SSfol(Dose, Time,lKe, lKa, lCl) ~ (lKa|Subject) + (lCl|Subject), Theoph, start = Th.start, control=nlmerControl(tolPwrss=1e-8))) print(nm5, corr=FALSE) ## this has not worked in a *long* time anyway, and PKPDmodels is currently archived, so ... ## if (require("PKPDmodels")) { ## oral1cptSdlkalVlCl <- ## PKmod("oral", "sd", list(ka ~ exp(lka), Cl ~ exp(lCl), V ~ exp(lV))) ## if (FALSE) { ## ## FIXME: Error in get(nm, envir = nlenv) : object 'k' not found ## ## probably with environments/call stack etc.? ## ## 'pnames' is c("lV","lka","k") -- not ("lV","lka","lCl") ## ## nlmer -> nlformula -> MkRespMod ## ## pnames are OK in nlformula, but in MkRespMod we try to recover ## ## them from the column names of the gradient attribute of the ## ## model evaluated in nlenv -- which are wrong. ## system.time(nm2a <- nlmer(conc ~ oral1cptSdlkalVlCl(Dose, Time, lV, lka, lCl) ~ ## (lV+lka+lCl|Subject), ## Theoph, start = c(lV=-1, lka=-0.5, lCl=-3), tolPwrss=1e-8)) ## print(nm2a, corr=FALSE) ## } ## } } ## testLevel > 2 lme4/tests/respiratory.R0000644000176200001440000000150615022107260014760 0ustar liggesusers## Data originally from Davis 1991 Stat. Med., as packaged in geepack ## and transformed (center, id -> factor, idctr created, levels labeled) library(lme4) if (.Platform$OS.type != "windows") { load(system.file("testdata","respiratory.RData",package="lme4")) m_glmer_4.L <- glmer(outcome~center+treat+sex+age+baseline+(1|idctr), family=binomial,data=respiratory) m_glmer_4.GHQ5 <- glmer(outcome~center+treat+sex+age+baseline+(1|idctr), family=binomial,data=respiratory,nAGQ=5) m_glmer_4.GHQ8 <- glmer(outcome~center+treat+sex+age+baseline+(1|idctr), family=binomial,data=respiratory,nAGQ=8) m_glmer_4.GHQ16 <- glmer(outcome~center+treat+sex+age+baseline+(1|idctr), family=binomial,data=respiratory,nAGQ=16) } ## skip on windows (for speed) lme4/tests/polytomous.R0000644000176200001440000000247115022107260014631 0ustar liggesuserslibrary(lme4) ## setup ## library(polytomous) ## data(think) ## think.polytomous.lmer1 <- polytomous(Lexeme ~ Agent + Patient + (1|Register), ## data=think, heuristic="poisson.reformulation") ## save("formula.poisson","data.poisson",file="polytomous_test.RData") load(system.file("testdata","polytomous_test.RData",package="lme4")) if (FALSE) { ## infinite loop glmer(formula.poisson,data=data.poisson,family=poisson,verbose=10) ## Cholmod not positive definite -> infinite loop glmer(formula.poisson,data=data.poisson,family=poisson, verbose=10,control=glmerControl(optimizer="bobyqa")) ## caught warning: maxfun < 10 * length(par)^2 is not recommended. -> infinite loop } ## works but sloooow .... if (FALSE) { try(g1 <- glmer(formula.poisson,data=data.poisson,family=poisson, control=glmerControl(compDev=FALSE),verbose=1)) ## runs for 2880 steps until: ## Error in pp$updateDecomp() : Downdated VtV is not positive definite } (testLevel <- lme4:::testLevel()) if (testLevel > 2) { glmer(formula.poisson,data=data.poisson,family=poisson, control=glmerControl(compDev=FALSE,optimizer="bobyqa")) ## caught warning: maxfun < 10 * length(par)^2 is not recommended. ## but runs to completion } lme4/tests/lmList-tst.R0000644000176200001440000000500315022107260014445 0ustar liggesuserslibrary(lme4) options(nwarnings = 1000) if(getRversion() < "3.2.0") { if(interactive()) break # gives an error else q() # <- undesirable when interactive ! } ## Try all "standard" (statistical) S3 methods: .S3generics <- function(class) { s3m <- .S3methods(class=class) ii <- attr(s3m, "info") ii[!ii[, "isS4"], "generic"] } set.seed(12) d <- data.frame( g = sample(c("A","B","C","D","E"), 250, replace=TRUE), y1 = runif(250, max=100), y2 = sample(c(0,1), 250, replace=TRUE) ) fm3.1 <- lmList(y1 ~ 1 | g, data=d) fm3.2 <- lmList(y2 ~ 1 | g, data=d, family=binomial) data(Orthodont, package="nlme") Orthodont <- as.data.frame(Orthodont) # no "groupedData" fm2 <- lmList(distance ~ age | Subject, Orthodont) s3fn <- .S3generics(class= class(fm3.1)[1]) ## works for "old and new" class noquote(s3fn <- s3fn[s3fn != "print"])# <-- it is show() not print() that works ## [1] coef confint fitted fixef formula logLik pairs plot ## [9] predict qqnorm ranef residuals sigma summary update ## In lme4 1.1-7 (July 2014), only these worked: ## coef(), confint(), formula(), logLik(), summary(), update() ## pairs() is excluded for fm3.1 which has only intercept: ## no errors otherwise: evs <- sapply(s3fn[s3fn != "pairs"], do.call, args = list(fm3.1)) cls <- sapply(evs, function(.) class(.)[1]) clsOk <- cls[c("confint", "fixef", "formula", "logLik", "ranef", "sigma", "summary", "update")] stopifnot(identical(unname(clsOk), c("lmList4.confint", "numeric", "formula", "logLik", "ranef.lmList", "numeric", "summary.lmList", "lmList4"))) ## --- fm2 --- non-trivial X: can use pairs(), too: evs2 <- sapply(s3fn, do.call, args = list(fm2)) ## --- fm3.2 --- no failures for this "glmList" : ss <- function(...) suppressMessages(suppressWarnings(...)) ss(evs3.2 <- sapply(s3fn[s3fn != "pairs"], do.call, args = list(fm3.2))) ## --- fm4 --- evs4 <- sapply(s3fn, function(fn) tryCatch(do.call(fn, list(fm4)), error=function(e) e)) length(warnings()) summary(warnings()) ## 4 kinds; glm.fit: fitted probabilities numerically 0 or 1 occurred str(sapply(evs4, class)) # more errors than above isok4 <- !sapply(evs4, is, class2="error") ## includes a nice pairs(): evs4[isok4] ## Error msgs of those with errors, first 5, now 3, then 2 : str(errs4 <- lapply(evs4[!isok4], conditionMessage)) ## $ logLik : chr "log-likelihood not available with NULL fits" ## $ summary: chr "subscript out of bounds" stopifnot(length(errs4) <= 2) lme4/tests/simulate.R0000644000176200001440000001451415022107260014223 0ustar liggesuserslibrary(lme4) library(testthat) (testLevel <- lme4:::testLevel()) L <- load(system.file("testdata/lme-tst-fits.rda", package="lme4", mustWork=TRUE)) if (testLevel>1) { if (getRversion() > "3.0.0") { ## saved fits are not safe with old R versions fm1 <- fit_sleepstudy_1 s1 <- simulate(fm1,seed=101)[[1]] s2 <- simulate(fm1,seed=101,use.u=TRUE) s3 <- simulate(fm1,seed=101,nsim=10) s4 <- simulate(fm1,seed=101,use.u=TRUE,nsim=10) stopifnot(length(s3)==10,all(sapply(s3,length)==180), length(s4)==10,all(sapply(s4,length)==180)) # test hook for cluster random effects fakerand <- function(n) seq(from=1.0, by=0.4, length.out=n) # In fact there are 10 observations/subject for each, but more robustly ns <- tabulate(model.frame(fm1)$Subject) s5 <- simulate(fm1, nsim=1, seed=12345, cluster.rand=fakerand) su <- as.data.frame(VarCorr(fm1))[1, "sdcor"] # sd if cluster effects y1 <- predict(fm1, re.form = ~0, se.fit=FALSE) # fixed effect y2 <- su*rep(fakerand(length(ns)), times = ns) # cluster effect, per individual set.seed(12345) y3 <- sigma(fm1)*rnorm(length(y1)) # individual error terms y <- y1+y2+y3 # testthat::expect_equal automatically incorporates the tolerance *if* # it is in 3rd edition mode. Currently, this package does not use that mode. stopifnot(all(abs(s5-y)< testthat_tolerance())) ## binomial (2-column and prob/weights) gm1 <- fit_cbpp_1 gm2 <- fit_cbpp_3 gm1_s1 <- simulate(gm1,seed=101)[[1]] gm1_s2 <- simulate(gm2,seed=101)[[1]] stopifnot(all.equal(gm1_s1[,1]/rowSums(gm1_s1),gm1_s2)) gm1_s3 <- simulate(gm1,seed=101,use.u=TRUE) gm1_s4 <- simulate(gm1,seed=101,nsim=10) gm1_s5 <- simulate(gm2,seed=101,nsim=10) stopifnot(length(gm1_s4)==10,all(sapply(gm1_s4,ncol)==2),all(sapply(gm1_s4,nrow)==56)) stopifnot(length(gm1_s5)==10,all(sapply(gm1_s5,length)==56)) ## binomial (factor): Kubovy bug report 1 Aug 2013 d <- data.frame(y=factor(rep(letters[1:2],each=100)), f=factor(rep(1:10,10))) g1 <- glmer(y~(1|f),data=d,family=binomial) s6 <- simulate(g1,nsim=10) stopifnot(length(s6)==10,all(sapply(s6,length)==200)) ## test explicitly stated link function gm3 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial(link="logit")) s4 <- simulate(gm3,seed=101)[[1]] stopifnot(all.equal(gm1_s1,s4)) cbpp$obs <- factor(seq(nrow(cbpp))) gm4 <- fit_cbpp_2 ## glmer(cbind(incidence, size - incidence) ~ period + ## (1 | herd) + (1|obs), data = cbpp, family = binomial) s5 <- simulate(gm4,seed=101)[[1]] s6 <- simulate(gm4,seed=101,use.u=TRUE)[[1]] ## Bernoulli ## works, but too slow if (testLevel > 2) { if(require("mlmRev")) { data(guImmun, package="mlmRev") table(guImmun$immun) ## N Y ## 1195 964 g1i <- glmer(immun ~ kid2p+mom25p+ord+ethn+momEd+husEd+momWork+rural+pcInd81+ (1|comm/mom), family="binomial", data=guImmun) ## In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : ## Model failed to converge with max|grad| = 0.326795 (tol = 0.002, component 1) sg1 <- simulate(g1i) if(FALSE) { ## similar: not relevant here {comment out for 'R CMD check'}: ## if(require("glmmTMB")) { g2 <- glmmTMB(immun ~ kid2p+mom25p+ord+ethn+momEd+husEd+momWork+rural+pcInd81+ (1|comm/mom), family="binomial", data=guImmun) sg2 <- simulate(g2) ## } } } } set.seed(101) d <- data.frame(f = factor(rep(LETTERS[1:10],each=10))) d$x <- runif(nrow(d)) u <- rnorm(10) d$eta <- with(d, 1 + 2*x + u[f]) d$y <- rbinom(nrow(d), size=1, prob = plogis(d$eta)) g1 <- glmer(y ~ x + (1|f), data=d, family="binomial") ## tolPwrss=1e-5: no longer necessary if (testLevel > 2) { ## trying a set of glmerControl(tolPwrss = 10^t) : allcoef <- function(x) c(dev = deviance(x), th = getME(x,"theta"), beta = getME(x,"beta")) tfun <- function(t) { gg <- try( ## << errors (too small tolPwrss) are still printed : glmer(y~x+(1|f),data=d,family="binomial", control = glmerControl(tolPwrss = 10^t))) if (inherits(gg,"try-error")) rep(NA,4) else allcoef(gg) } tvec <- seq(-4,-16,by=-0.25) tres <- cbind(t = tvec, t(sapply(tvec, tfun))) print(tres) } gm_s5 <- simulate(g1, seed=102)[[1]] d$y <- factor(c("N","Y")[d$y+1]) g1B <- glmer(y ~ x + (1|f), data=d, family="binomial") ## ,tolPwrss=1e-5) s1B <- simulate(g1B, seed=102)[[1]] stopifnot(all.equal(gm_s5,as.numeric(s1B)-1)) ## another Bernoulli if(requireNamespace("mlmRev")) { data(Contraception, package="mlmRev") gm5 <- glmer(use ~ urban+age+livch+(1|district), Contraception, binomial) s3 <- simulate(gm5) } d$y <- rpois(nrow(d),exp(d$eta)) gm6 <- glmer(y~x+(1|f),data=d,family="poisson") s4 <- simulate(gm6) ## simulation 'from scratch' with formulas: ## binomial ## form <- formula(gm1)[-2] form <- ~ (1|herd) + period gm1_s4 <- simulate(form,newdata=model.frame(gm1), newparams=list(theta=getME(gm1,"theta"), beta=fixef(gm1)), family=binomial, weights=rowSums(model.frame(gm1)[[1]]), seed=101)[[1]] stopifnot(all.equal(gm1_s2,gm1_s4)) gm1_s5 <- simulate(formula(gm1),newdata=cbpp, newparams=list(theta=getME(gm1,"theta"), beta=fixef(gm1)), family=binomial, seed=101)[[1]] stopifnot(all.equal(gm1_s1,gm1_s5)) tt <- getME(gm1,"theta") bb <- fixef(gm1) expect_error(simulate(form,newdata=model.frame(gm1), newparams=list(theta=setNames(tt,"abc"), beta=fixef(gm1)), family=binomial, weights=rowSums(model.frame(gm1)[[1]]), seed=101),"mismatch between") expect_error(simulate(form,newdata=model.frame(gm1), newparams=list(theta=tt, beta=setNames(bb,c("abc",names(bb)[-1]))), family=binomial, weights=rowSums(model.frame(gm1)[[1]]), seed=101),"mismatch between") ## Gaussian form <- formula(fm1)[-2] s7 <- simulate(form,newdata=model.frame(fm1), newparams=list(theta=getME(fm1,"theta"), beta=fixef(fm1), sigma=sigma(fm1)), family=gaussian, seed=101)[[1]] stopifnot(all.equal(s7,s1)) ## TO DO: wider range of tests, including offsets ... }# R >= 3.0.0 } ## testLevel>1 lme4/tests/HSAURtrees.R0000644000176200001440000000456015022107260014325 0ustar liggesusersif (.Platform$OS.type != "windows") withAutoprint({ library("lme4") ## example from HSAUR2 package; data from 'multcomp'; see ../inst/testdata/trees513.R load(system.file("testdata","trees513.RData",package="lme4")) ## model formula: modForm <- damage ~ species - 1 + (1 | lattice / plot) dfun <- glmer(modForm, data = trees513B, family = binomial, devFunOnly = TRUE) ls.str(environment(dfun))# "for your information" .not.call <- function(x) x[names(x) != "call"] if(lme4:::testLevel() < 2) q("no") ## else (testLevel >= 2) : -------------------------------------------------- ## Generate oldres: ## ---------------- ## library(lme4.0) ## system.time(mmod0 <- glmer(damage ~ species - 1 + (1 | lattice / plot), ## data = trees513, family = binomial())) ## ## 4 seconds ## oldres <- c(fixef(mmod0),getME(mmod0,"theta")) ## detach("package:lme4.0") ## dput(oldres) oldres <- structure(c(5.23645064474105, 4.73568475545248, 2.65289926317093, 1.29043984816924, 1.59329381563025, 0.532663142106669, 1.16703186884403 ), .Names = c("speciesspruce", "speciespine", "speciesbeech", "speciesoak", "specieshardwood", "plot:lattice.(Intercept)", "lattice.(Intercept)")) system.time(mmodA <- glmer(modForm, data = trees513A, family = binomial())) ## 7 seconds newres <- c(fixef(mmodA), getME(mmodA,"theta")) stopifnot(all.equal(oldres, newres, tolerance=1.5e-3)) system.time(mmodB <- glmer(modForm, data = trees513B, family = binomial())) ## 10.4 seconds ## if(FALSE) { ## defuncted in 2019-05 [been deprecated since 2013-06] ## lmer( + family) -> diverts to glmer() with a warning [TODO: use assertWarning(.) eventually] system.time(lmodB <- lmer(modForm, data = trees513B, family = binomial())) stopifnot(all.equal(.not.call(summary(mmodB)), .not.call(summary(lmodB)))) newresB <- c(fixef(mmodB),getME(mmodB,"theta")) stopifnot(length(newresB) == length(oldres) + 1)# extra: species[ash/maple/elm/lime] } }) ## skip on windows (for speed) lme4/tests/evalCall.R0000644000176200001440000000073215022107260014120 0ustar liggesusersif (.Platform$OS.type != "windows") { ## see if we can still run lme4 functions when lme4 is not attached if ("package:lme4" %in% search()) detach("package:lme4") data(sleepstudy,package="lme4") data(cbpp,package="lme4") fm1 <- lme4::lmer(Reaction ~ Days + (Days|Subject), sleepstudy) gm1 <- lme4::glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) } ## skip on windows (for speed) lme4/tests/glmerControlPass.R0000644000176200001440000000157215022107260015676 0ustar liggesusersif (.Platform$OS.type != "windows") { ## test redirection from lmer to glmer (correct options passed, ## specifically glmerControl -> tolPwrss library("lme4") library("testthat") ## data("trees513", package = "multcomp") load(system.file("testdata","trees513.RData",package="lme4")) expect_is(mmod1 <- glmer(damage ~ species - 1 + (1 | lattice / plot), data = trees513B, family = binomial()),"glmerMod") if(FALSE) { ## Now (2019-05) defunct; was deprecated since 2013-06: expect_warning(mmod2 <- lmer(damage ~ species - 1 + (1 | lattice / plot), data = trees513B, family = binomial()), "calling lmer with .* is deprecated") mmod2@call <- mmod1@call ## hack calls to equality expect_equal(mmod1,mmod2) } } ## skip on windows (for speed) lme4/tests/boundary.R0000644000176200001440000002103015077667225014240 0ustar liggesusers## In both of these cases boundary fit (i.e. estimate of zero RE ## variance) is *incorrect*. (Nelder_Mead, restart_edge=FALSE) is the ## only case where we get stuck; either optimizer=bobyqa or ## restart_edge=TRUE (default) works if (.Platform$OS.type != "windows") { library(lme4) library(testthat) if(!dev.interactive(orNone=TRUE)) pdf("boundary_plots.pdf") ## Stephane Laurent: dat <- read.csv(system.file("testdata","dat20101314.csv", package="lme4")) fit <- lmer(y ~ (1|Operator)+(1|Part)+(1|Part:Operator), data=dat, control= lmerControl(optimizer="Nelder_Mead")) fit_b <- lmer(y ~ (1|Operator)+(1|Part)+(1|Part:Operator), data=dat, control= lmerControl(optimizer="bobyqa", restart_edge=FALSE)) fit_c <- lmer(y ~ (1|Operator)+(1|Part)+(1|Part:Operator), data=dat, control= lmerControl(optimizer="Nelder_Mead", restart_edge=FALSE, check.conv.hess="ignore")) ## final fit gives degenerate-Hessian warning ## FIXME: use fit_c with expect_warning() as a check on convergence tests ## tolerance=1e-5 seems OK in interactive use but not in R CMD check ... ?? stopifnot(all.equal(getME(fit, "theta") -> th.f, getME(fit_b,"theta"), tolerance=5e-5), all(th.f > 0)) ## Manuel Koller source(system.file("testdata", "koller-data.R", package="lme4")) ldata <- getData(13) ## old (backward compatible/buggy) fm4 <- lmer(y ~ (1|Var2), ldata, control=lmerControl(optimizer="Nelder_Mead", use.last.params=TRUE), start=list(theta=1)) fm4b <- lmer(y ~ (1|Var2), ldata, control = lmerControl(optimizer="Nelder_Mead", use.last.params=TRUE, restart_edge = FALSE, check.conv.hess="ignore", check.conv.grad="ignore"), start = list(theta=1)) ## FIXME: use as convergence test check stopifnot(getME(fm4b,"theta") == 0) fm4c <- lmer(y ~ (1|Var2), ldata, control=lmerControl(optimizer="bobyqa", use.last.params=TRUE), start=list(theta=1)) stopifnot(all.equal(getME(fm4, "theta") -> th4, getME(fm4c,"theta"), tolerance=1e-4), th4 > 0) ## new: doesn't get stuck at edge any more, but gets stuck somewhere else ... fm5 <- lmer(y ~ (1|Var2), ldata, control=lmerControl(optimizer="Nelder_Mead", check.conv.hess="ignore", check.conv.grad="ignore"), start=list(theta=1)) fm5b <- lmer(y ~ (1|Var2), ldata, control=lmerControl(optimizer="Nelder_Mead", restart_edge=FALSE, check.conv.hess="ignore", check.conv.grad="ignore"), start = list(theta = 1)) fm5c <- lmer(y ~ (1|Var2), ldata, control=lmerControl(optimizer="bobyqa"), start = list(theta = 1)) stopifnot(all.equal(unname(getME(fm5c,"theta")), 0.21067645, tolerance = 1e-7)) # 0.21067644264 [64-bit, lynne] if (require("optimx")) { ## additional stuff for diagnosing Nelder-Mead problems. fm5d <- update(fm5,control=lmerControl(optimizer="optimx", optCtrl=list(method="L-BFGS-B"))) fm5e <- update(fm5, control=lmerControl(optimizer="nloptwrap")) mList <- setNames(list(fm4,fm4b,fm4c,fm5,fm5b,fm5c,fm5d,fm5e), c("NM/uselast","NM/uselast/norestart","bobyqa/uselast", "NM","NM/norestart","bobyqa","LBFGSB","nloptr/bobyqa")) pp <- profile(fm5c,which=1) dd <- as.data.frame(pp) par(las=1,bty="l") v <- sapply(mList, function(x) sqrt(VarCorr(x)[[1]])) plot(.zeta^2~.sig01, data=dd, type="b") abline(v=v) res <- cbind(VCorr = sapply(mList, function(x) sqrt(VarCorr(x)[[1]])), theta = sapply(mList, getME,"theta"), loglik = sapply(mList, logLik)) res print(sessionInfo(), locale=FALSE) } ###################### library(lattice) ## testing boundary and near-boundary cases tmpf <- function(i,...) { set.seed(i) d <- data.frame(x=rnorm(60),f=factor(rep(1:6,each=10))) d$y <- simulate(~x+(1|f),family=gaussian,newdata=d, newparams=list(theta=0.01,beta=c(1,1),sigma=5))[[1]] lmer(y~x+(1|f),data=d,...) } sumf <- function(m) { unlist(VarCorr(m))[1] } if (FALSE) { ## figuring out which seeds will give boundary and ## near-boundary solutions mList <- lapply(1:201,tmpf) # [FIXME tons of messages "theta parameters vector not named"] ss <- sapply(mList,sumf)+1e-50 par(las=1,bty="l") hist(log(ss),col="gray",breaks=50) ## values lying on boundary which(log(ss)<(-40)) ## 5, 7-13, 15, 21, ... ## values close to boundary (if check.edge not set) which(log(ss)>(-40) & log(ss) <(-20)) ## 16, 44, 80, 86, 116, ... } ## diagnostic plot tmpplot <- function(i, FUN=tmpf) { dd <- FUN(i, devFunOnly=TRUE) x <- 10^seq(-10,-6.5,length=201) dvec <- sapply(x,dd) op <- par(las=1,bty="l"); on.exit(par(op)) plot(x,dvec-min(dvec)+1e-16, log="xy", type="b") r <- FUN(i) abline(v = getME(r,"theta"), col=2) invisible(r) } ## Case #1: boundary estimate with or without boundary.tol m5 <- tmpf(5) m5B <- tmpf(5,control=lmerControl(boundary.tol=0)) stopifnot(getME(m5, "theta")==0, getME(m5B,"theta")==0) p5 <- profile(m5) ## bobyqa warnings but results look reasonable xyplot(p5) ## reveals slight glitch (bottom row of plots doesn't look right) expect_warning(splom(p5),"unreliable for singular fits") p5B <- profile(m5, signames=FALSE) # -> bobyqa convergence warning (code 3) expect_warning(splom(p5B), "unreliable for singular fits") if(lme4:::testLevel() >= 2) { ## avoid failure to warn ## Case #2: near-boundary estimate, but boundary.tol can't fix it m16 <- tmpplot(16) ## sometimes[2014-11-11] fails (??) : p16 <- profile(m16) ## warning message*s* (non-monotonic profile and more) plotOb <- xyplot(p16) ## NB: It's the print()ing of 'plotOb' which warns ==> need to do this explicitly: expect_warning(print(plotOb), ## warns about linear interpolation in profile for variable 1 "using linear interpolation") d16 <- as.data.frame(p16) xyplot(.zeta ~ .focal|.par, data=d16, type=c("p","l"), scales = list(x=list(relation="free"))) try(splom(p16)) ## breaks when calling predict(.) } ## bottom line: ## * xyplot.thpr could still be improved ## * most of the near-boundary cases are noisy and can't easily be ## fixed tmpf2 <- function(i,...) { set.seed(i) d <- data.frame(x=rnorm(60),f=factor(rep(1:6,each=10)), w=rep(10,60)) d$y <- simulate(~x+(1|f),family=binomial, weights=d$w,newdata=d, newparams=list(theta=0.01,beta=c(1,1)))[[1]] glmer(y~x+(1|f),data=d,family=binomial,weights=w,...) } if (FALSE) { ## figuring out which seeds will give boundary and ## near-boundary solutions mList <- lapply(1:201,tmpf2) ss <- sapply(mList,sumf)+1e-50 par(las=1,bty="l") hist(log(ss),col="gray",breaks=50) ## values lying on boundary head(which(log(ss)<(-50))) ## 1-5, 7 ... ## values close to boundary (if check.edge not set) which(log(ss)>(-50) & log(ss) <(-20)) ## 44, 46, 52, ... } ## m1 <- tmpf2(1) ## FIXME: doesn't work if we generate m1 via tmpf2(1) -- ## some environment lookup problem ... set.seed(1) d <- data.frame(x=rnorm(60),f=factor(rep(1:6,each=10)), w=rep(10,60)) d$y <- simulate(~x+(1|f),family=binomial, weights=d$w,newdata=d, newparams=list(theta=0.01,beta=c(1,1)))[[1]] m1 <- glmer(y~x+(1|f),data=d,family=binomial,weights=w) p1 <- profile(m1) xyplot(p1) expect_warning(splom(p1),"splom is unreliable") } ## skip on windows (for speed) lme4/tests/falsezero_dorie.R0000644000176200001440000000156015022107260015551 0ustar liggesusersif (.Platform$OS.type != "windows") { ## test of false zero problem reported by Vince Dorie ## (no longer occurs with current development lme4) ## https://github.com/lme4/lme4/issues/17 library(lme4) sigma.eps <- 2 sigma.the <- 0.75 mu <- 2 n <- 5 J <- 10 g <- gl(J, n) set.seed(1) theta <- rnorm(J, 0, sigma.eps * sigma.the) y <- rnorm(n * J, mu + theta[g], sigma.eps) lmerFit <- lmer(y ~ 1 + (1 | g), REML = FALSE, verbose=TRUE) y.bar <- mean(y) y.bar.j <- sapply(1:J, function(j) mean(y[g == j])) S.w <- sum((y - y.bar.j[g])^2) S.b <- n * sum((y.bar.j - y.bar)^2) R <- S.b / S.w sigma.the.hat <- sqrt(max((n - 1) * R / n - 1 / n, 0)) stopifnot(all.equal(sigma.the.hat,lme4Sigma <- unname(getME(lmerFit,"theta")), tolerance=2e-5)) } ## skip on windows (for speed) lme4/tests/devCritFun.R0000644000176200001440000000165015022107260014446 0ustar liggesusersif (.Platform$OS.type!="windows") { library(lme4) ## ---------------------------------------------------------------------- ## test that deviance(REMLfit, REML = FALSE) gives the same answer as ## the ML objective function at the REML fit ## ---------------------------------------------------------------------- set.seed(1) w <- runif(nrow(sleepstudy)) fm <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy, weights = w) dfun <- update(fm, devFunOnly = TRUE, REML = FALSE) stopifnot(all.equal(deviance(fm, REML = FALSE), dfun(getME(fm, "theta")))) ## ---------------------------------------------------------------------- ## TODO: test the opposite case that deviance(MLfit, REML = TRUE) ## gives the same answer as the REML objective function at the ML fit ## ---------------------------------------------------------------------- } lme4/tests/glmmExt.R0000644000176200001440000001177115103163201014014 0ustar liggesusers## Tests of a variety of GLMM families and links ## coding: family {g=Gamma, P=Poisson, G=Gaussian, B=binomial} ## link {l=log, i=inverse, c=cloglog, i=identity} ## model {1 = intercept-only, 2 = with continuous predictor} library("lme4") source(system.file("testdata/lme-tst-funs.R", package="lme4", mustWork=TRUE)) ##-> gSim(), a general simulation function ... str(gSim) ## function (nblk = 26, nperblk = 100, sigma = 1, beta = c(4, 3), ## x = runif(n), shape = 2, nbinom = 10, family = Gamma()) if (.Platform$OS.type != "windows") withAutoprint({ set.seed(101) ## Gamma, inverse link (= default) : d <- gSim() ## Gamma, log link eta = log(mu) : dgl <- gSim(dInitial = d, family = Gamma(link = log)) ## Poisson, log link dP <- gSim(dInitial = d, family = poisson()) ## Gaussian, log link --- need to use a non-identity link, otherwise glmer calls lmer dG <- gSim(dInitial = d, family = gaussian(link = log), sd = 2) ## Gaussian with inverse link : (sd small enough to avoid negative values) : dGi <- gSim(dInitial = d, family = gaussian(link = inverse), sd = 0.01) ## binomial with cloglog link dBc <- d dBc$eta <- d$eta - 5 # <==> beta intercept 5 less: otherwise y will be constant dBc <- gSim(dInitial = dBc, ## beta = c(-1, 3), nbinom = 1, family = binomial(link="cloglog")) ## binomial with identity link dBi <- d dBc$eta <- d$eta / 10 # <==> beta slope / 10 : scale so range goes from 0.2-0.8 dBi <- gSim(dInitial = dBc, ## beta = c(4, 3/10), nbinom = 1, family = binomial(link="identity")) ############ ## Gamma/inverse ## GLMs gm0 <- glm(y ~ 1, data=d, family=Gamma) gm1 <- glm(y ~ block-1, data=d, family=Gamma) stopifnot(all.equal(sd(coef(gm1)),1.00753942148611)) gm2 <- glmer(y ~ 1 + (1|block), d, Gamma, nAGQ=0) gm3 <- glmer(y ~ x + (1|block), d, Gamma, nAGQ=0) gm2B <- glmer(y ~ 1 + (1|block), d, Gamma) gm3B <- glmer(y ~ x + (1|block), d, Gamma) ## y ~ x + (1|block), Gamma is TRUE model summary(gm3) summary(gm3B)# should be better ## Both have "correct" beta ~= (4, 3) -- but *too* small (sigma_B, sigma) !! stopifnot(exprs = { all.equal(fixef(gm3 ), c(`(Intercept)` = 4.07253, x = 3.080585), tol = 1e-5) # 1.21e-7 all.equal(fixef(gm3B), c(`(Intercept)` = 4.159398, x = 3.058521),tol = 1e-5) # 1.13e-7 }) VarCorr(gm3) # both variances / std.dev. should be ~ 1 but are too small ## ## library(hglm) ## h1 <- hglm2(y~x+(1|block), data=d, family=Gamma()) ## lme4.0 fails on all of these ... ## Gamma/log ggl1 <- glmer(y ~ 1 + (1|block), data=dgl, family=Gamma(link="log")) ggl2 <- glmer(y ~ x + (1|block), data=dgl, family=Gamma(link="log"))# true model (h.1.2 <- anova(ggl1, ggl2)) stopifnot( all.equal(unlist(h.1.2[2,]), c(npar = 4, AIC = 34216.014, BIC = 34239.467, logLik = -17104.007, "-2*log(L)" = 34208.014, Chisq = 2458.5792, Df = 1, `Pr(>Chisq)` = 0)) ) ## "true" model : summary(ggl2) VarCorr(ggl2) ## ## library(lme4.0) ## ggl1 <- glmer(y ~ 1 + (1|block), data=dgl, family=Gamma(link="log"), verbose= 2) ## fails ## Poisson/log gP1 <- glmer(y ~ 1 + (1|block), data=dP, family=poisson) gP2 <- glmer(y ~ x + (1|block), data=dP, family=poisson) ## Gaussian/log gG1 <- glmer(y ~ 1 + (1|block), data=dG, family=gaussian(link="log")) gG2 <- glmer(y ~ x + (1|block), data=dG, family=gaussian(link="log")) ## works with lme4.0 but AIC/BIC/logLik are crazy, and scale ## parameter is not reported ## glmmML etc. doesn't allow models with scale parameters ## gG1B <- glmmadmb(y ~ 1 + (1|block), data=dG, ## family="gaussian",link="log",verbose=TRUE) ## what is the best guess at the estimate of the scale parameter? ## is it the same as sigma? ## gG1B$alpha ## if(Sys.info()["user"] != "maechler") { # <- seg.faults (MM) ## Gaussian/inverse gGi1 <- glmer(y ~ 1 + (1|block), data=dGi, family=gaussian(link="inverse")) gGi2 <- glmer(y ~ x + (1|block), data=dGi, family=gaussian(link="inverse")) ## Binomial/cloglog gBc1 <- glmer(y ~ 1 + (1|block), data=dBc, family=binomial(link="cloglog")) gBc2 <- glmer(y ~ x + (1|block), data=dBc, family=binomial(link="cloglog")) ## library("glmmADMB") ## glmmadmbfit <- glmmadmb(y ~ x + (1|block), data=dBc, ## family="binomial",link="cloglog") glmmadmbfit <- list(fixef = c("(Intercept)" = -0.717146132730349, x =2.83642900561633), VarCorr = structure(list( block = structure(0.79992, .Dim = c(1L, 1L), .Dimnames = list("(Intercept)", "(Intercept)"))), class = "VarCorr")) stopifnot(all.equal(fixef(gBc2), glmmadmbfit$fixef, tolerance=5e-3)) ## pretty loose tolerance ... stopifnot(all.equal(unname(unlist(VarCorr(gBc2))), c(glmmadmbfit$VarCorr$block), tolerance=2e-2)) gBi1 <- glmer(y ~ 1 + (1|block), data=dBi, family=binomial(link="identity")) gBi2 <- glmer(y ~ x + (1|block), data=dBi, family=binomial(link="identity")) ## FIXME: should test more of the *results* of these efforts, not ## just that they run without crashing ... }) ## skip on windows (for speed) lme4/tests/bootMer.R0000644000176200001440000000636315022107260014012 0ustar liggesusersif (.Platform$OS.type != "windows") { library(lme4) mySumm <- function(.) { s <- sigma(.) c(beta =getME(., "beta"), sigma = s, sig01 = unname(s * getME(., "theta"))) } fm1 <- lmer(Yield ~ 1|Batch, Dyestuff) boo01 <- bootMer(fm1, mySumm, nsim = 10) boo02 <- bootMer(fm1, mySumm, nsim = 10, use.u = TRUE) ## boo02 <- bootMer(fm1, mySumm, nsim = 500, use.u = TRUE) if (require(boot)) { boot.ci(boo02,index=2,type="perc") } fm2 <- lmer(angle ~ recipe * temperature + (1|recipe:replicate), cake) boo03 <- bootMer(fm2, mySumm, nsim = 10) boo04 <- bootMer(fm2, mySumm, nsim = 10, use.u = TRUE) if (lme4:::testLevel() > 1) { gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) boo05 <- bootMer(gm1, mySumm, nsim = 10) boo06 <- bootMer(gm1, mySumm, nsim = 10, use.u = TRUE) cbpp$obs <- factor(seq(nrow(cbpp))) gm2 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd) + (1|obs), family = binomial, data = cbpp) boo03 <- bootMer(gm2, mySumm, nsim = 10) boo04 <- bootMer(gm2, mySumm, nsim = 10, use.u = TRUE) } load(system.file("testdata","culcita_dat.RData",package="lme4")) cmod <- glmer(predation~ttt+(1|block),family=binomial,data=culcita_dat) set.seed(101) ## FIXME: sensitive to step-halving PIRLS tests ## expect_warning(cc <- confint(cmod,method="boot",nsim=10,quiet=TRUE, ## .progress="txt",PBargs=list(style=3)),"some bootstrap runs failed") library(parallel) if (detectCores()>1) { ## http://stackoverflow.com/questions/12983137/how-do-detect-if-travis-ci-or-not travis <- nchar(Sys.getenv("TRAVIS"))>0 if(.Platform$OS.type != "windows" && !travis) { boo01P <- bootMer(fm1, mySumm, nsim = 10, parallel="multicore", ncpus=2) } ## works in Solaris from an interactive console but not ??? ## via R CMD BATCH if (Sys.info()["sysname"] != "SunOS") boo01P.snow <- bootMer(fm1, mySumm, nsim = 10, parallel="snow", ncpus=2) } set.seed(101) dd <- data.frame(x=runif(200), f=rep(1:20,each=10), o=rnorm(200,mean=2)) dd$y <- suppressMessages(simulate(~x+(1|f)+offset(o), family="poisson", newdata=dd, newparams=list(theta=1,beta=c(0,2)))[[1]]) ## fails under flexLambda dd$y2 <- suppressMessages(simulate(~x+(1|f)+offset(o), family="gaussian", newdata=dd, newparams=list(theta=1,beta=c(0,2),sigma=1))[[1]]) fm3 <- glmer(y~x+(1|f)+offset(o), data=dd,family="poisson") fm4 <- lmer(y2~x+(1|f)+offset(o), data=dd) mySumm2 <- function(fit) return(c(fixef(fit),getME(fit,'theta'))) ## still some issues to fix here bb <- bootMer(fm3,mySumm2,nsim=10) attr(bb,"boot.fail.msgs") bb2 <- bootMer(fm4,mySumm2,nsim=10) } ## skip on windows (for speed) lme4/tests/extras.R0000644000176200001440000000153314677066752013734 0ustar liggesuserslibrary(lme4) ## This example takes long : only for testLevel >= 3 : d.ok <- isTRUE(try(data(star, package = 'mlmRev')) == 'star') if(!interactive() && (lme4:::testLevel() < 3 || !d.ok)) q("no") ## This worked in an *older* version of lme4.0 ## fm1 <- lme4:::carryOver(math ~ gr+sx*eth+cltype+(yrs|id)+(1|tch)+(yrs|sch), ## star, yrs ~ tch/id, ## control = list(msV = 1, nit = 0, grad = 0)) system.time( fm1 <- lmer(math ~ gr + sx*eth + cltype + schtype + hdeg + clad + exp + trace + (yrs | id) + (1 | tch) + (yrs | sch), data = star, verbose = TRUE) ) ## user system elapsed ## 34.991 0.037 35.132 -- lme4.0 ## 36.599 0.031 36.745 -- lme4 {bobyqa; 2014-01-09 @ lynne} sm1 <- summary(fm1) print(sm1, corr=TRUE, symbolic.cor=TRUE)# now message *and* gives the correlation lme4/tests/is.R0000644000176200001440000000160615022107260013011 0ustar liggesusersif (.Platform$OS.type != "windows") { library(lme4) fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) stopifnot(isREML(fm1), isLMM(fm1), !isGLMM(fm1), !isNLMM(fm1)) fm1ML <- refitML(fm1) stopifnot(!isREML(fm1ML), isLMM(fm1ML), !isGLMM(fm1ML), !isNLMM(fm1ML)) gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) stopifnot(!isREML(gm1), !isLMM(gm1), isGLMM(gm1), !isNLMM(gm1)) nm1 <- nlmer(circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym|Tree, Orange, start = c(Asym = 200, xmid = 725, scal = 350)) stopifnot(!isREML(nm1), !isLMM(nm1), !isGLMM(nm1), isNLMM(nm1)) } ## skip on windows (for speed) lme4/tests/glmer-1.R0000644000176200001440000002660215022107260013645 0ustar liggesusersif (lme4:::testLevel() > 1 || .Platform$OS.type!="windows") withAutoprint({ ## generalized linear mixed model stopifnot(suppressPackageStartupMessages(require(lme4))) options(show.signif.stars = FALSE) source(system.file("test-tools-1.R", package = "Matrix"), keep.source = FALSE) ## ##' Check that coefficient +- "2" * SD contains true value ##' ##' @title Check that confidence interval for coefficients contains true value ##' @param fm fitted model, e.g., from lm(), lmer(), glmer(), .. ##' @param true.coef numeric vector of true (fixed effect) coefficients ##' @param conf.level confidence level for confidence interval ##' @param sd.factor the "2", i.e. default 1.96 factor for the confidence interval ##' @return TRUE or a string of "error" ##' @author Martin Maechler chkFixed <- function(fm, true.coef, conf.level = 0.95, sd.factor = qnorm((1+conf.level)/2)) { stopifnot(is.matrix(cf <- coefficients(summary(fm))), ncol(cf) >= 2) cc <- cf[,1] sd <- cf[,2] if(any(out1 <- true.coef < cc - sd.factor*sd)) return(sprintf("true coefficient[j], j=%s, is smaller than lower confidence limit", paste(which(out1), collapse=", "))) if(any(out2 <- true.coef > cc + sd.factor*sd)) return(sprintf("true coefficient[j], j=%s, is larger than upper confidence limit", paste(which(out2), collapse=", "))) ## else, return TRUE } ## TODO: (1) move these to ./glmer-ex.R [DONE] ## ---- (2) "rationalize" with ../man/cbpp.Rd #m1e <- glmer1(cbind(incidence, size - incidence) ~ period + (1 | herd), # family = binomial, data = cbpp, doFit = FALSE) ## now #bobyqa(m1e, control = list(iprint = 2L)) m1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), family = binomial, data = cbpp) m1. <- update(m1, start = getME(m1, c("theta", "fixef"))) dm1 <- drop1(m1) stopifnot(all.equal(drop1(m1.), dm1, tol = 1e-10))# Lnx(F28) 64b: 4e-12 ## response as a vector of probabilities and usage of argument "weights" m1p <- glmer(incidence / size ~ period + (1 | herd), weights = size, family = binomial, data = cbpp) ## Confirm that these are equivalent: stopifnot(all.equal(fixef(m1), fixef(m1p)), all.equal(ranef(m1), ranef(m1p)), TRUE) ## for(m in c(m1, m1p)) { ## cat("-------\\n\\nCall: ", ## paste(format(getCall(m)), collapse="\\n"), "\\n") ## print(logLik(m)); cat("AIC:", AIC(m), "\\n") ; cat("BIC:", BIC(m),"\\n") ## } stopifnot(all.equal(logLik(m1), logLik(m1p)), all.equal(AIC(m1), AIC(m1p)), all.equal(BIC(m1), BIC(m1p))) ## changed tolPwrss to 1e-7 to match other default m1b <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), family = binomial, data = cbpp, verbose = 2L, control = glmerControl(optimizer="bobyqa", tolPwrss=1e-7, optCtrl=list(rhobeg=0.2, rhoend=2e-7))) ## using nAGQ=9L provides a better evaluation of the deviance m.9 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), family = binomial, data = cbpp, nAGQ = 9) ## check with nAGQ = 25 m2 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), family = binomial, data = cbpp, nAGQ = 25) ## loosened tolerance on parameters stopifnot(is((cm2 <- coef(m2)), "coef.mer"), dim(cm2$herd) == c(15,4), all.equal(fixef(m2), ### lme4a [from an Ubuntu 11.10 amd64 system] c(-1.39922533406847, -0.991407294757321, -1.12782184600404, -1.57946627431248), ##c(-1.3766013, -1.0058773, ## -1.1430128, -1.5922817), tolerance = 5.e-4, check.attributes=FALSE), all.equal(c(-2*logLik(m2)), 100.010030538022, tolerance=1e-9), all.equal(deviance(m2), 73.373, tolerance=1e-5) ## with bobyqa first (AGQ=0), then ##all.equal(deviance(m2), 101.119749563, tolerance=1e-9) ) ## 32-bit Ubuntu 10.04: coef_m1_lme4.0 <- structure(c(-1.39853505102576, -0.992334712470269, -1.12867541092127, -1.58037389566025), .Names = c("(Intercept)", "period2", "period3", "period4")) ## library(glmmADMB) ## mg <- glmmadmb(cbind(incidence, size - incidence) ~ period + (1 | herd), ## family = "binomial", data = cbpp) coef_m1_glmmadmb <- structure(c(-1.39853810064827, -0.99233330126975, -1.12867317840779, -1.58031150854503), .Names = c("(Intercept)", "period2", "period3", "period4")) ## library(glmmML) ## mm <- glmmML(cbind(incidence, size - incidence) ~ period, ## cluster=herd, ## family = "binomial", data = cbpp) coef_m1_glmmML <- structure(c(-1.39853234657711, -0.992336901732793, -1.12867036466201, -1.58030977686564), .Names = c("(Intercept)", "period2", "period3", "period4")) ## lme4[r 1636], 64-bit ubuntu 11.10: ## c(-1.3788385, -1.0589543, ## -1.1936382, -1.6306271), stopifnot(is((cm1 <- coef(m1b)), "coef.mer"), dim(cm1$herd) == c(15,4), all.equal(fixef(m1b),fixef(m1),tolerance=4e-5), is.all.equal4(fixef(m1b), coef_m1_glmmadmb, coef_m1_lme4.0, coef_m1_glmmML, tol = 5e-4) ) ## Deviance for the new algorithm is lower, eventually we should change the previous test ##stopifnot(deviance(m1) <= deviance(m1e)) showProc.time() # if (require('MASS', quietly = TRUE)) { bacteria$wk2 <- bacteria$week > 2 contrasts(bacteria$trt) <- structure(contr.sdif(3), dimnames = list(NULL, c("diag", "encourage"))) print(fm5 <- glmer(y ~ trt + wk2 + (1|ID), data=bacteria, family=binomial)) showProc.time() # stopifnot( all.equal(logLik(fm5), ## was -96.127838 structure(-96.13069, nobs = 220L, nall = 220L, df = 5L, REML = FALSE, class = "logLik"), tolerance = 5e-4, check.attributes = FALSE) , all.equal(fixef(fm5), ## was 2.834218798 -1.367099481 c("(Intercept)"= 2.831609490, "trtdiag"= -1.366722631, ## now 0.5842291915, -1.599148773 "trtencourage"=0.5840147802, "wk2TRUE"=-1.598591346), tolerance = 1e-4 ) ) } ## Failure to specify a random effects term - used to give an obscure message ## Ensure *NON*-translated message; works on Linux,... : if(.Platform$OS.type == "unix") { Sys.setlocale("LC_MESSAGES", "C") tc <- tryCatch( m2 <- glmer(incidence / size ~ period, weights = size, family = binomial, data = cbpp) , error = function(.) .) stopifnot(inherits(tc, "error"), identical(tc$message, "No random effects terms specified in formula")) } ## glmer - Modeling overdispersion as "mixture" aka ## ----- - *ONE* random effect *PER OBSERVATION" -- example inspired by Ben Bolker: ##' ##' ##'
##' @title ##' @param ng number of groups ##' @param nr number of "runs", i.e., observations per groups ##' @param sd standard deviations of group and "Individual" random effects, ##' (\sigma_f, \sigma_I) ##' @param b true beta (fixed effects) ##' @return a data frame (to be used in glmer()) with columns ##' (x, f, obs, eta0, eta, mu, y), where y ~ Pois(lambda(x)), ##' log(lambda(x_i)) = b_1 + b_2 * x + G_{f(i)} + I_i ##' and G_k ~ N(0, \sigma_f); I_i ~ N(0, \sigma_I) ##' @author Ben Bolker and Martin Maechler rPoisGLMMi <- function(ng, nr, sd=c(f = 1, ind = 0.5), b=c(1,2)) { stopifnot(nr >= 1, ng >= 1, is.numeric(sd), names(sd) %in% c("f","ind"), sd >= 0) ntot <- nr*ng b.reff <- rnorm(ng, sd= sd[["f"]]) b.rind <- rnorm(ntot,sd= sd[["ind"]]) x <- runif(ntot) within(data.frame(x, f = factor(rep(LETTERS[1:ng], each=nr)), obs = 1:ntot, eta0 = cbind(1, x) %*% b), { eta <- eta0 + b.reff[f] + b.rind[obs] mu <- exp(eta) y <- rpois(ntot, lambda=mu) }) } set.seed(1) dd <- rPoisGLMMi(12, 20) m0 <- glmer(y~x + (1|f), family="poisson", data=dd) m1 <- glmer(y~x + (1|f) + (1|obs), family="poisson", data=dd) stopifnot(isTRUE(chkFixed(m0, true.coef = c(1,2))), isTRUE(chkFixed(m1, true.coef = c(1,2)))) (a01 <- anova(m0, m1)) stopifnot(all.equal(a01$Chisq[2], 554.334056, tolerance=1e-5), all.equal(a01$logLik, c(-1073.77193, -796.604902), tolerance=1e-6), a01$ npar == 3:4, na.omit(a01$ Df) == 1) if(lme4:::testLevel() > 1) { nsim <- 10 set.seed(2) system.time( simR <- lapply(1:nsim, function(i) { cat(i,"", if(i %% 20 == 0)"\n") dd <- rPoisGLMMi(10 + rpois(1, lambda=3), 16 + rpois(1, lambda=5)) m0 <- glmer(y~x + (1|f), family="poisson", data=dd) m1 <- glmer(y~x + (1|f) + (1|obs), family="poisson", data=dd) a01 <- anova(m0, m1) stopifnot(a01$ npar == 3:4, na.omit(a01$ Df) == 1) list(chk0 = chkFixed(m0, true.coef = c(1,2)), chk1 = chkFixed(m1, true.coef = c(1,2)), chisq= a01$Chisq[2], lLik = a01$logLik) })) ## m0 is the wrong model, so we don't expect much here: table(unlist(lapply(simR, `[[`, "chk0"))) ## If the fixed effect estimates were unbiased and the standard errors correct, ## and N(0,sigma^2) instead of t_{nu} good enough for the fixed effects, ## the confidence interval should contain the true coef in ~95 out of 100: table(unlist(lapply(simR, `[[`, "chk1"))) ## The tests are all highly significantly in favor of m1 : summary(chi2s <- sapply(simR, `[[`, "chisq")) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 158.9 439.0 611.4 698.2 864.3 2268.0 stopifnot(chi2s > qchisq(0.9999, df = 1)) } showProc.time() }) ## skip if windows and testLevel<1 lme4/tests/methods.R0000644000176200001440000000166515022107260014046 0ustar liggesusersif (.Platform$OS.type != "windows") { library(lme4) library(testthat) fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) expect_equal(colnames(model.frame(fm1)),c("Reaction","Days","Subject")) expect_equal(colnames(model.frame(fm1,fixed.only=TRUE)),c("Reaction","Days")) expect_equal(formula(fm1),Reaction ~ Days + (Days | Subject)) expect_equal(formula(fm1,fixed.only=TRUE),Reaction ~ Days) ## ugly example: model frame with compound elements fm2 <- lmer(log(Reaction) ~ splines::ns(Days,3) + + I(1+Days^3) + (Days|Subject), sleepstudy) expect_equal(names(model.frame(fm2)), c("log(Reaction)", "splines::ns(Days, 3)", "I(1 + Days^3)", "Days", "Subject")) expect_equal(names(model.frame(fm2,fixed.only=TRUE)), c("log(Reaction)", "splines::ns(Days, 3)", "I(1 + Days^3)")) } ## skip on windows (for speed) lme4/tests/lmer-0.R0000644000176200001440000001206415022107260013472 0ustar liggesusersrequire(lme4) source(system.file("test-tools-1.R", package = "Matrix"))# identical3() etc ## use old (<=3.5.2) sample() algorithm if necessary if ("sample.kind" %in% names(formals(RNGkind))) { suppressWarnings(RNGkind("Mersenne-Twister", "Inversion", "Rounding")) } ## Check that quasi families throw an error assertError(lmer(cbind(incidence, size - incidence) ~ period + (1|herd), data = cbpp, family = quasibinomial)) assertError(lmer(incidence ~ period + (1|herd), data = cbpp, family = quasipoisson)) assertError(lmer(incidence ~ period + (1|herd), data = cbpp, family = quasi)) ## check bug found by Kevin Buhr set.seed(7) n <- 10 X <- data.frame(y=runif(n), x=rnorm(n), z=sample(c("A","B"), n, TRUE)) fm <- lmer(log(y) ~ x | z, data=X) ## ignore grouping factors with ## gave error inside model.frame() stopifnot(all.equal(c(`(Intercept)` = -0.834544), fixef(fm), tolerance=.01)) ## is "Nelder_Mead" default optimizer? (isNM <- formals(lmerControl)$optimizer == "Nelder_Mead") (isOldB <- formals(lmerControl)$optimizer == "bobyqa") (isOldTol <- environment(nloptwrap)$defaultControl$xtol_abs == 1e-6) if (.Platform$OS.type != "windows") withAutoprint({ source(system.file("testdata", "lme-tst-funs.R", package="lme4", mustWork=TRUE))# -> uc() ## check working of Matrix methods on vcov(.) etc ---------------------- fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) V <- vcov(fm) (V1 <- vcov(fm1)) (C1 <- chol(V1)) dput(dV <- as.numeric(diag(V))) # 0.17607818634.. [x86_64, F Lnx 36] TOL <- 0 # to show the differences below TOL <- 1e-5 # for the check stopifnot(exprs = { all.equal(dV, uc(if(isNM) 0.176076 else if(isOldB) 0.176068575 else if(isOldTol) 0.1761714 else 0.1760782), tolerance = 9*TOL) # seen 7.8e-8; Apple clang 14.0.3 had 6.3783e-5 all.equal(sqrt(dV), as.numeric(chol(V)), tol = 1e-12) all.equal(diag(V1), uc(`(Intercept)` = 46.5751, Days = 2.38947), tolerance = 40*TOL)# 5e-7 (for "all" algos) is(C1, "dtrMatrix") # was inherits(C1, "Cholesky") dim(C1) == c(2,2) all.equal(as.numeric(C1), # 6.8245967 0. -0.2126263 1.5310962 [x86_64, F Lnx 36] c(6.82377, 0, -0.212575, 1.53127), tolerance=20*TOL)# 1.2e-4 ("all" algos) dim(chol(crossprod(getME(fm1, "Z")))) == 36 }) ## printing signif(chol(crossprod(getME(fm, "Z"))), 5) # -> simple 4 x 4 sparse showProc.time() # ## From: Stephane Laurent ## To: r-sig-mixed-models@.. ## "crash with the latest update of lme4" ## ## .. example for which lmer() crashes with the last update of lme4 ...{R-forge}, ## .. but not with version CRAN version (0.999999-0) lsDat <- data.frame( Operator = as.factor(rep(1:5, c(3,4,8,8,8))), Part = as.factor( c(2L, 3L, 5L, 1L, 1L, 2L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 4L, 5L, 1L, 2L, 3L, 3L, 4L, 4L, 5L, 5L, 1L, 2L, 2L, 3L, 3L, 4L, 5L, 5L)), y = c(0.34, -1.23, -2.46, -0.84, -1.57,-0.31, -0.18, -0.94, -0.81, 0.77, 0.4, -2.37, -2.78, 1.29, -0.95, -1.58, -2.06, -3.11,-3.2, -0.1, -0.49,-2.02, -0.75, 1.71, -0.85, -1.19, 0.13, 1.35, 1.92, 1.04, 1.08)) xtabs( ~ Operator + Part, data=lsDat) # --> 4 empty cells, quite a few with only one obs.: ## Part ## Operator 1 2 3 4 5 ## 1 0 1 1 0 1 ## 2 2 1 1 0 0 ## 3 2 2 2 1 1 ## 4 1 1 2 2 2 ## 5 1 2 2 1 2 lsD29 <- lsDat[1:29, ] ## FIXME: rank-Z test should probably not happen in this case: (sm3 <- summary(m3 <- lm(y ~ Part*Operator, data=lsDat)))# ok: some interactions not estimable stopifnot(21 == nrow(coef(sm3)))# 21 *are* estimable sm4 <- summary(m4 <- lm(y ~ Part*Operator, data=lsD29)) stopifnot(20 == nrow(coef(sm4)))# 20 *are* estimable lf <- lFormula(y ~ (1|Part) + (1|Operator) + (1|Part:Operator), data = lsDat) dim(Zt <- lf$reTrms$Zt)## 31 x 31 c(rankMatrix(Zt)) ## 21 c(rankMatrix(Zt,method="qr")) ## 31 || 29 (64 bit Lnx), then 21 (!) c(rankMatrix(t(Zt),method="qr")) ## 30, then 21 ! nrow(lsDat) fm3 <- lmer(y ~ (1|Part) + (1|Operator) + (1|Part:Operator), data = lsDat, control=lmerControl(check.nobs.vs.rankZ="warningSmall")) lf29 <- lFormula(y ~ (1|Part) + (1|Operator) + (1|Part:Operator), data = lsD29) (fm4 <- update(fm3, data=lsD29)) fm4. <- update(fm4, REML=FALSE, control=lmerControl(optimizer="nloptwrap", optCtrl=list(ftol_abs=1e-6, xtol_abs=1e-6))) ## summary(fm4.) stopifnot( all.equal(as.numeric(formatVC(VarCorr(fm4.), digits = 7)[,"Std.Dev."]), c(1.040664, 0.6359187, 0.5291422, 0.4824796), tol = 1e-4) ) showProc.time() }) ## skip on windows (for speed) cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons'' lme4/tests/minval.R0000644000176200001440000000242715022107260013666 0ustar liggesusersif (lme4:::testLevel() > 1 || .Platform$OS.type!="windows") { ## example posted by StĂ©phane Laurent ## exercises bug where Nelder-Mead min objective function value was >0 set.seed(666) sims <- function(I, J, sigmab0, sigmaw0){ Mu <- rnorm(I, mean=0, sd=sigmab0) y <- c(sapply(Mu, function(mu) rnorm(J, mu, sigmaw0))) data.frame(y=y, group=gl(I,J)) } I <- 3 # number of groups J <- 8 # number of repeats per group sigmab0 <- 0.15 # between standard deviation sigmaw0 <- 0.15 # within standard deviation dat <- sims(I, J, sigmab0, sigmaw0) library(lme4) isOldTol <- environment(nloptwrap)$defaultControl$xtol_abs == 1e-6 fm3 <- lmer(y ~ (1|group), data=dat) stopifnot(all.equal(unname(unlist(VarCorr(fm3))), switch(fm3@optinfo$optimizer, "Nelder_Mead" = 0.029662844, "bobyqa" = 0.029662698, "nloptwrap" = if (isOldTol) 0.029679755 else 0.029662699, stop("need new case here: value is ",unname(unlist(VarCorr(fm3)))) ), tolerance = 1e-7)) } ## skip on windows (for speed) lme4/tests/fewlevels.R0000644000176200001440000000132015022107260014363 0ustar liggesusers#### example originally from Gabor Grothendieck source(system.file("testdata/lme-tst-funs.R", package="lme4", mustWork=TRUE)) ##--> rSim.11() testLevel <- if (nzchar(s <- Sys.getenv("LME4_TEST_LEVEL"))) as.numeric(s) else 1 if (testLevel>1) { set.seed(1) d1 <- rSim.11(10000, k=4) library(nlme) m.lme <- lme(y ~ x, random=~ 1|fac , data=d1) (VC.lme <- VarCorr(m.lme)) detach("package:nlme") ## library(lme4) fm.NM <- lmer(y ~ x + (1|fac), data=d1, control=lmerControl("Nelder_Mead")) fm.Bq <- update(fm.NM, control=lmerControl("bobyqa")) v.lmer <- VarCorr(fm.NM)[[1]][1,1] stopifnot(all.equal(v.lmer,19.55,tolerance=1e-3)) ## was 19.5482 with old starting values (1), 19.5493 with new start algorithm } ## testLevel>1 lme4/tests/throw.R0000644000176200001440000000157215022107260013543 0ustar liggesusers## original code was designed to detect segfaults/hangs from error handling library(lme4) set.seed(101) d <- expand.grid(block = LETTERS[1:26], rep = 1:100) d$x <- runif(nrow(d)) reff_f <- rnorm(length(levels(d$block)),sd=1) ## need intercept large enough to avoid negative values d$eta0 <- 4+3*d$x ## version without random effects d$eta <- d$eta0+reff_f[d$block] ## inverse link d$mu <- 1/d$eta d$y <- rgamma(nrow(d), scale=d$mu/2, shape=2) if (.Platform$OS.type != "windows") { gm0 <- glmer(y ~ 1|block, d, Gamma) gm0.A25 <- glmer(y ~ 1|block, d, Gamma, nAGQ=25L) gm1 <- glmer(y ~ x + (1|block), d, Gamma) gm1.A25 <- glmer(y ~ x + (1|block), d, Gamma, nAGQ=25L) ## strange things happening for logLik ==> AIC, etc for nAGQ ??? anova(gm0, gm1) anova(gm0, gm0.A25) anova(gm1, gm1.A25) summary(gm1) # "fine" summary(gm1.A25) # Inf logLik etc ? } lme4/tests/resids.R0000644000176200001440000000115114677066752013713 0ustar liggesuserslibrary(lme4) ## raw residuals for LMMs fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) stopifnot(all.equal(residuals(fm1),sleepstudy$Reaction-fitted(fm1))) r1 <- residuals(fm1,type="pearson") ## deviance/Pearson residuals for GLMMs gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), family = binomial, data = cbpp) p <- fitted(gm1) n <- cbpp$size v <- n*p*(1-p) obs_p <- cbpp$incidence/cbpp$size rp <- residuals(gm1,"pearson") rp1 <- (obs_p-p)/sqrt(p*(1-p)) rp2 <- rp1*n ## FIXME:: restore this test ## stopifnot(all.equal(rp,rp2)) r2 <- residuals(gm1,type="deviance") lme4/tests/offset.R0000644000176200001440000000263615022107260013670 0ustar liggesusers## simple examples with offsets, to exercise methods etc. library(lme4) if (.Platform$OS.type != "windows") { ## generate a basic Gamma/random effects sim set.seed(101) d <- expand.grid(block=LETTERS[1:26],rep=1:100) d$x <- runif(nrow(d)) ## sd=1 reff_f <- rnorm(length(levels(d$block)),sd=1) ## need intercept large enough to avoid negative values d$eta0 <- 4+3*d$x ## version without random effects d$eta <- d$eta0+reff_f[d$block] ## lmer() test: d$mu <- d$eta d$y <- rnorm(nrow(d),mean=d$mu,sd=1) fm1 <- lmer(y~x+(1|block), data=d) fm1off <- lmer(y~x+(1|block)+offset(3*x),data=d) ## check equality stopifnot(all.equal(fixef(fm1)[2]-3,fixef(fm1off)[2])) p0 <- predict(fm1) p1 <- predict(fm1,newdata=d) p2 <- predict(fm1off,newdata=d) stopifnot(all.equal(p0,p1), all.equal(p1,p2)) ## glmer() test: d$mu <- exp(d$eta) d$y <- rpois(nrow(d),d$mu) gm1 <- glmer(y~x+(1|block), data=d,family=poisson, control=glmerControl(check.conv.grad="ignore")) gm1off <- glmer(y~x+(1|block)+offset(3*x),data=d,family=poisson, control=glmerControl(check.conv.grad="ignore")) ## check equality stopifnot(all.equal(fixef(gm1)[2]-3,fixef(gm1off)[2],tolerance=3e-4)) p0 <- predict(gm1) p1 <- predict(gm1,newdata=d) p2 <- predict(gm1off,newdata=d) stopifnot(all.equal(p0,p1), all.equal(p1,p2)) ## FIXME: should also test simulations } ## skip on windows (for speed) lme4/tests/ST.R0000644000176200001440000000067614677066752012763 0ustar liggesusersrequire(lme4) # sorry for fitting yet another sleepstudy model in the tests m <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy) ST <- getME(m, "ST")$Subject # copied from vince dorie's simmer.R in arm: dimension <- nrow(ST) T <- ST diag(T) <- rep(1, dimension) S <- diag(diag(ST), dimension) vc0 <- getME(m, 'sigma')^2*tcrossprod(T %*% S) vc1 <- VarCorr(m)$Subject[,] dimnames(vc0) <- dimnames(vc1) all.equal(vc0, vc1, tolerance = 1e-6) lme4/tests/predict_basis.R0000644000176200001440000000304115022107260015204 0ustar liggesusers## test for models containing data-defined bases ## ?makepredictcall ## ?model.frame ## ???? data(sleepstudy,package="lme4") library(splines) ## lm0 <- lm(Reaction~ns(Days,2),sleepstudy) ## attr(terms(lm0),"predvars") ## library(nlme) ## lme1 <- lme(Reaction~ns(Days,2),random=~1|Subject,sleepstudy) ## attr(terms(lme1),"predvars") ## no! ## attr(lme1$terms,"predvars") ## yes ## detach("package:nlme") library(lme4) fm1 <- lmer(Reaction ~ ns(Days,2) + (1|Subject), sleepstudy) fm2 <- lmer(Reaction ~ poly(Days,2) + (1|Subject), sleepstudy) fm3 <- lmer(Reaction ~ poly(Days,2,raw=TRUE) + (1|Subject), sleepstudy) newdat0 <- data.frame(Days = unique(sleepstudy$Days)) newdat <- data.frame(Days = 5:12) tmpf <- function(fit) { with(sleepstudy, { plot (Reaction~Days, xlim=c(0,12)) points(Days, predict(fit), col=2) }) lines(newdat0$ Days, predict(fit,re.form=NA,newdata=newdat0), col=4) lines(newdat $ Days, predict(fit,re.form=NA,newdata=newdat ), col=5) } stopifnot(all.equal(predict(fm2,newdat,re.form=NA), predict(fm3,newdat,re.form=NA))) ## pictures tmpf(fm1) tmpf(fm2) tmpf(fm3) ## test for GLMMs set.seed(101) d <- data.frame(y=rbinom(10,size=1,prob=0.5), x=1:10, f=factor(rep(1:5,each=2))) gm1 <- glmer(y ~ poly(x,2) + (1|f), d, family=binomial) gm2 <- glmer(y ~ poly(x,2,raw=TRUE) + (1|f), d, family=binomial) newdat <- data.frame(x=c(1,4,6)) stopifnot(all.equal(predict(gm1,newdat,re.form=NA), predict(gm2,newdat,re.form=NA),tolerance=3e-6)) lme4/tests/testOptControl.R0000644000176200001440000000327215022107260015402 0ustar liggesusers## https://github.com/lme4/lme4/issues/59 library(lme4) dat <- read.csv(system.file("testdata","dat20101314.csv",package="lme4")) NMcopy <- lme4:::Nelder_Mead cc <- capture.output(lmer(y ~ (1|Operator)+(1|Part)+(1|Part:Operator), data=dat, control= lmerControl("NMcopy", optCtrl= list(iprint=20)))) ## check that printing goes through step 140 twice and up to 240 once ## findStep <- function(str,n) sum(grepl(paste0("\\(NM\\) ",n,": "),str)) cc <- paste(cc,collapse="") countStep <- function(str,n) { length(gregexpr(paste0("\\(NM\\) ",n,": "),str)[[1]]) } stopifnot(countStep(cc,140)==2 && countStep(cc,240)==1) ## testStr <- ## "(NM) 20: f = -53.3709 at 0.706667 0.813333 1.46444(NM) 40: f = -147.132 at 0 0 19.18(NM) 60: f = -147.159 at 0 0 17.4275(NM) 80: f = -147.159 at 0 0 17.5615(NM) 100: f = -147.159 at 0 0 17.5754(NM) 120: f = -147.159 at 0 0 17.5769(NM) 140: f = -147.159 at 0 0 17.5768(NM) 20: f = -165.55 at 0.0933333 0.573333 17.3168(NM) 40: f = -173.704 at 0.23799 1.4697 16.9728(NM) 60: f = -173.849 at 0.449634 1.39998 16.9452(NM) 80: f = -174.421 at 0.52329 1.69123 18.1534(NM) 100: f = -176.747 at 0.762043 1.88271 32.8993(NM) 120: f = -176.839 at 0.751206 1.75371 37.2128(NM) 140: f = -176.853 at 0.706425 1.7307 35.7528(NM) 160: f = -176.853 at 0.710803 1.73476 35.7032(NM) 180: f = -176.853 at 0.710159 1.73449 35.6699(NM) 200: f = -176.853 at 0.710271 1.73461 35.6689(NM) 220: f = -176.853 at 0.710259 1.7346 35.6684(NM) 240: f = -176.853 at 0.710257 1.73459 35.6685Linear mixed model fit by REML ['lmerMod']" lme4/tests/getME.R0000644000176200001440000000430415022107260013375 0ustar liggesusersif (.Platform$OS.type != "windows") { library(lme4) #### tests of getME() ### are names correct? -------------- if(getRversion() < "2.15") paste0 <- function(...) paste(..., sep = '') hasInms <- function(x) grepl("(Intercept", names(x), fixed=TRUE) matchNms <- function(fm, PAR) { stopifnot(is.character(vnms <- names(fm@cnms))) mapply(grepl, paste0("^", vnms), names(PAR)) } chkIMod <- function(fm) {## check "intercept only" model b1 <- getME(fm,"beta") f1 <- fixef(fm) stopifnot(hasInms(f1), f1 == b1, hasInms(t1 <- getME(fm,"theta")), matchNms(fm, t1)) } fm1 <- lmer(diameter ~ (1|plate) + (1|sample), Penicillin) chkIMod(fm1) fm2 <- lmer(angle ~ recipe * temperature + (1|recipe:replicate), cake) stopifnot(fixef(fm2) == getME(fm2,"beta")) getME(fm2,"theta") getME(fm3 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy), "theta") getME(fm4 <- lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject), sleepstudy), "theta") ## internal consistency check ensuring that all allowed 'name's work (and are not empty): (nmME <- eval(formals(lme4:::getME.merMod)$name)) chkMEs <- function(fm, nms) { stopifnot(is.character(nms)) str(parts <- sapply(nms, getME, object = fm, simplify=FALSE)) isN <- sapply(parts, is.null) stopifnot(identical(names(isN), nms), !any(isN)) } chkMEs(fm1, nmME) chkMEs(fm2, nmME) chkMEs(fm3, nmME) chkMEs(fm4, nmME) ## multiple components can now be retrieved at once gg <- getME(fm2,c("theta","beta")) gg2 <- getME(fm2,c("theta","beta","X")) ## list of Zt for each random-effects factor lapply(getME(fm2,c("Ztlist")),dim) ## Cholesky factors returned as a list of matrices getME(fm1,"ST") getME(fm2,"ST") ## distinction between number of RE terms ## and number of RE grouping factors stopifnot(getME(fm2,"n_rtrms")==1) stopifnot(getME(fm2,"n_rfacs")==1) lapply(getME(fm4,c("Ztlist")),dim) stopifnot(getME(fm4,"n_rtrms")==2) stopifnot(getME(fm4,"n_rfacs")==1) stopifnot(getME(fm1,"sigma")==sigma(fm1)) } ## skip on windows (for speed) lme4/tests/test-glmernbref.R0000644000176200001440000000047615022107260015502 0ustar liggesusers## DON'T load lme4; test is to see if glmer.nb works when ## lme4 is not loaded set.seed(101) dd <- data.frame(x=runif(200), f= rep(1:20, each=10)) b <- rnorm(20) dd <- transform(dd, y = rnbinom(200, mu = exp(1 + 2*x + b[f]), size = 2)) g <- lme4::glmer.nb(y~x + (1|f), data = dd) stopifnot(inherits(g, "glmerMod")) lme4/tests/lmer-1.R0000644000176200001440000003144615077667225013526 0ustar liggesusers### suppressPackageStartupMessages(...) as we have an *.Rout.save to Rdiff against stopifnot(suppressPackageStartupMessages(require(lme4))) options(show.signif.stars = FALSE, useFancyQuotes=FALSE) source(system.file("test-tools-1.R", package = "Matrix"))# identical3() etc all.EQ <- function(u,v, ...) all.equal.X(u, v, except = c("call", "frame"), ...) S4_2list <- function(obj) { # no longer used sn <- slotNames(obj) structure(lapply(sn, slot, object = obj), .Names = sn) } if (lme4:::testLevel() <= 1) quit("no") ## otherwise *print* normally: oldOpts <- options(digits=2) (fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)) (fm1a <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy, REML = FALSE)) (fm2 <- lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject), sleepstudy)) anova(fm1, fm2) ## Now works for glmer fm1. <- suppressWarnings(glmer(Reaction ~ Days + (Days|Subject), sleepstudy)) ## default family=gaussian/identity link -> automatically calls lmer() (but with a warning) ## hack call -- comes out unimportantly different fm1.@call[[1]] <- quote(lmer) stopifnot(all.equal(fm1, fm1.)) ## Test against previous version in lmer1 (using bobyqa for consistency) #(fm1. <- lmer1(Reaction ~ Days + (Days|Subject), sleepstudy, opt = "bobyqa")) #stopifnot(all.equal(fm1@devcomp$cmp['REML'], fm1.@devcomp$cmp['REML']), # all.equal(fixef(fm1), fixef(fm1.)), # all.equal(fm1@re@theta, fm1.@theta, tolerance = 1.e-7), # all.equal(ranef(fm1), ranef(fm1.))) ## compDev = FALSE no longer applies to lmer ## Test 'compDev = FALSE' (vs TRUE) ## fm1. <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy, ## compDev = FALSE)#--> use R code (not C++) for deviance computation ## stopifnot(all.equal(fm1@devcomp$cmp['REML'], fm1.@devcomp$cmp['REML']), ## all.equal(fixef(fm1), fixef(fm1.)), ## all.equal(fm1@re@theta, fm1.@re@theta, tolerance = 1.e-7), ## all.equal(ranef(fm1), ranef(fm1.), tolerance = 1.e-7)) vv <- vcov(fm1) cc <- Matrix::cov2cor(vv) dimnames(cc) <- dimnames(vv) ## work around Matrix 1.5.2 buglet stopifnot( all.equal(fixef(fm1), fixef(fm2), tolerance = 1.e-13) , all.equal(unname(fixef(fm1)), c(251.405104848485, 10.467285959595), tolerance = 1e-13) , all.equal(cc["(Intercept)", "Days"], -0.1375, tolerance = 4e-4) ) fm1ML <- refitML(fm1) fm2ML <- refitML(fm2) (cbind(AIC= c(m1= AIC(fm1ML), m2= AIC(fm2ML)), BIC= c( BIC(fm1ML), BIC(fm2ML))) -> ICm) stopifnot(all.equal(c(ICm), c(1763.94, 1762, 1783.1, 1777.97), tolerance = 1e-5))# see 1.2e-6 (fm3 <- lmer(Yield ~ 1|Batch, Dyestuff2)) stopifnot(all.equal(coef(summary(fm3)), array(c(5.6656, 0.67838803150, 8.3515624346), c(1,3), dimnames = list("(Intercept)", c("Estimate", "Std. Error", "t value"))))) showProc.time() # ### {from ../man/lmer.Rd } --- compare lmer & lmer1 --------------- (fmX1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)) (fm.1 <- lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject), sleepstudy)) #(fmX2 <- lmer2(Reaction ~ Days + (Days|Subject), sleepstudy)) #(fm.2 <- lmer2(Reaction ~ Days + (1|Subject) + (0+Days|Subject), sleepstudy)) ## check update(, ): fm.3 <- update(fmX1, . ~ Days + (1|Subject) + (0+Days|Subject)) stopifnot(all.equal(fm.1, fm.3)) fmX1s <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy )# no longer:, sparseX=TRUE) #fmX2s <- lmer2(Reaction ~ Days + (Days|Subject), sleepstudy, sparseX=TRUE) options(oldOpts) ## restore digits showProc.time() # for(nm in c("coef", "fixef", "ranef", "sigma", "model.matrix", "model.frame" , "terms")) { cat(sprintf("%15s : ", nm)) FUN <- get(nm) F.fmX1s <- FUN(fmX1s) # F.fmX2s <- FUN(fmX2s) # if(nm == "model.matrix") { # F.fmX1s <- as(F.fmX1s, "denseMatrix") # F.fmX2s <- as(F.fmX2s, "denseMatrix") # FF <- function(.) {r <- FUN(.); row.names(r) <- NULL # as(r, "generalMatrix") } # } # else FF <- FUN stopifnot( all.equal( FF(fmX1), F.fmX1s, tolerance = 1e-6) # , # all.equal( FF(fmX2), F.fmX2s, tolerance = 1e-5) # , # all.equal( FF(fm.1), F.fmX2s, tolerance = 9e-6) ## these are different models # , # all.equal(F.fmX2s, F.fmX1s, tolerance = 6e-6) # , # all.equal(FUN(fm.1), FUN(fm.2), tolerance = 6e-6) , TRUE) cat("[Ok]\n") } ## transformed vars should work[even if non-sensical as here;failed in 0.995-1] fm2l <- lmer(log(Reaction) ~ log(Days+1) + (log(Days+1)|Subject), data = sleepstudy, REML = FALSE) ## no need for an expand method now : xfm2 <- expand(fm2) stopifnot(dim(ranef(fm2l)[[1]]) == c(18, 2), is((c3 <- coef(fm3)), "coef.mer"), all(fixef(fm3) == c3$Batch),## <-- IFF \hat{\sigma^2} == 0 TRUE) ## Simple example by Andrew Gelman (2006-01-10) ---- n.groups <- 10 ; n.reps <- 2 n <- length(group.id <- gl(n.groups, n.reps)) ## simulate the varying parameters and the data: set.seed(0) a.group <- rnorm(n.groups, 1, 2) y <- rnorm (n, a.group[group.id], 1) ## fit and summarize the model fit.1 <- lmer (y ~ 1 + (1 | group.id)) oldOpts <- options(digits=3) coef (fit.1) options(oldOpts) ## check show( <"summary.mer"> ): (sf1 <- summary(fit.1)) # --> now looks as for fit.1 stopifnot(all.equal(fixef(fit.1), c("(Intercept)" = 1.571312129)), all.equal(unname(ranef(fit.1, drop=TRUE)[["group.id"]]), structure( c(1.8046888, -1.8097665, 1.6146451, 1.5408268, -0.1331995, -3.3306655, -1.8259277, -0.8735145, -0.3591311, 3.3720441), postVar = rep.int(0.311091076, 10)), tolerance = 1e-5) ) ## ranef and coef rr <- ranef(fm1) stopifnot(is.list(rr), length(rr) == 1, is.data.frame(rr[[1]])) print(plot(rr)) stopifnot(is(cc <- coef(fm1), "coef.mer"), is.list(cc), length(cc) == 1, is.data.frame(cc[[1]])) print(plot(cc)) rr <- ranef(fm2) stopifnot(is.list(rr), length(rr) == 1, is.data.frame(rr[[1]])) print(plot(rr)) stopifnot(is(cc <- coef(fm2), "coef.mer"), is.list(cc), length(cc) == 1, is.data.frame(cc[[1]])) print(plot(cc)) showProc.time() # ## Invalid factor specification -- used to seg.fault: set.seed(1) dat <- within(data.frame(lagoon = factor(rep(1:4,each = 25)), habitat = factor(rep(1:20, each = 5))), { y <- round(10*rnorm(100, m = 10*as.numeric(lagoon))) }) tt <- suppressWarnings(try(reg <- lmer(y ~ habitat + (1|habitat*lagoon), data = dat) ) # did seg.fault) ) # now gives error ^- should be ":" ## suppress warning that uses different quoting conventions on ## R-release vs. R-devel ## ignore singular fits as well as hess/grad problems ## (Windows gets singular fits, other platforms don't ...) ctrl0 <- lmerControl( check.conv.singular="ignore", check.conv.hess="ignore", check.conv.grad="ignore") r1 <- lmer(y ~ 0+habitat + (1|habitat:lagoon), data = dat, control=ctrl0) # ok, but senseless r1b <- lmer(y ~ 0+habitat + (1|habitat), data = dat, control=ctrl0) # same model, clearly unidentifiable ## "TODO" : summary(r1) should ideally warn the user stopifnot(all.equal(fixef(r1), fixef(r1b), tolerance= 1e-15), all.equal(ranef(r1), ranef(r1b), tolerance= 1e-15, check.attributes=FALSE)) ## Use a more sensible model: r2.0 <- lmer(y ~ 0+lagoon + (1|habitat:lagoon), data = dat) # ok r2 <- lmer(y ~ 0+lagoon + (1|habitat), data = dat) # ok, and more clear stopifnot(all.equal(fixef(r2), fixef(r2.0), tolerance= 1e-15), all.equal(ranef(r2), ranef(r2.0), tolerance= 1e-15, check.attributes=FALSE)) V2 <- vcov(r2) assert.EQ.mat(V2, diag(x = 9.9833/3, nr = 4)) stopifnot(all.equal(unname(fixef(r2)) - (1:4)*100, c(1.72, 0.28, 1.76, 0.8), tolerance = 1e-13)) ## sparseX version should give same numbers: ## (only gives a warning now -- sparseX disregarded) if(FALSE) { ## no longer r2. <- lmer(y ~ 0+lagoon + (1|habitat), data = dat, sparseX = TRUE) ## the summary() components we do want to compare 'dense X' vs 'sparse X': nmsSumm <- c("methTitle", "devcomp", "logLik", "ngrps", "coefficients", "sigma", "REmat", "AICtab") sr2 <- summary(r2) sr2. <- summary(r2.) sr2.$devcomp$dims['spFe'] <- 0L # to allow for comparisons below stopifnot(all.equal(sr2[nmsSumm], sr2.[nmsSumm], tolerance= 1e-14) , all.equal(ranef(r2), ranef(r2.), tolerance= 1e-14) , Matrix:::isDiagonal(vcov(r2.)) # ok , all.equal(Matrix::diag(vcov(r2.)), rep.int(V2[1,1], 4), tolerance= 1e-13) # , all(vcov(r2.)@factors$correlation == diag(4)) # not sure why this fails , TRUE) r2. } ### mcmcsamp() : ## From: Andrew Gelman ## Date: Wed, 18 Jan 2006 22:00:53 -0500 if (FALSE) { # mcmcsamp still needs work ## NB: Need to restore coda to the Suggests: field of DESCRIPTION ## file if this code block is reinstated. ## has.coda <- require(coda) ## if(!has.coda) ## cat("'coda' package not available; some outputs will look suboptimal\n") ## Very simple example y <- 1:10 group <- gl(2,5) (M1 <- lmer (y ~ 1 + (1 | group))) # works fine (r1 <- mcmcsamp (M1)) # dito r2 <- mcmcsamp (M1, saveb = TRUE) # gave error in 0.99-* and 0.995-[12] (r10 <- mcmcsamp (M1, n = 10, saveb = TRUE)) ## another one, still simple y <- (1:20)*pi x <- (1:20)^2 group <- gl(2,10) M1 <- lmer (y ~ 1 | group) mcmcsamp (M1, n = 2, saveb=TRUE) # fine M2 <- lmer (y ~ 1 + x + (1 + x | group)) # false convergence ## should be identical (and is) M2 <- lmer (y ~ x + ( x | group))# false convergence -> simulation doesn't work: if(FALSE) ## try(..) fails here (in R CMD check) [[why ??]] mcmcsamp (M2, saveb=TRUE) ## Error: inconsistent degrees of freedom and dimension ... ## mcmc for glmer: rG1k <- mcmcsamp(m1, n = 1000) summary(rG1k) rG2 <- mcmcsamp(m1, n = 3, verbose = TRUE) } ## Spencer Graves' example (from a post to S-news, 2006-08-03) ---------------- ## it should give an error, rather than silent non-sense: tstDF <- data.frame(group = letters[1:5], y = 1:5) assertError(## Now throws an error, as desired : lmer(y ~ 1 + (1|group), data = tstDF) ) showProc.time() # ## Wrong formula gave a seg.fault at times: set.seed(2)# ! D <- data.frame(y= rnorm(12,10), ff = gl(3,2,12), x1=round(rnorm(12,3),1), x2=round(rnorm(12,7),1)) ## NB: The first two are the same, having a length-3 R.E. with 3 x 3 vcov-matrix: ## --> do need CPU ## suppressWarnings() for warning about too-few random effects levels tmpf <- function(form) lmer(form, data = D , control=lmerControl(check.conv.singular="ignore", check.nobs.vs.nRE="ignore", calc.derivs=FALSE)) m0 <- tmpf(y ~ (x1 + x2)|ff) m1 <- tmpf(y ~ x1 + x2|ff) m2 <- tmpf(y ~ x1 + (x2|ff)) m3 <- tmpf(y ~ (x2|ff) + x1) suppressWarnings(stopifnot(all.equal(ranef(m0), ranef(m1), tolerance = 1e-5), all.equal(ranef(m2), ranef(m3), tolerance = 1e-5), inherits(tryCatch(lmer(y ~ x2|ff + x1, data = D), error = function(e)e), "error"))) showProc.time() # ## Reordering of grouping factors should not change the internal structure #Pm1 <- lmer1(strength ~ (1|batch) + (1|sample), Pastes, doFit = FALSE) #Pm2 <- lmer1(strength ~ (1|sample) + (1|batch), Pastes, doFit = FALSE) #P2.1 <- lmer (strength ~ (1|batch) + (1|sample), Pastes, devFunOnly = TRUE) #P2.2 <- lmer (strength ~ (1|sample) + (1|batch), Pastes, devFunOnly = TRUE) ## The environments of Pm1 and Pm2 should be identical except for ## "call" and "frame": #stopifnot(## all.EQ(env(Pm1), env(Pm2)), # all.EQ(S4_2list(P2.1), # S4_2list(P2.2))) ## example from Kevin Thorpe: synthesized equivalent ## http://thread.gmane.org/gmane.comp.lang.r.lme4.devel/9835 ## NA issue: simpler example d <- data.frame(y=1:60,f=factor(rep(1:6,each=10))) d$y[2] <- NA d$f[3:4] <- NA lmer(y~(1|f),data=d) glmer(y~(1|f),data=d,family=poisson) ## we originally thought that these examples should be ## estimating non-zero variances, but they shouldn't ... ## number of levels with each level of replication levs <- c(800,300,150,100,50,50,50,20,20,5,2,2,2,2) n <- seq_along(levs) flevels <- seq(sum(levs)) set.seed(101) fakedat <- data.frame(DA = factor(rep(flevels,rep(n,levs))), zbmi=rnorm(sum(n*levs))) ## add NA values fakedat[sample(nrow(fakedat),100),"zbmi"] <- NA fakedat[sample(nrow(fakedat),100),"DA"] <- NA m5 <- lmer(zbmi ~ (1|DA) , data = fakedat, control=lmerControl(check.nobs.vs.rankZ="ignore")) m6 <- update(m5, data=na.omit(fakedat)) stopifnot(VarCorr(m5)[["DA"]] == 0, VarCorr(m6)[["DA"]] == 0) showProc.time() lme4/tests/profile-tst.R0000644000176200001440000001353415022107260014651 0ustar liggesuserslibrary(lme4) library(testthat) library(lattice) testLevel <- if (nzchar(s <- Sys.getenv("LME4_TEST_LEVEL"))) as.numeric(s) else 1 options(nwarnings = 5000)# instead of 50, and then use summary(warnings()) if (testLevel>1) { ### __ was ./profile_plots.R ___ fm1 <- lmer(Reaction~ Days + (Days|Subject), sleepstudy) pfile <- system.file("testdata","tprfm1.RData", package="lme4") if(file.exists(pfile)) print(load(pfile)) else withAutoprint({ system.time( tpr.fm1 <- profile(fm1, optimizer="Nelder_Mead") ) ## 5 sec (2018); >= 50 warnings !? save(tpr.fm1, file= "../../inst/testdata/tprfm1.RData") }) oo <- options(warn = 2) # {warnings are errors from here on} if(!dev.interactive(orNone=TRUE)) pdf("profile_plots.pdf") xyplot(tpr.fm1) splom(tpr.fm1) densityplot(tpr.fm1, main="densityplot( profile(lmer(..)) )") ## various scale options xyplot(tpr.fm1,scale=list(x=list(relation="same"))) ## stupid xyplot(tpr.fm1,scale=list(y=list(relation="same"))) xyplot(tpr.fm1,scale=list(y=list(relation="same"),tck=0)) ## expect_error(xyplot(tpr.fm1,conf=50),"must be strictly between 0 and 1") ### end {profile_plots.R} fm01ML <- lmer(Yield ~ 1|Batch, Dyestuff, REML = FALSE) ## 0.8s (on a 5600 MIPS 64bit fast(year 2009) desktop "AMD Phenom(tm) II X4 925"): ## system.time( tpr <- profile(fm01ML) ) ## test all combinations of 'which', including plots (but don't show plots) wlist <- list(1:3,1:2,1,2:3,2,3,c(1,3)) invisible(lapply(wlist,function(w) xyplot(profile(fm01ML,which=w)))) (confint(tpr) -> CIpr) print(xyplot(tpr)) ## comparing against lme4a reference values -- but lme4 returns sigma ## rather than log(sigma) stopifnot(dim(CIpr) == c(3,2), all.equal(unname(CIpr[".sigma",]),exp(c(3.64362, 4.21446)), tolerance=1e-6), all.equal(unname(CIpr["(Intercept)",]),c(1486.451500,1568.548494))) options(oo)# warnings allowed .. ## fixed-effect profiling with vector RE data(Pastes) fmoB <- lmer(strength ~ 1 + (cask | batch), data=Pastes, control = lmerControl(optimizer = "bobyqa")) (pfmoB <- profile(fmoB, which = "beta_", alphamax=.001)) xyplot(pfmoB)# nice and easy .. summary( fm <- lmer(strength ~ 1 + (cask | batch), data=Pastes, control = lmerControl(optimizer = "nloptwrap", calc.derivs= FALSE)) ) ls.str(environment(nloptwrap))# showing *its* defaults pfm <- profile(fm, which = "beta_", alphamax=.001) # 197 warnings for "nloptwrap" summary(warnings()) str(pfm) # only 3 rows, .zeta = c(0, NaN, Inf) !!! try( xyplot(pfm) ) ## FIXME or rather the profiling or rather the "wrap on nloptr" (testLevel <- lme4:::testLevel()) if(testLevel > 2) { ## 2D profiles fm2ML <- lmer(diameter ~ 1 + (1|plate) + (1|sample), Penicillin, REML=0) system.time(pr2 <- profile(fm2ML)) # 5.2 sec, 2018-05: 2.1" (confint(pr2) -> CIpr2) lme4a_CIpr2 <- structure(c(0.633565787613112, 1.09578224011285, -0.721864513060904, 21.2666273835452, 1.1821039843372, 3.55631937954106, -0.462903300019305, 24.6778176174587), .Dim = c(4L, 2L), .Dimnames = list(c(".sig01", ".sig02", ".lsig", "(Intercept)"), c("2.5 %", "97.5 %"))) lme4a_CIpr2[".lsig",] <- exp(lme4a_CIpr2[".lsig",]) stopifnot(all.equal(unname(CIpr2),unname(lme4a_CIpr2),tolerance=1e-6)) print(xyplot(pr2, absVal=0, aspect=1.3, layout=c(4,1))) print(splom(pr2)) gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) ## GLMM profiles system.time(pr4 <- profile(gm1)) ## ~ 10 seconds pr4.3 <- profile(gm1,which=3) xyplot(pr4,layout=c(5,1),as.table=TRUE) splom(pr4) ## used to fail because of NAs nm1 <- nlmer(circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym|Tree, Orange, start = c(Asym = 200, xmid = 725, scal = 350)) if (FALSE) { ## not working yet: detecting (slightly) lower deviance; not converging in 10k pr5 <- profile(nm1,which=1,verbose=1,maxmult=1.2) xyplot(.zeta~.focal|.par,type=c("l","p"),data=lme4:::as.data.frame.thpr(pr5), scale=list(x=list(relation="free")), as.table=TRUE) } } ## testLevel > 2 if (testLevel > 3) { fm3ML <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy, REML=FALSE) ## ~ 4 theta-variables (+ 2 fixed), 19 seconds | 2018-05: 7.4" print(system.time(pr3 <- profile(fm3ML))) print(xyplot(pr3)) print(splom(pr3)) if (testLevel > 4) { if(requireNamespace("mlmRev")) { data("Contraception", package="mlmRev") ## fit already takes ~ 3 sec (2018-05) fm2 <- glmer(use ~ urban+age+livch + (urban|district), Contraception, binomial) print(system.time(pr5 <- profile(fm2,verbose=10))) # 2018-05: 462 sec = 7'42" ## -> 5 warnings notably "non-monotonic profile for .sig02" (the RE's corr.) print(xyplot(pr5)) } } ## testLevel > 4 } ## testLevel > 3 library("parallel") if (detectCores()>1) { p0 <- profile(fm1, which="theta_") ## http://stackoverflow.com/questions/12983137/how-do-detect-if-travis-ci-or-not travis <- nchar(Sys.getenv("TRAVIS")) > 0 if(.Platform$OS.type != "windows" && !travis) { prof01P <- profile(fm1, which="theta_", parallel="multicore", ncpus=2) stopifnot(all.equal(p0,prof01P)) } ## works in Solaris from an interactive console but not ??? ## via R CMD BATCH if (Sys.info()["sysname"] != "SunOS" && !travis) { prof01P.snow <- profile(fm1, which="theta_", parallel="snow", ncpus=2) stopifnot(all.equal(p0,prof01P.snow)) } } ## test profile/update from within functions foo <- function() { gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) ## return profile(gm1, which="theta_") } stopifnot(inherits(foo(), "thpr")) } ## testLevel>1 lme4/tests/elston.R0000644000176200001440000000706615022107260013710 0ustar liggesusers## original code for reading/aggregating: ## tickdata <- read.table("Elston2001_tickdata.txt",header=TRUE, ## colClasses=c("factor","numeric","factor","numeric","factor","factor")) ## tickdata <- transform(tickdata,cHEIGHT=scale(HEIGHT,scale=FALSE)) ## for (i in names(tickdata)) { ## if (is.factor(tickdata[[i]])) { ## tickdata[[i]] <- factor(tickdata[[i]],levels=sort(as.numeric(levels(tickdata[[i]])))) ## } ## } ## summary(tickdata) ## grouseticks <- tickdata ## library(reshape) ## meantick <- rename(aggregate(TICKS~BROOD,data=tickdata,FUN=mean), ## c(TICKS="meanTICKS")) ## vartick <- rename(aggregate(TICKS~BROOD,data=tickdata,FUN=var), ## c(TICKS="varTICKS")) ## uniqtick <- unique(subset(tickdata,select=-c(INDEX,TICKS))) ## grouseticks_agg <- Reduce(merge,list(meantick,vartick,uniqtick)) ## save("grouseticks","grouseticks_agg",file="grouseticks.rda") if (.Platform$OS.type != "windows") { library(lme4) data(grouseticks) do.plots <- FALSE form <- TICKS~YEAR+HEIGHT+(1|BROOD)+(1|INDEX)+(1|LOCATION) ## fit with lme4 ## library(lme4) ## t1 <- system.time(full_mod1 <- glmer(form, family="poisson",data=grouseticks)) ## c1 <- c(fixef(full_mod1),unlist(VarCorr(full_mod1)), logLik=logLik(full_mod1),time=t1["elapsed"]) ## allcoefs1 <- c(unlist(full_mod1@ST),fixef(full_mod1)) ## detach("package:lme4") ## lme4 summary results: t1 <- structure(c(1.288, 0.048, 1.36, 0, 0), class = "proc_time", .Names = c("user.self", "sys.self", "elapsed", "user.child", "sys.child")) c1 <- structure(c(11.3559080756861, 1.1804105508475, -0.978704335712111, -0.0237607330254979, 0.293232458048324, 0.562551624933584, 0.279548178949372, -424.771990224991, 1.36), .Names = c("(Intercept)", "YEAR96", "YEAR97", "HEIGHT", "INDEX", "BROOD", "LOCATION", "logLik", "time.elapsed" )) allcoefs1 <- structure(c(0.541509425632023, 0.750034415832756, 0.528723159081737, 11.3559080756861, 1.1804105508475, -0.978704335712111, -0.0237607330254979 ), .Names = c("", "", "", "(Intercept)", "YEAR96", "YEAR97", "HEIGHT")) pars <- function(x) unlist(getME(x,c("theta","beta"))) if (lme4:::testLevel() > 1) { t2 <- system.time(full_mod2 <- glmer(form, family="poisson",data=grouseticks)) ##>> 2 x checkConv(.. "derivs") warning: 1. failed to conv. 2. nearly unidentifiable c2 <- c(fixef(full_mod2), unlist(VarCorr(full_mod2)), logLik = logLik(full_mod2), time= t2["elapsed"]) ## refit ## FIXME: eventually would like to get _exactly_ identical answers on refit() full_mod3 <- refit(full_mod2, grouseticks$TICKS) print( all.equal(pars(full_mod2), pars(full_mod3), tolerance=0))# -> 1.2e-5 stopifnot(all.equal(pars(full_mod2), pars(full_mod3), tolerance=8e-5)) } ## deviance function ## FIXME: does compDev do _anything_ any more? mm <- glmer(form, family="poisson", data=grouseticks, devFunOnly=TRUE) mm2 <- glmer(form, family="poisson", data=grouseticks, devFunOnly=TRUE,control=glmerControl(compDev=TRUE)) stopifnot(all.equal(1780.5427072, mm(allcoefs1), tol = 1e-7)) } ## skip on windows (for speed) lme4/tests/priorWeightsModComp.R0000644000176200001440000000703515022107260016345 0ustar liggesuserslibrary(lme4) n <- nrow(sleepstudy) op <- options(warn = 1, # show as they happen ("false" convergence warnings) useFancyQuotes = FALSE) if (.Platform$OS.type != "windows") { ##' remove all attributes but names dropA <- function(x) `attributes<-`(x, list(names = names(x))) ##' transform result of "numeric" all.equal.list() to a named vector all.eqL <- function(x1, x2, ...) { r <- sub("^Component ", '', all.equal(x1, x2, tolerance = 0, ...)) r <- strsplit(sub(": Mean relative difference:", "&&", r), split="&&", fixed=TRUE) setNames(as.numeric(vapply(r, `[`, "1.234", 2L)), ## drop surrounding "..." nm = sub('"$', '', substring(vapply(r, `[`, "nam", 1L), first=2))) } seedF <- function(s) { if(s %in% c(6, 39, 52, 57, 63, 74, 76, 86)) switch(as.character(s) , "52"=, "63"=, "74" = 2 , "6"=, "39" = 3 , "86" = 8 # needs 4 on Lnx-64b , "76" = 70 # needs 42 on Lnx-64b , "57" = 90 # needs 52 on Lnx-64b ) else if(s %in% c(1, 12, 15, 34, 36, 41, 42, 43, 49, 55, 59, 67, 80, 85)) ## seeds 41,59, .. 15 1.0 else ## seeds 22, 20, and better 0.25 } ## be fast, running only 10 seeds by default: sMax <- if(lme4:::testLevel() > 1) 99L else 9L mySeeds <- 0L:sMax lapply(setNames(,mySeeds), function(seed) { cat("\n------ random seed =", seed, "---------\n") set.seed(seed) v <- rpois(n,1) + 1 w <- 1/v cat("weights w:\n") fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy, REML=FALSE, weights = w); cat("..2:\n") fm2 <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy, REML=FALSE, weights = w) cat("weights w*10:\n") fm1.10 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy, REML=FALSE, weights = w*10);cat("..2:\n") fm2.10 <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy, REML=FALSE, weights = w*10) ## ano12... <- dropA(anova(fm1, fm2 )) ano12.10 <- dropA(anova(fm1.10, fm2.10)) print(aEQ <- all.eqL(ano12..., ano12.10)) # showing differences if(!exists("notChisq")) notChisq <<- local({ n <- names(ano12...) grep("Chisq", n, value=TRUE, fixed=TRUE, invert=TRUE) }) stopifnot( all.equal(ano12...$Chisq, ano12.10$Chisq, tol = 1e-6 * seedF(seed)) , all.equal(ano12...[notChisq], ano12.10[notChisq], tol= 1.5e-8 * seedF(seed)) ) aEQ }) -> rallEQ cat("=====================================\n") rallEQ <- t(simplify2array(rallEQ)) notChisq <- intersect(notChisq, colnames(rallEQ)) ## sort according to "severity": srallEQ <- rallEQ[with(as.data.frame(rallEQ), order(AIC, Chisq)), ] round(log10(srallEQ), 2) saveRDS(srallEQ, "priorWeightsMod_relerr.rds") if(!dev.interactive(orNone=TRUE)) pdf("priorWeightsMod_relerr.pdf") matplot(mySeeds, log10(srallEQ), type="l", xlab=NA) ; grid() legend("topleft", ncol=3, bty="n", paste(1:6, colnames(srallEQ), sep = ": "), col=1:6, lty=1:6) tolD <- sqrt(.Machine$double.eps) # sqrt(eps_C) abline(h = log10(tolD), col = "forest green", lty=3) axis(4, at=log10(tolD), label=quote(sqrt(epsilon[c])), las=1) LRG <- which(srallEQ[,"AIC"] > tolD) if (length(LRG)>0) { text(LRG, log10(srallEQ[LRG, "AIC"]), names(LRG), cex = .8) } ## how close are we .. str(tF <- sapply(mySeeds, seedF)) round(sort( rallEQ[, "Chisq"] / (tF * 1e-6 ), decreasing=TRUE), 1) round(sort(apply(rallEQ[,notChisq] / (tF * 1.5e-8), 1, max), decreasing=TRUE), 1) } ## skip on windows (for speed) options(op) lme4/tests/lme4_nlme.R0000644000176200001440000000302215022107260014244 0ustar liggesusersif (lme4:::testLevel() > 1 || .Platform$OS.type != "windows") withAutoprint({ ## testing whether lme4 and nlme play nicely. Only known issue ## is lmList-masking ... library("lme4") library("nlme") fm1_lmer <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) fm1_lme <- lme (Reaction ~ Days, random = ~Days|Subject, sleepstudy) ## variance-covariance matrices: annoyingly different structures vc_lmer <- VarCorr(fm1_lmer) vc_lme <- VarCorr(fm1_lme, rdig = 8) suppressWarnings(storage.mode(vc_lme) <- "numeric")# 2 NAs vc_lmerx <- c(diag(vc_lmer[[1]]), attr(vc_lmer[[1]],"correlation")[1,2]) vc_lmex <- c( vc_lme[1:2,1], vc_lme[2,3]) stopifnot( all.equal(vc_lmex, vc_lmerx, tolerance= 4e-4) # had 3e-5, now see 0.000296 , ## fixed effects (much easier) : all.equal(fixef(fm1_lmer), fixef(fm1_lme)) # 3.6e-15 , all.equal(unname(unlist(unclass(ranef(fm1_lmer)))), unname(unlist(unclass(ranef(fm1_lme)))), tolerance = 2e-4) # had 2e-5, now see 8.41e-5 ) fm1L_lme <- nlme::lmList(distance ~ age | Subject, Orthodont) fm1L_lmer <- lme4::lmList(distance ~ age | Subject, Orthodont) stopifnot(all.equal(fixef(fm1L_lmer), fixef(fm1L_lme))) sm1L_e <- summary(fm1L_lme) sm1L_er <- summary(fm1L_lmer) stopifnot( all.equal(coef(sm1L_e), coef(sm1L_er), tol=1e-12)# even tol=0 works on some Lnx 64b ) ## FIXME: test opposite order }) lme4/tests/AAAtest-all.R0000644000176200001440000000154615022107260014431 0ustar liggesusersif (base::require("testthat", quietly = TRUE)) { pkg <- "lme4" require(pkg, character.only=TRUE, quietly=TRUE) if(getRversion() < "3.5.0") { withAutoprint <- identity ; prt <- print } else { prt <- identity } if(Sys.getenv("USER") %in% c("maechler", "bbolker")) withAutoprint({ ## for developers' sake: lP <- .libPaths() # ---- .libPaths() : ---- prt(lP) ## ---- Entries in .libPaths()[1] : ---- prt(list.files(lP[1], include.dirs=TRUE)) prt(sessionInfo()) prt(packageDescription("Matrix")) ## 'lme4' from packageDescription "file" : prt(attr(packageDescription("lme4"), "file")) }) test_check(pkg) ##======== ^^^ print(warnings()) # TODO? catch most of these by expect_warning(..) } else { cat( "package 'testthat' not available, cannot run unit tests\n" ) } lme4/tests/testthat/0000755000176200001440000000000015113144725014120 5ustar liggesuserslme4/tests/testthat/test-utils.R0000644000176200001440000000420215103764661016364 0ustar liggesusers## use old (<=3.5.2) sample() algorithm if necessary if ("sample.kind" %in% names(formals(RNGkind))) { suppressWarnings(RNGkind("Mersenne-Twister", "Inversion", "Rounding")) } #context("Utilities (including *non*-exported ones)") test_that("namedList", { nList <- lme4:::namedList a <- b <- c <- 1 expect_identical(nList(a,b,c), list(a = 1, b = 1, c = 1)) expect_identical(nList(a,b,d=c),list(a = 1, b = 1, d = 1)) expect_identical(nList(a, d=pi, c), list(a = 1, d = pi, c = 1)) }) test_that("Var-Cov factor conversions", { ## from ../../R/vcconv.R mlist2vec <- lme4:::mlist2vec Cv_to_Vv <- lme4:::Cv_to_Vv Cv_to_Sv <- lme4:::Cv_to_Sv Sv_to_Cv <- lme4:::Sv_to_Cv Vv_to_Cv <- lme4:::Vv_to_Cv ## set.seed(1); cvec1 <- sample(10, 6) v1 <- Cv_to_Vv(cvec1) expect_equal(unname(v1), structure(c(9, 12, 15, 65, 34, 93), clen = 3)) expect_equal(2, as.vector(Vv_to_Cv(Cv_to_Vv(2)))) expect_equivalent(c(v1, 1), Cv_to_Vv(cvec1, s=3) / 3^2) expect_equal(as.vector(ss1 <- Sv_to_Cv(Cv_to_Sv(cvec1))), cvec1) expect_equal(as.vector(vv1 <- Vv_to_Cv(Cv_to_Vv(cvec1))), cvec1) ## for length-1 matrices, Cv_to_Sv should be equivalent ## to multiplying Cv by sigma and appending sigma .... clist2 <- list(matrix(1),matrix(2),matrix(3)) cvec2 <- mlist2vec(clist2) expect_equal(cvec2, structure(1:3, clen = rep(1,3)), tolerance=0) expect_true(all((cvec3 <- Cv_to_Sv(cvec2, s=2)) == c(cvec2*2,2))) n3 <- length(cvec3) expect_equivalent(Sv_to_Cv(cvec3, n=rep(1,3), s=2), cvec3[-n3]/cvec3[n3]) }) ## moved to lme4 test_that("getData", { ## test what happens when wrong version of 'data' is found in environment of formula ... f <- round(Reaction) ~ 1 + (1|Subject) g <- function() { data <- sleepstudy m1 <- glmer(f, data = data, family = poisson) } m1 <- g() expect_error(getData(m1), "object found is not a data frame or matrix") p1 <- suppressMessages(predict(m1, newparams = list(beta = 5, theta = 1), type = "response", re.form = ~ 1|Subject)) expect_equal(unname(head(p1, 2)), c(444.407382298401, 444.407382298401)) }) lme4/tests/testthat/test-allFit.R0000644000176200001440000001134415103764661016444 0ustar liggesuserstestLevel <- if (nzchar(s <- Sys.getenv("LME4_TEST_LEVEL"))) as.numeric(s) else 1 if (testLevel>1) { L <- load(system.file("testdata", "lme-tst-fits.rda", package="lme4", mustWork=TRUE)) had_pars <- exists("pars", envir = globalenv(), inherits = FALSE) had_ctrl <- exists("ctrl", envir = globalenv(), inherits = FALSE) gm_all <- allFit(fit_cbpp_1, verbose=TRUE) gm_all_nostart <- allFit(fit_cbpp_1, verbose=FALSE, start_from_mle = FALSE) test_that("pars and ctrl did not leak into the environment", { expect_equal(exists("pars", envir = globalenv(), inherits = FALSE), had_pars) expect_equal(exists("ctrl", envir = globalenv(), inherits = FALSE), had_ctrl) }) summary(gm_all)$times[,"elapsed"] summary(gm_all_nostart)$times[,"elapsed"] sapply(gm_all, function(x) x@optinfo$feval) sapply(gm_all_nostart, function(x) x@optinfo$feval) ## library(microbenchmark) ## mb1 <- microbenchmark( ## start = allFit(fit_cbpp_1, verbose=FALSE), ## nostart = allFit(fit_cbpp_1, verbose=FALSE, start_from_mle = FALSE) ## ) test_that("allFit print/summary is fine", { expect_is(gm_all, "allFit") expect_is(summary(gm_all), "summary.allFit") }) test_that("nloptwrap switches optimizer correctly", { expect_equal(attr(gm_all[["nloptwrap.NLOPT_LN_BOBYQA"]],"optCtrl"), list(maxeval = 1e5, algorithm = "NLOPT_LN_BOBYQA")) expect_equal(attr(gm_all[["nloptwrap.NLOPT_LN_NELDERMEAD"]],"optCtrl"), list(maxeval = 1e5, algorithm = "NLOPT_LN_NELDERMEAD")) }) test_that("lmerControl() arg works too", { fm0 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy) fm <- update(fm0, control = lmerControl(optCtrl = list(xtol_rel = 1e-8, ftol_rel = 1e-8), calc.derivs=FALSE)) afm0 <- allFit(fm0,verbose=FALSE) afm <- allFit(fm,verbose=FALSE) # used to fail drop_ <- function(x) { x[setdiff(names(x), c("times","feval"))] } ## should be approximately the same expect_equal(drop_(summary(afm0)), drop_(summary(afm)), tolerance = 1e-2) ## should NOT be the same! expect_false(isTRUE(all.equal(drop_(summary(afm0)), drop_(summary(afm)), tolerance=1e-10))) }) test_that("glmerControl() arg + optimizer", { ## GH #523? fit_cbpp_1u <- update(fit_cbpp_1, control=glmerControl(optimizer="nloptwrap", optCtrl=list(xtol_abs=1e-10, ftol_abs=1e-10))) af2 <- allFit(fit_cbpp_1u, verbose=FALSE) expect_equal(class(af2),"allFit") }) test_that("i in model call is OK", { ## GH #538 ## ugh, testthat scoping is insane ... ## if d and i are ## assigned normally with <- outside expect_true(), test fails ## BUT global assignment of 'd' breaks downstream tests in ## 'data= argument and formula evaluation' (test-formulaEval.R) ## ddd breaks similar test in 'fitting lmer models' (test-lmer.R) ## (where 'd' is supposed to be nonexistent) ## if we do global assignment with <<- ## can't figure out how to remove d (or ddd) after it's created to leave ## the environment clean ... ## tried to encapsulate all the necessary assignments ## within expect_true({ ... }) but that fails in other ways nr <- nrow(sleepstudy) ..dd <<- list(sleepstudy[1:nr,], sleepstudy[-(1:nr)]) i <<- 1 fm0 <- lmer(Reaction ~ Days + (1 | Subject), data=..dd[[i]]) aa <- allFit(fm0, verbose=FALSE) expect_true( all(summary(aa)$which.OK) ) }) test_that("allFit/update scoping", { ## GH #601 fit_func <- function(dataset) { gm1 <- glmer( cbind(incidence, size - incidence) ~ period + (1 | herd), data = dataset, family = binomial ) gm1@call$data <- dataset allFit(gm1, catch.errs=FALSE) } cc <- capture.output(ff <- fit_func(cbpp)) expect_true(all(summary(ff)$which.OK)) }) test_that("maxfun works", { gm_it10 <- suppressWarnings(allFit(fit_cbpp_1, verbose=FALSE, maxfun = 10)) v <- vapply(gm_it10, function(x) as.integer(x@optinfo$feval), FUN.VALUE=1L) ## function values are sometimes off a bit (due to initialization or Hessian calculation) ## but close enough ... expect_true(all(is.na(v) | v < 12)) }) } ## testLevel lme4/tests/testthat/test-catch.R0000644000176200001440000000101315103764661016303 0ustar liggesusers#context("storing warnings, convergence status, etc.") test_that("storewarning", { gCtrl <- glmerControl(optimizer = "Nelder_Mead", optCtrl = list(maxfun=3)) expect_warning(gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data=cbpp, family=binomial, control=gCtrl), "failure to converge in 3") expect_equal(gm1@optinfo$warnings[[1]],"failure to converge in 3 evaluations") ## FIXME: why is conv==0 here? }) lme4/tests/testthat/test-nlmer.R0000644000176200001440000000070315103764661016343 0ustar liggesuserstestLevel <- if (nzchar(s <- Sys.getenv("LME4_TEST_LEVEL"))) as.numeric(s) else 1 #context("lower/upper bounds on nlmer models") test_that("nlmer", { startvec <- c(Asym = 200, xmid = 725, scal = 350) nm1 <- nlmer(circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym|Tree, Orange, start = startvec, control=nlmerControl(optCtrl=list(lower=c(0,200,-Inf,-Inf)))) expect_equal(unname(fixef(nm1)[1]),200) }) lme4/tests/testthat/test-glmer.R0000644000176200001440000004461715103764661016350 0ustar liggesuserssource(system.file("testdata", "lme-tst-funs.R", package="lme4", mustWork=TRUE))# -> uc() [back-compatible c()] testLevel <- lme4:::testLevel() gives_error_or_warning <- function (regexp = NULL, all = FALSE, ...) { function(expr) { res <- try(evaluate_promise(expr),silent=TRUE) no_error <- !inherits(res, "try-error") if (no_error) { warnings <- res$warnings if (!is.null(regexp) && length(warnings) > 0) { return(matches(regexp, all = FALSE, ...)(warnings)) } else { return(expectation(length(warnings) > 0, "no warnings or errors given", paste0(length(warnings), " warnings created"))) } } if (!is.null(regexp)) { return(matches(regexp, ...)(res)) } else { expectation(TRUE, "no error thrown", "threw an error") } } } ## expect_that(stop("foo"),gives_error_or_warning("foo")) ## expect_that(warning("foo"),gives_error_or_warning("foo")) ## expect_that(TRUE,gives_error_or_warning("foo")) ## expect_that(stop("bar"),gives_error_or_warning("foo")) ## expect_that(warning("bar"),gives_error_or_warning("foo")) if(testLevel > 1) { #context("fitting glmer models") test_that("glmer", { set.seed(101) d <- data.frame(z=rbinom(200,size=1,prob=0.5), f=factor(sample(1:10,200,replace=TRUE))) ## Using 'method=*' defunct in 2019-05 (after 6 years of deprecation) ## expect_warning(glmer(z~ 1|f, d, family=binomial, method="abc"),"Use the nAGQ argument") ## expect_warning(glmer(z~ 1|f, d, family=binomial, method="Laplace"),"Use the nAGQ argument") ##sp expect_warning(glmer(z~ 1|f, d, sparseX=TRUE),"has no effect at present") expect_that(gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial), is_a("glmerMod")) expect_that(gm1@resp, is_a("glmResp")) expect_that(gm1@pp, is_a("merPredD")) expect_equal(ge1 <- unname(fixef(gm1)), c(-1.39854982537216, -0.992335519118859, -1.12867532780426, -1.58030423764517), tolerance=5e-4) expect_equal(c(VarCorr(gm1)[[1]]), 0.41245527438386, tolerance=6e-4) ### expect_that(family(gm1), equals(binomial())) ### ?? binomial() has an 'initialize' component ... and the order is different expect_equal(deviance(gm1), 73.47428, tolerance=1e-5) ## was -2L = 184.05267459802 expect_equal(sigma(gm1), 1) expect_equal(extractAIC(gm1), c(5, 194.052674598026), tolerance=1e-5) expect_equal(theta <- unname(getME(gm1, "theta")), 0.642226809144453, tolerance=6e-4) expect_that(X <- getME(gm1, "X"), is_equivalent_to( model.matrix(model.frame(~ period, data=cbpp), cbpp))) expect_that(Zt <- getME(gm1, "Zt"), is_a("dgCMatrix")) expect_equal(dim(Zt), c(15L, 56L)) expect_equal(Zt@x, rep.int(1, 56L)) expect_that(Lambdat <- getME(gm1, "Lambdat"), is_a("dgCMatrix")) expect_equivalent(as(Lambdat, "matrix"), diag(theta, 15L, 15L)) expect_is(gm1_probit <- update(gm1,family=binomial(link="probit")),"merMod") expect_equal(family(gm1_probit)$link,"probit") ## FIXME: test user-specified/custom family? expect_error(glFormula(cbind(incidence, size - incidence) ~ period + (1 | herd), data = subset(cbpp, herd==levels(herd)[1]), family = binomial), "must have > 1") expect_warning(glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = subset(cbpp, herd %in% levels(herd)[1:4]), family = binomial, control=glmerControl(check.nlev.gtreq.5="warning")), "< 5 sampled levels") expect_warning(fm1. <- glmer(Reaction ~ Days + (Days|Subject), sleepstudy), regexp="calling .* with family=gaussian .* as a shortcut") options(warn=2) options(glmerControl=list(junk=1,check.conv.grad="ignore")) expect_warning(glmer(z~ 1|f, d, family=binomial), "some options") options(glmerControl=NULL) cbppX <- transform(cbpp,prop=incidence/size) expect_is(glmer(prop ~ period + (1 | herd), data = cbppX, family = binomial, weights=size), "glmerMod") expect_is(glmer(prop ~ period + (1 | herd), data = cbppX, family = binomial, weights=size, start=NULL), "glmerMod") expect_is(glmer(prop ~ period + (1 | herd), data = cbppX, family = binomial, weights=size, verbose=0L), "glmerMod") expect_is(glmer(prop ~ period + (1 | herd), data = cbppX, family = binomial, weights=size, subset=TRUE), "glmerMod") expect_is(glmer(prop ~ period + (1 | herd), data = cbppX, family = binomial, weights=size, na.action="na.exclude"), "glmerMod") expect_is(glmer(prop ~ period + (1 | herd), data = cbppX, family = binomial, weights=size, offset=rep(0,nrow(cbppX))), "glmerMod") expect_is(glmer(prop ~ period + (1 | herd), data = cbppX, family = binomial, weights=size, contrasts=NULL), "glmerMod") expect_is(glmer(prop ~ period + (1 | herd), data = cbppX, family = binomial, weights=size, devFunOnly=FALSE), "glmerMod") expect_is(glmer(prop ~ period + (1 | herd), data = cbppX, family = binomial, weights=size, control=glmerControl(optimizer="Nelder_Mead")), "glmerMod") expect_is(glmer(prop ~ period + (1 | herd), data = cbppX, family = binomial, weights=size, control=glmerControl()), "glmerMod") options(warn=0) expect_error(glmer(prop ~ period + (1 | herd), data = cbppX, family = binomial, weights=size, junkArg=TRUE), "unused argument") if(FALSE) { ## Hadley broke this expect_warning(glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial, control=list()), "instead of passing a list of class") expect_warning(glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial, control=lmerControl()), "instead of passing a list of class") } ## load(system.file("testdata","radinger_dat.RData",package="lme4")) mod <- glmer(presabs~predictor+(1|species),family=binomial, radinger_dat) expect_is(mod,"merMod") ## tolerance: 32-bit Windows (CRAN) reported ave.diff of 5.33e-8 ## 64-bit Win-builder r73242 now reports ave. diff of 1.31e-5 ... expect_equal(unname(fixef(mod)), c(0.5425528,6.4289962), tolerance = 1e-4) set.seed(101) ## complete separation case d <- data.frame(y=rbinom(1000,size=1,p=0.5), x=runif(1000), f=factor(rep(1:20,each=50)), x2=rep(0:1,c(999,1))) expect_message(mod2 <- glmer(y~x+x2+(1|f),data=d,family=binomial, control=glmerControl(check.conv.hess="ignore", check.conv.grad="ignore")), "singular") expect_equal(unname(fixef(mod2))[1:2], c(-0.10036244,0.03548523), tolerance=1e-4) expect_true(unname(fixef(mod2)[3] < -10)) expect_message(mod3 <- update(mod2, family=binomial(link="probit")), "singular") # singular Hessian warning expect_equal(unname(fixef(mod3))[1:2], c(-0.062889, 0.022241), tolerance=1e-4) expect_true(fixef(mod3)[3] < -4) expect_message(mod4 <- update(mod2, family=binomial(link="cauchit"), control=glmerControl(check.conv.hess="ignore", check.conv.grad="ignore")))#--> singular Hessian warning ## on-the-fly creation of index variables if (FALSE) { ## FIXME: fails in testthat context -- 'd' is not found ## in the parent environment of glmer() -- but works fine ## otherwise ... set.seed(101) d <- data.frame(y1=rpois(100,1), x=rnorm(100), ID=1:100) fit1 <- glmer(y1 ~ x+(1|ID),data=d,family=poisson) fit2 <- update(fit1, .~ x+(1|rownames(d))) expect_equal(unname(unlist(VarCorr(fit1))), unname(unlist(VarCorr(fit2)))) } ## if(testLevel > 2) { load(system.file("testdata","mastitis.rda",package="lme4")) t1 <- system.time(g1 <- suppressWarnings(glmer(NCM ~ birth + calvingYear + (1|sire) + (1|herd), mastitis, poisson, ## current (2014-04-24) default: --> Warning control=glmerControl( # max|grad| = 0.021 .. optimizer=c("bobyqa","Nelder_Mead"))))) t2 <- system.time(g2 <- suppressWarnings(update(g1, control=glmerControl(optimizer="bobyqa")))) ## rbind(t1,t2)[,"elapsed"] ## 20 (then 13.0) seconds N-M vs 8 (then 4.8) seconds bobyqa ... ## print(t1[3] / t2[3]) # 0.37; => 1.25 should be on the safe side expect_lte(t2[3], 1.25 * t1[3]) ## problem is fairly ill-conditioned so parameters ## are relatively far apart even though likelihoods are OK expect_equal(logLik(g1),logLik(g2),tolerance=2e-7) } ## test bootstrap/refit with nAGQ>1 gm1AGQ <- update(gm1,nAGQ=2) s1 <- simulate(gm1AGQ) expect_equal(attr(bootMer(gm1AGQ,fixef),"bootFail"),0) ## do.call(new,...) bug new <- "foo" expect_that(gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial), is_a("glmerMod")) rm("new") ## test issue #47, from Wolfgang Viechtbauer ## create some data n <- 100 ai <- rep(0:1, each = n/2) bi <- 1-ai ci <- c(rep(0,42), rep(1,8), rep(0,18), rep(1,32)) di <- 1-ci event <- c(rbind(ai,ci)) group <- rep(c(1,0), times=n) id <- rep(1:n, each=2) gm3 <- glmer(event ~ group + (1 | id), family=binomial, nAGQ=21) sd3 <- sqrt(diag(vcov(gm3))) expect_equal(uc(`(Intercept)` = 0.42542855, group = 0.42492581), sd3, tolerance=1e-5) # 7e-9 {Lnx} ## unfortunately these answers aren't reliably "wrong" any more (2024-07-02 Pop!OS Linux) expect_warning(vcov(gm3, use.hessian=FALSE), "finite-difference Hessian") expect_equal(suppressWarnings(sqrt(diag(vcov(gm3,use.hessian=FALSE)))), uc(`(Intercept)` = 0.3840921, group = 0.3768747), tolerance=1e-7) # 6.5e-8 expect_equal(sd3, unn(coef(summary(gm3))[,"Std. Error"])) ## test non-pos-def finite-difference Hessian ... if(getRversion() > "3.0.0") { ## saved fits are not safe with old R versions L <- load(system.file("testdata","polytomous_vcov_ex.RData", package="lme4", mustWork=TRUE)) expect_warning(vcov(polytomous_vcov_ex),"falling back to var-cov") } ## damage Hessian to make it singular ## (example thanks to J. Dushoff) gm1H <- gm1 gm1H@optinfo$derivs$Hessian[5,] <- 0 expect_warning(vcov(gm1H),"falling back to var-cov") ## test convergence warnings L <- load(system.file("testdata","gopherdat2.RData", package="lme4", mustWork=TRUE)) g0 <- glmer(shells~prev + (1|Site)+offset(log(Area)), family=poisson, data=Gdat) ## fit year as factor: OK gc <- glmerControl(check.conv.grad="stop") expect_is(update(g0,.~.+factor(year), control=gc), "glmerMod") ## error/warning with year as numeric: ## don't have full knowledge of which platforms lead to which ## results, and can't detect whether we're running on valgrind, ## which changes the result on 32-bit linux ... ## SEGFAULT on MacOS? why? if (FALSE) { expect_that(update(g0,.~.+year), gives_error_or_warning("(failed to converge|pwrssUpdate did not converge)")) } ## ("(failed to converge|pwrssUpdate did not converge in)")) ## if (sessionInfo()$platform=="i686-pc-linux-gnu (32-bit)") { ## expect_warning(update(g0, .~. +year), "failed to converge") ## } else { ## ## MacOS x86_64-apple-darwin10.8.0 (64-bit) ## ## MM's platform ## ## "pwrssUpdate did not converge in (maxit) iterations" ## expect_error(update(g0, .~. +year), "pwrssUpdate did not converge in") ## } ## OK if we scale & center it expect_is(update(g0,.~. + scale(year), control=gc), "glmerMod") ## not OK if we scale and don't center expect_warning(update(g0,.~. + scale(year,center=FALSE)), "failed to converge with max|grad|") ## OK if center and don't scale expect_is(update(g0,.~. + scale(year,center=TRUE,scale=FALSE), control=gc), "glmerMod") ## try higher-order AGQ expect_is (update(gm1,nAGQ=90), "glmerMod") expect_error(update(gm1,nAGQ=101),"ord < 101L") ## non-numeric response variables ss <- transform(sleepstudy, Reaction = as.character(Reaction)) expect_error(glmer(Reaction~(1|Days), family="poisson", data=ss), "response must be numeric") expect_error(glmer(Reaction~(1|Days), family="binomial", data=ss), "response must be numeric or factor") ss2 <- transform(ss,rr=rep(c(TRUE,FALSE),length.out=nrow(ss))) ## should work OK with logical too expect_is(glmer(rr~(1|Days),family="binomial",data=ss2),"merMod") ## starting values with log(.) link -- thanks to Eric Weese @ Yale: grp <- rep(letters[1:5], 20); set.seed(1); x <- rnorm(100) expect_error(glmer(x ~ 1 + (1|grp), family=gaussian(link="log")), "valid starting values") ## related to GH 231 ## fails on some platforms, skip for now if (FALSE) { rr <- gm1@resp$copy() ff <- setdiff(ls(gm1@resp),c("copy","initialize","initialize#lmResp","ptr", "updateMu","updateWts","resDev","setOffset","wrss")) for (i in ff) { expect_equal(gm1@resp[[i]],rr[[i]]) } } ## bad start case load(system.file("testdata","fakesim.RData",package="lme4")) rfit <- glmer(Inew/S ~ R0-1 + offset(log(I/N)) + (1|R0:trial) , family=binomial(link="cloglog") , data=dat , weight=S , control=glmerControl(optimizer="bobyqa", nAGQ0initStep=FALSE) , start = list(fixef=c(0,0,0),theta=1)) expect_equal(exp(fixef(rfit)), c(R01 = 1.2735051, R02 = 2.0330635, R03 = 2.9764088), tolerance=1e-5) ## gaussian with log link and zero values in response ... ## fixed simulation code, passing mustart properly dd <- expand.grid(x = seq(-2,3,length.out=10), f = factor(1:10)) dd$y <- simulate(~x+(1|f), family=gaussian(link="log"), newdata=dd, newparams=list(beta=c(0,1),theta=1,sigma=1), seed=101)[[1]] dd$y <- pmax(dd$y,0) expect_error(glmer (y ~ x + (1|f), family = gaussian(link="log"), data=dd),"cannot find valid starting values") g1 <- glmer (y ~ x + (1|f), family = gaussian(link="log"), data=dd, mustart=pmax(dd$y,0.1)) msum <- c(fixef(g1),unlist(c(VarCorr(g1))),c(logLik(g1))) expect_equal(msum, c(`(Intercept)` = 0.23389405, x = 1.0017436, f = 0.24602992, -156.7773), tolerance=1e-5) ## GH 415 expect_warning(glmer (round(Reaction) ~ Days + (1|Subject), data=sleepstudy[1:100,], family=poisson, control=lmerControl()), "please use glmerControl") }) } ## testlevel>1 test_that("glmer with etastart", { ## make sure etastart is passed through ## (fixed in commit b6fb1ac83885ff06 but never tested?) m1 <- glmer(incidence/size ~ period + (1|herd), weights = size, family = binomial, data = cbpp) m1E <- update(m1, etastart = rep(1, nrow(cbpp))) expect_true(!identical(fixef(m1), fixef(m1E))) }) test_that("turn off conv checking for nobs > check.conv.nobsmax", { ## calc derivs and check convergence gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) nn <- nrow(cbpp)-1 ## neither derivs nor conv check gm2 <- update(gm1, control = glmerControl(check.conv.nobsmax = nn)) ## no conv check, do calc derivs gm3 <- update(gm1, control = glmerControl(check.conv.nobsmax = nn, calc.derivs = TRUE)) expect_null(gm2@optinfo$derivs) expect_false(is.null(gm1@optinfo$derivs)) expect_false(is.null(gm3@optinfo$derivs)) expect_equal(gm1@optinfo$conv$lme4, list()) expect_null(gm2@optinfo$conv$lme4) expect_null(gm3@optinfo$conv$lme4) }) test_that("turn off conv checking for npara > check.conv.nparmax", { ## Code suggestion from Claude ai: ## https://claude.ai/share/06aa5947-f447-4e08-b65b-92f36c4b19a9 set.seed(1) n_groups <- 50 n_per_group <- 20 n <- n_groups * n_per_group dat <- data.frame( group = rep(1:n_groups, each = n_per_group), x1 = rnorm(n), x2 = rnorm(n) ) set.seed(101) form <- y ~ 1 + x1 * x2 + (1|group) dat$y <- simulate(form[-2], ## one-sided formula newdata = dat, family = binomial, newparams = list(beta = c(-3, 2.5, 3, 1.5), theta = 2.5))[[1]] # note: maxfun had to be artificially low for convergence warnings... mod1 <- suppressWarnings( glmer(form, data = dat, family = binomial, control = glmerControl(optCtrl = list(maxfun = 100))) ) mod2 <- suppressWarnings( update(mod1, control = glmerControl(optCtrl = list(maxfun = 100), check.conv.nparmax = 2)) ) ## First should give a warning expect_false(is.null(mod1@optinfo$conv$lme4)) ## Second shouldn't be evaluated expect_null(mod2@optinfo$conv$lme4) }) lme4/tests/testthat/test-lmerResp.R0000644000176200001440000000431515103764661017022 0ustar liggesusers data(Dyestuff, package="lme4") n <- nrow(Dyestuff) ones <- rep.int(1, n) zeros <- rep.int(0, n) YY <- Dyestuff$Yield mYY <- mean(YY) #context("lmerResp objects") test_that("lmerResp", { mres <- YY - mYY rr <- lmerResp$new(y=YY) expect_that(rr$weights, equals(ones)) expect_that(rr$sqrtrwt, equals(ones)) expect_that(rr$sqrtXwt, equals(ones)) expect_that(rr$offset, equals(zeros)) expect_that(rr$mu, equals(zeros)) expect_that(rr$wtres, equals(YY)) expect_that(rr$wrss(), equals(sum(YY^2))) expect_that(rr$updateMu(rep.int(mYY, n)), equals(sum(mres^2))) expect_that(rr$REML, equals(0L)) rr$REML <- 1L expect_that(rr$REML, equals(1L)) }) mlYY <- mean(log(YY)) gmeanYY <- exp(mlYY) # geometric mean #context("glmResp objects") test_that("glmResp", { mres <- YY - gmeanYY gmean <- rep.int(gmeanYY, n) rr <- glmResp$new(family=poisson(), y=YY) expect_that(rr$weights, equals(ones)) expect_that(rr$sqrtrwt, equals(ones)) expect_that(rr$sqrtXwt, equals(ones)) expect_that(rr$offset, equals(zeros)) expect_that(rr$mu, equals(zeros)) expect_that(rr$wtres, equals(YY)) expect_that(rr$n, equals(ones)) ## wrss() causes an update of mu which becomes ones, wtres also changes expect_that(rr$wrss(), equals(sum((YY-1)^2))) expect_that(rr$mu, equals(ones)) expect_that(rr$wtres, equals(YY-ones)) expect_that(rr$updateMu(rep.int(mlYY, n)), equals(sum(mres^2))) expect_that(rr$mu, equals(gmean)) expect_that(rr$muEta(), equals(gmean)) expect_that(rr$variance(), equals(gmean)) rr$updateWts() expect_that(1/sqrt(rr$variance()), equals(rr$sqrtrwt)) expect_that(as.vector(rr$sqrtXwt), equals(rr$sqrtrwt * rr$muEta())) }) lme4/tests/testthat/test-stepHalving.R0000644000176200001440000000055015103764661017512 0ustar liggesusersload(system.file("testdata","survdat_reduced.Rda",package="lme4")) test_that('Step-halving works properly', { # this example is known to require step-halving (or at least has in the past # required step-halving) form <- survprop~(1|nobs) m <- glmer(form,weights=eggs,data=survdat_reduced,family=binomial,nAGQ=1L) expect_that(m, is_a("glmerMod")) }) lme4/tests/testthat/test-ranef.R0000644000176200001440000000736015103764661016327 0ustar liggesusersstopifnot(require("testthat"), require("lme4")) set.seed(101) n <- 500 d <- data.frame(x=rnorm(n), f=factor(sample(1:10,n,replace=TRUE), labels=LETTERS[1:10]), g=factor(sample(1:25,n,replace=TRUE), labels=letters[1:25])) d$y <- suppressMessages(simulate(~1+x+(1|f)+(x|g),family=binomial, newdata=d, newparams=list(beta=c(0,1), theta=c(1,1,2,1)))[[1]]) fm1 <- glmer(y~(1|f)+(x|g),family=binomial,data=d) #context("ranef") test_that("warn extra args", { expect_warning(ranef(fm1,transf=exp),"additional arguments") }) test_that("dotplot_ranef", { rr <- ranef(fm1,condVar=TRUE) expect_is(lattice::dotplot(rr,scales=list(x = list(relation = 'free')))$g, "trellis") expect_is(lattice::dotplot(rr,transf=exp, scales=list(x = list(relation = 'free')))$g, "trellis") expect_is(as.data.frame(rr),"data.frame") rr0 <- ranef(fm1) expect_is(as.data.frame(rr0),"data.frame") }) test_that("Dyestuff consistent with lme4.0", { lme4.0condVarDyestuff <- c(362.3583, 362.3583, 362.3583, 362.3583, 362.3583, 362.3583) fm <- lmer(Yield ~ 1|Batch, Dyestuff, REML=FALSE) lme4condVarDyestuff <- drop(attr(ranef(fm,condVar=TRUE)$Batch,"postVar")) expect_equal(lme4.0condVarDyestuff, lme4condVarDyestuff, tolerance = 1e-3) }) test_that("sleepstudy consistent with lme4.0", { lme4.0condVarsleepstudy <- matrix(c(145.71273, -21.440414, -21.44041, 5.310927), 2, 2) fm <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy) lme4condVarsleepstudy <- attr(ranef(fm,condVar=TRUE)$Subject,"postVar")[,,1] expect_equal(lme4.0condVarsleepstudy, lme4condVarsleepstudy, tolerance = 2e-4) }) test_that("cbpp consistent with lme4.0", { lme4.0condVarcbpp <- c(0.12128867, 0.13363275, 0.08839850, 0.17337928, 0.12277914, 0.14436663, 0.10658333, 0.10309812, 0.21289738, 0.13740279, 0.09555677, 0.19460241, 0.14808316, 0.12631006, 0.15816769) gm <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) lme4condVarcbpp <- as.numeric(attr(ranef(gm,condVar=TRUE)$herd,"postVar")) expect_equal(lme4.0condVarcbpp, lme4condVarcbpp, tolerance = 1e-3) }) #context("multiple terms per factor") test_that("multiple terms work", { fm <- lmer(Reaction ~ Days + (1|Subject)+ (0+Days | Subject), sleepstudy, control=lmerControl(optimizer="nloptwrap", optCtrl=list(xtol_abs=1e-6, ftol_abs=1e-6))) rr <- ranef(fm, condVar=TRUE) expect_equal(as.data.frame(rr)[c(1,19),], structure( list(grpvar = c("Subject", "Subject"), term = structure(1:2, .Label = c("(Intercept)", "Days"), class = "factor"), grp = structure(c(9L, 9L), .Label = c("309", "310", "370", "349", "350", "334", "335", "371", "308", "369", "351", "332", "372", "333", "352", "331", "330", "337"), class = "factor"), condval = c(1.5116973008, 9.32373076098), condsd = c(12.238845590, 2.33546851406)), row.names = c(1L, 19L), class = "data.frame"), tolerance = 1e-5) cv <- attr(rr$Subject, "postVar") expect_equal(lapply(cv, drop), list(`(Intercept)` = rep(149.79166, 18), Days = rep(5.4543894, 18)), tolerance = 1e-4) }) lme4/tests/testthat/test-oldRZXfailure.R0000644000176200001440000000072215103764661017761 0ustar liggesusersload(system.file("testdata","crabs_randdata00.Rda",package="lme4")) test_that('RZX is being calculated properly', { # this is a test for an old problem, documented here: # http://stevencarlislewalker.github.io/notebook/RZX_problems.html fr <- cbind(final.snail.density, snails.lost) ~ crab.speciesS + crab.sizeS + crab.speciesS:crab.sizeS + (snail.size | plot) m <- glmer(fr, data = randdata00, family = binomial) expect_that(m, is_a("glmerMod")) }) lme4/tests/testthat/test-glmmFail.R0000644000176200001440000000263515103764661016764 0ustar liggesusersdata("sleepstudy", package = "lme4") source(system.file("testdata/lme-tst-funs.R", package="lme4", mustWork=TRUE)) ##-> gSim(), a general simulation function ... set.seed(101) dBc <- gSim(family=binomial(link="cloglog"), nbinom = 1) # {0,1} Binomial ## m1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), ## family = binomial, data = cbpp) #context("Errors and warnings from glmer") test_that("glmer", { expect_error(glmer(y ~ 1 + (1|block), data=dBc, family=binomial(link="cloglog")), "Response is constant") expect_error(glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), family = binomial, data = cbpp, REML=TRUE), "unused argument.*REML") expect_warning(glmer(Reaction ~ Days + (Days|Subject), sleepstudy), "calling glmer.*family=gaussian.*deprecated") expect_warning(glmer(Reaction ~ Days + (Days|Subject), sleepstudy, family=gaussian), "calling glmer.*family=gaussian.*deprecated") m3 <- suppressWarnings(glmer(Reaction ~ Days + (Days|Subject), sleepstudy)) m4 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) m5 <- suppressWarnings(glmer(Reaction ~ Days + (Days|Subject), sleepstudy, family=gaussian)) expect_equal(fixef(m3),fixef(m5)) m3@call[[1]] <- m5@call[[1]] <- quote(lmer) ## hack call expect_equal(m3,m4) expect_equal(m3,m5) }) lme4/tests/testthat/test-glmernb.R0000644000176200001440000000565415103764661016666 0ustar liggesuserstestLevel <- if (nzchar(s <- Sys.getenv("LME4_TEST_LEVEL"))) as.numeric(s) else 1 if (testLevel>1) { #context("glmer.nb") test_that("basic", { set.seed(101) dd <- expand.grid(f1 = factor(1:3), f2 = LETTERS[1:2], g=1:9, rep=1:15, KEEP.OUT.ATTRS=FALSE) mu <- 5*(-4 + with(dd, as.integer(f1) + 4*as.numeric(f2))) dd$y <- rnbinom(nrow(dd), mu = mu, size = 0.5) require("MASS") m.glm <- glm.nb(y ~ f1*f2, data=dd) m.nb <- glmer.nb(y ~ f1*f2 + (1|g), data=dd) expect_equal(unname(fixef(m.nb)), c(1.65008, 0.76715, 1.01147, 1.51241, -0.61506, -0.6104), tol=1e-5) expect_is(m.nb,"glmerMod") ## 'family' properly quoted/not expanded in call? expect_true(grepl("negative\\.binomial\\(theta *= *[0-9]*\\.[0-9]+\\)", deparse(m.nb@call$family))) expect_null(m.nb@call$verbose) ## check: GH #321 expect_equal(fixef(m.nb), coef (m.glm), tol=1e-5) ## GH #319 ## GH #285 m.nb1 <- glmer(Reaction > 250 ~ Days + (1|Subject), data = sleepstudy, family=poisson) ## previously failing on Travis-CI m.nb2 <- glmer.nb(y ~ f1*f2 + (1|g), data=dd, subset = g!=8) expect_equal(unname(ngrps(m.nb2)),8) ## expect parameters, ngrps *not* to equal full model expect_equal(unname(fixef(m.nb2)), c(1.629240234, 0.76028840, 1.008629913, 1.6172507, -0.6814426, -0.66468330),tol=1e-5) ## control handling ... this should suppress warnings ... old.opts <- options(warning=2) m.nb2 <- glmer.nb(round(Reaction) ~ Days + (1|Subject), data = sleepstudy, subset = Subject != 370, control=glmerControl(check.conv.grad="ignore")) expect_is(m.nb2,"glmerMod") options(old.opts) m.nb3 <- glmer.nb(y~f1+(1|g), data=dd, contrasts=list(f1=contr.sum)) ## make sure *different* fixed effects from previous fit ... expect_equal(fixef(m.nb3), structure(c(2.93061, -0.29779, 0.02586), .Names = c("(Intercept)", "f11", "f12")),tol=1e-5) ## make sure 'data' is in call even if unnamed m.nb4 <- glmer.nb(y~f1+(1|g), dd) expect_equal(names(m.nb4@call),c("","formula","data","family")) ## GH 322; allow offset m.nb2 <- glmer.nb(y~f1+(1|g), data=dd, offset=rep(0,nrow(dd))) }) if (requireNamespace("merDeriv")) { test_that("summary not broken by merDeriv", { library(merDeriv) data(Arabidopsis) mod <- glmer.nb(total.fruits~status+nutrient+(1|gen), data=Arabidopsis) ## trivial test of existence/non-failure ... expect_is(summary(mod), "summary.merMod") ## may? expose other problems as S3 methods won't be unloaded properly ... detach("package:merDeriv") }) } } ## testLevel > 1 lme4/tests/testthat/test-simulate_formula.R0000644000176200001440000000465215103764661020605 0ustar liggesusersquietly <- TRUE ## factory for making methods mk_method <- function(class, print_dims=FALSE) { method <- sprintf("simulate.formula_lhs_%s",class) sim_generic <- function(object, nsim=1, seed=NULL, ...) { if (!quietly) message(sprintf("%s called",method)) if (!quietly) cat(".Basis from attributes:\n") if (!quietly) print(attr(object,".Basis")) # NULL if (print_dims) { if (!quietly) print(dim(attr(object,".Basis"))) } return(attr(object,".Basis")) } assign(method,sim_generic,.GlobalEnv) invisible(NULL) } ## (**) these methods should (??) _mask_ package versions ... ## works in source(), not in devtools::test() ... mk_method("NULL") mk_method("numeric") mk_method("array",print_dims=TRUE) mk_method("") test_that("simple numerics", { ## expect_equal(simulate(1~.),1) ## FIXME re-enable if we resolve (**) above ## One-sided formula is not the same as an LHS that evaluates to NULL: expect_equal(simulate(NULL~.),NULL) }) test_that("raw formulas", { expect_error(suppressWarnings(simulate(x~.)), "Error evaluating") }) simulate.formula_lhs_character <- function(object, nsim=1, seed=NULL, ...) { if (!quietly) message("simulate.formula_lhs_character() called.") if (!quietly) print(ls(all.names=TRUE)) NextMethod() # Calls simulate.formula(), resulting in an infinite recursion. } test_that("prevent recursion", { expect_error(simulate("a"~.), "No applicable method") }) dd <- expand.grid(A=factor(1:3),B=factor(1:10),rep=1:10) test_that("two-sided formula warning", { expect_error(suppressMessages(simulate(.~1 + (A|B), newdata=dd, newparams=list(beta=1,theta=rep(1,6), sigma=1), family=gaussian, seed=101))[[1]], "object '.' not found") }) ## cleanup ## I can't figure out what environments these things actually live in so I'm going to ## give up and try() to remove them ... ## rmx <- function(s) if (exists(s, parent.frame())) rm(list=s, envir=parent.frame()) ## rmx("simulate.formula_lhs_character") ## rmx("simulate.formula_lhs_") ## rmx("simulate.formula_lhs_numeric") suppressWarnings(try(rm(list = c("simulate.formula_lhs_", "simulate.formula_lhs_numeric")),silent=TRUE)) lme4/tests/testthat/test-resids.R0000644000176200001440000000666615103764661016535 0ustar liggesusers#context("residuals") test_that("lmer", { C1 <- lmerControl(optimizer="nloptwrap", optCtrl=list(xtol_abs=1e-6, ftol_abs=1e-6)) fm1 <- lmer(Reaction ~ Days + (Days|Subject),sleepstudy, control=C1) fm2 <- lmer(Reaction ~ Days + (Days|Subject),sleepstudy, control=lmerControl(calc.derivs=FALSE, optimizer="nloptwrap", optCtrl=list(xtol_abs=1e-6, ftol_abs=1e-6))) expect_equal(resid(fm1), resid(fm2)) expect_equal(range(resid(fm1)), c(-101.17996, 132.54664), tolerance=1e-6) expect_equal(range(resid(fm1, scaled=TRUE)), c(-3.9536067, 5.1792598), tolerance=1e-6) expect_equal(resid(fm1,"response"),resid(fm1)) expect_equal(resid(fm1,"response"),resid(fm1,type="working")) expect_equal(resid(fm1,"deviance"),resid(fm1,type="pearson")) expect_equal(resid(fm1),resid(fm1,type="pearson")) ## because no weights given expect_error(residuals(fm1,"partial"), "partial residuals are not implemented yet") sleepstudyNA <- sleepstudy na_ind <- c(10,50) sleepstudyNA[na_ind,"Days"] <- NA fm1NA <- update(fm1,data=sleepstudyNA) fm1NA_exclude <- update(fm1,data=sleepstudyNA,na.action="na.exclude") expect_equal(length(resid(fm1)),length(resid(fm1NA_exclude))) expect_true(all(is.na(resid(fm1NA_exclude)[na_ind]))) expect_true(!any(is.na(resid(fm1NA_exclude)[-na_ind]))) }) test_that("glmer", { gm1 <- glmer(incidence/size ~ period + (1|herd), cbpp, family=binomial, weights=size) gm2 <- update(gm1,control=glmerControl(calc.derivs=FALSE)) gm1.old <- update(gm1,control=glmerControl(calc.derivs=FALSE, use.last.params=TRUE)) expect_equal(resid(gm1),resid(gm2)) ## y, wtres, mu change ?? ## FIX ME:: why does turning on derivative calculation make these tests fail??? expect_equal(range(resid(gm1.old)), c(-3.197512,2.356677), tolerance=1e-6) expect_equal(range(resid(gm1)), c(-3.1975034,2.35668826), tolerance=1e-6) expect_equal(range(resid(gm1.old, "response")), c(-0.1946736,0.3184579), tolerance=1e-6) expect_equal(range(resid(gm1,"response")),c(-0.194674747774946, 0.318458889275477)) expect_equal(range(resid(gm1.old, "pearson")), c(-2.381643,2.879069),tolerance=1e-5) expect_equal(range(resid(gm1,"pearson")), c(-2.38163599828335, 2.87908806084918)) expect_equal(range(resid(gm1.old, "working")), c(-1.241733,5.410587),tolerance=1e-5) expect_equal(range(resid(gm1, "working")), c(-1.24173431447365, 5.41064465283686)) expect_equal(resid(gm1),resid(gm1,scaled=TRUE)) ## since sigma==1 expect_error(resid(gm1,"partial"), "partial residuals are not implemented yet") cbppNA <- cbpp na_ind <- c(10,50) cbppNA[na_ind,"period"] <- NA gm1NA <- update(gm1,data=cbppNA) gm1NA_exclude <- update(gm1,data=cbppNA,na.action="na.exclude") expect_equal(length(resid(gm1)),length(resid(gm1NA_exclude))) expect_true(all(is.na(resid(gm1NA_exclude)[na_ind]))) expect_true(!any(is.na(resid(gm1NA_exclude)[-na_ind]))) }) test_that("floating-point issues -> NaN dev resids", { dat <- data.frame(x=1:5, n=100, id=1:5) res <- glmer(cbind(x,n-x) ~ 1 + (1 | id), data=dat, family=binomial, control = glmerControl(check.conv.singular = "ignore")) r <- residuals(res, type="deviance") expect_equal(unname(r[3]), 0) }) lme4/tests/testthat/test-reformulas-import.R0000644000176200001440000000072715103163201020702 0ustar liggesusers## these tests may fail if run a second time in the same session, because of rlang only-report-once-per-session setting f <- ~ 1 + (1|f) test_that("deprecation warnings from lme4 formula processing", { expect_warning(subbars(f), "has moved") expect_warning(nobars(f), "has moved") expect_warning(findbars(f), "has moved") expect_warning(mkReTrms(findbars(f), fr = data.frame(f = factor(1:10))), "has moved") expect_warning(expandDoubleVerts(f), "has moved") }) lme4/tests/testthat/test-formulaEval.R0000644000176200001440000002014115103764661017501 0ustar liggesusers#context("data= argument and formula evaluation") ## intercept context-dependent errors ... it's too bad that ## these errors differ between devtools::test() and ## R CMD check, but finding the difference is too much ## of a nightmare ## n.b. could break in other locales *if* we ever do internationalization ... data_RE <- "(bad 'data'|variable lengths differ)" test_that("glmerFormX", { set.seed(101) n <- 50 x <- rbinom(n, 1, 1/2) y <- rnorm(n) z <- rnorm(n) r <- sample(1:5, size=n, replace=TRUE) d <- data.frame(x,y,z,r) F <- "z" rF <- "(1|r)" modStr <- (paste("x ~", "y +", F, "+", rF)) modForm <- as.formula(modStr) ## WARNING: these drop/environment tests are extremely sensitive to environment ## they may fail/not fail, or fail differently, within a "testthat" environment vs. ## when run interactively expect_that(m_data.3 <- glmer( modStr , data=d, family="binomial"), is_a("glmerMod")) expect_that(m_data.4 <- glmer( "x ~ y + z + (1|r)" , data=d, family="binomial"), is_a("glmerMod")) ## interactively: (interactive() is TRUE {i.e. doesn't behave as I would expect} within testing environment ... ## if (interactive()) { ## AICvec <- c(77.0516381151634, 75.0819116367084, 75.1915023640827) ## expect_equal(drop1(m_data.3)$AIC,AICvec) ## expect_equal(drop1(m_data.4)$AIC,AICvec) ## } else { ## in test environment [NOT test_ expect_error(drop1(m_data.3),data_RE) expect_error(drop1(m_data.4),data_RE) ##} }) test_that("glmerForm", { set.seed(101) n <- 50 x <- rbinom(n, 1, 1/2) y <- rnorm(n) z <- rnorm(n) r <- sample(1:5, size=n, replace=TRUE) d <- data.frame(x,y,z,r) F <- "z" rF <- "(1|r)" modStr <- (paste("x ~", "y +", F, "+", rF)) modForm <- as.formula(modStr) ## formulas have environments associated, but character vectors don't ## data argument not specified: ## should work, but documentation warns against it expect_that(m_nodata.0 <- glmer( x ~ y + z + (1|r) , family="binomial"), is_a("glmerMod")) expect_that(m_nodata.1 <- glmer( as.formula(modStr) , family="binomial"), is_a("glmerMod")) expect_that(m_nodata.2 <- glmer( modForm , family="binomial"), is_a("glmerMod")) expect_that(m_nodata.3 <- glmer( modStr , family="binomial"), is_a("glmerMod")) expect_that(m_nodata.4 <- glmer( "x ~ y + z + (1|r)" , family="binomial"), is_a("glmerMod")) ## apply drop1 to all of these ... m_nodata_List <- list(m_nodata.0, m_nodata.1,m_nodata.2,m_nodata.3,m_nodata.4) d_nodata_List <- lapply(m_nodata_List,drop1) rm(list=c("x","y","z","r")) ## data argument specified expect_that(m_data.0 <- glmer( x ~ y + z + (1|r) , data=d, family="binomial"), is_a("glmerMod")) expect_that(m_data.1 <- glmer( as.formula(modStr) , data=d, family="binomial"), is_a("glmerMod")) expect_that(m_data.2 <- glmer( modForm , data=d, family="binomial"), is_a("glmerMod")) expect_that(m_data.3 <- glmer( modStr , data=d, family="binomial"), is_a("glmerMod")) expect_that(m_data.4 <- glmer( "x ~ y + z + (1|r)" , data=d, family="binomial"), is_a("glmerMod")) ff <- function() { set.seed(101) n <- 50 x <- rbinom(n, 1, 1/2) y <- rnorm(n) z <- rnorm(n) r <- sample(1:5, size=n, replace=TRUE) d2 <- data.frame(x,y,z,r) glmer( x ~ y + z + (1|r), data=d2, family="binomial") } m_data.5 <- ff() ff2 <- function() { set.seed(101) n <- 50 x <- rbinom(n, 1, 1/2) y <- rnorm(n) z <- rnorm(n) r <- sample(1:5, size=n, replace=TRUE) glmer( x ~ y + z + (1|r), family="binomial") } m_data.6 <- ff2() m_data_List <- list(m_data.0,m_data.1,m_data.2,m_data.3,m_data.4,m_data.5,m_data.6) badNums <- 4:5 d_data_List <- lapply(m_data_List[-badNums],drop1) ## these do NOT fail if there is a variable 'd' living in the global environment -- ## they DO fail in the testthat context expect_error(drop1(m_data.3),data_RE) expect_error(drop1(m_data.4),data_RE) ## expect_error(lapply(m_data_List[4],drop1)) ## expect_error(lapply(m_data_List[5],drop1)) ## d_data_List <- lapply(m_data_List,drop1,evalhack="parent") ## fails on element 1 ## d_data_List <- lapply(m_data_List,drop1,evalhack="formulaenv") ## fails on element 4 ## d_data_List <- lapply(m_data_List,drop1,evalhack="nulldata") ## succeeds ## drop1(m_data.5,evalhack="parent") ## 'd2' not found ## drop1(m_data.5,evalhack="nulldata") ## 'x' not found (d2 is in environment ...) ## should we try to make update smarter ... ?? ## test equivalence of (i vs i+1) for all models, all drop1() results for (i in 1:(length(m_nodata_List)-1)) { expect_equivalent(m_nodata_List[[i]],m_nodata_List[[i+1]]) expect_equivalent(d_nodata_List[[i]],d_nodata_List[[i+1]]) } expect_equivalent(m_nodata_List[[1]],m_data_List[[1]]) expect_equivalent(d_nodata_List[[1]],d_data_List[[1]]) for (i in 1:(length(m_data_List)-1)) { expect_equivalent(m_data_List[[i]],m_data_List[[i+1]]) } ## allow for dropped 'bad' vals for (i in 1:(length(d_data_List)-1)) { expect_equivalent(d_data_List[[i]],d_data_List[[i+1]]) } }) test_that("lmerForm", { set.seed(101) x <- rnorm(10) y <- rnorm(10) z <- rnorm(10) r <- sample(1:3, size=10, replace=TRUE) d <- data.frame(x,y,z,r) ## example from Joehanes Roeby m2 <- suppressWarnings(lmer(x ~ y + z + (1|r), data=d)) ff <- function() { m1 <- suppressWarnings(lmer(x ~ y + z + (1|r), data=d)) return(anova(m1)) } ff1 <- Reaction ~ Days + (Days|Subject) fm1 <- lmer(ff1, sleepstudy) fun <- function () { ff1 <- Reaction ~ Days + (Days|Subject) fm1 <- suppressWarnings(lmer(ff1, sleepstudy)) return (anova(fm1)) } anova(m2) ff() expect_equal(anova(m2),ff()) anova(fm1) fun() expect_equal(anova(fm1),fun()) ## test deparsing of long RE terms varChr <- paste0("varname_",outer(letters,letters,paste0)[1:100]) rvars <- varChr[1:9] form <- as.formula(paste("y ~",paste(varChr,collapse="+"), "+", paste0("(",paste(rvars,collapse="+"),"|f)"))) ff <- lme4:::reOnly(form) environment(ff) <- .GlobalEnv expect_equal(ff, ~(varname_aa + varname_ba + varname_ca + varname_da + varname_ea + varname_fa + varname_ga + varname_ha + varname_ia | f)) }) test_that("lapply etc.", { ## copied from dplyr failwith <- function (default = NULL, f, quiet = FALSE) { function(...) { out <- default try(out <- f(...), silent = quiet) out } } lmer_fw <- failwith(NULL,function(...) lmer(...) ,quiet=TRUE) expect_is(lmer_fw(Yield ~ 1|Batch, Dyestuff, REML = FALSE), "merMod") ## GH 369 listOfFormulas <- list( cbind(incidence, size - incidence) ~ 1 + (1 | herd), cbind(incidence, size - incidence) ~ period + (1 | herd)) expect_is(lapply(listOfFormulas,glmer,family=binomial,data=cbpp),"list") }) test_that("formula and data validation work with do.call() in artificial environment", { ## This ensures compatibility of lmer when it's called from the ## C-level Rf_eval() with an environment that doesn't exist on the ## stack (i.e. C implementation in magrittr 2.0) e <- new.env() e$. <- mtcars expect_is( do.call(lme4::lmer, list("disp ~ (1 | cyl)", quote(.)), envir = e), "merMod" ) fn <- function(data) { lme4::lmer("disp ~ (1 | cyl)", data = data) } expect_is( do.call(fn, list(quote(.)), envir = e), "merMod" ) }) test_that("correct environment on reOnly()", { ## GH 654 f <- Reaction ~ Days + (1 | Subject) e <- environment(f) m <- lmer(f, data = sleepstudy) expect_identical(environment(formula(m)), e) # TRUE expect_identical(environment(formula(m, fixed.only = TRUE)), e) # TRUE expect_identical(ee <- environment(formula(m, random.only = TRUE)), e) # FALSE }) lme4/tests/testthat/test-glmernbref.R0000644000176200001440000000117615103764661017356 0ustar liggesusers## DON'T load lme4; test is to see if glmer.nb works when ## lme4 is not loaded ## this does *not* work properly in a devtools::test environment ## (lme4 is not really detached) ## see tests/test-glmernbref.R for working test ... test_that("glmer.nb ref to glmer", { set.seed(101) dd <- data.frame(x=runif(200), f= rep(1:20, each=10)) b <- rnorm(20) dd <- transform(dd, y = rnbinom(200, mu = exp(1 + 2*x + b[f]), size = 2)) ## lme4 may not be attached if running tests via devtools::test() if ("package:lme4" %in% search()) detach("package:lme4") g <- lme4::glmer.nb(y~x + (1|f), data = dd) expect_is(g, "glmerMod") }) lme4/tests/testthat/test-eval.R0000644000176200001440000000451515103764661016162 0ustar liggesusers## examples for eval lookup testthat::skip_on_cran() data("cbpp", package = "lme4") if (require(car, quietly = TRUE)) { test_that("infIndexPlot env lookup OK", { fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy) ## silly test; the point is to see if this errors out with ## Error in as.list.environment(X[[i]], ...) : ## promise already under evaluation: recursive default argument reference or earlier problems? ## Calls: infIndexPlot -> influence -> influence.merMod -> lapply -> FUN expect_equal(car::infIndexPlot(influence(fm1, "Subject")), NULL) }) } if (require(rr2, quietly = TRUE)) { test_that("rr2 env lookup OK", { ## Error under alternate eval lookup ## Error: bad 'data': object 'd' not found set.seed(123456) p1 <- 10; nsample <- 20; n <- p1 * nsample d <- data.frame(x1 = rnorm(n = n), x2 = rnorm(n = n), u1 = rep(1:p1, each = nsample), u2 = rep(1:p1, times = nsample)) d$u1 <- as.factor(d$u1); d$u2 <- as.factor(d$u2) ## LMM: y with random intercept b1 <- 1; b2 <- -1; sd1 <- 1.5 d$y_re_intercept <- b1 * d$x1 + b2 * d$x2 + rep(rnorm(n = p1, sd = sd1), each = nsample) + # random intercept u1 rep(rnorm(n = p1, sd = sd1), times = nsample) + # random intercept u2 rnorm(n = n) z.f2 <- lme4::lmer(y_re_intercept ~ x1 + x2 + (1 | u1) + (1 | u2), data = d, REML = T) ## NOTE, fails to produce warnings on second run of devtools::test() ## (possible interference from lmerTest methods being loaded ...?) expect_warning(R2(z.f2), "mod updated with REML = F") }) } ## semEff::VIF() is here being applied to a previously fitted lmer ## model (shipley.growth[[3]]) ## previous messing around with env evaluation had messed this up if (suppressWarnings(require(semEff))) { ## suppress warning about 'cov2cor' import replacement test_that("semEff env lookup OK", { ## Error in as.list.environment(X[[i]], ...) : ## promise already under evaluation: recursive default argument reference or earlier problems? ## Calls: VIF ... update.merMod -> do.call -> lapply -> FUN -> as.list.environment m <- shipley.growth[[3]] expect_equal(VIF(m), c(Date = 6.06283840168881, DD = 6.07741017455859, lat = 1.01215136160858) ) }) } lme4/tests/testthat/test-methods.R0000644000176200001440000011371315113136605016667 0ustar liggesusers(testLevel <- if (nzchar(s <- Sys.getenv("LME4_TEST_LEVEL"))) as.numeric(s) else 1) ## use old (<=3.5.2) sample() algorithm if necessary if ("sample.kind" %in% names(formals(RNGkind))) suppressWarnings(RNGkind("Mersenne-Twister", "Inversion", "Rounding")) L <- load(system.file("testdata", "lme-tst-fits.rda", package="lme4", mustWork=TRUE)) ## FIXME: should test for old R versions, skip reloading test data in that ## case? fm0 <- fit_sleepstudy_0 fm1 <- fit_sleepstudy_1 fm2 <- fit_sleepstudy_2 gm1 <- fit_cbpp_1 gm2 <- fit_cbpp_2 gm3 <- fit_cbpp_3 ## More objects to use in all contexts : set.seed(101) dNA <- data.frame( xfac= sample(letters[1:10], 100, replace=TRUE), xcov= runif(100), resp= rnorm(100)) dNA[sample(1:100, 10), "xcov"] <- NA CI.boot <- function(fm, nsim=10, seed=101, ...) suppressWarnings(confint(fm, method="boot", nsim=nsim, quiet=TRUE, seed=seed, ...)) ## rSimple <- function(rep = 2, m.u = 2, kinds = c('fun', 'boring', 'meh')) { stopifnot(is.numeric(rep), rep >= 1, is.numeric(m.u), m.u >= 1, is.character(kinds), (nk <- length(kinds)) >= 1) nobs <- rep * m.u * nk data.frame(kind= rep(kinds, each=rep*m.u), unit = gl(m.u, 1, nobs), y = round(50*rnorm(nobs))) } d12 <- rSimple() data("Pixel", package="nlme") nPix <- nrow(Pixel) fmPix <- lmer(pixel ~ day + I(day^2) + (day | Dog) + (1 | Side/Dog), data = Pixel) test_that("summary", { ## test for multiple-correlation-warning bug and other 'correlation = *' variants ## Have 2 summary() versions, each with 3 print(.) ==> 6 x capture.output(.) sf.aa <- summary(fit_agridat_archbold) msg1 <- "Correlation.* not shown by default" ## message => *not* part of capture.*(.) expect_message(c1 <- capture.output(sf.aa), msg1) # correlation = NULL - default cF <- capture.output(print(sf.aa, correlation=FALSE)) ## TODO? ensure the above gives *no* message/warning/error expect_identical(c1, cF) expect_message( cT <- capture.output(print(sf.aa, correlation=TRUE)) , "Correlation.* could have been required in summary()") expect_identical(cF, cT[seq_along(cF)]) sfT.aa <- summary(fit_agridat_archbold, correlation=TRUE) ## no message any more ## expect_message(cT2 <- capture.output(sfT.aa), msg1) ## expect_identical(cF, cT2) cT3 <- capture.output(print(sfT.aa, correlation=TRUE)) expect_identical(cT, cT3) cF2 <- capture.output(print(sfT.aa, correlation=FALSE)) expect_identical(cF, cF2) }) test_that("lmer anova", { aa <- suppressMessages(anova(fm0,fm1)) expect_that(aa, is_a("anova")) expect_equal(names(aa), c("npar", "AIC", "BIC", "logLik", "-2*log(L)", "Chisq", "Df", "Pr(>Chisq)")) expect_warning(suppressMessages(do.call(anova,list(fm0,fm1))), "assigning generic names") ## dat <- data.frame(y = 1:5, u = c(rep("A",2), rep("B",3)), t = c(rep("A",3), rep("B",2))) datfun <- function(x) dat aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa <- dat expect_is(stats::anova(lmer(y ~ u + (1 | t), dat = aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa, REML=FALSE), lmer(y ~ 1 + (1 | t), dat = aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa, REML=FALSE)), "anova") expect_equal(rownames(stats::anova(lmer(y ~ u + (1 | t), dat = aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa, REML=FALSE), lmer(y ~ 1 + (1 | t), dat = aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa, REML=FALSE), model.names=c("a","b"))), c("b","a")) ff <- function(form) { lmer(form, dat=dat, REML=FALSE, control=lmerControl(check.conv.singular="ignore")) } expect_error(rownames(stats::anova(ff(y ~ u + (1 | t)), ff(y ~ 1 + (1 | t)), model.names=c("a","b","c"))), "different lengths") z <- 1 ## output not tested (but shouldn't fail) ss <- stats::anova(lmer(y ~ u + (1 | t), data = datfun(z), REML=FALSE), lmer(y ~ 1 + (1 | t), data = datfun(z), REML=FALSE)) ## ## from Roger Mundry via Roman Lustrik full <- lmer(resp ~ xcov + (1|xfac), data=dNA) null <- lmer(resp ~ 1 + (1|xfac), data=dNA) expect_error(anova(null,full), "models were not all fitted to the same size of dataset") }) if (requireNamespace("merDeriv")) { test_that("summary with merDeriv", { library(merDeriv) cc <- capture.output(print(summary(fm1))) expect_true(any(grepl("Correlation of Fixed Effects", cc))) ## WARNING, this will detach package but may not undo ## method loading ... detach("package:merDeriv") }) } ## Github issue #256 from Jonas Lindeløv -- issue is *not* specific for this dataset test_that("Two models with subset() within lmer()", { full3 <- lmer(y ~ kind + (1|unit), subset(d12, kind != 'boring'), REML=FALSE) null3 <- update(full3, .~. - kind) op <- options(warn = 2) # no warnings! ano3 <- anova(full3, null3)## issue #256: had warning in data != data[[1]] : ... o3 <- capture.output(ano3) # now prints with only one 'Data:' expect_equal(1, grep("^Data:", o3)) d12sub <- subset(d12, kind != 'boring') expect_is(full3s <- lmer(y ~ kind + (1|unit), d12sub, REML=FALSE), "lmerMod") expect_is(null3s <- update(full3s, .~. - kind), "lmerMod") expect_is(ano3s <- anova(full3s, null3s), "anova") expect_equal(ano3, ano3s, check.attributes=FALSE) options(op) }) test_that("anova() of glmer+glm models", { dat <<- data.frame(y = 1:5, u = c(rep("A",2), rep("B",3)), t = c(rep("A",3), rep("B",2))) cs <- glmerControl(check.conv.singular = "ignore") ## ignore singular fits gm1 <- glmer(y~(1|u), data=dat[1:4,], family=poisson, control = cs) gm0 <- glm(y~1, data=dat[1:4,], family=poisson) gm2 <- glmer(y~(1|u), data=dat[1:4,], family=poisson,nAGQ=2, control = cs) aa <- anova(gm1,gm0) expect_equal(aa[2,"Chisq"],0) expect_error(anova(gm2,gm0),"incommensurate") }) test_that("anova() of lmer+glm models", { dat2 <- dat set.seed(101) dat2$y <- rnorm(5) fm1 <- lmer(y~(1|u),data=dat2,REML=FALSE) fm0 <- lm(y~1,data=dat2) aa2 <- anova(fm1,fm0) expect_equal(aa2[2,"Chisq"],0) expect_warning(anova(fm1,type="III"),"additional arguments ignored") }) test_that("set p-values to NA for equivalent models: #583", { fm0B <- fm0 aa <- suppressMessages(anova(fm0B,fm0)) expect_true(all(is.na(aa[["Pr(>Chisq)"]]))) }) test_that("long names", { ## GH names(sleepstudy) <- c("Reaction", "Days", "Subject_xxxxxxxxxxxxxxxxxxxxxxxxxxx") fm1 <- lmer(Reaction ~ Days + (Days | Subject_xxxxxxxxxxxxxxxxxxxxxxxxxxx), sleepstudy) fm2 <- lmer(Reaction ~ Days + (Days || Subject_xxxxxxxxxxxxxxxxxxxxxxxxxxx), sleepstudy) expect_equal(length(attributes(suppressMessages(anova(fm1,fm2)))$heading),4) }) if (testLevel>1) { #context("bootMer confint()") set.seed(47) test_that("bootMer", { ## testing bug-fix for ordering of sd/cor components in sd/cor matrix with >2 rows ## FIXME: This model makes no sense [and CI.boot() fails for "nloptwrap"!] dd <- expand.grid(A=factor(1:3),B=factor(1:10),rep=1:10) dd$y <- suppressMessages(simulate(~1 + (A|B), newdata=dd, newparams=list(beta=1,theta=rep(1,6), sigma=1), family=gaussian, seed=101))[[1]] m1 <- lmer(y ~ 1 + (A|B), data=dd, control=lmerControl(calc.deriv=FALSE)) ci <- CI.boot(m1,seed=101) ci2 <- CI.boot(m1,seed=101) expect_equal(ci,ci2) ci_50 <- CI.boot(m1,level=0.5,seed=101) expect_true(all(ci_50[,"25 %"]>ci[,"2.5 %"])) expect_true(all(ci_50[,"75 %"]1 test_that("change in deviance name for anova", { cc <- suppressMessages(capture.output(anova(fm0,fm1))) expect_identical(sum(grepl("deviance", cc)), 0L) expect_identical(sum(grepl("-2*log(L)", cc, fixed = TRUE)), 1L) }) test_that("confint", { load(system.file("testdata", "gotway_hessianfly.rda", package = "lme4")) ## generated via: ## gotway_hessianfly_fit <- glmer(cbind(y, n-y) ~ gen + (1|block), ## data=gotway.hessianfly, family=binomial, ## control=glmerControl(check.nlev.gtreq.5="ignore")) ## gotway_hessianfly_prof <- profile(gotway_hessianfly_fit,which=1) ## save(list=ls(pattern="gotway"),file="gotway_hessianfly.rda") expect_equal(confint(gotway_hessianfly_prof)[1,1],0) ## FIXME: should add tests for {-1,1} bounds on correlations as well expect_equal(c(confint(fm1,method="Wald",parm="beta_")), c(232.301892,8.891041,270.508318,12.043531), tolerance=1e-5) ## Wald gives NA for theta values expect_true(all(is.na(confint(fm1,method="Wald",parm="theta_")))) ## check names ci1.p <- suppressWarnings(confint(fm1,quiet=TRUE)) ci1.w <- confint(fm1,method="Wald") ci1.b <- CI.boot(fm1, nsim=2) expect_equal(dimnames(ci1.p), list(c(".sig01", ".sigma", "(Intercept)", "Days"), c("2.5 %", "97.5 %"))) expect_equal(dimnames(ci1.p),dimnames(ci1.w)) expect_equal(dimnames(ci1.p),dimnames(ci1.b)) ci1.p.n <- suppressWarnings(confint(fm1, quiet=TRUE, signames=FALSE)) ci1.w.n <- confint(fm1, method="Wald", signames=FALSE) ci1.b.n <- CI.boot(fm1, nsim=2, signames=FALSE) expect_equal(dimnames(ci1.p.n), list(c("sd_(Intercept)|Subject", "sigma", "(Intercept)", "Days"), c("2.5 %", "97.5 %"))) expect_equal(dimnames(ci1.p.n),dimnames(ci1.w.n)) expect_equal(dimnames(ci1.p.n),dimnames(ci1.b.n)) }) test_that("monotonic profile but bad spline", { ## doesn't produce warnings on Solaris, or win-builder, or M1mac ... skip_on_os("windows") skip_on_os("solaris") skip_on_os("mac", arch = "aarch64") ## test case of slightly wonky (spline fit fails) but monotonic profiles: ## simfun <- function(J,n_j,g00,g10,g01,g11,sig2_0,sig01,sig2_1){ N <- sum(rep(n_j,J)) x <- rnorm(N) z <- rnorm(J) mu <- c(0,0) sig <- matrix(c(sig2_0,sig01,sig01,sig2_1),ncol=2) u <- MASS::mvrnorm(J,mu=mu,Sigma=sig) b_0j <- g00 + g01*z + u[,1] b_1j <- g10 + g11*z + u[,2] y <- rep(b_0j,each=n_j)+rep(b_1j,each=n_j)*x + rnorm(N,0,sqrt(0.5)) sim_data <- data.frame(Y=y,X=x,Z=rep(z,each=n_j), group=rep(1:J,each=n_j)) } set.seed(102) dat <- simfun(10,5,1,.3,.3,.3,(1/18),0,(1/18)) fit <- lmer(Y~X+Z+X:Z+(X||group),data=dat) expect_warning(pp <- profile(fit,"theta_"), "non-monotonic profile") expect_warning(cc <- confint(pp),"falling back to linear interpolation") ## very small/unstable problem, needs large tolerance expect_equal(unname(cc[2,]), c(0, 0.509), tolerance=0.09) # "bobyqa" had 0.54276 }) test_that("confint with bad profile", { badprof <- readRDS(system.file("testdata","badprof.rds", package="lme4")) expect_warning(cc <- confint(badprof), "falling back to linear") expect_equal(cc, array(c(0, -1, 2.50856219044636, 48.8305727797906, NA, NA, 33.1204478717389, 1, 7.33374326592662, 68.7254711217912, -6.90462047196017, NA), dim = c(6L, 2L), dimnames = list(c(".sig01", ".sig02", ".sig03", ".sigma", "(Intercept)", "cYear"), c("2.5 %", "97.5 %"))), tolerance=1e-3) }) test_that("refit", { s1 <- simulate(fm1) expect_is(refit(fm1,s1), "merMod") s2 <- simulate(fm1,2) expect_error(refit(fm1,s2), "refit not implemented .* lists") data(Orthodont,package = "nlme") fmOrth <- fm <- lmer(distance ~ I(age - 11) + (I(age - 11) | Subject), data = Orthodont) expect_equal(s1 <- simulate(fm,newdata = Orthodont,seed = 101), s2 <- simulate(fm,seed = 101)) ## works *without* offset ... m5 <- glmer(round(Reaction) ~ Days + (1|Subject), data = sleepstudy, family=poisson, offset=rep(0,nrow(sleepstudy))) m5R <- refit(m5) ## lots of fussy details make expect_equal() on the whole object difficult expect_equal(coef(m5),coef(m5R),tolerance=3e-6) expect_equal(VarCorr(m5),VarCorr(m5R),tolerance=1e-6) expect_equal(logLik(m5),logLik(m5R)) }) if (testLevel>1) { #context("predict method") test_that("predict", { ## when running via source(), cbpp has been corrupted at this point ## (replaced by a single empty factor obs() d1 <- expand.grid(period = unique(cbpp$period), herd = unique(cbpp$herd)) d2 <- data.frame(period = "1", herd = unique(cbpp$herd)) d3 <- expand.grid(period = as.character(1:3), herd = unique(cbpp$herd)) p0 <- predict(gm1) p1 <- predict(gm1,d1) p2 <- predict(gm1,d2) p3 <- predict(gm1,d3) expect_equal(p0[1], p1[1]) expect_equal(p0[1], p2[1]) expect_equal(p0[1], p3[1]) expect_error(predict(gm1, ReForm=NA)) ## matrix-valued predictors: Github #201 from Fabian S. sleepstudy$X <- cbind(1, sleepstudy$Days) m <- lmer(Reaction ~ -1 + X + (Days | Subject), sleepstudy) pm <- predict(m, newdata=sleepstudy) expect_is(pm, "numeric") expect_equal(quantile(pm, names = FALSE), c(211.0108, 260.9496, 296.873, 328.6378, 458.1584), tol=1e-5) op <- options(warn = 2) # there should be no warnings! if (require("MEMSS",quietly=TRUE)) { ## test spurious warning with factor as response variable data("Orthodont", package = "MEMSS") # (differently "coded" from the 'default' "nlme" one) silly <- glmer(Sex ~ distance + (1|Subject), data = Orthodont, family = binomial) sillypred <- data.frame(distance = c(20, 25)) ps <- predict(silly, sillypred, re.form=NA, type = "response") expect_is(ps, "numeric") expect_equal(unname(ps), c(0.999989632, 0.999997201), tolerance=1e-6) detach("package:MEMSS") } ## a case with interactions (failed in one temporary version): expect_warning(fmPixS <<- update(fmPix, .~. + Side), "nearly unidentifiable|unable to evaluate scaled gradient|failed to converge") ## (1|2|3); 2 and 3 seen (as Error??) on CRAN's Windows 32bit options(op) set.seed(1); ii <- sample(nrow(Pixel), 16) expect_equal(predict(fmPix, newdata = Pixel[ii,]), fitted(fmPix )[ii]) expect_equal(predict(fmPixS, newdata = Pixel[ii,]), fitted(fmPixS)[ii]) set.seed(7); n <- 100; y <- rnorm(n) dd <- data.frame(id = factor(sample(10, n, replace = TRUE)), x1 = 1, y = y, x2 = rnorm(n, mean = sign(y))) expect_message(m <- lmer(y ~ x1 + x2 + (1 | id), data = dd), "fixed-effect model matrix is rank deficient") expect_is(summary(m),"summary.merMod") ii <- sample(n, 16) expect_equal(predict(m, newdata = dd[ii,]), fitted(m)[ii]) ## predict(*, new..) gave Error in X %*% fixef(object) - now also drops col. ## predict(*, new..) with NA in data {and non-simple model}, issue #246: m1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) sleepst.NA <- sleepstudy ; sleepst.NA$Days[2] <- NA m2 <- update(fm1, data = sleepst.NA) ## maybe tricky for evaluation; fm1 was defined elsewhere, so data expect_equal(length(predict(m2, sleepst.NA[1:4,])),4) ## Wrong 'b' constructed in mkNewReTrms() -- issue #257 data(Orthodont,package="nlme") Orthodont <- within(Orthodont, nsex <- as.numeric(Sex == "Male")) m3 <- lmer(distance ~ age + (age|Subject) + (0 + Sex |Subject), data=Orthodont, control=lmerControl(check.conv.hess="ignore", check.conv.grad="ignore")) m4 <- lmer(distance ~ age + (age|Subject) + (0 + nsex|Subject), data=Orthodont) expect_equal(p3 <- predict(m3, Orthodont), fitted(m3), tolerance=1e-14) expect_equal(p4 <- predict(m4, Orthodont), fitted(m4), tolerance=1e-14) ## related to GH #275 (*passes*), ss <- sleepstudy set.seed(1) ss$noiseChar <- ifelse(runif(nrow(sleepstudy)) > 0.8, "Yes", "No") ss$noiseFactor <- factor(ss$noiseChar) fm4 <- lmer(Reaction ~ Days + noiseChar + (Days | Subject), ss) expect_equal(predict(fm4, newdata = model.frame(fm4)[2:3, ])[2], predict(fm4, newdata = model.frame(fm4)[3, ])) fm3 <- lmer(Reaction ~ Days + noiseFactor + (Days | Subject), ss) expect_equal(predict(fm3, newdata = model.frame(fm3)[2:3, ])[2], predict(fm3, newdata = model.frame(fm3)[3, ])) ## complex-basis functions in RANDOM effect fm5 <- lmer(Reaction~Days+(poly(Days,2)|Subject),sleepstudy) expect_equal(predict(fm5,sleepstudy[1,]),fitted(fm5)[1]) ## complex-basis functions in FIXED effect fm6 <- lmer(Reaction~poly(Days,2)+(1|Subject),sleepstudy) expect_equal(predict(fm6,sleepstudy[1,]),fitted(fm6)[1]) ## GH #414: no warning about dropping contrasts on random effects op <- options(warn = 2) # there should be no warnings! set.seed(1) dat <- data.frame( fac = factor(rep(c("a", "b"), 100)), grp = rep(1:25, each = 4)) dat$y <- 0 contr <- 0.5 * contr.sum(2) rownames(contr) <- c("a", "b") colnames(contr) <- "a" contrasts(dat$fac) <- contr m1_contr <- lmer(y~fac+(fac|grp),dat) pp <- predict(m1_contr,newdata=dat) options(op) }) ## testLevel>1 test_that("simulate", { ## simulate() will look for data in environment of formula, find ## unmodified version of cbpp -- need to re-add observation-level factor ee <- environment(formula(gm2)) ee$cbpp$obs <- factor(seq(nrow(ee$cbpp))) expect_is(simulate(gm2), "data.frame") p1 <- simulate(gm2, re.form = NULL, seed = 101) p2 <- simulate(gm2, re.form = ~0, seed = 101) p3 <- simulate(gm2, re.form = NA, seed = 101) p4 <- simulate(gm2, re.form = NULL, seed = 101) ## p5 was: sim with ReForm p6 <- simulate(gm2, re.form = NA, seed = 101) ## p7 was: sim with ReForm p8 <- simulate(gm2, re.form = ~0, seed = 101) p9 <- simulate(gm2, re.form = NA, seed = 101) p10 <- simulate(gm2,use.u = FALSE, seed = 101) p11 <- simulate(gm2,use.u = TRUE, seed = 101) ## minimal check of content: expect_identical(colSums(p1[,1]), c(incidence = 95, 747)) expect_identical(colSums(p2[,1]), c(incidence = 109, 733)) ## equivalences: ## group ~0: expect_equal(p2,p3) expect_equal(p2,p6) expect_equal(p2,p8) expect_equal(p2,p9) expect_equal(p2,p10) ## group 1: expect_equal(p1,p4) expect_equal(p1,p11) expect_error(simulate(gm2,use.u = TRUE, re.form = NA), "should specify only one") ## ## hack: test with three REs p1 <- lmer(diameter ~ (1|plate) + (1|plate) + (1|sample), Penicillin, control = lmerControl(check.conv.hess = "ignore", check.conv.grad = "ignore")) expect_is(sp1 <- simulate(p1, seed=123), "data.frame") expect_identical(dim(sp1), c(nrow(Penicillin), 1L)) expect_equal(fivenum(sp1[,1]), c(20.864, 22.587, 23.616, 24.756, 28.599), tolerance=0.01) ## Pixel example expect_identical(dim(simulate(fmPixS)), c(nPix, 1L)) expect_identical(dim(simulate(fmPix )), c(nPix, 1L)) ## simulation with newdata smaller/larger different from original fm <- lmer(diameter ~ 1 + (1|plate) + (1|sample), Penicillin) expect_is(simulate(fm,newdata=Penicillin[1:10,],allow.new.levels=TRUE),"data.frame") expect_is(simulate(fm,newdata=do.call(rbind,replicate(4,Penicillin,simplify=FALSE))),"data.frame") ## negative binomial sims set.seed(101) dd <- data.frame(f=factor(rep(1:10,each=20)), x=runif(200), y=rnbinom(200,size=2,mu=2)) g1 <- glmer.nb(y ~ x + (1|f), data=dd) th.g1 <- getME(g1, "glmer.nb.theta") ## changed to setting seed internally ts1 <- table(s1 <- simulate(g1,seed=101)[,1]) ## ts1B <- table(s1 <- simulate(g1,seed=101)[,1]) expect_equal(fixef(g1), c("(Intercept)" = 0.630067, x = -0.0167248), tolerance = 1e-4) ## ?? Travis is getting hung up here/ignoring tolerance spec?? expect_equal(th.g1, 2.013, tolerance = 1e-4) expect_equal(th.g1, g1@call$family[["theta"]])# <- important for pkg{effects} eval() expect_identical(sum(s1), 413) expect_identical(as.vector(ts1[as.character(0:5)]), ## c(51L, 54L, 36L, 21L, 14L, 9L)) c(49L,56L,32L,25L,11L,9L)) ## de novo NB simulation ... s2 <- simulate(~x + (1|f),seed=101, family=MASS::negative.binomial(theta=th.g1), newparams=getME(g1,c("theta","beta")), newdata=dd)[,1] expect_equal(s1,s2) ## Simulate with newdata with *new* RE levels: d <- sleepstudy[-1] # droping the response ("Reaction") ## d$Subject <- factor(rep(1:18, each=10)) ## Add 18 new subjects: d <- rbind(d, d) d$Subject <- factor(rep(1:36, each=10)) d$simulated <- simulate(fm1, seed=1, newdata = d, re.form=NULL, allow.new.levels = TRUE)[,1] expect_equal(mean(d$simulated), 299.9384608) ## Simulate with weights: newdata <- with(cbpp, expand.grid(period=unique(period), herd=unique(herd))) ss <- simulate(gm1, newdata=newdata[1:3,], weights=20, seed=101)[[1]] expect_equal(ss, matrix(c(4,2,0,16,18,20),nrow=3, dimnames=list(NULL,c("incidence","")))) ss <- simulate(gm3, newdata=newdata[1:3,], weights=20, seed=101)[[1]] expect_equal(ss,c(0.2,0.1,0.0)) ss <- simulate(gm1, newdata=newdata[1,], weights=20, seed=101)[[1]] expect_equal(unname(ss),matrix(c(4,16),nrow=1)) ## simulate Gamma, from function and de novo set.seed(102) dd <- data.frame(x=rep(seq(-2,2,length=15),10), f=factor(rep(1:10,each=15))) u <- rnorm(10) dd$y <- with(dd, rgamma(nrow(dd),shape=2, scale=exp(2+1*x+u[as.numeric(f)])/2)) g1 <- glmer(y~x+(1|f),family=Gamma(link="log"),dd) s1 <- simulate(g1,seed=101) s2 <- suppressMessages(simulate(~x+(1|f), family=Gamma(link="log"), seed=101, newdata=dd, newparams=getME(g1,c("theta","beta","sigma")))) expect_equal(s1, s2) dd$y2 <- s2[[1]] g2 <- glmer(y2~x+(1|f), family=Gamma(link="log"),dd) expect_equal(fixef(g2), tolerance = 4e-7, # 32-bit windows showed 1.34e-7 c(`(Intercept)` = 2.90871404438183, x = 0.988265230798941)) ## c("(Intercept)" = 2.81887136759369, x= 1.06543222163626)) ## simulate with re.form = NULL and derived/offset components in formula fm7 <- lmer(Reaction ~ Days + offset(Days) + (1|Subject), sleepstudy) s7 <- simulate(fm7, seed = 101, re.form = NULL) ## thought this would break but it doesn't ??? f_wrap <- function() { Reaction ~ Days + offset(Days) + (1|Subject) } fm8 <- lmer(f_wrap(), sleepstudy) s8 <- simulate(fm8, seed = 101, re.form = NULL) expect_identical(s7, s8) ## harder: insert NA values in the offset and see if it handles this OK?? }) #context("misc") test_that("misc", { expect_equal(df.residual(fm1),176) if (suppressWarnings(require(ggplot2))) { ## ggplot calls sample() [for silly start-up messages ## throws warning because we're using backward-compatible RNGkind expect_is(fortify.merMod(fm1), "data.frame") expect_is(fortify.merMod(gm1), "data.frame") } expect_is(as.data.frame(VarCorr(fm1)), "data.frame") }) } ## testLevel>1 #context("plot") test_that("plot", { ## test getData() within plot function: reported by Dieter Menne doFit <- function(){ data(Orthodont,package = "nlme") data1 <- Orthodont lmer(distance ~ age + (age|Subject), data = data1) } data(Orthodont, package = "nlme") fm0 <- lmer(distance ~ age + (age|Subject), data = Orthodont) expect_is(plot(fm0), "trellis") suppressWarnings(rm("Orthodont")) fm <- doFit() pp <- plot(fm, resid(., scaled = TRUE) ~ fitted(.) | Sex, abline = 0) expect_is(pp, "trellis") ## test qqmath/getIDLabels() expect_is(q1 <- lattice::qqmath(fm,id=0.05),"trellis") cake2 <- transform(cake,replicate=as.numeric(replicate), recipe=as.numeric(recipe)) fm2 <- lmer(angle ~ recipe + temp + (1|recipe:replicate), cake2, REML= FALSE) expect_is(lattice::qqmath(fm2, id=0.05), "trellis") expect_is(lattice::qqmath(fm2, id=0.05, idLabels=~recipe), "trellis") expect_warning(lattice::qqmath(fm2, 0.05, ~recipe), "please specify") expect_warning(lattice::qqmath(fm2, 0.05), "please specify") }) #context("misc") test_that("summary", { ## test that family() works when $family element is weird ## FIXME: is convergence warning here a false positive? gnb <- suppressWarnings(glmer(TICKS~1+(1|BROOD), family=MASS::negative.binomial(theta=2), data=grouseticks)) expect_is(family(gnb),"family") }) if (testLevel>1) { #context("profile") test_that("profile", { ## FIXME: can we deal with convergence warning messages here ... ? ## fit profile on default sd/cor scale ... p1 <- suppressWarnings(profile(fm1,which="theta_")) ## and now on var/cov scale ... p2 <- suppressWarnings(profile(fm1,which="theta_", prof.scale="varcov")) ## because there are no correlations, squaring the sd results ## gives the same result as profiling on the variance scale ## in the first place expect_equal(confint(p1)^2,confint(p2), tolerance=1e-5) ## or via built-in varianceProf() function expect_equal(unname(confint(varianceProf(p1))), unname(confint(p2)), tolerance=1e-5) p3 <- profile(fm2,which=c(1,3,4)) p4 <- suppressWarnings(profile(fm2,which="theta_",prof.scale="varcov", signames=FALSE)) ## compare only for sd/var components, not corr component ## FAILS on r-patched-solaris-x86 2018-03-30 ??? ## 2/6 mismatches (average diff: 4.62) ## [1] 207 - 216 == -9.23697 ## [4] 1422 - 1422 == -0.00301 if (Sys.info()["sysname"] != "SunOS") { expect_equal(unname(confint(p3)^2), unname(confint(p4)[c(1,3,4),]), tolerance=1e-3) } ## check naming convention properly adjusted expect_equal(as.character(unique(p4$.par)), c("var_(Intercept)|Subject", "cov_Days.(Intercept)|Subject", "var_Days|Subject", "sigma")) }) test_that("densityplot is robust", { p <- readRDS(system.file("testdata","harmel_profile.rds", package="lme4")) expect_warning(lattice::densityplot(p), "unreliable profiles for some variables") }) } ## testLevel>1 #context("model.frame") test_that("model.frame", { ## non-syntactic names d <- sleepstudy names(d)[1] <- "Reaction Time" ee <- function(m,nm) { expect_equal(names(model.frame(m, fixed.only=TRUE)),nm) } m <- lmer(Reaction ~ 1 + (1 | Subject), sleepstudy) ee(m,"Reaction") m2 <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy) ee(m2,c("Reaction","Days")) m3 <- lmer(`Reaction Time` ~ Days + (1 | Subject), d) ee(m3, c("Reaction Time","Days")) m4 <- lmer(Reaction ~ log(1+Days) + (1 | Subject), sleepstudy) ee(m4, c("Reaction","log(1 + Days)")) }) #context("influence measures") d <- as.data.frame(ChickWeight) colnames(d) <- c("y", "x", "subj", "tx") dNAs <- d dNAs$y[c(1, 3, 5)] <- NA fitNAs <- lmer(y ~ tx*x + (x | subj), data = dNAs, na.action=na.exclude) test_that("influence/hatvalues works", { ifm1 <- influence(fm1, do.coef=FALSE) expect_equal(unname(head(ifm1$hat)), c(0.107483311203734, 0.102096105816528, 0.0980557017761242, 0.0953620990825215, 0.0940152977357202, 0.0940152977357202), tolerance=1e-6) expect_equal(nrow(dNAs),length(hatvalues(fitNAs))) }) test_that("influence OK with tibbles", { if (requireNamespace("tibble")) { ## make small data set/example so influence() isn't too slow ... ss <- tibble::as_tibble(sleepstudy[1:60,]) smallfit <- lmer(Reaction ~ 1 + (1 | Subject), data = ss) i1 <- influence(smallfit, ncores = 1) expect_equal(head(i1[["fixed.effects[-case]"]]), structure(c(286.35044481665, 286.179896199062, 286.327301507498, 285.014692121823, 284.36060419176, 283.297551183126), dim = c(6L, 1L), dimnames = list(c("1", "2", "3", "4", "5", "6"), "(Intercept)")), tolerance = 1e-6) } }) test_that("rstudent", { rfm1 <- rstudent(fm1) expect_equal(unname(head(rfm1)), c(-1.45598270922089, -1.49664543508657, -2.11747425025103, -0.0729690066951975, 0.772716397142335, 2.37859408861768), tolerance=1e-6) expect_equal(nrow(dNAs),length(rstudent(fitNAs))) }) test_that("cooks distance", { expect_equal( unname(head(cooks.distance(fm1))), c(0.127645976734753, 0.127346548123793, 0.243724627125036, 0.000280638917214881, 0.0309804642689636, 0.293554225380831), tolerance=1e-6) expect_equal(nrow(dNAs),length(cooks.distance(fitNAs))) }) test_that("cooks distance on subject-level influence", { ifm1S <- influence(fm1, "Subject", ncores=1) expect_equal( unname(head(cooks.distance(ifm1S),2)), c(0.33921460279262, 0.290309061006305), tolerance = 1e-6) }) test_that("cooks distance on glmer models", { inf <- influence(gm1) inf.h <- influence(gm1, "herd", ncores=1) cook <- cooks.distance(inf) expect_equal(unname(head(cook, 3)), c(0.0532998800033037, 0.0405931172763581, 0.252608337928438), tolerance = 1e-6) cook.h <- cooks.distance(inf.h) expect_equal(unname(head(cook.h, 3)), c(0.256630560723611, 0.00525856231971531, 0.103355658099396), tolerance = 1e-6) }) ## tweaked example so estimated var = 0 zerodat <- data.frame(x=seq(0,1,length.out=120), f=rep(1:3,each=40)) zerodat$y1 <- simulate(~x+(1|f), family=gaussian, seed=102, newparams=list(beta=c(1,1), theta=c(0.001), sigma=1), newdata=zerodat)[[1]] zerodat$y2 <- simulate(~x+(1|f), family=poisson, seed=102, newparams=list(beta=c(1,1), theta=c(0.001)), newdata=zerodat)[[1]] test_that("rstudent matches for zero-var cases", { lmer_zero <- lmer(y1~x+(1|f), data=zerodat) glmer_zero <- glmer(y2~x+(1|f),family=poisson, data=zerodat) lm_zero <- lm(y1~x, data=zerodat) glm_zero <- glm(y2~x,family=poisson, data=zerodat) expect_equal(suppressWarnings(rstudent(glmer_zero)), rstudent(glm_zero), tolerance=0.01) expect_equal(suppressWarnings(rstudent(lmer_zero)), rstudent(lm_zero),tolerance=0.01) }) if (testLevel>1) { ## n.b. influence() doesn't work under system.time(); ## weird evaluation stuff ? ## FIXME: work on timing some more i1 <- influence(fm1, ncores=1) test_that("full version of influence", { expect_equal(c(head(i1[["fixed.effects[-case]"]],1)), c(252.323536264131, 10.3222704729148)) }) cd <- cooks.distance(i1) expect_equal(unname(head(cd,2)), c(0.016503344184025, 0.0106634053477361)) if (parallel::detectCores() > 1) { test_that("parallel influence", { i2 <- suppressMessages(influence(fm1, ncores=2)) ## if (packageVersion("Matrix") != "1.4.2") ## fow now,as they differ str(i1) str(i2) print(all.equal(i1, i2)) # to see diff print(identical(i1, i2)) # expect_equal(i1, i2) ## <<<<-------------- FAILS (4 MM) }) } } ## car method testing: influence timing with ncores > 1 ... ## car version 3.0.10. ## L <- load(system.file("testdata", "lme-tst-fits.rda", ## package="lme4", mustWork=TRUE)) ## data("sleepstudy", package="lme4") ## library(lme4) ## library(car) ## WANT warning about S3 method overwrite ... ## fm1 <- fit_sleepstudy_1 ## library(pracma) ## because system.time() is weird ## tic(); i1 <- influence(fm1); toc() ## 2+ seconds ## tic(); i2 <- influence(fm1, ncores=8); toc() ## 3.4 seconds test_that("influence with nAGQ=0", { gm1Q0 <- update(gm1, nAGQ=0) expect_is(influence(gm1Q0), "influence.merMod") }) if (testLevel > 1) withAutoprint({ test_that("cook's distance comparison", { ## generate data with zero variance set.seed(101) n <- 50 dd <- data.frame(x = rnorm(n), f = factor(rep(1:2, each = n/2))) suppressMessages(dd$y <- simulate(~ x + (1|f), newdata = dd, newparams = list(beta = c(2,2), theta = 0, sigma = 5), family = gaussian)[[1]]) (fm2 <- lmer(y~x + (1|f), dd, REML = FALSE)) (fm2L <- lm(y~x , dd)) i2 <- influence(fm2) ## hatvalues version does **not** match exactly ... expect_equal(cooks.distance(i2), cooks.distance(fm2L)) expect_equal(cooks.distance(fm2), cooks.distance(fm2L), tolerance = 1e-2) }) }) ## testLevel > 1 test_that("oldNames warning in confint", { fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) expect_warning(confint(fm1, oldNames = TRUE)) }) lme4/tests/testthat/test-lmList.R0000644000176200001440000001730515103764661016500 0ustar liggesusers## use old (<=3.5.2) sample() algorithm if necessary if ("sample.kind" %in% names(formals(RNGkind))) { suppressWarnings(RNGkind("Mersenne-Twister", "Inversion", "Rounding")) } data("cbpp", package = "lme4") #context("lmList") test_that("basic lmList", { set.seed(17) fm1. <- lmList(Reaction ~ Days | Subject, sleepstudy, pool=FALSE) fm1 <- lmList(Reaction ~ Days | Subject, sleepstudy) cf.fm1 <- data.frame( `(Intercept)` = c(244.19267, 205.05495, 203.48423, 289.68509, 285.73897, 264.25161, 275.01911, 240.16291, 263.03469, 290.10413, 215.11177, 225.8346, 261.14701, 276.37207, 254.96815, 210.44909, 253.63604, 267.0448), Days = c(21.764702, 2.2617855, 6.1148988, 3.0080727, 5.2660188, 9.5667679, 9.1420455, 12.253141, -2.8810339, 19.025974, 13.493933, 19.504017, 6.4334976, 13.566549, 11.348109, 18.056151, 9.1884448, 11.298073)) expect_equal(signif(coef(fm1), 8), cf.fm1, tolerance = 1e-7, check.attributes=FALSE) expect_equal(coef(fm1.), coef(fm1)) expect_true(inherits(formula(fm1), "formula")) ## <- had been wrong till 2015-04-09 sm1. <- summary(fm1.) sm1 <- summary(fm1) expect_equal(sm1$RSE, 25.5918156267, tolerance = 1e-10) cf1 <- confint(fm1) ## Calling the plot.lmList4.confint() method : expect_true(inherits(pcf1 <- plot(cf1), "trellis")) }) test_that("orthodont", { data(Orthodont, package="nlme") fm2 <- lmList(distance ~ age | Subject, Orthodont) fe2 <- fixef(fm2) expect_equal(fe2, c("(Intercept)" = 16.7611111111111, age = 0.660185185185185)) expect_true(inherits(pairs(fm2), "trellis")) }) test_that("simulated", { set.seed(12) d <- data.frame( g = sample(c("A","B","C","D","E"), 250, replace=TRUE), y1 = runif(250, max=100), y2 = sample(c(0,1), 250, replace=TRUE) ) fm3.1 <- lmList(y1 ~ 1 | g, data=d) expect_equal(coef(fm3.1), structure(list(`(Intercept)` = c(45.8945525606396, 50.1127995110841, 49.5320538515225, 52.4286874305165, 48.7716343882989)), .Names = "(Intercept)", row.names = c("A", "B", "C", "D", "E"), class = "data.frame", label = "Coefficients", effectNames = "(Intercept)", standardized = FALSE)) cf31 <- confint(fm3.1) expect_true(inherits(plot(cf31), "trellis")) fm3.2 <- lmList(y2 ~ 1 | g, data=d, family=binomial) ## ^^^^^^^^ "glmList" cf32 <- suppressMessages(confint(fm3.2,quiet=TRUE)) expect_identical(dim(cf32), c(5L,2:1)) expect_true(inherits(plot(cf32), "trellis")) expect_equal(unname(getDataPart(signif(drop(cf32), 6))), cbind(c(-0.400041, -0.311489, -1.07774, -0.841075, -0.273828), c( 0.743188, 0.768538, 0.0723138, 0.274392, 0.890795))) }) test_that("cbpp", { ## "glmList" (2) -- here, herd == 8 has only one observation => not estimable expect_warning(fm4 <- lmList(cbind(incidence, size - incidence) ~ period | herd, family=binomial, data=cbpp), "Fitting failed for ") cf4 <- coef(fm4) # with some 5 NA's ## match NA locations expect_equal(dim(cf4),c(15,4)) expect_identical(which(is.na(cf4)), sort(as.integer(c(8+15*(0:3), 47)))) expect_warning(fm4B <- lme4::lmList(incidence ~ period | herd, data=cbpp), "Fitting failed") if(FALSE) { ## FIXME: this is actually an nlme bug ... ## https://bugs.r-project.org/bugzilla/show_bug.cgi?id=16542 try(summary(fm4)) ## Error in `[<-`(`*tmp*`, use, use, ii, value = lst[[ii]]) : ## subscript out of bounds library(nlme) data("cbpp",package="lme4") fm6 <- nlme::lmList(incidence ~ period | herd, data=cbpp) try(coef(fm6)) ## coef does *not* work here try(summary(fm6)) ## this is a slightly odd example because the residual df from ## these fits are in fact zero ... so pooled.SD fails, as it should } }) test_that("NA,weights,offsets", { ## from GH #320 set.seed(101) x <- 1:8 y <- c(2,2,5,4,3,1,2,1) g <- c(1,1,1,2,2,3,3,3) dat <- data.frame(x=x, y=y, g=g) m1 <- lmList(y ~ x | g, data=dat) expect_false(any(is.na(coef(m1)))) w <- runif(nrow(sleepstudy)) m2 <- lmList(Reaction ~ Days | Subject, weights=w, sleepstudy) ss <- subset(sleepstudy,Subject==levels(Subject)[1]) m2X <- lm(Reaction ~ Days, ss, weights=w[1:nrow(ss)]) expect_equal(coef(m2X),as.matrix(coef(m2))[1,]) m3 <- lmList(Reaction ~ Days | Subject, sleepstudy) m4 <- lmList(Reaction ~ Days | Subject, offset=w, sleepstudy) m4X <- lm(Reaction ~ Days, ss, offset=w[1:nrow(ss)]) expect_equal(coef(m4X),as.matrix(coef(m4))[1,]) expect_false(identical(m2,m3)) expect_false(identical(m4,m3)) m5 <- lmList(Reaction ~ Days + offset(w) | Subject, sleepstudy) expect_equal(coef(m5),coef(m4)) ## more from GH 320 dat2 <- data.frame(dat,xx=c(NA,NA,NA,1:4,NA)) m5 <- lmList(y ~ x | g, data=dat2) expect_equal(unlist(coef(m5)[1,]), coef(lm(y~x,subset=(g==1)))) expect_equal(unlist(coef(m5)[3,]), coef(lm(y~x,subset=(g==3)))) }) test_that("pooled", { ## GH #26 fm_lme4 <- lme4:::lmList(Reaction ~ Days | Subject, sleepstudy) fm_nlme <- nlme:::lmList(Reaction ~ Days | Subject, sleepstudy) fm_nlme_nopool <- nlme:::lmList(Reaction ~ Days | Subject, sleepstudy, pool=FALSE) ci_lme4_pooled <- confint(fm_lme4,pool=TRUE) #get low and high CI estimates and pooled sd ci_nlme_pooled <- nlme:::intervals(fm_nlme,pool=TRUE) expect_equal(unname(ci_lme4_pooled[,,1]),unname(ci_nlme_pooled[,c(1,3),1])) ci_lme4_nopool1 <- confint(fm_lme4,pool=FALSE) ci_lme4_nopool2 <- confint(fm_lme4) expect_identical(ci_lme4_nopool1,ci_lme4_nopool2) ## BUG in nlme::intervals ... ? can't get CIs on unpooled fits ## nlme::intervals(fm_nlme,pool=FALSE) ## nlme::intervals(fm_nlme_nopool) expect_equal(ci_lme4_nopool1[1:3,,1], structure(c(179.433862895996, 193.026448122379, 186.785722998616, 308.951475285822, 217.083442786712, 220.182727910474), .Dim = c(3L, 2L), .Dimnames = list(c("308", "309", "310"), c("2.5 %", "97.5 %")))) }) test_that("derived variables", { fm_lme4 <- lme4:::lmList(log(Reaction) ~ Days | Subject, sleepstudy) fm_nlme <- nlme:::lmList(log(Reaction) ~ Days | Subject, sleepstudy) expect_equal(c(coef(fm_lme4)),c(coef(fm_nlme)),tolerance=1e-5) }) test_that("subset", { data(MathAchieve, package="nlme") data(MathAchSchool, package="nlme") RB <- merge(MathAchieve, MathAchSchool[, c("School", "Sector")], by="School") names(RB) <- tolower(names(RB)) RB$cses <- with(RB, ses - meanses) cat.list.nlme <- nlme::lmList(mathach ~ cses | school, subset = sector=="Catholic", data=RB) cat.list.lme4 <- lme4::lmList(mathach ~ cses | school, subset = sector=="Catholic", data=RB) expect_equal(c(coef(cat.list.lme4)), c(coef(cat.list.nlme)),tolerance=1e-5) }) if (requireNamespace("tibble")) { test_that("avoid tibble warnings", { ## GH 645 op <- options(warn = 2) m1 <- lmList(Reaction ~ Days | Subject, data = sleepstudy) m2 <- lmList(Reaction ~ Days | Subject, data = tibble::as_tibble(sleepstudy)) expect_identical(coef(m1), coef(m2)) options(op) }) } lme4/tests/testthat/test-nbinom.R0000644000176200001440000001036015103764661016510 0ustar liggesuserstestLevel <- if (nzchar(s <- Sys.getenv("LME4_TEST_LEVEL"))) as.numeric(s) else 1 set.seed(101) dd <- expand.grid(f1 = factor(1:3), f2 = LETTERS[1:2], g=1:9, rep=1:15, KEEP.OUT.ATTRS=FALSE) mu <- 5*(-4 + with(dd, as.integer(f1) + 4*as.numeric(f2))) dd$y <- rnbinom(nrow(dd), mu = mu, size = 0.5) ## mimic glmer.nb protocol if (testLevel>1) { test_that("most messages suppressed", { expect_message(glmer.nb(y ~ f1 + (1|g), data=dd[1:10,]), "singular") }) test_that("ok with negative.binomial masking", { negative.binomial <- function() {} ## use shortened version of data for speed ... m.base <- glmer.nb(y ~ f1 + (1|g), data=dd[1:200,]) expect_is(m.base,"merMod") }) test_that("ok with Poisson masking", { poisson <- NA ## use shortened version of data for speed ... m.base <- glmer.nb(y ~ f1 + (1|g), data=dd[1:200,]) expect_is(m.base,"merMod") rm(poisson) }) if (testLevel>2) { #context("testing glmer refit") test_that("glmer refit", { ## basic Poisson fit m.base <- glmer(y ~ f1*f2 + (1|g), data=dd, family=poisson) expect_equal(m.base@beta,(m.base.r <- refit(m.base))@beta, tolerance = 1e-5) th <- lme4:::est_theta(m.base,limit=20,eps=1e-4,trace=FALSE) th0 <- structure(0.482681268108477, SE = 0.0244825021248148) th1 <- structure(0.482681277470945) th2 <- 0.482681268108477 th3 <- 0.4826813 ## NB update with raw number m.numth1 <- update(m.base,family=MASS::negative.binomial(theta=0.4826813)) expect_equal(m.numth1@beta,(m.numth1.r <- refit(m.numth1))@beta) ## strip NB value m.symth4 <- update(m.base,family=MASS::negative.binomial(theta=c(th))) expect_equal(m.symth4@beta,(m.symth4.r <- refit(m.symth4))@beta) ## IDENTICAL numeric value to case #1 above m.symth6 <- update(m.base,family=MASS::negative.binomial(theta=th3)) expect_equal(m.symth6@beta,(m.symth6.r <- refit(m.symth6))@beta) ## standard NB update with computed theta from est_theta (incl SE attribute) m.symth <- update(m.base,family=MASS::negative.binomial(theta=th)) expect_equal(m.symth@beta,(m.symth.r <- refit(m.symth))@beta) ## NB update with equivalent value m.symth2 <- update(m.base,family=MASS::negative.binomial(theta=th0)) expect_equal(m.symth2@beta,(m.symth2.r <- refit(m.symth2))@beta) ## NB update with theta value (stored as variable, no SE) only m.symth3 <- update(m.base,family=MASS::negative.binomial(theta=th1)) expect_equal(m.symth3@beta,(m.symth3.r <- refit(m.symth3))@beta) ## strip NB value (off by 5e-16) m.symth5 <- update(m.base,family=MASS::negative.binomial(theta=th2)) expect_equal(m.symth5@beta,(m.symth5.r <- refit(m.symth5))@beta) }) ## GH #399 test_that("na_exclude", { dd1 <- dd[1:200,] dd1$f1[1:5] <- NA expect_error(glmer.nb(y ~ f1 + (1|g), data=dd1, na.action=na.fail), "missing values in object") m1 <- glmer.nb(y ~ f1 + (1|g), data=dd1, na.action=na.omit) m2 <- glmer.nb(y ~ f1 + (1|g), data=dd1, na.action=na.exclude) expect_equal(fixef(m1),fixef(m1)) expect_equal(length(predict(m2))-length(predict(m1)),5) }) ## GH 423 test_that("start_vals", { dd1 <- dd[1:200,] g1 <- glmer.nb(y ~ f1 + (1|g), data=dd1) g2 <- glmer.nb(y ~ f1 + (1|g), data=dd1, initCtrl=list(theta=getME(g1,"glmer.nb.theta"))) expect_equal(fixef(g1),fixef(g2),tol=1e-5) }) test_that("control arguments", { dd1 <- dd[1:200,] g1 <- glmer.nb(y ~ f1 + (1|g), data=dd1, initCtrl=list(theta=10)) expect_is(g1,"merMod") ## dumb test - just checking for run w/o error suppressWarnings(g1 <- glmer.nb(y ~ f1 + (1|g), data=dd1, nb.control=glmerControl(optimizer="bobyqa"))) expect_equal(g1@optinfo$optimizer, "bobyqa") suppressWarnings(g1 <- glmer.nb(y ~ f1 + (1|g), data=dd1, nb.control=glmerControl(optCtrl=list(maxfun=2)))) expect_equal(g1@optinfo$feval,3) }) } ## testLevel>2 } ## testLevel>1 lme4/tests/testthat/test-glmFamily.R0000644000176200001440000001623115103764661017152 0ustar liggesuserseps <- .Machine$double.eps oneMeps <- 1 - eps set.seed(1) ## sample linear predictor values for the unconstrained families etas <- list( seq.int(-8, 8, by=1), runif(17, -8, 8), # random sample from wide uniform dist rnorm(17, 0, 8), # random sample from wide normal dist c(-10^30, rnorm(15, 0, 4), 10^30) ) ## sample linear predictor values for the families in which eta must be positive etapos <- list(seq.int(1, 20, by=1), rexp(20), rgamma(20, 3), pmax(.Machine$double.eps, rnorm(20, 2, 1))) ## values of mu in the (0,1) interval mubinom <- list(runif(100, 0, 1), rbeta(100, 1, 3), pmin(pmax(eps, rbeta(100, 0.1, 3)), oneMeps), pmin(pmax(eps, rbeta(100, 3, 0.1)), oneMeps)) test_that("inverse link and muEta functions", { tst.lnki <- function(fam, frm) { ff <- glmFamily$new(family=fam) ## as.numeric() needed for binomial()$linkinv breakage (also in muEta test) sapply(frm, function(x) expect_that(fam$linkinv(as.numeric(x)), equals(ff$linkInv(x)))) } tst.muEta <- function(fam, frm) { ff <- glmFamily$new(family=fam) sapply(frm, function(x) expect_that(fam$mu.eta(as.numeric(x)), equals(ff$muEta(x)))) } tst.lnki(binomial(), etas) # binomial with logit link tst.muEta(binomial(), etas) tst.lnki(binomial("probit"), etas) # binomial with probit link tst.muEta(binomial("probit"), etas) tst.lnki(binomial("cloglog"), etas) # binomial with cloglog link tst.muEta(binomial("cloglog"), etas) tst.lnki(binomial("cauchit"), etas) # binomial with cauchit link tst.muEta(binomial("cauchit"), etas) tst.lnki(poisson(), etas) # Poisson with log link tst.muEta(poisson(), etas) tst.lnki(gaussian(), etas) # Gaussian with identity link tst.muEta(gaussian(), etas) tst.lnki(Gamma(), etapos) # gamma family tst.muEta(Gamma(), etapos) tst.lnki(inverse.gaussian(), etapos) # inverse Gaussian tst.muEta(inverse.gaussian(), etapos) }) test_that("link and variance functions", { tst.link <- function(fam, frm) { ff <- glmFamily$new(family=fam) sapply(frm, function(x) expect_that(fam$linkfun(x), equals(ff$link(x)))) } tst.variance <- function(fam, frm) { ff <- glmFamily$new(family=fam) sapply(frm, function(x) expect_that(fam$variance(x), equals(ff$variance(x)))) } tst.link( binomial(), mubinom) tst.variance(binomial(), mubinom) tst.link( binomial("probit"), mubinom) tst.link( binomial("cauchit"), mubinom) tst.link( gaussian(), etas) tst.variance(gaussian(), etas) tst.link( Gamma(), etapos) tst.variance(Gamma(), etapos) tst.link( inverse.gaussian(), etapos) tst.variance(inverse.gaussian(), etapos) tst.variance(MASS::negative.binomial(1), etapos) tst.variance(MASS::negative.binomial(0.5), etapos) tst.link( poisson(), etapos) tst.variance(poisson(), etapos) }) test_that("devResid and aic", { tst.devres <- function(fam, frm) { ff <- glmFamily$new(family=fam) sapply(frm, function(x) { nn <- length(x) wt <- rep.int(1, nn) n <- wt y <- switch(fam$family, binomial = rbinom(nn, 1L, x), gaussian = rnorm(nn, x), poisson = rpois(nn, x), error("Unknown family")) dev <- ff$devResid(y, x, wt) expect_that(fam$dev.resids(y, x, wt), equals(dev)) dd <- sum(dev) expect_that(fam$aic(y, n, x, wt, dd), equals(ff$aic(y, n, x, wt, dd))) }) } tst.devres(binomial(), mubinom) tst.devres(gaussian(), etas) tst.devres(poisson(), etapos) }) test_that("variance", { tst.variance <- function(fam, frm) { ff <- glmFamily$new(family=fam) sapply(frm, function(x) expect_that(fam$variance(x), equals(ff$variance(x)))) } tst.variance(MASS::negative.binomial(1.), etapos) nb1 <- MASS::negative.binomial(1.) cppnb1 <- glmFamily$new(family=nb1) expect_that(cppnb1$theta(), equals(1)) nb2 <- MASS::negative.binomial(2.) cppnb1$setTheta(2) sapply(etapos, function(x) expect_that(cppnb1$variance(x), equals(nb2$variance(x)))) bfam <- glmFamily$new(family=binomial()) if (FALSE) { ## segfaults on MacOS mavericks 3.1.0 ... ?? expect_error(bfam$theta())#, "theta accessor applies only to negative binomial") expect_error(bfam$setTheta(2))#, "setTheta applies only to negative binomial") } }) simfun_gam <- function(ngrp = 50, nrep = 50, shape_gam = 2, intercept = 1, use_simulate = FALSE, seed = NULL) { if (!is.null(seed)) set.seed(seed) dd <- expand.grid(group = 1:ngrp, rep = 1:nrep) if (use_simulate) { dd$y <- simulate(~ 1 + (1 | group), newdata = dd, family = Gamma(link = "log"), newparams = list( theta = 1, beta = 1, sigma = 1/sqrt(shape_gam)))[[1]] return(dd) } b <- rnorm(ngrp) eta <- intercept + b mu <- exp(eta) y <- rgamma(nrow(dd), shape = shape_gam, scale = mu/shape_gam) data.frame(dd, y) } dd1 <- simfun_gam(seed = 101) dd2 <- simfun_gam(seed = 101, use_simulate = TRUE) test_that("simulated Gamma data matches with simulate()", { expect_equal(dd1$y, dd2$y) }) test_that("estimated Gamma shape is correct", { m1 <- glmer(y ~ 1 + (1|group), family = Gamma(link = "log"), data = dd2) shape_val <- 1/sigma(m1)^2 expect_equal(shape_val, 2.0, tolerance = 0.05) expect_equal(shape_val, 1.94511502080571, tolerance = 1e-6) }) simfun_invgauss <- function(ngrp = 50, nrep = 500, lambda = 1, use_simulate = FALSE, seed = NULL) { if (!is.null(seed)) set.seed(seed) dd <- expand.grid(group = 1:ngrp, rep = 1:nrep) if (use_simulate) { dd$y <- simulate(~ 1 + (1 | group), newdata = dd, family = inverse.gaussian(link = "1/mu^2"), newparams = list( theta = c("group.(Intercept)" = 1), beta = c("(Intercept)" = 4), sigma = 1/sqrt(lambda)))[[1]] return(dd) } b <- rnorm(ngrp) eta <- 4 + b mu <- 1/sqrt(eta) y <- statmod::rinvgauss(nrow(dd), mean = mu, shape = lambda) data.frame(dd, y) } ddig1 <- simfun_invgauss(seed = 101, use_simulate = FALSE) ddig2 <- simfun_invgauss(seed = 101, use_simulate = TRUE) test_that("simulated Inverse Gaussian data matches with simulate()", { expect_equal(ddig1$y, ddig2$y) }) test_that("estimated Inverse Gaussian shape is correct", { m1 <- glmer(y ~ 1 + (1 | group), family = inverse.gaussian(link = "1/mu^2"), data = ddig2) shape_val <- 1/sigma(m1)^2 expect_equal(shape_val, 1, tolerance = 0.05) expect_equal(shape_val, 1.032144112298057, tolerance = 1e-6) }) lme4/tests/testthat/test-start.R0000644000176200001440000000701515113136605016356 0ustar liggesusers#context("specifying starting values") ##' Update 'mod', copying .@call and attr(.@frame, "start") from 'from' copysome <- function(mod, from) { stopifnot(all.equal(class(mod), class(from)), isS4(mod)) mod@call <- from@call attr(mod@frame, "start") <- attr(from@frame, "start") mod } ## is "Nelder_Mead" default optimizer? isNM <- formals(lmerControl)$optimizer == "Nelder_Mead" stMsg <- "'start' must be .* a numeric vector .* list" test_that("lmer", { frm <- Reaction ~ Days + (Days|Subject) ctrl <- lmerControl(optCtrl = list(maxfun= if(isNM) 50 else 100)) x <- suppressWarnings(lmer(frm, data=sleepstudy, control=ctrl, REML=FALSE)) x2 <- suppressWarnings(update(x,start=c(1,0,1))) x3 <- suppressWarnings(update(x,start=list(theta=c(1,0,1)))) ff <- update(x,devFunOnly=TRUE) x2@call <- x3@call <- x@call ## hack call component expect_equal(x,x2) expect_equal(x,x3) ## warning on deprecated list ... suppressWarnings(expect_error(update(x, start = "a"), stMsg)) ## misspelled suppressWarnings( expect_error(update(x,start=list(Theta=c(1,0,1))),"incorrect components") ) th0 <- getME(x,"theta") y <- suppressWarnings(update(x,start=th0)) if(isNM) { expect_equal(AIC(x), 1768.025, tolerance=1e-6) expect_equal(AIC(y), 1763.949, tolerance=1e-6) } else { ## only "bobyqa" tested: expect_equal(AIC(x), 1763.939344, tolerance=1e-6) expect_equal(AIC(x), AIC(y)) } if(isNM) expect_equal(suppressWarnings(optimizeLmer(ff,control=list(maxfun=50), start=c(1,0,1))$fval), unname(deviance(x))) expect_equal(suppressWarnings(optimizeLmer(ff,control=list(maxfun=50), start=th0)$fval), unname(deviance(y))) }) test_that("glmer", { ctrl <- glmerControl(optCtrl=list(maxfun=50)) # -> non-convergence warnings x <- suppressWarnings(glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial, control=ctrl)) ## theta only x2 <- suppressWarnings(update(x, start= 1)) x3 <- suppressWarnings(update(x, start= list(theta = 1))) ff <- update(x,devFunOnly=TRUE) x2@call <- x3@call <- x@call ## hack call component expect_equal(x,x2) expect_equal(x,x3) expect_error(update(x, start="a"), stMsg) expect_error(update(x, start=list(Theta=1)), "bad name\\(s\\)") ## test fixef/beta synonymy x3B <- suppressWarnings(update(x, start=list(beta = rep(1,4)))) x3C <- suppressWarnings(update(x, start=list(fixef = rep(1,4)))) ## hack to set calls equal x3B@call <- x3C@call expect_equal(x3B, x3C) ## th0 <- getME(x,"theta") y <- suppressWarnings(update(x, start=th0)) # expect_equal() fails: optinfo -> derivs -> Hessian ## theta and beta x0 <- update(x,nAGQ=0) x4 <- suppressWarnings(update(x, start = list(theta=1, fixef=fixef(x0)))) expect_equal(x, copysome(x4, from=x)) x5 <- suppressWarnings(update(x, start = list(theta=1, fixef=rep(0,4)))) expect_equal(AIC(x5), 221.5823, tolerance=1e-6) x6 <- expect_error(suppressWarnings(update(x, start = list(theta=1, fixef=rep(0,5))), "incorrect number of fixef components")) ## beta only x7 <- suppressWarnings(update(x,start=list(fixef=fixef(x0)))) expect_equal(x, copysome(x7, from=x)) x8 <- suppressWarnings(update(x,start=list(fixef=rep(0,4)))) expect_equal(x5, copysome(x8, from=x5)) }) lme4/tests/testthat/test-lmer.R0000644000176200001440000005416115113136610016160 0ustar liggesusers## (as.function.merMod() assumes it) data("Dyestuff", package = "lme4") data("cbpp", package = "lme4") library(lme4) ## this *is* necessary, for as.function.merMod() ... ## use old (<=3.5.2) sample() algorithm if necessary if ("sample.kind" %in% names(formals(RNGkind))) { suppressWarnings(RNGkind("Mersenne-Twister", "Inversion", "Rounding")) } #context("fitting lmer models") ## is "Nelder_Mead" default optimizer? -- no longer (isNM <- formals(lmerControl)$optimizer == "Nelder_Mead") test_that("lmer", { set.seed(101) d <- data.frame(z=rnorm(200), f=factor(sample(1:10,200, replace=TRUE))) ## Using 'method=*' defunct in 2019-05 (after 6 years of deprecation) ## expect_warning(lmer(z~ 1|f, d, method="abc"),"Use the REML argument") ## expect_warning(lmer(z~ 1|f, d, method="Laplace"),"Use the REML argument") ##sp No '...' anymore ##sp expect_warning(lmer(z~ 1|f, d, sparseX=TRUE),"has no effect at present") expect_error(lmer(z~ 1|f, ddd), "bad 'data': object 'ddd' not found") expect_error(lmer(z~ 1|f), "object 'z' not found") expect_error(lmer(z~ 1|f, d[,1:1000]), "bad 'data': undefined columns selected") expect_is(fm1 <- lmer(Yield ~ 1|Batch, Dyestuff), "lmerMod") expect_is(fm1_noCD <- update(fm1,control=lmerControl(calc.derivs=FALSE)), "lmerMod") expect_equal(VarCorr(fm1),VarCorr(fm1_noCD)) ## backward compatibility version {for optimizer="Nelder-Mead" only}: if(isNM) expect_is(fm1.old <- update(fm1,control=lmerControl(use.last.params=TRUE)), "lmerMod") expect_is(fm1@resp, "lmerResp") expect_is(fm1@pp, "merPredD") expect_that(fe1 <- fixef(fm1), is_equivalent_to(1527.5)) expect_that(VarCorr(fm1)[[1]][1,1], ## "bobyqa" : 1764.050060 equals(1764.0375195, tolerance = 1e-5)) ## back-compatibility ... if(isNM) expect_that(VarCorr(fm1.old)[[1]][1,1], equals(1764.0726543)) expect_that(isREML(fm1), equals(TRUE)) expect_is(REMLfun <- as.function(fm1), "function") expect_that(REMLfun(1), equals(319.792389042002)) expect_that(REMLfun(0), equals(326.023232155879)) expect_that(family(fm1), equals(gaussian())) expect_that(isREML(fm1ML <- refitML(fm1)), equals(FALSE)) expect_that(REMLcrit(fm1), equals(319.654276842342)) expect_that(deviance(fm1ML), equals(327.327059881135)) ## "bobyqa": 49.51009984775 expect_that(sigma(fm1), equals(49.5101272946856, tolerance=1e-6)) if(isNM) expect_that(sigma(fm1.old), equals(49.5100503990048)) expect_that(sigma(fm1ML), equals(49.5100999308089)) expect_that(extractAIC(fm1), equals(c(3, 333.327059881135))) expect_that(extractAIC(fm1ML), equals(c(3, 333.327059881135))) ## "bobyqa": 375.71667627943 expect_that(vcov(fm1) [1,1], equals(375.714676744, tolerance=1e-5)) if(isNM) expect_that(vcov(fm1.old)[1,1], equals(375.72027872986)) expect_that(vcov(fm1ML) [1,1], equals(313.09721874266, tolerance=1e-7)) # was 313.0972246957 expect_is(fm2 <- refit(fm1, Dyestuff2$Yield), "lmerMod") expect_that(fixef(fm2), is_equivalent_to(5.6656)) expect_that(VarCorr(fm2)[[1]][1,1], is_equivalent_to(0)) expect_that(getME(fm2, "theta"), is_equivalent_to(0)) expect_that(X <- getME(fm1, "X"), is_equivalent_to(array(1, c(1, 30)))) expect_is(Zt <- getME(fm1, "Zt"), "dgCMatrix") expect_that(dim(Zt), equals(c(6L, 30L))) expect_that(Zt@x, equals(rep.int(1, 30L))) expect_equal(dimnames(Zt), list(levels(Dyestuff$Batch), rownames(Dyestuff))) ## "bobyqa": 0.8483237982 expect_that(theta <- getME(fm1, "theta"), equals(0.84832031, tolerance=6e-6, check.attributes=FALSE)) if(isNM) expect_that(getME(fm1.old, "theta"), is_equivalent_to(0.848330078)) expect_is(Lambdat <- getME(fm1, "Lambdat"), "dgCMatrix") expect_that(as(Lambdat, "matrix"), is_equivalent_to(diag(theta, 6L, 6L))) expect_is(fm3 <- lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject), sleepstudy), "lmerMod") expect_that(getME(fm3,"n_rtrms"), equals(2L)) expect_that(getME(fm3,"n_rfacs"), equals(1L)) expect_equal(getME(fm3, "lower"), c(`Subject.(Intercept)` = 0, Subject.Days = 0)) expect_error(fm4 <- lmer(Reaction ~ Days + (1|Subject), subset(sleepstudy,Subject==levels(Subject)[1])), "must have > 1") expect_warning(fm4 <- lFormula(Reaction ~ Days + (1|Subject), subset(sleepstudy,Subject==levels(Subject)[1]), control=lmerControl(check.nlev.gtr.1="warning")), "must have > 1") expect_warning(fm4 <- lmer(Reaction ~ Days + (1|Subject), subset(sleepstudy,Subject %in% levels(Subject)[1:4]), control=lmerControl(check.nlev.gtreq.5="warning")), "< 5 sampled levels") sstudy9 <- subset(sleepstudy, Days == 1 | Days == 9) expect_error(lmer(Reaction ~ 1 + Days + (1 + Days | Subject), data = sleepstudy, subset = (Days == 1 | Days == 9)), "number of observations \\(=36\\) <= number of random effects \\(=36\\)") expect_error(lFormula(Reaction ~ 1 + Days + (1 + Days | Subject), data = sleepstudy, subset = (Days == 1 | Days == 9)), "number of observations \\(=36\\) <= number of random effects \\(=36\\)") ## with most recent Matrix (1.1-1), should *not* flag this ## for insufficient rank dat <- readRDS(system.file("testdata", "rankMatrix.rds", package="lme4")) expect_is(lFormula(y ~ (1|sample) + (1|day) + (1|day:sample) + (1|operator) + (1|day:operator) + (1|sample:operator) + (1|day:sample:operator), data = dat, control = lmerControl(check.nobs.vs.rankZ = "stop")), "list") ## check scale ss <- within(sleepstudy, Days <- Days*1e6) expect_warning(lmer(Reaction ~ Days + (1|Subject), data=ss), "predictor variables are on very different scales") ## Promote warning to error so that warnings or errors will stop the test: options(warn=2) expect_is(lmer(Yield ~ 1|Batch, Dyestuff, REML=TRUE), "lmerMod") expect_is(lmer(Yield ~ 1|Batch, Dyestuff, start=NULL), "lmerMod") expect_is(lmer(Yield ~ 1|Batch, Dyestuff, verbose=0L), "lmerMod") expect_is(lmer(Yield ~ 1|Batch, Dyestuff, subset=TRUE), "lmerMod") expect_is(lmer(Yield ~ 1|Batch, Dyestuff, weights=rep(1,nrow(Dyestuff))), "lmerMod") expect_is(lmer(Yield ~ 1|Batch, Dyestuff, na.action="na.exclude"), "lmerMod") expect_is(lmer(Yield ~ 1|Batch, Dyestuff, offset=rep(0,nrow(Dyestuff))), "lmerMod") expect_is(lmer(Yield ~ 1|Batch, Dyestuff, contrasts=NULL), "lmerMod") expect_is(lmer(Yield ~ 1|Batch, Dyestuff, devFunOnly=FALSE), "lmerMod") expect_is(lmer(Yield ~ 1|Batch, Dyestuff, control=lmerControl(optimizer="Nelder_Mead")), "lmerMod") expect_is(lmer(Yield ~ 1|Batch, Dyestuff, control=lmerControl()), "lmerMod") ## avoid _R_CHECK_LENGTH_1_LOGIC2_ errors ... if (getRversion() < "3.6.0" || (requireNamespace("optimx", quietly = TRUE) && packageVersion("optimx") > "2018.7.10")) { expect_error(lmer(Yield ~ 1|Batch, Dyestuff, control=lmerControl(optimizer="optimx")),"must specify") expect_is(lmer(Yield ~ 1|Batch, Dyestuff, control=lmerControl(optimizer="optimx", optCtrl=list(method="L-BFGS-B"))), "lmerMod") } expect_error(lmer(Yield ~ 1|Batch, Dyestuff, control=lmerControl(optimizer="junk")), "couldn't find optimizer function") ## disable test ... should be no warning expect_is(lmer(Reaction ~ 1 + Days + (1 + Days | Subject), data = sleepstudy, subset = (Days == 1 | Days == 9), control=lmerControl(check.nobs.vs.rankZ="ignore", check.nobs.vs.nRE="ignore", check.conv.hess="ignore", ## need to ignore relative gradient check too; ## surface is flat so *relative* gradient gets large check.conv.grad="ignore")), "merMod") expect_is(lmer(Reaction ~ 1 + Days + (1|obs), data = transform(sleepstudy,obs=seq(nrow(sleepstudy))), control=lmerControl(check.nobs.vs.nlev="ignore", check.nobs.vs.nRE="ignore", check.nobs.vs.rankZ="ignore")), "merMod") expect_error(lmer(Reaction ~ 1 + Days + (1|obs), data = transform(sleepstudy,obs=seq(nrow(sleepstudy))), "number of levels of each grouping factor")) ## check for errors with illegal input checking options flags <- lme4:::.get.checkingOpts(names(formals(lmerControl))) .t <- lapply(flags, function(OPT) { ## set each to invalid string: ## cat(OPT,"\n") expect_error(lFormula(Reaction~1+Days+(1|Subject), data = sleepstudy, control = do.call(lmerControl, ## Deliberate: fake typo ## vvv setNames(list("warnign"), OPT))), "invalid control level") }) ## disable warning via options options(lmerControl=list(check.nobs.vs.rankZ="ignore",check.nobs.vs.nRE="ignore")) expect_is(fm4 <- lmer(Reaction ~ Days + (1|Subject), subset(sleepstudy,Subject %in% levels(Subject)[1:4])), "merMod") expect_is(lmer(Reaction ~ 1 + Days + (1 + Days | Subject), data = sleepstudy, subset = (Days == 1 | Days == 9), control=lmerControl(check.conv.hess="ignore", check.conv.grad="ignore")), "merMod") options(lmerControl=NULL) ## check for when ignored options are set options(lmerControl=list(junk=1,check.conv.grad="ignore")) expect_warning(lmer(Reaction ~ Days + (1|Subject),sleepstudy), "some options") options(lmerControl=NULL) options(warn=0) expect_error(lmer(Yield ~ 1|Batch, Dyestuff, junkArg=TRUE), "unused argument") expect_warning(lmer(Yield ~ 1|Batch, Dyestuff, control=list()), "passing control as list is deprecated") if(FALSE) ## Hadley broke this expect_warning(lmer(Yield ~ 1|Batch, Dyestuff, control=glmerControl()), "passing control as list is deprecated") ss <- transform(sleepstudy,obs=factor(seq(nrow(sleepstudy)))) expect_warning(lmer(Reaction ~ 1 + (1|obs), data=ss, control=lmerControl(check.nobs.vs.nlev="warning", check.nobs.vs.nRE="ignore")), "number of levels of each grouping factor") ## test deparsing of very long terms inside mkReTrms set.seed(101) longNames <- sapply(letters[1:25], function(x) paste(rep(x,8),collapse="")) tstdat <- data.frame(Y=rnorm(10), F=factor(1:10), matrix(runif(250),ncol=25, dimnames=list(NULL, longNames))) expect_is(lFormula(Y~1+(aaaaaaaa+bbbbbbbb+cccccccc+dddddddd+ eeeeeeee+ffffffff+gggggggg+hhhhhhhh+ iiiiiiii+jjjjjjjj+kkkkkkkk+llllllll|F), data=tstdat, control=lmerControl(check.nobs.vs.nlev="ignore", check.nobs.vs.nRE="ignore", check.nobs.vs.rankZ="ignore")),"list") ## do.call(new,...) bug new <- "foo" expect_is(refit(fm1),"merMod") rm("new") ## test subset-with-( printing from summary fm1 <- lmer(z~1|f,d,subset=(z<1e9)) expect_equal(sum(grepl("Subset: \\(",capture.output(summary(fm1)))),1) ## test messed-up Hessian ## UPDATE: modified this test since we now automatically ignore Hessian ## checks when there is a singular fit fm1 <- lmer(z~ as.numeric(f) + 1|f, d) expect_equal(summary(fm1)$optinfo$conv$lme4$messages, "boundary (singular) fit: see help('isSingular')") expect_null(fm1@optinfo$derivs$Hessian) ## Previous: ##fm1@optinfo$derivs$Hessian[2,2] <- NA ##expect_warning(lme4:::checkConv(fm1@optinfo$derivs, ## coefs=c(1,1), ## ctrl=lmerControl()$checkConv,lbound=0), ## "Problem with Hessian check") ## test ordering of Ztlist names ## this is a silly model, just using it for a case ## where nlevs(RE term 1) < nlevs(RE term 2)x data(cbpp) cbpp <- transform(cbpp,obs=factor(1:nrow(cbpp))) fm0 <- lmer(incidence~1+(1|herd)+(1|obs),cbpp, control=lmerControl(check.nobs.vs.nlev="ignore", check.nobs.vs.rankZ="ignore", check.nobs.vs.nRE="ignore", check.conv.grad="ignore", check.conv.singular="ignore", check.conv.hess="ignore")) fm0B <- update(fm0, .~1+(1|obs)+(1|herd)) expect_equal(names(getME(fm0,"Ztlist")), c("obs.(Intercept)", "herd.(Intercept)")) ## stable regardless of order in formula expect_equal(getME(fm0,"Ztlist"),getME(fm0B,"Ztlist")) ## no optimization (GH #408) fm_noopt <- lmer(z~1|f,d, control=lmerControl(optimizer=NULL)) expect_equal(unname(unlist(getME(fm_noopt,c("theta","beta")))), c(0.244179074357121, -0.0336616441209862)) expect_error(lmer(z~1|f,d, control=lmerControl(optimizer="none")), "deprecated use") my_opt <- function(fn,par,lower,upper,control) { opt <- optim(fn=fn,par=par,lower=lower, upper=upper,control=control,,method="L-BFGS-B") return(list(par=opt$par,fval=opt$value,conv=opt$convergence)) } expect_is(fm_noopt <- lmer(z~1|f,d, control=lmerControl(optimizer=my_opt)),"merMod") ## test verbose option for nloptwrap cc <- capture.output(lmer(Reaction~1+(1|Subject), data=sleepstudy, control=lmerControl(optimizer="nloptwrap", optCtrl=list(xtol_abs=1e-6, ftol_abs=1e-6)), verbose=5)) expect_equal(sum(grepl("^iteration:",cc)),14) }) ## test_that(..) test_that("coef_lmer", { ## test coefficient extraction in the case where RE contain ## terms that are missing from the FE ... set.seed(101) d <- data.frame(resp=runif(100), var1=factor(sample(1:5,size=100,replace=TRUE)), var2=runif(100), var3=factor(sample(1:5,size=100,replace=TRUE))) mix1 <- lmer(resp ~ 0 + var1 + var1:var2 + (1|var3), data=d) c1 <- coef(mix1) expect_is(c1, "coef.mer") cd1 <- c1$var3 expect_is (cd1, "data.frame") n1 <- paste0("var1", 1:5) nn <- c(n1, paste(n1, "var2", sep=":")) expect_identical(names(cd1), c("(Intercept)", nn)) expect_equal(fixef(mix1), setNames(c(0.2703951, 0.3832911, 0.451279, 0.6528842, 0.6109819, 0.4949802, 0.1222705, 0.08702069, -0.2856431, -0.01596725), nn), tolerance= 6e-6)# 64-bit: 6.73e-9 }) test_that("getCall", { ## GH #535 getClass <- function() "foo" expect_is(glmer(round(Reaction) ~ 1 + (1|Subject), sleepstudy, family=poisson), "glmerMod") rm(getClass) }) test_that("better info about optimizer convergence", { set.seed(14) cbpp$var <- rnorm(nrow(cbpp), 10, 10) suppressWarnings(gm2 <- glmer(cbind(incidence, size - incidence) ~ period * var + (1 | herd), data = cbpp, family = binomial, control=glmerControl(optimizer=c("bobyqa","Nelder_Mead"))) ) ## FIXME: with new update, suppressWarnings(update(gm2)) will give ## Error in as.list.environment(X[[i]], ...) : ## promise already under evaluation: recursive default argument reference or earlier problems? op <- options(warn=-1) gm3 <- update(gm2, control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=2))) options(op) cc <-capture.output(print(summary(gm2))) expect_equal(tail(cc,4)[1], "optimizer (Nelder_Mead) convergence code: 0 (OK)") }) #context("convergence warnings etc.") fm1 <- lmer(Reaction~ Days + (Days|Subject), sleepstudy) suppressMessages(fm0 <- lmer(Reaction~ Days + (Days|Subject), sleepstudy[1:20,])) msg_in_output <- function(x, str) { cc <- capture.output(.prt.warn(x)) any(grepl(str , cc)) } test_that("convergence warnings from limited evals", { expect_warning(fm1B <- update(fm1, control=lmerControl(optCtrl=list(maxeval=3))), "convergence code 5") expect_true(msg_in_output(fm1B@optinfo, "convergence code: 5")) expect_warning(fm1C <- update(fm1, control=lmerControl(optimizer="bobyqa",optCtrl=list(maxfun=3))), "maximum number of function evaluations exceeded") expect_true(msg_in_output(fm1C@optinfo, "maximum number of function evaluations exceeded")) ## one extra (spurious) warning here ... expect_warning(fm1D <- update(fm1, control=lmerControl(optimizer="Nelder_Mead",optCtrl=list(maxfun=3))), "failure to converge in 3 evaluations") expect_true(msg_in_output(fm1D@optinfo, "failure to converge in 3 evaluations")) expect_message(fm0D <- update(fm0, control=lmerControl(optimizer="Nelder_Mead",calc.derivs=FALSE)), "boundary") expect_true(msg_in_output(fm0D@optinfo, "(OK)")) }) ## GH 533 test_that("test for zero non-NA cases", { data_bad <- sleepstudy data_bad$Days <- NA_real_ expect_error(lmer(Reaction ~ Days + (1| Subject), data_bad), "0 \\(non-NA\\) cases") }) ## test_that("catch matrix-valued responses in lmer/glmer but not in formulas", { dd <- data.frame(x = rnorm(1000), batch = factor(rep(1:20, each=50))) dd$y <- matrix(rnorm(1e4), ncol = 10) dd$y2 <- matrix(rpois(1e4, lambda = 1), ncol = 10) expect_error(lmer(y ~ x + (1|batch), dd), "matrix-valued") fr <- lFormula(y ~ x + (1|batch), dd)$fr expect_true(is.matrix(model.response(fr))) expect_error(glmer(y ~ x + (1|batch), dd, family = poisson), "matrix-valued") fr <- glFormula(y ~ x + (1|batch), dd, family = poisson)$fr }) test_that("catch matrix-valued responses", { dd <- data.frame(x = rnorm(1000), batch = factor(rep(1:20, each=50))) dd$y <- matrix(rnorm(1e4), ncol = 10) expect_error(lmer(y ~ x + (1|batch), dd), "matrix-valued") }) test_that("update works as expected", { m <- lmer(Reaction ~ Days + (Days || Subject), sleepstudy) expect_equivalent(fitted(update(m, .~.-(0 + Days | Subject))), fitted(lmer(Reaction ~ Days + (1|Subject), sleepstudy))) }) test_that("turn off conv checking for nobs > check.conv.nobsmax", { ## calc derivs and check convergence fm1 <- lmer(Reaction ~ 1 + (1|Days), sleepstudy) nn <- nrow(sleepstudy)-1 ## neither derivs nor conv check fm2 <- update(fm1, control = lmerControl(check.conv.nobsmax = nn)) ## no conv check, do calc derivs fm3 <- update(fm1, control = lmerControl(check.conv.nobsmax = nn, calc.derivs = TRUE)) expect_null(fm2@optinfo$derivs) expect_false(is.null(fm1@optinfo$derivs)) expect_false(is.null(fm3@optinfo$derivs)) expect_equal(fm1@optinfo$conv$lme4, list()) expect_null(fm2@optinfo$conv$lme4) expect_null(fm3@optinfo$conv$lme4) }) test_that("turn off conv checking for npara > check.conv.nparmax", { set.seed(1) n_groups <- 20 n_per_group <- 20 n <- n_groups * n_per_group dat <- data.frame( group = rep(1:n_groups, each = n_per_group), x1 = rnorm(n), x2 = rnorm(n) ) set.seed(101) form <- y ~ 1 + x1 * x2 + (1 + x1|group) dat$y <- simulate(form[-2], ## one-sided formula newdata = dat, family = gaussian, newparams = list(beta = c(-7, 5, -100, 20), theta = c(2.5, 1.4, 6.3), sigma = 2))[[1]] mod1 <- lmer(form, data = dat, control = lmerControl( optimizer = "bobyqa", optCtrl = list(maxfun = 10) )) mod2 <- update(mod1, control = lmerControl( optimizer = "bobyqa", optCtrl = list(maxfun = 10), check.conv.nparmax = 3) ) ## First should give a warning expect_false(is.null(mod1@optinfo$conv$lme4)) ## Second shouldn't be evaluated expect_null(mod2@optinfo$conv$lme4) }) test_that("gradient and Hessian checks are skipped when singular fit occurs",{ set.seed(1) group <- factor(rep(1:3, each = 20)) b <- rnorm(3, mean = 0, sd = 0.01) x <- rnorm(60) y <- x + b[group] + rnorm(60, sd = 1) dat <- data.frame(y, x, group) fm1 <- lmer(y ~ x + (1 | group), data = dat) expect_null(summary(fm1)$optinfo$derivs$gradient) expect_null(summary(fm1)$optinfo$derivs$Hessian) ## Always skipping derivative checks options(lme4.singular.tolerance = 1) fm2 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy) expect_null(summary(fm2)$optinfo$derivs$gradient) expect_null(summary(fm2)$optinfo$derivs$Hessian) ## Switching back (in case needed) options(lme4.singular.tolerance = 1e-4) ## force calculating the derivatives even if the fit is singular fm2 <- lmer(y ~ x + (1 | group), control = lmerControl(calc.derivs = TRUE), data = dat) expect_false(is.null(summary(fm2)$optinfo$derivs)) }) lme4/tests/testthat/test-doubleVertNotation.R0000644000176200001440000000070115113136605021043 0ustar liggesusers#context("testing '||' notation for independent ranefs") test_that("basic intercept + slope '||' works", { expect_equivalent( lFormula(Reaction ~ Days + (Days||Subject), sleepstudy)$reTrms, lFormula(Reaction ~ Days + (1|Subject) + (0 + Days|Subject), sleepstudy)$reTrms ) expect_equivalent( fitted(lmer(Reaction ~ Days + (Days||Subject), sleepstudy)), fitted(lmer(Reaction ~ Days + (1|Subject) + (0 + Days|Subject), sleepstudy)) ) }) lme4/tests/testthat/test-summary_testlevel_1.rda0000644000176200001440000133333415103775246021612 0ustar liggesusers‹ě˝x]ĹŐ5|Ý{·%7I×’eIV»*î–{Ç Ťéȶl «InjHč „–ťzO(ˇˇ$ˇˇC˙žsמY÷hŽ$y˙÷űţßĎłYb/­}öÔ33çÜ«UóÖVô^Ű;‹u‰uí.˙í&?Ćş­Ţ{AńäX¬kgůźN±®±^‚ťëËbťşŚy»6Ő4oőř»—ěśWÝRm~#–ü÷)°ł*ëęk*ńsꞒ˛âŠI%S‰„üďbCÄrz¦í¶ŁE.ëŇŁKčjÝ6ÖÖÔm¶ţíÔß쵾®şąyyu}Mč·{4l«ŻiŞ]ŽüľdÍż›¶ˇfcő¶ş–9µ j6-ŘÖ°ľĄ¶±!$í±µzý–ęM­.T_Ó˛ąqC3Ę)ÖőËđE·W×m3şĎńK݉ětDP‰©Îε=ŢőµÍÍ’`’ęó%˘ńĄz–Ď@=©Ľď—ŠĂu™:ujHN…aw˙’ćš–yŰęëw-@Ă„ŻŰM~ŁNsŘFBţ6jEucMď€HZ¨ŕöçŔş¦Ö{ß’¦šŤsMĎ«ŮčéÔ}nü‚ąVgÓG{…éSłłĄ¦©ˇşnkKStú˙Kݵ -5›jšÂݱA†K3~·—v†•R>ť¶é¨oܸQZ^Ă5ÖÔ˛vGĘ˙6ą˙ÝQS»isKsj˘ŹďŇIbŐüeK1J8ĄAK¬ljlilٵ5HNç™…‡ˇt(Dé—üŤÔ ,ŕ:é”ŇăËPť Ăő s©őŐëËÝ™&z· Öj^č†y!čł4đíG?÷˙˛uA|x`Ä˙&ÝýÝ”]U¶˘lU´˘ş’DGf¬u¦©#3ÔJAo‹n¤€ö·Qęxü_ŰNtă,ž”ćkµÔŃuÓŠîâT»ŮnŁŤ/-˘-ÍtÝ”†Ťm)wč˙Ý­ŘMęÜäkÄ”€ţZiEu¶‚ß“Ue|ý“­ťşŞĂüÝ|ú˙ç7a/©q-Ě7ÖŚ­‚v°)»§vł9ÇD5§˝AG·§ý•˙ó´·Ô˝-Í7Ö˘­Łv°I{¤ŞvłMsÚlÓ¦öŰ´é˙Ş6múŻ´iÓWjÓ¦ŻÚ¦ą‘mŞKĺ6ÚTĺ˙Ž6µĄůFŰ45jGŰ4Uµ›mšjÓî_¶Ń|bńbř&7˙Łɲ€˛Ťn5!˙Źm1·I“ÚŢő ¶Çë`ËuŇßßÍÍFAT«ő/É©k\żĄfCpĄÝ˙ §Ń×ŢM5—Ů–‹:ŁčŐ¸îĐiýí5®źQËWďš[]WŞ®.vCë*˝ˇőą&…féY—ç0´gť4Ň*s˛›ŞŘĽmkMS J*¤‹Etőľ¶ĚÁZG:xę¶Łąi}“v1'8=…0Gš9‚‡Ć’űĚś$żń…VDMë7ÖÖŐ¤Öż=dÎhŁő:ď—0»tsc}MéşĆş-5MĄó×Kwnhi.]Uşu˦ćŇŕLŰ«[]mž˘uąÎÜśśśxPźq™ jjÍ ĐßŘŘoŮ\×d­Ý$VäääA”]Wż´¶ąĄ2;޸1žWWź_4wsĽ±!>·±ľ^`Y㆚:HăF/.ž/))­Żn(…ľ88ć.Yµ!ĺ÷ĚżŁü˙đ{ĂĚďÍÚRłkGcÓ†ćřzŤâx! kvnmlŇá3DĆYyľÍĽÔä¸ţkŞŮ*J޵ÚÔFţzéűńŞx¶Áě˘řÖĆĆŕë7ŐŠËę÷ŠGüŰÔÔ¸mkł‘HŽ5M5$HN\j8{cőú–Ʀě™ńx4\|CcMs|[sMż—_€ĐUQˇ›j7­0żl˘ă,[‚WÇeÔoKAFF)Đڞ®őŤRřÚ† é:©Ąě‚P(ÝfďóVĚśO©ßŇVő["±¤cµHˇ9juSSő®Va Ąă­Ż™Ű¸uW|zq|#îHů; â%fĘßPSłu˝°Eńťa©b/ÓŁ,^»l>{GóćĆmuňZâ;j⛫·×Äłe†Yi#ßQ۲9޲Ł1>ľyŰşńÚ‰ěoĚËŽW7l°˙»W6Ź3u¤l¨i†3ż×ĽµşI~\__m˘ĚÔˇś“źV‹lٲ©ńW4Î%HemÜŚ¦ Ť¸pËŞ[šjwfǧV%}«¤NâGÔî˘x’>2T }4y©Hî Ň>«0ď滚i~Ş5ýW6%«ŻÝYłˇ¸făĆ`HכܜĚ1Y޵=<ܧ‚ăqihđ ĂĽéTůK«ë×m¨n1Ýaæą(f‘°9~kMÆ橦n[Şz]*Ë„[ëíÇR­UqŤZ0-žüÁT[]ă"ľşaÓ¶şę&áuŐć–ß^mśëkâɡ•nđO⵬n‰·™®É$ĽZĹ,8)ŹAąEÉr¸p Ť-›Íó3ôä¨bCß^´źtÓ%›ĺľŻ«iŘ$ÍUÝĎŰ™o®kl‘ßÖ4KxNTŕĹŇę5u5Á-c(ľ®ĆD(›ŠĐůA …GădoÄ•-Mq™N~ާEnsĆ[µßZŐ×»ęO­2)as›ÍhšA"›qżd ¦®µü9­veÂҲu3RNţŠY·9E ú|żľeMXŹß/řýÖIC°żW #.”`NrN'}v2Ü2mČ|(=Qš»ąÍśdÉۑӯ`?C&gýdŘO~ÂlěMłIÚ¸±>Ž<ŰLnťôń„?9ż@.·.˘4‘‚m“$gĆPÇˉăgš ě·ľ±~kcŚĺÖM2Ţ{‰m [Ăz »XČ ˙2–ĎňËÁäŢć šŐuµ‡×ČŻŰŰüÚ"iÓ"ťśŠ‚˛(YN˝ęJo8˙ż†d_ipkťĚ†r±"Y]m“uÄ.q745îČ_«óVŮnÄ-)))ˇ žČ_«ÝĎÓPÝ´©9ż @î8-ŰšěŠÎ?ŚÍ?YkĘŇ'¨Bs!ü~Iä﯍O—߯n6µ§cSU‘*;™§ńÓî’ÓŢâ ·­ĺ RÄÜü’Jp÷Ę7>UVF*“ÝRôĘÔ{Pn¤vą©ÚÔ†Źţĺ­Á/Żo¬sż<.ň—ł‘÷kŃßžůŰÍ-Ť[k7ĘÍ=?ĺźO,Őž>!RíţAT\ŠxEÄf=Ý,+÷üm µ‡m«IF)WÉ©9ěŕęşĆ†MČ« ý™;łi“ Óך†‘čuucĹoŐKÚNÇl ‘­Bţa˛Ó’tdÁY.áÜíćcîĘľ|ÄoŐţ©©U^®—AźĚIť‡µßŮ×xSYcYÔ±ŠYcĘß௖†ŽU‹Y'xsiYł»Í$sá­ţ|¶v43­ˇfšŮv>)Íł¦UólŐ0‘ŰsÜŰ}iŚ”NŚí_Ó™Á*Ŕٶ„łvŁ„đ«ä±-*Źm_5ŹmQ#!şmó×ó6Tň¶DDÄI‘W·Ř fîZ^`îm…ńd$ČkŰ,ü~îř\¬“w°üÚ*3 ĘüšżĽ (~hݦ6Ő™ŃVV$—jgUSÍVĂĺ—-·5y@äĹĚą‰Y!7ÖɦT¶vńÚćxu|Kݶ ›jâ-ŤńĆí5M˛N«‰omj\';/Ůno®i09Ę/6¶­ş©¦ÝÖ–k¬Ű%‹Ý-&>v­M˛Äî·Ý•ËR#JŐ;˝©»™ťŇÖef0wA"¸—7Đŕ˙ÚżµKľüúurG*Äz_[Üž6ô/Ô¦Ú„‰‚Ż0ĺߡßtŔťUÚó]ŔU_'ŕ†ÚúćŞőÔ$Eeîn˝Eź1˨ÚípkwkÖş±ÁNň˛Ë×ŔýŢmčE¦ĂXç…µ;‚eł.3˛“w7ÉŻ´[·ŐXŮŇd×ßéŢß=R+=áĄç®_n.śüÚ·¸Ý€§fţĺ%7ÍÁĆ3ČżšŽjd¶ąqScäٲ˜“Ę,°©&Řł5ŐĘ6M®’×îÍ4yDŞgzHVîæŘ_«ÜKůĽĺŽî¤)ĺ^ż­©Él?×Ëí1Ur‡>wsc]Mó–]8‰Ëk3ŁÖĹ]úMte»őź<¶*(ťľëF\Ú.nôŽ-µ¸+%ę7QâU\ o‰7u¬ÄÉóŕ Ť;äŽQł!\ľvʆ´˘7â©°jí7S|Zx‹ż˝cĹŻ5#¶ŮöéoŞ6˘÷áÚ¨ýfŞcCmµ6¸·:Öxu­ŞĂ„1łYëC‹˝ç ×\`÷JěYëř¨Ä’—+tôn:/őŃ<ô4ŹäjMŃ›×W×Ő-ÝÜRłŐ¶|őz-íě–v ZÄ·>“ŕ×+yňô°í’GŻfňR»îúFů©v}mđ  Ť2Ďëh™Í™ß×+¶ßhžúŠÝĽąÚ¬Čŵ`öŇ˝ć»*(ŠĚxCÍFłěIůĚN{kdóˇŁů ŰăÉ㫚†íµMŤ ćńJ~đy$-ÚŚČŰŤZţ™ă¦š&BľL Ş¦~kË.ó˙¶‚ôaŚ˙ą‘ůgZ*?xVgžé4×´l¨Ý¸1?ř¸MľoŢH"[–PŮ®nü'ŮúĎ,ćP­šŃľm Ě?ąTí¦†dNEńM5-úcPWć87YÎcŞD/Đö’8X?jňí˙črE꺍D:´yÖú¨mÎGT©M‰¤ĎbłmŁÍm7N(5ü8ÖôěüdçíđayjmۇďšcD%g¶SźDGľo`#zµĽˇ±d=OcĄŻ›c%3ÁÖb{˛4T;óc×Č˙UY%÷ëÝë6,u7ŢÝ]ď¶ě¨•e»ąéŐ5n’9Bnçőr?¶ęĐz·Ł @“ă7q˯۰j­-ěîîiÚ-«»ă'W…Ž>Z’ý&J˝­ˇy˝ýo©×yuÉRKÁLą˝o°׊×7ÚçlxĚ:hoŤ×Ń7—ü&–řď6}Č,íŞ;-*LjÉeÉ´wRşŇd—ňrzÇB$»T2» ů±Ý… /ĆĽó„Q–Ż^şôkÍ‘[ńŽHđďëśúč«>ń­ŤćĽTrkŞŮTÓ`NŔ‚đŤ˛’]_ÓÜ\Ý´KGJqddłJyhęŇiűÁ•&+­¶yů¶şşů;[‚zZi5Eś¶ż„ůîăéíÔľÓ+kŢ9I©ýä#)[ćčÓŔ<Ě"ńjłQpGn&@^»5ÖŞ—ĎIŽ™Öłž‘}Ͳî˝Y·ŁTV<ײF?Š*kŕ+CşuaŃĺ:VX˙.PÂë‹K)…ÝŻeycĂ~5MŤ®ŔŃ+[`[ÜfłŰŻewo5A6ľ’ştľÖ$ŇÜX·˝ĆSZWČčŮ;/)Öł2:b˛®oÂ[‰ÁŁMs36Óůî.(+| Ę Đę¶ĘŮĆÉqĘ™,fcCÝ®x0âĚÓŔ`aY°»ggÉLż‰…¤ůŠĽ´–Rf鏮ŘŃď剾ťk٢_hŐ›Ś|Údő wÝݏëľZq×ý—Š{X“ŰD­”#—8RÜŕYő}YfcY4šĺp||JăvôHĐ$ô_Ůlă˙‰*it›äą‡wˇ7Jż‰Ăßm˙•SP^/¦Ľą˛FŠŃbŢŹ ÖŹ¶řѧRş%Z¬Ô™xŐÚřĆ&©łh_“|“ZÖěZň•‘ˇj¶×6×®««Éoku‹ęĐT;Z…mTÄR˙”ýŇĄ-tňAyđń„Ý}@‹K#ÇÉPÉdľÁ˘Dn‚üEÁ¶mwĘăżk%ă­ŞÁűŕ¶<Á‡]ˇ˘_(ĐB™÷Ë’ĹhŠo3ßD–Ü©ŰWŁ“/řË,%qk7l«®kŢÝ”MŐ7N“ů~˝ÉÉîĂUŃÜˇÉ –]“řxĂZÔÉZý >úńCôÖĄ§˝kšżĽm˛ŞEěiŹ„ÍGkółqÂ]ĎNöżŕ§Úó!»l™ $ť«OšdŻ ţÓh˛/هę0;Pš˘Ü/luĚćf Üf0ض%Z}¤MqtNNś?öh>ÝţÔăčä+=m~âqqRjNţŰţ—_WÝ\Cć2ß”ŘŘü0Ķ:ű)Éć—S>–Ľ‚­™ö>ÜŐ*‘ŕ>ęł>m>:Ş·«É~j"ůÉéÝŕĂŐ»'hÚĆŇnĚ,á/´˙cúÓ÷±Śá_¶ËŔ/ ˙ZĂ{=ń‹66úo,‘Ĺ82jĽ!!}°>ůJLőöęÚşjąŃ›ćÁűOÁ‡†uú‰<&”^]˛Ń çďŞÚU„ÖŻJB‘Ö|°HşSUý¶îý' ]…—pŇ,UAăgrUč:mNo=yĺĘLůű׼µf}­ĚěL™ň®đÇ4‚PE~–˘!Č8yÄg;ňÝĂzď{Íűďź]ż-űŔí˝×˙ GüKÉĐJS_Enh÷`S‘ďýć$e“‰^ű‡“QeD.‘»Mť|É€łŮDďżZeŁŇd:îÝĚöŇi×—Ž+ 2żă ©4™ůż|ͱ#5µ‘QÓWϨ©ÍŚ"÷z0ivăăů»âĹŇË;6ëxn»ýĘ‹«o덗ČńŮÁ^"›iwŢwYäkľćýrqÜű–KôQţ}Í—\˛ŰŠťňŽKäDŻ˙vë—¶?‰ďč.mÎŞĢ_p‰>ćĹżóůéYg›!°ązý–xa˘˝Gśúď«˝“ŃVHÝű´Z¤…!ňˇ/Ćř߇iýţË×Z¤D>Ž|ˇ,őńp]ýÁúdx—]ťéŞÍ¬ÎŠôľ°;zŚŰą»(9e¶űiW›Mrżşl‘vtVőľčŹî^}ÝGŁ‘“=ÝUĐ‘W8ă_íˇh»ťwTÔ/¸G˘m×·÷“IŇeVŘÍž­đĆĆŽlEÖo®nŘ”|a«´Úäľ#ůµůŰšk‚;Ă֦ƍµuRóö©Jä\eű”ÍËwÔŘŘÁ‘Uä`«O)rS“+ňjź,\d»ďçB»ŹÂWo”ŽŻ&Ę`­ eźŐ‘˛›}%ojúš%ßÇnŁÝ™×WňČ{—|kS­Üůu1ĚĹ×2Fžks÷Ń™Ës·ŁĹô~®A磔öÝT]__ÝçŁz´g¦ŃäŇ1řĘ’&sÚců|ŻgµűĚĹ3U¶.t2ĂŻ1wI˙ĽsgäŞ%eîluvoŢVou“OžšŰ}—Ä–Ő¤:¶öŞÝÓI=ě[š=QAä‰ ™Ş˘:{®§ŃĎ\B_á>ehŘv_»â;d ʩЗ Ř؉Ąíť§ÄÍęk/ó%„|žŇÎÉľ˙3MXgE?ŕ/´jšvw©ý*őź­ýś;z±%űXg Hô =T,Ó­Ą}…şťZ÷KŃ[m˙Ăď´E÷©Ô•~ý››íxWmĄ—¶ßđ™R§É7ÔńĘvňá˝l¨ę«Kškőx9ş°©« ÖgÁŰäŰ“ŻZËí=˝­>&ëĎÔüŁľµ´zk]őú{Źk#ĺv:]‡ď ĂĚz‡ ůŮ«ëkë÷á…SʤżI§÷¶ćüV“Ô9߼[”ňŤRÉŤÉĹĽOţk7…ÝśŚw÷«•˘?: O–߉Łb˘ĎĹŁĐA:=ůˇůä˙At`¤¨Á{TŮ ů¤ž@6´:žm5·l‰Ľ~·RĘej’źîß˙lˇ›[Ş›Z‚ŁuľnMčşŐ%żŇ{ ŐµîS»ű^CrË8X˘ěŢK ţóĎ6µńăWy›üjŚ|×ý "Gwč=A“¶¬ ^s­ß6_~ ţk&ÁíŐMUúQxe;éß>M[öI>- ~ Ţ hڲʭÖZôčD®čí.6ľVËNłş·ŁßäjłMT-cô÷ą2šß˙&şk0E—¦‹ôđ·,©^߸NÚ-®_ťĽA.Tş!NHt ArßD)Ű9BţďmE˘?·q˝§VQôfDc¬o3†ů—ş©ÝDŹtÚčŕ޶ÝÇ^ˇ©{ܢxp[´µŰ˙ ¸K8´é5Ë©đ®÷›úôô7°ťóż^$U0Żf»żOFż,Ň'q—üꏨ{`GîÉ\vo°ůăÚEŔ(zím^Ţoö~ş(x2(ţMÉď—uYc˝ěgdîi–9fݶŕöa>·‘×nßtĄţĆ>‚äźwěŇĚßĆŃŻľ¦¶qpĚojl´÷ŢŃŘ´ĹűBi{źÇ ­Yí^kű粖pS»âE7_ŢaŰjšvąó~őFNt Ľ-ÔÂ_«gۧŃÚřđ=E°#”fŮš–ő%í?OčH§îř…ŻÔ©“á÷I}bäj`żvkŹĘ’Ź’ŻGë“#[ţV_`FK‡Žôq›äîµ»˙;hě÷ x <5şŔţÍŠ†Ű­=ŠŠľ‰ĺĐ3ü3®Ż3-y^î×iI„îÖ´dłúFЍ`Łßډ*˘+Y꽵C%Ódľ‰Ó‘m5Ý×)Wj‹µ÷…h®\áöúŻ|AlőčüěIivůŹůp@ÔÇ|G˝ uÍíőâWÚ>ęmµcKőâ¤wSp$ŕyé ŕ^´ŇčV5˙¶/ę™?Ŕ´ąş©z}Ë˙Č“Č˙ňˇsôŰgˇCç şí™s˛ňŁŹśŁO “Jś8˙łű™HÓQ&¦=żZ&Fi3‘˙ŮÝřd‡°©$˙÷+ÄCŠd’˙×îí&”ŤŚ#›ŠSŃyDožZýAÄ5ß  Očňčţir@äÇŽÍéţă!= «ęČůÚ7˙Ż˝C5™ż±C5wÝj?Ăô˙ńLô×|éżÔăSű»ůĘÁAí^"ő_řXFşsQr"Ű˙ň,JN%EĹíw˘ţs×!÷żď”Ć?ÖÔ«˘ö|Ő^™ů±çŰÔT˝ˇ6xo;Řôm’­n˙Kľ’ç§ÝüĄVôWÜüux)–ŹĄ–bAw Vb¦Ż’˝%rA6Ű,Č&¨YŚOäě—s°ľqCÍsî˝*ŹV!KżÁzďČ#“¶D .Hr™ćk˙7}ŸM5kš’ß|bTH™¸{m[żYö«±¶ŮĽöX/ű˛ş]ńŕĹÖ–ÍMŤŰ6mŽ×ĘN6yť†šGbĄTŇ:[ú±$XťßYgţěQÜü©Ö ńę¦MÁ_Ťç7×ÔÄ—7JWZWCź¨Ś6~µYˇ´JŔŢ/RbŰ2 tVsMĐÇăřS¶Săl¨i–;Ćşíîô/† ·‘ú#ěuň“‹ń*<˝?ňČ#’łVň4O—‰öĎŤĆŰkŠd5ëđîf„ú?…HµF†Sc;q ŮÝż_şĚ†hçŔ9q}©ąĄ¦Ů|3ńF}ë€ţÎ+ĎQá7I`ß™ľöúYߪĐ_ôC­Ű7\:ş`oóă©ţO™·č-7ن"ĽěÖńýEŔ )sڧ~NrW>ś×jÉŘ ŇücN »óT±Ě§*S‚ŐoűŃv´„˘™ŹÖĄFKt šą—H¨Uq÷×1:ňˇ^d!mJĂôŤ ʞĄí?ë±ç ÉAo•ëźP—ëŘťÝ˙qűBj§N†ďĐ—>ToÝZW[Ł_ĚŹhËĚÄA¸äűâ-íľ'÷ő†vEľFoó8ÓüŰo5Ú]â¶’í›ä˛mďrR˙ycě*řŞý´ýqîWˇ·>Šâ®é;Ö©üő‚÷¨C™vŕˇ÷¤|Y¬ě¨nÚP Ćý©~ŰnĽ ‚Ň»Eᩦc%őżüeâ.nHy~™ň”ŻŤ·x¸´úZ••ŽüŁ?[ĺ+ěâ†íľňîĆă<˙ŔIľ,UÜ6ľ˘‹‹› QÎŽĎŠünÄW-Ąű›Ü‹{wâŃó í—őíÍvʍ.rËÜá[O«÷PI©o5|Żg˙ď~ňýťŇá úĆž˙Ż|8ÜŢ„ązř Źýs˘ďQ!ߢĎLR& ÷×Ň˝sǧĂĐcĂÝś˙Ű= Xl6NÁV»0ÚĐ—FxC4!mŘŽŘşMŁ-ńŠä^ľ›µäßďŰŃ$Ő$ű¶aďŘŚŁá]ćüŻZ§XÖtí1Ř­™5Zę-ČDŻĆI‚y„±AĎg‚6r–ůś„ÔŔ‘GH÷Ř;xÎťZ|ű©şˇŐĄicÍryP±……zŘĐTłµ©¦Y¶ëúŐjÉă‰x|$ąľ±ľ^ R‹Ź'¦Ą™“ ľ*_ ý¬¦VB“ÜŹÍ_q6'É]­ů.ŔŕŮ1Ţ.슯—ü×éHśnÂVŻ7‡«ň{Áv®Q~«)¤5i%ëTšEśë›[Ú>‘<ŕ0/KÚŽUĚg?_Řи~ď][kRN…–¸ł‘č ŘhJGjÝ,MÉ' ‚? ‰ß—ŇW›Fŕ6ŃzÇůH˛Ć¶7n‘áÝrÓlɰî›đZµum4h›$űÜ‚ŽLnůĺ"űżHŮ\˝ÝDiN=}ňŐÂ/ R ţşťiFÓ±âć1Š;·Ű꛹֣9ݶ5l0Y"H‚ă%ÜjlŮ\€I>ŐÁ’ŠÍ{ň&M;z’űüpůůśąH9oôÖ@2ŁÔĽŰ.w…‰kŹýk6¸?×Ňhľ#5yL¨f} •rü%ëšsü5[.ę-2Âj:čѵ Ryµ-öëżL'ÓGG®Ö˛SާčŰ:ŽĚ>R3uŞe絢xh˘ŮťC®~8ä ţJ»çě4ßđr'uwʱtŞ'UÝÜlîŕöžŃŐ|˛,t¦;­Í3ÝMŤuL‡–9Tú^ăÖ–Úz™V›RŹZ[ßZźć6·yś\EĎÍęˇ:řaöď±#Î]=9%Ů?ßQ+SDéÚAç’5ćr'Ůfú@SM°oAĐ!ÉW_ż­ˇv}đ.»ŻD{Đ1ďÍ‚oÆ఺®(¸@đµ;›ŤÇ—76ÔłLpĚ(Ă7Ťľ`w΀›Ű;>ŘuŮşĆ52MO:¶™;ď‘A.&řşF™(\K$«ŘŐă´äŤBŻ…Ö”¤tÔđY3ČţAácçŮöä8|î$Zü·($Yü7â:AGĐmöźd_+ńž@ç·{Ť(_ńřąĆŠ}3%xfźztüFvQ<'ľ*ŮSű껑'˙WÂÂdĐ˝‚uNúŇÉ6ωý§R_é)ö[·Á÷žŚ˙ťŹ ŤSm®fżˇonô†˙Eî“Eń”×^˘÷h­_Q0QBÇuOĎT‹ÚŤIEIĆ R ĹLšPĚDGb Î/nŘرw›’˙DśdŃŻŞ‡/7=)×»‘˙0Îţú:Ľ’c~nWˇ=Ë(‚źŰ=Đ @ĂĚž>p/čŕćŇ_{)©÷mŞ;ô×\PßŕM»ßđŐúY·ˇHëý<§ńż*'÷‚Ťř1őĎ l«ůJ4yL‘:’ŃB=˘źRĄTŚÉĎnŘ“:V\˙IY2˝pq RŻü’ž€´o§ůĂdíĹ ~)Ď˙(Kî{ř’š¶âÉ/učESeűůś#ZźW$ó‡`Ď3Ű{€QZĘbíĂ ÄäKµĽBÜj…ŘöŢ7ŤöľÁŐ:¸ńý/ldĆcÉÔń˝Ě×Ú‰¤;‘ÍŤ;RW:­Ó·™ź“˝Y.k›š¦âe5ŐÂx<;ÉR—ťsr(lToŕ¨ÍÁ˛k'Eľ˛Ňô‡uŤ;ÝbÖlĎe·U]ŰüsĆÁ;{öo-’Ň‹ü]§źKŮ­Áž˛V¤‚íÎz±Írýźł~ô <ëǶ;ż0â}“ŰżBÝŮŇXOüO¬Pýw®Ž¬PĄ„ňź„XKhąý¦»ćó›m,Z d©° ĚčשtZ´Úw:ňŤKÁWÓ¤,$UÝţ§PmBR_ˇtÄJ¦#+Z“ډ5†ß¸hó»Cy$Âi$BY´ű®šE‘Ôćj}iŹr’Uyä4´Mzmنm˘hA]x"âŁ!Ń„AÔ‘ö9ş> Ňž:IţRĘ)ČŇ€•]Mµ9Ěŕ_ץüߦÔ˙mHýßä˙đÍéC~'ąů[”ěŤŰ«K’tđgFőg}-˝$%bđᎍAÖ_Ägzőë7-­Ý’ŞšdTAGH~ŹśţnŇ•üdú‚ů)Už©ĹĐßiŢV__Ý´Ëó[˛Ĺ®oÖ_K~€(ő·&›ßÚľľq{ęőR#&/ć˝JPĘ„TAXŻ*úk^ĘWčőŽšäü1ŐúÍËőÁŞlC|Ý®ŕcĹć ©ę‡Ćc0X<ŹÚŤ3zߨ!éÖn»$ň~1‹|u¶ž1Y¸ިíéÁ~µ[D ;ô˝qě0ţośęaz×;Á¨ »'Ď9ňČUá_ń<',7ëÔx­_áµS~p®•żp«Ţćě÷m·}îO~óŁD‹#6)pßś˝eÓÎ6w$Y_Ç÷Ş,^0ŰUÓŇ^*ÍQO2˛ů©ą7ÔăĎ{¦ "_ćM‹xĎą"5-řłň»ŁY‡żDż;ýÂ>´‹óŔźßM­€Č˝ĺÖ­ö":ĐÚůCňĎś‹&żµ4y•‚đÇÓ{şŢ[§Ý7Ü]Í ´Ę}Í|ű"ŠVăŁcWÚÔÎĄôËŤżţ•Úą’~·FG®4·Í7‹šjVĘ6?ůWˇí˘OV¨ÉŹßD}^tÁWůĽhp1ű~‘y-‡Łµ4J‡3wÔÚüm Í"X.ÉÄiŽ÷e˝úÖ«q}­ąIéŃ™‰,·V7µÔ®ßf1…JÜąSţކދƷzÓHß ΊÝ'J ţ;/Ís7sG+˘WĄěĽúËßŮĚJ0[ö­ľ|}EŇĽÜ-m}ضZ“ĄŇí$]ükĽ]ä^ ż]$ UŐGľLTÚÎËDÚWÚz—(Ż˝w‰¤#7aĎ€ě™öéPđŔ&ĺéPđ ţ+´m>{8Ä;7¶şĹs‚wLL~5Hľu$WlÉ®­/ăĹWÍ<:-ř7ű­îŤrťŔ%]nSSă¶­ÁŞÁźovŰ5ó‡gXáJţ/KiXßX‡?%kr1ą'™OŻšîJc¦’šęő›µ íniliXś˛ý÷†7ĎD’eBŕ˝üëj¶·™±đ˛źvŮnk¨=Ě|:—CűĎ “ßDŃĽťL!;‚÷‹¨¦âÁW›koňĆL6żkJmÉ`B4ŻDÖ$źURńeĆhŘ<Ě”VvotŻ »j˙Ż>zó?îđ?z«oőNXôÇMgó¦-ˇŚ4Ş!ůąs“J»§Ęîîב“ßü†ÓîÁŢ܆ä˙JúłĚ¸=ÎëČ#=N^´(bɇ‚Ü`ÔN<őĎÖT·´4%/RĎNţ•Áě<2ĄŇÉ$úk`tâ2'ý¦ŕí>áŃČPsD?’Đ™$x&Ô`ćBTŹě‚‚ęE„•mDHNA*!ůoů-ćcE»ň«}¨ČěÄÝkÜŃu¬3ĹÝžŚ¶1Y§îsuöąo0‹ʬęK;đŽXNđł ’Ebđ5HÁëÄÁ•’Ă=H~|Îţ¦ĆgÎDŘčOBé¤d˛_ź/}*ľ~[˝”¬ňKôtË+ńżg ÷¬ÖGDţß×›bëß÷§¤w¸Ý(…ŢŇvG‚»ŐnHô±uĄssGË.küÔážbk7žňMśí´IăöjŰ#SňňŻUdół×zűűŤ›dQY÷?ňrÚ×[!˙˙+Öäe"˙ Ľťš¦'˙Đř˛ůÉZĚüŮíëu6 ëvűoŘč<ÖĂo#D˙IBťôZEż•G˙ýjťĂň…[ł˙˙őţ˙Üz˙˙s ó»±0Ź~QďćÁ_D4˝·ý1Ł÷ # ŽÓNr»Ôîä©w#Żß˛¦şi®¬­óĺúEÁ(ŠŁ;ák2ÜDý‡Ső?%‹{L>I<É.»ˇ¶ľy˙Ľ@’wŕ×úŚTuó\şîÖ…Ő É»F˛e:ŮťW`Í?{˝ťî‚»óe¬ÁüżSŞ&ŘÜÔK˛ ‚›„2Í-¤Ţ’NúôCôWó´ţ·łÝy0őźýč[ežT $|Ń©ô!Ę;Y—’űúě‚ĘŰ=ˇŞ¶_Xń•»@^,ővčŹaůş7j»‡©˙‚…5e•ż}żŇ_SJöŞVýÂN2Ń ÜX{Í‹h«o®Ąü÷kű…Iń”–j}iŇľmTBř»“ë—Đ4⫌č‹ćRßpŹ^QQÍě&ŁŰ7äŰ˙v^N%Ő˙Ĺɸť6đůż´Á^ú*-·Á^ë]DO®‚Éű+|[¤\(Ü\réĐűÄŃ/Čó S„˙ďŐîJzć(#9¦Ô®üA˛ęóÍ—oçsń ç^ŘŚüޱUóq§Ł¸s×täiľW?ů Y 7N›#¨­}+ş›s×ŘżĽ ÁÚÜčéżä"Ĺ\Ú®X’W†şýďűŽŽ/šk7›SćqÓ˛XŮ-U¤e*jwNu˙‚‰ÂĎěܨx6ҬFBć®1ĎĂ÷ÚU/›mé$.NôgŇ#ăő`KV”ťĹ˘żµ3ř#ĹÁ'¦x§â ýővć_MS“ěP˛©ďâĎ<ą§úÍÉŻć’îÜęm6źü]Ë›âşăűô8úó3)˙´÷űżňÁűoăFÓď䦿ą±Î\° T¦–Ýż˝oܸđ±‘iěüŤ‹‚ż°™üüÂíN‰)˙Žlgújă+Ţb±/b±®ť;é9đü†őÉŐc[Ă–†Ć ÉßnĄč^ŰĽ ¶®F~ęx“ţ­^-µ2DZŞë·Ę5úböź3Ż­ąfßG’żŘëK\µł^u劽ݵ/fwţ·ĹĺŔ–rĄžćob*FiéćĆúšŇuŤu[jšJç5®OľÍRşŞtë–MÍĄuő5•ňóěşşŕTşd•˙R±”túm4o©/ŻŮaľY®ą˝ZÚZÝÔ\3ŻZÖ±.ýb±Ź^¤_6–›ÄNŮżüňË+M“3XA|wđ]ÁŚß |7đÝB|_đÝÁFüđ=ŔěCü`đ=Á÷t?wĘG¬třzšß5|šŘjŹŢü[­ň˝ß”u¸ŘHř‡šXEb#"ô$ř^ŕ{ášš–Řř‡jţ¦.zô ń#€Ł?O0›řLBĂŹĚ!>ÔţaĘ?VlüŚZţÜ˝ć7Žř|`!ĺ7žřbBÍŻřRŕ$ĘĎäP˙dBÍŻ8BŻů•€ďŤúëMőcň« >N¨ůUź OůMŔőzŁ,ŠšßÄ˝ć7‰řbŕ^17>¦ďü ގü«Ď!Ôügź Ôú7ůĎ› )°Š®? úľ¸ľ˘)źą5̉Żĺ›KíߪWŢp«áI¨ő·|?č ˘ň/#~ˇ–9ńĂ€#©ü&‡=áE¨ĺ[ˇŹ‘–çŐ+ż?op Őďţ2˙ťá|ňüwŘ!đ÷"Ôůă`±FŹ^Żń˝\~ą‡Äô^>ŠPë]„^ăŻ'>86ćÚgńăµ}6ź,ˇüjŶŔ_J¨ísh„^óŰ⩟Râń3î ˘~;™{Ő6±đ÷öoęc»Řé˝ĆßA| ŢM;íű>üi„Úľ»O'4zSχ?śPëçâGuţ3ńŹ;ţ,B˝ţQb§zôZľŁ‰Źó¨ţŽ;ţ|Bí_ÇFč5ţqÄŹ'Ôřß;ţBB-˙ zŤ˘§|…ÄźJő×ßĂîôXjű3:~F›¨ýËŚ˙ůĺ{ŹĹ\›Ü“řsŔŁÍGüůŕµÍ v&ţçŕuÎÖőŚň×1oPçSż—‰]o ®ßĚ˙_.ŐRîŃkůŻoÖ,Ý€ ţw•ŘŐđ$Ôţ÷KŃ'Č÷çÁg@źáÚ2˙n&~8ˇÎ·€Ď„ŢŕPŞźŰÄÖĎíňăVŹ^óżř4 ŻM<›ć÷âă@^˙Ü)v7ü…„ZżwEč5ż»‰/.¤ú˝|ň7¸–řŔÇÁÇ]űĺ{xÎAË÷0ńj\ľß‰= !ˇ–ď‘˝–ďQâKcn˝Żů˙üäopĺ˙$ń™„š˙SÄÇů”˙Ób‚ż€Pó˙c„^ó˙ńĄŔY”˙sŕł‘żAžżžźŢŕâ˙ >ĽA¦ü/źI¨ĺ˙ńq`•˙±żĂ_L¨ĺ5BŻĺ˙;ńĄŔÉ”˙›ŕÇ!˙qˇü˙A|&ˇć˙6ńq Ţ?Mţď˝ >ˇć˙Ď˝ć˙.ńĄ@^ß>ůÔő…ůů#â3 5˙ʉŹyü|"öü…„š˙§zÍ˙3âK<~ľŻgů©őo.cůLBäß©ńq ŤźNťQă+ DţťşDč‘CůR ŐżY|ňWÔü{źI¨ů÷!>¤ţÓIÖŞťú‡r§ţÓ©_„^óďO|)ú§ÁŕÇ#ďńˇúJ|&ˇć?Śř8󗝆ßO¨ů§Gč5˙áŕ ‘_a(ż âů¦ůer˙űQ§1đj~ń˝ć7|ňSÔüĆźI¨ůĺrýɵ:Ť‡?źPó+Đk~ă‰/îOí_ľy¤űW§ń™„šńq ׯ¬;UÂ_@¨ůWDč5˙Jđ%ČĎ Íoť¦źI¨ůM%>¤ů­Ó4±*ř 5żézÍŻŠřbŕŞßŮŕK‘żA]ßšüçĎk(Íńń›4˙ůb cnl+jţ "ôš˙Bđ ä—µ˙Râ3 5żeÄÇśßr±•đj~+"ôšßJđeČŻ,”ßjâ3 5ż5ÄÇśß>bűÂ_@¨ů­ŤĐk~ű‚/G~ĺˇö=řLBÍď`âă@Îď±uđj~ŐzÍoń…@˙ÁW <ľ6źI¨ů×rţ‡ŠŐÁ_@Ř)‰ť¶Dč5˙şXęţHőĘoĹţËřÇjýľúĘPů¶?‚PË·řQ@:é´Sěpřł;%ËŃi—čÇ{ôš˙áŕ' ţ'8}ß·C¨ůI|Pç7ł69J¶ÝÁ_H¨ůM|ˇŃŹ;†řbB­ßc‰/&H˙mâËU<ńŔ)¤˙.ńS UńÓ3IńłU2ńs€ H*ń Uř‰1÷Ľ€ëďtâ‹ UńĄŔ•17>~â,ˇřg_J¨ăëGÄ—ţź˙~,ą& Ôý÷@±sÄ®?PűĎąÄgvJöÓNç‰ýţ, >ß0úóĹ~˙XBŤ˙S± =zóoERků\B-˙Ď=zzţe8›ß8BŐ_ä)ëA|>PźĎü/»ţB-ßebWyô˙râK 5ż+Ý_ תüĚOAýÎݍůÉ|ŇyüŁ\ż2:/ńč5ţ Ⳁ\ż’OçŮđçjýĘ˙w^äŃküŮÄŹ%ÔüeOÚyüą„Zżs#ôžçú\‹<ĺg~ ęw6xEÍo™Ř řGą~—‹íďŃküÄgą~WŠ­‚?‡PëwO±}=zŤżŠř±@Z˙tŢKl5üăµ~÷ŽĐküŐžëŹ#~_Oů™ßő;üśPů;ţB-˙Áb×zô˙âÇ (~µŘzřÇjüub‡zô=ń…@ZźtŢ ¶ţˇÖoM„^ăoô\?AĽpťá/'4×On ń•1wĆcřnÂŐ‰Ő{xŤ_Oú‰„X_unđÔ/ëÁĎ?7T˙-bŰáO¨őżMěHŹ^ăo'ľ¨çC¦ţw킿”Pëg„^ăďň\źŰG¸ÎÇÁ_F¨őńŔJŞ˙ŁĹŽńđ˙ŇO Ôú?ÖSż¬?ü<đÇQýź vüy„Z˙'Š]ĺŃkü“ĎRü“ĹN…żPăź"v®GŻńO%ľXNńOű>ü„˙{b?ňč5ţ÷‰ŻNŠąţsşŘ™đO&ÔţsF„^ăźéąţdâDĺ›B¨ń쩟)¤®óeđOęţŬ]Ď#~PĎwMýś/ö3řjýýTěŹ^Ż˙3â—Rýý\ěBř—jů.Đkü =×_Fü%Tľĺ„˙RO˙dýežţ˝śř«hü¬ Ôřż Ý”Wýµ¸żÍoPß_3ősŁŘÍđgă1·~¸)ë2ČŁ×ř7ź Ôó©Âß"ü@řs µ}o%~ˇáÍŢŕ6±‡ŕĎňţĺv±_Ă_B¨ńď{ŔŁ×üM|)0Aőó±»ŕ/#ě”lŻÎwŠÝăŃkü»/VRü»=zž?ďˇü&jű˙ÖS>ľ˙=@ő7‘Pőzęźő_€ţ± –ş>zTě÷đçjý?&ö¶GŻńOüX Ż{ţq„Z˙{ĘŁ×řOź, řOzô|ŠňO¨÷ż§‰/"ÔúyVě9ř‹ µ~ţ,öşGŻ×ŽřBÍ˙/b/Ŕ_J¨ů=ˇ×ř/_F¨ń_{ţrBí?‹ĐküW<ĺăűßëT„˙ O˙áó·©ęłCÜ;ÉĽÔůâ§gPűĽ+ö/řgjűĽ—üŚ`+˝^˙_ÄĎ"Ôő•9żüŔĂ«ţŇĎ&Ôöűřą„šż9_üţy„š˙g˘ďéŃëő?'~>ˇ¶˙żĹľ€źMóűO„^ăAü"BÄďŇY¬+ü‹ Ńţ]şDčßh[•o1ń=©ţ–jü^žö]Bú~4?f{řˇűc„űďBđéţŰe¨Xü™ŔxĚŢ» [äŃkü4âłt˙í’.¶ţ\BôŹ.ÉGűo—bůđ뻣t˙í"9u  ˇĆ%6ÎŁ×üG_ LPýdeÁ_Fůż‹ÔY—1˝ĆĎ"ľH÷ß.qŹžîż†łůń;Ú˛=ĺŁű§álýM$T}ž§ţYź~řE1·ż7śŚÁ.%đ'µţĄ®»Löč5~ ńe@Ýßú‘ßí˘ţ B­ąV— Ź^ă—_ śHńË=ú‰¤Ż ü&jýUzĘGűĂŮú›Ôý‰ŚÍ.Sźs{­_ŮÓt©‚>ˇÖŻÄę2ĎŁ×ëWĎs–_4]fÁżPË73BŻńgy®żřyÔż˛=üÂĐüćaţZ ^QóßClüŁôüĽ‹ěĄş\ęŃküeÄÇcbnţ’˝P—KŕĎ!Ôú_AüXBťżVŠ .Îşě)¶üE„•Ř˝ćżńĹ@ZźuŮ[l üĄ„:~V‹­őč5ţℏ>Aúµ”_ˇöŻ}=ĺŁő›álý•Şţ Oýłţ`đKĐ/ ŇţˇËz±řsµţ7}ŰŁ×ř5ÄŹŇţˇËF±ÍđŹ#Ôúß$v¨GŻń7źG¨ńk=ú<ŇJůĺbýÔe ńă µ~ĹżPëg«ŘQ˝^˙0â‹5˙&±ř‹ 5żć˝Ćo!ľ”Păď;ţˇöź]zŤ¸§| ⏢ú+#ÔřG{ú÷ĎoS˙¬ęýÉÜŽ'~2Pď¦ţż+v"üU„Ú>']äŃëőO$~!ö]N;ŮĂ«ţdŇĎ$Ôö;…řŮ„š˙÷Ĺ΀ˇćşŘO=z˝ţÄĎ%Ôö?Sě‡đĎ#Ôü~ˇ×ř?$ž×đ˙'bçŔżPŰ˙ě˝Ć?ÇS>ľ˙ý”ęoˇĆ˙™§}yrÍŹqIčţć/Ĺýwđy˙p…ŘUđgă1w˙˝2ëÚÝŁ×řWź äýĂ/…ď.ˇöŹ«‰G¨÷ß_‰ýţ< ď®»ţBŤ­Ř˝ćńĄŔŐĎőb7Â_F¨ó˙ b7{ô˙FâËĽ¸ÉŁçýĂÍ”ßBí?·xĘÇë˙;¨ţ&ŞţמúgýoŔ/E˙XK˝˙Ţ#v/ü9„Z˙ż{ŮŁ×ř÷?Č÷ßűÄ€ˇÖ˙ýbyô˙âó€t~×ĺAŹžÎď góO¨óĎĂÄjý<&ö8üĹ„Z?ż{ŢŁ×ë?N| ˇć˙±'á/%ÔüžĐkü'‰/#Ôř{ţrBí?ĎDč5ţłžňńţîyŞż BŤ˙‚§˙Đůťál˙ś¤ó».#~*Îﺼ*öü3 µ}ţŽ/˙ ëőúŻ?‹P￯‹˝ááU˙égjű˝Iü\BÍßśOľ ˙ürôŹĺ±”÷“»š6Ę?źPë_úD×bŹ^ăç_ÔýŁ©SÇăŕ/$Ôú—ľÔ5ߣ×řă/Ňý«kžGO÷'ĂŮüJ µţ <ĺŁýźálý•µýMß+!~"ög]bĺđWjýJĚ®SbűÂ?Pëg­Řţ˝Ćß—ř™@:?čşźGOëĂŮüću}bć‡_\Iýç ±Cŕß“PűĎÁb›¤ýU×b»ŕ/'ÔţżSěŹ^ăď"ľHĎÇşîŃÓó1ĂŮü&j˙ú–§|ô|Ěp¶ţ&ŞţXOýłţ8đfĚdy}ó]±áĎ'Ôú?AěLŹ^ăźH|×7'‰ť!ˇÖ˙Éb§yô˙â‹€Ą˙TŹžď§Q~ B­żďyĘ— ý™Tĺ@}?ÚĚ_? ~Pç_Sg‰ýţ„Zż?ű©GŻ×˙1ń3 µü?;ţY„Zľł#ô˙Ďőg˙Sę_9ţ‚Đüć/Äüµ ĽAžż.»ţ, Ď_—=ëŃküK‰Ďňüu™Ř3đŹ#Ôúżśř—P篗ÄŢ…ÎĎ»šóÝWŕ/&Ôřć|÷Ź^ó…ř ÷ďWĹ^?A¨ăÇś˙ľáŃkü×/ňţďuŹž÷woP~„ÚżŢô”ŹÎż g믒Pő˙ôÔ?ëß%~"pĺ/}«ë‡đO&Ôúů@ěcŹ^ăHüŕTŠ˙‘G?•ôS~Ó:>Íüđ ńł ©˙|&öořj˙ů\ô]ťΖoڇďîżĚ÷Ŕü°:ćţVÍÝdčÖţ ÍÝúm÷č5~_âÇi~čÖOlüc Q˙ÝúźK¨ů ÷Oóů nćĂń•Ŕ©”źéC…đO#Ôü¤Żt+÷č5żBâ§jýĘ˝®[ üU„Ú‹#ôżÄs}ZΖoˇ‰o®]Aü,B­żIÄĎ&Ôú›LüŕTrĎč¦ő¶”PëOęŞŰŹ^óźFü2ŕrŠ/uŃM˵‚Pă›óď==zŤ?ř•„Ú>rŻę¦ĺŢ“PëoV„^ăĎ&~/BßóĹxxŐ/ ýŢ„zý…ÄłiţR—Ý´Üűj˙Zˇ×ë/óÔß>ÄďIíł–PăŻň´ďZŇŻˇţł/ˇ–oâ÷'Ôţą?ńj˙<€řë©˙ŻŰÁđo ÔţsXťGŻůL| ˇ¶ď!bŐ^őŐ¤ßH¨ĺ_Gü&Bm_ůÝn›ágÔúߡ×ëoö”o3ńuTµ„żŢ3?×’ţ0Ďýůfş?ŤńđÂĄ¬_ÂĽpÁúhđűPű›{Ó.đkÁśLü·Ŕď Ţ ťu;ZěXřł€ń[_#v’GŻůK|60źâ'v<üăş2s÷·ĹNôč5ţńÄ—iÔí;b'xxŐźŕ‰Ďü‰žň1ęo?đ§Pýž ~đ+‰˙>řŔ\Lü™ŕ`? üAŕ ń?0x«?ü!ŕ‰Ą®~*ösřÇuýcÚ˙gbżđčµ~~N|.Ű˙±‹<Ľę/ňÄgţČżĽAŢ\*v9ü@}ţkňżLěZŹ^ă_N|8†â_!vüŮ„f~0k»+Ĺ®öč5ţUÄçÇQü_zôăH5ĺ—äńý+Oý°ţZđëŔŻ‹ĄŽ˙Än‚? ¨ĺ7őwŁŘ«˝Ćż‰ř ťw»YěřÇęýçâó€ôţN·[Ĺn‡ż„Pő·‰ÝăŃk~·_ LPůďű üe„:˙˙:BŻńăą~ń÷PůĘ 5ţo‰Żňúü~±áźF¨ĺ@ěiŹ^Ż˙ ńÓ őţýŘĂ^ő“ľŠPďßż#~&ˇÖďďĹţ˙,B-˙ăz˝ţ<ĺ›EüÓTs€ú~ŕ áţHüBŕJŞßgÄţ ˙ž„Zżćüň%Ź^Ż˙gâWuýkĘ˙śŘóđďM¨ĺ˙K„^ă?ďąţŢÄżDĺËńđŻxĆ/óŻb~XŢ ÎO¦üŻ‹˝ ˇÖĎbo{ô˙Mâó µüoyô<˙żŤüĚš5ŤĐčŹî=đćL ŚxŐ |?µń§j˙ý ôýćaýGŕkŕ7¨ďGšőůçÄçęúüßÄçuýÓSř˙ÄbÝUWL¨őűń%„Z_ź 4üÉ?·Ű=K®ąGuŃU¸Îb]=<Ęo¸@ż ĽA˝żJ~ÝĄŹwď!ňď.eě>ŇŁ×ř˝×ëĐůSwąuď )!ÚŻ{ź˝ĆďK|PĎGL~ĹĂ_I¨ůËŇ}GŻń?íÓ}G?ôĂ(ż‰„ŞOóÔßDŇŹDű=M!ĆG÷LđÚ/”W}ýÇřÓ µ~Ç„úoXźľ~EŚŹîůÄçb|t/ >HăŁűxóW»á/&Ôö)$ľ„PëŻřˇŽ‰ŐÝěűEýÔőłéűŇ׺—yx-ô[Ŕäń!}©űDřł5é Ýzô"ńq ­Ż»ËĽ×} ü„Ú~“#ô ń…@Zu—{}÷™đ—jţ3Äćxô&ńĄ„Ú>łv‚×~ˇĽęG˙1ţtB­ß#Bý7¬?üađKůű9ÝŹ#>‡PÇÇ·‰Ďňř8^ě ř‹ µ}ľC| ˇÖßw‰Oęř8AěRůą őkPĎ/Íř8IěŻĺ?úfđy||Oětřł5˙ď‹]ŕŃküÓ‰ŹqĆÇb?€<ˇ¶ß™zŤ˙â‹€ô~W÷‹ť )ˇć˙±óA¨ăă±§bÉż>¸=ćĆÇMb·xx-˙-ĐďoÇÇíbż†?‹PóżCě1Ź^ă˙šř8žżw˙ŤŘ]đjűݡ×řw_ ,Ąüď»ţˇćźŘC˝Ćżźř2BmźężaýźŔď‚ß ž›ńńâsu|zô&>HăŁG±Ůđ˘}zô%ľ€~¬pý/#DýöčO|!ú|ŹbćýŁP˙GĹěűfüô,6ÔĂký …ţhđiüôşî1ţ,B-źÜ‹{Löč5ţâă@Úż÷MŹŃđjűŽŠĐküŃÄi˙ŢC4=˛á/!ÔüÇĺzô?›řRBmźŹžîO†łů%µ|ă/NŁüĄďő(‚:ˇć/×ěQáŃëő‹ŻΤú—˛öĐrÍ"Ôň•Dč5~©çúłŻ ňÍ&Ôř•žţ3›ô“Ń?ʉ%Ç­"ćŹÓÁë¸P^ő30~Ś?ťPëfh|‡őłÁ żÁ17, >‡P珅ÄçyţX$vüńھ‹‰/&bnţXB|ˇÖďÄWęü±LĚĚŮǡţ ęóu3:ŘÓĂkýě ý·Áäůco±5đgjůV‹móč5ţâă@:ß豏ؾđjű®ŤĐkü}‰/jýšü;ţ2BÍ˙ ±u˝Ć?řrBmźCČó‡üĎçŕ/&Ôöý.ń%@}?ÇĚ'?‘ĐđćŢu"ń“ôüĽÇIb'{x-˙ɤŻ"Ôö;…ř™„:?}Ořgäçď˘} ęóGÓ˙N;ţL ćóţFŹ3Ä~äŃk~g?XDń v–‡WýYžřĚ˙ůźŢ`śâź-v.üŮ@m“˙9b—zô˙\âs´čqžŘOᯠÔţqľŘĹ˝Ć˙)ń•@}˙Ćä˙3± ŕźB¨íűó˝ĆżŔsý)Ä_ě)?ó—˘~OoŢďéq…ŘUđgą~ŻűŤGŻńŻ">¨÷SżűüE„ZżW‹ÝáŃkü__ Ôö3óĂ5ÄWęüp-ń•@^?^'vüÓ 5żëĹnöč5żŻ"Ôö˝ŃŁŻ"ýÍ”ß BŐß⩾˙Üáićö?ĽAťĚŢé·Âź &ˇ–˙^±WŕĎj˙0ýç>âsú~Čáî'>Hçż={ţRB˝ţb/yôZľ‡O+)ţĂbŹŔ?Pă˙N쏽Ƅř‰@ߏŠýţ)„&ţ,áűGŻńOüT ľźdö6Ź{ôóI˙Ęoˇöź'<ĺ[@ú?Rý-$Ôű÷ź_ \së_ą7őxţĺ„zýżDčőúĎ{Ú—>ź`8ŰVjü—‰Ď$Ţü[•äl˙Ţ“P ˙}ůůč ęýq đŻ 2ücµ˙ĽN|6÷ďo˝ˇć˙f„^Ë˙řSÁĚ‹ąţýO±÷ŕĎ'ÔüŢ}šGŻńß#ľHçw=ţ%öü%„Ú?ŢŹĐküOůţű‰ŘgđWjţźŠľ—GŻń?#ľČăÓśŻýţ)„š˙ż#ô˙?ÄOęů€ÔcĎNÄĎ&Äý§ggâç»üzvë˙BôŹž]#ôČĎh[ŐĎâ{QýďAň÷ěMü2ŕžTľţÄďE¨ĺ@üjŕZ*ß@±ÁđďK¨ĺˇ×ü{úďľÄ§a|śKŽ_źćýΞÉĎ!Äřď)÷ÄžfÍô=Ä7Hă·§Ü+{fÂ?¨ëSw˛ęYîŃk~™Äq3ýż§Ě5=ÇŔź D˙ďKxô ńeŔ ”żäÔs,ü µýs"ô,ń“şż1ý#źř„Ú? ź\@ůIťö,‚!ˇöŹÂ˝ćW䩟…Ä'<íĂ|9Ú˙űŕżďú‡™˙{J]ô<ţ\Bmź‰ÄŹŇüÜs’Řřó U/uÚsGŻůM!ľ¨ýÇÔź¬zN‡?A¨í;-BŻń§_Ôö3sŹÔyĎ9đĎ$Ôö™ˇ×řs<ĺŁóQĂŮú›E¨ń‚?úÓc)űĎž2—ő\ PëÇŚĎĄbzôzýeÄ—'Q|Y‹ô\ ˙dB“ź&Ć*Ź^ăŻ$~ PÇŹi˙==z:0\ĎýŕŻ"Ôţłń3€zţdî {‹­öđ5éçjýŻ!ľŚxŐďç©_ć¤öÍöđcüťŢ ŹźubŕĎ'ÔňŻ;ÖŁ×ř/Ňú¦gŤŘ&řKuülŚĐküMÄ'€şţ0ům«‡ ˇć_'ÖâŃküzâ§gQţ b[áźM¨íס×ř[=ןM| •oˇÖĎ6âçĹÜýańKőţp8ńK+¨|ć}$ü+ µ|ߊĐkţGzúÇJâŹE˙3{„LBßhż^× Ę«Ţśęú=ÓĂ›ó=Ó÷Í;T# 5ţiŕu_˘Ľę…łű—‘^¸`˙Cř Ćc®˙ť%öcřÇj˙3çoOxô˙ÇÄgéý°ž?;ţń„:?ž-vžGŻńĎ!ľČăó\ŹžÇßy”_ ˇöĎó‰Ojý\ vüe„Z?Š=ęŃëő/"ľČă˙b—Ŕ?…Pă_,öKŹ^ă_BüT`ŐŹ9ß»ţ„:>.‹ĐküË=×çű÷/©|3 µ~Ż&~6ˇŽ˙ëźC¨ă˙zâçu}hęç±›ŕ_H¨őwŁŘ]˝ćń‹€{PýÝ,v+üK µ˙Ţ"v»GŻńo%~ˇĆżÍ٧óĂŮü–jűÝá)ťŹÎÖß Bm껉߸šÚç>â×jűÜOü>Ŕ}©|=˙~„š˙zÍ˙!ĎřÚŹřGiüîO¨ńóĚ_ű“ţ ĚŹćEˇÎżŻĎU”W˝pÁóăO'Ôú}6ôü)¬üŹŕ7HĎ·zľH|ˇÖ˙KÄçéůVĎ—c±^=á/&Ôńń7âKµţ^!>Ahxsď}Uxs>ńcÔŻAúüKOs>ö†‡×ňżýOŔ¤çß=˙!öüY„š˙Űb_zô˙âă@zţÝóźbďÁ_D¨í÷n„^ăżG| 0Aů(ö1üe„š˙Gbźyô˙câË µ}>ńčéüËp6ż BŐ ҉ö‘űtĐ?1>zuŻýByč ôăO'Dýöęęża}OđçŔNĚý}E˝úźCńŃ«?ńą@˝M€żíÓk ń%„¨ż^Ob|ô,fÚă\ämó“˝†ŠĄyx-ôç7H㣗Ě˝FÁźE¨ů‹¦W‘GŻńGŇţą×h±Lř‹ µý2"ô?“řR`ĺ/k¶^cá/'ÔüĄ-{ĺyô,ń„Ú>ą=őoĂŮü* Uźď©?zţc¸ }dôOE đÚ/”W}9úŹń§jýV„úoX?üOá7H÷Ź^S‰Ď!Ôń1Ťř\ ŹŹébëŕ/&Ôö©"ľ„Pëoń BrOíeö˙?Cý\săCÖŠ˝ćzx-˙\čŢ ŹYëőZˇć/kĹ^űzôńq Ý?z-Űţ"Bmż%zŤżń%Ŕĺo~gOřË5˙•b{{ôOâË µ}Vyôt˙0śÍŻ‚Pő«=őÇăk_´ŹěŁ‚ţ©¨ăă@đÚ/”WýÁč?ĆźN¨ő{H¨˙†őëŔ_żÁŃ17>6źC¨ăc3ńą@µb?żPŰçPâK€ÚľfîÚB|ˇÖoń„:~ÄĚśtęß ö'ÁřŮ*Öäáµ~š ˙x<~¶‰í€?‹PË·]ěG˝ĆßA|¨Ď÷ÍřŮ)v8üĄ„Úľ»"ô˙pâË€ú~‡Éď(±cŕŻ$ÔüŹű¶GŻńŹ!~ˇ¶Ď±==1śÍo"ˇ–ďxâ'ulň;Qědřçjţ'‰ťáŃëőO&~.Pß0őŠŘiđ/ Ôňťˇ×ř§y®OűkĂŮň-$Ôřgzú=1\Đ?Í;Ni„:ś^Ç…ňŞ?ăÇřÓ µţĎŤď°ţgŕ/ß`<ććŹ_źC¨óÇĹÄçyţ˙ďőř‹ µ}/%ľąůă2â˵~/'ľ‚PçŹ+ĹdŹ»őopeĚÍżű•‡×úůô—7ČóÇub7ŔźE¨ĺ»^ěIŹ^ăß@|¨ďţ{ŁŘÍđWjűޡ×ř7?¨ĎwL~·‹ýţÉ„š˙bwyô˙×ÄO!ÔöůŤGOďçÎć7•PËw7ńÓ:ľM~÷‰=˙BÍ˙~±Çˇöź/"ô˙KOůh~1ś­ż„ČżwWâ—»ň÷–1Đ»7ü+Uß+BŻ×ď ţ*´ďU±”óŹŢÄÁ_L¨ńFč5ţ âKt˙ę-sBďtř+5~Z„^ă§?Hď'ô–±Ö;ţÉ„t„^ăg?8ŤâËëť˙tBŤźˇ×ř9ÄĎ΢řR§˝ ŕźM¨ńó#ôż€řą„_Ú˛·Öëż˙«Pűś(v2ü™„Ú>'‰ťďŃkü“‰Ď&¨|§ťˇÖß©zŤń@žÎűü 5ţ™zŤ˙â'yţů±ŘŮđO'ÔöůI„^ăźí©żéÄźŹöąü5ˇöą@ě"ř3 µ}.»ÉŁ×řźäőŃ/Ä.ż‚Pëďâ˝Ćż„ř @^É~§÷UđO&ÔřWFč5ţUÄOV!~wáä˙{_˙ Bmźk#ô˙:OýŃű7† ÚGâűNEěo{ß^÷uĘ«^¸`˙güé„Zţ_‡öźaýťŕŻßŕđÝßöľ—řBěo{ßG|.ö·˝ďŹĹú żPű×Ä—jý>H|‚űŰŢ ?P~ľ>–¨őcř'Äž‚,ˇęź{ÎŁ×üž">Hďçő~ZěOđŹ'Ôúűc„^ă˙És}^˙=Gĺ+$Ôř!ľPŰçŻÂw–źoD|zľ`ę÷%±/áC¨őó2ńŮŔqTżćüäUřóUoÎOţĺŃků^%>Č÷gs~ň:ü•„:ľ^‹Đkü׉źśLńÍůÇ;đO!Ôú};BŻńßń”ŹÎ gëo*ˇĆźřé@]_šú3çźŔżPë÷c±Ď=z˝ţ'Ä/!ÔëęŃÓůˇá‚üĚ:’PçÇ˙xú뿯ýRőŕ gűďHßóĂÍđíÚŻO/±>^ő} ż%–ś_‘źţŕu^S^ő1˙:!ú_źAˇů7¬ţVř ęý_ĆIźáÄçb~ď3‚ř\ Íď}¤Ě}VÂ_LţŃgń%@]Č<Řg4ń„č}2ź@ůĄŹĚ%}Ě~á6ÔżA¬ĎĚüßGć’>9^ë'úŰÁ¤ç}LäĂźE¨ĺ3u¸ĐŁ×řůÄÇĄÔL áOjűŽŹĐküBâËz>j®-żŰ§ ţ „šż\«OĄGŻńËźH¨íSîŃsýVR~“µ|źÔ÷‡M~âë3 ţą„šżĚe}ćxôzýiÄĎŇţąŹĚ9}fŔżPËWˇ×ř3<×§ç#†łĺ[B¨ńçzúÍ_† ú§Y¦ęü±xĘ«~ĆŹń§jý/Ťď°~%ř_ĂoçŹŐÄçęü±†ř\ Ďűť1ˇ¶ďZâK€<ěK|ˇÖď~ÄO Ôůă1ł?ý ęß î/ĚüqŘ!^ëçčďoçŹőb5đgjů6ďŃküâă@ž?6Šm†?A¨í»)BŻń7_äůŁN¬ţ „š˝Řa˝Ćo ~"ˇ¶OŁGĎóÇa”ß$B-_ńS€<lŰ ˙\B͇ŘŃ˝^'ńó€<ě;ţĹ„ZľĂ#ô˙Ďőyţ8šĘ·„Păăé?<ŹţyW,9~uţ8ĽŽ ĺU2ĆŹń§jýźßaýiŕď†˙îXĘűż}Î$>‡P珟 äůă‡bĂ_L¨í{ń%@]ůăGÄO"Ôúý1ńSuţ8[Ě<źżĺ2¨ű3ś+vľ‡×ú9úß‚7ČóÇĎĹ.„?‹PËwŘݽƿř8žŹőąHěbř‹ µ}ˇ×ř_ ,Łü/»ţrBÍ˙ ±«=zŤ%ń„Ú>Wyô\żWS~•„Zľ_?8“ňż^ěFřgjţ˛očs‡GŻ×ż‘řŮ@z˙˘Źě7úÜ˙B-ßÍzŤ‹çú<ţď ňíA¨ńíé?{ţnôĎ{cÉń«¨óÇ}ŕu\(Żú0~Ś?ťPë˙ÁĐřëü÷ĹRçŹßźC¨óÇăÄçyţřŘÇđjű>A| ˇÖß“Ä'u~xJěůů~ämĎO‚ůáŹbĎxx-˙3Đ?Ţ Ďć|ćyřł5s>óŽGŻńź'>äůá±á/&Ôöűk„^ăżH|)ç‡WÄţ9ˇć˙ŞŘ˝Ć˙;ń„Ú>Żyô‡PçŹMÄçyţŘ,öSř‹ µ}k‰/&bnţ8”ř2B­ß-ÄWęüQ/&{Ôب<4Šćáµ~ţIđyţhۡ–o›ŘY˝ĆßN|ČóDZ]đ'µ}wFč5ţ.âË<>v4ü5˙ŁÄŽóč5ţŃÄO$Ôö9ĆŁçůă8Ęoˇ–ďŰÄOňüq‚ŘIđĎ%ÔüO;ÝŁ×ëźDü< Ď'‹ť ˙BB-ß)zŤŞçú<śNĺ[D¨ńĎđôž?ÎB˙4ĎŕÓuţ8ĽŽ ĺU.ĆŹń§jýźßaýOÁ? żÁ17\D|ˇÎż >ČóÇĹbĎÁ_L¨í{ ń%ŔDĚÍ—_F¨ő{ń„:\!föŻDýÄűKÁüq•ŘŐ^ëçjč˙Ţ Ď׊]ˇ–ď:±'ęŃëőď'~Pç'S˙˛źîűüs µ|Fč5ţCžëĎ%ţQ*ßźyôĄ¤˙7ĺ— Ôňý‡řrŕ4—?Á~]ŕźNüűuëíŃăúFků*ŕLW˙ý¤Źôë˙,B”Ż_·˝Ćďîąţ,â{Sůfjü>žţ3›ôĐ?˙KŽ[EĚý†€×qˇĽę‡aü:!ęż_Zh|‡őĂÁ?żÁ11;ôË >‡óGżLâs4ô“±Ôo_ř‹ µ}ăÄ—±~6óGż1ÄO"4Ľ\Ż_6ńS€şľ0m'ąöëáµücI_E¨í—KüLBĚOýLÖČĎ/ } âţdć§~R7ýŠ<Ľ^żúż‚7săCĆZż2řsµţb+=zŤ_FüX`>Ĺ—>ÝŻţBŤ/}®ß˝ĆŻ$~Ě‹ąůé±ďÂźO¨ý§šřB­żuÄęü°^Löŕ±—Qżő|ÂĚ5b›<Ľ–ô˙·XĘúĄßˇbuđgjţ[ÄŽôč5~ńq ťźô«k„ż”PŰŻ!BŻń‰/VPţÍbŰŕŻ$Ôü[Ävzôńµ}¶{ôôüÁp6ż‰„Şßĺ©?:1\Đ>˛Î ú§˘ŽŹcÁkżP^őßF˙1ţtB­ßăCý7¬˙.řWá7Č÷ďSĎ!Ôńq*ńą@ľź&v=üĹ„Ú>ß#ľ„PëďűÄ'u|ś.vŤüüwÔďßc©ăăL±zx-˙ˇ ĽA?;ţ,BÍ˙'bWxô˙lâă@íżf|ś#vü•„Ú~çFč5ţyÄON¦ü.v!üS5˙ Ä.öč5ţ…ÄO%ÔöąČŁźJú‹)żi„ŞżÄSĽ>żíóz,Ů?u|\ ^ű…ňŞżýÇřÓ µ~Ż őß°ţzđoŔ˙ő3>n!>‡PÇÇ­Äçy|Ü&ö.üĹ„Ú>·_¤÷SűÝA|ˇÖ﯉ź@¨ăçN±·ĺç7Q˙÷Žąńs·Řo=ĽÖĎoˇ ü[±ÔńsżŘđgjů{ÍŁ×ř&bnü<$ö;ř˵}ŽĐküß_ÔýÉď÷b€"ˇć˙¸ŘS˝Ć˙ń“µ}žđč'‘ţ)Ęo2ˇ–ďiâ§u˙`ň“}[żçŕźG¨ů˙YěeŹ^Ż˙ńó‹©ţe?Řďř—jůžŹĐkü<×_BüËTľ=5ţß<ýgŇż†ţůŹXrü*ęüńxĘ«ţmŚăO'Ôú'4ľĂúwÁż żAô˙`ţřřBť?>">ČóÇÇÂŹżPŰ÷âK€‰›?>%ľŚPë÷3â+uţ0ď˙ýâ;¨tľÖď ácőc¸@˙OđiţčßE¬üY„(_ąF˙Ń˝ĆďF|ň™ţŰ_öřý{Â_Nöíß#BŻń{_ śHů÷ë˙$BÍżźŘ Ź^ă÷'~2!Ú§˙Źžî߆łůM!Ôň &~ößýÍůĎpřgęőÓ#ôzýážöˇó{Ăí˙n,9>1>űÇÁkżS^őŮčźďÁ˙éM~ú~ŽŽź°~xSwŁHŻĽy?'!?›Ď@"ÔřEŕM»Żzáú—Çě;s­x}–ň>x=©ţeNę? ţ^„ćwM٤ŻôźâŃküIÄ÷ö‹ąţ9ŮŁďGzáú_BíżS‰ÄühĆéý«ŕN¨ýoz„^Ż_EüHŕŠ?[l.üŮ„N„^ăĎ%~,°€â/[ ˙xBŤż(BŻń_LPüeb+ŕ/#ÔřË#ôńŔ‰/±ŐđO"Ôř{Gč5ţjⵟĐűýÍůĘţđĎ ÔřűEč5ţţÄĎΡřćüĄţą„˙˝ĆŻ&~>p1ĹŻŰ˙BŤż1BŻń7ż¸’âo«‡OBŤ_ˇ×řőŕÍ;ľ€(~“X ü 5~s„^ă·?8‚âď;ţ‘„W„^ăNüh`Ĺ?Jěřă„˙č˝Ć?†řl`>Ĺ7çß…ż€Pă'BŻńżK|!0AńO;ţ2BŤJ„^ăźJ|p2Ĺ?]ěLř§jü3"ô˙Lâ§gSü‰ýţ9„˙ÇzŤ˙âçR|óţĘOá_D¨÷Ďó#ô˙§4>:‘^ů ńóÇŕ?Žąó]ł6¸âË/ß2ç ź€˙$Ä˙ü§ŕ vŹąűď5b×ÁßűŻůţĘţ×J·_ăŃk~×_\L׿Ľ¬łőÁ1wľQěfřęý÷&ŃďíŃëőo&~p8µŹ9ż¸ ţ„Úţ·Fč5ţmŕ?oŢč'ńĂ ±żéřCop(•˙±{áF¨ĺ˙­·ŻGŻůÝK|p8ĺwń™„šßýÄÇş˙2ő÷€ŘCđjý=ˇ×ü˙äg0ťň{ŚřLBÍď÷ÄÇ<˙=.öü„šß"ôšßŕż@~GQ~">“Pó{†ř8ó{Vě9ř 5ż?Gč5żçŔ‰ü Ňóťţ/źI¨ů˝D|Čů˝,ö ü„šßß"ôšß+IŢüşÉ/@Îď â3ÚüŢ$>äüŢ{ţ‡6żDč5ż·ÁwB~ťBůý‹řL‡6ż÷‰Ź9?™ŻűC›ß‡zÍď#𝑟Á‘”ßçÄg:´ůý›ř8ó“ţŢ˙Kř ÚüľĐk~_‚ď‚ü€šß€®Äg:Ôüt#>¤üČ˝d@Oř ęýs@Ź=ň3Zž­^ůľÉů7đŹw¨ĺĐ|Wč Ňü4`0ń#Úň ß z4żą|@:üĂęü>@ęrčrŹ^óOßz4? A|†C›ßHⳀăŔ›ş“X…?ϡÍo4ńůműd?ŢaŔ!śô…˛‡0kŤ ţ .Ąö—6íáµüŮĐ÷oŢ˙+–ŽC›ż©jŹ^ăç?Öˇ­ß|âsÚú- ~śC]_ şPžCŰ˙ #ôš_ńŔĘ/A|©C›_ń ŕĘŻ\¬ţ‰m~zÍŻ’řÉŔ”ßdâg:´ůM!~pĺ7Ul:ü Úü¦Eč5żéÄ/.ˇüfż‡C›ßlâ——Q~˛—0ţĺm~s#ôšß<đ˝Đ˙zQ˙1ů-&>ϡÍo ńů@z?a€”eŔ2řKÚü–Fč5żeÄ—+)ż=‰źŕĐć·Šř‰Ŕ©”ß^b«áźćĐć·w„^ó[M|p&ĺ·/ńłÚüö#~6p!ĺ·żŘđ/rhçż"ôšßˇůGőĘWc~3g—ĂńŹ®ĽÎŻĘ«~ć_ăOshëoshţëß×7HĎ4whëo+ńŮ@=_4÷—Ăä¶–˙x‡v~n"ľ¨ďďĘxĐL|‰C[˙-Ä'ÚűĎváÍĽÝőoP×W…ß)ö=řG;´ůí">ĂaŔŹîp±ăŕĎňýÉäp$ü9müo‰ăŃkűIüX‡¶üGyôcI ĺ—ëĐęŹő”ŹőÇźÔýˇÉ˙;b'Ŕ_ěĐ–ď»b'{ô˙âKÚüNôčy~:™ňáῇöďľµżßgýţŃ@]?ÉXp¦ŘĎ4őűf,6°ŔŁ×řoŽ^rđáóáĎqhë÷mâÇ:´ëŻw„ďż–CLJŃ˙Sě=ř‹Úř“GŻůżG|1÷WćüđřK đrŻ`Î˙íŃkü/ęţĘĚźćüđcř'8 ň7{‹Ź"ô˙câ':´úĎ=ůŃóqĂŮňOrhűç<őGď÷ζĎd‡ŞŘŮÓľ¬ďŢ<óÍęý[üĄ ö‚?ϡ¶ď@Ů áŃkü^Äëut˙bbKŘţń@í_Ňľeż1p¨GŻńű_ÔűŻ´ď@cü ‡Ú>űGč5ţâËZýO~e¤Jĺ/whŰg§ţĘI?‚Ú§ţaÚrŕHâ§unÚGć”™đĎrhŰO®90ף×ëg?ۡm?ąç ˙‡¶|ń˝Ćăą>˝a8Űă>?4?†ůĚżCŔÔůŐä/m>°ţ8P÷¦oĘxGŻńK ÔűĎ@á¤/ <ţ<‡¶ţÄç;Ôůw ôĄłŕ/Ňúr ô••đ'Úřb3ćÇtđy~üąŘ…đŹňüxŘS˝Ćżx˝Ďʉ= ľCŰľż ľŔˇť/»ţńŔőźKÄ.żĚˇŤ©Řu˝ćńĺ@ž/»ţJ‡v|^!öKŹ^ă_Iü ĎŹWyô˝Ć–x˝Ď_ľ7üůmý?G|C;ýEě-řÇԾϋýţ2‡6ţ boxôš˙_‰/ňüő˘ŘËđW:´ăç%±W÷č5ţ{Äçyţú—ŘđŹwhë˙}±Źôčyţúň+whëďcOůxţúśęŻČó׿‰źäůë |śf$Úod,uţúRř=®o´–ź¤ůkŕ .đĎw¨ĺÔ9BŻń»x®OóŹál˙Ęőđ˝CóKďůkřQ1÷|ĎÄî/6ţ1@šż ‹{ô ńzz>7H*pĐř‹ő#ýpĐ`±,Ź^ă!ľÔˇ¶ß ŮŹĘ€?áĐ^_ÖĄŇá/wč%ŹA˛^4ĘŁ×ë§_ ś@ńĺ~1h$üÚöAů±^ăŹô\źůQ¤/ĄřĘgxęŹů,Oű1G˙0Ď ‡9 ň—˝ă đú~‘ňŞĎĹűGĆźćP÷/Ć…ŢŹ ëóÁgŕú‡Ł~eTL|¶Ă€—ŘJ Ôţ×Sx©łÁŤđ9´ý'A|1Pď_oPńĽ){9ń“€z’ýß ‰5¨ŇĂků+I?ݡí?źá0ŕŹ~˛đuňż™h_ú~´éźSŦߤç—$—Ał¨ď×ř2· : ţ‡öú[ĹNňčµ|‡_ ¬ řćýÚř+ÚřćýÚŁXDůź#vüĹm˙87BŻńĎ#ľČ÷ßź‹]ąC›˙b×zô˙Bâ+€<>/»ţÉmţżĐkü‹‰ź Ôçźćţs9ńłÚűĎÄĎ.˘ü®ű%ü‹ÚţqU„^óűĄ§~-Ő˙‡¶ü׿¸’Ęwń«ÚňÝLüŢŔ}¨|·Ý˙Z‡¶|·Fč5˙Ű<ýw-ńżÁř{O0~ ĆqýAÂßE|¶C;ţď^ú“YËńsc©ă÷^±űá/ęúƬŹîűłGŻůÝO|Pßź3ýű±‡ŕ/uhű˙bĎxô˙!âŔJĘ˙a±Gŕźŕж˙ď"ô˙â'ucúÇăÄW9´ýăÄĎΧüž{ ţm˙x2BŻů=ĺ©z˙Ůp­Ú‡ů?ŁýÇçúG0˙?/|/řÇ:´íóńą@žź˙*öüy­ţE±w’C=?ô±Řg˝Ć˙„řÉ@?¦ý?őčů|@¸ÁťáźîĐöźĎ‰ŻÎF|sţ`ÎG˙ăá5ţH?ǡ­˙/O˝á‚úËÇř1¨óŹŚŁÁ]1ľ¸ţYßÚڇď}x4ľ÷ëžC­źÁýÄ =zŤßźř| ­Ëfđ ř‹ęř<0BŻń_ śDůK‡˛C›šX¦GŻńÓ‰źśIů ˙,‡ÚľGDč5ţHĎőgźIĺ›íĐÖOńs ‘ź´Óŕâ;ÔűÇŕ±Äď\Nĺ“>5XŰ}…C[ľqzÍ?ĎÓ?V_ţgîůő|tp)x]_(Żú2ZßgxřJě?Ěś4¡Ť? Ľî_”WýÚߌđđÓ±˙/oPĎ×L˙’¶<ţ¸CŰ˙¤­oôč5ţlâÇőůiËçÁ?Öˇís#ôńăÚüe-3xüĄm|Y3ŢŰŁ×řËOéůč`é‹WÂ_éĐößzŤżŇs}ZżΖo‚C[˙«‰ź¤őÝŕ}‰źîĐŽĎýŻňüłżŘđĎrhËw@„^ó?ĐÓ~łŻ¦ţ1ۡŤżÎÓéţg¸`|9}C;ţŻçďĘ«^¸ŕ|ŢřÓÚú­=źëÁ—ŕú%±”ďçÜB|ŽC[˙ŰĎęý«§đŰĹž†żŘˇíż;/qhëo'ń ‡şĽKLÖđťJQżéůĂ`ó;GÂźÔůGÖgż%vGŻős$ńc€zľhň?JěřÇ9´ĺ;Zě:Ź^ăC|°”ň?VěŰđ'Úö=.BŻńżM|ąC˙±“ŕŻph㟡×ř'?HďG 6ç[߇şC˙{zŤ˙}âgéýĂÁć|ę,řç9´ńˇ×řgż¸âź-v.ü‹ÚřçDč5ţąÄ/®¤ř?»ţ=Úř?ŹĐkü Ŕ'Đţ‹)ţ%b—Á_âĐĆż4BŻń/#>¤ýýŕ«Ä®†‚C;~ˇ×řW‡Ć‡ę•ż.4>Ăü ˙eŕ ęűfüÝ,v+ü™ířĽEěŹ^ăßJ|°€Ę›ŘđŹwhë÷ö˝Ćżř" íŻß%vüĄmü»#ô˙âË€<ţď{ţ ‡¶ýĐkü=őÇëGĐ>F3̡˝ż=^çwĺU˙ćăOshË˙dčţÖ? ľ×7Žň›űŰź‰ĎrhďoĎ?óóŕţö—XlHü„¶=Oüx‡¶~_ ľČˇ˝żýUxs_©DýÄü`ÎGż$ö7Żĺ˙ôŔ ý@á˙.ühř mţŻźÔó)Ăż.ö&ü9­ţ ±÷zżŔp¶ţ¦8´ń{? ¨÷w©ż!}ĹúÿȡÖď~b¨÷wÓ·báďĐöŹ2â ş˙1e/'ľŘˇíÄ—:Ôůe´ŰőňżÓP˙—"ľŇžC¦xx­ź)ĐO?=–˛>"˙?dü™můdO<ä@Ź^ăĎ > ¨Ď§L˙‘˝ôŮđ:´í;+BŻńg_ ,Ąüç‹-„?áĐć/kň!K?äV±Űá/rhŰ÷¶˝Ćżťř`‚ňżSěnřËÚüď»×Ł×řw_îжĎ==íż gó«phËwń€3(˙‡Ä~˙L‡6˙‡Ĺžđčőúż#~p6Ő˙#bŹÁ?ǡ-ߣzŤ˙çúĽ~x‚Ę7סŤ˙¤§˙ĐůŻá‚ţiŢéćĐÎĎ×ńˇĽęźÇř1ţ4‡¶ţ_Ťď°ţEđ p}8 ćŹW‰Ďrh珿?HçSC^>ţ‡¶}_'~ Hç»C>űţńmű~ˇ×řź_¤ç»Cţ-öüĄmţ˙}'Ź^ăA|¡mź/=ú„ÓÎćWćPË7´3ńŔé.˙ˇÝĹzÂ_ĺPó*u8t€GŻ×ďIü ŕW˙C{‰ő®C-ßĐŢzŤßÇs}˙†łĺ›çĐĆčé?óH?ýÓśÉ s¨óÇĐáŕu|(Żú‘?ĆźćĐÖ˙¨Đřë3Ŕ/Áő ŹŮůch6ńYuţšCü ÍCeşţ‡¶}s‰ďĐÖß8â‹ęü0Ôähöď{ ~ .Ůůa¨‰Qčáµü…Đ/o懡ćü'¦C›ż9˙™íŃküńY@=ź5ýSÚthüăÚö+ŹĐkü âóôůĄˇ“ĦŔ_čĐć?YlşGŻń§_äжĎTŹľôÓ)żb‡V_ĺ©?Ú.hźečźËBăc>xíĘ«~!úĎ2ŚŹe±”żż:tQ¨˙†őKb©ßEőĘ üýĺŕ6ţĘXĘß?łĽę…ăżĎÖŠ_“ü±ÓJđ»S˙Ů_ě@ř{8 ®oĆŢb{ô˙@â{űP˙9ČŁďCzá†~ţľm˙:„ř~Ŕ17>«ĹÖĂ?ȡí˙ë"ôzýőÄޤř›ÄjáĺĐĆߡ×řµÄgs)ľy?¦ţqmü†˝Ćo$> řÍbŰŕ/shă·Dč5ţ6â+€Ó(ţ.±#ŕźîĐĆ?ŰŁ×ëü^±äř68 ćĆĎébgÂ?Сg~¦GŻńĎ$~ű÷Ä΂”CŰ~?ŚĐküłĎęóSso=›řqíý˙âóĄ”ßąbçĂźphó;/BŻůť~oäo0Ťň»řám~?Č÷÷_]¦CŰ>‹ýĘŁ×ü.!> Mů]JüX‡6żËÔő˝©?sľs%üĄířą"BŻů]éÉźë÷WT? ‡¶}®żőoŢz#ńĂÚňÝ~ ô‡Rýß"vüĂÚúżUôShż}¨˙šůë^±űáĎjůĚüuźŘó˝ÖßýÄçőüϔﱇŕ/vhË˙ Řs˝Ćř`ĹXěřËÚřż{ŇŁ×řŹ_ś@őó¨ŘďáźčĐÖ˙czŤ˙{Ďő'oŢú#ü“Úő×SÄOŇűŤCź&ľ„xŤ˙GŞżémţňÔ?ó´?óĎŁ­oPź_ ţE±ĂźáжĎKÄgőý^Ăż,ö ücZýßÄŢňč5żWĎęţŇÔź9ßz ţ‡¶~ţˇ×řŻy®Oç/†ú.ü…@foýâK€z˙“űůĐ·ĹŢńđ˙Ň'Úü˙é©_ÖżK|9ű˙űbÂ? ÷[‚ůÁśo}ćŃkü‰źÔóSľŹÄ>öđŞ˙ŘźůĎ(˙‘ţßčźű‚7HďŹ ýRřNđç8Ôţen%Ăzzôo´– ÔőŤÔß°Îb]áĎs¨í3¬K„^ăwő\?Źřž(ß~±äý ¨űŰa}ÁëýAyŐ÷ÇýĂřÓęý{Ř€Đý-¬~\˙XĘúeXńcęýsX:ńă€ú|Ô”MÖĂ~‰CŰ>#/uhëw$ńeőţ8LĆŕ0YCw:őkPĎżMűÉ\5, ţL`Üő˙aâ¶ĆŁ×úÉ">¨ýĂä/±†©?ϡ-źÜ‹‡ííŃkülâóô~Ý0iłaąđW8´í;6BŻńs‰źŕĐĆ7u\˙D‡6ţř˝Ć/$~2ž˙“¶V˙L‡6~"BŻńËź \@ń%—a“ŕ_čĐĆźˇ×ř“_ \BńeNV˙müézŤ_Eü2ŕ^_r6ţ˝Úřs"ô.řŃţĆRŢ˙¶Hl üĄmüĹzŤż„ř2 ÷źĺb+áźčĐŽßzŤż24>TŻüޡńć×`üŢ >?7ăOćŰaűĂźĺĐŽO™‡5yôâă@z?mä5ě ř Úú=0BŻń"ľXJń׉m€?áĐĆ_ˇ×ř/VPüÍb‡Â?Áa_â «kđč5ţˇÄON§ř[ÄęáŻrhűGĺÇzŤ_ďą>ó žöŁ÷Ű ôŹÁęŰĹvÂźĺĐöŹb§xô'ńq ˝?0l—Řđ9´íwx„^ăA| 0AńŹ;ţ2‡6ţ1zŤ,ńŔ‰˙;b'Ŕ?ɡmżďFč5ţ žú›Dü)hźCbÉőĐ®ľ^ď˙Ę«^¸`}`üémůĎ ­OÂú‚ŻĆő ŇóŻag?ơ]˙śC|Άť+öü…m˙:Źř"‡¶~Ď'ľÄˇ]˙üTěůßu¨_zViÖž?»ĐĂků/„~=x´˙v±ŘÓđg8´ů_B|&öĂ.»ţ±­ţ2±k,öü‹ÚúýťŘď=z˝ţ#Ä/qhŻ˙¨GĎëĂßS~™ţIę#=üÓż5ŕ ňţç1s>´1–śß€v~ýs„^ă?^çŐ+˙ć'ăOwhűĎ_CócX˙řMČoS,ĺýÇa'~ŚC;˙ľF|çß×…źˇCŰľo_Ôő—Ů[˝I|¡-ß[Ä—'’ţmâ'9´úw×rL'ý»ÄW9´ú÷ź \@ú÷‰_ä0ŕÍŢđâ—őýŞîÂ(ö‘‡×öűôËÚţ˙1ń+Úű×g›zŰŚţ·ŮŤźŕţeÎľđđzý/ Ż_KYߥ ¦u?ˡ¶Zg±"ŹńŤÖňq ­ďŇ$Ç´îđ9ÔöIëˇ×ř݉/&(˙Ţb}á/shóď#6ŔŁ×ř}‰/w¨í“ÖĎŁ§óĂŮü*Úň $~ć˙´ˇbiđOqhőĂ"ôzý4â§gR|ił´ŃđĎrh㏊ĐküŃÄĎΧřŇfiŮđ/ph㏉ĐkülâWP|™ĂŇňá_éжO^„^ăç{úďJâ‹0>dźĚŻ@ť˙Óŕu|*ŻúrŚ_ăOwhó«Íżaý„Đó;Ő+/\đ|p x Ť?-–ú|\yŐ —ň|>ĚĎNţŘ©ĽAzż%MÚ2mü}ÚńµPl…GŻńߨĎ7ÍÜ k‰´=ŕćĐ–oI„^ăďáą>˝ź”†ľĐ©|#•Ďô˝Ő_~ůŠY×m…Ď`ękĹöż°7x3÷ě+ŰG˝˙`¸VĺgţvÔďđ;b)çiż{ţ ‡¶üwź ÔçdžżKěřsZýÝbŹxôšß=ÄŹrýýVě>řóńÍř’±›ö€GŻńď#ľHĎ×Ňî÷čůţýĺWęжߞň•’ţŞż„C«”řr ŢßLý=.öüÚúýŘł˝^˙ â'W"ľąż<)ö4ü{:´ů=ˇ×řO{®ż'ńĎRůFzřçŃ?w‚7¨ó·iźĹ^† PÇŻ˙/‰˝áŃkü—‰Ďňüö7±WáĎshű×+bŻyô˙UâóĹ˙ď=Żo^óäĎü¨ź]ŕ6ţ?ÄŢ4çÇ·E_ěŃküwŹőţ8Př _ŽCŰ˙Ţ%~¬Ă€—8iďaą° ĺ7¨ç/F˙/±ŕ/rhă›óŻ/AúO)ż2‡v|}ć)_éż ú+whő_zęźôFkůJ`•«˙ô.bÝŕźáPë?]ćô˝ĆďFüLŕ,W?éÝĹzÂ?ۡÖşůťŢ˝ĆďIü‡6~/Ź~é{S~sjýĄ÷ń”o.éPýÍęů«¬GÓż¸’ęw°ŘPř÷thëwXGŻ×Jü*‡A|S÷˛VNOóđŞO#ý^u}źžNüŢŔ})Y+¤gŔżźC›żĚ9éc=z˝~ńű;´í'sUzţÚöÉŠĐkü¸çú?–Ęw C?×S˙’ľ€Ú7îá‹<ó+óĹżožď¤'ÄĘáĎĆÁ›ľ+c9˝ÉŁ×řĺÄgőţhúf…Řađç:´íWIü8‡:§ËZ"}9üy@˝ż˝¬EŇ'Ă_âĐĆ—5CúRŹ^óźL|©C[?SĦÁ_Ô÷ëLýL[äŃküiÄWéý§ôéb3ŕźÔó~ÂÉ\—ľŔŁ×ř3×zŔüfÖWé2'ĄĎ†ŽĂ ~¤ź¤ĎŠĐküŮÄĎuhőó=ůńüµ€Ę?ϡí˙ =őĎúEžö›GüRęóÚřË<ý‹őˉ_\IýKćĘô˝ŕßÓˇí_2ץďçŃkü˝_ĺжżĚékŕßˡÍu„^ăŻń\źŢď3ś-ßjŕZ\ßÜ?ö'^ăBĺ7m|0üŐmůkđčőúż¸‰âË嶺łC_®•^ëŃküuÄÚú]/V˙ˇmýnĐküĎő%ľ–ʷšŤ¨§~¶ľę?ŰĂć™™oÂü~D,yţ ®¤pŰŔëůŽňŞ.8˙1ţt‡öţĽ3t>Öţ[¸ľAz˙)ýhâsęůWú1Äç±ţ6ç_éÇŠ]±CŰ?Ž#ľÄˇ­˙oźp¨ç[éÇ‹ýLţ÷HÔŻAzţ›ţ]±áĎrhŻ‚ŘŮ˝ÖωÄÇ´˙K?IěřóÚú?9BŻńO!ľHű›ô‘C›˙éb?ôč5ţÄ;´ő{¦GĎ÷×R~%­ţ,OýŃţÇpAű…ţuT¨ź^ŰWyŐ˙ íú÷QˇţýóP˙ ë/4®oP×O¦_J|¦CŰż/#>Ôó%Óż/—á2ţ|‡¶}® ľŔˇ­ż+‰/thű÷U›s‹cPżőý ł>¸ZěŻĺżúcÁK׋Ý–C›˙ ˘ĺŃkü‰Źó)ţMb·Ŕ_ŕĐĆżYěvŹ^ăßBüx‡¶ţnőčÇ“ţvʯСí?w€?úă\~Aţw‹ýţńmţ÷>ÍŁ×ë˙–řB ®M˙»—ř‡¶˙ÝG|)°,ććźűĹ„żÜˇ-ßzÍďAâ+“)żGźâĐć÷(ńS3¨ţ{ţ™mýý^ěIŹ^ó{śřYmű˙ÁŁźEú')żŮmý_3ĺ†řmůź%~!p9•˙Ďb…C[ţçÄţęŃkţ!~ĄC[ţç=ú•¤˙+ĺ·§C[ţÁýóŰ1·2ĺ•ř„C[ţż_ÔţaĘ÷šŘđOuhË˙şŘ?yúÄ—;´ĺ˙’ř µżYJď ˙T‡Zţá‚Ă»yôČßh-?͡–xŹžÚßp6żéµüĂ»?Hí?Ľ7ńójů‡÷!~>p)•żŻXř—9´ĺď'6ČŁ×üűżÜˇ-˙ŹžćĂŮüV8´úÁˇű—ňŞOĂýńxôźăc)óĎđôĐú@yŐŹÂúă;±äú ¨ëżáYŕuýŁĽęÇ`}düéműe‡ÖgaýXđßĹő ęű/¦} Ź;´í;žřl ®dý7\rľ'üăÚö-"ľĐˇ­żbâ‹ęúo¸¬†›v?ő{őOY˙ O•{x-9ô'‚7HëżáÄ&ÁźĺĐć?Ql‘GŻń'Ňű±Ăe-1|*üEműM‰Đkü©Ä—”żŚŮáłŕ/shó—µĆđą˝ĆźE|ąCŰ>ł=úrŇĎĄü*ZýN ŤŹˇţÖď ţd\ß í˙‡Ż!>îĐŽŹ}ĎňřX+vüăÚöŮ—řB‡¶ţö#ľŘˇű‹ v:őkPźO™ńq ŘÁ^Ë0ô§‚?54>Ö‰m€?ˡÍ˝Ř6Ź^ăo >Ôú1ăŁFlüăÚöۡ×ř›/–Pţ[Äęá/uhóŻŰęŃküzâmű4xô ŇoĄüĘZýažúŁý‰á‚ö9 ýó´ĐřŘ^ű‡ňŞ?ýç4ŚŹÓBăă[ˇţÖţ{¸ľA:?ţmâăíř8žřl Źą_ żţńmű|—řB ˝6üâKÚňťH|péO&~˘C«?…řÉŔi¤?Ťřémű~Źříř=]ĚĽ˙ó}´żÁŐ17~Ďűˇ‡×öů!ô§7Čă÷ÇbgĂźĺĐÖďOÄîđč5ţŮÄÇhź`üž#vü…mýťˇ×řç_ Ôý—ÉďçbÂźphóż@ěbŹ^ă_H|™CŰ>yô<ţ.¦üĘÚň]B|%Pź™ú1ç_WÁ?١Ő_ˇ×ë_EüTŕ ŠŤŘuđĎthă_ˇ×ř×?8Źâß$v üóÚú»9BŻńońôŻůÄßţ{F,9żíüvx?Ę«ţŚ/ăOwhË˙ŰĐüÖßţL\ßŕ›ß&>îĐÎoż#>Čó›9?úüăÚţű(ń…mý>F|±C;ü^ěźňż?@ýÔůÉĚ{ŇĂkůź„ţ‡ŕ ňüńG±gŕĎrhó˙“ؽƆř8PĎŹM˙2çGĎÁźďжߟ#ô˙9âÇ‹(sţóüĹmţ/Š˝âŃkü—/qhŰçeŹž×ŻP~Ą­ţUOýńüőÚç,ôĎłBăămđÚ?”Wý?ŃÎÂř8+4>Ţ őß°ţ_ŕ„ë˙(ćŢź3ăăcâăířř„řl ŹŹOe¸eÁ?ޡmźĎ/thëďsâ‹Úńńoáe˝ŇéǨ_úüÚŚŹ/0ÜĂ<Ęo¸@˙đ?I#şu?ˡć?B®1"ÍŁ×řÝŹőůŚŹÝĹzÂ_ŕPŰoDŹ˝ĆďI|!Ţ?ŃW¬?ü%mţýÄyôż?ńĄµ}F đč©Îć—phő=ő— }ÚçlôĎłSÇÇ‘ŕµ(ŻúŃč?gc|śť:>Fd„úoXźţ\ß íGŚ%>îPÇÇ\âł4>Fßyţńműä_čĐÖ_>ńĹu|Ś0ż#sl§sQżç¦ŽŹkD±‡×ňCxô~üi«ŹĂźáĐć_F|&>_0BÖZ#*áëĐę+Ħyôš_%ńąíř’˝ŔIđŹshëob„^ăOň\ńÓ¨|ymüéÄ8´í#ką˛†čt>â̢ú•5ׇŕăĐÖĎâłă¨~çŠÍ‡?ϡŐËZnÄ*Ź^Ë7źř|`Őď±EđW:´ăka„^ă/"~"p2Ĺ_*¶ţ)mý.‹ĐküĺžňŃů»álýMuhăďEüt‡¶ýÖ™őéO˙§®˙ůŻŰţq@ť˙{ ·ŻŘE˝ć·ńătţ1b±á/uhŰ÷± Č÷§ËĹ®„żŇˇ­ß+"ô˙Jâ'ůţô+±káźâĐĆż&BŻńŻ%~űߍb7Ă?Óa߬Ín»ÝŁ×ř7?¸€âß"vü Úţq+ĺÇzŤ›çúĚßîiż…Ä߉ţ!ý(X˙íúţ·ŕőţ«ĽęďĂýůÂXr} ´úb©ë«°ţ!đş>S˝ňÂŮőŰH/\°>ľĽA=?7őű¤ŘÓ^őOC˙‹Xr´ů?^×÷Ę«^¸`ýoüém˙{.´˙ëź1®oP×÷fďń2ńíţćoÄgu|›ýÍ+RěŢđç9´ăűUâóÚţ÷wâÇ;´ëŻ×„—zît ę× Ţ˙Íţć ±·<Ľ–˙-č/i,u˙˙ŽŘ»đg9´ů˙SdťńE@^~,ö)üĄmţźýŰŁ×řźźphŰç3Ź>AúS~e­ţ?žú+szĂísúçe©ăcd7đÚ?”W}ôźË0>.K#{†úoXßüĺ¸ţĺ±”÷+F >ËˇŽŹ‘‰Ôőż\{ä ±…đ8Ôö9řń@z>6rńĄµ~G%ľĚˇŽź‘R¦‘fÝ{ęßŕnüŚ.6ŇĂkýŚ„ţJđW¦Žź‘RW#łŕ'´ĺ“ß9ĂŁ×řYÄÇôţĹHńŤĚ†żČˇmß1zŤźM| 0Aů›6̇żĚˇÍßôBŹ^ăç_îжOGOď_ÎćWáĐ–Żř Ŕ”żä2RŻ;ÓˇÍ_Ę2rŠGŻ×/'~öW#%—‘Ş›ďĐ–Ż2BŻń'x®OëOĂŮň-phăOőôZ.čźWĹ’ăhçŹ9ŕu|(Żúy?ĆźîĐÖ˙üĐřë‚˙%®˙ËXĘ÷?Ž\J|ܡť?–ź ¤óĂ‘˛×Ů˙x‡¶}W_čĐÖßJâ‹ÚůaO±ĂäŻFýÜ#ć懽ÄV{x-˙jčţW±ÔůAö”#÷?ˡÍ_öš#·xô?âă@}>dúçţbÂ_ěжßzŤ ńĄŔ2ĘżZl=üĺmţ˛—ąŃŁ×ř뉯phŰgGOűĂŮü*Zý&OýU’~ ÚçôĎkB㣼öĺUúĎ5ׄĆGS¨˙†ő-ŕŻĹőŻMćiÇÇ.âG;´ăăpâ3zţkƇéĂŔ?ΡmźoźçĐÖß‘Ä8´ăă(1ŮűvşőkđÇçáµüÇA=řëCăă;b'ŔźĺĐć˙]±źxô˙âă@zţ4ňD±“á/phŰ綠Ć?™řB =ů=±Óá/qhó˙ľŘNĺ[ŕĐĆ˙§˙đúóiôOéÁřÚůăYđ:>”Wýs?ĆźîĐÖ˙_Bă;¬ü­¸ľA^ţŤř¸C;ĽB|6×źŻ ßţńműţťřB‡¶ţ^#ľŘˇť^^®Óé6ÔŻA<źć‡7Ĺţááµü˙€ţvđ·ÇRçs~óüYmţłGŻńß#>äő§9żůţb‡¶ýŢŹĐkü/ňúó±Ďŕ/whó˙Tě?˝Ć˙Śř ‡¶}>÷čyýůʯҡŐá©?Z.hź;Đ?ďHŁş×ţˇĽę{˘˙ÜńqGęřŐ+ÔĂú>ŕŤë¤űë¨Äg9Ôń1jńc€t5Xl2üµ}F !~ĽC­żQC‰/r¨ăcÔ013oýőkpŞ٤.FŤđđZţĐß ţÎÔń1JÖÚŁ2áĎrhó7ďĎ”zô?“ř8$Ö¨1đ9´íŹĐkü1Ä—”ży˙&ţ2‡6Ó†ă=zŤźG|ąCŰ>ů=Ý? gó«phő…žúŁńe¸ }îB˙Ľ+4>*Ŕk˙P^őĐîÂř¸+4>&†úoX?üݸţݱ”űǨ*âăířA|6îŁd-0ŞţńműĚ"ľĐˇ­żŮÄ;´ăcŽěÁ;Ýú5HçŁd-0j‡×ň/€ţ·ŕK‹Ĺö€?ˡ͉ؽĆßř8îŁĚůĐrř‹Úö[ˇ×řˉ/ŇýcÔ*±˝á/whóßKlŹ^ăďM|…CŰ>«=zîßűP~•­~­§ţřţqÚç^ôĎ{CăăđÚ?”Wý:ôź{1>î ŤŹőˇţÖ×€ż׿/4>%>îĐŽŹ-Ägy|Ô‰ť ˙x‡¶}ę‰/thëŻřb‡v|4ŠÉĽÓý¨_ú~‚‡‰5{x-3ô€ 4>¶‹í„?ˡ͇ŘI˝ĆßI|ČăĂś±CŰ~‡Gč5ţÄ—y|-v,üĺmţÇďŃküc‰ŻphŰç8ŹžÇÇń”_ĄC«˙ާţx|ś„öyýóÁĐř8 ĽöĺU˙}ôź1> ŤŹÓCý7¬?üC¸ľA=ż3ăăÇÄg:´ăă'ÄÇy4>λ ţ|‡¶}Î!ľŔˇ­żs‰/thÇÇyb˛fěô0ę÷áĐřř©ŘĎ=Ľ–˙çĐ˙üďBăă"±‹áĎrhó˙…ŘM˝Ćżř8p<Ťs>tü…mű]ˇ×ř—_ ,ĄüŻ»ţ„C›˙/Ĺ®őč5ţŐÄ—9´íó+ŹžÇ×µ”_ąC«żÎSĽ>» íóúç#ˇńqxíĘ«ţôźGˇ”ôćúż őß°ţ®Xę÷÷?â… ţ>Ŕcŕ6ţý±Ôż/˘Ľę…Kůű&aţ‘䏝o°őź?= O‡ÁőÇ ÷„Řӽƒř^ŔľÔžňčű’^¸QoŔßϡí_$ľ?pXĚŤĎ?‰= šCŰ˙ź‰Đëőź%~8p$Ĺ7ďĎüţQmü"ô˙ŻÄgÇP|s>ó*üŮműżˇ×řŻ߉ôĘżöĽÁ>řY~oÔ{_~ůRµüü|O…ú‡9źřţ^ŔŢŕÍ»Ętő3Ź^Ż˙xiç ˙@ýă±Ďŕčж˙§˘?ߣ×řź?8‚ę÷s±˙Ŕ?ҡmżGč5ţ ÔĎ7Č}jt'âsęýmtgâó€%.żŃ]Ä´\Ą5żŃ]#ôČĎhţŹČß`ĺ×›řt‡6ż>ÄŹęý[ę´ŚŐŃýáĎp¨í3ZĆęčrŹ^óëO|&0Nů ~¬C›ß@âÇąţ¤ĚهŔ_ęĐÖßŕ˝ć7üźßźbîď‹ü†?ÖˇÍoń〜źôµŃŁá/uhóˇ×üFů=Ęo ńcÚü˛‰,§ü¤/ŹÎ…żÂˇÍol„^óË˙,ň{64>Ć?֡ͯřqŔĺgr(żĚˇÎŹŁ‹#ôš_I¨Ş^ůrô˙g“ĺR´ĺŻ˙gŚŻ?Óř1ĺ›Lüp‡¶|SŔ?˝Áˇ4ľ¦‰UÁ?̡_ÓE˙cŹ^óŻ"> EůÍ ~ŚC›ßLâs€şľ”uŔčY2ÜŔ_čĐć7›ř" =?=‡řR‡¶ýć_ćP×çŁç oŢ›˙K,9˙…úżąţB±Ĺđç8´ů-[éŃký-&~,ďűßč%bKáĎshóß#BŻń—z®źGüJ”ďyđGŃő÷[P÷2·Ź^-¶ÎŁ×řkŹu|šúŮGl_řÇ:´ő·VěŹ^ăďK|.0ŹňßOěřóÚúŰ?BŻńđ\źŢO0\«ň3żőűř¨~ _#v<ümů7ź ÔůËđ›ÄjáĎuhő›Ĺš=zÍŻ–řq@®żCĹęŕĎw¨ëóŃ[Ä'ť¨óź˙'ŠťîŃkü“ ĚĄř'‹ť ˙8‡¶ť"ö=Ź^ăźJ|ž˙Ś>ÍŁ§ç;†k•?ó§Ł~^oÇďÄ®?áí?$>Čă÷,±ĂźëĐę$vGŻůýřq@ż?;ţ|‡¶~Ď;ĎŁ×řç_äń{®GĎă÷<ʯġíßç{ĘÇă÷ŞżR‡V!ńe@ż‹] ˙‡¶~/»ÚŁ×ë_JüD ŹßËÄ®€…C›ßĺzŤ…çú<>ݦňŤôđסľţĄXęř˝Qěfřă@ż7‰ýĆŁ×ř7?Čă÷±ŰŕçĐöŻ[Ĺîđč5ţmÄçyüŢîŃóřĽĂ“?óżAýĽ Ţ Źß»Ĺ^„?áí÷ź äńű[±űŕĎuhő÷ŠýŢŁ×üî#~ÇďýbÂźďĐÖďb{ô˙Aâ €%˙!ŹžÇßĂ”_©CŰżç)ťżÎÖ_¡Ő?N|9pŐď“bOĂ?ѡ­ß§ÄţâŃëőź&~peĚŤ_Ů—Ť~ţ=Úüţˇ×řĎx®ż'ńˇňŤôđ/˘ţ ĽAÝ?™ö‘˙ý*üc€ş~6ă÷±xô˙UâsĽżř»Řëđç9´ýë5±7=zŤ˙:ńů@ľ?ĽáŃóýáMOţĚ˙őó x<~˙)|ř3Úţń.ń™@żď‰˝®C«˙—Řz~i8[Ĺ­ţ âKzľ#ĺĚĚč…C­ßŚÎb˝=z\ßh-_ \łă7ĂXwř÷p¨ůet‹ĐküîžëÓű†łĺéáűŁľ Ţ ťd ŽC[ţÁbe˝ĆBüX`Ĺ*–˙x‡6ţ0±¸GŻńÓ/ŇóďŚt±đ;Ôţ›1\l”GŻńG_LPü‘}‚ôŁ(ż2‡¶}G{ĘWFzá24ď  ®͵Ç?8ŤęWÚ"CăNwhëWÚ2ŁĐŁ×ëŹ%ľ ¨ĎwMůe®ÉČ®C[ľqzŤźçąţ\â ©|óÚřEžţĹúbO˙śG|ú˙ßÁÔó{S>ągL‚?oĆ–äś1ĂŁ×ř“ĎćPüÉbSáëĐöĎ)bÓ=zŤ?•ř\ ÍßÓśŹüŽn6x=T^őz>iüéő|8c^čü4¬_ţu\˙ujÓwö >ÓˇžĎf,%> ¨ë‡žÂ/; ţ<‡v|,'>¨÷/Ó>+/rhË·’ř`9éW_áĐę÷"~p2éW?škźćPχ3ÖŠť,˙űÚß ßźö;ŔĂkűý›ŕߤú7őw°X5üYmý"vĽGŻń«‰ŹéýŤ s>ąţB‡¶ţÖGč5ţ⋥”˙f±CáO8´ů׊Ő{ô˙PâËÚöŮâŃóü_Oů•;´ĺk ľ8‰ę§I¬ţÉ­ľ9BŻ×o!~*pĹß)v8ü3Úř»"ô˙pâgçQüŁÄŽľC[GGč5ţ1žţ5źřăŃߊ%ç ťßNŻăGyŐźŚńeüémůO Í?aýiŕ˙ëÔç_f~;“řL‡v~űńq Î˙f~űˇđkŕĎwhűďYÄ8´őű#â ÚůC®ť)sT§·QżWĹÜüq¶Řą^Ë.ôď€7HűŁŚź żţ ‡6˙źź ¤ç3?»ţ±­ţ±Ë=zÍďBâsÚţy‘ŘĹđŹshëďzŤ±çú´?5ś-_žC˙ â ÚöůĄđfÜüń˙KůţÄŚ_‰{ücÚúą†řl Ţ? ­Řőđç9´zsľw—GŻĺ»žř|`Őď b7Á_éĐŽŻ#ô˙&â''SüŰÄC[ż·Gč5ţžňM!ţ.Şż©mü»‰źîж߽›őŮ»˙®ëżAţ÷‹=˙8 Ćw°>}@ôqŹ^ó{řń@=_3í÷Řďŕ/uhŰ÷aŃgzô˙wÄ'€S(˙GÄŞCŰľŹFč5ţcÄOwhă?!öüUmü'#ô˙)âgçSügÄţ ˙‡6ţłzŤ˙gâ—QüÄ^„ąC˙ŻzŤ˙"ń+{RüWÄţ˙*‡6ţ«zŤ˙wâ÷îGńĺ~›ńř÷wh㿡×ř˙˙ÚßŕDŠ/˙źń>ü“Úř˙ŠĐkü÷‰ź¬˘ř‹} ˙ ‡6ţ'zŤ˙)ńł€Ľ6çS_Â?סŤ˙E„^ăIü|ŕb?ł‹X7ř—qľdţ>y¦ÜŁ3űyôo´–_ę0Đ®»XŻú¤_ć0(ßÂő$~ąCË÷őäGĎź g˿¡Ö_fâ÷®¦ú,6ţ5­~H„^Ż?”řµŔ)ľ¬ĺ2GÂCť˙3GDč5ţČĐüŞzĺ3Có{Źăţń/đéţť)kťĚ\řóęüž)÷ŠĚÉ˝ĆĎ%>H÷ďLůÝLőW:´ő›ˇ×řůÄOŇý;ÓÄ(ŠCż8BŻńKź¤ńź){­LÍ{†CŰ~zŤ_é©?Ú˙.h™‡‚őP÷™ÓÁëú@yŐĎŔúáXrý ´úYˇő_X?Ľ®UŻü|Z_Žôđ‹±~˙ĽA:?Ë4ç/Ë=Ľę—C˙Q,ą˙Úü÷ŻűĺUżö'Ćźîж˙ޡýQXżüǸľAě/Ěţ+sâ3ęţ+óⳀtľ”ić°ŔźçĐŽŻĎęůµ{_ěĐöżC/u¨ëÇĚub§Ë˙~‚ú7XŤřfîß ¶ŃĂkýl„ţSđźRůMţµb[ŕĎrhËw¨ŘÉ˝ĆßB|Hχ2ëÄŕ/rhŰ·>BŻń/&(˙&±řËÚü›Ĺvxôż…řr‡¶}¶yôô|Čp6ż ‡¶|;‰źśAůKě(řg:´ů›1ôŹ^Żńł€tţ’y´Ř±đĎwhËwL„^ăëą>­ gË·ŔˇŤ˙]O˙Y@ú“Ń??‹%Ç/ĐÎ߯ăCyŐźŽńcüéíőĎŤď°^Ď_ôýbŐ+oÎGĚűËźÚřgÇR?źˇĽę…Ků|H˙YňÇN˙o°µß/Ä.ż§Ăŕúf~ąXě2Ź^ă_B|/`_ę—zô}I/\ćđ÷shűçĺÄ÷ŤąůÉśo\˙0‡v|\ˇ×ë_E|:0â_#vü™mük#ô˙:âăŔ<Š“Ř-đç;´ís„^ăßB|'Ň+GňÇα$ŕlü®¬72ďýňËçĺŰąx]|gđW˙0xhśKüŁŕ»‚ďŠ˙8řnŕ»…ř'Áwo°„ř?‚Gźp>ńĎ‚Gź0Nü_Ŕ÷opń߼Á2â_ŹĎ|ŘŤřWÁcLXHüëŕŃçFü[ŕű7Hź/Ë|üđ’ăĐŽoYďgľ ŽO)K¦¬7łŻóčµ˙ĽO|p]˙đ“层ń/ë©ĚOŕčĐŽo™7łŻńčőúź?¨çżfüýóçđŹvhÇçgzŤ˙9řAŕ âţ`Öwf©bůt‡şľËęDüp ć'ĺË’ń’ŐţѵüYŇ׳†yôČĎh-ź̢üşwhóëNü ľżdbKÉę‰C­ż¬žzÍŻń ŕĘŻńÚüú? 8ň“ľĄí2ӡΏY#ôšß OýÎ$~µß,‡¶üiŕŁ ŽĄ|>)kńĂÚňŤ?zz˙2í/÷’¬8üĂÚţ!mť}…GŻůÇÁMöŰéůPV6ń#Úür Ôç#¦íe χ¬C›_.ńąu’5ŽřqmýćOhőÄ8´úńÄi”UD|±C«/&ľ })ńe­>A|péˉźčĐöß â';ÔýY–ÄŠ›z†ö3XKăCú|ÖŻýc ôiŕ Ň矲¦‹Í€?¨ű7ą?dU‰­ńč5ţ âă@mÓ?d¬e͆śCŰd¬eííŃküŮÄç9´ůĎ›p<ĺ/k‘¬•˝ĆźG|pĺ/k‰¬…đOthó—˝FÖrŹ^ă/$~’C›˙"±%đOvhűÇâ˝Ć_âą>ť_ΖoŠC…§~YżŇÓ>ô|Ĺp­úókĐ˙ŇÁ¤÷łöŰţ‡¶~÷{ÓŁ×řű?X@ń;ţńmüĹóč5ţAÄ:´íw°X5üĹ@]źšţwX˝GŻń«‰O§PţëÄ6Ŕ?աͽ؏^ăo ~šC›ŤŘ&ř§;´ýcc„^ăoň\źžŹΖŻĘˇŤ_ç©_Ö×{Ú‡ÎO —µţ™ŔY(źô—¬&âçubĘß,¶ ţyíüŢBý‹őzým¬‡ßýpđĂCýÓĚńGÂ?ޡmßo‰ťîŃkü#‰/ęýĎ”ď(±cŕ/–R˙ě‚ůÎ}ďś{Ď{sß›˛ł›Ý0üĽţłç˙Îąçž[ß}÷˝ąŇť}˛=ă«yűü<¤/ <€ČŰç nÓč“ý/0ľ‘·Ď/Bş ĺ3J˙o„ôUŤ>Ůż‰ńłyűĽŇ-(źŁP¶ź/ąč“ý[4ůóöőUVľą ĄýŻiâËőoÓÔoźŔMşĺóyűĽ‹ń‹yűĽŇ˝(oQ(Űç=¬}q}Ę˙^fżDĂ߇úG#/=źśôMHßFyąBYżß‚ô¸Fźě›ńÔţEů‚ô0Ę«©ýÂX?é;Őč“ý‡Phę‹{÷ďBúž†'ýď1ý:…˛ţŃřĎőŐ”żŽńŹłřÖ+”ő÷ňÇ ţ1†}|xŇł(ŻR(ă˙ ¤ßhô)˙g_ŤHű"ţ?†ôĘëŃ?s|ř ¤W4úd˙9Ć7"˛÷&=é§(źĄPú˙¤_iôÉţO?q.ó˙g^Dů<…˛ţ~î˘Oö_Ôä?Źńżb囯PÚY_®˙Ц~ć3¸IżCůBDzţ#Ƈß2ľq k߯CzCĂ“ý7ţq Ą˙ojÚ×˙ťaż? }âßĆűŹc‘ČžONú3¤ż˘|’BY˙ýI}˛˙WĆűůüö.¤÷P^«PöŻ˙sŃ'űď1ľ±ů˙OH˙FyŁBé˙ż ˝ŻŃ'ű˙f|“B˙˙hôŮů ÁI˙šĘň}Ŕř) )>>@_ʧ*$}_ľ‹>ć/t%?]ˇ´/Ň(”ĎP(íŹtŃ'űŁ? ‘Í˙ľ±Bů…Ňţ.úd˙ ĆĎCśĎě ép”/P(íć˘Oögü"Äfć[ß1(_˘ęßw´‹>Ů?FÓ?X˙śŮ˙Ä3±#šöáŢĹWŚ<íOú´ż(äăĘň—9ö/ťúČOÄü˛óľZĆORHűŁľă‹iR´±?ř.Ę+R˙óŐ3ľJ!íú_­P–Ż‘ńµ¦ßĚř:…R2ă™ţTĆ7)”ő?Ťń“Ňţ¤ú’ĆĐüIX˙qüű“>hóľ9žęgęűČö'}Đ–} Q>‘íOú /řVjôÉţBĆűŮúĹmÚׂň*…˛ţ`-ę[®Ń'ű-ŚŻFdăżú‚o)ĘkĘřç˘Oö—jňgëÁ%”źó+1ľEČ9â»Ň:”O@äń] é4Ť>Ů_Çx"ŹďzHQ^ĄPĆW잢Ń'ű_ŤČă» Ňf”×*”ń=ŃEźěoÖäĎăwЦüś? ăëGQú× )„ň <ľmvhôÉ~ń>DßvHŰP^ĄPĆ·RTŁOö·1ľZˇô? i;ĘkĘřžî˘Oö·kňçńŹjĘĎůßbä˛ýc_¤ť(/V(Ëß é»}˛ż“ń%<ľ» íAy•Bi7¤s5údă«yű=ŇY(ŻU(ă{¦‹>Ů?K“?oźŔů.Fyb˝!×マ2ľ‘žOňťéc(ź¦P–˙|HźŇčSţcütDÚźĺ˙8¤O˘|¦BYţO¸č“ýOjňg÷g‚“囥PÎŹźÖÔ?׿ůäKíă2HW ĽJˇŚĎĺ®Óč“ý+_ŤČŰÇ•®Fy­Bź«\ôÉţŐšüyűÎ÷”×!ňöq=ăyűř<¤/ |šBYţ ݪѧüżŔřé eůżé&”ĎP(ËŁ‹>ŮżI“?o?·˛ňÍT(ŰÇ—5őĎőż‚|)ňŮţ”ďvHw˘Ľ\ˇŚĎľĄŃ'űw2ľ‘íOůî‚tĘ«Ůţ”ďnHßĐč“ý{PH÷ďľ{!ݧáI˙>¦_§PÖĎý˙ąţ74ĺgűS‚“ń­W(íŰ1ľOúßĹůŁ yěţß÷}Hʎ|’BY??€ô–Fźě?Ćx"Ýź‹úyŇQިP¶Ż'\ôÉţߌ8…ů˙4¤gQ>Uˇô˙HĎiôÉţłŚź¦PĆ÷ÇýiL˙9ćßt…˛|Ď3~¦BźźCúĘg)”ú/şčSţż`üD¶˙ć{Ň«(ź§PÚĹEźěżĘřěůˇď·Ţ@ů"…2~Ż»č“ý74íkăßÂö+ĆŚ#Ęűçw§ű3âI8óţMČÇ+”ĺ˙‹ăţÖ©˙.ňżŔŁ u˙üĆŁPŢ?˙“ńK u˙ü/Č6€ňR…˛ýţ›ńe8~š÷Ż˙a|…B˙˙2ľJˇĽýx1nVbü+Uý™÷Ż{ĎÓđÁ™úUČ dăKŘ(ňI ©|E0Ć•jôÉţĆűŮţx‘HŁPPHő[4ŇEźěŹb|=b#ó,¤PޤPú ¤C4úd˙ Ć7+¤ú)§Ńofú‡0˙&+”ĺ;”ńSç1˙ˇ­…ňů Ą˙GBňiô)˙Łż‘ő˙"¨ł˘cQľHˇ,ß1.úd˙XMţĽ}ůXů+”ö‹4í‡=?śŮ>Ĺ=Ů iü(ŞDžúń¤_ŤýGČÇ+”ńŻqôo§>íźŐ`ţŹ5äřQÔÄř‰ iü(jfĽ‘úżhŰĐŠ¶ŁĽBˇ¬ß)ŚŻD¤ű[?Ц2ľFˇŚď4ĆŇřQkÁ"q˙]‹ńŻeíCô}ËŠćhxŠĎÔ 0ěă´Ő˘…(ź¤P–ÚTŃVŤ>Ů_Čxb=kżĐÖŠZPŢ PÖďb}˛ßÂř&Dv~®čxHËP>Eˇô˙H+5údă§*”őł\ŁĎî/'ý›¦P–oăg .dţŻ´ĺ‹J˙×C:YŁOůo`übDz>&âż҉(?Nˇ,ß&}˛˘&¶ż*8YľĄ ĄýS4íg)ÓߊíS¬ÉŹP(ÇŹvä©Oú۰˙ůx…2ţaG˙vęoGľóŻ7Ôţš?ş¬B9~ě`üDD:ź*ĆŹ¤Ż ĽLˇ¬ß8ăËéţKŚ=ŚŻR(ăŰËř…rüŘIśiŔř ÄőŻ9~ět¦†§řś‰úŤČ7öńăHç˘|’BYľŹ@ú‚FźěźËx"ÝŠöűQH磼Nˇ¬ßó\ôÉţůŚo@lbţŇ…(oV(ýżŇ§5úd˙BĆOV(ëç"Ť>>Íü›˘P–ďbĆOCśĎü˙,¤ËQľ@ˇô˙2H×jô)˙Ëż‘ťż)şŇU(oQ(ËwĄ‹>ŮżJ“?{ľ'8Yľ% Ąýë4퇏O_Ŕö)ęä…rü¸yęÄ“ţ-Ř„|ĽB˙[ýŰ©˙ä›1Gjü¸ťńÇ*”ăÇŚźČÇŹ;!íEy™BYżw1ľ\ˇŚßÝŚŻT(LJ{ ‰çď“1ľéţjp÷AzĺĘüďgüDDzżCđ߀ô ĘKJý }WŁOń}ńĄU¬}~Ň·Q^­P–˙[.úd˙ŰšüŮóÁÉňŐ(”öż‡üÔ8‰ĹďŢEy‘BYţÇďGdű{EŹCú!ĘËJý' ýLŁOţ˙ń4ţ‰řýŇS(oV(Ű˙“.úd˙)ĆOAśĆě˙Ňs(ź®PĆď'.úd˙9MůŘţ«ŕdüf(”öŽüTÔźŞÚźéßK^Fy"®ďĹół˘_Aú‹Fźň™ńU4‰úyŇk(ŻS(ëďUHďhôÉţkŚŻGdűOEż†ô[”ĎS(ëď7.úd˙·Ś_€Č׏żôĘŹS(ăű{}˛˙–¦||ýřŽ&ľś˙ «ß‰ţ]Ö?ŹÖđďář6 y4ţŠňý’8ß$ÚÔ ĺüń/}˛˙oäi|%}âßÇńWČÇ+”őócüwęďE~ú'ť/ńcü$…4żř‡3ľ‘Ú7Ě/ţfˇĽR!µO!ă«Ůů˙HĆ×)¤öáĹř…4˙řÇ@ăÂLŚŻŔ“ ą>őŹ…t†ÇřÎÔź…ü,ö>őé0”OR(Ëw(¤&Ť>Ů?Śń>ÄŐ~ü‡CŹňF…Tżţ#\ôÉţxĆ7#˛ýw?ĚĹţ (źŞPúmŃďÓč“ý Śź¦PÖĎDŤ>'ý›®P–Żń3iSřs®żĺ‹J˙E hô)˙rĆ· Ďâ/lTˇü…˛|•.údżJ“˙ ڰň-S(í×iÚĎ2¦ß„íSśÉ;B!Ť/ţ©ČS˙ žô§c˙ňń eüg8ú·Sňs0˙9†íţÖ?źńÇ*”ăÇĆODdëS?¬ůýa”—)”ő»ńĺ eü3ľRˇ Îüí ź‹ńx’ˇĆëýÇkx*˙ń¨?ůy†}|Xi%Ę')”ţŻ€tšFźěŻdĽ‘ÝżúWAZň:…˛ţV»č“ý5Śo@d÷Żţ 6ˇĽYˇô#¤-}˛ż‰ń“Ęú9QŁĎî_'ý›˘P꟤‰źNĂú÷¤G(”ýŁ yjÄ“~;¶!ŻPĆ·ĂŃ~ťú´?´óČç×ă')”ý#Ęř"D>żvCşĺ• eýě`|"Ű?öÇ_ŁPĆ7Îř€BŮz!Á=pţBŚżŔ9†ę?» íŃđź=¨żůE†˝˙śé”OR(Ë'ęđó}˛ă}|~ý¤Ź˘ĽQˇ¬ßs]ôÉţGߌČç׏Cú$ʧ*”ţŇE}˛˙IĆOS(ëçŤ>ź_/bţMW(Ë÷)ĆĎDäóë%>‹ňĹ Ą˙—BúśFźň˙,ă[Ůúߤ+P~śBYľË]ôÉţšüŮú\p˛|KJű×hÚŰ?śŮ>E™ŹP(ÇŹ‘§ţA<éߌýGČÇ+”ůÉŃżťú´?ëHóű¤OÖ™‰?ńý˙ý{÷ľ,îO°ÎL,`üČŁŽ‰+˙mäqÍeâĆ?Ś<®ąLäúŹ Źk&W0ţČ/G~ąC˙ äQÇÄYŚyÔ1‘—ďäW!żĘÁ˙ůŐČ <Šń/ ży‡0ţçČŻE^ŕńŚ˙%ňë_ç(˙ËČŻG^ŕrĆż†üä7ęü»ŕ‹üFä7:ř7‘ß„ĽŔUŚ ů‘ŘÄř?"ży'0ţĎČoA^`9ăßE×l&Î`üßÇ{>gü?‘?yc˙äOEţTGý~€üiČ ¬P|±|yÇ{ăb°Udo˙ĹăoGľÝŢ>ŠEľy‡2ţä·!żÍ‘˙Qȇ‘Űë·řXäOG^` ă'!ży§2ŢŹ|'ňťöú-.Eľ y2ľůňç3ľů(ňë@ľyĂ߀üäw8ÚG3ň1äc˙§"G^ŕĆĎ@ľy#‡ůµî׊ç˘|$â(äGk±ŇE}js‘ďµĘe"Îb}P ±*^ňq i}P óZéŤ>Ů_Čřéů´ýbČ»¸ĺG)¤őKńb}˛ßÂřcWłřŹüNÔó»Xź/cü‘ i}^Ľů]¨/đ0áĂj”®PĆg¤Fźü_ŤünË/ŮóźâµŚź¨Pú·Žń>Ä_Š7˘ĽVˇŚď}ňo#ň{Đ?Ç2˙NbüD…Ňż“ďC¬`ţÁx\|Ę+J˙NuŃ'˙NCţ ôď ‡!ĆOT(ýkgĽ‘űăa1ŚYůg˘ý3Uű~‡]ôÉżÓőOúÄG°} ůx…˛üQäĎBýł Ű÷ÝŠ{”BYľ^äĎFýłíü*ŢňĂĘö íˇt–Fźüßü9“g2ľHˇôď,Ć#Ňó9ĎŠ!ż’R”W+”ţťĂřÄzÔ‡űßâŹ0ľAˇŚďąŚoBśĘôĎcü4…R˙|ĆĎ@śĹô?ÎřŮ eűůăç*4y]1Ü˙•çPóţE źŐÜ˙ĺĹ e|ŕţŻřO}ŞżO3ľ±’ŮżŇ%(ŻR(íŇM}˛ ă«q˙Ęśż.…tĘńţÜśż> éŤ>ŮżŚńÍł™˙pY|%Ęç(”ţĂýeńő}˛%ăç"˛ó•ĹWAúĘ)”ő{µ‹>Ů˙ś&v-8YľĹ ĄýĎkâËőoĐÔ;_!¸â/Ł| "­˙ˇ˝ßĚřăi}ó}1ÜßߢáÉţ-L™BŮnŐ´?®˙eäĎEţ\Gű„űßâ;P^ĄPÖďíŃč“ý;_ŤČŰçťîFy"oźwAúŽFźěßÍřfDŢ>áţ»ř>”ĎQ(ýżŇ·5úd˙>ĆĎEäíó~H |‘BŮ~ľá˘OöĐäĎŰ×·Yů+”öŇÄ—ëGS?Ľ}Wü8Ę— ňöů(ăŹGäíóű~ áÉţţ2…˛}>¦i\˙qä?ŠĽ@Z?ř?é”W)4y/‹ź†ô‚Fźě?Ăř…¦°Ž+~Ňó(ŻE¤ö+Ę˙cH?Ńđd˙'Lż^ˇ,˙s¬|5ýç5ţsţÔ?ůóńů¤—P^ĄĐäa\üKHŻjôÉţKŚŻA¤ç'˘üż‚ô˛†'ý—™~ťBYţW4ţsýW‘?ůóĺ{Ň›(ŻR(Ë÷¤?hôÉţ›ŚŻA¬göé-”7(”ýď÷Ě?®OößŇäĎů?öőŮ'ţO¸>ůň}Ěżw!˝‡rş®ÄPăç˙Aú§FźěżÇř2Dv~«řoţˇáI˙űś˙'ú˙qä?îđ˙?ŢG9]Çý˙Żőg‚>ŮźńeÜ˙ íŐđ¤żWcźń‚3ý˙ňŹUöK GůDD*ř_÷8%4úd8ă)|>+毒F˘Ľ\!Í_%‡c4úd$ă+›™˙Ł ŤAůd…Ô?KF»č“ý1ŚźŠČŢď+9ŇÁ(źĄPÚç˘OöfüÄĚ>ÜK•ŚGůB…Ô?KŽpŃ'űă5ńcółŕęŹó°}|ҰîĎÍüĹ˝•yş˙ žôýx"äăĘř;îßśúĄČ_€ů dű%UŚ/RH÷‡%ŐŚ/A¤ç›˘íÎCyŤBŮţj_«PĆ?Ŕř:…t˙U˙.±/˙BŚŻ@vľµĆÂ’ť(ź PćßČř‰ě|k Üs–LFy‰B©mąd–Fźâ;™ńĄŃţ¦@š†ň…˛üS]ôÉţ4MţlHp˛|µ ĄýŮČ_„úi@Äo>¤”)”ĺ_Ŕx?" ­—,FyąB©kÍ’5}ň1ă+ŮůÖ’HǡĽYˇl˙K\ôÉţqŚź‚8ŤŮ‡µfÉ ”OW(ă·ÜEźěŻĐ”ŹťośŚß …ŇţZä?…úźRíĎôo#¤Q^†Hë1ön‚ÓčSţ'2ľ ‘Ög˘~6C: ĺu eýmŐč“ý“_Ź8‹ů2¤SQ>[ˇ¬żS\ôÉţ©Śź‹¸Ůo…By‹BiżÍEźě‡â f? i;ĘW*”őwş‹>Ůß®‰ßJĆG5őÇůk?5|ë˙Gkřť8~~y|}˛ŇY żŘ°ćD9?ťé˘OöĎBžĆoŇ'ţ#8ľ ůx…˛~ÎuĚ/Nýó˙ ú'öWĹüőIĆ)”ó׌/Fdű›%·’Q^­P¶˙‹_XŹúŕoɧß P¶ŹO3ľIˇśßŕď’ź‚üŚď%†m±äRH—ˇĽXˇôďłîÖčSü.c| "Űż)ąŇ•(ŻR(í_é+}˛%ă«ŮţMÉU>‡ňD¶Sr5¤/iôÉţçߌČöoJ®tĘç(”ţ_ é&Ť>ŮżŽńsŮţMÉőn@ů"…˛~?ď˘OöoĐäĎö_'Ë·Xˇ´ł&ľ\˙Kšúáăp%·Ł| "Űż)ů*ăŹGdű7%_t›†'ű·1ýe Ą˙_×´?®»¦ý.cüÝŘ?.E^ ;żVr?¤P>Iˇ¬˙o@zVŁOö`Ľ‘Ý–<é[(ŻV(ÇŻoşč“ýo1ľ‘ú‡đďaHßCy˝Bé˙w!}_ŁOöżÇř…2ţŹhôŮţऍ eů~ŔřfDľ~ú!¤'Q>]ˇĚ˙G.ú”˙“šúáë§g±ţaś3ÇD9?=Ź<ŤŻÄ“ţOqüňń eů~ćśú/"ć™a;]ň2ă‹ĘůçĆ#ňůçUH˙DyµBY˙Ż1ľFˇŚďŻ@¤ńUč˙Ňë(oR(í˙Ňß4úTţ×ߌ8—Ő˙~‡ňy e|ßtŃ'űżcüÄEĚ˙·!˝ňĹ Ą˙„ôŤ>هń- eüţ¤Ńoaúaţ-Q(ő˙މ;?)8Y?Ç)”ńů»¦}pý"9¶żËíď}Ć)”íďĆ#ňö÷?ŕÇŁĽZˇŚď^Ć×(¤ň‹W $@díŻ°´ĺM É~i>¤Ă4úX~ˇ+ůfDÖţJ‡Aňy )ľĄĂ]ôÉţĆ/@díŻÖ(Ą |±Bé˙HiôÉţŚoQ(ă7VŁĎÚźŕ¤KJýqšř±ö#8Y?Ç)”ń9\Ó>¸ţxäŻŔö'­żKŹe|‘BjĄ_ŚČÚ_)ĚĹĄÓP^­PĆwăkĘňű@äí|)Ą|›Jű°V.mÖčSů‹O8‡µ?XÓ”–ˇ|®BßR}˛_Ćřů ™˙bŽĘ˝Hˇô_ěĎŐiôÉ~ ă+”ń«ŐčłőŁŕ¤- Ą~˝&~Ľý6cý\‰íQęOŃ´®?Íqţ…ô‰ź…çkŕ>Cś+%”öç8ÎÇOú çóś<öĺü«‘żÚ°ť/.]˛wďKp˙9ä0ţxäŻA^ŕqŚ_ŽüµČ <„ń«żůëö×"=ň×;ř ČůĎ«ř›ü‰Č߀ü ŽüOBţ Č <ń§"˙EäV1~+ň7"/ťż, !ň7¶óÁĄŰżů›ĺŰŽü—8žńäoAţ‡ţäoE^ŕ0äĹÜí˘´WĂSűčĹöń俢ú—i˙Ě˝{.ôżŠĽŔ|Ćźü×˙šC˙ŁČ߆ĽŔůŚ˙ň_G^ŕhCŤObäB”€HńsŰĐM>ĄŃ§ň]üíŘd¨ń ¸Ň‹Q>Nˇź> újôÉţĹŚ?‘ö§ÄÜëňŇKQ>Aˇ_/qŃ'ű—2~bĹď äď@ý;X˙óŰUŚ?Rˇśß®FţNÔx‹ô÷ŇëP~¸BčďĄOjôÉ˙ëżËňËDöü¦ô󌟨Púwă}5,ľĐźKoDy­Bß/şč“7"7úw·a;˙Yz+ă'*”ţ}™ń>Ä ćô§ŇݎĽRˇôď«.úäß׿ý»ÇáßťŚź¨Púwă}Ü?ČŻô^”W*”ţÝă˘OţÝ‹ü˝čź@¶ľ/}ńJ˙ľÉx"÷ď[ByĄBéß·]ôÉż‡żýČ׏0~˘BéߣŚ÷!r˙ľéqߏöĺüý‹>ů÷¸Ł˙>ńOb˙ňń eůźBţ¨˙ Ăvľ·ô'Ś?Jˇ,ßsČ?€úy˙ŇĎP~¸BŮ˙ úçkôÉ˙ź!˙ ĆGŕ$ćß‹Ś/R(ýűă‹ůúű—†QŢŽňj…Ňż—_XŹúbíű+Ć7(”ń}™ńMS™ţ«Śź¦PężĆřłţo?[ˇÔ˙-ăç"Îcúo0~ľB©˙&ă".búżgüb…R˙-Ć/A\Ęôßfüń eű˙#ă—)4ů3˙đ­ ‡qŔÜ?Čž”ţŇ»(/V(ë÷Ż ?ZŁOíď]Ć—(”ú˙geˇĽTˇ\Ľéď(/GdĎ/K˙úc5ú”˙ß_…ČöOK˙é_(ŻW(ýű'čŹŃč“ý1ľq2ó˙ßţ‹ň©Ó˙˙ýBŤ>Ů˙/ăg ňű;±ó?”/R(ý˙ô‡kôÉţ˙żq)ó/đy(?^!µ/ń(^«Źö…nBţÇ3~8+ß ĄýšřrýBMý°ç‚“őżLˇ´€¦ýqý±Ś/aúÄWvĘW(4ăămŮ8ĆŻB\ŤĽ(;ŚŮe‡hx˛Ó_ŁĆ‡˛C5ý‹ë†ü·˙–a{~WsQŮ1(ŻRHí§ útY@ŁOöŹa|5"ő/Q7°V*›ňDöü® ÖâeU}˛?‘ńÍěů]ĚeeE(źŁPúďTˇŃ'űEŚź‹Čžß•ÁXVFĺ^¤P¶źb}˛_˘Éźíď N–o±BiżR_®_Ą©¶˙"¸˛&”/AdĎďĘęĽBYţzHŤ(?Aˇl ¬}q}Ęż‘Ů/ŃđM¨˙mä˛óAe0V–Í@yąBYżÓ!-Öč“ýŚŻ@¤űQľ™fŁ< Đäá>© Ö eó5úd6ăë›™}h‹eóP>Yˇ¬ßąĚ?®Oöçiňçü|MůŮü!8ß) eýµ ˙ę?dŘǨë˛ĺ(ŻR(ăcaŮi}Ę9ă«kY|`¬,[…ň:ÄzCŤÂĆI}˛żŠńŤ3™˙0–­Eů,…ŇKË6kôÉţZĆĎFdĎĘÖAÚ€ňy eý®wŃ'ű4ůĎcüfVľů Ąý-šřrý“4ő3źńŔ•…Pľ‘Ö§b|2ľEˇ,˙VHm(_˘P¶ŻVÖľ¸>ĺßĆě—hřęy||8R'ĘËĘúÝi—Fźěw2ľ‘îoDůş EQ^HíWĚ}HqŤ>ŮŹ2ľNˇś˙»!íĐđ¤żé×+”őÓřĎőăšň×3~‹oBY»‘ő6ěăĂŮ>‚ň*…2ţç@şLŁOů„ńŐ||>Ňy( RüÄřđQHźŃč“ýó߀8ů÷¶eGůL…Ň˙ŹAú´Fźěśńłg3˙?é”ĎQ(ëď“.úd˙MţěůŹŕdůć*”ö/ÖÄ—ëFS?||®ěj”ĎG\`¨ńárĆ/R(ˤ«PľXˇl_W˛öĹő)˙«ý 5ęy||¸Ň (/W(ë÷óľŞŃ'ű70ľ‘Úż(ß ÝňjDjżăű"¤[4úd˙FĆ™ý› } ĺM eýŢĚüăúd˙Kšü9‹¦üMŚ˙*‹ołBY_Cţ{¨˙=Güď„t7ĘËĘřßé!Ť>ĺ7ă+yüďtĘ«)ţâŢć^HjôÉţ}Ś ňřßé”7)”ń˙óŹë“ý4ůsţAMůyübńmV(ă˙äAýGńŇP^®PĆ˙ű^ĐčSţ?`|b=ł˙¤'PŢ PÚŇł}˛˙ă›XüéI”7+”ń˙‘‹>ŮR“?_??ËĘ7Yˇ´˙cM|řúú˙) eýüůGQ˙QĂ>ţŇŻP^ĄPĆď%HÖčSţżb|5"ź?_†ô*Ę|ţ|ŇŰ}˛˙*ăůüů¤ß |¦Bé˙Ż!˝ĄŃ'űżaü,D>ţŇ(źŁPÖĎë.úd˙ Mţ|ţ{‹•o®Bi˙šřrý·5őĂçOŕĘŢCů|D>ţ…ń‹Ęň˙Ň˙ˇ|±BŮľŢeí‹ëSţ˙Çě—hř÷P˙űČ äă‡ŘßüĘËĘúý7ü9\ŁOö˙Ăř D>~‹ýÍP^­Pîź˝úy}˛˙ăkĘőµŘßÜ«áI/Ó(¤úEMđźé Ý„ň?śĹ·Nˇ´?±N<éŹĆýů /ЧâW~ ¤q(÷#âţşčßĺA:LŁOöÇ1ľ ‘Ý˙” éP Oú‡jěsţ0ô˙1äsřk¤ňŁPîGäţ i‚FźěĹř2Dî?蔫áI˙XŤ}ÎO@˙G^ŕDf|)÷Łśű_©LŁOöýŚ'¬`ö‹!•jxŇ/ŐŘç|ú˙ň'0ű˘ VŁÜŹČý‡X”×iôÉ~5ăËË™}ŁĘžôűśŻC˙ĽŔc™}óË›Q>ŃÇüű‹§hôÉ~3ăýlü+‡ąľ|*ĘËŇřWs}ůI}˛?•ńÓ˙đďň(ź®Ć÷ňé.údăg"Îgöa®*ź‡ň Ąýą.údă!˛ýár•· ü…Ňţb}˛ßÂřĺ«™}¸¶|Ę×(”öOpŃ'űËżq=łż ŮÝ PÚ_í˘Oö×0~âfl•“ü$…rüßč˘Oö7iÚ×IŚ?IÓľ9 öX'›Ď˙ÍüĎ.<܇ĎÇ'}±׎ňń e|ÚçśúíČ?‰ů <ăý¨|;㋚Ľ»:_ŠHëŰ‘ŔwAúĘkĘţa|@ˇŚ”ńő MţLŕş!=ň§0ľŹÁüÇô#”OP(óŹ3~""•Ođ=v˘ĽDˇÔď…t¶Fźâ»“ńĄ´~íOěďíAyŤBYţÝ.údŹ&v 8YľZ…Ňţ9Č?Ťú'±řťé ”)”ĺ?źń~D>> Ň'P^®PęŇĺ}ň˙ŚŻ@d÷źĺź„t!Ę›Ęö‹>ŮżńSůř1¤KP>]ˇŚßg\ôÉţ%šňMgüĺ,~3JűW ˙ ę?ŁÚźéßç ]‹ň2DZźůőHŹiô)˙k_…HĎ×Dý\éó(ŻS(ëďzHŹjôÉţç_Ź8Źů¤/˘|ľBY_pŃ'ű_düBDv>˘üKnEůń Ąý[\ôÉţ­Ś_†¸†Ůűk_GůZ…Ňţm.úd˙ëŚ_Źx"ł¤{PľYˇ´·‹>Ůż‡ń'!žĚěŇ(?Eˇ´˙€‹>Ůń§!¶2űběa”·)”íű;.úd˙aMűjcüŁšöÍůÇX˙š¨áź`ăăŃţG8ż<‹Ľ@ľľ»ĺ?9$sţD”ó÷ł.úd˙ÇČÓüFúÄ?ŹóźŹW(ëçÇüëÔ§ó…?A˙e¨ůý%Ć+”óűŻ_ŠČç÷—a¨By­B9>ĽÂř"íßÂ8Tţ*ă›Ęöńă'+”ó˙o€óĘsßç Űů¸ň×!˝‰ňb…Ňż7†iô)~o2ľ‘í–˙Ň[(ŻR(í˙Ň5úd˙-ĆW#Ňţźh_€ôG”7 ˛ó9ĺoCú§Fźě˙‘ńÍł™˙ď@ú3Ęç(”ţ˙ Ňß5úd˙ĎŚź‹ČÎç”˙Ň»(_¤PÖď_]ôÉţ»šüŮţŕdů+”ö˙ˇ‰/×˙§¦~ŘůÁ‰éÔ”/A<Ë'ö.Ţgüńx%ö·ĘĹţ×˙4<Ů˙Ó_¦PúżWÓţľĐMhżË? űÇóČ ¤ýP®€>\1ĺ“RýWŚ‚T¤Ń'űŁďC¤őÔĹHcQ^§ĆŻŠ\ôÉţXĆ7 61˙†t(Ę›J˙t„FźěĘřÉ )ţ‡iôŮóÁI˙¦(”ĺĎřiłX|ŕ^ĄbĘg+”ůë˘OůOĐÔëź‚3ëć süG¤ů©˘ůź`ů‰'ýr…|ĽBYľ ÇüŕÔŻBţ§żŔ"CÎ?uŚ/VHóOE=ăKŮüSuR±ĺµ eý72>€XoČů§˘‰ń M^Ħ™ńŤt~úwü»bІ§ňOaúSĘúťĘřiÔ>„˙p/P1 ĺłĘňÍ„´VŁOůĎbüD¶żR¶*ć˘|BYżs\ôÉţ\ĆoBÜĚü‡±Ľb1Ę·(”ţĂX\qśFźě/füI eüZ4úlEpŇż“Ęň-eü©AźĺV˘|«B™˙ }ĘĄ¦~¶2~-«˙V…ŇżušöĎő7 ˙3ě_éţ]ôŻ-Ś/V(ű×IŚ/Eäý bUqĘkĘú;…ńDŢżNe|BżÓ? ‘·(kEĘg+”ůC¬*ÎÔčS|Ú?q-«ß¤”ŻS(ăßî˘Oö;żqó;¤.”ź¨Púß ©[ŁOö»żYˇŚ_DŁĎűO7óo‹BYľŚ?ńTź^H»P~šB™˙N}Ę—¦~Ncü™¬ţ ĄgiÚ'×?ůźcű˙ąŁýźĎřb…˛ýŚńĄĽýŇ­(ŻU(ëďŚ ňö˙IĆ7(”ń»€ńÓyűżҧQ>[ˇĚ˙SnÖčS|>Íř9Ľý_ 锯S(ă˙}˛ ă7 ňö9¤+Q~˘Bé˙>§Ń'űW2~łBż«4úĽýŽů·Eˇ,ß5Ś?‘·˙ĎCúĘOS(óżÁEźň˙‚¦~xű˝™ŐPˇôďKšöÉőoEţEl˙/:Ú˙mŚ/V(Ű˙×_ŠČŰ˙ížEy­BYw0>€Hë'Ńţďd|ŁBż»? ‘·˙{ ݇ňŮ eţ÷BzJŁOńąŹńsŮţ]Ĺý@ůZ…2ţßpŃ'ű0~=âFć˙·!}ĺ›J˙‚ô=Ť>Ů˙ăOT(ă÷°Fźí˙ Nú·Yˇ,ß#Ś? ‘·˙Ç =ňÓĘüwѧüźĐÔożO±ú*”ţ=­iź\˙Yäí˙Žö˙ă‹Ęö˙SĆ—"ňöóMĹ?P^«PÖßĎ@äí˙EĆ7*”ńűă§!ňö˙¤—Q>[ˇĚ˙WŢÓčS|^füD>ţ‹ýą×PľNˇŚ˙«.úd˙5Ćo@äă˙ëŢDů‰ Ą˙b˙í-Ť>Ů“ń›ĘřýNŁĎÇ˙·[Ęňýń'#žĆâó'HAyPˇĚ˙Ď.ú”˙_4őĂďŢcőżUˇôďošöÉő˙ü/±ý ¤ýŃţ˙Ëřb…˛ýżĎřRDŢţ?~"ĘkĘúűă´?#Ú˙^Ć7+¤ř‰­PÉOCdíż2Ň0”ĎVHůW@:FŁŹńş’ź¸ZŐo%ÜĂW˘|ŤBŠĺ}˛_Čřu˙c ŤEůF…Ň˙ ŤÓč“ý±Śß¤PĆď@Ť>ë?‚“ţť¨P–ď`ĆoAdíżňpHăQT(ó?ÂEźňŻ©Ö~'ë«Béß±šöÉő'"˙¶G«ö_YĚřb…Ôţ+K_ŠČÚ%Č*ç ĽVˇ¬ż2ĆĘř”3~"oß"Uˇ|¶Bi_ةѧňW1žňYÎęŻů˝BˇŚoŤ‹>ŮŻeü*Ä5Ěë*›PľVˇôćşĘ)}˛ßÄřu eüš5úëţćßz…RŞ&~l˙Jp˛~6(”ń™Ąi\ňżÂö÷+Gű[Čřb…˛ý-b|)"o‹!ť‚ňZ…2ľ-Ś(”ĺ_ÂřiĽýéx”ĎV(í/…´EŁOĺ?žńsyű;Ňr”ŻP(ă»ĚEźě/gü*DŢţ`,®\‹r†Ň¸¶rFźěŻeü:…2~ë4úĽým`ţ­W(ő7jâÇŰĎV?ĘřĐţo\˙ä_Ćö'=ß­le|±BŮţÚ_ŠČŰ_ŇGP^«PĆ·ťń…˛üŚź†ČŰß6H§Ł|¶Bi? éLŤ>•˙tĆĎA\ĆÚßvH](_®PĆ·ÓEźěw1~%âjć˙Hq”ŻQ(ýŹAÚ©Ń'űqĆŻU(ăףŃgëoÁI˙Ö)”ú»4ńăí÷L¬źW°ý Jýł5íëİßô‰űoâ|ÜGßoD”ö?nŘżG<égű~ť“˙”őĎüß /°ëÇüe{÷ţěr˙yŚżůב]ŐźÉů7CµO“żů7‘¸‚ń7 ˙;äçŕoDţ÷Č˙ŢÁ ů·x4㿌ü˙Ł|_CţmäßVőkň·#˙Gä˙ČúŹŕďBţäßqčß‹üź˙“ˇĆÁů?#/0Ŕřo"˙äNeüCČ˙y˙]äßEţ]˙(ň˙‡ü˙ę|źŕCţ=äßsř÷Cä˙†ĽŔC˙ňG^ŕ"Ć?‹ü?¸ńĎ!˙OäĎřź"˙/äÎgü‹Č˙ys˙ň˙A^ŕáŚů˙"˙_Ăö}ÎĘ_#˙>ňď;Ú×ëČ€ĽŔńŚ˙ň˙C^ŕ1Ś˙ň{‘8†ńďXĽČRČLi¨ńÚKĺ»(ĄPŽżĐ^Şş4ú4~ĽËřŃŁ}qďíĄňo(?Dˇś?ŢsŃ'űC>ů<áÔWĺQ~¤Bé?ÔWŐ6Ť>Ů˙/ăŹBäëĎ÷_¤PÎ˙0ľ±š•˙Öq¦,/ˇ,˙^}ôOčš|>ú'đXĺ_ŐpĆ)$˙ŞF0ľ±BůWs|Ő(”W*$˙ŞFşč“Ł/@˙N`ţČř"…Ňż_Ś`ţŤtĘëJ˙vŃ'˙a|"›źŞŽ@~ú?Ěá˙‘Ś/R(ý?ŠńĹ<ľĐ–ŞŽEyĄBé˙1.úä˙±ČG˙†;ężńE Ą~Ć#r˙@VUŠňJ…Ňż}ňŻůčßGüŞ_¤PúWÍřbDÖŞ„”×(”ţŐşč“ä ŃżB‡MŚ/R(ýkf|1"÷o2¤©(ŻQ(ý›â˘OţME~$ú7ŇQżł_¤Pú7›ńĹÜ?˪桼Fˇôo®‹>ů7ůQč˘ôo1ă‹J˙Z_ŚČýű몥(ŻQ(ý;ÎEźü[ŠühôO {~Qµ‚ńE Ą+_ŚČűÇ*HkP^©Pú·ÚEźü[üôO ›_Ş62ľHˇôoă‹k'BÚ‚ňZ…ŇżÍ.úäßä@˙pÄď4Ć)”ţ_ŚČă·RĘ+ŇýKU«‹>ů×ćżIźřm¸>ň*…Ň~ذŻ_'ý.ëź"/­źŞâ°~!/­źŞŕţ±j7ĘG)¤őGÜ?V]­Ń§üw3~4"­ŹEüö@:ĺ‡*”ő{†‹>Ů?“ń‡#˛óÝUp˙YőQ”+”ţź é"Ť>Ů˙(ăKËYű9Źń eű9źń•Ť¬üô ”7)”őűq}ňď˙›‹OłBßO1~ âlVľK?Gˇ,ßĄŚź‹ŘÂĘ÷YH—Ł|‰BYľË\ôÉ˙Ë5ík ăŻĆöŤkryűţ<´oaŰś‰Ľ}ŇM(ĄP¶Ź!=˘Ń§üobühÄCYůo†t ĘS(ă˙%}˛ ăŹ@,fţŇm(/Q(ý˙¤ű4úd˙6Ć—"Rűő˙uĆW*”ő;ă«yűľŇ](oR(ë˙N}ňď.Ť˙Ľ}ßÇâÓ¬PĆ÷~ĆOAäíű›ŚźŁP–ď[ڧvÄŰ÷·!}ĺKĘň=ä˘OţGÓľxű~Ű7¶yű~Ú·č÷xĎn"oßOBzĺŁĘöń¤?jô)˙§?‘·ďg ýĺ‡)”ńÖEźě˙ńG ňöý¤źˇĽDˇô˙§^Őč“ýź1ľ‘·ďź3ľRˇ¬˙_…ČŰ÷/ ˝„ň&…˛ţé˘Oţ˝¤ńź·ďWY|šĘřľĆř)Ľ}żÎř9 eůŢ`ü\DŢľß„ô{”/Q(Ë÷;}ň˙÷šöĹŰ÷±}㞇‰l˙«ęÝ˝{źý ÷N!Ť?Őđwí|Ť>ŮŻbüÁ´żý«îőŞkQ~¤BęßŐ5.údżů*äŇţ;IJş‘ńG*¤ţ_Ý„|5ę <Ś•î˙«§˘üp…˛üĐWŞ?˘Ń'˙¦"_cůe"»ż®žÎř‰ Ą3ďC,eń› i6ĘËĘřÍrŃ'˙f3ľń4Öţć#_‹ţ d÷·Ő ?Qˇôă}Ü˙Ĺ– ĽLˇôżĹEźü_Âř Ä­Ě˙ ˙‡˙Ë?Qˇôă}ěţ·Zř°ĺ• Ą˙«\ôÉ˙ŐŚŻF\Íü_Ź|ú_çđ#ă'*”ţobĽ‘ű"¤-(ŻT(ýßě˘Oţoa|5"÷˙TäëŃ˙z‡˙AĆOT(ýßĘx"÷żRĺ• Ą˙m.úäńŐk™˙aäĐl˙®z;ă'*”ţw2އČýď‚EyĄBéÄEźüŹ2ľ‘=ź¬Ž#ßţ7:âßËř‰ Ą˙;ďCäýw¤3Q^ŽŘÁňߍúM?"­źŞĎp±Oĺ;Ó1ľ’>ńÁń[ČÇ+”ń;ůfÔo6lżoTýqĆĄP–˙ČOF}|~¸ŇE(?\ˇś.ý™}ň˙"ä§`|Nbţ}šńE Ą3ľ‘Ög°¨ţ đSQ^­Púw ăkéůŚX[\Ęř:…2ľźe|bÓżśńÍ eý_Ář) M^ÔýUŔ‹űŠ©V»5‘Ż?‡ü4ä§±ţ)řk‘źŽĽ@¶?V}=¤P^¬PĆçóPĚ1}Şż_˘PęŇ(/E¤ű+±~ű"¤›P^ŤHűżbýv#¤ű5ú”˙MŚ 6±ňÝ é”7+”ţ} Ň˝}˛ ă'#Ncţß é+(ź8“ů˙eHwjôÉţW?q.ł˙UH·ˇ|žBÓŔęŻAş]ŁOöocü|Dj?ĐOŞż®Ń_Äôogţ-V(Űďšřpý;5ń]Ěř{Yýµ(”öďÓ´®?ăK>ńŔU?„ňăšĺ‡ń¦úAĆŹxň°žŻţ&¤oix˛˙-¦żLˇľ­é\˙!äg Ź(Űç#~†ňRDß˙(¤ ĽZˇÔ˙>¤ç5ú”˙_XĎÚßcž@y#"ő/Ńľ‡ô¬Fźě?ÁřÉS™ýBzĺÓĘöý#HOkôÉţ“ŚźŽHű˘}?ĄŃźÍôźfţÍQ(Űß3šřpýg5ńťĂřçYýÍU(íżŔřĆ“>pŐ/ˇ|ľBŮ~Îř…ÔżEű}Ň/4<Ů˙Ó_¬P¶ß_jÚ'× ů™ČĎ4Ôř.Úßk~ň*…˛}ţôó5úd˙7ŚŻF¤ůY´źßBzĺ ´?'Úçëţ§Ń'űo0ľq6ó˙MHżGů…Ň˙ßAz_ŁOöĎřą ý· ˝Ťň… Ąý?@ú§FźěżÍřE4ľ‰řüŇźPľTˇ¬ßw\ôÉţź"ť/ëßw!˝‡ňµ eűţ?}˛˙ž¦|k˙Ożu Ąýi⿎éżĎęw˝B©˙¦}qý˙iÚçzĹ ®¦ĺ7a|`˝TSŔřͧ¨ú©ÖŚ@ů© Éżšá¬q}Ęł_˘á ë7˛Oü\ÎB^ŕćßAFąç'ŃżjĆA:\ŁOöf|"[˙Őé0 Oú‡iěsţpô6ň'2űGB"ą‘ű÷:55úd˙hĆ—!V1űÇ@š áI‚Ć>ç'˘˙sźăđîujŠQîGäţ¬fŞFźě3ľ ×bü©[5$ŻQHăO Ěi5“5údżŚńµlý]÷p5•(oV(í‹TŻŃ'ű•ڧ|Řú»bYC~OW(űOµ‹>ŮŻŃä?ťńő¬|3Jű šřĚ`ú“5őĂů©X˙s‘źë¨¸¶fĘýĽţˇ?×´iôÉţ,Ć—!ňú‡öX3ĺ5 eý€ż5[5úd.ăk'3űó -@ů…Ň>¬ejNÖč“ýŚźŠ8‹Ů‡ą˛f1Ęg+”öaN«Ů¤Ń'ű‹?‘ćg¸—¨9ĺ ŇüYłÄEźěÇxň“ÍĎ5pŻPłĺKJűË]ôÉţ Ćź€¸śŮ‡ą¶fĘW(”íw­‹>Ů_§‰ß ĆobőłRˇ´˘¦~W2ý“YűYĄP꟢i«ţVMűç|öŻyČ äý«Rĺ~DŢż¶Aú˘Fźě‡_†Čű×é:Q^ŁP¶ĎínĐč“ýNĆ×"62ű]˘(oR(íG ]ŁŃ'űQĆ7#ňńµR ĺÓĘöąĂEźěÇ?‘ú×HŕvBşĺ J˙w1~"ŢźýµšÝŚoQ(ŰĎƇHýCŘ?ŇŮ(_ˇPć¤Okô©|g3~%â:f˙Hç˘|˝Bi˙#>©Ń'űç2~âFV?…t>Ę7)”ĺ?ĎEźěźŻÉă?ÉĘw˘Bi˙M|Ndúźfń߬P¶ź‹5íë_Âř“O6äýmÍĺ®Đđ¤Ó?Eˇô˙JM˙ŕëçkX˙;UˇÔżVÓůúúÍřÁů/âř4ůů†?ĹţmÍÍČ/@^ ŹŐ˙­ľ‚r?"żľ é}Ť>ĺ˙Ć—)”í÷«nCyąBŮ~żé?}˛ă+iý/ęďën×đ¤;ÓŻR(ŰĎŚŻAl`ţßé>”7*”ţß éď}Ę˙>ĆS=Lcöď‡ôʧ+”öżéŻ}˛˙ăg .`ö„ô-”/T(íŇ#}˛˙-Ć/B\ÂÚŹŘźüĘŹS(Ű÷C.úd˙;šüůúäVľĄ eý=ŠüBÔHű[b~xŇ;(_ P–˙‡Ś_¨PÎ?bü"…˛|O2ľńxź§!=‹ňšú[€{ŇĎ4úTţgżLˇ´˙cHϡ|ąBÓľXýÄEźě?§ÉźĎOŔŐĽŤň• MűâŢéçŚ_Ť¸žů÷"¤_˘|BYţ_@zKŁOů˙’ń73űb˙đe”oQ(í˙ Ňë}˛˙2ăOR(íżé5”ź¬PĆ÷U}˛˙š&>żĽÎĘwŠBi˙ M|řüň‹˙© eűüë-ý·YűťˇáßqŚ?dźřżâř&ä§)”ůżë‰'ýżăř+äA…R˙ŽůxŇ˙Źc~rňďăü·y|ýľř<”űŮü'ŽĂÔ4úh_čJľ ‘­ßkó! CyŤBj ŐhôÉţ0Ć×"˛űăZk Q>Eˇ´?Ň}˛_Čř©ôüQp0†ÖŽFů,…T?µŁ\ôÉţhMţěţYp˛|łŇř^{ăç"ŇůHáۡ*PľDˇ,˙aŚ?N!Ťďµ‡3~©BYľ#"­Ż„ý#!Q»XĄPć¤RŤ>•˙hĆŻF¤őż˙1& |"­ß…4údăOT(í‹ýCĘ7+”ĺźÄüăúdß§ÉźóEšňłńWp2ľ[ĘüË4őĎő+4ýg ăk4ý—óÄ=á Íüáެ¶y:_A<é7áů‹Ôo1lçsj';Η8ő§:η´8ř™x~F´é± ĄýŮŽóŁÄ“ţ|ÇůU'żĐúgö Ź4äýCmË޽Ϸű„‰Ś_Š<®yL\ĹřeČăšÇÄży\ÓČíŻA×4&˛óżµë‘Ç{naü&ä±ĎšČóß‚<úlbăOA~5ň«ů‘_üĂö}Ú6äń™–‰Ľ|Čcź7ńĆźŽ<®©Läú]ČăšĘDvľą¶R ĺ#šíGŚ; őhô©}Ä_8ÚPă_\Ł?šéW{-ĘÇ(”ăc/ă@<틹o'¤Ý(?DˇśvąčSţ»âŃĚţYÎAů1 Ąýł]ôÉţ9Śź€XĚěźéc(/Q(íźď˘Oö?Ćř2Äf˙HˇĽVˇ´ˇ‹>Ůżńu“™}qţíR”OQ(í_â˘Oö/eü4Ä9Ěţ®Bů\…r|»ŇEźě_Ĺř<¦OüµÖ? pOËDŢ?ľé&”"Ž4ÔúďFĂhľEŁOöoBţDKnâA¬| Ň­(§P¶ĐmľYŁOöoeüÁtţRÄďËľŠň#ĘúůŠ‹>Ů˙*ň›‘HăO9đw0ţH…&/ćć;‘ß‚ú[ ŰůÎÚ»!Ý‹ňĂĘňßcĹ}ňď^äO˛ü2ńhćßýŚ÷)”ţ}ń~DßEü€ôM”W+”ń{ĐEźüű&ň'Ł';ü{ń>…Ňżď2ŢŹČýű¤GQ^­Pú÷‹>ů÷(ň§ Źeţ=ÁxźBéßďGäăĎŹ =…ňZ…Ňż']ôÉż§?ýxóď'Ś÷)”ţ=Çx?"Źßó~Šňj…Ňż\ôÉżź"úwša;˙\űKĆűJ˙^bĽ‘ű÷+HŻ ĽZˇôďe}ňďäč_ĐŃţ~ËxźBéßëŚ÷#–3˙Ţ€ô;”W(”ţ˝é˘Oţýů­čßVGýţ‘ń>…ŇżwďGäţý Ň_P^ˇPú÷g}ňď/Č·˘­ŽřýŤń>…Ňżż3ŢŹČë÷ţ…ňj…Ňżşč“˙Bľ ýksř÷ă} Ą˙cĽ‘ű·ř<”W+$˙ÄQ7­>ú'tM>„ţ…ěţF0ާü 2ŢŹČü Ŕ\Ťňj…ŇżQ.úäßhäŰŃ?lü ÄxźBéß8Ćűą0gEyµBéß!.úäߡČw ŽřÉxźBéßQŚ÷#˛ţ[cQ^ˇPúwŚ‹>ůw,ňŰĐ?G2˙ŠďS(ýó3ŢŹČăkÝ@)Ę«J˙J\ôÉżRäĂč_Řá_ă} ĄŐŚ÷#˛ů- | ĽVˇôŻÖEźü :úwşŁ~›ďS(ýkfĽ‘×/¬µSQ^ˇPú7ĹEźü›Šüvôo»ĂżYŚ÷)”ţÍfĽ‘×/¬ŐóAމöi}ç˘OţÍw¬IźřŸţňń eů[ďBý.Ă6N`üQ eů–!A}l}XiĘWHëŰřŘüyŤ>ůż ů(ĆGŕ$ćßĆ)”ţ­e|1"Ĺ_Śťë ŁţM”W+”ţ­g| bőEßŰŔř:…2ľ߀ŘÄôOd|łBY˙›?EˇÉź <¬·ëa SĐmµKý,ţ°ž ś†ňb…˛|°ž <ŁŃ§řźĆř…RÖ3=(/EdçO°ž´ˇĽ‘Ć1÷Ŕ|إѧüŰ@¤ř‰üa> t ĽYˇôć“@ŻFźěw0~2";ź€ń4p:Ęg ŇţżđĆłŔŤ>Ů?ťńłç2űĐź](ź§Đô0ý5Őč“ý.ĆĎG\„öĹŘŃč/búQćßb…˛ýukâĂőwhâ»ń˝¬ţZJű;5í‡ëďb| Ó'¸Ŕ9(?NˇY~/g0ţxDÚßśčCgix˛Ó_¦Pöďł5ýëźüäeű<ŇŐ(/E¤ńIđô ”W+”ú‡t…Fźň˙ăkë Őţ> éB”7"R˙íűH—jôÉţ…ŚźŚ8•ŮżҧQ>Mˇlßź‚ôŤ>Ů˙4ă§#Ňű#˘}_¬Ńgď‡Nú7Gˇl—hâĂő/ŐÄ—íŻ NÖß\…Ňţ•Ś/a<é¸ĺóĘöű9Ć/D¤ţ-Úď5®Őđd˙Z¦żXˇlż×iÚ'׿ůň1ĂöţQŕFH7ŁĽJˇlź7AúFźěßĚřjDš_Eűů¤[QŢ€ŘČÚç-ľ§Ń'ű·2ľq6ó˙ËľŠň9 Ą˙_ô°Fźě•ńsŮů˘Ŕ× }ĺ Jű·Aú¦Fźěťń‹i|ńąŇť(_ŞPÖď.úd˙NĆź€ĎjĚő©Ř_ĽĺkĘö}ź‹>Ůż_SľµŚ˙&‹ß:…Ňţ·4ńgĎo'ëw˝B©˙]MűâúßÓ´ĎőŚ.đ#”oDÄ˝nń|9đă7#žÂęçqH?Dů© ĄO°ţĹő)˙2ű%ţG†}ýFö‰ׇqä˛óç ˝€r?"ÎOf˙zŇ›}˛˙ăËůü%öŽňj…˛ý˙ Ňë}˛˙sĆ× ňńáEHżDyťBŮţá˘OöÉřDšżDűű‡Żˇ|šBYŻşč“ý×4ĺăëĂ×5ńĺü›X=Č÷8ęď-HoŁÜŹČëďŢ×č“ý·_†ČëOě?ţ ĺŐ eý‰ýÇ˙hôÉţź_ČëOě?ţĺu eýýĹEźě˙•ń ĽţÄţä?P>Mˇ¬żż»č“ýhĘÇëç?šřrţ}¬ż^äúXů÷BqóPîGdő'BQw¨Fí ]É—!˛ú«Ë‡4 ĺŐ ©ţę ¬Ń'űĂ_ČęŻÖ u…(ŻSHőW7ÂEźě2ľqşŞżş1Ƣ|†BŞżş\ôÉţXMůf0ţ`M|9(ÖßNäN`ĺ‡5ZÝ‘(÷#ňú©JŁOöŹd|"ŻżŁ ňj…˛ţŔf]…FźěĂřD^ÇBšň:…˛ţ&¸č“ý‰Śo@śÂębRW‚ň© eý»č“ýMůX˙\B|9_…ő· yǰň×BŞCą‘×”µnľFźě×1ľ ‘×_=¤F”W+”őe®›«Ń'űŤŚŻAäő÷ju“Q^§PÖ_ł‹>ŮźĚřÄfVĐ—ęf˘|˛BY3\ôÉţLMů&3~®&ľśźŹő·yĽ˙Áš¶®ĺ~D^pŻSwĽFźě·0ľ ‘í_Ő-´TĂ“ţRŤ}ÎŹţďA^ ›żë–CZ‰r?"÷¤µ}˛ż’ńeUĚţ*Hk4<éŻŃŘçüZô˙ äĎpřżŇ&”űą˙°f®ëÔč“ýMŚ/CdçëN„´ĺ5 e˙5sÝé}˛ż…ńµl˙°î$H§ ĽYˇ´2¤FźěźÂřÉl˙°ÖâuA”OW(űĎi.úd?¨ÉźĎo!Vľ ĄývM|řüvş¦~8߉ő&ňg:ę? iĘýĽţ»!]ŁŃ'ű;_†ČëîgęzP^ŁPÖ¬—ë®Öč“ýĆ×"NföaľŻŰ…ň) Ą}Oę.Óč“ý]ŚźŠ8‹Ů‡ń î ”ĎV(íC«»XŁOöĎ`üDÚ_ń‡żëÎFůB…rü?ËEźěźÍřĹlˇîŁÎGůR…Ňţy.úd˙|Ćź€¸śŮ˙$¤ QľBˇlż¸č“ý 5ń[Ář‹Yý¬T(íFSż+™ţe¬ý¬R(ő/×´żUL˙jMűçü5ŘżÎB^ ď_×Cşĺ~DŢż>ég}˛ăËy˙ú¤Q^ŁP¶Ď/BzAŁOöod|-b#ł¤/ˇĽIˇ´3¤g5úd˙KŚoFäăë-ľŚňé eűĽŐEźě™ń3©Ťî6H?@ůB…Ň˙Ż3~"ç{u·3ľEˇl?w0ţ8DęÂţ]îAů …2˙»!=˘Ń§ňÝĂř•ëý{!ÝŹňő Ąýű =¤Ń'ű÷3~âFV?߀ô Ę7)”ĺŔEźě?¨Éăbĺ;Qˇ´˙M|NdúʰřoV(ŰĎŁšöÁőŔř“ńý7±?_÷CH?Ňđ¤˙#¦ŠBé˙“šţÁö˙'űß© ĄţŹ5ý—í .aüŕüĎp|:y>Vżż€ôĘý||ú%č4úd˙%Ć—)”íóW^AyąBŮ>_ýŤ>Ů…ń´ľőó*¤×4<éżĆô«ĘöńkĆ60˙߀ô;”7*”ţ‹ý˝rŤ>ĺ˙;Ć7!Ncöé(ź®PÚ ôý}˛˙ĆĎ@dĎ/ęކôĘ*”ö˙é=Ť>هń‹—°öó'HAůq eűýł‹>Ů˙‹&ľţxŹ•o©BYCţÔ8ßPă˙żźň eů˙Ăř… ĺř˙_Ć/R(Ë÷>ă[Źgńůźő¸Ő”ź ĐÔ÷6{/Ôčců…®ä—)$űő€ő(_®Đ´ăT}ľ‹>Ů/ĐäĎćÁŐ‹ň• Műbof$ăW#®gţŤ‚4ĺRůëaŚ©?ZŁOůŹaüFÄÍĚţDů…ŇţXH‡kôÉţŚ?Iˇ´¤Q~˛Bßq.úd˙`Mţlţś,ß) Ąý#4ńaó‡ŕdüOUHíłţÖ?Z4úDzö;CĂOtŚ?dźx?ŽoB~šB™±c|$žôËqüň B©_á'ýÇüää8˙}yl}^cu}Ęýlţ«‡±ľţ4Ť>Ůob|"[ź×Ăšµ~ ĘkŇřS÷˘ő§hôÉţĆ×"˛űßz¸gŞźŽň) Ą}+ęçiôÉţtĆOE¤óQ">Đ&ęgˇśˇ¬ź™.úd–&v,8YľŮ i|ŻźĎřą¸ţă{=¬Őë7Ł|‰BYţƧĆ÷ú%Ś_ŞP–ď8Ćź€¸’Ĺ_ě.Ců*…2Щߨѧň/cüjDZß‹řĂX\żĺi}.ú>ÜKÔŻŐč“ý•Ś?Qˇ´ľÖŻAůf…˛ü«™\źěŻŃäĎůµšňóńw#‹ď…2˙Mšúçú›5ýg ăOŃô_Îź†ăĂąČ <–ŧRĺ~D>>´AÚˇŃ'ű!Ć—!˛ç őí¶ˇĽZˇl?˘}˛żŤń5ěůB}Ňv”×)”ń=ÝEźěo×ä_Çř¨¦üśßńý(ňuÄ·ŇN”űy|{!]¤Ń'ű;_†Čă» Ň”W+”ńÝ é\Ť>ŮßĂřÄzć˙ÎByBß3]ôÉţYšü\ý(oT(×7e|âćßy>†ň© ĺúâ|}Ę˙cŚ/cúÄ_ ©Î_„őňůü{1¤KPîGäő˙H÷jôÉţ%Ś/C¤ö/ę÷RH—ˇĽNˇ¬˙ĎBş[ŁOö/c|=b#ó˙rHW˘ĽIˇśż®pŃ'űW2~2"Ű«ű‹×ˇ|şBi˙Z}˛ăg"ÎeöżéF”ĎS(íŃEźěßČř-Ěţ-ľŚň% Ąý[]ôÉţ—żńf˙6H·Ł|™BŮ˙ľî˘Oöo×Ô?ż?ş[Óţ8/¶ďó‘?ßŃľżéA”űyű~Ň+}˛˙ ăËëXűţ&¤oŁĽ^ˇlßß‚ô+Ť>Ů˙6ăůúň!HŁ|ŠBi˙;žŇč“ý‡?‘·ř|Ň#(źˇP¶Źďąč“ýG? ‘Î×î1HO |±BŮ>wŃ'űOhĘÇη ®ţY”·(4í‹őĺÓŚ_‚Čöęźa|ăÉ>pő?Gů ĺř˙cĆ/C\ĂĘ˙HĎŁ|­B9ţ?ç˘Oů?Ďř¦OüĎYűY§PĆ÷EMűăëÓ_iÚ?ç_Áţóůţ˘iîůęŤ|Ű'ń¤śůţŤŹW(Ű×ëŽ÷‹śúo"˙qĚ_ ­_Ä˝ëŰŚ÷+4y(oý_‚H÷‡âţĺkĘkĘţő'Ć×*”ńý3ă뚼X{üx±>űĆ÷†}ýő.¤÷P>q’ˇĆ§˙ý9}ŠĎ{Ś/Bdűżőbî(/W(Ë÷wĐźĄŃ'ű˙`|b ó˙źţŤňZ…˛~˙ĺ˘Oö˙Ťü'‘˙¤ŠźY?˙~ĘëJ˙÷2ľA!Ý_ŠJľQ!Ő_Că›Rý5@óúŘ>.0lăĂpH…(ŻWHţ5Ś€tFË/t%ß âŰ1hŤňF…߆Q.úd4ă›çr|j8Ň8”ĎW(ăs‹>٧)ß|Ć×PŤň…4?ßg| âR_čó G˘üx…2ľ0–4”jô)˙#‚Bߣ ňe e|ŹvŃ'űÇ0~"íżŠřB_n(Bů…2ľ>}˛_¤)ßĆ×P…ňM´ż â[Ćř-¸ż™'Ú&Ś žěW0ý _ĹęŻFĂWc˙ąyDXë7ÔkxŇŻGý‹¬ú&¤ů§ˇ yężÄ“ţděßYń&”ńźâśúÓă#é?Ë1>;ů98ţ ytţNÄúJĂB”OT(Ű7¬ÉViôÉţBĆOB,bń…ľÖĐ‚rżBŮľ»č“ýĆ— âřn¶oč‹ ËPP(ă{‚‹>Ů_¦)»˙\CĘëi|í{5ă›éţ[ÄÖR ëP>UˇŚ/¬Ą‚}Ęă§!Îbń…ľÚ°ĺłĘřnpŃ'ű?‘žŠřBźl8ĺ Ęřžä˘OöOÖ”o!ăkhGů"…¦}čÇ [żXˇéźűZ!µix˛ßĆô›4|;«żŁ5|öźO#/­źN‡Ô©áIżő/6¬ő#˘?˘ČÓúŤxŇÎ\ß ůx…˛~cŽőĄSżůĎ`ţŹ1äúµaăý iýÚpăKŮúµA¬Q>@yŤBŮľĎb|­BŮ~Îf|ťBąţ9Ň@~ Ć÷GüĎ…tĘ'"˛őkĂG!=ĄŃ§řśÇř"D¶~m€ű‘†ŹŁĽ\ˇ,Ü/4üHŁOö?Îř D>˙Ŕ¸ÝpĘkĘúý¤‹>Ůż€ńu4ţúöŘđʧ*”ţ_Ěři ĺúő3Śź®PÖß%Č_Šţ]jŘž5\é ”×(”ů_éQŤ>•ď Ć×"Neí÷JĆOS(ŰďUŚźŽ8‹ůw5¤kP>[ˇôďsnŐč“×0~ŽBYż×BşĺsĘú˝ÎEźě_ĎřůtľLŚĎ_„tĘW(”ősŁ‹>ŮżISľŚż•ĹoĄBé˙—‘˙,ÖŹ@ÚőóuĆ7)”ős;㛩~Eüď€tʧ)”ős'¤ďhôÉ˙»?]ˇ¬ź»!Ý‹ň eůîqŃ'ű÷2~"ťőó¤o˘|‘BY?şč“ýojĘÇö§'ă·Xˇ´˙°ŁOúŹb˙ň…R˙űŽńĹ©˙cü#}âäťüS8ľ_†Ľ@ľ>}ŇOP>Qˇ¬˙CzEŁOöÂřI|}ú¤PîW(ë˙y}˛˙ăKi|ő˙"¤_˘ĽVˇŚď/\ôÉţ/5ĺăëWŕţŠň:ÄzCÍŻ2ľ‘íď6Ľé7(ź˘PĆ÷×ţ¬Ń§üĂř©ěü@Ăo!˝ňY e|_wŃ'űo0~â|ß· ˝Ťň e|˙ŕ˘OößÖ”ŹŻ_˙Ěâw´†˙+¶ßË‘Č×'běďžô˙Žú0Ď™ë3Dą>üň´>"žô3×OB>^ˇŚďë7§ţČ_‰ů ¤ţăwc>ăý iün,`| "[6B5ž‡ň…Ôľ‡3ľ‘ć°×8‚ńM ©~ ?Y!­GAúČŻÂř_eŘľŻÔ8ŇX”+”ţi‰Fă't%_‚XÉěiĘ«JűA*Öč“ýqŚŻF¬Wí«ń`H‡˘Ľ‘ćWč˙Ť‡@š¤Ń'ű‡2~2âć˙aŽ@ů\…Ň˙Ă!MĐč“ý#?q1óÚjăQ(oQ(ë÷H}˛”&6żN–o‰Bi˘&ľ\’¦~–0¸Ćz”/E¤ç;Đ^Kż q5‹o)¤r”ŻQ(ă+úX@ŁOů—3~-"ťń6¨ÝmR(Ë_é˘Oö«4ůob|€•ďD…4ţ4ÖiúׯGţjä˛űŻF¨ÓĆ©(/W(ăsUăŤ>ŮźĘř DÚ?ńµdă ”×!Ö#/Ú&¬őçhôÉţ Ć7"Naöa.kśŤň© eüg1˙¸>Ůź­Éźós4ĺgë_ÁÉřNS(ó_čß'ý%8~~yěůvă –ŁÜŹČžo7B›i\­Ń'űË_†XÍěĂ˝Hă* Oú«4ö9żýżůkţŻ´ĺ~Dî˙zHghôÉţĆ—!˛ó'ŤĐ—ODyťBŮ~ˇ/4îÖč“ý_ŹŘČüß é$”7)”ýo‹‹>Ů?‰ń“§1ű§AÚŠňé Ąý ‹>ŮßĘř™s™ývHŰP>Oˇ´ßá˘Oö·1~b łß )‚ň% Ąý.}˛aüRDöü¦1©ĺËĘţwŃ'ű=šúgçK—Đţ8¶ďk ký†HëÇĆł‘§őń¤śą~ňń e|Îu¬ďśúç!ćťaűľjă'ďW(׏0ľ‘Ż/„ôĘkĘţsăk±™ëÇO1ľ^ˇ¬źO3ľQˇ\?ÂşąńŻ żă˝a_?^ é2”+”ţÁýnă}ŠßeŚ/A¬`í îŻDyĄBY?W¸č“ý+‘˙<ňź7ěëS¨ĎĆëQ^ĄPúńhĽSŁOöŻg|5"ź_áďĆ/ ĽăoŽŻ7@şMŁOöżŔřFÄ™Ě˙/Bş ĺłJ˙o„ôUŤ>Ůż‰ńłůřt3¤[P>Oˇl?_rŃ'ű·hňźÇřݞňÍW(íM_®›¦~Řý­ŕďCůBDzţ-Ö§w1ľÇGń|ĄńnH÷hx˛Ó?Nˇô˙^Műăú÷9úé˙ öżČô0Ęý|ţţ¤G5úd˙aĆ—!ňţ÷]HŹhxŇDcźóŹ˘˙_@^ _<é ”űą˙ŹCúŁFźě?Ář2Dľţř!¤'Q^§PöŹAúFźě?ÉřzDľţx Ň3(oR(ǧ§]ôÉţ3ŚźŚČ×ĎAzĺÓJűĎ»č“ý?‘÷ď!ýĺóJűżpŃ'űżdüDľţxŇk(_˘PÚŐEźěżĆřĄ|ýń:¤7QľLˇěo¸č“ý75őĎ×Đ´?Î˙Ű÷ kţG”ëŹ?#Oó+ń¤˙Wś…|ĽBźwë§ţ{Čßů ôjýń/ĆűĘőÇż_‚Č×˙ć| ĘkĘţó_Ć×"Öjýń>ăĘúů€ńMěůGă^çˇ|šBĘ_tµ¦#5úˇ+ůéěůWS>¤a(ź­PÚ/€t¨FźěcüÄ%Ě>Ě!M…(?Nˇ´?Ň}˛_ČřĄËTűo‚:jŤňĺ )ľMŁ\ôÉţhMţěůŕdůV(”öŇć=?śŚ˙J…R˙0Mý­dúG˛ö±J!őʦŁ4í—ëüMŘ?NRýŁÉÇxżBęMEŚ/AdýŁ ®mľĺ5 eý3ľ‘ć'°×TÂř:…2>ĄŚoPHëó&(CóU ‡uš9> ¤ó ă€6Î@ů…Ňż*ĆODdűOMPÖ¦Z”—+”ú˘š5ú˙ZĆW Ňú[´_ES=Ę«Ęň׹č“ýzMţUŚ®i1Ęki}×7Mf|b3+˙HÓP>Yˇ,?Ś5Ms5ú”˙4ĆOAśÁĘ}¦i&ĘĘňĎpŃ'ű35ůłő˝ŕšˇ|6"íoC{išÇřy¸ţëß&řwÓ Oö0ý Ą˙ YűŞÓč/bńź¨á3ýE eű‡±´i'Čż„ú©‹řiĘ‹©‹±ÖM›4ú”˙2Ć— –łöceÓJ”W(”íƦ }˛ż’ń•UĚ˙UÖ ĽZˇŚďj}˛żF“?Ű\Bů9ż ă{ ň·¶ű˙¦-NFy±BYţ“ µiôÉţÉŚ/A,eĺ?Ňi(/S(ËŞ‹>Ů?M“?ź€kÚň DźDű1ľ±Ž•żŇ6”×+”ĺď€ŐčSţŰ߀HϧEůöŁ|ŠBYţÓ]ôÉţvMţl˙\p˛|5ü¬˙[ k~A¤őmSňÔ?‰'ýť¬˙­áĎŔůëËČ äýWäń”!ňţ{¤ĎjôÉţG_‚ČöšÎ…tĘ«Ęúű(¤K4úd˙<ĆW#Ö1˙χôq”×+”ë—Źąč“ýŹ3ľ‘·Ź !} ĺSĘöq‘‹>Ů˙”¦|Ľţ/ŃÄ—óźĹúű ň_1ěăĂ/V(ă{%čŹĐč“ý«_‚XĹě_ é”W+”ö?é‹}˛ ăkŮţ]Óµ®Gy@ˇŚďu.úd˙zMţlAp˛|u eű¸ůŻ˘ľ@ľ>ţÔô”—+”ĺ‡újúľFźň˙ ă+k}ř»é6”×*”öżéŤ>ŮżŤńDŢ?ľé”×+”ń˝ÝEźěߡɿžńŔ5}ĺŤt>@¬îeüdÄé¬ü÷AúĘg(”ĺżŇw4ú”˙7?‘íż4=é›(ź§P–˙A}˛˙MMţó˙Vľů Ąý‡5őĎőż«i?|}ö}Ö>(”í÷Č őżćhż?‚ôĘËĘř> é×}Ę˙)ĆW Ö2űOCzĺ…Ňţ3~ĄŃ'űĎ2ľ±žŐߏ!=‡ň…˛ü?qŃ'űĎ1ľ q6ł˙3H/˘|ŽBY?wŃ'ű/jĘÇΧNĆo®Bi˙eMüyűű5«ßy eůüm¨›Łţé-”—+”őó{ĐĎÓčSţo1ľ‘×˙ ýĺ…ŇţŰţĄŃ'űd|"Ż˙w ýĺ eů˙ä˘Oö˙Ěř&Dv~˘é˙ ý ĺSĘúyĎEźě˙MS>ľ?\Ó(źŽH÷§b|ü7ăg!Îgţ‰ýÁ÷Qľ@ˇô↓~¸>ĺ˙>ł_ˇá?ĐÔ?;(8Ůľ*¤ü›óë âI®_ľŽĽ@¶Ň kĚćÉ(ź ÚOóĆOThň°^m>R Ę'!©öŮ<ŇA(÷+”ö„ä×č“˙1ľ‘­o›EAy•Bi˙`HGiôÉţ!ŚŻF¤ý+¨˙ćC!Žň:…2ţ‡ąč“ýĂ5ůłů]pÍ×DzţőŐ|4ă›§3˙ÄţŐŰ …ŇżcYü¸>ĺ?Ů/Öđ5őĂög'ë¦B™±¦ýpýäoGţvöľn© ĺĹ eýŠ<4údżŠń%'ˇýaŔAť5עüd…Ň˙}˛_«É˙dĆ7°ň­á'c˙Ľů; ŰóĂćif Ü‡Č®š?«Ń'ű3_‚ČűÔUól”W)”ń…1­ůŤ>ŮźÍřjÄć?ĚĹÍóP^«ćŹćą.údăëiţ Ü“7 ĺSJ˙3~"őŃöZ?Cˇ¬˙%ČßiXó7"íĎ5éß…ţßĺ(˙2H+P@¤űQË!µkô©ü+ß PÖź¸f5ĘĘňŻ‚tšFźěŻf|âf ¤u(źŞPÚ_ i‹FźěŻcü4D>~­‡´ĺ3ĘřopŃ'ű5ůóńe +ßL…ŇţIšř°ýeÁ5‡P>Kˇ©őŘdülDv˙ÓĽR›†'űmLżAÇ4íóíŘţîF^ oaHŰQ^«Đô_ÄćtHçiôÉţvĆyűč„AůT…˛}tA:[ŁOö#Śź†ČŰGŇ”ĎP(ÇŹn}˛żńł©~ÄłĄ^ĆĎShň°oŢÉřůtľf8p» íÖđ”˙n¦żXˇl{4ńaçß'ăߢĐÔ‡y¤ůMý±ó‚3ŰÇ=†5~!Ňţfó'żÓÁ“ţ8ţÝcŐ'ˇô˙BÇřěÔ˙”cţ }â/qĚ_Nţł8?ŢkXĎ7Ą˙W Oω'}±żv ĘÇ+”ţ_mŘź:őŻ1ěżNúÄgţľú}Č#Jű_@ţDř{8ăI¸fqţl“Ą“ŔßbýsXľÉ3F´…ˇ[°´6„¦Á‰/;.ŃÝŠÄá_ăLÖ’.\ą|ůâë˛˙çakO\ľ`ĺ˛S[ÖŻX¸néʧ.śżlą[^QŽ˙ÚÝĂŹZ»nÍ© W®X»N^WŁ».ÓŁQeíúŹĹ«Ů_©f=Řě8‚ž¶Y‡~AyĄ.ţoćH…Hj~ŕZQx?²‰ŤY¶¸eÝ©ó×®]şd…ćâ‘T¨ÄňHĹ^ąfůüekČ .vß\‚âĽ(i‰S¬Çľü™VPű±Á¤Ů×öá(ĺĎÁ2ödäü.KÎě śB?$Ĺäî 6;}W6WRý0—d°ú¨R8j0é’Ş üLúgţҖĨ”őaőĺŇ\ÄŮË ăŐiVi-Ú9mŻĎ¤ç ‘+DÎąśsÜą ňó—Pµbýr[ŹwY+í÷Ňšrą$ńę}ďD —¤Ő9űač,jIň‹týŘg˙j˛śěěMş]˛xŮÚĹ™űšę(0čĂŤY,×Q˛ä_eÖöísµź&sĂd®Łä:J®Łä:Ęč(ąőÄ`©ý>f–«ł\ŹÍŐ~®ösµźŻ¶ÎěÔ–nźÜu*T§˝úĺv·\¸vŐâ…Kçëj¨ÎM Ě.wž é·G¶)ŢČd놣Ł4ĐĄIĺßY<'›rňţ2ňrŔN§ćxL¦=_8J“Ý!|€źľ ¦5Xćál ;;ɗΔĺqÔOţ-áđÍ@Lý~¨.Ô\PsAÍ5Ô\PsA˙LçLüu6¤e~Ëš«Ů\ÍöCÍŽu»$ÉÝ–®!ěëŰëýíĽv?ěJĄ7‘Ř.ć‘h۱ń»tEć®eˇöći ±vŮĘ$mŘĄÇeöRžĽ¤°=kŤFÚ;J {čý÷Ľ©żÂg4PőçÖvźö2Ö†L bC0kof±K˛żáęUP»˛Đ©NŽý´ë7P]zźöF—Qš— µ“‡¬ÖŃřţlią˝‰ĚíŇ˝‰\PsAAÍíµ|¸öZr5;ôk6 `¨NűńľÍőTFJď’ä.Ę]4Hn§űÇóś·)_4zĹúeËŇ€ďĘx0ĂK¶)=_ě÷crn˙öÚ´Č­(ł_9Şe®fs5›«ŮˇUłűi悺ß57íŻcP®fs5›«Ů\ÍćjvđÖlâéÚÄͬä4Ůn CŞń ą–°źöć\P÷» ćfŁ×l´ż×l¶Nšf^Á^qČÚä(w]îşş.i_Čâ×YĎď|öĂ‹]CőGĎrv˛ngćôkőt_ČĘËU9#űę­µAątÎýÜßŔż{Ý_§•˛ţ˝Đě¬LŐ{éýł!Óôúţ­˝¬~âvŮ‚š‹4mčd}Ku÷óřł 1X>÷7ČÚQîCŮąÚĎŐľ·Sý÷ Ň\+DţĺĆ\í±ÚwćZĄŹ|…ŰUŰŻED·đą/ťeP—ýí\îKgiÖ^îKg))÷Ą3׾ťűŇŮĽäřaýŇ™ÇďT ‘ľO;ç ůđY¶˘;ô+d0žző‡ë˘ýřCůoîC ™ůśűP‡íčkîPs®fs5›«Ů\ÍćjvĐ.ç†B¦ÔÜ{"űäştß7čď;ćÁvś|`ŢLş'ÔÓ™•ú»í Ě\Q˘/NšCŐ>»Ď_A-2Ů–N« ˝Wľ˙¶|űFMn×1·ëňEŮ?T2¨Š7Řűę ßTýşüOáŕ@ݤ×ô÷óó8űnß`°Ď7ýz<@ďKĺn ŕÖ0÷2őľ¸UI|PźVÍ˝šĄŠëc2Î7÷*Ăŕx•!ŐםöᎡŃŢŇëgú2쀴ć´$ÚÝÓ´ŕ>ľ÷ 7<†'—ĺÁň€|ÎĄ_ ›Ë4—i?Ś2†Á'7˘ç‚Ú× öß®đ~YY°‰;¤; …:ĚŤbą Ž¤Cń­“Üa‘ŃEC÷đFöϦ¸fCíÝ©Ü 4€ëčý2ÔáÉ@®» ĺî’ jn ĘŤAąî’ j.¨ą ć‚š ęľ ę‡üŐÖÜ9â¬?¨ÝÎçÎ#çÎ#'q˙;w9K—ĹóČą:ÉŐI®NruŇ—:Ů7•łąüĹ«łçRöo®ďóÍ×ÜA*ďđçR厧ôŹĎąă)C÷"—w¤Ľ_X;ą<ńźŮu†îi̇¡v¸ĺĂ9‰Ćg ą­eď˛9¶–÷ż?Óšşűpď|híyď{Ěýţ=˘ţ¸ĺصć Ř{)C#Jj§&ĄĺC.Bą Şĺ/Y¬ą&“¸ö×Úv¨Őa_c7¤î\†Ŕ^Ä ÚHüĐ®xúóqZÎą}ĽPKktá:[ŕ‡´ ýµ(Đ^’›ď†Č,•Űí{ćŢ0ĘŐl®fs5Ű×Ăá|Á9T0(O¤µ¬Oí^dPý.AnäŮ?Gž!_‡ą‰:×]úb˙{<Ş˙˙éý{4ÄÉ!qŚŁĎm8ëlŕ3ä^9’ÇA˛ôŇbî9ä@ě‚äÜ+׫Ę/Ře’…GvËtf˛P ­Ý{P–Úë@űÚäĐ:>îsűUC}ż*·©•[‹ô×4»ź‰‰s›|µ–Ű|Z¦§9;éôÝÝfŘ>zy*Ł‘ZŠsoWet‰ÚYĘmĺĄpʱŢťÉţžŮ‡ůĹ™}P+r/? ů:ÔžU4ť0Ů soźĹČuŚě<)Ę´ĐűúÁ̇Öä Úţl/vÚnîXîŘ h·ąçmÎĘÉ=oË=oŰź·é›őhP·KR­®ý˝Z|XÉ4Đ\@sÍ4Đ č ]î¸I.*}ŚJîNîĎüDpîřŽ[·lîĺěě÷v2ü÷·á"›§Ů˛đ˝ú\şĘĆ6čg…ţ®ËľK¤ô]ÓŕY?:Ú/J—ĄÄn§ĆusnAyŃéJý”ěĽŘ7¨Âä#ą!đ@9ó1ĄN_ĘôëŘĺĚRŐmŇ׸2:Ćçr\*űémpcX>ü;Źd=ˇÝ=€ă câË(+-..ö-ě Ćăľ¶P{8î G#q_{4ćëŮňu[·;BxqSqq9^ěďěZŽ÷4ű}Ńv_ygWąoĺÖÓC­=q_4â[íęXm u˘ŞO¨újkçřş®`¤ők[…ąŔš6Űuâżsô˙áu‡‹ëćmíŮŤµĹ}¦•PśzˇIB˘±ęíńPŹé9ţťW˙0¨IČŃ5Ž+Ś…şcˇx(ŇAr34¬5ŘIĄÎ›MÍĎ/¤®¦‡uGŁ :ŕQ´# z®j#:bŃŢîx˘"Ä$ µą*–ű ‚ýíÁÖžhĚ?×ç‹tv…|mŃPÜ×ůP˝˘’ Fc᎕BU8ŇęĹ(«Š}A_w(ÖŐkŹRĄĂĂéÚČÖ(6I(Í'T‹?™ˇqЎ׭\´rî _z0U|<€Đă5W ýÁX,¸'©ŹŁ [µ†F»÷  V­3ŹöŢH«®yĺívZXČZšłX#ŰBˇîV•UBi :ÝMp_Ś-K7-§' «… ľ-ÚŰŮ)ďńí ů¶w†|ţ®Pl•h~>ß®pĎ6_Ď®¨Ż*Ţ»µŠş©Ľb‘ߌ´É?×RË„aÚBh“âşxw0˙Üäk +s)ŠĹĹřŻő ¶|ů ß©+c§:}1]Ůäă•醸ĺÁžXx·ß7c¶%[ČűÎě2Ĺ5>‹>›"JN»VŢhkkBížÍm´*»[ÍL-ö‰ ¢s˘Ż"]áݡ¶ÚP{»9Ěv‰Á5n•ĘŠĐ&ę0íáPg[B#&ş‘›W…Ë‚][Ű‚=NĄ1ţ¶Ž…%7wŹ*şC‘¶ř Q_=Ał®–…#4¦/„Z™íë©°ň¨śéłţ!˘ŢÝ‚ZŽ…‘ŽŢÎ`Ě u¸·3(„­!ź5HQŮ@µg}źÝÄŇšŽJkĂËî\‚ÝCÝH´g[8ŇĚ,(7jűv†ĚÚ„Ć'št<Ămg(Ň•ŚűĘw—űâťŃ¸š\  ŤZ°±Ş;Ôę‚™'ŽÝÍ·5$.nV*ĚŔSG.XŐ“0RŹőĂäŠE‚ťÝ=î…­ C¶ÖlŢä´5ŇßĺëXL \Ôóű^s›­JŰ wl“v Ö'–w”?Ň =-Üš®“yŇ.®&jzŇ7J#/ýę©+¶†źuťiŰm# ¶ĐLˇÍPd†mÚŐŁYl$s0sFµ>Í46Ăx±ţ…cżÖď4‰h—§éq+ôúôÝlÍL­7}µáfÇM_ŻˇŘ‡—°ˇEŽ™­Ń®îhĆ‹ÄJĚďM!&IWk…`s[4ÍIf´y{ě źręą/{69łfÍIză˝HnŃk´'i^Ä)ń‹öuw'Ś×ŕr ,Ť{aÁµÄ‘XtWĹ&9ÜgäňÎ$wĂí e*"W"ÁX‡ëJ!ˇ#bˇžŢëťk5ćËecâĆłu%u[-Ęš+•I~Đ˝Ô .W´Îa-™ŞĄ¤ç‚¦…ÉžfŕJ憣u¦ç‹[Óî‹CĽ[hĽŚpŮâć•­c%ËÎÖá\ňĂČ-?{źMÚňhëMÓşEĎMŢô’ćĐí‘CkÔő¦,ŤvdVÖv“e1*Ţí·ĂšŐÍŘkqŮ·ZÉ›C®Ő/sR ަÔěŇÉŻŔăzX\m"$F¦7ŢŃꛣN"¶ś‘㡧;ŁňV"ÓاL°eľn€ňÄ Ă˘űşÇQM6y%>é 7÷Z˛”›śţ]‡ŮŢÝn.şú> nŮC)•#Ż~»ęDvŹ5€ DešzIa>éc–Ľ “dĄ*%Őm6y:pq–Y@7LĚ+…–ť°:Ľť0›®&tBµ­0€ťPe:Ł´&·˘ŢíĽvđ6lşŞi ű`”Ţ0đŁt Y¦5J' ˝mŰKk[¶©G;]‹ý;ľĹ6pˇăąT;M)Ďţ6mLl°{“Ľ‚ť4Ďţ]»©ÝŐ µĘ3+ăA˘ą~ŮzŻť1MČhĄn—eć+’eζGŞťĘ^ĹNÔ/(­*uXĎ(¬Ý8×…éňô€¸Ůď ąoă&-•Zuśî4žÂf^~‡ű~•űb¶ÁŐ‡äî&4O©»;!8±P·(€«‡ŮôĂ ĹěuâůX´ł3ş+éđ…ăľ o{go[GČ×őEw†b­Ń®Ż;ÝÚęŠűvm EÄĂJ¸0ľŁ7ن4 LmÝăë nf¬§ŮľX¨µ€SŰ[¦žr'î:w”›˘ęTneň‰‡Óíľ óQ†Č­Ň7{¶Ol^ZQlŽëÄBč›UëkÝŽ´5š×P¤ëńÇĽ7T„gc+¬¨ŻL˘gűďô ővĎĆŠéMOAŻ-ÜźÝʢRÓP)ca?} ®xµ% =›vąV¨×¤Ćş’ě`(xLS*K4pĄÔFŐ¤óŹô>ywęĎ>ËĺTV ÉÝvâXő”’ŁHţpîl·BÉ^»°u…đÖ9Äą?űLx¸ Üzâ7{›e˛c%ŃX϶hG4Î÷ěńµF#0,u„̱pÄ))w8ĺ}ě :«äp=a˝;ťHĄşĽe}Út[ĐZ{c1ń`|g°ł7$ĎăX‡ n‹v†âŰ÷ŕ™Łôb5ŠbµlźEiU˘4×%v‚“ÎĐa‹lÄęŠŐ*0ľŻÂ•ż&ńäLęńZa‹—uŻ-ş+Ór¨Íť¤'lŇ ßh ź*Á@Ż`ͦ„…lŃ;Ů˝°¨â˛7l0Ǩ`†÷U4G¬ŮÔvô! łíÍډi Ŧ°UŔ¸Ó>Ú%Ňr WÓ5rSĘíÇÇÄ âĽ{XÄ/Ţě ™ .Ţę– 0Řšáܰ5;Ń"íV@ş˛'ż!Kýa[5ÇÖ2«€úr{GnŤÂżÂ­aó¸kźC/§š­šS_C6úü`ŇčĆ·ĹŤ«SaxËüek»y#ë§ -D· ‰w.bxŕ}‘ĽĘYŔÂx¨ł}qd§«‘!ˇČÎp,‡śÝ‚9< % §ŚŃNŻ, #ˇ]"O·ĽFŔtÂ\‘1uu÷ěńĐK>˛©¦MhsĂÍŁűät8˘ŘÓnO¸i“‰ŔĚçz„ŚŐ_޵ă„÷Ç’F˛?[fÂ4•”(l‹Z˝ŢYsĽa•řŘFm·’¸?q/„éĹëTsjĄM<).Łĺu Ófß‚É]d‡ŰCý.lL8ďrŻ ĆćĚŞbjyo·čçľŢzó5GóhŽxŔ(*ĆܱÎÂńˇT÷‡z•čŢd0Ľ°Wh5ĐRÜ [ AeşůÚż/A%}9N®HíŻT'ŚÓşwčd-˛—Šçn“żŻ›°­·ÁU‹˝S«á\-Ú^[MđŇý]/ű ¤ Vůk˘:˛×Ő®öDéz?3Ů˝„w+G­0ęYç•#[ÜŰW7‡Ľ9DN™ćŘćU^®ŘŞ13Oł{˛($Ţ“ÍČńK"I{`ň‡(Ý}Łě6éő~_wT™ŐřbˇŽPDąäćrÓ‚|đΞĐA¬[cři±č1o[ÄŇ(ÓđsWü1Ľ™űú>Djn*‘˛ŤtîńUN5w'*3|ow{Ŕw# Ë,Ň|üÄýş©kKĘÁ\’Ře¸ýŕđsŕîu5ĺÍB·Ć¸§q ˘ŹqOłO;⾎>ôO܇ĹwÄR?ŹčąßS\noŁŹÁЎ·ŢW-6u|U´uą=É}ę›:yi -^Ń®+WdߌĘâź}0ľôOŘĐÝ%'­‘›V… ľ= ÇSř=łű bí€.«ń­ŮĽÉ\N¬ŮäkŹA]­ď©ńm°ľ˙¶ˇgłzF…#;ĂńđÖNׯrdss ŁşLM6gËíÔ¦ÄŘ.co˝–b~Ć1Ă1ßáÍ@ŻI°íęż9°!q´+ďÝÖţŽË(ˉ5ˇÔX ßŐ %lĽÉͤmč‰á÷4cľŢ¸Řr2ZČŹÓYźl„©¬…Űzťi>y;ŘGV„»/Ö†" ťwtâÖhň©Nłʦ:¬lł¬żžą +h}G3˝šHgC7ŁŞĐ-!Ę AMą>“7ÖmÝî´&7'üř`Ĺý{Ń~«ł»żŰ/®¸Ň3 ű'ý–‡éţ•×˙M[=Y/»îîŽđ‹vâQšÍîĄ)ô›¶Ĺ݉7ÝëaÝÜîňp­WeíÖ–Ž-.öńŹŰĂđÔíü¶ý±Öű‡žßµa©â_‰GÖŠŠ}[ńű,4ŚHÝŃőiÔŢNő üľE=Ňoĺćą >%ťůLJó»2ř€ęh{{<”0Ç'W,„[¤h“jĆ2Ň´·8ťďÄÚ¦ž4ľś°¨Ż˝ ˛4Ňu*Ąµďh=ŕň‰ý]ëE!hń]ÖkiÁťÁpg–űâ… óíGó(śSŮhˇvqÚÇÍÓÄ)IŠÍÍ!NµŢťňz% żš6él« Ű.Mł˛7¶„l4ťĆŮ™2&šÉG‚sŕŐf’Á[ŢźmK8íťaâânYîßăëęŤ÷/ŘÇ»C­abÚ’E ^döŮ>•Oň$ .$yj®†•¤u×ŐďźěÉ߲ĹŮňü]j•t˛Ó÷AŇŢ‘V…dÝť´ľZ“ôwjśhđîc?ö|ű©.2͵Cî,.掌*č©fk‹zćźŢHż>ěsţÖ‡=㫏łĺő!žąŻ«ż´ŰWŹí›Ŕ§mż޶.քݹخrz,+C.jN-ďSőJZĎ˝6¬­íÜkĂnÉ˝6ś{mxP”ŘcŢúpľ6|X±řI±Pw­0ĺŰlÝî«®wq<÷J±Çł*öĆpâŢč˝1< ŻîŠ7 Fuvťęýň“űk˛=Ń$[­űŁÎMĘdűúŢ{đÉƲ$_ť‚YŹO—»ďçzĽňÂ:q~˙$ůNZîÝ“dµ? zŃJíÓ ×6u?‰ß\Ţş-é°^"¶ú¨8/ţ˛~´±˘7j˘îX´=Ü Ť"ÍóÎ@źIđyŔhĘž…áşĐ|L+ř¦P±„ćĆ>ÇŞ@>ć• ~Ä0Ř}Ô4W>±ĘHó„V]p×®&C…š Ĺ٨Lç^»î tÖO“o:mđř`kt+´Aü†_ÜĎŐµůŇţę((›Ż>~6–Ó ą¬46ÖŚ˝ÓŃ_-ő¤Ő‚Ă´°|Go(¶GýO·YsÝäů+#ýŢńł}¤s.?Ň)ÄjW5°¸l dëpgjóŘ;݉ÜĆçÄŠOgĚ­ťÖWé|ł¬|uLµú´oĆŞŞŘ­Ď4gç®_+rŮ6"Ó™ě9Ý踌Ú%†ć´Ţ_H6‹h>Jł˝ŃÉ,’ŕčŔ‡Ęą)›A¨*ÝBĄ"”ÉJŃŠÓżßfsŮzÎn|2iAcT|¬ý¤ýŘĚq%˝óçIŹjř#ĺźĎLçM¤3ž…#4he°ˇéHÜAOáűŽ‘Î®hÂS‰Q~ńĽ®·Óý㤠Ç>+Azć›ďô] ÷ŇuŰ>AĘcü­Ű‚±`kĎĐ;Ćţˇ=…ck>ɇĎC8GůMc}8có&˝#8Ú‚ô[ĚT×ÉBĚŔXßb¦ĽI;f‰éźŮ‡Ś>íhże­/§˝lţ¤yÚK[–ţ‰›ú´ń~0Ő‡ŤĆĂ푨ë(–äÁBK™?{vjů¤¸ßëJ0gŇkšR¤±ÝgĎŠűů´ůXeíŻsOů†äS>Ń"÷÷÷ČÂĚî.<ď! ć5:';˙‘ĐCě·In úřđPTgź˛Đ¤>ôËSÁ¬oç˛ýÝ ¶‰ęĂýďŽđÎPD»Žg1ŇÜcL©Jý>xú[)ö}‰ô¶R ­Ű'Ź×čÍ>ĺń¶żŐ«’®čć‹ •%ÖĚ"¶ąĚă»ň—GOjŤ¶…Îú$TO(‘ʶăQXµ¶›{CQąi—ĘVŕżĚtü¤MŞoĆőĎţZzďG$¬•Ô± ’h–=ů‰+™‚¶PÂÇĺL¶ĘľEo>”Ď Á_čl][C1ąYă۵- ăŚÁÖëŰUütLÂ:Ň÷źgHÔLĺőšľżńŇç{sŹź¦HĄIŹąo™Ę»z˙„Îęld•"•/#H1dÇȬ)üNVŠQŕ±de3Ű™{}Şî¤úÖ72 ™nÜÉ$fÉżř’Úňy¬śŤ˛÷™›ÝŹ®şÖ¸ÇM«fO+ŞýńâMB ˝gź„™¦®<ŘÝÝĹiľ0ó—‹Xçí©Eťőm¸„ßú¸‘b f¸¬Md)D/ĺŤäTFŇ„uŰŔą—Âş!ˇKö˙í$’ü"¬é˛ű[ňá.µA-ó+˝—‡4 ôćăQÜPď ĆÚ*ÍlŁRWozŰ4Şčgď­˘46j2YqĄđ$E”eiâŮ÷“^Ç«lÁGv†bńPbčÓ>źx°=öKÝ7Kű-üşrg!ţiľ$ćýb[ôMĂ} űA*ěY|?lß˝ŹO˘Ň€äŘ HZ”Ađđ¨/ĎŚĆ©v“ÖűaÉ< 7U™|ál?x[†-öżwf†Ţ‹ lܷݤ}~Ţk!Uj›MČtź–P¬Ýf÷Lý€/ŁŇŢřX*öîÍmu|Ŕ6ŃĎöŐÂčáx¦c6UöĚŕĚvű“öTfĄő8)ŚĎ ĚM\ß®T_(–Ä>ľă§=âěµß%¬čÔ3𩸑·/é„ő >ĚÇLŰčÁ¨ůí}îew"pöŮ•źů(ĚY|:M,e9{¶G^®0[]MĎ»bˇîX(ŠÇ@Ě·cĚ'd>_ 8Ůíꢂ„ń{ő¶˘ÄąłB[ôs„¬o»ş;Câá”őtŚw›‡D}qóůÖ_+řż•šů,a6Ř*¦Ŕuć†|®Š9t…[VLˇZ@¸5Ť÷x?™;ĘzĆ&ľš V-üxyA[´uÝžîíÁäńęńÜJl ř¨RbµÄ¬ăým˘¨ő@é˘xťPÜńť±ČÎčv(~ IT›e¶7NŐ•P×ň‡ö–SťXmćţł}ćc&Čdă¶PÄîVâö zŁTřăLWŁâNETŁhX>qúPť+’Fvm3çQڏŮ_Űz#mÁHŹŹ˙ô—iĎr°[8Řł-h>‚ćgUkŇž„›˛÷XOjśĺG{ćŁbôĘą´]Ë#»ßŢĺnvĺ‘©P›|ňď‰BÉ0&0̨z‚í ,,9Cńv>dîh-ĐĂB&m¶čp‚îÁçĽV#C“ĺ*j~ŰRöÓrgűĎ&f¸=X•ăZŤĎ1Фóśu,>g Šţ­y|_!xX1TH»%ěÁ2„:ŹF**+ĺISÍwlgz+čv¶‰ c(´˝hwO¸ †Őýiâ x  îy˘ŔĚ…Ž)U 8­ÁNů=.łÇ©Ü­!É|úŤiW†hÚfサŽĺJĄW´XČÜ@هZ=®««7n5?®Ł+Ń ě¤ÁImQ±ľnk3U;kĚ Ěoˇ¨ă>ߊh$dŽ2ćănčv8ő–tŽ!Ä“ťC8U5ŮÎč®ôDŃĆ-AŻyĎ6}Ć·Fa P5a…XĹq¦5QP~ć#ůPŔÖPťÇ<ĐôÁyňaľ<Ľŕ<ú`::Űü˙źéäló˙]NAÔłSžíÇjkí!Ф‡ ĐJ*=Ssb„ĄO«»Ś^né·Ś¸0Zě[c5b{ËUKëOčBK¬®»Öěşä〞†(4+x«ć5§dŻGš­!ÍÁó¦Ňpł´Î쇛%qJ˝ßjęëÓ›'=ú±—%»WÓ|öb `f…±UA˙Ƹ9ÎËÉű‚ĄçĎ`»>°·»?ËŮ;S°dwĘi!µđ¸ôiÝŽĎ-AÝޱuęÜŹ}¶´÷ÇZCk’Ť@}/Î,Vp˙×9$ďďŔ©Uş3*ɦŁŮëű䳏ąÁčÚRú>§pű™ ĂZł3 gv`g 6čěl˙ĄXÖä[Đ6;©ŹÉľ%b•Űf<Ë{Ä %ŮÚ)÷˛^›ń~.É0XôgđQŹÔš"·ťĺr¤ÝăŽJÜ)¶nN4;żćnÓ|íÖqቈwťüÖÜúVż7?$áŢÜ{×ń¶ëhć–â–c?l!UáÍję»H}Úoîm‹î2­VPU&^©ŰýY\\ěľůłîC±Úĺˇ`›sëÇçó[¬ éf,ż¸™uk ÜjÜĽmÝͬC‰îíakt7›ĆZŁ‘xO,;%¸g+·-¬Ýs[+Ň7ťŃĘe׉,•»ô4eOč­KRżS÷ŚšŰ˙îÜgxO¨;}˝a»{˘ Ë~łQ°;žpR7w}˘(ń­Śľm1¨ ,ă÷+öů6„;A7承Ő9„·'ÜO‚ËÁc’ÍM‚”ßP­;ł7XďŘgă…?#+sŻOŐťTc¦zf§ÇŐŕ±Ď"ĆŠpf9µ.ź´ł›•]fíÚ+»QáxŔzt’Í:H˝yôíĺ‚ÝűľC16PSďNNbßn\Ú7e68UůúF÷e›ÝnŠ}Ů7;X­płĽwć˝ěK8Óź¸ÖŃ®űr[±şű”Aµ»ż5)Źî–ŰäM±=ąO!YŰä=5»Á»Ń{@<ÔÓŤµ†Ö˛oÁ% #Ţ“pń°ukÖ/vóß;TG˛P‘?§ňŹÓe'fÜë”ß-‚Ţ9kę{Żí‰ç½#p„#á©Á­YÚ‘­ńp+ĺňŻ‘ÇXS*ÂĐž~ůc*Ǭ•?ůŚŁ+˙ň`z†uíN|—Ů;‡ŰŕČ1;ĺ׺•Z‘vp)Ť„ĺé€ĚZ€ČńÔ.•e¶" ń+iF?K»cě“`DŘv}j!8Ě{–Ů €‹_ICĐ?ĎDZýg‚Ľ4Cţą _˝ ¦gőęŮ „ËŁm~ń$Ł%Ü#Žp/ďµŐ.noO“–‹W/4®ÖXŹ »ĚkCćµqë= źyÜÍŠ#ŻâLąćŔ&dĽ*j[$~˘ĺŮćË âIťüa¸·3d-¶žFYâ­çxř˘2¸B«µej}Bţěł>áĽé®8~¬÷°\´.çVĄSŰ‚ô¦ žßµByöL˝µĘ[ZŕVťĆ:53‹řá;fQA«GË—'čT2YÔ<‹e`­‹l`—™l°3ĎQůľNŰ_ö?#ö?­?xŽâÁg ^c=żA¶ĆjŃťÁ€EűZَvú7}M*`łh~T®ÝlÂt!~ŹźţěŚv, o·kMZfC°~Üš®µDÖwIfŽúvő‰T ş&ŢŰŐŚíŃ\ŐŠuĹé2ë;Ťö«¦‰«v¶FwÚół[´2Óćb€‡–iV«ĺţt}‘íéşăťž5~ĚrqJ˝ŐÜhómď+uvŠcńhkˇŁ?šťEó~…ú/™E,15Űă]ßÚđ°YŁłHĂđ|—ÁBŤP5ŢĂšăbHv}­ŮŤŃJVŕđN3Á1fs·•V–g;/ŃŽď:'9ůŽFÜf¸ĺŚÔͧraIÂń(żx+¤#äţ¸{X+›‚ĺw\üBęţ¸ÚöKö¤t€_ýĘ˝«Şż&M5`řĹ|‰öřÖ6ךď,î‘"ŢÎ>+τԣ4‘®„…Hűc—4Úkß‘NáˇýÖŚÔňľ°›Â‰ěĹ[ŤiF$ż;Ac´źúł{fâÜF¤=š$ł”×[™tĄQţÎěôĄa1ÍĎ3ŤöÓ¨•úŃ Ź_äqxęf*“8Śöwôg Fů;?'4hăéß88iâ°Đó­ĹXhU4î«Áş7Ú%ď-ŕöÉúÄlĄŰç[2ů˛™™|wQĽňÇ­őDa±)náőžôÂ\•Ăü,°Ám‰ĺ¬Źś[ŃÖ°X ˇµ)šy§ŃŚő„[{Ĺ!JG Í"˝nÍ0¨]•đ#˝yč“ú`re˙Ľ¤¸H­kÄ©†˝ eç7~çJÜpřACľ1\AŻ_‹d@]ďč Ă\ṯ̌Ěűđć˘záĐůć"84»ËőEĹş$/*R[ńzO±<Ů{ŠhÄVşÔ_SnŞÓ$—ŃůÇBżi#«ß\ÎdŃ2˝Řü\A4"š±őÓBR`ÝOX=‚Ţö­YlJäŢK&Ë«™ĹV—vŰ‹öv›ŻĐĹG÷ăęűÖbŇôMĘ7ŇíL(mňujy±V;âsɢӨ’ŠŃ)lÝFĺSŮôDŠ—R6 ěÔg&ľĺa•WfÓÚ™Ai*yiŔD¨“•¤7Ţ!>Í3*´~¤#¬`Ĺm~xŔÁv™źN0sÁňĹ{`@•UĂëÉĄIĚÇ`ŽĆâ]ďu —…†«H›yâZ‡úT…ůmUAčPjAWšo©šß”Ć;"TRč}XiëďĚQ6Ó¦qux¤GŐHÚ‡P‡-Śx(óRĎó‘2ß(Mç¨iŞ'G†·° ¦W(Ű—~©˛xpvh;®eG °S»čqßó¶…(ńűT~Ý‘ôďÇR8ą`kŻIO‘đV¦9RĂ›ŻSŐV—şă8-šş–$ź‚4Ę#z#¶ż‘xxɬ\×%‚m:O»ÓŘ&®ôťŤÇú1`·+FôOŠíqm=¶ů9aÜÄ1ńŢäŁ{Ę­Ę6µ¦;˝‹ŮîŮI\żŐ¦ßÉľ:iÍîn´Ć`ň%ě×$ŽH)‡yJ±ůM%±7Ââ'ď¬ďŁŃł¦yłET™Ő±EÔ˙Éľąs©/Ř—%šjĘs?oë>ŽŽhííbŤ)!¦qĎşí85ŘŤt¸vQŢŚ“߲»>Č ;mŘ{OÂĎ’ÉëOvËłJ×ú ŮüĎ '‘ü ięÝ–/"uݶłŹugďąY­<ó+c©´5ă%=íP&\pb.íIäČ„×W­»VÍŰ««Üß^ĄÍú*šÚľŃßćŮ杬ťŠ`ŹăkuéěŕĐ#ČDŻWŹ\Í’}h^y•O~ń •UŻš7^m{éý¬ŰżXÁ¸ďóűŰ=7 ýć čÉĂÇ‹cźo¶”¤ Řá;[×ČŁĐ™îö6˛şŰ“écŁLS. vmm &ě…Śń·u,\n>˘wTµ npłL¶ĺŃČ{Ţ—áT¦[J™îeľĺ“ĘFŽfőîHĚ*Yë*ĐÄŚżu[0líńr±5ş3Đš“Ő\o<´6ágŢFů;ŁáÖ`gň[ÚÁżµ”ŰŇÔ{nsH5ÂËćmşÓíđt„z–/v+¦®ß©IÝ4ť´ŚÚ ;Ëž¦SöÄ1•gŐ—Q~4ž˛7|qUWFř…ĺ”ýP«Ť¬z1Ěż$ůc}ÝŰĘTÎĺ¶2-Gr[™.!ËćVfn3Ňn#·Ů˙›‘-űůf$»+ÔÍMŔvÝśäłkŇ|<çĎáć —>V5M[{uk•Ň6żOŐx6Şkű†`la4ć:IńűjĎí ď} ďÓÇ^·ĺI×·ü®ZSDqËwŘ®5Їe'QN~ËA{ĂÚ‰÷źTą…ĺfihÔ}ÔqÍ&éűę…ÁřBÝćE_Ě(FĽnÜ˝§{ŰÎIĘÓ}ŢnWo“%'Rî‚©ŻĐú܇FY}hí˘AÔ…úÔAŇ˙iĚďßĆěó·qědôqSž–SţŤńż›™°`ňxÝQüľ~·ĎyA˛ýE{öÂj ߊ‡>“ř`Čý©LD]śAo±?†Js{źĺťŮw?5ľgĐ‹ŇřĆ”÷- ó'×45Ö¬cÖ*/ĺ:,®–;¶Fž°#ßst™Ľ]iłL^×~»gÍâônňnpížš/ŠŻŽZßp+śĆ`B×(+K­Ű×YíiŞŇßÄ1Âsĺ™BAUńÚSI%bҵ$Ű3)̵GÉqĚÄĂg¸Ć%É>l’eť/Ru1ů Q-˛ŹŐ¤Ž x}¸şĎuČžÎö˝űV$ČJ“0Ɔăk÷tu…zŘř–ţ#ţń-Ą–ĹV·¶VžţbR3<ćĄPŔ¬< Ě^1†‡b1÷ç~ÓýjRńµöÂ}q¤G˝·~/¦–„—łöĚ?óöŕń3đ OŐ|ĐNµš8îĺyĽWş-ęZášě’w•:ŠZ—ąEPąśđLh”ů ŰôVWçÚ]żU:¬-L8§ćůáO)HxĐ”öN_źŽfĂňˇě{áăÄŚî`,Z„Öf˙ł’íÂ|äâ±Ööpg¨5ÚMí®E-2?.‰…Ú•íá{­+ĺĂ:Ű–5ţ×!Ţٶf“Ž+ÍeůHóaP ľCe–?Âş¦Q¸u¨h8đż±âZPë\Ą’ř[$ˇ×zÍ{S)š´ş đhÄă­ ‹”ˇŐ0Z ŁźGŁŻa+ĄgŐyµĽjĚ.č°ˇµx)e´ů_ŢéđGX˙61Ď’Ą—ąHě5Ű•ýŞ:ë'ĐăÖQ˙XT4,őµ0ńY©5‹—/óµĆÂ=pă—ebo2Ö÷ü,‚„pśş,hľ[¤Q2?ßgąÔâÄ…{íÝCŞŹőbëc$F^aĹś!«ÎnŠOU›Ő9/˛<T}B1“mp˛† |>—Q·ľą°H„_\3Ú©+Ź˘Ę˘‰Î"^`ŕtŔĂ­ r!Kżî‡ďuéšĂąÖ(¤dćÚ”q'j< qµőoâo‘2´:­NE‹„\Č2´: ­<­cý-Rß:ü˘˝šŢM5l ćeZĂÚŢ=•÷nú,ëĂâwČc!üě‹X,…Ű}‘Pk(Ćö¨;vŻ‘Řyé^Ůd*¨ŹćkšWľŁĘ*R2«lrĆU6pâRëßĹß"őC•Q“3ó2ir¶*sÄy1ý[Ž(¶ź50ącXÔmuăó(3™˛mH=̦č>¸.ă¨n°<#j°ÔO7­~Vjˇ YGÔG®ő )™ą2nňuVĂËÖp(äB–ˇŐ´*° ­6Y‹Ô‰ęÂ0ÔŘ—Q]đޤćuq˙¦š»[ßŐŮE?Ρ†3Ŕ2DâDD?b â¶DqÍd db}ľtyŻÝ§‰n+śUwJż/ň—V2é¦~‹ő–[żuÉ1€~Ŕc±úýŘ%ÇX˛Ěş¤-†ć;7ć-‹¶§ŕp¦^ˇě©c¬”aź:ű”Ŕö©€ő·HZ‹V–ŁŐrëo‘2´z ZŘ‚V[¬żEĘĐęAhő G˛R†VǡUehµĚú[¤ ­ŚV\€VXr!ËĐęˇhő0Ŕůhuľ%˛ ­ŽVĹá"´şČ’ Y†VÇŁŐ#ŁŐĹ–\Č2´JkóŁVQ–ˇU\ź›8­N±ţ©ć+¨ CÍW Tn ?©‘W¤Źcq#a¶QůX«}Ź+ňiJTyçÎŻłž6™ňŐšůMëłxúéŐšË+±„PŻBc“m4‰ßßIĽ—9tŹüäbĽ;Ôn‡ÚÍ,çY8Mó˘’=q݇sĚňz礞Ç6C–z”Ś\ščRëkŘż7éÜÎ߲Ĺî˘-.ů]˝z‡·0['ďMŮBB˝Ú"v’Kt¨ľ4 錾ĎĹţ–TuđšSö¦ćoYý-ËŔß2Ťż*ܱP·x×)1çÍý«A˙ĄP$‹äĎ H~Ż"Y‡<ĂEľ—ôŃ÷’ |/Ńř~Z’ę%GhGďŞÄÂ(˛B'Äa™F­‰Îluw#Â]ćWNo č űg“;ěźMn~ĆÂ傌ëďưośôű˝Ľ™ţ-Űżă,Ks`J Ţ27FKx®ľŠ°ŹÂ(ŹáQˇßBË›4z©‰¸Ďüˇ ü^–ü:N0f~UüźIâ·nG;>‚ĹOóT„Űĺ{QŽűşÂń8\6:Ü#ţę nE„ĘVü0M…™yeeŔg~­ŮRŁé0 ŤFÔ÷lâ˝Ýˇ}ÔĆá ő±źŠhl´ő©ˉžx¨ł˝Ć·µ·G\ńí‰öúZŁ˝ťmľÓEFŃťˇŘ.ńŔú±YĆĘŔčäýő@üw»¦ź­çUA˝‚őQ)Ďs4iiĄÝĄ‡&L×#ÍbšŤ.ˇ˙©®áę©vÍ#Ži¤a´łM7ŰĂŽłĆţr[n[µąťu–>ÂŞ•‹5XPGt{Z·±Ň%Ś@ó,áaΰî®mi!~±H»Łhł5*ÜĄ2ß’dtŻ=$#÷Ú•‰?ĚÉ»dĆ—Đ U]ÓƯaůL8ŤÎ§Ü Š®±Ťă%‡z¨Î|t–ďpŻ ł =łÄ…ĚÄsŰ<Ěy†¨Ç]îĐTîöQÔ źaÄ’tŢ8·ăżwj–َB—NĽY×TEgí í<Žq'›Ăś9ž‰OńŠ ÎW*?/†ß_ÇďźA×ŰÚ˛>x(®h ĹŧŐŃ„Ňě;¤ ÖřęŢ(í:µşŞŤ]•Jě}[´+#„móÎ5Ě˙\ď­ŹyŘkp7`Żďţ µqoăĽfö膹YĄq ´ř`´~~’_]ł~m®Çź5“¶ĎÔL˘@gíu ‡3xc–ÉUA«ą'lĐ+&^üH~{¬v˝A˛N aéVăČsióeßYôŤ;ó{î[÷X•a ÍĎĘăŻXO双ö… ç@=îÍ[ü¸Ż7býV*K­ľ#>‘ç F‚ť{â`ł{[0n6‡p$ŢěěÄ…Ôh<€`Nq vIh$˘O’‹»ÂťťbŮŽ´vö¶Y9™ť:Ęá`çhëG(L=ČyŹ˝tćwń#Q‘}¤-kóí îńU„ßÎpPüPőT:ł«úó7şÄ %ZĹéł¶¨ŮÄ#ˇP®×Č_k%e­ç¶c]ťˇ¸ů1vĐGÁb o?• ™Ýe›¬Ęb˝ľpWH.±t­{ř( ¦ŃćŰřÖűÖ…¨'´\ÇĂďf·üVÝ6ÔȞ؞…jÄohsĚvćqD‡y’ĎT´)ä…XŻËw` 5·i ä‘*Y‹öD{öt‹µUÂÇ;ń¶Ă;‹OęĆj6pSę‡J4.Ž6™eÁ­! őy|ňăÖóF;ËÄC݉íÇsFź\ô\ i×VĚjoB3i[’‹µ¤Ń*4Śůüő)Ý%ţXč 5=Ĺ6éÚř3fXĚÁhôŁŽ-?ĺ¶:fcDxŻÇÉ(vĂŁüŕtÖ:—_>˝×Ń0»f5ű÷aş °7Ňç×R_H•A7[ůĆ}Ř2jŕrŠ5Q—uŃŕ[oŇúfݵHčď EhĐŽĹ{ÔϱM‘Ć9ęD=ó¬f7šbą­ XáüĹ{™§yÎŰüĄk8ÄgöZ‰÷‹]żČOh÷©ě‘Ń^ÄŕŞęöÖ~ƆŃkŘŃ0XvővZă}4“›[8 ôDG›Ą€…ÖŠ(ţ^,ęm·Tćć‘Űnš ć(aÄcç»r»â@Ö< Ĺ»ĘÁîşîŇ·1?š» ]N×ÜßfľŮĂؿ#Ü—Hu»ÍšŮL»Ů&§,ń›^Ş .ÁŠ1Ő87çr}Źćút·LĽö8hJ×í“Čë=BÁ7%v1[¶{ćŢčĐŢNÔĆĆNGQ~f…ňĽ?Ggk‚ătiŚĂź±šŔk{࡭ɺźn™ –dA6ę’ j@ÇňëČz*ÇŮł•t©.GsŔcĎÓmKµjk& Ł=‘ ĂlâVÚąMšö^ŚÓî@s8˛3Řnó•›ccą\)Ěđ‰ŻÜ‹G[ĹĎ ŠdhÄńžüĂŃ&twĂĘ˝žÖíÁŽ#×ať]ˇf‡Ć(q?ono§±ĆcJlęw®ŽµŃ_km^Čź÷ÉâTTš{=X;Ş2ĚźťŹ˘¬ÍóçĚb«"Ă埦2†™Ż,ĄUëúLN+ŽšĹ 1ďŹ3‹âty‰a=Ż=Üú·yfq‚%Ë™ĹÂř6˛Ř‹q®ÇÎ/Žp86G!%Ó± ź±šhXg¬V[˙(ţ)C«“ĐŞ@|ăB ř[¤ ­úĐŞŔŮhu¶ő·HZ-B«TzLB.dZ­A+ů™Ŕ+őĂŮ5j°†ˇÎ®eÔ`˝ĽµŃăUşźîë‚P ;kęÂş5`>ďł?3éĆý~űć]¨«»gŹőtĐcŻ&ů3Ŕž¶p{»˘t{P׺-VyP Vń—ß<_šío•Bůşd‘•2l~Ăzi¦ĘBJB.dýĐţ¨˙†zi&íţăl´îş†ÉÎÖÔˇ×ĘžţľŽ5XĎ·äÄďWHIü-R†5"ŢG)Bl±ţmžľ.µR†VËĐŞ8%ľ­.°äB–ˇŐJ´*p%Z]iý-R?´j§b^&íÔmôęë=`Â}÷ŔľÔŤp<{‘NtČ?ÇGRçťÇ]UÂ6Ş=k -4WYü6+ˇ¸l%¨‘°-h•Żü^¦Ë+ŻU§ÄďŁÔu,{qGq­#{ŰpÎ_HIó5ţËŕ]©»=ć˘ĂS|ŻúP]ÄÍ×ď (-ěA ]xSHtQľŃ™‘[UŚé`ż ĺţ„Áv™ľz/<ő#Z¤\ølÜĘBH÷Äöíčtź ôĎĚÝôä]ĺ[‰‡b=>ëiA[hkoG‡ůaó¸;ČŹ·‘xĽQž/·ŁŁń—I»Bâéišá~•žĆŠť‹në¶ßçßڇühËţ(b4Ű_fĚßÄł)ř ĂzŠoÚo«aŕ~70z´ĺ_[›ů“ÁNu’“=J™ 7Ęó=…ŢîîΰunB|«ÄW±uf wÔ•Ł…ÓŃXÜEC¦VŚ‚ä†yJ_φÜq‡Ź)řaŃëŻô%nÁ{¶#Łí[qRĄŰuuĐ3ŮÓKX«¦‡.—îő~¦R¨{¦âÚČŮ3•ÁÓČëX#§ÄÔ¸u˛sC’ę¦E´DK¶‹]_ÇVÎqŘm"Đ=¨c˛´§ł[8‰ďZĎ´KŘŞŽĚň˝ă:GëH¶ĚC÷Äłá˘'„M7EÂâdi¤=šÎs[RÉd*{-2aĂI„g’ažˇ0ďŰ'Y(ät®˘Ţ[ąV)¤dć:"ăű†BĂÚő¸Ěú·@ń·HZ‰VĹǡŐă,ąőĂÝŐ…a¨˝”ŚęBűd¶Ńz‹Ď ŇĐĂń{¸ćs _pg0ÜvlŹ_YW’Kß¶`O0Đ?0dz#^-©@ĎÄ S>ü·xĂĄ ˙-^;™¸×Ń™ b»z¬wYěŰ»»bâ0ř„Ë7‰Ëůű@‰ y|3Ý}ńčÜaĎŕ÷‘âD}Vó~}żu⠀ŀ› ëNĹ ąeľkĚď"<7-„ )™lȸëm4¬ďc śeý[ ř[¤ ­nB«›V7Y)C«'˘UĺhµÜú[¤~&¨¶ C}¸+ŁÚćKzńěh&S˝‚ýL¤dOdW&Üä‘%ÍÂ@˙ÂK‘ćáäŃĚš1#g·–ŕ7]g$ć|µÓKç ’řŔÇýD®6ž1Ąőüiź­JŻ‘K'Şú},ÚzvŰzçÇ>.ă:.[ď×±ëłyÖĂëĚFJ[é.«älď÷×™‘AĽ_¸sŻ&š‡1,l'¤sď—ŇG˘’MÝú/UőŰě-^ľć§Ö8^fˇ Y—ŕĂą6(”3ö+e8 ždXłŕɆőŃŚŁ-r!ËĐę)hUŕl´:Űú[¤ ­žŠVNE«S­żEꇛjŘ0ÔŚťQ ëflĎŻPŤ1?—Ů_ߡZ©qˇŐaO÷…ÄŃ™nšźa^ľĚn“/#D–x?ďë‡9“Ťüó ý6.÷lĹŞľÝ°Żę–¬źĆ‘k@!%3×`Ć}m+ö5k°Ż­±ţ)C«­hUâ_ĺmµdZ ˇUǢŐc­żóBý2.P †2ŞářHg—h4×Pż>žŹ ěÚśSľË7#GÁP°Ňüů]ŹÎ®úqâI:Ą?ČöÝÄ‹8~C|kÜţqş–,ó[vu+Ťî7ď_ęR2}™‘q7šiXűfůnÜL+ehuZ¸ŔPßP›eĄ~čśTC†ˇvă2Ş!ýn\ë¶`¤żya¶TzĐŇm uú*č•RëŰŮĐG+űź?OeMž®[âčôµšűýĐÖ~ ­źęάçIíAÖďć`ż›ďčws,Y6ú],–bż›ýlŽŁßͱR†=d.ö뱇¬·ţ)C«óĐŞ@ü·ŔÔb ĆŠŹ¶¬l·ýÔ…|´0"+5iHt/wáÚ¦ž őŁ$èŹę›¨P»vŻętŹNŁ{Ş2Š}”3Óg*#k›Řp-®yTĺçŢńŢĐM!óÄ…X´ł­Ź 1uI6ÖbtĚř‰$ó»×6á^5›śő®}ę”VŃ3Z÷8ćť'=b“öΡK\~ĺś_5+ţÄŔm~äOĽgĽ~Úůwé,ŞŇű7Ś=˝ćʆą=¶ŐŤ?€]¦ŕPuÁŽ+…Xt—9ř‰ ÇÚ‹i?ŤçěŤÚţíŞ‘P‘ć'TĂ={xSĎ#žóAÎ`«8ĐoXŁú72ŁE’®®lÇ{·¶Ę_wc^¨+v†b˘ňO‰ňaččńP°3äř%mŁŇ”9ŐnĚ».Nś¶ÝZO!d·s?;ŕ:׌¶žż-´>ßâö%ÓLXJx7ʱôŚÎ­3´vv{·ń×ö¦Ű¤ťÔGrăUÚěů@ă!}?\^•/Ňú(_iÍš ™"ř_ű%ÎeŐnç´2J´†”:vB®ŁÄϱĄ?&Ę›l¶îĘ,NďPĽśďÖc/§\Żż€+ąWăÚ°ŢxhUň–nĹ.Q±-ńlk/>¦<ęřűÍä$šźs”ů Č~‹uřşĂĆHgl®¤2ľ‘ĘŠÍľrÎxÍ––si.Ű^HcŮFďŮÓm|k™,‹tyg˛,ró+ĺe1č—AŽ–D×˝©i÷ż×xÝ?ó©š{bp“5¸ožL?|wMλýs7FűáŤŃ+š™1˙(—ĺśŐ)Rť03ďO)ĚĄ<ł}3ŞŮF´áÁHtgpŚiůc:™ń¨Ö·j\K·|ą‘ÍŘ‘­˙šö ›°“=Ôt źd|屯űhźŰo˝ó5-鉹fţ¨ŘľjčëŁâlŽTÉF«>O]ű䀥}ĆĎ׸ß÷ĺ\ľ}ĐôŘYJk‰—ć<ôyŁĚO_Šož‚…ž×Í+st˙™ŮD’[čCń–wŤŚFą úÖéF»]ÖaÁ=Ô‘—ąq.7ÎĺĆ9MżČhK·W ‰Î6şŠß<čí [v^Ă›t37ľĺĆ·Ëřf¨ńŤź I8űaďR|@`1?±L•0D*őŚĆČ´»ćĐ$G¬Ząv馞A>F’—ą!27D~X†Č”–€Ô/2[¦Ů«†ŢčV¸- ĆZ· ňáMş™ßră[n|ÓuŚĚÖoéö«!1Â9“mÄ?`kýtĺ ől®ćFľÜČ—ůÜ:GFŁ_FýkHŤ€¶‘o”ůl:ĐŃŮ5ČÇ=ćhnÔËŤząQOß52ó2č[CfÄłŤvůâ'#ő0—ß“úŕ”ßrăۇa|3űDF[:˝ihŽhcă˝]]ÁŘžŔP8“âp67ÎĺĆąË8g¨qÎ|t+"Ĺ_*kż.á óH`g0'§"Ö ő>{ľćůŻ®ź%ŚŞÎ‹2`3ěŃCb¬—Őíő~ź>ég}‰)ó‘®3éč věł÷Ęh”čá„˙hęöoú wz©˘Ń⣧0˝™eł‡ţÍŐ/?iŇíęîµZŇ _y0^aýŕCŤż4îŻôÍŞő™ź#/÷…ă>óC4ľ]ŰBźu‘o[0î3›¤Ż4î‹F:÷ź•-Ç+LĄźiÄÔ]·fýb_Eąy±Ĺ‚|WP(VŽî{ѱgę˘z“%SYôDü{ŻcÇÂç,ŮFϵz"s®ŠÓ‡ Z˛éCꌙµ~ŢĹ-KW,^4'µˇŰ–ejŐLĂqŇżt—ńH—Ţ@™â(—ű(‡j¸őSۡ Áa‹˙ŰL–Źą»¨Ü]Ô‡ĺ.*•Ý"ěÝΤף†Ä]LÂČVhž_k ‡W˝ľÉ!ÝĚx|ËňA˝A5şĄS¶ÜŘf ěŘÖźŤzĐMÚú=Žľ6{~Ç9WŮC“}ý˘_żT‘ß—ţ‘lčÓd0ľqA®÷}‰”ď ł#6­™ŇÓ†ć˛Éö•ýľc5…ďčˬ zşşűž%Uhz›DÖO- ©jsVˇůýaÍĎ<Řb|P,ě ÄB­ŃHk¸S|‘—¦ul•*Ł»cŃîP¬'l~Ľűż¬rťW ~n™_{)ŠĹŻ˘ 'ÇĆpˇ+~ég<†ŞĚ°†\Îl4‚n5ŁŻ׌d׌Ćk„=że߼v ^{ ^{(ţ}0ţ}râ×ÎgZţ›đş&´}Ú>ń(´=őN4äołÇ@Z€Ü±xýDôi&ęOŔň.dţ˝"äŠKPŻőüčS™G6CŞ€´ŇŃ*ńşj´_© ŇĽNř^îĚa׉Ř ë÷Ú˙€ľŐˇO ŤßęŃ·&ć[ú&ňé"G|¦ąÄg*ĆçSŽřP}Ě@ś‰8 ő¦ă5ł™łY|ćˇ/ó!ýžńĽťT`˝ÎbÔiôĆô8vĹt)$ńFÂHV?>Ň:”6©,ËŃ÷•«° +0żŐ^Bעí5^€tÚZ‡˛#đßä˙ŚßËĚOqÍFĽćCőqÝ›ěßo±‹>µÝ°úÔ0ĂŢždeß‚>_ůµxÝɆŐ'N5Tżz#QOČ‚†ŐÖ…Ť­ĚŢ)h݆‡*´×†ŘîČĆFču Lđaf/„ĺ łrl×\×i¨ńb‘·ë*‚uÔŤ¸ë*jXm$†ţÂŘ—·Đ°·ń^CßĆ{X|LÚi¨>łřʎü`”íŮ”mDw˘­^ĚűLĚűlÄs {_= m}tşPç\ôó<ĽćŁ.¶?†6?×}ś]—É8&–ČŐŽ8_×\„×\€ţÂx0^űiĽö3xÍĹhóËK°~>‹ú—A9ţÎâ)¸Ë‘»¸»’”q#ĆânVg˘]…üŐ†˝} Ľó»ÚPíě:öďkP÷z¦ë¦3}Ź×řB1ľhXýC´ĺÁ?ŃďOB›,™©s3ęľv ¤[!Í1Ô¸@mj6Ö§Đů ęúřęކ×Í1dűČ?ČQ‡·#Ţ1ü:ĆűNŚ7Ä:˙@ĂŢWî1ô}ĺn–ŽS mć>ÄűQç^Ěďß SĺČď›.ů=Čň ü†{?ýđ3Q^`ŘúMţ,fc®ĂFŻ}Éhţ}Ř0çß‚‘†}ţýâ#čëw űĽ+®ý>^ó–ďqĽöčßŕËxíńÚ'ńšˇ˝§ŚÄ±RȨ=>×=Ë|˙cńOŔţG™lśaŤ˙â×ćž3¬ąę'}çśAşEb>üĚĐĎ%?g׼€íŕEĚďažÍ˙Şaő™_ /a=ľô+ŕhŘŰŰ«ŻaÜ^Á|~Ť1ţ 蔳ŕt#µ9ě}Z÷ »ŰĐß˙j\!÷Z:â©ŕDË~^že7ŻŔĘ'oe?ŹîźpÜ)Řl¸ŽWypUĐahÇ+ÓômŘDĂ6źçŤÄĽ -ťĽQŞnňĆŕ5x˙•'ÖŽĐ.óÄkRľ˙~@>÷úľOë;qý†¶źç‘oâßBîßňŕ~¬ŕ&öĘĂű¶Ľ#Ń'‘߉ֵâ~)ÖĂw°vszޱ̶đk‹uť,‹Ő˝öËrAÜ ł·§<źˇmďy“ĐÖă†ý^'I;Ęß ~¦©+ŻůPč­a…ökóJ±M•ˇO%KsÁżY\ř8ĚÚi^űw9ƶó˝aÔFŞ0ź̧}î(G ýaŘ#­ţ`ÚM'ľ0 ۆm!€ő^g$®ůhÝëuŻ=ΰĆŁóš0¶p˙Ćĺ~)o*‹ůdŚy#úc۰ŁýÍpiÓ1>í¬ş1¶xť7Żťĺ­aÄ=É\äć98aމőŔIČŻłdćő Ůő#ńz¸çv±ăúĹűş56o“DZăýwŢR•—iGř-ĆD»ňŕ~â”ď¶ŔfWݡÖp{¸Ő|ë‹¶ËŃĚáĹ$ĂsŚ8Ď­t>o˝:—¨§=¶©µžz¶…ă4˝8lřm6ň|ştÎ<éôĚbĂ»•Ţ“r©áŮÂJĽň÷ęyeޱ{Ű+n§Rá¸zýę¨w·´^łH}awc’(o2ÜgBđą>ÝáčÄ$ůmöÎo’[‡ßbx¶ňr—ÖśVŻâůťä™şŁş­“Ť´ŞóGÉ&úSRtgD0˘yčsŞ]űgĄśfč›ęč`OO,Ľµ·Çy[Ôj~»Ý¦ ˝­vľ9•Y äMnͧŐŰž¶<\ż-Ąr¤WĎnĺŃĺ2Ľ»U»áŢ­ßa¸¦‚ßf¸O‚wÖĽ4ЇÄŢ­|–´+ÜłŤxg´‡oÔÖř Ű{ą–„-¨cˇ˝á,–ňűF=Ű‚=â1”Ë6o—Ýë„Et$IíDłP;şhw{řĺQ[i­­uůî0Ľ{CĚđî qĂ˝7h–I[]ŹáÝęzŤÔ[ÝVŢęlÍ­żZ×NĂ»uí2Ü[—‘dËJčďö°ďÝŚZ‰röî­'›wfgîs†‘x§ut* ~]yÎôÎÇvÄ–ÄÝ^G<¸ÝłěvłöHńlOí[™âúsl×;·Rť~$dřĂ{ô8×Îo÷ňOü7ŽĹX˙f‚^áů¨gxTVA÷ʇVńw)ą™óěfT+čőĂAŽVŕOµóStk´é–3aácv ÎÍ˝)É<ř¸§yÓśü„íz磀Äë?i·—×őâżq¬Ô®[Qş‚\b(‡µőv;xˇá=µ]dçöŻ?eç#É‚ňiĂłŇ&g:h]lx.ęnCő3Fęő Owß.1ĽÇK ďPÖîGšú2;ďÜÚśěř{†›ź—{Ű™âeljÜîöň%¬Z®´óž«–ÖE¶ cs5,–)á[ł_áôŃ6sÜZ?«Ą‹¸z[(îµN{,ÚĺÔt¸w•Ý˝3R çŐv˝”Ďc}ÎCOđ×xW“guëň»ÖŰO׳×%ńózo?ÓmNo”ŢHo8żÁHo8˙‚áŢ}ťĂ‚—ź_4Ľ‡‰íĽód×4·zşÉŁüĺt¶#Wű7{ŰqÖó4ŻxčěÉđ>n1R>*ä(|Ŕ&î^z#ćŘŁĹV”&ś­ĽŐȬ/Ů[ď<—ľŮçׯ^m^ĹcĽ,»ÜĂÖ­¨ľj7÷g|ÍđšĽőw4Bď6O=ďIźŰůşáÝun·óźuňwž]k¦Î3#CPpň^Kď; ď&}—‘z“n^wçęN^ő“Ť\|ÎZµn1YVÄ+g$Nqw™5ď{ězjw¸;ď Ő{xmľfĺ qŇ‹ĺ˝Ek´ł3Ři.ÎŻń1o“!/Í˝†{+ň¸_OűhČ})ĺ3˘Ňqú~§˙ Cß Ăń@g8Îź[#†çŔ•đpóAűő7zĹhT·ćͧ3Nä™}Ó#}ŘĐé— Żşü–wţęˇ#˝Ł’xâúŰvaŻ>ˇ ĺC)ş0¶u[¨u»Ë“ĎďŘŤ$Ü8=lčŰäčp|“úč)‹ôÜT[Âw ÷–vć9=ůžgqí׳ëŢ&xÄλ˝M ÷¨ťOx!čűv>ánţvŢyÍůVŽŞľ€yčAyô ęc†wu>năóŽ zVž.ż'ěů-uć÷C;ď< 9×Qh퉻tüů‘‘^ŁzŇ~}Â*â);﹊čVŻ'…:Ăá­ť!_OTĽž$6˙ŐËLpĎ„‹ŕö™Ë)żĆdŢ…G˘ć2$aý´Ý×~{ éŹďÓąW8÷lvśK{AňcŹ|˙Ă{ôx®Á†‹]<ž7Ľ;č vŢó¶Ă‰ÜÎO ýAź( ¶tńv)t¦ř %ô“Öhog›ŮQş¶†;zŁ˝b%÷ô@_‚®Ö‡Ĺ{o¤ŐÜÚ’V+*Ü ·ůzbŃ^č—J•B+š“ÍUJż.Á’!ŻĘźĄVř=äősďH˛Ű&ݡš Żi(᡺çÁoaďŢ޸ŐkźŹýŇđe^2ĽG™_Ůů+]üô|ă1Ő›w‘߈~TŚěY1ßqń+ö‹ťŹ;ĄłVŕv_µŰMă_sq˛¦p¤Çąl˙µËĺ##b Úí\a˙Ćĺú‚xo—ăŇßÚ/MXBľŢ˙ŤcnÍq ş°ZQăs[Ô\Ţ´Fc±PĽ;i#«ůAh9vEś–çfn9ަuŐű†K|‡›(Ž‹ßt«Ś@ŰjÇĄżł]š°'»ČY9żORyoe±ňTňfÓu<Ôú śT{ězéý Ż/1oŰŁ7ÁÉ˙ŃÎ7ëFĆäĄWöŢńôĎxÚ™˙ź }Cí85Řu¬X’ż>ógoXłtëĘ1<ŰšóÍŠ§“9ó×4Łń®gţöwRÉ˙˙R F~Ä9ľg×L8ţú7#óvĂíüÝžŹó™öĎťůţĂžď ^Ie=óĎ#4R4—Ö/‡qýŮőßńŞa*ŹW<ţm·—°˛řŹťOXYü×Î'l<Ľoçw8Zř ŻĹcJď}Ä{…äUx;·<Ő†´×pŻH&Ć{é—€$߯1)ísžŘžˇ]Ž«>r4—Ľe^Í…É=_$ń’ů%6–?ľÁHŁŞŕ¨űj»qž‘wŚż‡‘ÉĂmÝ÷dňŽĄżĹ—ÄçFÄU|é‡ižľĽ^&ő¬O-Ń—#ópş"ýa¨»ľŔşîČ˝L®-0Ż?W]‡‰~Ŕ֬Džv‹ŁgâÇ3âK#mˇÝXN˛3íxü—–Ý<ČßĂňçárÓ)ď,–wśáŇÝópFd(ľY5Ú°w‹<|Eđ…ŁÇ Z×[_˘x Ľ *ß±Y,h ů^Úůľ‡ů iéo¦|d~`Ř;Šß°ĘôoúÎ;δső÷ň‰ű5xľő”É`•ÄÚNMˇëö2˝Á>$dŹÓ‹‡ěIxÝ’ŰíS>r$Sq0ďĚňđ1 —řJĹ×üîŽa}¤IÄKÄYÔ}`”bIutő÷(´iN§T¶Q©•­ßF¶CŤěµ˛›‡ŰŹÂţ!GXüR’[mŰÚËz}ÎĂóCâď#-ľţ>:µrťÇŻß3E6óÍĂĂĺÂîQÇ"8ÁČÎŚ1Ńpź1˛ű®LFąIFZŁśl“˛XiÔ÷Ą9 ú†@<jÔńđ§?Ő ýYŚ_:ŁĘçűv䛇_Zv‹KK‹Ë«++Ëk 5łŠżk ąVg~Zߢ|µőwý]źZý—ňë®ň*ű#_aݱŃʧgí*ĘŻ±É’—“<`ŘďűňPŢŚ8q˛Ĺu‘Ţ4ëďý=ť×–Çă4Nj߆Jx††ąśŁpdŞĺŘMäŘLëďŤô÷,+5 yÇ=Ăşîú{âlëşZ’Ď7TE‹ éxŃÉD…ó~8ę/°ěMLwd1;”ÁhĚ …˙úm¤šźĹ {óç".4˛łÎZd¸Żł˛÷©LÖ‹ŤÄ5E&M¶ĹȬɶd±ť‘°&;‰KŚ´‰˛+-1˛WC}‘H·ë".KŹC<ńó:ëô¦ř{ą‘^Ľ—ş¸»´?ňö–Yq7+ŤÄŽČľ&.Yaeu©¬N3t«ł\„UkSňCír¬Í˘Îik‰L×XN4ë5NW0§óńş gŮé.ęë)˙u›7"nF<q âÉ–~#éź„xŞ%o&ůiÖßMô÷)AÄ­†çCh5 TőtuWˇĐń@P^T°eV­M?o•ÝžĺG>ţĽĽČżUk2o5×#?Sµ“Ç\:@}KĘôŤĺá|5łśŰäĹQµÓµđ VVŮ­ä­ÝËôňđoáq›ĂÓ‚yN×9*C{ĆŽeeűśÓ8ĂŢGȆąçŕ¬.7 nyŠb‰Ă&nk=špi­'vÜÖz۬żĂ|vîWŢ{Çaëoy‡{şáľwśŹÉń_żM ŰŚěŤzdw &ötf™Ž,–SŘŁ<„¸ÝČνE§á~o±o?É•ÉňµËH\ľ¦Ű{"†˝÷DŤţí=iůß­‰_*­˝ŰČ-˙yoĺí7•µ`<‹ńK§Ţ˛™Ż°CÜŘcdg”ę5ÜG©ů„[&˝i§‘|4Jöx—ˇFŁĽxéń•†ű˘q€ľ —ÉŞç*ëď3Rl†˛9\e ţUO&ń¸ÚHk(%\˝źĆăsšxd2Ü]cd6 ]“Ÿ¦Óľł™ow©˝\k¤ŐäęţZc˙ě?×iâ‘I˙ąŢČląp}ăšN˙ÉfľCµ˙ÝCR÷;«ů‹z¸ń źGĽń‹7#Ţd¸?"45Ňm‘|Dx3:ęő¨ŃpůŇ©›ń÷—ŚěěíÝb¸/ÓŇůRi&cÁ­Ffk‹[ŤýslürzńsĹ—‡@<jÇ-? +âňUÇtw~żfý}Ä@íüfęçm6?­q¤?ýĚĂ金Ľż‚x‡ÁÎŁQ!żńëwŮłî2ÜǬL?E›I˝ŰČlüşŰüý•Ę3.I=Ńß~,ű$ĂZŁńxŃ»Ĺ÷çÍŇŐ›ů}ÝT˛ńݓŠ:ť±>˙’‡‡ˇ\Ć%q˛˙ĺ)˘y/â}h»úŠö7ď7ĺÖÖÄ߉ѳ}`-…~ń*7–­*ö@ü&â·SóG>ÉúvýÉĂŹu »ß˛ţžO?ś’_J˙á,Çé;–ýyd˙!Äď">‚ř(â÷`é-zď‚8ľĚj]źÉŁ‚ÇÓŚÓăYŽÓcO ţń{?B|Ňpż·uŽźş{ۧ ÷ům_|$5“ąńi#­ąQöą§łXgý˝–íĎíúgźEü âs)ĹSťmy.‹ń縎ľ›*ňyńÄ[~,$?~ŞŃßG.îü ńEËÍEäćĎř⯬ëÓu/#ľb¤˙QşL†ľ_"ľjômŰě5«-Ľ[şőj‰ç¶˙µeo ·w”aż…9ívCý"üw!ţ[ä#†bĂşŐe¨Űž#ń>QóˇăđVMľÂř[ëoů ă놪ë<¬ yŰ‚uĐßuI]ń(ĽŽţ+Ŕ4uďľÉŇi1 _°¨EqŞťCÜď¸uŽ7Ěżó–ňΑÎú¦Ą<×?ĆPcľ¸vęmč;š¸†:u:á»čtÔŃFö޶Žů2}ůťaë<˛“ýްw˛·Ś}ßąŽ9WůOűô_?t´A±&ç¸N Űß˝¦żWFôi9ŃŇÄR3Ý5űŁe«y v÷Dž@ü“•çÓTŽw˙bů´ŚäF|ńŻ”ţf]żś®˙?ÄXöNňż[żC˙ËHiEţ4ż~ŕž)żł™o~ RŘý'â,;;Hţľ‘…/lň ř'úSndp˝a¨†ů_ÄiĘ@ň?ŹR—÷GľÂŢ˙¶ňY‰ůˇęĂZ;ýy'µ[`ŮńM˝}ĐᲚoOiX6ë1›íeŻÔĹWĹ"Ő|Ť†ä<‘;{Л쇵<ż[ËËŽ›f/5ýÉVéÝË•đ <Łr‰ż˙ź˝˙“ă8Ĺń޽Çp8$’ –Č @€ $"‰ŔĽ¸Ű»[ŕn÷¸»‡Ŕ&Š˘˛-+Ů”,YrdQ’%gɶ$ËIQe9Ę齿ý=ëůýčç÷žýžđźš®š©îéé™ŮŰ;,ä˝ď«›ťéęŞęęîęęśöĺť”>ëá+ĐĘ -ÚL‹€N ‡™ :zPďłĚŤ€‹îĹ Ä„‹5X–30ĄaË-@8«\Ő`mLŘŔ`=ÂUBFDpML¸ZëbÂf›¶8°a ßÎŕF„Bİ‹ÁÂŰĂ`7›č}/ýp+Ç܂@ď·1¸ⓜw28*äYwiiăşŃËŔݸ‡Á}$„űô2Č# Ä€|g0daâ]Š€2B…A5&đ8Ŕë$lO;Í á ;B ďŹÄ„Ç<O!Ţ3!đVŕźÔŽQßď`đÎx7w!Ľá˝ HźďCx?°4~áýü Âü‡-đs >ĘŔçc?gđz˙Ĺř*Sż„đ™ <ŇëŻFŔç>Ďŕ×cŹCĺŕĹř2Âo0řJLŕqîŃ€×Óßd@Hż…ŔĂViP@řÔţţ®ż_gđ‡đM/1řŽ^ađ2« č ~Â_cđ=„× đ} đ_gô~€đC$Űź1řSz˙ ţ2~„đ7 ţ6&đ8:ßż`ňţ=’÷čűađ_-đ˙cđ'˙Č€xŇű?!ü7„Cď„ĂiSyűç —€‰€eđ?-đo˙ á3ř?!đż5ŕ~÷0jĂţ/˙Ç~ź ÖĄsűPV„ Tŕö*ŐćnŻ”0LSjrLe0=:şt"t3čA]ô0Ĺ`^\„@x3\Śp ÂĹ gB·”®K,Ś —ŞUŽR—ůĺČűѦ1X‹,GXaĺ (ŢJW„ÇAŮĆł>Ä©§©Ő ˛k} ź/µÎk_mNj=• ®B¸ş¸ŠŃ»–Áu1ǡtß›`\ }Ô„m>xaŰlE ÷>¸“•¤v2 |zßĹ`7ÂMŘÍŕfD÷„}€Ă n#܉p„ÁѸđďepCč‹„Ëé뺨ŤSjq˝8핪<KÓ0îp®Z.ś¦ť\ąś;ŁĹmëÚ+—ťv„*ć†FŞ^ÂŽŤ†Ş"2Ů˝KÂKXúđď×z’a˙m{÷úRí­Ž–ó¶Ś@ Ő Q€E!ôŰŃ"qK=L¨…~úuĂjŇKż—“N »o!˝<Ňűc¤çĆe´ ěŰŢÂ~Oă4ţŢ•¤měÖJ‹\ެ×OX8Ęű2O#–ŠWHeřţŞç»đ z©-˙"„˙˝]Ď´ÎĂnÍÝ ű8Ý 'ăHş9:šV’ďoŽ÷ż¤Hg>f)¦„+5­otx$Ű_vď±÷ŞĂ×ü*˘2gć)ni(dJöđúѸ"Î×ăTIEÔškä”ŇPrŻouĚŞDXuäŐnżý&űđľwăóϵęô˙bl©Ók×X,‚)ůµX„8IOd!R o!X¦Î_R«!ŇX9~h•Ę·!{ýŠŃÖr¦çĎę,_zh¸Á HŘ´sM;×´sZť¨ÉĽ%©M”U X¶ŽĘčđp®|fGľ?7:Tm+—¶X9]Úš-ޤj:Ę?Ťć.AŇš¶NL¬­›€’Ýpm9eî7Ř·F-üô­Áý‘ó]O_‹PĂűôz™Ö’HŮäčĺç'A†q˝fb¤ąşŃŕ<¦ńÄ…”zŞ(c5–öĘnܶ úGG.­J>vŻ.b)µU‹»W«ń˝ \?ĹÝ›|đŔá=w6Ľźç‰Ys3ŘćR¨ű8zCxxIŇÖtńDśpoě…ú?·o7Öbßtî54ʧW˙'=–ú‘Č{JÚ4űD˘×ĎňÔ¬é¦&Ď)±M»đ\¦¶ˇŇŔމđlă˙$ĺOOŰŇ`fąé4‰ńsšBęBćĽzQ“yKZ«.ë°pSGr˝'rů=·jp+Ç%mZş¦ĄkZşşQ“µ«Ąv]O±v-ąŇÉ0s¶á/WÄší['ŻʲĹMWÓ¦‰‰µiăU®ˇžĐá®±÷ćPWcuĹ®‰†ą’ţâ±ë7ĽĺŞ–éŁ&O(‘Ýş \ ĐÎ_[ÎÝJwţ="ëđJůÓÓ–4)n:HâBěôyő˘¶á­„µę‚±tŠ…›\*÷ĺËůľ7qžM×´qMgŞ5ąÄőę‚°rŠ…knŚ1­‹y“2ÖlŰZ†JGµb'¬iŃÄÄZ´q+Ë 4@;ˇ#Zc*ę2¤5Ö1·‰ŞŹ 5ż6$ÍJdńĎËpÖ¸†sä/|3ŃşŻ˝€…ŠŮ`ݎ¬bâR|ˇŮÔ)BřßÇ©ŮÂĺ®çlA‹˘g#“Úz›É,˙ŃŐ t7]Eť˙ަuE’‚ŢČzĂ´KÍ®¦8]ͱä˙ÜŽä7¬‘\°ĆtŻbűG͢N~P=ÇkĂ ´_>×~Źu|_®š“ç˛ýµ ft›®?W(¤>Ôc<Ż5µZj×cŰ|] gáĽí°u¶E_Κ-]ËŔOiO/všöML¬}×ňÜ@;e0–â>!]˝ćĚb ťĽd5"QO/‘ĺo°ŮĹ:Іsń/|sŃÚŞ˝€…ŠŮ`–ݎ¬câR|!ÚÖ ťe§YF_×FFµuF“·DW4Đť^Î÷ÂŢľ‘ˇR#ś[h˝ H‘ő§§un°¦ˇŮAâśV;j˛zµŐ° ÓňM*+çĘg.€sy¤M«×´zM«R7j˛yµÔ® Ââ)Ö®#W,ťĚehňÁz‰&mÍVŻÝ#ôSiö&Żi÷ÄÄÚ˝ (á ×®OčH]*Ŕ4`7Quµˇâj©)‰Ôjh#hu“~ě^U:DçAEŐäjŐjô.w+ŕrµUJ˝'ňŤ>¨FRţô4@ f¸›–¸;–^˝¨ÉŇ%­U„…S¬Űä>Č©ę™7ožMűÖ´oMűfŞ5¸Äőę‚°p+‡ß5¶ŤKx}aÓÂ5-Ü…ná„oáZfřď›g†ŠăÓě+ sĂůŠ_…Ců ?¬]ăŐ-`VÇtSf}ďÍn “ŞdAëţŰöîU­)—0ÖÜ€¤Qł±ë:0ňç†vŤ{c§dڬ‰¶,3ŘďCě÷ ü= źuĐš>Ľzcw†~óčo«ć3˝Ąá‘QYĘ6f–ç*+JÇŽç{««-­,Z™ąaućdnh4żlŇjü˘l­ŹDđ»ťç˝ć =â•Ýł˛¦2qżˇ[q3%%Ô˙>µiHD´!©Eg?Uf¤&ŚŁ©‡6·Öž=abNTÍl¨•K‰¶Úę~ó-ťZ]öřŐó|’ĆlMő2ŤďÓżqۆ†ĺ+#>‡orĂ`©±9LËOĘ÷35.l¦g>…r©8ědŠťO¨ĂźÄÎĆL€ÉŚŕďŔLü–ĆŚâ™5'BZÎ ţGELIKWţ4”.¨Ó•=Ĺľüi_&˛»“ęŕ˝a[ą]¶/ĹĽhţ$Č1§×Lś¦)™k2ňśÍ4žŔ6Šż_2&,{zG®š‹ź€ďTő’Ć=*Ţ4=žĹ‰ëŞkśxݧ֡áüźbDKÔĄŘń>äĂ‘®_úŕľ’rľ˙€;TX{‚<&Âeĺ嫝ăšÜ–ŘůjtöbŰšĄ ÚűZ\RC™ošc°1çÉóÚŐ4ƱzŤoŚŐnA›&·ˇr›/´ŢegZE/B^†đz)ęe¸ŽZ+Ą]}ć)SŔÇ_ eŇ? µt’óţ?$ţ»őĚ(›Ół…bˇş;_Ě— ˝®…H˝íś†39ë%ŤÄ­şA[$¤Aű¸m.Şľ‘[†ĺyŞŕbY¶ĹE ôŕ÷ËXzÇß<| źŠż—h°”=—Ł<× ßŕBÉüh_łżŰř^7âÍeY:źs0í=ČpŢ4çă÷NFľwˇnÖ;p‰w:0ĎľĂjń{đyę`1Ň]Ěx\ęŔQ¤Ů‚şze[Šô—cüČg%¦cY ťlbú¸ys`5†oĆp(ďbú§đĂw ʲ.D–µ˙1–śčĘ”QÁ¬8Ľ˙«üĆĂoăá·«~JĹ÷­XĄš+öĺĘ}^-âdK6*[!7Tx(ʎ?aOÎ,­2›ˇ Ó˘†ŇĂ[ŐđőđIjx»)ń&ąÚ¬ńRĎňxaéłeĘdaÍčŞ÷¤™˘5%¦M‰Í±‹ŁYśc»°çíTa.h“ł…>§YşQCź¦˘ß«‰óśž ZÔ2ç|}§)ëmY6="93Ôđăzx‡ţ=ĽS ßcJ_0ötÝ.•î°Î·[ /ÚőšÚ>Ö˘?S Oݨ‡ĎRăźŃóµKřEeÇpÁé2#ąŢą|¦2TŞfV,­¬ĚĽ•)Ą~aĘ B,űK™\__ľoĄĆżG‹ĺ4ŚzXU”€Ôl•ÔĂzRç1Y™G(ś/1É1W„×ýZ¬ăĽ±ÉíŃ™ŻŇ9Ǧ™č\¤ŇąK×óĹ"~‘:ĽÜoĽ–g¤Kž)竣ĺbľ/“3–ŞB±RÍçúଣ*ç-”lBĐÄąD'µGw°›K­ęk R›č;OnzU&D© #¤ČXĄ[áµÄ3¦2%Rď€÷7…´]Âć¤0ö›H!…ŽĽŁWŐNď“đŮ&ą¸© s8źż·©R+ăů]Ô€OÚą[đ);H˛€÷Éňýťô>Eľ?Oď@Ě´JĐbC«Ů<ŠŚgŇ>Žß ĽiLcť]Ŕ÷ů{đ$ŮŠĂ{·”w»˘K”3i«đ:Îúú6ŐÖ7Q)lĺá}&ÓďtěE­¨çËţŰ.M:Cşĺú­—W@rNŃä\€rrą¨ěʲžz×9‘¬őú•#˘3éXţjŞIôĂŔs}´cü‹·ăSďZ§1Gř6™l0Ą±=:Ť‰Ó9^ú#şÓăÉ\3ohů¤°µ]Ržyť-·ÜĚ%ywČ ×lÎCą~bŤ—:h‹ďóĄ8wQ8‰z‡‹E¸y'/LlŞ4F¸Đ"ö%î»ôk©m ÄŘkŰĄ‚×6™ubmë&O7…~đDŐĹZrqˇ{.Ę´6mfR>G>éÄ`2B» |Ş&ÇňÝ:Řřv1°ńźÉ 'ć2¸Č#\‚0ŹÁĄ™ŕRDŹĎ,K6ť\ް*(śřŇLO–égmLčĐ Ő‡Dĺ7଍C×µîÄ›:içNŠq\ť†2a65{¸0°7_¨ ăJj6¤»ďîňFFďĺŚkčۆ Ĺ#NBKC}"5ąEĂh«ćĘîIa]–xęjpžĎ< ŰWčďw\€ÉÜöŠĂ"ç8 ńvť”6ą/ß_pŤ QôšůQŹć+1—ödë’;żv€r ÉVpţ,qi] ¸Őfmv}öjżŘ‡Nî‚sF&vşÇVv?ŇÂźě#ŞOFř“…€«Íë$ťŚóËwv¨Ô›RCaÖúCç‚)ń3¸ę—±˘u»}4«Ă•Ů™B—ĺ±ôčűI=űzLÍy0ôČŔdđÁ}đ$#‚(/Ëo¨ÝU€Güú»u ń/ĆŇ–úzěńş ë޵íËUË…Ó M5Ů=%ň¸YçƱá,łŢ˘Tc÷i]öšŐëcTÖ鲊ŤB­¬|M,ů´`F.ˇËk?Áŕ_*ü5—đśŠ8Ó0@w=ňáëXŹb|Z÷zňďŇXtŁ@c“đרâŕ;6´ŹaZo3âěW uíe ¦M[X“°»§šź˙‚ÉŹçři?růd`Mš¶|Ň/ÚŮlvvLŚ'…DlÉĎh¨ÚRĘŔş·É!¤¦82ŕáோăîđ* čË$ľm1$ű^˛ĺ—"«?ç×’ĆÉý…ÓŁ#;ökčÚĘČ1Rżl*&aÉÚŇś3ębč--qľ˙}—Ł©OÓű$ůţz‡,íáYD cŘ“_ˇ¸€«·˛+<µIü°…ě/ń \Čr䜢űÔ‘8şOłÎv¦[ ťzQ ÓUmJűFL»>QÁ»kúdźÄ  iĐ4&M<đÉŠŰÁ +âN.^‡¬K:¦.礹|ŮâĚ Bă Ľť™Ć±ÁśăđhŔS™‹Eú¤P=•Ś0{+s±¸—Ő<Š)ۆx Î á{E!MÔâţnšiÂ÷„fŕŞRŕÁlŔß@Ľ«Q¦™(SĘ2 eżFřŢ -¨ĐéSú€ÎMH“ čěŞ×ß ąËčbŚó{wiň\ŠňP7ínňÂJ¨÷¦§!üĆ=°!ˇî@Z„ô—ŕs)ň\Śyą\Ôg ľµŻT­hqµ2wÄ}­ÝkK­°5íý…ˇ|v$çzj×nŽÖţüšMH›â4Ď/Tqˇ‚iţ ľŹă×b§Ö¦bÍ© ¨Xs?݇k›ľăł\{\بÍšgw—-±Ë¶•Fa¤&ó€—ě2ĂŁ•jćX>#ÝóĚşl„&´m3MhŰZ†ă¤ô_E`»‹Ţµů¬9e`ěťż™;"dîTûºÔđ÷ŰŇdâŻm‰±ćŇrk.y‡ĺEeÓL‹:ëZ[˘ô`n–*Ä š/čúďQń?®‡kűb4ŞöO˘l=SH‡őc~Ť÷cRhH©?ÓeSV­«®pŘ5¶$ŔxÝQŠ:T)ĚTżSćŻ oćäS_Ůď/ŤUú\Žř&‰ŻIź.üuý>E߼‰R˝‰ađěţúvxv¤IPő€„VĹü&ţî»ÝőŻq{gzˆ;QÔęÄÚďĎŐ\gç°BŞ nĆ•Vđë5*M|»…ZM.Âö LT]Z„ż…{’VŁÉ‚/˘—v×ką\Ú˝zucZčŻĹ–żšFĺO"o˝®÷ĂŰ"€÷±IVÓbAzźÎ Ăť]Ý f…@·s,ŔŇÂĽůs5 ńÓBA€!p‰Dg!Âe HOôN8í,ކ1Ť9´ GΠ Źazb‚&¸PĆv°În«K&˛7«Ô"Rżn°`ťOyĚŰ̡†ËĄSÂľô˛µŘ[ŠŔ™těŚ$¤ő’:{ÎO‚mÝŤç­Át1ç‡&ĄüÄ˙ĆWigż÷©úíe›ď**«k|ş~_™çפ¬z\ŃN8H$t9N]¤~ľą:Ý*Ľ?F„–Ĺ÷š–ΗňŰŞŐrĹ>ަ7µęśGR’±Č§čÄ m©;µĚźgżš U˝AÍVŐruĄ®Ń·Zhbĺ§!_R_11mĎU˛dř ÂWőܰ0ô:Ś\×őćŠĹR5SÉ÷úĎd$ń+39ôb+ň> ‡ý‹Ë]í-×ĬJ~J jJ^<§0č>ő›aE»éÍPČjhć#ÝlÜ ŤHZrŮŢ\ŔÍwíMČXZí)N«-kb}íkµFŰĄ=mö”‚’Ž ±É64M¬`é‰#5ţíRę÷8~ ŤPäü2 KŔ°ĚIňa±ĺ¬€ÁЬRkĹß`ű;…?tN«Ë`t:’`Η hh~ź‹<– dw.š{Î`x'†ĎĘ@hÔÜh`úE›˙ô©4Ä´Šč¶‚eĐK¬ŽcXĘf\—ŁÇł%R› $2l…ŰäBe_átˇ¨ˇ·©čťś6!Yó‘YęÄĄşBă©©/ř±,0ÎY‡=S•4űĐ!‚YHÓ0lúĹ[V†CŇߤwPu-ű䱞¸ş®uĆg=.ř}ňlYž7ÔŹKÚľ@殮u¶ěí˘~SDg)ŇIk@ĂÝ4TΗ¨QݲíµçK×f Óµ,‡vŕŹÎŮV”a#×8ă¦Áe 'b íh->.F­K‹O+ĚÜůV!k1MQ‹? æłx30hf0Ľõ clńSßĐĂëŐĐë-“MfÍ!Ȭ6đ©oęáZh±µ˝ć[můĂ[l­e˙zŁ´ŘĽĄťÖŇRăZ„1µÔXG~*Zj}ROUü:oą“´ÔSDcµÔm(“ ř„öttŘa [ŰRSl­uşZi¤v0ĐT7| ÖN[§`‰Ó?Ľ^ÎÁ~+މ6ô›B>1|xD€`a4jŇĎč¶ÇŔ÷GŽÜk>ú8N3$ţ_FiZsŐjŮ˙ŽűRßFÜżâé幣ÝďËůń‘Ż;9ď ~\ýľ Ě„¦YôqîŐÓĆ—ľEŃkÍ•Řä¬ql:,n[…íŢT,@Í}'NěI§ ˝"mŇ`Q›$őr¬ÂʻÔľ(˸(Îó•x É—Ă©¸±™(Ú¨N«*ţä ˘Ía$ő÷őŘĄŽ|u*A%śÖ×, •É€Ą(ő:}ă%=0@n)毞‹`Ć OĆ3l¤éj¦7L5¶Ąś?éçŇ-(úk†¤ÚW¸…t ĽĆ9G·6| ˛b±b·Â)Y~BcÜâTťúSMŐw1ś3&uß1Z„*Űç ěgŞĄŚß ­X™é/•3‡×ăźîÓÁÜÉ|&‡_úĽëz8/´Ż”ŻdŠŢEmŢůéJ ˇqOfĺ§µZ’w‚«Đyęwh…ÍmÝé˙Ný‰J#¶áľ­V!Ůf] 3)›«Ţŕ3üŠ–păp}´ÂU0ćS8߸ĺ«/PľÜ"”wŤ_&_¨ćËîɲ^+Éw|‘ÇÎÂr°ĚH®\˝ĘV¦ZÍóSjÇPŘ"ôřö›ć‘ľđv„˙ˇăď˛ogżďĐőĚůD:¤é]>5npúç'漭ů$š+Ʉ߾çБ۶í%›şm˙Qm9€fęńu¨4P€łßđ•Î-CoÝ[ÖN´úJŁţa7“{KĂ#CyZ•0ąP¬ć<Ü–rîyë~ʉLîPˇâ]GgćĐűP®80š 6†ëă¦AY.sC#U/aÇF CŐ™ěÎ’z K;ś~­'öß¶—ô\DľŕúF´ÜŃ©fôÎeŁą©‡ µĐOżnXMzé÷2ś/O›mĺüH>G)L­ u!KŽâĄăÁ8řµ4Ë )_Yď*¬‡ŃŐÆđëśĂůÜPľ/$N§v~ž†ĚsŚŰŠíoTÚÔ­ÇJíĎ͇śŢîÔ‹ůŞC`(×›WîúűŐŰ(ÇG™`4Ąr¦’ › aŽUöoBŽôN]?[`>V”µýsnm©ÓŞňń'b7 f–·Â¨‹üóżuyßt˘-1梂5˸¸ÎóŻĚF8Hq2ćş!5žA (ĺG!ÔGuę)ç˙čśj§Cě´Ű~𽜄óü;›KË´ň7:ľÚsrÓJÂżijlôÄůü$®uîóą>˙űÇM8“-Uńś¬74˘˙% äăA)Ť9Ĺ%44ęn’drNŻ\ŕ{ő¨zO?LćôéőľP?:Ĥţ>wˇ ›fʢ€šó'±čš6]ZŽl.“g<ź­ĄL‡ 2Żš†űÝ1ÂĆŇRĆ  §Lq*ź: â­\‹5 ŇSŻńźybő‹”4…ůĄ~™ŻąWM„Úئę6黎åś–­V¶•öŁś¦ŞoöÎĺ9<Éǰh|5Ö ě÷sş8“ś–ÇŤ`ÜÜdOŚŁ??>*tŘŠ-Í Ť†› ľŕ©˙q.(ë­ţoë /¨˙ Âg!í.¦ÉŽs8<:ä´ -łdq0NAřhü“sl$:„ŁkPÉPµY˛<ś†}Vú¤?*’ÍJĂl1ź•Ü™B=|ŠŚđפͲĘĐ™#4cE·/GYŻńzđ÷-Â?Ű$ËraŇšĹp‰VŹđĎ6ąeâ8đ{ľđo ÜĹ÷bˇžrę ~/`iXt0üŚđ·±‰čłHć˙€pŔ]8—ăó |®BĽ•ÂźŃ'Ü,>× ÎjÄY'ür#xV?éň=S|mąž~ÜÄwtٵŮýÄg´´ŮůýłÎO[ß§·ňť(~öëyĄ5äříž·ÚA#wšä×ĺÂ| ­Ś©Ç‹¤ţ»®/’z5ކăE·Öv¨áúýu˙¬˝˙‹I˙QOÎŻSŘőÝĄ¦óÓ¦üÓéÚôŞ­Ř‰Ľµ{¦Š8’c–®ßď÷?´÷)aů˘íá÷,ÂęˇvÔÇ!›^žśŢ•˙WlzÚŞŻžŘi—?J>NW˝W• Âçłpx×®¬­)?„fǢě)=ëł~×?–Źü˝óSPŘę–¦÷6áź0BëL˝;ë|~Ż>®róÎAźÉ»ă˛Câ˙ ůSnřYI'©Ťŕ¶Óáßůřă}Ą?&ypÝ­w´Fżěnę{™§˙NÚYňý9rE»„Á}×Üe$Ţ"ź©Ľ5ť 2C¨WŔŇIDô ’x=&ń!‰2ž,Z\ĹłYfśőăń9ôÓÂxňG˘ô¤Ř)śÝR–ŻĐűg±–“˝U“˝ÖXâ,ľúż”żPśďAÝó|ĄĹ|˛«ůJ˛M‹‘źµć#đžÇäďÁjׂO•:÷Đ=ČóĄŤó…_ áý"Qsu¤ű8Ň`ř·b3OÔŻŘťŃtĆÝ0IvDí0í  –ŇÂż™É~÷X`ÂĽ`:äćRďĆ<~řÍâXÎ`eX cX›éăw®žĘßTÚ[¬8fY´i@n Óqk8[Ü[Ňď0_0 PŤaE_ŽNŽŻM„iĂŞ8ŕ¬ő i2ú0|Ş^ 0éčáťIó°Yřć‹Ĺ>`2Â?¨dT;3É©eßKzĽ”%\ď –­ýŁĹ ~ÓĽ˛Ő[*Vs…"śC@4ŚyŰ âýý¶6.ôq]´.FaŇT BK*”'•ţ ORʰ4¨Č8^ä´’˙“÷ŁôVUЦ:>-Â÷Ňjş”4M˝ĺe­eBV=Ö?…Ĺ‚úy1<‚79~˝<K1Őa”ü™î­Gő“ś,ţżbř4žgDŹňÄXĚĂ…´ ăl!®_6đ&Oó®ŚČę) Ę\«đ?Ś_ ßů>ľ?(ŽoŮ*ęď[®B:aľł~{sč"čĐÜ?ťe‡$é„q¦m‹˛6«6ŚśˇF´ŃÜ ·Ĺqh*ÁuűÝgţs°ÔÓÜ—»LřÇh.Á» z´ÚüŻbńś$şîôîÁđăřm“đĎ˙·éJ†Cgýof2OGyg0Ţ8°˘7ťô¬˙ŔXşć>}ÄÔö[<žČą)ÍçI<7eź cÜé!T´¸ÚĽXây*m^lTăý’Fďßô´kód1Ď9×Çő%“|S¬tôń}•NXş…×záľÜňÝÇĎ—=]lÇÎ˙Ť·)”‹Ź•óSşY‹®ź-­·č”ž|´đ'V:f}‡Ńˇ–÷†łň›Ţâ¶2h3@ŘîPř.ѰVZo>ŞŁŹôt!Ěd@8ôN8¦–˝Ĺ‡¤#ęš­ĂůjµP¨XZs§ MyCJŮhíx¬á ÜÉí®ákvVÝ ­ßˇ¶1x“ xPż6ať€vDَ ¨?Ç„?GżńŇźŻ÷±ť.1SÔuĘ/čáZű{8cj_ˇ2’=U苼.Fk‘kĽ0őżĂZ%­Ĺţ\=č‡=-­ý]łjk^Ű(=SsÔ*RkÇZĹĎ©­\ŕD¨¤—ďýo˝Ujeňt µBŞĄˇÖ^±J%Ś7ď§$}bЬKź< ˘w9ŇŁ–™Z˛¨ÖšđL­¶­ĹžĘđZ50µ¬]‰űÄ>ÎôĘH®\Éß.·X…·¬*^MíÖÄ\aܨ‚6Zűú©8ík‹P'~%IŮŻĄŇ?C{ÇűÉč›ë}¤·ţ~Xł/°^ß$űě·—ěÔéĵ…o˙ ž00«dOű¦ý'˙~ÎĎmŻ]ń‰ÉpĎŔÜ@۸ܺýfR!ë Fâ˛dC*T ¤T®ćű|ÚŞ—]qŠ~oučŚđWY€x#D‰Cě7®FLýßs*ŤCú÷źiZÓ™63gU¬’Ą=ť^čž0µvq–s}…Ó¦€G ˝'ě™h>Ł6ëŁĂC¸ÉÝoś9ńÔiŹhę?4mŮ5aĘí)Ńţ¬n“6A¤Îé!Ó ĐZdËyÇĘc*ŕđÍŰśŔľŃˇĚé´.zş Oq›cŞNş…奓‚të9™…ž(ĄrVŠ`a!޶fâą{-± –L[mvJ”Ć6M˛ŠŁŢ˙źšg)ŘüŃ ¦F–Ą Ď´`ß'Ôž¤S(Y=ě‡_-U ~OŠ—EIŤ@ş-¤hNhŐOaŐ¦žW‚9^ŻRĎ9^}u[ŠńÔW|…@-+‹T/ 4Ô'O%±Śµy8 4kkD)­/ą˙ęÂ~Y6]SĎýq@g á±8ú´OŽÎn‡~ôG– Ź\'Łta\o–đ÷łő Í™Â_€Lóbđ›öÔÁĘÂ-Čk>ň t‚Ü[™Ü$X}x3ęä;.ü=r—2ů3Âď]†á‹XřŚż a)â,gé[ÉŇCşşń®`˛]uŐ† 9_áGđŕg řkxż>,8_‡ńÖbĽ+™<PßW3y®BĽkÂŻĂoĎŤ¨?‡ýęoęďÄßĚđ7łĽÚćŔg0Îv† ůôËBŹÝzÝ…zÝ)äx.ÜĺľŰÉŢÍH˙J”gŹż‹:ŰŤňěA7‹`ą˝™Ą}/âícü ˙[‘˙AÄ9ÄŇvĄí6ţ Ć˝ăމytTČ˝–w!­;0Í˙UKóÝď^|އř÷ Źűťt_"ü:ĂÓÁëĚL®cNś. ۇyu3ňĺb×Áý·ń9S´2ä@ů (ß đ—úţ&-=CřFü(›“o©ő[BśńYFܑڤăŃW…ď|Iř~čî$¦7ËĘÜz[y­gPƇžEŚ÷0>3"hűţľ\N÷ˇÖ[ýq”ý |>‰2źŐŇZEü§ď-÷ŚđË Ůč·‰şÎQ\Ŕ{eýŁE _›%uŇ5Źß&lüĽ=|mü¬`’ĎĆĎľWÖ?î“đŰ|:˝Î×öĘęł0ßÖč˙UXŢv >8âź‚gK‹ş6XîÔýłú>^™V]m˙l`ć§CŐÉ &ť›čv k^ż¤óéRńőuˇ˝+·Řäč¶ËXs3SĹOĽćf–ťßË:żź€UĺłńÓöÍęü^ŃůÍQđű¬_Žâ§î‹ đű®ÎOŰ﵏ö•(ţóíü_Óů«űgŁ÷!_¬Ň×÷!ĺ3Éy‰]Îďé|¨řsôđKE"Űóő¸r.´Ëůş.G&™_‹ĘĎˬüĹ«:˙EÂf'TyáŻK°':„×&Đba7´K„ŐĐľfh—&H¨.8;ä×&ú2•…ľćî =)ËüÔ÷őđjř-¦ş&ŹÍ‡ZiUE* çĺš篙ŇiÓÓvţ?ĐůŻRńuż'’ßj;ż?Őůe|:ÔX•ĎĆoŤ°áµÂV„Ą<&şëÔxwétŻTĂĎŘŠô8¤L"­WEz8¦*ˇďü \›Ę7D¨ü*5ü„­Č“{¤ó±U©«#ř_#³¯UÂU×7(_m.ěu"ĽÔ“w’Ş˛Ń"“>Óř׫˛ţPżA ˙JD>[Źß0É»IŘóyłHRÎĚ­•­śmI¨Ż­uÔ§»MŘMŃvßMä™Ű$ߍbüěRýíör´S ŹľK ߣÉ˙ݰ®o‡đ»l€c+{»…µěş7©ř×Ă÷¨áwŘĘbXÚôp {ł]Î@ąEĹ×WęďFţ&9ö*té[ř‰¤°śĂű\áź—Ď‹eřk>_Ęĺm•Y€ĎK%Ţ÷čű%řĚČďŻÓ÷…ř\dČSŻËÂĆ/Ăç|.6Dd]6@Y*y~źH,gyŇĆňt|FËŔ_ÁŇLyÓ¦ĺ űKzfŃ$×2|^.ůyßWâs•üţú~…|_LďY«¬ý€ă×±¬ý)Ń]ŤĎµř\#éÝEáëDô‘Züd’‹Î›şRľź!ٸ|ăص©ĺNĹőňÝu1’dÍú:f Ń©÷‰DwĽŽ'óN›óÓďş`)t­AOWĹÓëż^zŤÁ÷Ąńŕ ô6ŕóZ|^Ď«ńyťG]Â%q7¨c!é)µvöŇţiŠłlˇmÝŻ‡v ;|şëE¸ˇÚh3 7Hz_‰Y+˝ŇsCs1É:ŻzňďZ ňnÄçć„úÝ<ˇúő}Šzňz›„_ľŕ}kB=lťP=ř嬞|Ţ|nckđ·‹đ˘jiýoµµţ7Ö1.ÔÖ?… đđ:˝Ś „íÄçöqŠs>÷ŕs· ÷:~ĐńŹ‘' ţÖÉďŽ_ wł¤˙{DoÖćĂÎ`™%wFďĘÁćęÂCňŇÁđ-"FôĆŮ’Ř,Ňŕň6Ú¶‘X[ČÁŤ¦|Ł>jŤ–©Á¸0¸°äÜK…żÜžSgŠtq NŮ>ră}pYŻBţ0wMy7Ę46!„{Íö"áźh;ń6 ˙«…ş»łúňŔ¤[Ţsc)߼ü”ă§…}^łE ?®‡·Şü~‰óăxęRhő—ĄÎĐõăą>câ#„6DµŁ0L·Óé:0Éh[ţlY§žňËa:Đ–K˙ŠžĆĺŇV>QéůIż›„óeĘ1¶đÄnÄ/Ńw9çč_żG¬}†Ţ!ŹşDxĽ‰é{ĺJˇŢDÝč]š(K ńßŢqŚJW†ý%îZM‘r$= ç—ń}—źtkˇcReş ŁMißi×»_­ ôWMÝ-ýđU:ŽşUĽFq;„r Ś¨›Ő„×!Ćç(¸vď`x‹óÁčµ€ĎŃb6š«ë4¸ѧŐd÷’ÚŇëN¶´ń,ČWĺ ŢHKQ!fwvĐ)1YYŻéă’dÚ“žSčT(7ć•F«#ŁU ĄY %BW(MîË÷çF‡ŞZĚÖÜhµd`Ü“ŻôćFň’`ľXu IŢ––Ë B"ëL&9hp#p(Ő™ UĆ3:[;!É‘¸ŕ4í]…ŚßoăßÉyó2ĄąßËl,,f„°0ź“C,ŽÇŕŔÎI­;ŕŔňŢ8›/— » •l©Ďö†ň٢ĽĘ™ëĹ Â]ƲĽŤćp=‘dzÎŐ)mÇŐ¤gëÚŤ+h‡/čqOÎ9ńĺdĄ×QÝ‘]’@·€‘ý2ź˝[śs3Çň™#‡nŰ 1»¶í=Ľ3H- ’î“NЧÖxBţ¸‰5UőŔ÷‘Ü@Ţđ˝ʢS8ܨôŔénŕ©lÚĚ”×§[î/HÓšĆslŇóâ*r±ŻH¦_ť…bćß–ľüĆI§ś~ V=şMG«¬ n%i•˛»ň·Ęňč–ÉVY(dÁHk† F;¤g9–3Ž Í\ď€7›Ůđ¦LÖŻÄ ĚÎÄ­•4ë¦2‹d»ld4A2[ąŐIĎÔ ŰŘšô¬ô"̱4çšnŚ–"=Ç Ú„· éąČyšiĹÜę§çٰăkäÓéä'޲7ʰŇĆüNŻe|@ë7ĆŃPÁń†łŃĆbÝúŇxăipśL˛ű˝żţŃb/¨ÂQJHŇ›~˙ŕ•6ÜąBTÚ*Ľ?ůÝ÷÷4łJ&ô­É÷۰ěľÜ‰üaż,)ÔţĂŹAű‹ű×}‡ókIš@>™ô‚s‘ěe<łz|7T|ŁW_G;¬ĽH«pÄɇ$Ĺ }©Î§‘ňü?y¬ŽiWmGşÁ Ô–šÜF°ŃŰXÇE^‚TÔ÷¸Hh a~/#dĂ "BNÇD^$üŠßh=Ŕ Äë@ĽüMGŰ}đÓg!Ď=HkĂ%Z=éĽeâ8đ{ľđŹŇÜĹ÷bFäąNřGE.`iXt0üŚđŻ«Bľ‹g >—˘^#Mr^wâ\ŽĎ+đą ńV˘Î9nźkg5⬉ˇźâ#â‚Ç'©ë"’źĄ­›ĐůýłÎOsJ_Sg?".őcťźşć!·Úšýh•ËKäě»­Ś©ÇÁĄţ»®8ćË(Ä›ˇňÖév¨áE[ţ8ď˙bŇÔ“óëv}w©éü´)˙tş6˝v [y^9SĹAźĄ†?§É÷?´÷)aůңЉ>Ćl¶ĘW?ĆěÇqň…Ó›Łň˙ŠM/şSńŐua‘ÇŔYĺătµă徢óťĎÂá]=®¶üš‹˛§ôLŐç oß?®WňöícGÝŰ?Y†˙3˝· Í­Ăń6¸úüĽ-iÓĺ÷azź!ß‹ôŢ!ńÝ:NëkRg%ť¤6‚ŰBN‡çOŕŹç(üäÁµOŢz®.ˇś—ŕ­:µl‘ß 6Kľ?Gîb—đ]ĆI•j\č@@Úý:Ţ;–(Y3„z¤ÝkGß ‰×cŹ’(ăɢĹU<›ĄaĆY?ß%~Zřý­ZÓ“bËĆşĄ,ŢŽĆ9"ÖËi˙|ěhľÓ„9ˇ8ßşçůÚ*üŁ4ô|%٦ĹČĎZóxÓî">É«]‹đO„_†ü {j5$36_řŐŢ/5WG*HG€áoÜŠÍ gUđŰ2L˙*ŚwĆ[ÍäYôÖ1yÖ ő†߀߮b<áwQČó^ž˛ŘÁnŘăřŤ†ö~ÓP#ě~ý¨đ·.čţcB˝‡ĘŐj&㤳ŐÉ˛Ż˘ţ·ˇţoÄ´o˛ĚŔ"ŽŢ{—żŤşÝrďBYv3ţT^w3ţ{Dđ&’Sż Ҹułĺ>ŕŔß3|ç ?břÇ…K Ţ"ţA¨ĺň¦ů>oĂ´F>·;đżü4LěĐJ˝4îĸwáón¤qi8úqo,Ü{ç~|> dů…˛źĂx÷EđéĂgń{‘Oż»ŠÉş i@\(Ű‹…łĐ1!wĆŢf Ża|‘×ň*9¸»Cx=(ü­o×"ŻJ ^'‘Ç(Ęë4©#ź§0ŹŞ¨›3‡ÜľA}#űvFíÝ~ÂmĹ2Äů>ćđ…w˛ˇ„Ceň¬vá ”é1Ť&/Ë<ŢS¨»§úźa2Ďgśo?ĂâŔ··8ßŢ/üň|D~sźĎµţÔ#Ď߆¸Ď˘ŢŢ!dą|ez»đîQ7˙7…Ůެdi'¦Ý±séżľíÔńŢ%‚7Z˝ĺzĘń^¤ĺč&ő÷šě?"űPV^˙y١ö„Ëu“ëÂ\ž~Î÷6äýGPfÇf§ÉĚ?"óǤĚirŢ[…BĹ ,ß!.”×OiŻQ¸ö8ýg,ęď'ťoĐq{ýI¤÷)l—>íŕo@üO!ţ§˙3,~Óńkřü,¦ăsŽ_Ĺ8źgżŤĎ?ÁçKHă[(´ K4XĘž ăw0m/cš^qŇô+Bmgľ‹Ď×D°ťy•éĘäS7ţţśP·%ż€<^wÂ^búâöć áŰ›?eü~(¤íů3ŚC¶hĎ~yľ?d´€Î_áóŻ5zđíGŽżž]JC8ÚĄôŹ„ÚÖ˙ Ćű;Ś÷·÷OZZil…mŠCë”W`*Ať®L>Ą—ö)mŠR?JZ™ÂŁď¶ôµZÓ7î·ZҧMQŇõ)ČŔ”›6ĺX´ĄÇ‘w{Ü©mŞ2pó“6ŸĆÎ×\L|Ő©Éč[Ŕ´)ÉÄ·€uŘůndęTÓťřF¦.;żŔŤLę”cň™fÚůŽEW§$Ç~#SŹťŕF&uj2z*sŽŻ?aň™äÔŽ¦Ľ‘IťZ ŢČ4_ ŻŰŤLÚeäŤLÚŤUcľ‘é+˙ŕŤL TüúßČt©°Ř…jxě™2 Ş óF¦Ë"D_¤†ëmßk&Ńmmßb5<ň¨% ~đ¨ĄjxÝn€Z&¬e<⦪±ßµÂÎ?pÔJ?ń PÚ Vr ÝH¸nc•°–“ʉËH¨óyş\«ę!+¬ůđ˝ĘřŰô´&BOk•đÔóüűMz:Ú>ë1Dzţr:WFČ»^•wu­ňnH /ŕ_ĄâżĎVż„ďË}“řó%!B„ç×ŐéżĆšţ€ďj,Ç@çZKú-éÔó1¤ž„çďuéSŻŹŠĚßЦH˝VŞćŁšV%IźÍ>ß`‘ÇĄÍŕyĆqĄ Ĺߤęe™Ns ˝™ô´E•«w¬öf«5ťA_}›ŠŻ/múžúžľ,Ş]Řž˙Ťzݡ†ëíő+azÝ©ĘčŁîRÇmtĂžśŢnaŻW7 k{gL‡­<ď±ë9ĐΩW8ú(ľÂ-vüWĆRN'Ęîéá®˝*źŔ5kűÔpë5k{{sE8Ř|´’Ď”Üůt~Ľ9l-.ćO­Xą1㣛Oč(őę`®*C59ö«rXŻSăńXă…Ž-Śé¶¤O.ďAaŻ7· k˝1^Ëf«7‡„µŢĆN«řúrüȫӎD¤ď65Ü+[3rĹ3;FG† ˝ąjľĎ ¤‰ŮíÂ^¸ďń ÷ü>Ź{¦2ä”X÷ໍÁ‹˙îT¦öčLŹŞLŇĂďVKČ‘»C46µ/Žş‚y•ÚDá<ůéU#vň‹TďÉZÄ{…µEčă>a-ˇŻŰSďÓą_ŘKęJxjgÜ–8'ě…ňJw—Ţ«†ďÖĂűÔđ›ôđĽĘ?VKV)–Šî™Inep/˝r«łúZŃ ,ç*…Š„I—ý"ľuçń„˝ŽŠdu°P“NÇ»¦¶šćslď/”+Ő#…ἆŔć118ˇ2ŚRŐŞ;ŻF;nkĽ†c&p ”©ý9%}ż¨Ć×;^6ĄÇ¦đR\…<7Ľś»@ÚHkzi”@Ćhş'<ŠÓ(+4ô»ĘÓT7ÜŠ€_QńßeÂ×e6É^Ť)űdýöÜ}Ô®Ęď&ÍŰ“ÂŢśRĂçNźVð3ŞÚž×ĂRăk”éć€YÝśîĂr=˘†kcďéĺq˛ÓV‡1ë°ÓNŞĚc ôbJ˙ă1ůO#ţÁrVXkČJ˝†<ˇ˛ŚšĎ™·Ć<)ěEô)aĎę§ŐđőđgÔpO5ť#ĄJĄpl(żSŽ™“Ż zżÜV˘L­‘`á&5ĽEŘrT–Ž˙V˙}6|&¬ˇÔ°'ç˙6žmÎŻ%!CšôvKşŮw}úWJŤJZ°)ĽŢÁ|ď KbŁĚ÷¬E8=‘a|tş6eĽC OEŚ˙S˘Ó«L™eNâ>ą|Ď©ňĹşş[§Łăń­ŁŇmó·Ž ůÍ»í¬Eđcíők»%ÝTđúno«¨ÜŠéom—ńܵ)ń·Šš×¶đrw«čdáoMáZx‡5.1öösüzmĘzXŽĽkĎg$”gFĺáמ˭żţâť±äňËSg}ĺň®ďďŢĺnůî]!Ţ%ř]˙»™ÂßżJ{2ůâ=R.oëô<Á÷úWĎĹ'^Aî]!~>ĂDÓâ—ŕs!>/5DÔ®Ďŕs>/“2xWŠ/ayÔ&Ôýˇg´ĽüĄL”WmZ^±ż¤űv˝›Dăsąä¸j\˝âß<ąź«łđý |^ŽĎ,>WK:Ďťµ"V™ýÇŻW™MR‡ëÉč­Áç:™ľŐÄg}B}¬?Oú¨'_ wĄŚ÷>˘U<=ś§űş}=Ô“o R »ź×$”çš Ő_ëÉč]ŤĎk=tpoĹ˝ťü/Ř÷áű%i}~Ú8ż–öo W† ’¤őťuL«EţIäą6&LÇĆ:¦#F}u<ř˝ëđy˝L_Ňk•VŮôjˇc˝VÉó'l¶ ź›fÜć:*ĐkĽĎ9H‹O.Ś€÷đYËŠZ:[ńy#>wŕs>wâs;>oÂçn|ŢŚĎ[đąGęĺ.JĎ^¦oş{J?[fę}đ» =·!ť}ňÝxÝx˝'ŇIŢ)šĽ P^._+Ę·_ľ'ľV|ż¨˙©őľVĽ}H¤żQ=pččNʦ;&>ŢYTľ!=ÝŠĎř<ŚĎC.^záÁĺńeŽ_Ďă>ogr„ť1Ev€—':€é^˙­k ÂŚŢEČtˇ7>wJ%íá…9Ie8*ßâń;…Ú#Ą‹:„zň8ÉÔ"ÔŚH¶»X:ż2ňn‘,ăďőŻxťţ×ěŻ!*{—†'ç›S8=Q¦€řŚ×9iPîĹç}"ţ ÂŻĹő¸Ç•K®÷đy?>ÁĄ‹Ş˝q\‡c’Ď®s1č‘5Xdˇ×+éíćô:„z´ńEHŻéŔŘÔrˇž ŁÓí“to±doě8/żżÂËĐEaµI«Qđ7¦Ň{‹1ÁĘ•‰ŞSµXň~Q›[Ó/ß­©GK9 ‚-e—0·tĐÚꉩµĽµóëHAëH—¦gţłľ\Ŕ-Ĺ„9§ČYIČŤăřÂç |%ŢRÂĆçüľŚľ—Ü÷”çË”EśÚćÇ/‹úŐ¶Z¬DEĘ˙®xV—›[żFµ)\a‘ÂĄ ÷ř•ßWĐ÷*>Oáó ÓG»P[ĚÔ§Ţ:’N’ďíçJc{t§3IľťőË7 wźŹŕóa|žÄçc’˙Jâ˙(>ĎƓۋw¶Žrë|W0ľiä÷„_­ů“ÂĄ0@÷qÉçAzZ†_AďĎ$ÔË3ă¨[9š`ľ—ź'ľËÇoŘJ,â¶ZĆô=5Îß“ňĄ?JĎSř|ź°$+†Ţ=»üVq~Ęw=ů˝·ŕómř|»O®^‚Y«çE]W5á䂺Ş)Fú=çů:¦?…rZŇw°éÓćt<‹ĎwÄJż„ó;ęţ$zź`ľ+Ćo W˝Ýçęýą:ĘtŇ?F:i´2hłŔdíΠCřGc'…=ł̵Ŕ| ŕâ¸TD—˝ÁR đc˛©‡ş‚Á2zżśá_Á€đW!Đ÷,µëÖ2XĎ`ÂŐ ®B¸†Áµôľ‘Áu0Ł|M›nĐ`‹¶2Ř;5XŤ°‹Ázż‰Á ÜÂ`Żö!ěG8Ŕŕf„ źŢoE8 ÁḝÁn„;čűѸ‡Á} ŕĹ퍀~$ëB!ŹâE@‰ńA(GáQüѨ28Ť@ď1x¸x”ŐóÇcpÖO î“ ž˛ŔÓ ®Dx†ÉóTžéťpßĘ Ö<'YŢt{°UwZŕyď˛Ŕ»Ľ7ŢĎŕ1áýü¬>h>Ŕ‡|Äeđ±đQ ~ÁŹ3X„đ „_Ô€Â?É€ě5˝˙j—>ÍŕSôţË ~5&ü:•_`@2Ńű|9ľŠđ%źG€Óš Â~›ÁďXŕ÷ü~LřCß@řVBřFxáŻ&€ď!đřż­Á Ż3xáű?HßgđçüŃţË@/÷Ďkđ·!0Y©>$˝EąĄVL•‹ąˇCů~Ľq#ü˘r]¦¸6Ą±Ĺm°»e÷NČ‹TÜ÷YÂťčŐΗżgźĂ0!ßçžóăâÓ˝Č\Łáv_['ů8ďµáü‘šu‡0ô";%Ű©Ë÷iŮ=-_UýĄ>gä÷ňĂ“o KG8łľĂčĐ`ň gĺ·¤ŔSLµř嶆9¸ť f‘-@ÂL„CÓhńˇ–»m 5đŐ\y _˝Úʰ´8ĺ%˝öśĎ ˙7ÔŁKŻż@śÝKo8×tŮš.[ÓeM—ÍŔŻé˛Ň×tŮš.ŔyvŮ´¤Ýůbľ\čc{Ł3xéś‘Ů>ŚÓĽşn6/˘Ćw§ú5/˘Í‹¨›Q‹ćEÔ˘yőĚĂćEÔ~:ĆšçoÍ‹¨ą\W‰ćEÔDó"j=ť_Í‹¨I_ÜŢĽ!šQۆĄ´aŻćEÔZ|m¬yußéÂZţšQäłń›iç׼é̵ËŮĽé]bĺ߼ÇךQ7/˘Väµń»\ŘËAó"jIM„žÖ*áÍ‹¨MňţU*~ó"j }[ţ^‘ľŤÖôý´^D­ž ř›T=4/žáż=!˙#ôşC o^<ŤôöŘőÜĽxÚéÚ«ňi^<-Ă›OKzçůâiyŢ´.ʉîíÂ^ŽďńËńrÇtz±M9ÁLhŢ(-éÜ/ěEđ%ĽyŁtóFé¤:=ż7J‡ßâ6(ĐŘHűWa~QĹç ŁÓ'|ÄÎżÎ÷CËs 9~YÁo”» WşŽÚőÔĽüé6öĺĎęŐÁ€˙X=Ňű¸ťßĺ:żłÂZŢJov–ç̆ĺn—t˝éĺÂÔnJď[D˛úţVży…łűn>S—?Ě~€<ĎZä±µ÷śŹN×–ţć­ÍBŮ·#ä·ć­Í˘ykó›˘ykó<|ΗxÍ[›çYóÖć¸u¸ž|Ţ|®“ékŢÚ,ă5omFşđyMBy®™P=LÔ­ÍňFcđą`cë›4ojNŽŤuLGŚrŮĽ©YϰMřÜś0ă6×Q^ÝĽ©ŮŐß"”mę}ćÉ2–mHgź|oŢÔ,¬ĺ«ySsó¦fŃĽ©ąySsó¦ćđżDt»4ĽćMÍüťđkq=îqĺjŢÔLtű$ÝćMÍT§j±äý˘6·¦_4ľ[SŹ–r@[Ę.ané ´ŐSk7(xk׼©ąśSš75“•¨Hů›75ăó>Ď0}´‹ćMÍÍ›škĎźćMÍcćŰĽ©9ä{jśż'ĺK”ž§đů$>aĺU ˝7ojVôŰĽ©9Nú¦jxŽgńŮĽ©ąySsÚ­ Ú,Ŕo’k·?ýąC4oj^!š75o±ŔVŰC`§hŢÔ °[4oj&(‰ćMÍOćMÍ[5x§žÍ›š >>*š759ľ*š75ż"š75sx^śŹ›šĺ-5ţ{úŞ á/đŰä aî¶ŚYBţYâEĐX0FcH—;ŕŮŠiů˙‚rNźiśČ’ [P…mN!(•«ř6e _˝Ń]‡ -ű ůˇ>uŤ®ý¶Â°Ő ]«‡Bé8”ď—Ô\”u:ŠÉ÷éeş6{Gľ?vÖăő'rLŻ?éÇńÚ±:Ť•iřîí„c¤S §îqVÉśĚ ŤćWeĘů‘ˇ\oˇ8©ć3#ą˛;ý ż{GËe§ôăÄ©˝%çµ2R*öąČĄŚ›úĚŠB&W…Š‚ź • ng™Z¨Â[5w"_„(Çňrv|…Ë|ĺĘl&sÄá$Ł ŹVŞ€Q*槢Ž®ňŽ ˝ůLet$_văć+ş€rÂ}E©<Ő_÷)T+ůˇţU™cŁU@.fΔF3˝ĄŃˇľĚq`T:™/ź*Şy—”LăĘ,žÎęó6\¶±ÍŻÎďüÝĎŐŤa·ń¬ŔoGµďçüx ­AF«`áÍĺ=Î~źĐéđ’6§ŚĄřPĚĄŁÍśĽĹŹS>ƨ …heý.r)ńm[îÁçžjĆďAC<’~Ę9W§;ĹD—áOg´IĂeö­bŞL~Ő€?Ë‚?ۢ‡Ů†xtdĹdoŽE'&¦tždßN1`LNźC=XJĎďš÷jéťR˛ďbqĽł‹x©Ľ×­Ýn5vŞşk¦qĺł_WÁ®ŔŠçŢŇđSfŹ ĺ3§ ŐAŁ/_)”ó}ĘšiřŽ÷ĆzĚŇĹď'H(Ď]ĆĘ—¶j ~Ô ě*W AIŹY V¤oXZ!ý8Ö4c¶¦2§°z©:čŕ—ĐźŃőŔÍŤ5˝ţ8o¸ń™'Ř€«WúŽÁJ*A·ÚŞÉątÍ`i8żćXičDľĽćĐšňęcŁ…ˇľ5N¬r®|F¤Ż×ôb:­–ÓläoĎ•+Hs -gɑК«Ü°šľčkK1Š|Ăëć|7BľyQZaáaÂďVI—Fśł„ĄţIK9)_.—ĘZńŽžÔ#wWJŁNZwrÇ5!Ź@ëIOMéďă·™…â`šÉľĂNŇöĂj7b—˝˙ţďżź{BĄ’Żâ€ŽŻ1Tč-zće Ž÷PvĘضcĹRy87tŁ,‚>#;śwjč¶ řĆô±#KČGÎŚx¨=Y§&ď-őžČ÷íűŔ%ëä:Üěá †úxýiχ>ŻHMËV+ŰĘJ‡"™Εźvě"Ż.=wç•óN.äËT)±.x$łÉGĘŽl\šiX'«Ő˛g0™ĹëB+ŕő¶˝,ĚUouąŰŮđë0TŻzŞ4F¤Ţ÷Üz$rä…dčeş2X:uŘ5v§¬Č޸“`ů°Ę;ÚU‹Bg6WąŃm” 4Ą˘ö §S!ey=#ëwÝJ˝=¨U'I{óĹę ÇŘMRŃŹ ˝O0,Ł·4r†óě„d‘-…Î!Ą ËSźŞ†Éb`h8[ňŻ8u0żŻĘj/ä¬T»"#ÖÚďą“v‰üV@#µÍ–˘«v¬í^UGB¨&~ąp«ÜáŃc˝J5ëÉŽ{ˇTbéăV¦˝żpú`9ż.{-é¨ßi/n+%”îrŢM »p[ŢcĄľ3^ŤąHJdĽqÔłé\÷ k^*ö†ňË%ǦW ůʶbźóR-Uťf‡I׍éČU*Í!Ú*đQŞúŘI=-5ťş~§»iŻâiNĘîÔšlŮ/@sś’ íâ¶^`•„)N›´=Wńš¶Îa'Ĺ…‘ˇĽjĺćbŢ9™Tîp©úz1ކ·\šĺ™ĺX!j±Uť´WňčxĆM ŻBíN©+Nńq\Á¸:܆©Ŕ˛ĄđŠ˘Ö®¸ąćŘ:ŹK¶ďV/{ĽĐeîČQíÓŃrĹŃĚŤąˇˇ#yŻQť>‰nW§8eKM×á čÎyiwP¤‹L8î6ČŕĂë˝h#•üh_i˙m{©áťÍ«pE7ňŽWĺ41y§X3 {˛Ců\…Zů(Ą×ל—eűywłÁó Ô ßˇTŻ|Cwp(_Í“U#MĂÂÜ‘Ž,ŽU)ćanˇXq¬€ü¶§¸sx¤z†EęvÜ*’ëŘčŔ€ç\MAűIĆ{¦çصäb–Ô¶¦[3öçO»í/]j'¤+‹ÍÚž TźżĚLĎN>< NÂJˇrx˝ćŹVňű”b,=úĂůŞ[ŽYť*Ë ÝżWośöJ)_đA7f}hKT·gnvŹÜ@ăš…ľ]hŹüVş2’ď-ä†n/”«Łžł#edR¸ýŁ`%‡®Äż qŢv@t^Ŕ;5ÇÄkŤśś=PŢg$Ű ^ńa]ÄÖüW» ”öJÇú°ă'¨Ó‡ŃÜÝVě+QFČVeó9Yô*™!«T ŐŃj^öH=kËl'4ż`RÔ°\±t2—ŐÜG'EŁŽĎš*Ő§žíčٰéäGlwś//ąrIďD»mč7ЦwSKďĽvCfît­‘0×”=& W|‚}yhüŇîů n1×çZXQë*¶cöűóŮj~xDóÉ;˛#n7ĂŽ—˛,tyĽňädŢö<µxľlTý«X/[őŞs%ęĎtl-´‘Áb7CI€—«ľ¦{úŽ[áŘVtCČńfÎC/‰ÄkRÖťŁqĄe¸ł˛PKť¬Ú÷qZä>˛Năĺĺ»ě •Ї«ĺŃ^ćžôdű •Üđ±ÂŔ¨×'÷ŰŤ}`w€{íî„÷¤*çuJşjĘgď ­ÁOŐ˝kĐHB ŁjĺÔ^4§ş ÁžaźŢ%DĎ5ÜŰ îś5R^“2ě¨b87Ä”6J¬×ipÝdµŕ8˝ľÁR©’?Xň¬ä5˘•ěghY¦»ŃťčhíÁ­—ŰŘÓGIW¨Z·ň)4´NĆň^DűÖ‚ĘőüĄýVýĎg¤wŻ6TĽşčä)ë‚VGÖq#śľ°—mž3¨ÖŮĄt ˘^ÂŃeĎ2Ó8ź´#mT%c›čôËĽÁłĂţŔĆlÖŰĎWzË…–÷<ĎHL*_ F:ŃÉI3ăŹLşý ŻRˇŽú©ËíąĂ/TŚřB´caC ž <¦zLR'čcě<=B}xČş2Vŕ0đěŻßrůĂ„ÄëŠÓ®ŽpŻ@ÖAöeŢHąP¬†Ź%Îr‡ˇöŃĐ÷¦¦{Ú:„l7í`9˛PUkB—te÷űóeŢÖ·»<  EsŞG4ËQíÁraŘő-őţ©eXˇÇ÷śĽ¬¦ódëă{9ZÓ3ŮqZ÷ú.k»ë:ł‰Pţ©#®š¤n«u4ćȪ޶? 2 »hYyIë(TĐWý;żÔŤ ŘG|ă1;›* ŔTťˇŢAă#]{č0x`ů´ňVP˝v*Ć0¨v©zÜĚŢíŮ7>&:+«ôyšçËÜbÝáŔ ˛4qůÜ)5ŕśOĹQ&ż§÷´ÜęÂŞ÷ĺ§^U˙şý„cا:<—\Ř=FÝLÍ;-ş6lę¦q›S.7ËUüŚ’BxćęШ4µŞg¶ s“{†ž™„ŃÇ"ďÂ*źŰmÔrkµfľf8ńŹxÎ4EŻ:މÚO„^7taĄlşě×+Z:24'ۧh _ŮyÚwæ8‰>RňMQ§?v:PöýünoŞ˘w+dáqÉş}W6vŢžulä0;ns›šč@Ź*›4íÝYĆ5Ś2vfahŐŻŘžEqrÉ:`Ł,PúŐŢ;6CĂ^áôlöşŕ'‚†Ě“;¦rDˇö†ËűŁ;'Ç01jśTÚUÔ-Ńwß°š—ç™X—ťr¦Uâą4}ané:<3ˇY^´ Ţěá4ß÷*7tÂŤĽ»śôčŢ8+äwąfŇ? äĐśbţTx[ŮΰšŮ3\š»mĺ_9µ© 6ĎôčŻIŁĄ?ÁHńá5K:˛Ňj–=[ęĂä4X^öĺŠgôAtť+ů\ŮsřüütÇTµşÔ FÜ© ÚłTäX–ŹćNËB·9_u¤ń…„ «K}ů#ĄŇoëF=áě̶ˇ!ĺŔwŁ[ąNó˛8”§·ŰNËŹ=­Ň¶}^evIČy NažLŘhŃ÷$ú¸wÓc©÷ü1ÇjćÚíôFńTHÚPýf× ó|f--ť^‰ÂŐ±¤_ęĐń3Űwó|ť#%Ç>6¤ĺë§ĺŕ®.şń\˙<7P-VxÇ.÷—< ąŞőĆôąv'g N7˛z#ŻLúţâpOLďŁC˘Mw^ßďt56č&Ú©ę;ŃŤT©eíĘ“˝O­{ŢĹzIŽ®˝®Ä´BG ˝îîܬěd;ޱdą/_©ř}]¶ĐőŇë¶6šĄěĘøiüĽt‡`ŘBŠnuJ×Wý4űa˝Ýó:zˇřč'“eÜjîĚ99YÍó% Ň+ŃĆ•üĄ0Z<+¸˘âJ/Žś”u ‘ÚÍťť%6_ń†ĽDşľĽš¤ŮÓ#}şżŘ!Źhµaš;ľÜŻ»sĐbň:ூępÇÍÝÍŞíĚě1$0ĚŁwxő^őۤ>Ą5$TéŠÉŠĺřYY·ę4ú·{ĂOD…5Ź _NśrZ.§5ĺUŻ˝PŮî¤ÉorÚ˝sŻ\)–evÖâ=we‹Ąęa§":ľąc6ĽŽ}Ťć»KŃüĹ č‰hÖez¶PŃ'•Á9s˝»Řł)ĺśŇËÂP´žŰłČCŮă®=â>´¬Ô3ëëO…‰µGŹC|Pâ2oŕ.bŞCťSV•]ÎťňĐüĄH·|ł§F{±ťäaŕ…¬ĽßmÚVtj~ŻcĂJeź ¬ÁXŹH†9ţč8UĹŹA?:`t[Aő^Ů®T€…lŘť‚;őŐ/ťŮŃJţđ=§gşN1­“yTT ĐĂ^üŞ·‡ýK Ť˛ŢÂc·ÔÚFOcŽ8%“Ŕ¸ËHŚŚśř+"ÔęŚSt^9sM×Ň4ßOô«tíĽinuŠŔńf{OHłrŘí”yMËqŻăäĺĘÁ6hşăŐTśÚ°·ÔëÉăNÉąc…Ş3uçČë‡âěJŻ˙ĄĂébôÁŻŞ*ÇQô›Ź]N.܆{!đűEYZ Y O’^;”ˇfϵqG<I/żOë[xľ{o©Ü—ďń{ YwÜ[ľđ®otXS6řeSß.}3¶‘ω{EÁĺ¤;ü48sDi4¨˘Îóĺ@Çą˘ÍL“#㼠ś86äGD3ě™ ¨¬ŕ‘»9QQ±¶í?ĘřáJAµ—(s48ň<ŐŐ÷o¦•›Rvżh–Lďl×?`í* üŇŠ­đ.ĎĚě·k ödc[›¬N‰tçŮÄŻe4TÎĆ:`´3Đ÷ÄyÂč…«kiÝ~Ďš.č?,Th~ŹŠ·;ŢëŰV qři/h‚'|ŞżŃÓ™#!4ćĘřWVöíńSćňR¦vüfľxC˝ţP%`ůfŔĽ>… ™´g·ş0hŠăáqoúuÄŔŘmď”›­ś€1zBi(WuHíô'Źç˘ËÉÖQ¸‰Ýć,wtŃ­4Że˝8ŘÝ×[óĐ[—&Ř÷ś¦“1ťĚw$Ą´ËIÍ—±”oÔV@ΨpÇŢ+†š˙±Ă÷†°ÎU5˙tF;Ç#ô¦¤f°ĺŽ~·´lĘ .‘fŁAľ©†5›žęř˘Ž6§X9¦_µ0wkăP3dűŻö´çgő(®^ŮIKľpńÝÎ]“Ă2pępŔŢ-íńĆ::Rs§ Ł×|9 r\6ˇűŤĄbż#­—đInőőDBRĘäŕÔ¬>ŤčEŕłťečęî(}ßZ`§´ä5ť±ž+Ööś»ôNë +Ł>2/pSq’ÎĎąYC‡ŐG)uÇÉ˝Lń†Ľ•î€Ó­synëë;RâUuŞßúRcvŁŇšmĚ8 T8jsť¬Ç¨,´wj2LÝűőzVŔšÚéefŠ[úýÖwŞďŢQŠ •}…Óu*O]áĹZŻ#ĐRGDs>fć*ş8jóĺvčµ|†lOŐúçÎ4`Ĺő JpжfBćËćiĂ[ž‹íąlr—áiÉšę/ý˘/®×¬.´…ž˛Şh_~řXľě7††‘Ę.ŃĄ2ÚMă_žÇMą©í†îβiuŚÎĘĚ•ő9ËŮ~űś»îÎöá.™cÚ, .Ż(Ťúlć;ĹĐPαEŐŠqyI·źBu6–ű¸YŞw·zx^h‚w8m›ąŁŻ˛ši…©˝˘ PÁ0Š6YŢ ósGJzŤĄőÔ`Á÷ĄmĄ‘ëNMqďtrY mëĺ@Óܡ|exuôZôa!Ůwz#lřË]ľŁŹçP_Ýű€~BŽ÷Tµ<ĹÝŕá{‹ó˛‡ť†ÂëäFçĆOśÔí“ů˛ÚËńf~•1ÖŠăCz¨–Ďě÷†+ˇ3‰¤:ÓŃenČ4GßéÍţ+–{Şď~yÎťžaCÓÜiĘ Q§Ó¶ ŽéĂEËU‡Epd}ł8DŁ‚]Um.˝˘-×äN¶ş ¶PďíŠ^w2Ľ7WTĚÄt9Ş®fŻjńĄLú0휬fµ7v:”µŠ+ą‚C§C=Pçđq3Ůav €gL|§ĚďĘuCÝ 6A›ç _4KÓćőmđĄtíŽÔF[ _šŃÍF-”ˇŤ_2­§ŞVTŃ]çŐk»ş]×z[p%->o}€ŇąrÝžmýN‡!0$>†¸hťľďłý jłÓóţ•Z5-ŁťŤ–Ţhĺ§şÓ °ş—˝R'ß×™neó”Ţq»”r=SńsŤk BꑤżôAĹ1ťîu×÷Nx"•ŠŰŞŐ\Żď&ă·cä4”>§?ťü†‘|®ę‘)–ÜY1/ţođ;`fÔ˘|X#}x­±ęy¤ĺ}¸ýÇ4ťM†ÎËTLˇěň(ZĹ‘­çѦl™“u—đ… o]J6ڎްt÷•´řŞÇ´Ă_O1 }wĐSmľ/掬¬erŹ– ąŹĺrŽšnN :Ĺ8§QnĂňGëÔqe˘lżö™p&÷a¨ăM8ˇčug˝±l}Z9lďÜĽ°Ńz*Ľ9UŤ Ś–˝Éµn§ÇU5ąěť´RDk˙˛9oÔŚ©o&(imöá^álăÚVĎ Ô6ż*ťRFŮćeÝšęfdÂôX˝ŘĹŻÎ$+aÝrZ†ě´gč×°†A?!jŃţműv>¸íĆť÷ßźĄ&<ÄmťĆÖ«©µ`Ř_Ţ™91św…mnUoČűß~<;»?źď ©ĄtŻĚąŃ|9{”…j÷i>óŚc]“zŮĘXš' L¸Ě Śđ˛=šHľäÓugÓe¸Çi†öŕ!ş žtëh‰-Ër˝h}Íčž\{µ˛ô–=ĎpG÷©C‚ÓôôLŞ>l˙wĂ»ĎůG<ů‡b89l9Ă;$*˝EŹ™v¸éµős­ŹJf­ýlŤ5ČĹ !~çĺ,1%%úbőČů:źBvÖtÂ96lú¨ż•°Ňh‡‡ÝЇ‡YűĄĚ!ď¤7‘öeŽť‘‡ÄČŹ™\9ď^~ĺü޸§ËĐ!`•©™|Ö†f„ęÖ—)•3ŁEů;›Éě‘Gńô:™—É9FŕLš9âd§{L öšđ8˛©ňL2iUń*<áGn‰÷DÉÉ=#(_ČNs= Ăxç3ję ĹL.ĂZŤĚ©Ü™ĚŠ|v »*s˛s"dr##Cg24Í˝2;5ůśÎ·CCZ§Żä˝Stě-žzFňĘóČä©hąň°cž+®\ĄLĄäP\ÂËĎŠ•ŢĹ® ‘\5SuÔWÎ{•±‚ú„© ¦±Tđ)mëÁw±Jn ´j§RÝi8éęIöí)ö›ŽĘŁC•@ڧń˝g0 ľ˝…×”´öŚq˛Ř[M‡2-ˇ†śv“ŰĐ){5Đe–“ňŻ˘ó㿍ëç'Z)Ćn–n "¬ŔűCđ?Ŕpöp\ëµĺ_ý%-#«ýĂRsąŘ„2ÜÍmčD*gjjyëtT].ŔşLząkč–{ířĆLĆéŤÁ‘ŐN2—©¸Ó+™Šś_IäţLt›h?›ÄÍj‡nŻ;!×hͶ~Xv×ÝλŰ÷’ăô»aŚsĹĎ„RŃéŰĂ治Óf™tÎóetĘÂ3ŕ6W ]#ě€ĂtfXçÜkm˙÷©Ľ‡4⍯ˇ!35¬˛4|§†5îÜ”ž¨#¸Éčýűö¨‡­1Ą÷O@h”ĂKšIÍś=ŔQíűyô˘ciňF@ßmšq~1‰}›ęíŁmř®wŘŘÝUŔ»×łXř'Ď©ßzXX zŕ÷;tšk÷)Ű€‡˛â¬ú Jăčš{Ď|…řAźb:Óďwż”¤Nú©ĚHýLfŹ».#G4ÜiŘč&Ëcč˙ö9-" îă%!Ţü4Îrf ’ÎĂĹt):­7ŤŃ˙†sě™E0÷µi©Ă%S™—d`ZÎĚÇÁ9Š/çĹW±‰ §őĎNť*ĺ룵ţ}(t°–Cb“ă6Hetdd¨ çMŽşmgfű3ČŇń/VNˇÝ)y`*u”#1ÜYŠZrJýś¦XTĚźZ´2ăCRĚ§Şť E%çĹż.Ą–ٍюɉ 9jśBľ†rşz‡ ·ÉÎęÝ-n>ŤĎS g kËt;fÓMăk"Ü”Đař$ý¤…Ľź$»ŇÔ?ęEWŁ?ÄĹJĐ»5©ëQM]¤ć€Ú,˝ź­ô} J ŢĹ ”–ŕ­_…Ĺx‹C[ö´»:ßĂř:ńk©–ůňŰč%5XČcđţĂ@yĎÖ’„ËËţôÝâW‹o°jńMnűiú=Ä+ĺSpß`ů:Ć" QľĄ‰üÇĽöjĂÜß¶$ďO,€'‘: /™jŽ_ 1ůß9§ĄŠ(GŚżđxÓôx!šzYË@řöŠVa^Őxřö]ř¦Ť˝Mp§~ĘQĚ<ďŞ2Ąś”Dť«É7Îťź˛5K%g ÚJܸĽM. •cŤ3Ës•ŇoYµhiĹqlnX-ď¬[­0;»ˇ4«řĂ´îPMˇ?łĽ€wÍ9îqăJŻką‹Ś7Ń-ĎśĘAÄ•SÇžtLćĂ&-&.ąF96¸6u’m­4á˙§65y 1mÇ÷ĆŘÄ~}{źţŤł74łŔ盼@h^$ŃiŃÜş‰¶_”Ö×"ZQ>GĘh_IłŐćü^3ńS N` Jc3Ť'3¤cpaşF "| RŹÖnx¶ ú»  O»ŞÚ—%ŞŠŐĹ­I¨Ňź*ż&iÚmŽM îaťĹ©‡[SÍ捱r^Ěš:ĘŃj´Ëz‚ ^0—‰ö_RőWçD*ŤćÔq8Roažçß8ż˙­ÉßÁ÷Y~Ľ)u1˝fóď5¦˙ďsT…ýWC˘Yşş)‰-Ň :ŚŠŃŽ°ąďÖ[â1Đ÷ÄiČý!Ţ€â çÇ×IýA5†w–tĽWźWŁ)čz¤ č…͙Ԝz–5ŤŠ\łAő̲ÚO÷ŘĘ2Y—îÎĹß°óŠCĆe¸“ĄL.MÁšRx˙WůŤ‡ßĆĂ Vߡ‰Oăx¶"ű‡ÂŇa$ÄG —§V©Í~ꟸ#ëÍ×ú§ýůˇ|UżÂÝŕ@xĹt¶_űҲcç.…@zF˘)T%‹ÓÚoś>u„Iď>§­l°t64u0?×ë{îĹü¦¨´ŠtB“ň_±`ř™®g˛/Ćwé Ť^Ëy+ éť,^ YOąéćÎyÎĺôML†DůšÂ|{óäMĚW0`4Ŕ€ŃčÁđ”Ě3÷ě9†ďමřg}<ćδëö®Ëżö`ćOŁűţݦďÁĆ1ő?uţZű÷q«Ń‚Š`AHź9ĆÄĐźáíf­ŤťL5vş‰ďľŮn~ă×%´ý2Y< DRoĺNÔ ŰW™Ó úJoŽG_ÉRňÚJ^”@rę%”·ÖiFŹ˛ÄłŠ˝Ąb5W(ŽÉGP„qŽďáH çý0מ‚Ö~8˙°vá)~żľs?JO?§UÔßĎY…tt?‡€|ݧŃ!Ę·éîGͲCŇŢ>Ś´ě=gńs‚}‡ĆqnN# {Az9sdm%ˇz9á{8€CăPs±”.Â’Ožŕ¶!łAřͤ˝ kĂőÂďçCé_ޏťH·q»˙ üü{0žŁ×şń@–ăř â\Ťßgˇü=†řđ};âÍĹřsć!ţJ.Âo—0›čnˇ·1Y†đŰf¦»¤ÁăAz{™ CřŤÇďKPŹËđą/ĹüZ)Ć4ańkžŢšő7ş8–aŤóŇú‡r-˛ććĆP4l…Ő 41PG/üm\a©łią-BpmZé>EhÚ •lď`9»nݎ]ŤpŻ-[C5٧TO10šŞ2şËFxÝó“yŔeń@fx´RuwÓ­q+Öí]™ÉűÜű·E0ź6© ‹ ,¸ ĚtŻd·»>pĎ€F`ĆXRŁ=š$ě°JčŤ}yřť*ţ3<Üi?ţťjĂř…Ő†8šâč&‹Łť†xŢôJľęŽŠŢ2WVÓr fMő›ÉR1›?]¨F u¸W„0=¤w_˝Đ\_ńµaárĄoŐ2˙ßméŃżëá—]Ý×­ …e¤{< x§Rmd¦ĘP_ ×†Y*ţÇőđakĄ·”ĎܦĐ3…tüp‰ĎF¸Wđ~P—®Ę!ęPąŐFH×%…B0— é:ˇŽ4L’ďsÎ1ćÔIj?+âü%ę°ˇý”°)LţiÂEd2UřnáqC:Ú™üˇJ˘„M;ëŕG< á÷Ç’ŔÉř” 1d›ů&K§SS›ů&jJ'&%ë&ź\™aŇ Ő©ZŁ7QőÔçÄ~ăżë=śwpłČ6>:Gřă–+PäŐR˘ń§ ­ÁOčͦ~•ęͦkřÖV$čÍ¦ŹŤYÚ(‡O/};˝ŰZ‡ Ż•HaşâŹŇů¤žŁt)L7_a!Iż|µÄ’O¦“đë=öÓt˘Ć~¨Ż@0%ŻÄ€´uJÝÜLiíŔg—P:9źK2Ç;=8 §r áx®@aĽŰÎ ŮT©Ţ´×,yáúđb”Oż^ĺ“řv µ żG#Ô”·ŕoř>I›xj…pnč㲉÷ý ŮÄJżEoú»1-ô×bË_Mőł„ĽMu“Ż€j‹>Ż6>;CřKF şB CJ˙L4.LďÄźÚÔŮ (ţsč}>‹0 ©K2 Hzż”Á%—!,f@2Đűe –FC-«Ň”ąú¶}ĄľŃˇĽeäš0jn=Ô;22ÎŁŐŤ&`ŤP ń„üK+iF˝.».»6Ć6:Ť¶ŢÎ^×e÷?ě– ÷RMK·íże˙;ök¦Ť°[xŢľ‚:y¤×x•٧îě±\ź,Ś)0î2c~>ëGč7w`1ěcç„R™u:đwÝú“•<ć ĺs*ąGMQY’7űn©y˙Шčšrw%%ˇf¨CᨅBءĹ{ŘoăQbÖ!ÔŢ*ŁkČ>_ŐQ+Ł}2<¬/TÇUđ†*âę-ĽB¸c(ýçé{Î5Kµh–ęČRÝÜ 6ęnĹp˰Ű<ńĚ»}ŻZ˝݆•´Ń<°ďś”€µ[–ŃÔÇEĽ5ĐSť$üąvę‘¶!Ţd†7Ő€=˛;…ě1­F<ę w ţd†ßÉ~C=ş“}iOľ~ ůAOěÇŚ˙Lď ~ŰÁóz¤}Ă©çFç|Ô­¸É0Ó ˝0pJËřm!ľźEËP× #ôÄFć¤u±đG(.ȸ”ń…nAś}łqö3~Q·‡4ľ=Gĺtľ幍Év+ŇĽťŃĽăßÎđŽbîrŇPŃňůnçäŮ=çüćÖË{ĺ÷ÉGeđ>çŰ.Śp\~sóôYrŕçĂ’ßÜĽ$ť;ő/q¨ţqąŽ9a9–(7˝(ß1ˇ–?^Ţť$U ‰—~ywĘD |Ńnü}J¨öq¦gół üUé'P†!ÄŰŚxqĘѰĂëŁHt edź`›–ˇţć MícšlđÚ öďčřă»Ţ)őo:?m‰“ľé;QüZ…ŤóSspË÷¶ň€F@[u\°M ßcÇ«u‰SKnhHCU7Ą^5éT×QŘ“ÓŐÖ2ÍPé¦ďăď¶2¦ÍR†ćAşPĐbŞkRËtĘęˇÔ-q•ß!•?VMr>ťö”żˇ§§K3}2Ý7og§­% StKAŃ´óë¸y9S„— ×V…śĐĂ{Ôp}YËw´2vĚ”BX‡LšˇŤJq3bŽŠŻo yĂ&fÔ“óˇÍPaęś§†żGź/lÖGĘiRT~ߍI¶‹TÚÖĄŚ×ő抰Üb0w2ź.•óîŮá™R1ź-⯴p#§ß…cSĐĹ şD ˙@H9®›bluc°˛ŞŽ©HRT™MşZhĺlË3"Üşšđ/Sé÷Ć‘Ď$ç"»ś`±]Î Éóšĺ["ěen©o= |™·B+đ×%"m™IL*S?o ÔÂj)SĚźZ±Ň[?ĺTWĆŰ»ÁAÂSä"ÄY!’•~m%~Ĺ„Żó3ń˝żKXýSZÔI &á}>găsľđň®„ÍĂ'N•yK˙/2°S^‚Ď‹ńy©dZ%¦ đ™Áçeř\ĎĹř\„Ďe"Î\¸O™¨ß\8Đ[ŠĎ%ř¤9"żNŽ t`łź+ä÷ŹĐ÷+đy9>Wăs•Ä+ŢQűţ›µň˝]VibĆs˙M ýEŕťußÓ˝ô~e¬ě÷ă_YÇěOˇ[t×É÷azß ß‹ô~•đî¦oR÷“űżś˙Îź)lÎ˙z©‡OÓű5řĽź×Iy_˘đkńy=>Uw/r™<ąťŢÁ ×3ąÂéÝĂ0:đľ ź›ńy>·âs‹đË(Ľo“ď Ź`“nHÚ[ŚŻş]B-/ţu ÖŤĘ…Fž–ín #¸I6ěőß0]„ŰšţÓíĘ$”g§đŰ0¶Č˙;ÜľLG9ü%6é7úüRG~i´2hłßx÷P9˛ťÁ  âĎdĐŤ0K(弍M= l<ç˙ €y .Ňŕ´@˙R 2°AŚ…ü.,CŕquľË-°a%Âĺ V…ŔĺġźEXĂ€ňf-ÚHAďW2 üő }żŠm¶¸šŹľ_ĂŕÚŘp=Bŕz ¶X`+éi»7"P·…ď°ŔN»Cŕf{Cŕ[×·2¸ÁQ ÜĹ€ňůn·#Đű˝P™şŹ-ˇ÷űr ‡Ţ G§/“ë’«ľ÷1 Ůň ôxô˝ëc§ëŽGŔ [9fPŠ€2°>Ôzt6€ş=_¤ľ‚6xßFc,K , mTAmý,^Ža_?‹Naęa§ ď"¤Ďë!ä34–T.s¨;§‘MÍb2nqÁ™Ď ěýB­K€7€2ÎŢZîÔŐČż€| O»„\ź ĺlHřk.ŻţšK(3#řäk./A]VđYĹç(>O"nŮ _ݬëÖÔ?Äôqĺrlˇ»Fäzy<†ĎÇ…¬÷ŔďQäsP¨öč,¦áIŚóâ?aŔyqŢ‚8O‹`}zâľqŢŠr>+üµĎď@Üw"Îs(›ľ~tőę]b,kTEżŽŻ­QŤ5Íă§íüu~-*~Á$źŤ_«°ňówëČáŘą˛Ő(ŃĐ–©Őel¶ą/5MÎß\föýń¨´hËZsĐÚ˛Ö;Uľé~_[ŮP׾N¸ ” mM«§ŰYYw©ŔH®7 |PnÔ˘jËXŁT8Ő¤Ş°'çqp^`A‹şÖߥIôőÝš&U›äč°Č1žÓ¨ťöôű.íHąT-UĎŚ(+<€B—UÂ@NÍŤŇ„¶®V—h¶ž#3“ńźĹ–ť`"¸GĹź“”ź¶ZV_Ř1ŮĆßVYçŘÓá/ďŃbjëdµ%i]Ł“ŁR¨­« )m]­¶„/­›xĄ÷3;×[-śĚo/ű Ĺ˙Á€ 6Ui‹oC*_j¦I0ťŹ°T6m}­—îá܉ü6ž†- e¨-Ř h^[D›HósúňýąŃˇęŘT©EőBs'ˇ°•MŐ:e3cç?MçŻ-Ë ht‘X®şX OeMéµÉ»DĄ˙Ţ8ńMt´eµŹęr.ć˘Ú•=&ó{_ľšó¶ŕ›őmĐăi ·.85É«­ż}Ԕφ’[3?ŰŰ0×Oç5g™őa>řj ukĺŰ’a|µ…˝r­.äM_އk jʆČ]«+üY[˝°ŮľŢłV=ü©Ď†Čsk×›= .#[k•Ç^žjч¶ŕ7ĎWŞá=0ëŐđĂ!úÓÖŽ uČ—řÂűŐjüç4vkďź´ŐQKY ô Ô%żń¶kĆ}r>ÚRŕ@ŞKuU[Ň[ďşęµSú E·¦G[ěĹźQÎd‰FYŘ•Ż­÷­éĽđJŃ ĆżÇ3řé!›ł}7ťĘjR˘ş~™Mš •zO˝Jő$Ęl%?Ô/‚:6ńÚ¬đJk‹šTÂÓłtcúŽ|\ú[„˝€oUĂűµ5ÉQůo 2OÇ”ţpxnWx¦~Ďd´„ËçŔú]ב{Sţ>ogĄp<íMźź·°•D¬Çěçřu”k覅ż>ž¸nŮ;KáŔË›Â_Ô8E(ë”(|Ş!=+XzĎ4C:Ř_âEHí’ľ·°sF,˝úéšQ_˝zëg§ µ\uźžu2FÚ+CťBY\=›ľăÚro­|Ź|÷t2KľO¦wZ„-çRÓ^]Á9-oŤúüxy\ŕřőĘc]çˇ(ŔVŚ_ä1Ă–™­aľAÝ+—Ö¬­×3ćFx/Żń†dłđ7Ö™xwĹŕÝÉxwhĽgâ;ĐčAľ‹0íqřĎ‹Á.ă?Gă4ď5đżdŇ_@~g‘Nź—átPFś–qÖČŮ'BdąeYS–ĺ1dY&ÔK9¸,ŕŘ}C“ĺ M/+cĘ’Ť!Ëj&Ë*M–µüc,¤—µ1eŮC–őL–+5Y®vHN×dąVÓËŐ1eą>†,™,×i˛8żSkBd!˝lŠ)˶˛lęeĽ;®»qh€S›ÔŽÜ˙nĆ—ĆßqŽÝK&tţ&;Ň#üŤ”{…ż‰s1Ć9(¤y+âmę¦ŃCBÚë#Âů;Śiş]ÔľąŽ-yĐudťđl_%›+—µđ.†ÓRΝ҂˙Ăđ.Dp “6Đu‡.~Zs±.&cŠë‚"YĽ ZÇ÷4wϦŠůrˇZÁ(´Žţ~bxr1[jŇrşlKΤ\±R¸6BŻ+ ô‰(éłÎŹÎ[űrĺ–pKAď‰Đąş_9Îw8"MH9źÓ:/ćÚ†ë€ĘŐ Ôv•ĎÔU>Ą|ţ8hĽu°:¬·‹5:ÜÚţî€~Ő}Ůvýv»ú˝É‘mâ ·¶ŤűĽ¨7Ľô.ĐîĄ ´ŰĄjw"ĘîÂXĘŤ:y#ő"ń˙‰f‚‰oFU‹~@¬+ëSÁţÓ{Z&ńY§\cęLˇĆS¨Ö&Ą0±oŐĶîÎ94‘fKf)'µ˘~k’˘>F¶ş˘ ŃçI´°Ž ŕ«#É”XëHO­‹Vë-‡®?Ź~P˙ž' S—ŽŇłySčŁă¬~i8yŞ'źíŰĹĐ•'±KH¦«ş8pѧÖA"ś®WĆ4ä3*ę€ÄůĐ{°ÄLoµŰe÷áďíÓUÖ˙|uh˘îzŹ;Á“Ö11j«hş–=z€Ř-ü-–:bHĎüMˇYL|nËYwd†]2xďţ®T«ĘýŽ9 «#uWyĚ‘ ž0ZF:Î*ŁdşŠ‰ŕÍţ~ZĎÜalucÂs"XÂć6FFŘ÷‹„żőU×·±Čę F2u×8XÁÓpQ”[g1tŐyŔ[ ü=µ:ž©¸ę8Ćřj8XHśŰĄŕëáĘ÷„ç+Ča‡´·ŃMnĐóĹ©Xc:]â‡ńă—eD˛ýQ˙ýoG:i„Ö Í€öLŹľ‡ ˇłč`µ·€ß[0Á¶Ç ć0Źpq Ď ^é_€°Aö6Đţ Žł€A˝t±a ]ÚwÁq1 ýËj€Ą L{3HÚŹ@zá8|_­ß_]đő˙kDpO‡. é…ă¬ap%ÂúŕJ¦="$ ]`Dz Ű;rB’=$×1¸a3]Ň ÇąÁˇ^Ž”¶0ŘŽ°#lg° aw °‹Á„[bŔíq÷Ľđý1‡í0Ć wŇW;qÇ´´]'xÍ9ËŽ„–műŹÖgiţŘnĐA Á]Ť&ŕřě<čéË— 'ó°ő ‘űbçv¬+zŢ-\W&ýcaŢo. 4GŕJŃĘZ‰čÁo´Z¶ ß';Qţń¦ ŢT†×Žô¦1zŕŽA“މřÓ„Çc7ţ†ć Ću#ťYB]q=“ ҵYřM*4ËóXš(Ť¶-B˝^ă"ħýÜ3„CMţe“ęő=@c‰đŻÜá+ŕç·É ŰÁ ‰„md÷˙*ÓŐ>„Í\Eř×AúWaĽ+0Ţj&Ϥ·ŽÉłń®D<߀߮b<áwQȦëy!‹4'Çńŕ_Çđá÷-(+4+Ĺ8›.čţcL÷Ľ\ń•ú[ÎV'ËľŠú߆úżÓM”X•í4)©/2: 74 żŤşÝrďBYv3ţT^ů*đ=włAΛŢ^Lă>ÔÍ~”š‰żgř ĎA~ÄđŹă7âşůˇ–ËCÂ_ĎŰ„ż*řÜîŔ˙bň­©’VęE¤q'Ć˝ źw#ŤŁHĂŃOŞqďEśűńů€đWËç0Ţ}|úđ™Gü^äÓďŕ®b˛nBĘöbŚz®í ÄŰlá5ŚĎ"ňB^%wwŻ…ż"˙ZäU‰Áë$ňEy«ĐÇĹü<…yTEÝśÁ<äö ęŮ·3ÂlßA[± ńGľŹ9|áťl(áP™<+¤]xezLŁÉË2Ź÷ęîi‡ţgĚŔóçŰϰ8đí-η÷ ż<‘ßÜç3B­?őČó·!7¸žĘĺs(ÓŰ…?đ"ęâ˙¦0Ű›•,íďÄ´;v.ý×·ť:Ţ»„jóA®÷ \ďC9Ţ‹´ݤţ^“ýgBd˙ĘĘë?/;Ôžpą®br}PËÓĎňţÆĽ˙ĘěŘě4Ů’ůçCdţ”9=“É<ů˝ŔňâByý„öú…kŹÓĆ¡ţ~Ňům·×źDzźÁvéÓţÄ˙âń?ĂňçW0ż†ĎĎb:>‡éřUŚóyĆc%ňř‚Ăcź&Ó˙E´ÓżĎŻ í/ Yˇ ;ň%‡^ň~·`řo iŹż„ůŕ´[éĎ µ}z‘ĺ×ď  żkHç×đůu-ťżŹqţ@řĺëŹ0î71ÎăóŰřü|ľ„4ľ…2@›°DĄě 2~Óö2¦é'Mż"Ôvć»ř|MŰ™W™žˇśA>uăďĎ ő ˛ÇëNŘKL_ÜŢĽ!|{ó§Śß…´=†qČöíYÂ/ĎŔ÷‡ŚĐů+|ţµFľýÓń—ÂłKiG»”ţ‘PŰúżÁx‡ńţńţIK+­B[á·&˝nMމÎńm[´DČ*1?­Ć­Ý˘†ď1ÉŁÓµĄŻŐšľŕuręާä×ɵE¤O۸źEÝ$†őpu9ŚĐŹ>ď×äÝn’×$·¶ućÎW[˛ĆÎ×~×§«í!ŃËß·u9´ť‰Żßë°ó{Yçש¦{­<šřuŮů˝˘óSw¤^5Égă7ÓÎď»:?m¶}™)}şĽ6ţ=vţŻéüµŐüVţ€?G„ן0ůLrjKŢu9ż§óU—Ŕ«·¬A¸:yX­űm­ś~=®śÚŇq]Î×u9ÔĄä‘r|-*?mKżťżWuţÚbě{mňÂ_—`kN˛xvşM K…ÝŔ.TĂď4 l˘›IP]đÉĂ…JEŢoaý˛Ń©ázŰ÷ZҶo±®ßě÷†ŽżDÁO}__ކßb“/‰śË„µŚä\.¬eě5S:ĂäzÚ±¶:˙čüWŞřşŹÉďra/W¨á;V k9ů©ś¸Ś„?Ąm’kuB=d…5~ W›žÖDči­žz>‚żńşY łÎžn}ÉĂat®Św˝*ďęZĺÝ@^ŔżJĹź­~ ß—ű&ń·íhá|®ŽH˙5Öô|Wc9:×ZŇoI§žŹ!ő$<Ż‹HßFkúůÚ]/}Q;‚V%IźÍ>ß`‘Çůu™ŽżIŐĂ2=|s =™ô˛E•Łw¬öe«5]Aß|›ŠŻő˝Tź‘ôbăż=!˙#ôşC ×ŰçWÂôşS•#Đ'ÝĄ†Űč†=9˝ÝÂ^ŹnÖöÍ[ůÝc×s ]»Ů˘gSßŕ;ţ+c)§eçôpH×^•Ď]zş÷©ágl.ňŢŢ\±XŞfF+ůŚĽŮ>SęĎôÂůĆ™Ą•Lˇ)ćO­Xą1ăë+ĺ+“?]Íű2ŐÁ\U†jrěWĺx8®=9`Ť:–đŇ.žŢź­ü×úäňözs«°Ö›ď&­7‡„µŢĆJ«řslüMé;‘ľŰ”đô"“<&ş· {9ľCÄ/ÇóűFG† ˝ąjľ/Sr g17śŻltĘ«FôN…hjŹÎô¨Ęô!=ü.a5*ĺß­*g±M9ÁLHm˘pžŘôŞŚ;^ŕŇÝ#’5u÷ kSHý}ÂZô^·§Ţ§sż°Á”đÔθM¬şę9XŹ©twéá˝jřn=ĽO żIĎ«üc5áaU`iˇx27Tčs‹~¦żT–™s­:č–sŹBĹ@¤Ë~ßlóxÂ^#E˛W¨I§ă]ÓŽ [MK/ŃŤuîÂN¨ô"‘†T-ęN¨ŃHۡa{z–ęřE_”xŮ$żMź%;˙€>bç˙şI~˙íü—ëüË ľ~Ú…'Ż»Fđ+*ţ»Lřş|&9«v9WčrŽÚőôݤůtRŘ-÷)5ü¸~Z t‚Ψzz^HŤßnJż.w~9݇#äzD żÓT>tú:[ý{TXóuĄŽ˙X=Ňű¸ťßĺ:żłÂZŢWęĺý •~ÔÉÔ¸ĺ˙Ia/O {>>­†?¨‡?Ł„§Ż°ĺn—t˝éĺÂÔnJď[D˛úţV˙}6|&¬AȰ'ç˙6ž?z»h«o·¤›}×'NµN9µ[éU¶ôEŮçY‹<¶öžóŃéÚŇ˙%<1XnOg”]űäň=§ĘëtťŽŽg8ćč;ô.ä·=ôŢ"üăŹRěŽÔI2žK7Ĺî%o•ďŢiSä»wiU»Śç.ä@~`xÉĽ„—N‡çOŕOGÜ´I9Ö\° $ĆťTýż^ű+–#ďŽÍ ĺ™QGyRŘnĽ)Ľ{ËĐ{g,ąüňÔY_ą^&şňýUzď–ďŻĐ{—đŹ_Hˇ˙ď3…Š<çČđ×(ĽGĘĺÝQ>Oř»ŮS8X ďtÁĹňűëôť¶Ę/†lŚ`}}B×8!•ö/oVúöIŇ÷Î:¦Ď"˙Á$ň\¦ccÓŁ\ľ:|ŢuřĽ^¦/éY"«lzµĐ±ź—H>„-Ă6ássÂŚŰ\Gz ö9çéoqăÉ•đ~>kY‰P‹óżź7âs>wás'>·ăó&|îĆçÍřĽź{¤^î˘ôěeú¦ĂKhî"”mę}ćÉ2–mHgź|?Cşćú®÷Ě3É;E“wĘËĺkEůöËwwŞ"IůÚ/ę~(Ť‚t,5ś$ú8H~CzŕĐŃťMwL|耪Ç)ś,=ÝŠĎř<ŚĎC.žś9‡wQŹQ_ćřől0Žŕóv&pfxyš„ńďáőß:cf|¨đ.B¦ E¸ńąS*i/ĚI*ĂQůţŹß)Ô^č Ćë@𤒩•©ËvËŔ® €ďw‹d·¨ĹëÔčđż–` QŮ»4<9Ź›ÂYމ2Ägj|>‰«ę˝řĽOÄ_™Ařµ¸÷¸rÉđţ>ďÇ'¸tQµ7ŽëpLňŮu.=˛‹,ôz%˝Ýś^‡PŻo˝éő ŹZ.ÔCStş}’îM˛&űăĹyůý^Ţ:PżôV›´c*ý±W†č¬™¨:U‹%ﵹ5ý˘ńÝšz´”"ŘRv sK- ­žZ»AÁ[;żŽD°Žtizć1ëËÜRLs꜉„Ü8ŽO:É•).JĽĄ„7ŚĎů}}/ąďţE#e§¶ůńˢ~µ­+Q‘ňż+ž•đĺćÖŻQ­DĘżąe9Éý >Gĺ÷ô˝ŠĎSř<ĂôŃ.Ôłő©·Ž¤Ó‡ä{ű9ĆŇŘťĆÄéL’ogDýň čťĆç#ř|ź'ńůäż’ř?ŠĎłńäöâť­ŁÜ:ߌoů=aŕWkţ¤pĹ Đ}\ňyŢź–áWĐű3 őňĚ8ęĹVŽ&ďĺç‰ďňń඲Šř„­1}OŤó÷¤|éŹŇó>źÄ'¬ĽŠˇwĎ.żUśźň]Oľ@ď-ř|>ßîĆ“+–`ÖęyQוLt"ą˛’)Fú=çů:¦?…rZŇw°雪áA:žĹç;bĄß?ýuL˝O0ßăÁ7…+Ý€îs őţ\ĺ@:é#ť´Z´Y`2v đ“ď;şj€=ł̵Ŕ|  ětúKdB`1ĄX΀z¨üdőe¦SÚ ˙ „O'ŞÓ÷,µëÖ2XĎ`ÂŐ ®ÁSŃérz7ťb3Ęü4ňM›Eđ¤r~Zą ¶2Ř;5XŤ°‹Ázż‰Á đĆ÷Z`Â~„ nF8Č€đéýV„Ž€ŰĐ ęw Đ÷ŁpűŔ1ŠŰý HÖ„BĹŠ€â5‚PŽÂŁřŁ!PepŢbđp đ(ŞçŹ#<Ćଞ@ Ü'Ęŕc1áŁü‚g°áż¨…’Ůkz˙%Ô.}šÁ§čý—üjLřu+ľŔ€d˘÷/2řr|áK >ŹÇ˙…ý6ß±Ŕď1řýđ‡ ľđ­„đŤđ2Â+ ^MßCŕń[^gđ"Â÷~ľĎŕĎř ˘ý—5€^îź×ŕoC`˛S}Ëm$qxx´§f· í;’;6s™Đ+pÂŢ{±g éµÉX©˙c»šdze$W®äoĎ÷VKeQÓőműrŐrá´Ż†±ÜBB®(iTAÇ窒.y9ÉŽ|żK­TŚ+SęSçDô5%Їáłě’¤Ü©BýMľf e„ÜyJŽĺMzLň‡ŐwŃÚb–ý ˙węßĂŇÔĆř·±ťŠmßÔ°o‡Řď ˙wŞ=Zü7ářhË4hq¦düżţ·Ô˙cq!í?w>®i–Ó?]@“kýćü~Ý˙ţ“ M“ÜçĚ<Ó‚}ߦ Yöpĺq9×4đŕhˇ÷„]óÇçJćŤHrb©ÓY,ěŮ’N3Â-j¶¤[ĎÉäĂďIń˛Š’›ÍË‚ßÄQ•oş-¤hjx¦˘*ݵąAŮ^ŕx‚…Q§…ć*­›O¸niVýfŐÍŞ/·ę§°jĂČ·Ŕ'¤1ÉyJÔ%F‡F§…A«ęĺ±^ď°ů×műJ}ŁCůÚÖÖC˝##ăěW7š€ ćO§ď44L?m’=}4äŰö߲˙Ŕűeđ]z°ßď>'Ň÷ś‹nI¬2űöú­OË;ał·˝îď÷Ů,ú´|ńdˇ\*ç‹UźDYłíŹš˘N)ŠŐ|Ů ‚ş©;}.fôi#ąŢąüţÜp^’¸+)‰©Ănĺó)µPŕ Ţ{Řď=ě7].s«ŢtĆY¨tMÍúłţ7ٰo·ęYö>ţ®błT7Kőů(ŐM/ČĹ˙˙lŢÎ4ŘýY.ć†FŞĺú¸µx%Í ŹĄyáqóÂcŃĽđčlÍ Źć…ÇaĽ†EóÂc¡2yV4/<~uńa…€ÉެÍ Ź)ţGPfÇf7/<Í Źż-šíY˘yá±ml‡ÇO«ń›káSÔđć…Çţ żyᱦť_óÂc¤3×.góÂc¤w‰•óÂc_k^xÜĽđX‘×Ćďra/Í Ź%ý5zZ«„7/<6É řW©řÍ Ź-ômů{]Dú6ZÓ׼đÂ7ÇĐ“I/[T9šká;Ôđć…ÇHoŹ]ĎÍ Ź á®˝*źć…Ç2Ľyᱤ׼đ¸yá±­ péîÉšş{…µ©m^x¬…÷©áÍ Ź ń„˝FŠd5®P“N›ůءa{zškřeżyá1…źRĂ›3<[ý{TXóµyá1Ň}RŘËßSžŹO«áÍ Źĺ{óÂc¦SşžµČckď9ť®-ýÍ Źš7/Îy»¤Łuh8żÁ‹ĽB®č9”ďżQ.ůŰ5 ?ŨŻFě›Ó'L˘Ď‘@˙Ú}(Cs„ß/¤ă9g âLFśvÄţ ě*Útg`x†÷ŕoşn˘[Čľ Đž‰´{ö,dY%Ôc—!l‰đŻ YĆľĎgüŕ7ôK.ĆpŔ‡>´E03 ľmń6#Ąĺ2ˇży·Ąř ćC–#ŻĄÂźY!‚׬DýP?îĎ…z”:ôgŔ'şĂŹă7 “ei_‹é¸ă®ÇôŻC˝BEzYKă^Ťé‡t_ËŇÍé_‡ôŻÇç řÜ„|6dŮ‚˛lEśÍ(Ë6!Ź#'ý@:ˇ?÷ -ťŰídňiď@Ú»ćN”i7҆~ÝWwâŢ‚¸t5]#´÷2Úű˙ >oĹç!!ËĹa¤séĽ$ĽcĚÝ#Ç9ŤŰđy;>ďĐhţ¸ĎÂť\ŚzťŹ2C_í.Ô/ÇíŢ˝BöĎ8ŢEHź×CČgč—QąĚˇîúUĎb2nq/ţő;ýB­K€7€2ÎÁ¸ŽNRW#˙ň<ír.ĘŮňvpŻBýAY€23‚Ď‘g e]VđYĹç¨PŻő(ä ;aŇĚý=ÄôqĺrlaęĘőňx źĐ[‚üE>…jŹÎbžÄ8O!ţśgç-ó´Ö§·!îŰç­(çłď“űÄ}'â<‡˛ťęŃór‡źěÓ°y—„GĎŹfO©ř‰ŹfOŰů ęüZTüÄGŤ· żtÔŃóGőđ65Ľd“ßů»‚ËÇľ?%÷d•Oŕ$)j¸~â„ńü[9hO¨'ő¨úô€®U©'ë 6=M·Ę-Şş\3TüŹhř!ó|éČrÖa‘#\k9[BĘKŐôřvZÓźÔ§.«<|™•în+1[ç?3˙ŮQügŮůŽáíQńç$ĺ7[ŤŻźÄ4ŮĆßV˙ćXÓ‘.čřsUü{můNrŮŇ5OŘíÍ|5ü„M>řë~—ev®·Z8™ß^(öŠ»F‹˝˛Ħ Űüţ÷ÔL“`:a©PęŮýéăö $<”î% ^0Ďé“÷OŽMĂ—Z4,´¦đ [T«ľQ3vţÓtţ—Eht‘8ěg±žĘšŇk“w‰J˙˝qâ›č,Ué<ŞËąL Oź°éŐ ŻÓ^µÉc’kąE.^jć·BÄjBŹšj{źeÖ‡ęšrľ+ëĂ·'$Ăř&» }©ľĘ"_\ÔĎÚʿ͎¬fáđžµę1ŕ}6Dž[Ăô¸FŘěFđ$ţµVyěĺ©}¬ö|ľR Ü4±^ ?˘y¸Ě–ü/®Śęđ*ˇćńŐjüç4vkďź´ŐQKY ¸óר|cÝ„÷Éů\+ěyxť°×UőV‚z×ŐôPT[ĄŢfŽŇë Ş\Ďđđ´Hý;ńűż6HWXzu[đďńlą=˝¶ď¦VMúÚ¤ęK?ŘK;Ü ’ę7(ÔDxsÂÓłeśţŘ‘ŹK‹°Ô­jř =|›HT ˙&ĚńtLéwHçv…gĽÓâÂÂi˙Á›ňw˘5x)Q×kĽťeHÇ;%­%–\~ü–úĘ5HtÓřlĂç$îŽMĄpĚăMáďď‚ĎÉ2|€Â§ŇcÚ[`:}Žý%^[Ü.é„äKŻ~şfÔWŻU˘;]¨ĺŞCľ'<‰EŽĄ˝5żjťďŇäjËžĆ#V,¬g´řÂxľéĹH{e¨ź3ĄfÓ÷nůîťH×#ß=ťĚ’ď“é}6>ĺĽdÚ«+8?t‚ŢiŤgD8~˝ňX×yč¸0¦#řäć©tIÍü´fX˝Ţ“QńáńĽ,5ĆKářČqq,Ĺůrq—$Ă&–Ż_iëÉč-Hîuäß%âŽçKđąź—ş1ĺxĽ/ާÉvŽ_OM.Âçe2ţ{‰Ď’„r-©Ł\)¬q@7#ߥ÷ĄL®$[R—Éášş$5uYÓEtĆkăş%=Ó¸ţ·¨'ߎÝĺ ósů„¦ß·@Ë××{=ů=u1=áÍR[Đ@wbÖ9+=óxQ=oĄ•^@ľ­…ÔäëI(_=9vrŇAµ«$źĎŇwÓÁµđ\‹Ď5˙0áĂřU‡ŽOAŘ•ř\'ăľ Ľ¶¸aţ^ŕí±tä7DŰë¨#¤“zé¤C`}_‚a‚;–7M¨ű~;P2v3´_·[Ű~ß‹ĚG¸áҸ„Áe‹,ţúO‚ŕ{ziŹŃ* !¬f@{{é} u°Ąß´·—ĂU 6&€Í°Ťí‹Ţ΀ŇIď72Đ÷őĐľBľ§÷ćŕ8űH<¤Ű# AĎwÚw~'ÂÝ îdĐŽ@{oďgŔ÷óć¨ccĐÇ€dČ3č7•ĄDë¸'hźî0R”Ŕ)Näˇ}ş¤Ź3 N3Ű‹úţÝ'bŔÓ1ŕ­đ,çBŕY ŘůIÚ7=ůśmŻXi¨Żáva¶‹5¤” ¶W,ő­s"zŻŘ~!÷ŠAů€vťÎš4˛źÚVü ~´×ŕ×´ ß÷š)Ô˝SÎeHӢүĽąČKÁ‡ŔN§“ŃşĐöÎBZ‹örä;ÓÓ*üsDhLĎlţą!ËX:Aî­BÝOqÁżáfÔČwżŻK™üáw~/ęž2_‚ńÉ·XŠ8ËYúV˛ô®.GĽ+l@l3ř ŹŐÜKĆń× ąĎĄńˇC»ă­ĹxW2y6 ľŻfň\…x× „_‡ß62žQЉýęoęďÄßĚđ7łĽ‚¶ř3g;Ă…|úeˇîÉŮ!‚űÇ =żŔń%R›‘ţ•(t†u¶ĺŮ+ťßwu~ę>ŞÔ2›ţI^mß•Î˙5ťżşMĘÎđŐíNę&™0ůLrjŰ›t9ż§ó] âĎŃĂ/‰lĎ×ăĘąĐ.çëş™dr|-*?/łňŻęü ›ťPĺ…ż.Á'pAźM ĹÂnh—«ˇ}5ĚĐj»š¬ Őg7ÇÚD_¦˛Đ÷bľˇ'EÝĐ$ožĺáęÂÔ-¦ş&ŹÍ‡˛m0xÇ×6éyţš)ť6=©‰ü ó×6é~O$żŐv~ŞóË*řňN]>ż5Â^„× [–ňč®SăÝĄÓ˝R ?c+ŇwŚáZ•ľL®<0:ś/V3ŐRĆ Z±Ň˝oĺđzĽiex´RÍ ćNć39üŇç ö\ĎoÇÓDZŻŠôpLU>BßÝýg…÷¦ň *żJ ?a+ňäé|lUęęţÚľ ;őpu?Źęúĺ«Í…U÷…îX3ď$UEۇąĎKÝ7”úˇ®îJ}%"źŤ]&›Ľ›„=ź7‹$ĺĚÜZŮĘŮ–„úÚZG}pşŰ„ÝmńMQ_ŔąÖŻŮĚŞůrĆůç[Ł’|Ç—~÷ĄĎq-2#ąrőz÷’Îjy4Ď/ŠŇä»QŚź]ŠŁżÂ^ŽvŞá=»Ôđ=¦n€Îţ:„ße[ŮŰ-¬e/Đő¸IĹ˙¸ľG żĂVĂҦ‡Ý›íręČ-*ţ ľţnäo’cŻBwĚŰČĽő‹€Ó!‚CT´.É_Źä/áĐמăÖ*eKUŠm ˇź$[Â&‹ş[˙m˘+‡e›ďíÂßâŐ%ÂۢY.m›.üm_)Ě×7QŹobZßDš´fÍOô ĽS~»ŢgĘđďĐ{·|_@ď=±téÇ﩯.˝ë:gÉwď˘ď9ňýz§-Oóä÷ďŇ÷ąÂß9Oy”—tűá}ľ”ËŰZµ@(ű6ľGßi_GF~ťľ/ţľ =O˝.cŠÝP~™đ7PŔs±!"ë˛ĘRÉóűD‚ŻoęÚÄ3ZŢţ –fĘ›6-oŘ_ҵůo\Ë„ż¦9…í3ĽŻ|íłôňÝ»ö,+b•µpü:–µ?%ş!k°˝;ľ×19§Šäwű^)ߍwűŽcצ–m4ëĺ{âkľ××1kN˝·ŃÝ©Ńtk˘O«űČŐJˇ –b;0c.«ăOÜňvżŮ¨'_ ·AřËĆáyŤđ·*Ŕó:—Nz ĐôÝů^K÷.ío!QÜc mëţŢ8´SŘĹôđĺđşÉ úg37Hz_‰Y˝ňrCó-ÉŞŰzňďz ňnţŠę$úÝ<ˇúő˝zňz›„_ľŕ}kB=lťP=ř嬞|ŢáŻpKż]„7ń5dPK{ٍ­˝ż±Žůpˇ¶÷)Ę}Ŕ‡×Íe!l'>wȰŹSś›đąź»e¸×Ő®~Ś ‡«ë’Sź1ńBmÚQ†.cĹ “ڶµË–őwÚ™y©_Ó¶ÖůWô4F¬u¶ň‰JźL.ú=śěň<!ř˘ĚSx—†2ďŕ]N(ĘĽ€wČŁ.žobúŢDąR¨7Q7zďÄ´‡~ިßz 7EĘ‘đ\D©ű4;0ŞťéÖBÇ>:ĘtF›ŇľÓ®÷¤Zč{çM=§iĐ>zę!ńĹíŃ÷kSŹ©'ŻCŽÍ—߆ö 䱑 w3Ňy»ŤĐsţły~äbţtUzq]Âó‘Q Áśjٶ˙h# 8>aO_ľ\8™—wÄś«ë­‘ď®%J˙XŹu2y†`ĄČË"/Ż ßKţGˇî¨ś*‚;§1z` a§ń§ Ç\·đw1‚%[Śtf1š`Ń®g2Aş6 ˙ćHđ0ç±4Q!m[„şń"áŹ-Cąá,Ä÷Ë'#ÔÝż@c‰đwâ’ś´x™P=UčWCk ýń{„»ŕ Ľm’đaü§"ü›5!ý«0Ţo5“g Ň[ÇäY+ÔŔľż]ĹxÂočŹĂ|čóB;;:Žß˙:†żi—)Ś}Třž=á‚î?&ÔťăT®V3· ť­N–}őż ő#¦Ć ĚŔŘŃČ ăŢżŤşÝrďBYv3ţT^w3ţ{Dp§0É©ď†4îCÝěGą8đ÷ ä9čŔŹţqáď"Ćťµâ„Z.ašŹ˙vJHűaäs»˙‹É´¦JZ©‘Ćť÷.|ŢŤ4Ž" G?îŽ^Ŕ˝qîÇçB–_(ű9Św_ź>|ćżůô;¸«¬›Ä…˛˝Xř;ďˇÇwń6[x 㳼†WÉÁÝÂëAá÷.ŻE^•ĽN"ŹQ”· ®(ćç)ĚŁ*ęć ć!·oPßČľťfűF»ą­X†řŹ#ßÇľđN6”p¨LžŇ.<2=¦Ńäe™Ç{ u÷4t™ĚŔóçŰϰ8đí-η÷ ż<‘ßÜç3B­?őČó·!7¸1Ęĺs(ÓŰ…ßËyuńSíÍJ–öwbÚ;—ţkáŰNď]"xâĂ{P®÷ˇďEZŽnRŻÉţ3!˛eĺőź—jO¸\W1ą>(Ěĺéç y˙aCŢevlvšlÉüó!2LĘśžÉdž‰ü^`ůqˇĽ~BH{ý‹ÂµÇé?cáP?é|¶ŰëO"˝O‰`»ôiâ ń?Ťřźaůó+Ž_Ăçg1źĂtü*Ćů<ă±y|Áá±O“é ˙˘ÚéßŔçWö—…¬‹Đ†ů’CŻyż[0ü·„´Ç_Â|pÚ­ôg…Ú>˝ČňëwP†ß5¤ókřüş–ÎßÇ8 üňőG÷›çŹńům|ţ >_BßB MX˘ÁRöżi{ÓôŠ“¦_j;ó]|ľ&‚íĚ«LĎPÎ źşń÷ç„:ň÷ňxÝ {‰é‹Ű›7„ooţ”ńűˇ¶çĎ0Ů =KřĺřţŃ:…ĎżÖčÁ·a:ţRxv) áh—Ň?j[˙7ďď0Ţß"Ţ?iiu×ń é+Śa”3°cXĺLľc<ᨧľŐBŮ!n! ¤ŻŐšľq?ő!>픇Ŕµ„ÚHč°®Žd ýˇ~MŢí¶‘JËhŕdőD†Ô;_űŐ[ś®v’Cä)3TüħdtŘůN,čTÓťřÄ‚.;żŔ‰Ý*żÄ'Ě´ó lšĄňó‰=vţ f'ŕřsDxý “Ď$gÄÉ Ô“‚'ĚWĂëvbz˘Cô‰Ú‰c>±Ŕ~˛CđÄ‚*~ýO,¸TŘ ěB5<ö‰™ ŐŹybÁe˘/RĂő¶ď5“č¶¶o±yBÂ?xBÂR5Ľn'$,Ö2q’ĂŘOHPO~>!aĄŠźř„턇«_ŰQµôrňS9q šq4˵:ˇ˛Âš?Đ«Ś‰żMOk"ô´V O=Áżß¤ łÎžn}ňŤ0:WFČ»^•wu­ňnH /ŕ_ĄâżĎVż„ďË}“řS_‚ţÂňëęô«Ç2čéř®Ćr tÔăBW čéÔó1¤ž„çďuéSŹWĚßЦH=vˇćŐ«’¤ĎfźŐcôň–ľLÇߤęa™ľ9†žLz٢ĘŃ;Vű˛Őš® oľMĹ×ú^ŞĎHz±ńßž˙Ťzݡ†ëíó+azÝ©Ęč“îRÇmtĂžśžv´A iGčí›1¶ň»Ç®ç@»¦ič“ú·Řń_K9ť(;§‡CşÔ#‚ÇŽěSĂ­ÇŽěíÍaŰĎh%ź)ąóç|óO¦PĚó§V¬ÜńżŃN`ÚhTĚUe¨&Ç~Uëń"<ŢkĽĐ±„1K’ôÉĺ=(ěőćVa­7ĆcJlőć°Ö›ŔXÉaŽŤż)}G"Ňw›ž^d’ÇD÷va/Çwřĺx~ßčČPˇ7WÍ÷e*CNát—Ťm žys§B4µGgzTeú~—°•€ňďV•ŁŁf8ň••ÚDá<±éU#vňĂîÉšş{…µ© ¤ţ>a-zŻŰSďÓą_Ř‹ŕJxjgÜ&6'ěEđJw—Ţ«†ďÖĂűÔđ›ôđĽĘ?VV–Š'sC…>·č»§;¸™s­:č–sŹBĹ@¤Ë~ßlóxÂ^#E˛W¨I§ă]ÓŽ [MK/ŃŤuîÂN¨ô"‘†T-ęN¨ŃHۡa{z–ęřE_”xŮ$żMź%;˙€>bç˙şI~˙íü—ëüË ľ~ś¦'Ż»Fđ+*ţ»Lřş|&9«v9WčrŽÚőôݤůtRŘ-÷)5<°ťâ´čťQőôĽţżÝ”~]î0ýrşGČő~§©|čôu>¶ú÷¨°ćëJ˙±z0Ą÷q;żËu~g…µĽŻÔËű*ý¨ ’©qË˙“Â^ţžö||Z PF O_aËÝ.ézÓË…©=,ܔ޷dőý­*ţűlřLţXaOÎ_»ęb†ĆOimőáí–tłďúÄ©Ö)§v+˝Ę–ľ(űň:][úߡ„§"Ëí録 qź\ľçTůbť©ÓŃńRěüAܲĺť(ä7ď ŤÁ·Yég@Jş©ŕYŢ=Är[”đî†m—ńÜ…´5üŔđ’y!/ś˙Îź´µŚ¶ŹĄpáĽĂ‚ősüz˛ĺČ;CsFByfÔQ~†ćtůîťGŮK.żü†ôŔ ˘;=šîř„ťÖ zşźńyź‡\<9sď0ŁŁ<ľĚńëŮ`ÁçíLŽZNŻ˝C„×ëŚ}ńˇÂ»™.áĆçN©¤=Ľ0'© GĺűC<~§P{ˇŻi’BH¦T¦.Ű],S¸*ľß-’eüݢţŻSŁĂ˙ZB€ý5DeďŇđäeá×âzÜăĘ%WXŔűřĽźŕŇEŐŢ8®Ă1Ég׹ôČ,˛Đë•ôvszHď"Ä˝éő ŹZ.ÔCStş}’îM˛&űăĹyůý^Ţ:PżôV›´c*ý±W†č¬™¨:U‹%ﵹ5ý˘ńÝšz´”"ŘRv sK- ­žZ»AÁ[;żŽD°Žtizć1ëËÜRLs꜉„Ü8ŽĎ!|žŔgQâ-%Ľa|ŽČďËč{É}÷oa*‹8µÍŹ_ő«mµX‰Š”˙]ń¬„/7·~Ťj%R¸b"…+ @îń9*żŻ ďU|žÂ福vˇ¶=¨O˝u$ť>$ßŰĎ1”Ćöč4&Ng’|;#ę—o@ď4>ÁçĂř<‰ĎÇ$˙•Ä˙Q|žŤ'·ďlĺŽsŔč~µćO WĽÝÇ%źéýi~˝?“P/ĎŚŁ^lĺh‚ů^~žř.ľa+«OŘ Ó÷Ô8OĘ—ţ(=OáóI|ÂĘ«z÷ěň[Ĺů)ßőä ôނϷáóín<ąb f­žu]É„“ ęJ¦é÷üťçëţĘiIßÁz¤oކéxźď•~˙đëwÔ1ýIô>Á|WŚ_~ÝĐs őţ\ĺ@:é#ť´Z´Y€ Ýné :„ýplt0čţMÂs-0_ø8.e Ĺ"úŠ!:BŤ€z¨+,C w~őá_Á€đW!Đ÷,µë„zĹŔz®Á«†®ap-˝odpťđŻ şAŻÚŚp[,°•ÁöŘ©Áj„] v ĐűM öX îuDűö#`p3ÂA„Oď·"ĐŕpÜÎ`7ÂôýhÜĂŕľp âöF@?’uˇ„Gń‡" Ä€xŤ ”#€đ(ţhTśF w~ŃĂ5ŔŁ ¨ž?Žđw=Ń„ű$§,đ4+ža@ňĽ…•gz'Ü·2¨5ĎI–·ÇÝlŐŕťxžÁ»,đnď ÷3ř@Lxż?k€ZŔ„đ!±ŔG|,&|T_pŕă !|á5 đO2 {MďżÄ€ÚĄO3ř˝˙2_Ť żÎ`%ÂLôţE_Ž€Ż"|‰Áçŕ8ăßB °ßfđ;ř=żţÁ7ľ•ľ‘^Fx…Á« ŕ{<ţokđÂë ^Dř>ÂŔ÷üą@´˙˛ĐËýóümLÖ`ŞIü}ĺ‘)ůÓ˝CŁ}y©ś%d˙Ó°ßŇ!o°¸ŁPÜź?]ÍűÍDó~3ĆŻyżYó~łĐ&‰źúűÍ ŤůĽő¶Ôá1\ć·kă{]jăÉŘh÷Ąţz‚n6_*ÔijhóÓČĘ´ő­řĘw§đOȦ6ěř`–a}hA g:†Í`ń:„żi2áť>S$jűmłÖÖC×ÚöĂam&ČÚ*”?˝íŇüŁ}ÔăŮҦú Á´iţÂ7#ü…‚®ťŕë†SşUź@ő§,műěí‡ýä}ý™ÂĽŁv“ldj«đţ¨§ö›·çŘŽ{ä@·µ,‰ÁúŕęşÖ% “ĺ;.‘2ŽçńZBĂü!ĎŹB_â 6źĆ6ĹÓ.ę>Ĺ#–"ÝO ö•|î𩝰éî3Ě0@§¶éé…¶6˝e¸Zi¤Ć2x×e Řh­ů·â´ć—`É‚ř$­9ôşyk¸3…z_ÔÜŚđ[vi {.~Í…odŮf ^‡đ{őđ›îMúY!G€ç¤5‹á­ Ł Éąüž/ü{Áw1Ć˝Ńy®C]Áď, ‘Άźţrö!ä»q–ŕs)ęe±PďÜs9>ŻŔç*Ä[)|Opłř\8«gťřéô†Lń5ď'ň>'ŐJ~ź“ć-éüţ9Â{ŇꌼOÇ6’âÄ˙±ÎOőž‚y«ŤŚÜi’_—Cób-[ÓîOúďzřt5\ż÷Ç(Ä›ˇň ÜŐˇ†ëŰuţY{˙—$ŢŁIžNa×w—šÎO›ňO§kÓk·°•9ŇÁńµžŃ zř,5ü9Mľ˙ˇ˝O Ë—…Nô˝FłUľú˝F?Ž“/śŢ•˙Wlz1ŤöŞŁÇ‘÷BYĺătçYä‚đů,޵űŹjʡٱ¸˝µúôŽüŁĂpTÓ;ęIzůţŃI˛#ë$Ńś*|/^_pÇŹtš.ż{Ű^p´Ŕ;J¬Câ˙ öŚ”­xIm·…ś˙ÎźŔšä˙c­WăŤúváG1ĽŢÔYęí„í^$ÂwădÔsä.v ßeśT©ćŔ…îĎqżRggĽvVR˛fó.(úIĽ^w>Qeö áoÜŠÍćđ…w˛ˇ„Ceň¬vá ”é1Ť&/Ë<ŢS¨»§úźa2Ďgśo?ĂâŔ··8ßŢ/üň|D~sźĎµţÔ#Ď߆¸Ď˘Ţ`#”ËçP¦· ßă~uńaQłÉެdi'¦Ý±séżľíÔńŢ%T›r˝ĺzĘń^¤ĺč&ő÷šě?"űPV^˙y١ö„Ëu“ëÂ\ž~Î÷6äýGPfÇf§ÉĚ?"óǤĚiňŢ[‘7đ{ĺ;Ä…ňú !íő/ ×§˙Ś…Cýý¤ó Ú"nŻ?‰ô>%‚íҧü ˙)Ä˙4â†ĺĎŻ`:~ źźĹt|Óń«çóŚÇJäń‡Ç>M¦/ ţ‹"h§ź_AÚ_˛.BväK˝>äünÁpXpT†»ůŕ´[éĎ µ}z‘ĺ×ď  żkHç×đůu-ťżŹqţ@řĺëŹ0î71ÎăóŰřü|ľ„4ľ…2@›°DĄě 2~Óö2¦é'Mż"Ôvć»ř|MŰ™W™žˇśA>uăďĎ uőň Čău'ě%¦/noŢľ˝ůSĆď‡BÚž?Ă8d{€ö,á—gŕűCF čü>˙ZŁß~„éřKáŮĄ4„Ł]J˙H¨mýß`ĽżĂx‹x˙¤Ą•ĆqÁVŘć8„°ÎyćÔůĘäsziaźĂŃć(ő{&•9<únK_«5}ęU€ŻÍYĆZĹă· {ú´9ĘŔU=Úd`ÎM›sŚu5‡.ŻInm®ňÎW›c\cçk_)ĆéŞs“ň÷m]mN˛`’ĂĆŻĂÎ/p_§šî¶ňhâ×e縜Rťs ĚŐŻÚäńgÚů}Wç§ÎIFÎĹY/sz=vţŻéüŐąÉčąĚ9"Ľţ„Ég’SŰÁ˘Ë¸‡Yť[T×@ř|5<ę꯯ǕS›ŁÔĺ|]—ăâdr|-*?/±ňŻęü¨řWjôtśşM K…ÝŔ.TĂď4 l˘›IP]pv%ŚMôË"D_¤†ëmßkIŰľĹjxäőšK|y… _ކë×oľf+K69— kČą\XËŘk¦t†ÉôVŘůîp_©âë>B$żË…˝\ˇ†żG_%¬ĺ$äNv…ĘtW'ÔCVXóáz•1ń·éiM„žÖ*áęµ™ţˇ—÷jkř"kRó—Óą2BŢőŞĽúU ±ĺÝ@^ŔżJĹź­~ ß—‹u="çsuDúݱ¦?ŕ»Ë1ĐąÖ’~K:ŤWĹčômů{]Dú6ZÓČßЦčúxé‹Úią*Iúlöů‹Ż péîÉšş{…µ© ¤ţ>a-zŻŰSďÓą_Ř‹ŕJ¸ĽA$N›ö"xLĄ»KďUĂwëá}jřMzx^ĺ« «±oâ#ŕF“.űE|łÍă {ŤÉj\ˇ&ťŽwM;.l5-üÎö°A*˝ČA¤!U‹şj4ҶFhŘžžĄ:~QĹ×%^6ÉoÓgÉÎ?ŕ„ŹŘůżn’ßĆ˙A;˙ĺ:˙˛‚źZ"Ż»Fđ+*ţ»Lřş|&9«v9WčrŽÚőôݤůtRŘ-÷)5ą|Ď©ňýžIľ(::ßh)}%ŁĄßöĐ{‹ŕGĹIűď¸AÓĄ›b÷łµĘwocĄÜ¸čo¬l—ńÜ…ń7Vš‚đrwcĺdÁŹŃ‘ ?hĂeŚwýż^[€–ŁŃź‘Pžu”'…íĆ›‚6ĘĘ…"đŢK.ż/5Ddň€’Áç"|^&eř>‘\Âň¨M¨»)ĎhyřK™(ŻÚ´ĽbIwąľAr-ĆçrÉĎűľ źň ˙Jďř\%­@€ďWŕór|fńąZŇyžč¬±Ęě8~˝Ęl’:\Oľ@o >×Éô­&>ëęcýyŇG=ů˝+eĽ÷ý«âéá Ž>ôPOľ)ôAî|^“Pžk&T~9¬'_ w5>ŻuńÓ«©O#XßDźĐ5NHĄ˝[źÔ‰¨$é{gÓg‘˙`ůA®Ť Ó±±ŽéQ._ľ@ď:|^/Ó—ôxâU6˝ZčXŹ'ö|[†mÂçć„·ąŽ ôěsÎŇßâĆ“+ ŕý|Ö˛ˇç+>oÄç|îÂçN|nÇçMřÜŤĎ›ńy >÷H˝ÜEéŮËôMg8ë§Ż,@˝/ţq¤ç6¤łOľź!]s}×{ćą–3H÷Ë÷—wűĺkż¨˙ąő>S´}H¤ż!=pččNʦ;&>ŢiMľ!=ÝŠĎř<ŚĎC.žś9‡wQŹQ_ćřől0Žŕóv&GŘ)Ldxy˘#Šîáőß:cf|¨đ.B¦ E¸ńąS*Iąy>Ie8*ßâń;…Ú Ą3}:&)„djć[ëďbÂUđýn‘,ăďőŻxťţ×ěŻ!*{—†'çqS8Ë;Q¦€řŚ×IbPîĹç}"ţĘ ÂŻĹő¸Ç•K®°€÷đy?>ÁĄ‹Ş˝q\‡c’Ď®s1č‘5Xdˇ×+éíćô:„zřďEHŻéŔxÔrˇš˘Óí“to’5Ů/ÎËďŻđňFGXŃ_XmŇjüŤ©ôÇ^˘GL°"d˘ęT-–Ľ_ÔćÖô‹ĆwkęŃR`KŮ%Ě-´€¶zbjíoíü:RÁ:ŇĄé™˙Ŭ/pK1aΩr&ră8>‡đyźE‰çÝť=ŚĎůݻ˽侧<_¦,’Ý_ő«mµX‰Š”˙]ń¬„/7·~Ťj%R¸b"…+ @îń9*ż{w”Wńy źg>ÚE˛ :’ďxA‡äAiŹ :’äŰQż|z§ńů>ĆçI|>&ůŻ$ţŹâól<ą˝xgë(·Îwă›F~OřŐš?)\ńt—|¤÷§eřôţLB˝<3Žz±•Ł ć{ůyâ»|<ř†­¬">a+dLßSăü=)_úŁô<…Ď'ń +ŻbčÝłËoç§|ד/Đ{ >߆Ϸ»ńäŠ%µz^Ôu%N.¨+™b¤ßówžŻcúS(§%}ë‘>ýČxHÇłř|G¬ôű‡żŁŽéO˘÷ ć»b<ř¦pĄĐ}.ˇŢź«ŁH'ýc¤“6@+6 LfĐné :„ý‚Ot0čAÍ`®ćk¸‡ŔĄ"ú@éĹ –Z€$M=Ô –!Đűĺ ˙ „ż ľg¬EX‡°–Áz®fpÂ5 ®E ÷Ť ®C€ĺlBŘŚp[,°•ÁöŘ©Áj„] v ĐűM öXŕ{-°a?Â7#d@řô~+ GŔí v#Ü@ߏFŔ= îKÇ(noô3 Y @x(J ×B9Źâʆ@•ÁizÁĂ5ŔŁ ¨ž?Žđłxpźdđ”žfp%Â3 Hž·0 ňLď„űVµć9Éňö Ű­ĽÓĎ3x—ŢÍŕ˝!đ~ ď×ŕg đA đ>Äŕ#ř(ŹĹ„Źjđ |śÁ"„O ü˘ţIdŻéý—P»ôiźB ÷_fđ«1á׬Dř’‰ŢżČŕËđU„/1ř<gü[öŰ ~ÇżÇŕ÷cÂ2ř·Â7ŔËŻ0x5|Ç˙m ^@xťÁ‹ßGřAř>?wŕ/ö_Özą^ż ÉLőˇ† DRd»čvR®\Îť t“lŕĘƱŃ.»Ťuu=” čEBĎ„ŹŢCď$Ť, Ç–¶ĂëŢVâĎĹR ł( xSŞđŻ®ź†aÓYĽ43ŢáÝÂľ·M¨áçí˛V}ôÉ&sK„Ě­JxđJúIjüŔ•ômjxÍWŇ«‡_IŻ€śúş}Tn⮤çWŃNk™ů›$ßÇt=Ö‘źŠ«čq$Ę»Śq˛|˙:˝OÉF˛¦şŹdŤé*ú6”ɬĹUF°ô‘¬HÚJó¶eŠ­µN7֥了Áäk´vşy)˝h^JżN\~ŽÁi^JŻĹWýˇćĄô3TľÍKézÍKé1~óRză÷ćĄô©ł’NRÁm!§Ăżó'đo^J߼”^Dnh^J/üá YĚ›—Ň‹ćĄôIG[&kßLë…š—Ň7ôĄôĘ…ôr äŽBupţtŐ2nĄc6ĐđÍę›7Ô7o¨çřÍę›7ÔCÚ#źŰEó†ú˘yCý2ŃĽˇţíÂwż_DÝ@|XŇe˛7+YÚ߉iwě\ó†zMćź‘ůcRćć ő˘yCýŃĽˇžÓo?Íęy¸6aŮĽˇ^ ×& ›7Ôä°ńë°ókŢPoHź.ŻŤŹťó†zŢĽˇůu 6Z߼ˇŢÖö5o¨GüĺÂZĆš7ÔřşŚ„:»§Ëµ:ˇ˛ÂšÍęµđőŞĽÍęÍ|­ĺč\kIż%ťÍę-éłŮç,ňć ő„߼ˇŢňäôv {=şIXŰ·ć ő˘ţvN‡tíUů4o¨—áÍę%˝ć őÍęmU€KwŹHÖÔÝ+¬Mmó†z-ĽO oŢPo7 ě5rP$«q…štÚĽˇ>ČÇÖ ŰÓÓĽˇ^Ă/+řÍę)ü”ŢĽˇžáŮęߣšŻÍę‘î“Â^ţžö||Z oŢP/ß›7Ô3ýŇő¬E[{ĎůčtméoŢP/”]—B~kŢP/š7Ôż)š7ÔĎ|{^ó†z‘|Ëkó†z+ßć őaú¨'_ wĄŚ×ĽˇénŔç5 ĺąfBőĐĽˇľ–ôYäoŢP/Đ»źÍękP ×`7o¨wő·e[€z_ üł!HĎmHgź|oŢP/&ţ¨ŃZôq ‘>š7Ô7o¨oŢPďţuć őřו˝KĂkŢPĎß ż×ăW®ć őD·OŇmŢP?AuŞKŢ/jskúEă»5őh)D°Ąěć–Z@[=1µv‚·vÍęŔ9ő yC=Y‰Š”żyC=>Oáó ÓG»hŢP߼ˇľöüiŢP?fľÍęCľ§Ćů{RľôGéy źOâV^ĹĐ{ó†zEżÍęă¤O??Ňń,>›7Ô7o¨O •A›&3h·€é^Ż® AŹhŢPżJ4o¨'X-š7Ôß!š7ÔŻŃĽˇžŕ) <-š7ÔĽËďÍę >*š7Ô9ľ*š7Ôż"š7Ôsx^śŹęÓ{lwŢN9\=3”?”;%j»PŁŻĐß_:vÜ—l\nľmH)íţŰťŃ׆@y‚ľ$ôIřś´ďĐ˙Ł~­eˇŮÂI>SřÇs.CzŕëOÁďPNˇ_´éC~@s3âµ".đX€ÉĘ ˝N”g¦°ďtjxŤÇpĄoćă%ś~JĄŘ1šVÂÓ·„ŃiQńö†áµŞxű8žţäń&)ńR/ŘÓk>ú7…ňż)üń~śÜKßq|d˝· uśBČ÷„«ŠĄţÓě"8«‚đ.ˇ­É äËvöĺĆD Ś#ż‘4›d¤f’¨˙ ŕr¤ŁŹŇ´0¤}×[‘™|ô¦Óµ´Fy[k4-_ý`}žJ2µMs„?6ImŕL~[4K.ŕ¬Ŕ˝éÎŃw­_´g"í¤=‹ĹYV őč["ü+«–±ďó?ř í%ÝĎřÔ^.˛˝Ě ŢfÄŁ´\&Ô«KV Oř¶żÁśüräµTřsň+DđJŞ•¨Küsˇ^çcjĐ/żĂŹă7 “ei_‹é¸ă®ÇôŻC˝Â8ăËZúł÷jL?¤űZ–nN˙:¤=>oŔç&äłŃ Ë”e+âlFY¶ y%éŇ cŠźĐŇą]ĐnZźö¤˝ iîD™v#m[ü*âîAÜ[—®‡˘«l€ö^F{?âÄç­ř<$dą8Śt ť—„w•†{í§q>oÇçŤ#ÂoŃ~ :ąő:e†ń»PĽ·kx÷ 9FČń.BúĽB>ĂŘ •Ëę®ĎQő,&ŕć÷áű‡ýB­K€7€2ÎÁ¸ŽNRW#˙ň<ír=”ł!ä;ěŕ^…ú˛efź"ĎĘş¬ŕłŠĎQˇ^-U6ČAv¤Ź3BŽ’>NŁ\Ž-L@ąAŹáĆ— żG‘ĎAˇÚŁł†'1ÎS˙„çÄy â<-‚őéművÄy+Ęů¬Ăű$âľq߉8ϡl§„zý‰Üe.ÇŐjőń…ázÍgO|=ęÓř ęüTß>ůuŞĎ8$ęú“Łzx›°ő}Tůťż+L}çďń(ą' {ßhŠ®źzd<ÎVÚęI˝.%= ‡«×ĄDęÉzĘMOÓ­r‹Ş.× ˙#zWĆĽÖ$YÎ:,rÄď+‹–ňR ëÓvZÓźÔ§.«<|™•în+1[篍9DńźĹ–ťŕ(řNR~łŐřúi€“mümőoŽ5邎?WĹż×–ď$—-]ó„ÝŢĚWĂOŘäż.áwYfçz«…“ůí…b_ˇ8°k´Ř+ű7Al ˛ÝĂĆ*fšÓůK…RďŹI˙˙ł÷/Pv×ý(ĽűŚiôŤ¤AB€¤Ńk$ŢO$Đ˝Ń Iâ1Ňś‘Fš‡˝xJ ńB8ĆvH° ccÇŘN¸±ŰIlÇÁ0†ŘŽcě8÷®d}Ëë˙}äĆw%ß}gźÚuz×îęęî3=Łń˝}ÖúMMwíŢ{×®gWWŐvgp áˇ|ŻŚ0đnxdŁňÜ= ŹuXDWŹôăŔUÍŞ1Š`ť[ţ )|„E'ńç&ńŢL[z]úN2ů,Îó6>“M>÷K=ëŤřÜA—]-ö:Fń].}lzMqčá5ˇlyS!VşËVăŘő»=̡)—;-ąµ!ů°?Ln2/8ą±2~şCż†¨ŻşĘż«™Áâńz¦ÓŽ!Đ«!úÜfÇYŕj7‚Ţ`f;őq—§rě1Üů<׌x;šgĆﱏ:ŕlů˙ţ‹«ăü„6\f/4ź?+l8L\żŕŞŁŽ˛Î/2ĺĆňĆ7är®w.w]5=ă¤]Ws-Q}•éQ'×e×ëL˝Nóřx˙Ąĺý·E^%Ň–^ŮüWĽ¶Üť^×}Űaß6{-5í%—ětć[š,µ1^–€ńŕ™ôůcu>.˙ĺŕ.¨+Ěř2~%$*ż kŚx:4…HQć*CfĽKĂâ=vâ(fr’Ż‹¤zjZiw3ń)ťÔYK/˙ůŠtőÚŻůć(¬˙ëŞGsSÍyčďĐ °żŠß§ăZŇcŰßf;•ýďo©RüźŃz ‰eW?]Cҵk—ć;ĚrU ĺ|·WsAąŇľłÎ×˝*gŁcľśî}a2?,=‘+•ˇˇW6¸Tߦ®K§˘ÖŞë’MF¨ëţúúR ŐwÉ\©®Đ÷ˇúztĽż‰˛–ăüó(VŲ‘ß­JŃFÄÇ»—řäBŔw7Č] –=rĄť ü쉡 şĂG‡1ŚÁĄ„aňś ŽËF®$ŚŤŔ• ă &żţScŞü\ ˝ĎuşŔ }ľ„ľžĹ0'ótúmçKp,`X’Ë"°’a2aN§ľľžAî-×Đ{ŰůąCŔi63lMžmŰť !óˇĎ>ą…pĂ- zW>˙áN~¦DA×Ă= Ť Z‡Ý ÍÇóť›÷4ěČwş6’q˛TvXuoß1qn$«Xąe×ETPrčˇ dµŤůŽć#yÜA†s˝j;Y,vX›Č> ĹEî·`ËĂB„lp@ěq@QK÷°“Ő«Ęđş0¨ČýŃ şŚ®Šř bü†P!Jô˙F˙c'‹¤&źŚ'J®e:aş–ż‘ gh/ciŇiÄ´-sČĺDŻß˘®`<4Í8şO4u`n0C“ŔߦőśLtőŕoę@}±Ć6Ţ»ÁßldŰ|¦é±ăíŁ¦:=w5=7é3‹řÍaúĚ&şąD‡ńóéŢ&˙Ç06Î*vř¦}€î!ýbFŹ˙ëÍř†ű,=ł”Ѣíźs“Ź.W3ŽË‰ĎŠB–éMb+Éţ×SÚqđe« t_c|Pďµ żŘ­â‹zŻ%]Ö1ůşĽ®cň7ÝF‹žÝ&Jăf˛ÍŇ żaô¨Ď¶>`ôčž–¶ůW0ËĺvJóNđ7«aÚwś› řÓy TĽĽ×Ç-ôě­ŢF~yŢ©îĂÓ`Öź4ňü1˘=CvĂ tX.Ď’NŹ˙RţŮź×›HeÚ§±´?Ii/´są_‚ßvJş§ŔlóQŻ? ˝ž&=>FĽ ¶ń~#t˙dîź ]yýçeG÷'\ŻLŻO˝<ý‘%ď˙Ř’÷ĎÎ…6;§Ű­óź„čüśŇ97śé<śä=ĎňźĹňúYPíőç Řç~Ćâ±ţľP¸‡}oŻ_ ~/B°_z©@?źč_$ú—ţe–?ŻP:ľDá«”Ž/S:ľHĎ|…ÉF2ľZ±YčôU˘ ‚íôźSřÄű ę"öaŘŽ|˝ŔŻ‘d Ľ(·ÚĄâ‹ůPč·rŻ‚Ů?˝Ćňë[¤Ă_YŇů ż+ŇůmzćoŔ/_GĎ~źžů{ Há?Přńřé€}Â$É,DDi{“Ňtľ¦WŔěgަđö3o1;c9Ă|F˙ĚM˛Ď“Św qo0{ńöć=đŰ›dň~ Şíů=ŁŰä=üňŚrĘx!ź¦đ—‚Ţű€Ňń (µK9ڧv)÷}ýŻčąˇç~Mt˙.ŇŞWľb[ÁfěnVnş_b­ŔćĎçŔ˝`µÂŚß`ÓGňuĄŻź3}Á ĎbCpâ Ď•é}»”ÄFßV/6îĘĹMBßU6}mz›|a§”knđőfąĺşWâsľî ˝ĘÍ<§bŇ'Ţ ^í–÷¦”7ÔL÷Wy´É«qË;/ĺ 3ĺ˝eÓĎ%o¸[ŢŰRŢS^˝«ţk}]ňkÝňß‘ňÍ ¶nůH?ÂëO~6=ņZ©çŹĄ\±av¤ŚfĺşÍŠrúݸzşöÁřľ+ő0÷łFęńť¨üűXeűů–”?ƤżÝĄ/ţj€ĄÉ.…Ć‚»gĆßbSŘĆ·.ABĄâý[›;;›ŰöE¨>>Bő fĽěűŢIÚ÷M4ăĺćő÷$ý$Ţű‰Ś7w®z7¸ôK˘g=8Ëx@O±SU–±wlé Ó ůąv˘‚ďţĽD/vĘ1B¤Ľd;A;ĹNPYNŢ·•“˘ đ?,Űôš‘Đ3Á™ďË*c“ď˛Ó¬;Í6â˝sň­‡¤ ź9îtK·íď…ń™ˇď†Ô“đü5w}ÓgîúŚĚßĐ®ČÜ˝Yîá2Ţô$ésµĎbw¨<¬dĽ¤_jÚˇ^Ć/‹a'›]–›zěínű˛Â™®ŕŘ|ĄI/]˙Řf—üU ĺ_a×ŐfĽěźĎ‡ŮuŤ©Gŕťt­ßęâr~ëŔ]ŹÖłł¦ĂU~7¸íč×6:ěl{7¸ÁMľ;ĺ´·Ú9ŹéÚdĘąU¦{łÜ5DŢ´·ˇ­­˝«îpgľ®˝řýśű:®kn«kËť:mIťݱ=ßY‡ĎäŹuĺŰëşö7t©XˇÇSŹ{ă¶'[ťĎ…Î%Ügô‹' ôs•˙rC®ď6p×›ÁYoŢNZo¶łŢćJvô#]ňméŰ‘ľŹńą 6}l|ow9ľâ—ăŃŤ‡µ4ďmčĘ7*gßEŢä«›3˝Ĺ`ęmBw™Bď‘ń·‚łQ ˙6Ó8]Ć f‚ňĘ,«|6©ăU®ÝnHÖŐÝή6ú;ŔYôŢu§Ţçs'¸‹ŕ]FĽ·&nŰî"¸Çä»VĆď5ă×ÉřF3~˝ŚĎ›ňcuáaU ¶×ű0S8·N ›-› ~łÍźŰîą’Ő¸ć˛lÚÓ5í¸jšňJÎ3ĆvD çwĐä9‰ÔbZQB­Ť´«ju§g˛¤o3éĺ¤Ä›6ý]ölwË ÂąĺżkÓß%˙n·ü)R~‡AďM Ń·¸Fé;Mú§lôR?›ž]n=§J=»íôvŇ|:î–ű¨@Ć3ă/AÇM;ť“ń÷ĎWŮŇ/őł/ç{o„^÷™ńňdŕ)qňĎU˙îgľN“ô$°-˝şĺ]%ĺťgyź&ËűI“ÔçIĹ\ʇŔ]ţw>ž2ăď–ń§ŤxĺÍ=,d»$í&Ë…­?oKď#¬ľ?jŇ?í˘gúÇš„ ąüÇ <dżčŞŹ;ŇÍî˧‰ĽkKýĂÚÔçŚCWĎĺHľ®ô?aÄwŰ‹¸ł]rýΚúĹ:]Lň‘t-tń·¦ŞÓţÖTő˛Ť×zűnNÝ/G˘NŰR|=vÚW?u]Ú–<@]—¶ŠŞSŻÔB˝ŐWŹĂßě Ax9ŕ|ř}˘üţŕźćŃÂĽĆ!IN5łťćůHĽ”ĘQé8‹! ő’˘>őBé4°1úzh,˝üň44]˝ŢÔ|«Őő[úzş>ŻŻk€źÔĄĆ_x=Ě»FŞřwt|­Ň«tň—>k´˘ű±ľ? ü—<ăőĺŕT! <úZ‚„¶ó‹äě<’Ôíh!őŻ'±<Şs+ýq‘WH?™Ů@çUĄČ+öKz”Ě{Z݉ŕ™âŃ„-^×´Gśx=ü#lGzx4¦Ĺë٫̾ĎéÓ*łIępšr‘ß,ŕÇ“¨Sx=/ˇ=ć]${¤)ůÍUĎ=­ůÇřÇ™$ŃgQŻÚÁ/‡iĘE~ Á8Je†~§ÂŤěÝD~е~ĘůG&ďöIŇ÷dŠésčż-‰ţ¨×’„éX’b:b”Ë·zB.ňÓGď\«Ň—đTµ`!Ě®>nĄ3Çś3l)řÇ•$ɸe)°Ôa_(ü€-˘Vŕőuŕo’t%B9˙^Oáj ×R¸ü#L0\Oá: 7Rx…”]nŐéŮÄě­ŹŃ;p'ncČîc(OęY~TźÍęú¸¶5·wÚ_žË9ëq‹ş.~ŞHRľ¶ŔďĎYŹIě±5‘=üŽtëď=4ßÁŃ|»%GÍŁë±G‹ĐN7R¸ŤÂn/Ň©/çxŤ_Ôc”Ç79}šĆN obz w;ŔËÓ%ôüÍ^˙ť_ěĂ]x'ĐqŢřÜ˘Ś´ć$•a—şľ‡??Ě·Đýô\5ńÔŃ:U1Ąn·˛ ôhUŢż ’eüm~Ĺ*řđ_EŘŻOTöA§ľăzô•··š-g`|9‰«ęíŢńWfhúr†»‹z©x}…wRCş¨Úgč°GÉY{!?ÝLpđŰ«ř­ăüމßĺD{9ń«%>85ĚCS$ßFĹw˝ŞÉţ|q^Ý?ĎË[5ŮW˙Âj“¨QřëV鏽2D>`EHoŐ©rZň&(oXÓ}X“FOą‚=e Ř{:ě]őÄÖŰíŢŰůu¤‚u¤FŘ™˙bÖ—ß㞢×§%¨/‘(lˇđ …mŠn˛¦kĄđş_Żď·Ż˝ŇX¦b|^ĎéÓžmIŇJt*ýźŠ×JřzóÖŻŻ¶­đh…ę}7…‡Őý©ú~…G)<ÎěQfŹYKö”˝Ł¶é=ęşę“ˇÓXťĆÄéL’oÇ!˝|C~Ç(ĽŹÂ{)D!®ĽŠa÷R»ü(\śňť¦\ä÷…ŹQřxń9µb żZťTW2ŃÇs%SŚô—Ć;çRLżGz:Ň·-Ťô tŽ3>+ýţ9čO¤ţ$vďeąS{B.?ţlB»źMQâ“ű-ńÉYĐŹˇŇţ U f¨˙ú¤¨f¨%\Ę0ĘŃ‚qEĆ2Ô…`"Ăd¦0č7Ô© ő`že¦żšAÓësĚőý™ ł słć1Ě',dXÁóęŻ!čk~ýb~QľŽa)aá:ĺ¬`X‚53kVôőz† ÜŔ°ÉÍ„-„­ úüm š^_ßHŘ*°#71¬#ÜLĐ÷wE`7Ă °‡ źÝ&­ë>Bs4ť~ľ%í ZÖ!BG4ť~ţpşôöúúyN}ÜĎ ëů„N8p’ ibxŘS s §´>Ź0čň¬Ż5íŁ ĺćąÖĺńíÁ '8Çđ”eřX>Îđ‰ř¸ŔZđ)lôO3<ăŔł ĎĹÄłZŔg&>Křś€ŽA·×úúó ş_z‰áE‚ľţĂcâϦľĘ uŇ×_cřF^'|ťá+<Îř/ :î› ßr௾Ëđ=Ââ{ đ&á<Ă[ đcţ›ĎŢexŤđÂű đ†źđOÍűe@–űsżAőő”dĽoř©Ú»żˇŁaoWľĂáE„ő!™‘̇HćC„Óg>D2"ö$_ú~ÇôG^™‘̇HćC2"ůÁtd>D2"(ó=Č|äJ×™ۇeWú*#Ň×ߌĎ|€łüe>D,úąä wËË|źQn=3"ÄďJ§ü̇HćCÄ®_=ëÁYĆ3""~:8ËIćCÄ.?ó!˘č3"ţ®ü]‘ľĚ‡˘_jÚ!ó!"UBů×GŘuµźů!~ÜvÎ|Xâ1]›L9™źůQü2"™‘̇HĽ.¶ÜEpŹÉ7ó!’ůňjZćCÄ9)‘ůQי̌Ď|˙űÁ™Ż™âű¸ËßĂŕÎÇSf|ćCD]g>D}léĘ|úť5őË|( 3"Bź!)ę“ůÉ|TŠĽbżĚ‡HćC¤W쑦\ä7W=—ů!ľó)\”PźE˝j‡Ě‡H9ésčźů‰!ů-¦0ó!R†KvćC¤hż ¤Ű>|łşÎ|@ď[Ž=¶&˛GćC$ó!’ů)ţŞ!ó!Bż>QŮk]ćC„_kúr†»‹ze>D4ßFĹ7ó!ŇKuŞś–Ľ ĘÖ4AßÖ¤ŃSî`OYöž{Ŕ̇HŚ_ßś–ůŃ­D§Ň?ó!BáQ Ź3{TAćC$ó!R~ţd>D2"™âĘ«vĎ|öÍ|d>DzDnćC„ˇŇ~Ćq•Ş!ó!22"ËXÁ°*k ó!‚X™ŤvČ|ś„̇b…Ŕ“śĚ‡Ćs1ń,d>Dľ×!ó!r2"ç W} ĐŤÄg.¸Ü†tu4ěÍ7ěiÉC7=j¤áÓC«pŇ7Őěç!5Ę]Čę|S‘[{[\ťĽĎ^€hÇ!ř–ÇgńĺW‘:~ůşf3źsĎȇĚzDźäÍ ý/*=đµˇ@›«sŐ°ľćń&sÉ“ąäÉ\ňpúĚ%Oć’ÓľäŕĘďţČ+sÉ“ąäÉ\ň(Űŕó™KžĚ%¦ăKąäÁgţüňőwąäů)d.yţx2úĚ%Źxľ2"}ýÍřĚ%8Ë_ć’ǢźKŢp·ĽĚ%ńĺÖ3sÉCü®tĘĎ\ňd.yěú%ŃłśesÉăŕďĘßĹéË\ň(úĄ¦2—™KžĚ%OĄČ+öË\ňd.yzĹiĘE~sŐs™Kâ;źÂE őYÔ«vČ\ň”“>‡ţ™Kžr‘ßb 3—ö”5`ďé°Ě\ňÄřőíÁi ™KÝJt*ý3—<Ąđ8ł‡>Ě/sÉ“ąä)'2—<™KžĚ%Ź qĺU »g.y űf.y2—<="7sÉĂPé?2ĽĘÁ Őąä™ ™Kžĺ¬`X‚5ąäA¬Ě%ŹF;d.yNBć’±BŕIÎAć’Găąx2—<ßŔëąä9™KŽsĐë.yřL‰¶jo{Ç憮Žćc.?=>ŃEsŐQ© AW"•\ŲŮ÷5=ąc.˙.©Şťąx‰ŻFćâ%sń˛2/3 sńňŻąxÉ\Ľd.^lůđd.^2/™‹ĚŻoAćâE—9´Íó$Łđ>ťąxőťĚřĚĹ‹IźąxˇřĚĹK1>sń!żÖ-?sń˘â3/$ŻüiŞĚĹ‹łďË\Ľýp–±ĚĹ‹EnQřk·lzÍHh‡™ŕ̇ĚĹ‹źg꛹x±Ëu–cäsŤ#ýŽtf.^ésµĎ×9ôĚĹ‹¦Ď\Ľ8BÎo¸ëŃzpöo™‹Hżť“ń®M¦śĚĹ‹ŠĎ\Ľ(~™‹—ĚĹKćâ%^Űî"¸Ç䛹xÉ\Ľ@y5-sńâś”Č\Ľ¨ëĚĹ‹?fĆg.^˙ýŕĚ×ĚĹ ń}Üĺďapçă)3>sń˘®3/Ě>¶te.^LýΚúe.^”†™‹ˇĎőÉ\Ľd.^*E^±_ćâ%sńŇ+öHS.ň›«žË\Ľßů.J¨Ď˘^µCć⥜ô9ôĎ\ĽÄ‹üSąx)Ă€Ą;sńR´ßŇm DźÓľY]g.^ ÷Oő-Ç[Ů#sń’ąxÉ\ĽŐąxˇ_ź¨ě5‚.sńÂŻ5}9CŹÝE˝2/šoŁâ›ąxéĄ:UNKŢĺ kš ďkŇč)÷A°§¬{O‡=`ćâ%ĆŻoNKČ\ĽčV˘Séźąxˇđ(…Ç™=Ş sń’ąx)?2/™‹—ĚĹ‹ qĺU »g.^ űf.^2/="7sńÂPé?‚şĘÁ Őąx™ ™‹—ĺ¬`X‚5ąxA¬ĚĹ‹F;d.^NBćâ±BŕIÎAćâEăąx2/ßŔëąx9™‹ŽsĐ«.^Đ_HqŃĹPď ü·Żjĺ±âćć®ý[ňÇş ¦ç ďĹ íą_đuf ÓňŘĹŕ+ČHĂkľnL!Sŕr\W2ü“•/'ó Í đ?ZÍ#9zZUŢEĎ#|•X@ňń~Fz ŹĄD7ŠLĂý Ä{Ąé–ęľĚ“~+(mâDˤ'ýN ó zďyţÚŻCNź3ůGťěŘ€ŰĎ÷>ĎĺqşKLş—$źJ#>!ăÍx˝—mrĚb8`uskńÓ´Ĺ6Ĺ)ľĺžŕő…0T™ixE¦Qść›HNTú °9N•ŤAOřS @!M9|^ßď§®_Ň×—¨ë—ő5ćQ „çÁ‡ŕôÍ©g_ŃĎ"mśĎ !˝Ď ČOmÜKĽčů t=ëŻmëŕă\ôĚmĆ[§} ĄÝ5M#»‹Kô4Ě =%3üOzúY>ĺR‚á„Úhşj  »6¸Ăĺ «ŰáÖ|GóŢţ-ó…•ů‚ĚÖČ|a€Ě–¦ŰDiÜ ™/,-§2_XÇ)3_X~:ş›çŹAć ‹ëµ2_Xó!ó…%ÓůČ|ai{ńöć=Č|a±7îĚ–)?ó…Ąřfľ°Ôuć Kđ«uËĎ|a©řĚÉ«š*ó…ĺěű2_XD?śe,ó…e‘[ţ"W›^3Úa&8ó!ó…%âç™úfľ°ěrťĺů\ăHż#ť™/,Gú\íóu} ó…Ąé3_XŽó[îz´śý[ć Ňoçd<¦k“)'ó…Ąâ3_XŠ_ć +ó…ĺŞ\»Ý¬«»ś]mć KÄ7šń™/,ËsűŔ]#÷C˛×\–M3_XA9®N¨ŐťžĚ– ď0č3_X:ţ¨źůÂbt®úw?8ó5ó…E|wů{ÜůxĘŚĎ|a©ëĚłŹ-]gú¸ú{.GňuĄ?ó……Č|aeľ°2_XBć KçUĄČ+öË|aeľ°zĹiĘE~sŐs™/,â;źÂE őYÔ«vČ|a•“>‡ţ™/¬r‘ßb 3_Xe°Ôagľ°Šö›@şŤ!»Źˇ<©gůQI|6«ëĚDS™ůÂęa{hľŁůvKNéZß™/,Ö˙ĚVć «Ç*{Ť Ë|ańkM_ÎĐcwQŻĚ–ćۨřfľ°z©N•Ó’7AyĂš&čűĂš4zĘ}ě)kŔŢÓačŞ'¶Ţn?đŢ.ó…Ő§%dľ°t+Ń©ôĎ|aQx”ÂăĚUůÂĘ|a•ź?™/¬ĚVć K…¸ň*†Ý3_X†}3_XqŇ7PĐa:ÎPůÂĘ|aĺ,čÇPé?|ąĘÁ Őůš ™/¬ĺ¬`X‚5ůÂB¬Ě–F;dľ°NBć ±BŕIÎAć Kăąx2_XßŔëůÂ:™/,ŽsĐ«ľ°8đą›]ÎCúµ4wvůü/ľcŽĚsHć9$óÂé3Ď!™çLű’Żzżcú#ŻĚsHć9$ó™çČ<‡`:2Ď!™ç”ůdžCrĄëĚsís˛+}•éëoĆgžCŔYţ2Ď!ý\ň†»ĺežCĎ(·ž™çâwĄS~ć9$ób×/‰žőŕ,ă™ç?śĺ$ób—źyQô™çWţ.ŽH_ć9DŃ/5íy ‘ż*ˇüë#ěşÚŚĎ<‡ż n;gžC,ń®M¦śĚsŠĎ<‡(~™çĚsHć9$^Űî"¸Çä›yÉ<‡@y5-óâś”Č<‡¨ëĚs?fĆgžC˙ýŕĚ×Ěsń}Üĺďapçă)3>ó˘®3Ď!Ě>¶težCLýΚúežC”†™çˇĎőÉ<‡džC*E^±_ć9$óŇ+öHS.ň›«žË<‡ßů.J¨Ď˘^µCć9¤śô9ôĎ<‡Ä‹üSy)Ă€Ą;óR´ßŇm D˙˝Y]gžC ÷‹-Ç[Ů#ó’yÉ<‡Őyˇ_ź¨ě5‚.óÂŻ5}9CŹÝE˝2Ď!šoŁâ›yéĄ:UNKŢĺ kš ďkŇč)÷A°§¬{O‡=`ć9$ĆŻoNKČ<‡čV˘Séźyˇđ(…Ç™=Ş ó’y)?2Ď!™çĚs qĺU »gžC űfžC2Ď!="7óÂPé?ٸĘÁ Őy™ ™çĺ¬`X‚5yA¬ĚsF;džCNBć9±BŕIÎAć9Dăąx2Ď!ßŔëy9™çŽsĐëžCĐŤÄ']CŞW¶4ďkŰążđüţö–F(Ď­FcsSSűžľ~ÝqěˇőřéĂşöŚ‘ĺ8duľ©Č­˝-®Nާ/@´ |żŕ_ŔKµ‹Dż ňő,¸ §üŁČ=™›ôă?6ݎ_…Uwď5_â=«éyň‡6`ąŮĺ ť-ĎĹx¬µąmćŢý ~Fxâzl¤zloűá¶®™ -m‡[g¶·µ÷łŃ°s%łI%ŰŮXŕţ§ęĄä˙ř4á÷éŢ—%í˙ĎxĎSü™ %{mFF(>G)S©Ózj>ŔřéĽÓ_oíy%çŕěÇ WdyzŃňÔŁ<űňăCĘÓ$óO¤˙]łZđ©`čçF9žł ĎänwőgćŰŽ4w´·µćŰşĘěUJ-pŹö€}VÓ>Ö˙ÁŹăôëT™ô>Ýwˇ…týÝ@ î˛Ĺő¨¨ň ˘ÓßŃőĽfF?”ýŹőćZJö.đÝq #™µô?ĘQŔo™|ýí~?řn\\2Ż%Ţ;)~$ŮFŹF“}.§¸+Ł(ť8Šc†şŢŇďődkÔçRé‚ë đÝíčgQÇÉL.ćŃÝĚhĎ›Áoßx^\ÁxL![âĽ+ÎoN#=pîő,é|5é9üyW”÷$îh˘řă|ëLâ?«€˙ťĺMˇHçfńťw7ń8ľ‹Ż9̶”‡Čď5&užOů5Ě2«óźĂ9Ţď„<·Ě2Ěól±Č3´–‘%$˙˙©°ŮR˘˝Žlö3ałe¤Ç0]†é4ă3˙/đ݆!ŻU"ţ?ń2ox_MzŻ)T÷#Äc-Ąu=ńZGĽ60{Ü@4›‰fŃlaň¶‘m· ąµD§Ë?Ú|"éó¦ŰŤÄó&Ćózţ&F·‹Ňpk! ť"źo+ÜĂ<ŰMĎěT÷ŠőňvußÓúé2xGáŢZđçv¨{Ĺ|D{âĽč]š­Ś¦EÝ+楶yˇţyřŚ®\Ż=…¸–,7{Iż=`–?^Ţ =×ň\üň^(ÎĹŁ˙Ź‚Ů>ΡôěŁülߍŘAҡ…č–]śrÔZő,ńD[b9D!¶Mődż‘Äu{Nč¦V_Njęk.a¤Ľ˙”ň*LzyÖ_¤KŽ~Nyą;¤ĽKLúŔÉQ•f|,—5řśxŻŤp“»SĆWńW!˙iłCXČů W0ň¤Ă>®rdşŚ Řů.I?ŘLOŕdµ!fĽBť©¬ôO3é;môRžM®p)W8Ěy&IĎWN\ţ\Żéŕ.u3ŔŐ˘™#8­ŐLgz‚Îôf™ôÍ2~¶Ë˘Ísśz)'dś~®AźŰkK‡KŢ<§Ľ\Ł”7ߤ8]\`ĆË=Ż˙iKO»,wůXdÄ{/ŮŇ!ůşĘÇ5fĽ<Ëů Iżâ·Ňaú Ó1Nč™™˘· ´Şo„ńżÖÉ'Đëľ7®sčmëŐ–&°Ň/đ^GÚÓĄçr·ž^…[Ď…äO"ý˘B®ĎJ‡ţě~„Ă#¨v…•›U^˙’¶ËČďzG:¤ľHżÚ¤^Đ?/é×ôźqŰĂ>"ðöÜ‹>ó´tć#}ŃűO}ťŁđEW:µ˛x­f2đZťuęźIYEaEw‡ľßŹÂ¦p…ŐŠţ.M?H]7čëĄGé\şˇ*~Źľ¦âęk|ăŐ_0ą?ąŤŇŹşě¦´đmRҵ–ŮLËŇ_'ťđéů ~9óV·ö‹Ń'Ş6\‰ýŚNîH /Ąp4ř áů‹Ćéă=éCVé$§Ë-˘»ő‰Lݤđ Ç*ˇ]Zč ë(Oá8 'R8ÂzóeÚç_é}™F~“)śDˇţ‚ĂźOiXďŃđĹLŁpŞş˙Śľ/ŹťAátEW:Zw3›ŢpwcîluMsUŁMÚsůQĽ3‹×jř×sceż˙üܳߣa!ňťŁ®KÇĚWץ#ź; Žä&~ň·F·ßçˇGÝ9Ęź§ěđ’ľ^DáB +}ßĐń×Px-…Ââ—…ľň¸>=ětńŃz…ó±ĂřŕőR —Qx…+(\~Ĺë•ę:á1†j’+m3‡5`–—Ę™Çč|B‡ç‡>‡0™–UĹ'ÔŻqčŁ.ôio’Ó›¶lm‰ţ8'Ű•KHź5ŕ÷aţ±ęŞ»Őz&=ü7é×űňĽĎĽśý*Ŕ0ČľN·CÂPCĐĎgFÁPAĐŰj\2G4íe — \É 7ŐŤ…x›ĺ4&BĽMsőţ¬”‹â€Ţ\§řóMvÓCp•@ţ3 łtŢĚfĐ őő\M?ŹAÓĎ'čű ôBń… ň9}7÷…Aoô»–AnćÓ¸V`ą+ÚN«®'č2îŠ_íß´.Â6űmeĐ÷v”nfpmÖ»•Açóm 7ôőíşLÝÁ 7˙ÝIh`Đ4úZÓHţ·3˝ö0h˝öôýF­[žA>§ď7¸=äĆŻ9„ý„ŘĎŕ*G­ íč ´ ěóQĆ&ź®[Kçö|ç!ÇzÖI*K<ËYdÚŻĄ5?żôxp+ľ÷nĎ7]ŻNíÍ–±†é”żc+Ťţ<ÜFĘ—±â 8Ö.ěA±aoŻG9ú;8Ň šţDSE4Ř«áhfńBńŐŕ/[Â˙o 982ąšx'޵Ä{{u™ţň§Q7‰žąŚžŃ÷G3yř?ľ)\AńHŹŁśDŔ‰laęnřKS1-ă‰ßvoÝ› ţRŻ)$k2ř#Ü©D7Ťé2ŤěŁ·â˙śî#śÂ7v\b¶›âĐ=ä3“Ą}6Ąc.=;ŹŇ?‡ěŠéM‘ţ™ôěBJ?¦ű–nÎ1ńż–Âë(ÔK4—XtYNş¬ še¤ ľuýł¦{äĎŠt®íŚĆ罚xŻ%žkH§uÄ—^ľN´ö˘ĹŢË nťFĽ71Ţ[~…7R¸TąŘA|¶ź7 ´L°¸4•óř…7Qxłŕ±ü·˛»Ŕ\ęxŮu4é¬{đe`–ă*A‡˝č‚îrâĎë!ć3öŠş\6í ˝©7‚逴y˘ĹQ{éŢf]Bş}¤ăH(-©ö’üf’yZj™$–łđ—>.é#–™CňĄŹW’-;)ě˘đ0…G¶Ă˘_6,íKŰďaö8FzÚÂâRUÔë>’ń…‚Ş÷(ď~’ł ĚöčĄá!zća˘?iˇ9M4ŹÍ)Ö§Çöq˘y”ô<ţä'öI˘9KşÉe¬h¬WOAw–ŠšNČţx&ý ĚźĎąĺí—ň*Lúf›~.yýŔ%/HźX*şKĆW‚ë–©áw5׏Ý0Jo±´4đaŮ\Zpjuˇě*ćRÔh;™KLsűdĽX:e'§“N—ťĚ%§Ń MĚ%¨j&ťĎËŮŹjËE–łj‡=ůt¨3ýą@}ŞqęČ—QQéKZĄý/•ň‡'“i”ünů¶µ&ýȤňÄšUąŁżKľ«ţŤt¦#XŘ#Ö¨ŢîĘw­—+]bMk ˝kZşôĂ_ řŻ,—6ěíj>’_ŐÜÖŘܶoíá¶˝ęý& Ë@bákHó†Ű“rŔQˇĚµ­ąî $<”ŻX0°X§šČŔ#óM ‡[şşgá± čę‘~¸Š Yő!F¬sË$ĺ‹•Ż‹N0ă+B'ńŢL[z]úN2ů,Îó6>bĺęýRĎz#>'W®ö)áÚ^Ç(ŢąvÓ¦—XĘzĚšP¶<×ZŐ°!?"ްŰĂšrąbÍkąrkCňa\±F6P~Í5±ą±2^¬MݢwąCÔW]ĺßŐŽđ5±x=ÓiÇŔčŐ}n łă,pµÁ5[łťú¸ËS9ökgů<׌l'™gĆď±O·vIĚOhCľžŻšĎź6&®_pŐQGY çÍőµńv.Ć ą±î6‡ć:Ű`]ëgS®«ą–¨ľĘ\_›kŤ˛«X7{šÇçŔű/-ďż-ň*!®°ôʶŕżâµĺîôşîó×;—˝ĚuŔ9é›Ý}]2ł3ßŇd1¨Ťń˛ŚĎě Ď«óqů/wA]aöЅĽQňWaŤOÇ€¦đ)Ę\eČTÇ ‡uÜAYEŻĹׇę˙‹vŚŤÇśźŇj<˝#bc§OQŻýšoüE˝ŇbßâÜ”Gs‚żp‹{÷éř–ôŘÜC ˛¤ýŻÜ©s5äXvőÓ5$]»–ťł\UĂ˙}Vˇ©'rĄ24ŚÉ—ęű´ »´ŔĽV]—l2B]÷××zĺ˛ú.™+Őú>TZŘ=:^7sú´ňXÚŻ'Ćłd§OÓ’ŔßŕŃ< ^OJ¨×¤őňŘ"ĺ:u}żľžĚôń˝ŠŐ«Qlę’ÔÔúÓĄů >Ž_Ú5q·ßĹhŇ”ëŃ<ňť’0?§ôjúý¨wĺúvOS.ň3çs‡"A#Ě4đ:1â‚“ź}ľ(Śę7ÍÉ/ _­čá÷ ýjęÁOÍ] žzsm&zUß×›Ťf‚ąéh6ř›Ť<š§ÂkśżŞűf´ą`l¨9«źÁů¤]ů&Ł†ŕšąíů¦µÍů–"ňŔ9Ş$Ż´i§·Ę˙ţ‹$·«'ĺöű)™\”˝H]çë´ýI‡_âv`>ř›ť0\R|NÍáő5ęş´‰ëÚ„ö»¶ómăĄm†sr# ´ˇŁźž‡łťÖ=„鏹\ÂĐ?ĚĹDiŰ`†ˇ şĂG‡}W‡Ţ™6L`”|÷Ůh‚Ţ66|·ÚxÂD†IŕŻ˙Ôęß ¦w‘ÉcŔ?*Xăj‚ľžĹ0'ótúőnŻE!ŕ;–$Ŕ˛¬dĐ;óV1čtęëëäąk=ĂĆpšÍ [‚§CŰvgBŘv ęťv·řî¬[ôŽN˝łęN†ÝÜqĄëᆆF­ßIŐd.Kl7Ri”ć%wI$´Z!ůn¨88JŕüQźcmŹă Çî»;µ0Ü+p2NĹŔŁ8Ăp6g®đŃ­ÝcUŤŤÍ›ş:šŹ9öŹ1˘‹¶¬R+@ ‚{Č*ąŠełďk»ÇrÇ\ž*RU»{ŰîBóĄbĺ–]}IÁžŮÓWŰďh>’ÇM}8ý®vřĹ.-±öő}ŠcĽÜoˇűî)đş0ÎËýŃ şŚ®Šř büpśŠíÎP˘ţ ĂŔ?ÎżN$>#O'^ËtÂt-oNš_ĆҤÓi[果ˉ^żŘ^Áxhšq໊¨'ľ#Áßó‡<&żOOë9™čęÁßgúbżc@ěOwż˙˶PÓăX¨ü˝ŹţéôÜŐôÜ ¦Ď,â7‡é3›čćĆϧ{ LüßMpüwT±ĂÉŹté3zü_ď×ÄI‡g陥Śm˙ű®tąš¦»䳢ezßŢJ˛˙őŕ»dŔ2cľŐşŻ1>¨÷ZPîüv«ř˘ŢkI—uLľ.Żëü D·Ń˘çFF·‰Ň¸™lł…ôĆ1áo=ęł­€ýş§ĺ mţĚrąťŇĽüýö$ç¦~ÇôG^/ď5âq ={+…·Ź]ÄŁ`Oż3ÝN4wRx¨ň‹eżž»#BN#…y˘ßKr cDo:Óu)ńŔg±lO¤çĐ.8=Ht˲Z)l#Yzď`a|č­ ‘u7řűzŻ!Yť1d!‡IßB7áí¤ü¶őD˙ É}  ŻuŞit™<Ş]8I:= xň˛Ěź{lWgz/3ťQćé½O˛gđŢ#…{ż<ďT÷Šái0ëOyţŃž!»ážF,—gI§ÇÁź'yŤlĎë}˝2íÓXÚź¤´ÚąÜ/Áo;%ÝS`¶ů¨×^O“#^Űxżş2D÷O®Ľţó˛Łű®×¦×§Ŕ^žţČ’÷lÉűgHçB›ťÓmÖůOBt~NéśÎtNňžgůŽĎbyý,¨öúsPlŹs?cńX_(ÜĂľ·×/ż!Ř/˝T źOô/ýKD˙2ËźW(_˘đUJÇ—)_¤gľÂdL#_-ČŘ,tú*ŃżÁvúĎ)ü âý Puű0lGľ^ŕ×H2PŢ ˙— ÚăŻS>ú­Ü«`öOݱüúéđW–t~‡ÂďŠt~›žůđË×ßŃłß§gţžÂRřľA<~@:`ź0I`2 QÇQÚޤ4ť/¤é0ű™·)|‚ýĚ[ĚÎXÎ0ź†Ń˙_sßňó$ăÝBÜĚ^Ľ˝yüö晼ź‚j{~FĎč¶yŹż<ŁÜź2^Čçź)üĄŕ‡÷> tüJíRă©]Ę}f_˙+zî_čą_Ýż‹´ęĹČŘV°Ź(}ÍťO` q…Ë]Ž+}ýśé îA{´ďAŻŚHźŘ{áÖ'xظŘK-×x7 }WŮôµémťR®ąçÚ›ĺ–ëŢÁůş÷XĄbŇ'Ţł_í–÷¦”7ÔL÷Wy´É«qË;/ĺ 3ĺI·CoFÉî–÷¶”7”ç<ě[ëë’_ë–˙Ž”oîyŽvI2ÂëO~6=Ĺg©çŹĄ\±‡y¤Ś{ĺRÚŠrúݸzş¶&řľ+ő0·GęauFŔů‰­Ĺ˛ý|KĘcŇËĂößĎ‹ŹŇ´HÜĄĐXp7°ăĚř[l ŰřÖ%H¨TĽksggsŰľŐÇG¨>ÁŚ—}ß;Iűľ‰fĽ‹ »ňüń’~©i‡€«Îe1ědłËrSéî-qű˛Â™®ŕŘ|ĄI/OÚ˙±Í..ů«Ęż>®«ÍxŮ?źłëSŹŔ;éZ3ľŐĹ7,äüÖ»­g˙fM‡«ünpŰ9ĐŻmtŘŮönp›ţ|wĘioµs2ӵɔs«L÷f3ţ¸kĽ‰Ľ˝îĚ“’şö¦ş˝¸Đłnrg]s›ňb˛¤Îż×Řžď¬ĂgňÇşňmŤč¦KĹ =¶zÜ·=Ůę|.t.á>Ł_<Ąź«ü—r}·»ŢÜÎzóvŇzłśő&0W˛Ă¤—®·ßŽ*o;#Ň÷#>7Á¦ŹŤďMŕ.Ç7Cür<şńđˇ–ć˝ ]ůƺΖBáDw<ťK ĺU0˝Ĺ`ęmBw™Bď‘ń·‚łQ ˙6Ó8]Ć f‚·TÇóÄć¦×Y©ăU®ÝnHÖŐÝή6ú;ŔYôŢu§Ţçs'¸‹ŕ]FĽ·&nŰî"¸Çä»VĆď5ă×ÉřF3~˝ŚĎ›ňcuáaU`rsŰ‘†–ćĆbŃ/ú—*VÖś‹ę Lá :K:-,l¶l‚řÍ6n¸kä~HVăšË˛iO×´ŕŞiąI˛qłťZĂů4ůEN"µV”Pk#íę„ZÝé™,éŰLz9)ń¦M—=ŰÝňđCnůďÚôwÉżŰ-Š”ßaĐ{Cô-®DúN“ţ)˝ÔϦg—[Ď©RĎĂn;˝ť4źŽ€»ĺ>jĆńÇĚřŔKĐqÓNçdü=ćóU¶ôK˝ĂěËůޡ×}fĽ<¬yJśüsŐżűÁ™ŻÓ$ý ě`KďnyWIy'ŔYާÉň~ŇäőÄyx4×ă!p—ż‡ÁťŹ§Ěř»eüi#>wµ+d»$í&Ë…­?oKď#¬ľ?jŇ?í˘gúÇš„ ąüÇ <dżčŞŹ;ŇÍî˧âĄ\÷[ąé®ôEµ¨Ď‡>®ţžË‘|]éÂ÷"&ËÝéŚjâ†\żł¦~±|“|$ťíí¸äĹXď¨Î©űĄbÔhÚˇ[?u]Ú)>@]—vďV©çŠ 9ôîk= C˛/áĺ€óá÷yňű›G ?đ„$9hÎv@›ç#ńć\*GĄF†$ÔgHŠúp·°t@Ű}=4–^~yš®^ojľŐęşäM{ş>ŻŻk€ž¦Ć_x=ĚCÔFŞřwt|­Ň«t›>›l´˘ű±ľ? üł°<ăőĺŕźQU! <úZ‚„¶#Ąäě<’Ôí´'őŻ'±<Şótă"Ż~2łÎ«J‘Wě—ôtź’'ň‰ŕźbăŃ„-^×Ú‹Gśx=üSUJmďëSWl§¬x4¦Ĺë٫̾ĎéÓ*łIępšr‘ß,ŕ'ƨSx=/ˇ=ć]${¤)ůÍUĎ=­ůÇ<őć=N1ě¦\ŹĆ Čw>ř'Ě$ŃgQŻÚÁ/‡iĘE~ Á8Ýf†~§ÂŤěÝD~е~Ęů§XďöIŇ÷dŠésčż-‰ţ¨×’„éX’b:b”Ë·zB.ňÓ§!]«Ň—đPZµ`!Ě®>ÎŁgKcW†-˙™$·,E–:ě …đÓ^ÔJĽľüg’®D(gđż‚Âë)\MáZ ×€Ş †ë)\GáF o p˛Ë­:=›˝őI/zîŇm Ů} ĺI=ËŹJâłY]×¶ćöNűËs9ÇonQ×ĹOIĘ×řý9~3‰=¶&˛‡ß‘ný=°‡ć;8šo·äčÓ’t=öčcÚéF ·Q¸ÂíE:őĺŻń‹zŚňř&§OłĂŘIáMLŹŕnxyş„žżÂëżó‹}X㣠ď:Âź[”‘6đÂś¤2ěR×÷đ燂ůşźž«&žÚ Z§ 2¦ÔíV–­ Ŕű·A˛Śż ŇŻxCţ«űő‰Ę^#čÔw\ŹľňöVS ĺ Ś/'qU˝ťÂ; ţĘ M_ÎĐcwQ/µÂŻď˘đN qHU{ă ö(9k/Äŕ§[ ~{żuś_5ń»śh/'~µÄ磦€yhŠäۨř®W5Ůź/Ϋűçyy«&űę_Xm5 Ý*ý±W†Č¬é­:UNKŢĺ kš ďkŇč)÷A°§¬{O‡= «žŘz»ýŔ{;żŽ4C°ŽÔ;ó_Ěúň{ÜSôÚŕ´ő%să…-¤°MŃMÖt­R÷ëőýöâµWËt@¬łčë9}Úł-IZ‰NĄ˙SńZ _oŢúőŐVÂŁ­0@˝ď¦đ°ş?Ußď˘đ(…Ç™=ŞŔě1kÉž˛wÔ6˝G]W]`2t«˘Ó8ťIňí8¤—oČď…÷Qx/…G(|@Éź¦ĺßOá‰xz—ž;‘˘ŢqŽQ>i‘Wnţx´âů>¨äÜ­ŻO©ř«őőé„v9Ývq•Ł^–{ŐE’;Ą'䆭¬ŇrÂVČŘî{=|?©\ýÓéy‡(Ä•W1ě^j—…‹SľÓ”‹üˇđ1 />§V,áW«sęJ&ú¸`®dŠ‘ţŇxç\Šé÷HOGú¶Ą‘ľ‚Óq†Â'bĄß?šţ‰ÓźÄî˝,wjOČĺ.Î&´űŮő >ąßźśý*čĎPĺŔ`†jđ]$E5C-áR†QŚ´+B0–ˇ.&;0…AżˇNe¨Ó˝ŔU šţjMŻŹ–×÷g2Ě&Ě!ĚfÇ0ź°a]\CĐ×Ü5Ŕb~QľŽa)aá:ĺ¬`X‚53kVôőz† ÜŔ°ÉÍ„-„­ Ú5Á6MŻŻo$lŘ›Ön&čű»"°›áŽŘCĐĎîŤ@Öuˇ9šN?ßv-ëˇ#šN?8] Çúúé: îgĐőüA '8IĐ´1<ěŔ)†ą„Ó ZźGtyÖךöQ†ró\ëňxLČö`…Ŕ“ścxĘŹ2|,gřDL|\ŕ-ř”6zħžqŕY†çbâY?-ŕ3 ź%|N@ÇżŔ Űk}ýyÝ/˝Äđ"A_á‹1ńg Ó_eĐ:éëŻ1|#ŻľÎđgü—÷M†o9đ× ßŽ‰żeřá ń˝x“pžá­ř1?˙Mç ď2ĽFř áýř ĂĎ ř'‚ćý‹2 Ëý9_‡ ?„şßJ2ŢG!ĹE#@˝/đgÜľBޕNJ››»öoÉ낞+Ľ/@´ç |Ŕ×™%`NËcŻ # Żřş1…LË9p]ÉXđOVľśĚ4Ŕ˙h5ŹäčiiTy=ŹüńUbÉÇZřY`é<–Ý(2!÷'ď=”¤[Ft¨űB0Oú­ ´‰-“žô85Ě3č˝çůkż9}Îäu˛o`n?#Ţű<—Çé.1é^’|*Ťxř„Ś7Oŕő^¶É0‹á€ŐÍ­ĹOÓŘt§ř–{‚×ÂlPe¦á™Fqšo"9QéŔć8U6>=eŕO-…4ĺđy}żźş~I__˘®_Ö×G5ž‚˙Ń7§ž}E?‹´q>7 „ô>7 ?µq/ń˘ç/Đő ®ż¶­ŹsŃ3·Uoťö%”v×4Ťě..aĐÓ0ô”Ěđ?éičgů”KM†j# éŞ*|”áą,·Ĺĺ«fG×ń–üú®Ö–MÍűöwíÚĺůŚjlnjjßs ¤«,ÓXŔ1VźÖ¶gĽdŐ¨QĆę|S‘şQŤ9ÎřtśqF%•íéüüŹeNŹ7°źď~=‘h°ÍŘKu˘‘âBp0„řČřˇŹIÁ1Á2đëě(Şc¨~Ô‘>z¨6Ę/„ő-ÁqCdßóˇ˝˙őţ#¬ď3ÇŢ˙1ÎřŚ«ťĽ¤+‚ w|SC†ŽáËóîdŰČ÷(9ş[“ÝX ř3ózĺCřMeÎLO‚f){<Öâ'ýŕ`ôňĺ´Äřń!§ď˝˛äÉm\Fɋ깵ž˛„ňŢ5Çřé,)µŠ{ŰŰşšŰň!QÝşÁ$Lr‚±Ç‡<…ëÜ"2ýš·uvCyý|<Ź®ůxKO’OYý ý%RÓ‰Źi豌#IČń‘„·Hđ1×7»ť§>x¸k¬3(ßv¤ąŁ˝­5ßÖUćŔˇÔÉöč0§Ż*Ú×F8ŹĹáĐ[RńŁZÔLĘ(*ťuŕźé?’JżžiAUjéžž5¦ßĎZQ+Pţö\!‰Ĺ‘N¦î¦řtOϨ´Íe4-ŕŹ’´ÎIß!L¶žQ©…į̂¨VÎ12z&áŚJ¤o&1ňIě›ÉÂäý§”gÎÄÝŚôŤ#fjäŃ‚oDÉ7grBG¨·»ňE˱é7ŔÉGúĆ1ů„ĄJ˝źîőT9đgOü^Ôuéč!ęíJGŨ™˙čšEůOs–EéĹgL€?ËÂzó/Gôć:?Jú `éçc·wÝë^wBÝsÍJŘŤ `č_4Öëž{(žÍĐ×5`ÎR g4úZÓŘzőîÍNxżsőŘv仺šŰöuöĄ÷ü@wÝ'µěk}u¬ŮTî®sńüT0·–ĺŔď˙ęŔ÷w*é°>-Ą:€};ަg°ľěßŰ2˘ËŃóú Ĺ(Ň g!†‚?6¨&݆C˘>6đUA|ĄřS/úШŮ˙+ŞĎ}lą3ű†Güĺ4ř‡…Žľ<ŕ˙Ďě«Ë›ŢСGů¤ű<Ý—±>ďËfćżáQt–ý˙’}N?¦O Őo`cs硙G›»ö»Ą8ßwM.a˛ůŰ.JJň¶KłŹ©-ľ„ń»Šřé~W÷SQ}±¦łőÉ®ţx Łë'`ë75jʛ՟éę7‡á±m -ŰóMŞĹîKŻ‘´o«ŰÇzŇܬ8=i·Kő–ŞK>?†żőҨ[ľť$ý˙ǢméWa×ýÓaé¨d2+˙ĘRďˇ[IuđŇ˙”â˝÷iskŘs§é˙€¬\¨Ľą2Č­3ečű0‚Âu<ď™ď›UÚ‹|>Íiť#ťąőL‡O‹4?oŇšú€ĐË2ňůŻG¬Čňő˘ć«GůĆ×*ÄüzQę…ÓüzˇůT >ě-1Đ; ”3÷«›Y˙ťl_Kkľcsˇ'qĽ]–hRé/Ęé±ú4_z<Ř3V¬Ü˛ëâiŕĐC}amcľŁůH;ÆĂ-]|ŁŹÎÇé?ŞĘfî·`Î×Ařš:ěől*ŁÄëBßű7đ××!Ý@0×ŃńáË•üâö™ˇŕĎʧ˙‡Ń˙řfŠo”‰ĎĆűňk™N®e””…ýře,M:Ť¶ĺ`ľŃ^NôWíڇ¦G×㉦Žh&°4M"}&0='ťKh}ń-ßĐ %Ą8ŁŤń;éŇOłĐăÖťNşWOéźNĎ]MĎÍ`úĚ"~s>ł‰n.Ńaü|ş·€ÉÄ˙ ðâžs Šnë9@÷~1ŁÇ˙o ]ńë³௉ԴhűçíyąšÁt\N|V˛ěu˛˙J˛˙ő”öU Ę .ß_] űăzݵěw·Š/ę˝–tYÇäëňşŽÉß@t-zndt›(Ť›É6[Hď­ü†ŃŁ>Ű ř€Ń {ZÚć_Á,—Ű)Í;)üĄ}Éą©€ß1ý‘×@ĹË{ŤxÜBĎŢJámÄcń(ŘÇF´·ÍťŢŞübŮo çîÓHažč÷’ś¦ít¦ëRâĎbŮÖkhĐ.8uč–9dµRŘF˛Z ôµČ["ënđg˝®!Yť1d!‡Iß.ś@ ü¶őD˙ É}  ŻuŞit™<Ş]8I:= xň˛Ěź{lwŞŔ˙e¦3Ę<]¸÷Iö Ţ{¤pďăŕ—çťę^1< fýI#Ď#Ú3d7Ün‹ĺň,éô8řă»× ´ĆĘĂ­¶öfKű“”öB;—ű%řm§¤{ Ě6őúŇëiŇăcÄ«`ď7B÷O†čţ Ň•×^vtÂőZŔôúŘËÓYňţŹ-y˙ é\hłsş-Đ:˙IÎĎ)ťsĂ™ÎĂIŢó,ßńY,ŻźŐ^Šíqîg,ëď …{Řńöúâ÷"űĄ— ôó‰ţE˘‰č_fůó ĄăKľJéř2Ąă‹ôĚWŚi$ă«›…N_%ú× ŘN˙9…AĽżŞ.b†íČ× üIĘ»âq[Ď._̇Bż•{Ěţé5–_ß"ţĘ’ÎďPř]‘ÎoÓ3~ůú;zöűôĚßSřC ˙Â7ÇHě& Lf!ęř#JŰ›”¦ó…4˝f?ó6…ď@°źy‹ŮËćÓ0ú˙Ë`î™xždĽ[{Ů‹·7ďßŢü#“÷SPmĎĎčÝö ďŕ—g”űSĆ ůü3…żüđŢ”Ž_@©]Ęa<µKąŔěëEĎý =÷k˘űw‘V}<¶ÝŹ ¬6«Ż6Č™ĎGí‘ŢlŤŐúľ+}ýśé3ć ˝ř""™Ů ńçÍ/&Áô‰ůÁ€C0±ú UĆW™ń±I}mz‹˝#/AŚxĺ(\®űK竿$†”żJ=†ôÍ6=\ňŞÝňî>‡šéă*Ź6y5ny¸ĂLyoŮôsÉî–÷¶”7”'ÝźJ‡fN—±ČŻÖ-˙)˙R/éGBxý ÓϦ§Ř7'ő x{żĚ¤)ăG›ńQżWO˝O1DĎwĄW$Óă;QůyĄS>Ľ%ĺŹ1é#ˇŠuůÚiKˇ±ŕn`Ç™ń·Ř¶ń­KP©8s<ĺR}|„ęĚxŮ÷˝“´ď›hĆG:ńťdĐ+GY<~˛/ťüľă*K.=ëÁYĆzNg{Ç–Î0˝ßT·ü÷Ąüi&˝#DĘ» Üĺŕj3ţdütp–“÷mĺ¤(üo 6˝f$´ĂLpćĂű˛ĘŘä»ě4+ÂNłŤxÓ9ŻE~¨‹đ9îtËU%ď…ń™ˇďWű|ťC~†~©i‡€łôe1ědłËrSŹ˝Ým_V8Ó›Ż4éců_rÉ_•Pţőv]mĆËţů|]×zŢIךń­.ľa!ç·Üőh=8ű7k:\ĺwŰÎ~mŁĂζwÜôç»SN{«ť“ń®M¦ś[eş7›ńÇ]Cä´ýqq=¶zÜ·=Ůę|.t.á>Ł_<Ąź«ü—r}·»ŢÜÎzóvŇzłśő&0W˛Ă¤—;ŢŽ*o;#Ň÷#^ůł’úŘřŢîr|3Ä/ÇNżRśé-SoşËzŹŚżśŤJŔř·™Ć™č2N0”? ™Xĺ­"HŻ pívC˛®îvpvµÔß΢÷®;ő>ź;Á]ď2â˝5¶tŘř6€»î1ů®•ń{Ířu2ľŃŚ_/ăó¦üX]xXíď'ŚAż?6[6Aüf›?·Ü5R,űʬqÍeŮ´§kÚpŐ4叅g ?gŢĆď É/r©Ĺ´˘„ZiW'ÔęNĎdIßfŇËI‰7mú»ěŮî–„rËצżKţÝnůS¤üŢ›˘oqŤ ŇwšôOŮčĄ~6=»ÜzN•zvŰéí¤ůtÜ-÷Q3>pÝ13>đtÜ´Ó9Źů|•-ýRď0űrľ÷Fčuź‹­|HţRŽ«ţÝÎ|ť&éH`[ztË»JĘ;Îň>M–÷“&˙¨$ă–˙‡Ŕ]ţw>ž2ăď–ń§ŤxĺÇ&,d»$í&Ë…­?oKď#¬ľ?jŇ?í˘gúÇš„ ąüÇ <dżčŞŹ;ŇÍî˧‰üŠHýĂÚÔçŚCWĎĺHľ®ô?aÄwŰŠł]rýΚúýµMż(>’ŽÇ ĆJţq  îmĐ×`ÓPĄďÓ1 EľóŮO]—ĽŞ%Ő^W©çŠ 9ôzţ†d_ÂËçĂďóĺ÷Ű©G ?đ„DońÓ9ŇݶJĺ¨Yó’Pź!)ęăQżń!Éőhˇ^ŤĄ—_ž†¦«WÉ—sµş~K_S×çőu …#Ôý·őýá^JáH˙ŽŽŻUz•Ž#ąŚÂŃŠîÇúţ( ŻP÷ßŐ÷/§p ·d—xôµ ݤp…c-˛ňHRGá Ç+~˘YNbyTÉňm~\äŇOf6ĐyU)ňŠýć™뢜‰NQňJ÷ë)ś¦îżŻďOĄp:°¶‚€÷ݦđ* gR8Cń9§ů̆Xeö}NźV™MR‡Ó”‹üfQ8GĄo†–3/ˇ=ć]${¤)ůÍUĎ=­ů/g‡÷8ýŰCšr="ßů.J¨Ď˘^µ_Ó”‹üRxM‘>7CżSáĆön"?čZ?Hĺü!Ťwű$é{2Ĺô9ô—G:őG˝–$LÇ’ÓŁ\ľŐr‘ßb ŻUéKz\Ët—]|ś˛”Ć® [Jᲄ·,E–:ě …ń_^|N­$Ŕëë(,g%B9˙^Oáj ×R¸†ÂU®§p…)ĽÂ Ę.·ęôlböÖç˛é¸H·1d÷1”'ő,?*‰Ďfu}\ŰšŰ;í/ĎZßBß1¤/ׯé·E]?U$)_[ ýSÇŻ¬'‰=¶&˛‡ß‘ný=°‡ć;8šo·äčó“t=öčcÚéF ·Q¸ÂíE:őĺŻń‹zŚňř&§OłĂŘIáML}NcX;ŔËÓ%ôüÍ^˙ť_ěĂ]x'ĐqŢřÜ˘Ś´ć$•a—şľ‡??Ě·Đýô\5Giť*ČR·[Yz´*ďßÉ2ţ6Hżâ |řŻ"ě×'*{Ť Sßq=úĘŰ[M–30ľśÄUőv ď€ř+34}9CŹÝE˝Ô Ľľ‹Â;)Ä!]TíŤ3tأ䬽źn &8říUüÖq~Ő`Íy9ń«%>85ĚCS$ßFĹw˝ŞÉţ|q^Ý?ĎË›>HH˙Âj“¨QřëV鏽2D>`EHoŐ©rZň&(oXÓ}X“FOą‚=e Ř{:ě]őÄÖŰíŢŰůu¤‚u¤FŘ™˙bÖ—ß㞢×§%¨/‘(lˇđ …mŠn˛¦kĄđş_Żď·Ż˝ŇX¦âÔ6˙ůHݶ•ÓJt*ýźŠ×JřzóÖŻŻ¶­đh…ę}7…‡Őý©ú~…G)<ÎěQfŹYKö”˝Ł¶é=ęşę“ˇÓXťĆÄéL’oÇ!˝|C~Ç(ĽŹÂ{)^|N­XÂŻVç Ő•LôqÁ\É#ýĄńÎąÓŽômK#}¦ă …OÄJż¤î)¦?‰Ý{YîÔžëŃJ7ä{6ˇÝϦ¨ńÉý–řä,čÇPéwŁWĺwęS n·Â.T3Ô.eĺŔhA‹¸"cęB0‘a˛SôęT†z‚ľľŠAÓ_Í é§ôý™ ł słć1Ě',dX@XÄp A_/aXLŔ/Ę×1,%,#\'°Ü «B°F`a-Ăj‚ľ^ϰÁ69°™°…°•a#a¦××7¶ ěŔM ë7ôý]ŘÍpGě!čg÷F ‰A뺏ĐM§źo‰@;–uĐM§ź?‚.†c}}Ă˝eŕ~]Ď$<Ŕp“MűĂĂśbK8Í őy„A—g}­ie(7ϵ.ŹÇ„lV<éŔ9†§ř(ĂÇBđq†OÄÄÇţĐ‚O9`ŁG|šážex.&žřÓ>Ă0đYÂçtü ş˝ÖןgĐýŇK /ôőľĆ0ŤđU­“ľţĂ7"đ:áë _!ŕqĆIĐqßdř–Íđíř[†ď~ßK€7 çŢJ€řóßxžđ.Ăk„źŢO€ź0üĽ€"hŢż(˛Üźřuú 0‡\IĆűčÂe Ë©VŐŽ®ă-ůő]­-Їü<\†ôM5ű­xî(ńŤ‚óV,/¶-›îąAj†$Wâo‰˛tćţB©ą·Ó7in빡ĆsŘcŐ®ÇFʵî:tX¶ÜP™1ýwµűlk\lÇlóť{ĺé˙¶®Bîç™~Ă\چŚ |ZňL=>Eů?–‚Qiz“Âţ§ Ë*3ţÇż˙~_ÝË ×4˙cŇÚř áÇhs#bđŰî˙ďÍąäWËř]*Óbá}«µĐ¬ěŘw=××ÝU(iwŐ1ÖÝPm¤Eµ!IU«öU;PŇld|ÍrŁHň0Ë3V‰őľÄb9»«®őpgWÝž|ÝÎíYS×ŢQ·vĺ¦k‚Ütş/cš|Ć&A× ŔýC űň–űUXřg¶·µ·D.FťŮ‰]H|łŚ&e«ąŇqĚ3Ń7k+|#5·ŐÝ勹\˛—ěrwÍ 6ܧQKY,ÔÔŚ•¦–°X˘¨ůPyśëU7zYËžµěě~Ö˛g-»í~Ö˛Cú-{ćHÓt YŐx¨}sCWGó1×+±OtŃśTVjBß+ąŠełďkoĂąc®ÉŠTŐNÇwhćÜ4snš97ĺô™sÓĚą)¦}ÉÁŻŃżcú#Ż0çś·BćÜź˝2禗Xž{lw 2ç¦Ü‰(§{ 2ç¦Zçç”ΙsSČś›N‚Ěą)ç‡÷>€Ěą)ŹŻ0ă3ç¦"ľĘŚĎś›ZôpÉ«vËËś›ZŇ'őuÉŻuËĎś›ŞřĚą)É«š*snęěű2ç¦D?śe,snj‘[ţ÷›^3Úa&8ó!sn*âç™úfÎMírťĺů\ăHż#ť™sSGú\íóu} snŞé3禎ó[îz´śý[ćÜŇoçd<¦k“)'snŞâ3禊_ćÜ4sn×ĺânHÖŐÝή6sn*âÍřĚą©ĺą}஑ű!YŤk.˦™sÓ W'ÔęNOćÜTĐwô™sSÔŚĎś›2:Wý»śůš97%ľ»ü= î|ďŐÄ{-ń\C:­#Ţ8Qů:Ńn ÚVűšŇ~q÷&Ć{ ŃoŁđF ·*;ĎVâó”ür}hpˇđ& o’_ŐÜÖŘܶoíá¶˝ęý& Ë@.§2lĘa¸M1)ĘtF“;ŕÎŕ@ÂCů^aŕ1Ý0đČFĺPą{ë°0®éÇ«šUbÁ:·üARţř‹N0ă§×M4â˝™¶ôşôťdň˙Xśçm|&›|î—zÖńą.»ZěuŚâ»\úŘôšâĐ ÂkBŮň¦B¬.t—­Ć±ëv{CS.wZ:rkCňaÜd.urceüt‡~) Q_u•W;2ĹăőL§C WCôą1ĚŽłŔŐn?Ívęă.OĺŘc¸óy®pť4ĎŚßbuZÚň˙üWÇů m¸Ě<^h>VŘp¸~ÁUGe50ś_dĘŤĺÚ3nČĺ\î<\ îşjşŮI»®ćZ˘ú*Ó=O®5Ę®×™zťćń9đţKËűo‹ĽJ¤+,˝˛-řŻxmą;˝®ű¶“ĂmöZjÚKžT)NëéĚ·4Y jcĽ,ăÁ3;čóÇę|\ţËÁ]PWńeüJHT Öńt h ˘ĚU†ĚxÇź†Ĺ{ěřRĚä$‹Ę=Hő¶ŇViâS:öł"–^ţóéęµ_óÍůUZ}ŃVsSÍyč/ßúk±ţŇíŃśŹţ*çëµí8UöKüőşJńFë1$–]ýt I×®]šď`0ËU5”ó•]ÍĺJ›XĚ:_#ôŞśyŚÎ sHp~÷9„Éü°ôD®T††R8\ŮŕR}ş.±Z«®K6ˇĹWýőőĄŞď’ąR]ˇďCőµŢ´‘ÇÍś>­<–6ť×@Á—Q¨vçÚÍĚω†µôöd5|řsĄ,µ>çŃüęqE,ĂůrEІK’a˝+ׯ´iĘE~c¦{LŠňk îüJľ’ÂqŽ->©ćCđzb_Ćő›ćäĐŻVôđű…~µ ő‹ŕ§ć.PO}ňút%çU}ßv;†ł)śĄčwhzśżŞ†ŕüĆÍĄpŽzć¬~ç“j t囌‚kć¶ç›Ö6ç[ŠČ稒Ľţ-€^-˙ű/’Ü®ž”ŰĚţ®Ěľ®‚d/R×Ĺů:­CŇ!ä—¸Oáb —źSsGx}Ťş.ť¸umBű]Űů6ŤńŇ6Ă9ą„ µäł8_Ć—yŇTAéÔ3zí*.ĘQü’ŻűWŠüáËN,ËËaĎŁçőÔŚn‹ý)őśÎ!"r ýÄ/Q>ń1Rw§0<šţĂô,…`ŁVšWLR(—ZěNgşĚ˘ś—L˘ß˛”ő[a‘o›{Z™bĆI{đůM”µĽçn±*–ŤüŽhUŠ6">Ţ˝Ä'ľ;Bîś°l¸ ě@ eĐ>ę8ŚaD.% ‡Vp\Î0šp%al®dOČ0 üőźSŕ‡TčMłÓ&f0čĂ*ôő,†9Ď Óo;¬‚cĂ’X• “ «t:őőő rŁş†Ţ(Ď©ŘNł™akBđthŰîL™ď}Ę-„ŰnaĐ»Ťôaw2đ*şîah`hdĐ:äš,ĐeiĂ~‚ću@ŕ A<ŃĘĐŽ8JŕüQ}đ„¶Çq†c a‡K„AHq2NĹŔŁ8Ăp6gŘ=I7DoşŕŘ(6t[Ăľ|ÇŽăť]ůÖMů˛7c5675µď9îf¬Ŕ®±ľ¬lŰ9ć}úDďĂ/08Ášj{µËą7ăq=ŽpĘSď«$:Tg>Ń$šÁDµ—^­Jűѧ€żů?:Ęź Áýĺ8ĂŻRs‰u9@÷đ=Ĺ0‚ôݵ<Ź÷WÝ(z~$á2˘Çžţrşw%ăXJĽĐvă@íŇş´Đ˝eĚvµÄ?‡éÝËthˇ{ü9Ľ?‰ěXOáú2ĺ—Xć–tŻý—"^ýb-˝áĎçśňr[ĄĽ pŻlčgÄ{Â9ŻxµjjiŘ×)­#mK˰•Š‹­uŞćVŹÜ6/¶nHŻä_Še™0™@$včßęb,ťěąť!ü¬r}>ą›ôµm…ߍ"ŁţËĄźĽ/ăŃî5;ĄVşĂ ĘÖŠČ’*K M‘á¦Ŕç…ŔçeÉaŇFĆׂ«[˛ŻkÝuč}iÉś‰ôJ'¤öËLžÎ!= TśEřGĹÓʬb—¤…뢞8*eŇçÁm:aţzćGO/·‘ŕŹÉXŇQĹô5’NŘ >]OőOO[u'ýÁ_ţć1:śOYÝŮ‡ŕźĽÄ™©D©şů!řs”ClVŃuĘŁÖčC2}Ô—€Ka-Ä?đA9ŐCJ=|Ż"úÄCôĹ ‡’ąŔÇJ&ë‚CÉží‚CŃx˝„GéŇmHŚ/ó[9}z+TşuŰĄ /_±ôóżÎT¤¨źćSK|r!ŕÖ• ‘řK¦m¨˛ÍFťÖjđB˛×Ť/‹2ŕöďĘ^?ôĺF!w0Ž7cŚšs pk®›#&`c*šG1öhl€)Ŕ1CŚňiЧýĄv$óʆ÷/`Ż{ˇęú3Ş‹÷ÇŞ‹UăŮőŁ´č_…Ž_YőłťdŰę&˙ÚZ*y—†ţ˘] ŃGoUý(­á ú–ľÖňĺǨKŮó#ô(}=šAOÂŽaĐÓAc!x‚şÖE_Ź…ŕG*Ű*­ľĎ09IŰBăh±ŞĆ}×ÓA™áłĆŚč˘1V:Γ§‹Ť?Ëfß×&‰sÇ\óů©ŞÝ˝sŮBóĄbĺ–]}IÁž™şŻmĚw4ÉăÜ=®ĎVů±KK¬ß> Ŷ3÷[7}ŹýöSz\÷WzęľĐVĺţ ücf‘n ÇÉ"żAڶÝŘ&%úAŕ÷‰Ăč˙  Úâ‰Ägă‰ířµL'L×2đŰ`lc/ciŇiÄ´-óЦˉ^Ż|ş‚ńĐ4ăčz<ŃÔy(ňţAnZĎÉDWć§üpŠďVřÁu7ř„ŮŚÓôř±ĽüĂń0ýÓéą«éąLźYÄoÓg6ŃÍ˙ýn>Ý[Ŕdâ˙ř Ź Î*v¸:îÝCúĹŚ˙×ú᪴g陥Śm˙sér5鸜ř¬(dŮëd˙•d˙ë)í«@•\°ş@÷5Ćő^ ęôëÝ*ľ¨÷ZŇe“ŻËë:&Ńm´čą‘Ńm˘4n&Űl!˝·đFŹúl+ŕF€îi9h›ł\n§4ď˙€9Lű’sSżcú#ŻŠ—÷ń¸…ž˝•ÂŰÇ.âQ°Ź§ŐÜN4wRx¨ň‹eżž»#BN#…y˘ßKrš ´Ó™®K‰>‹e{"=‡vŮjáŇ-sČjĄ°ŤdéĂĺÚ ´ëBdÝ ţÁŹ×¬Î˛ŽŚĂ¤oˇ›đvR~Ą<ę"ۧ<äíÖ7Ýľ{űvŰŠz˘ä>P‹×ş Ő4şLžŐ.ś$ťęő¤×Ó¤ÇÇWÁ6Ţo„îź Ńý¤+Ż˙Ľěčţ„ëµ€éő)°—§?˛äý[ňţŇąĐfçt[ uţ“ťźS:ç†3ť‡“ĽçYľăłX^? Ş˝ţŰăÜĎX<Öß ÷°/âíő ÄďEöK/čçý‹D˙ŃżĚňçJÇ—(|•ŇńeJÇ陯0ÓHĆW 26 ťľJôŻA°ťţs ˙‚xT]Ä> Ű‘Żř5’ ”wĹŁw‹]*ľ…~+÷*ýÓk,żľE:ü•%ťßˇđ»"ťß¦gţüňőwôě÷陿§đ‡ţ…oŹ€˙.9I`2 QÇQÚޤ4ť/¤é0ű™·)|‚ýĚ[ĚÎXÎ0ź†Ń˙_siÇó$ăÝBÜĚ^Ľ˝yüö晼ź‚j{~FĎč¶yŹż<ŁÜź2^Čçź)üĄŕ‡÷> tüJíRă©]Ę}f_˙+zî_čą_Ýż‹´ęyhl+Ęźo÷~äžoďöŇŤ(· lúHľ®ôőWú‚‡”Š•‰)­wú’­Ř€V/VlČC@š„ľ«lúÚô 4vJąćwo–[®űôÎ×˝ÂűˇÔC,‡H|¨kµ[Ţ›RŢP3Ýc\ĺŃ&ŻĆ-4'fŘ߲éç’7Ü-ďm)Ďü&îŐ»ężÖ×%żÖ-˙)˙Ňň‘~$„ן0ýlzŽrëůc)Wr9RĆŹ6ăĺY ?ĺô»qőtť]Yŕű®ÔĂ<2RŹďDĺ§8{R¶źoIůcLząä]ńĽŘµD§¸ îvś‹Maßş •Š÷omîělnۡúřŐ'ń˛ď{'iß7ŃŚ—Îľ'é'ôŢOdüd3ţ—~Iô¬gč9śeě[:ĂôB~®Ó# üŢ—ňĹrX9F”—ěôĆŕ©~âôFYNŢ·•“˘ đż]Úôš‘Đ3Á™ďË*c“ď˛Ó¬;Í6â˝sň­›#ź9îtKFď…ń™ˇďf×5¦wҵf|«‹oXČů­w=ZÎţÍšWůÝŕ¶s _Űč°łíÝŕ7ýůî”ÓŢjçd<¦k“)çV™îÍfüq×yÓކ6\Ýz¸3_×^ü~^×ŢT·O¨›ÜY×ÜV×–?:uÚ’:˙^c{ľł¸"6¬+ßÖX×µżˇKĹ =¶zÜ·=Ůę|.t.á>Ł_<Ąź«ü—r}·»ŢÜÎzóvŇzłśő&0W˛Ă¤—» ŢŽ*o;#Ň÷#>7Á¦ŹŤďMŕ.Ç7Cür<şńđˇ–ć˝ ]ůƺΖBá,úť\R(Ż‚é-SoşËzŹŚżśŤJŔř·™Ć™č2N0ĽĄ:ž'67˝ÎJŻ pívC˛®îvpvµÔß΢÷®;ő>ź;Á]ď2â˝5q»ŘpÁ=&ßµ2~ŻżNĆ7šńëe|Ţ”« «“›ŰŽ4´47‹~]S{‡Ş¬9ŐA2Ât–8tZXŘlŮń›mţÜ>p×Čý¬Ć5—eÓž®iŔUÓr“dăµaá É/r©Ĺ´˘„ZiW'ÔęNĎdIßfŇËI‰7mú»ěŮî–„rËצżKţÝnůS¤üŢ›˘oqŤ ŇwšôOŮčĄ~6=»ÜzN•zvŰéí¤ůtÜ-÷Q3>ŕŹýx :nÚ霌żÇ|ľĘ–~©w}9ß{#ôşĎŚ—Ţü¦ÄÉ?Wý»śů:MŇ?Ŕ¶ô>č–w•”wśĺ}š,ď'MţQHśŢą»ü= î|­ŤtČŹĘQéę! ő’˘>őBÉÇ}=4–^~yš®^ojľŐęú-}=L]ź××5Ŕ7Şń^ÓËĆH˙ŽŽŻUz•Ľu\ľ÷ Ź&KńzřÎ<ăőĺŕ;1¨}-AB›Ďů ű Ź$u`s >păő$–G•`žOp\äŇOf6ĐyU)ňŠý’˙ţžÖk"řÇś{4a‹×őŕîŃ'^O˙ŘíR[AŔűúXnŰ1ÜŤińz6Ä*łďsú´7ÉĆ©ĂiĘE~ł€)®>LáőĽ„öw‘쑦\ä7W=÷´ćż žŢăôĂiĘőh Š|çy}őŞür¦\ä·ŚăĎgčw*ÜÁŢMä]멜ďćŔx·O’ľ'SLźC˙mIôG˝–$LÇ’ÓŁ\ľŐr‘ßbđŹ·OîµL-Xł«Źű؉™×dÁ [ ţăI2nYŠ,uŘ ?ŕÇ«•x}řG’']‰PÎŕ…×S¸šÂµ®˙Řq ×S¸ŽÂŤŢ@áe—ŇyI›˝őQŕzîŇm Ů} ĺI=ËŹJâłY]×¶ćöNűËłÖw€Đw éËőëGúmQ×ĹOIĘ×H˙tśÄÇń+«ÁIbŹ­‰ěáw¤[ěˇůŽćŰ-9ú8}]Ź=úX„vş‘Âmî p{‘N}9Çkü˘Ł<ľÉéÓě0vRxÓc ¸Ű^ž.ˇço†đúďübÖřčÂ;„ŽđĆçe¤ Ľ0'© »Ôő=üůˇ`ľ…î§çމ§6Ö©‚Ś)u»•e G«đţm,ăoô+ŢPÁ‡˙*BŔ~}˘˛×:ő×ŁŻĽ˝Őh9ăËI\Uo§đż2CÓ—3ôŘ]ÔK­°Ŕë»(Ľ“BŇEŐŢ8C‡=JÎÚ 1řéÖ`‚ß^ĹoçW Éüšbáۨř®W5Ůź/Ϋűçyy«&űę_Xm5 Ý*ý±W†Č¬é­:UNKŢĺ kš ďkŇč)÷A°§¬{O‡= «žŘz»ýŔ{;żŽ4C°ŽÔ;ó_Ěúň{ÜSôÚŕ´ő%să…-¤°MŃMÖt­R÷ëőýöâµWËt@¬#Që9}Úł-IZ‰NĄ˙SńZ _oŢúőŐVÂŁ­0@˝ď¦đ°ş_:£gö¨‚d§\ߣ®«.0:Ť=qĘu’|;éĺň;Fá}ŢKá Pň§iů÷Sx"žŢĄçN¤¨·”;•ÉÍ‘Ľ“yĺćŹG+^ďJÎÝúú”ŠżZ_źNh—Ó=hW9ęeąW]$ąSzBnŘĘ*-'l…Śíľ×Ă÷“ĘŐ?ťž‡)|B\yĂîĄvůQ¸8ĺ;MąČď ŁđńâsjĹ~µ:©®dŇGO+™b¤ż4Ţ9—bú=ŇÓ‘ľmi¤o  Ătśˇđ‰Xé÷}—>‘bú“Ř˝—ĺNí ąÜgěŮ„v?›˘Ä'÷[⓳ CĄýŞĚP î#ľ]¨f¨%\Ę0ĘŃ‚qEĆ‚ý8oމ “ ßP§2Ôéö*M5¦źNĐ÷g2Ě&Ě!ĚfÇ0ź°a}Ě^CĐ×Kđ‹ňu K Ë× ,w`ĂŞ¬AX˰š Ż×3lpŕ†Ml&l!leŘHŘĆ éőőŤ„­;"pĂ:ÂÍ}Wv3Ü‘{úŮ˝hbĐşî#4G@Óéç["ĐΠe"tD@Óé燠‹áA_ßĂ }ËĆÁý şž?Hx€á„' šö!†‡8Ĺ0—pšAëó.ĎúZÓ>ĘPnžk]Ź Ů¬xŇs O9đQ†Ź…ŕă ź‰Ź üˇźrŔFŹř4Ă3<Ëđ\L<+đ§|†aáł„Ď čřt{­Ż?Ď űĄ—^$čë/0|1&ţŚaá« Z'}ý5†oDŕuÂ׾BŔăŚ˙’ ăľÉđ-ţšáŰ1ń· ß#ü !ľ—oÎ3Ľ•?&đçż)đ<á]†×?!Ľź?ařy˙DĐĽQdą?'đëôč#©˙ď⢋ Ţř3n_!ŐĘcĹÍÍ]ű·äŹuA\ÇÓ/^€hĎř*€Ż3KŔś–Ç._AF^+đuc ™—sŕş’±ŕź¬|9™i´[>ä;ŹäčiiTy=ŹüńUbř¨ńłŔ0đP/%şQdBîO Ţ{(-H·ŚčP÷…tXíAŕDˤ'ýN ó zĺ üçŻr&˙¨“}pűńŢçąÎEĎÜVaĽuÚ—PÚ]Ó4˛»¸„AOĂHĎkzJfřźô4ôł|ĘĄ&Ă µĐtŐ`÷âV‘0O©{kpąĂęßÜÖ•/:ě;î¦2X™?¬Ě§Ďüaeţ°0í;HN`ţŽéŹĽÂü9Ý ™?,|önČüa]byîa˛Ý)Čüaé¶SŇ=™?,­ósJçĚdţ°&Ać‹óĂ{@ćË1k–ůĂńćLXć˦‡K^µ[^ćË’>©ŻK~­[~ćKĹgţ°H^ řÓT™?,gß—ůĂ"ú)ŕ,c™?,‹Ü˘ đşÚôš‘Đ3Á™™?,?ĎÔ7ó‡e—ë,ÇČçGúéĚüa9ŇçjźŻsč™?,MźůĂr„śß:pףőŕěß2X~;'ă1]›L9™?,źůĂRü2X™?,WŕÚí†d]Ýíŕěj3X"ľŃŚĎüaYžŰîą’Ő¸ć˛lšůĂ ĘquB­îôdţ°}‡AźůĂŇńGÍřĚŁsŐżűÁ™Ż™?,âű¸ËßĂŕÎÇSf|ćK]gţ°}lé:ăĐÇŐßs9’Ż+ý™?,Dć+ó‡•ůĂú2X:Ż*E^±_ć+ó‡Ő+öHS.ň›«žËüaßů.J¨Ď˘^µC櫜ô9ôĎüaĹ‹üSůĂ*Ă€Ą;ó‡U´ßŇm Ů} ĺI=ËŹJâłY]gţ° ň¨ĘĚVŰCóÍ·[rJGŃúvČüaA°ţgţ°2X=VŮk]ć‹_kúr†»‹zeţ°4ßFĹ7ó‡ŐKuŞś–Ľ ĘÖ4AßÖ¤ŃSî`OYöž{@W=±ővű÷v™?¬>08-!ó‡Ą[‰NĄć‹ÂŁgö¨‚ĚVć«üüÉüaeţ°2X*Ä•W1ěžůĂ2ě›ůĂŠ“ľ‚Óq†ÂĚVć+gA?†JřĚU f¨†ĚÖTČüa-w`ĂŞ¬Ěbdţ°4Ú!ó‡u2XO:p2XĎĹÄłůĂúF^‡ĚÖyČüaqś^ő‡…@úÝ€–Ö|Çö|ç!‡źć˘9éčWPa~éń  ‘Aů¶#ŰóM׫%_Ýs’Fµ˘=ăJ¤F9Yťo*rko‹­S,7"ŘľŢ =Čo$řţý>–ˇ‘ŕżęă9‘fŃô'š*˘Á÷ÜU´|Ç;_Mńµôżv71 Ô» ňNĽk‰÷ö,ę2Ěc—1nřîBęŮýŃLţŹď%WP<Ňă;öEřeǶuD·ŚčtZĆylüT’‰÷&Ó=ü2…dM˙{ČTş™FöŃďq?ó(u|źÁ1ŃnŠ?@÷ĎL–öŮ”Žąôěx4»gŇ'>š=ç–·_Ę«0é5Ţ\ňrQGĎď’ń•f|»K˙Âďj®»˙`”ŢýM9“ ńňÄ ëů;®rP•ĐNćQőą}2Ţ<Ş>ŇNÎ\věÔş¤^CLúg}Čwľ\d9«včnů} *BĘK—í>ĘęL.PźjśúňeTTş‡9ĺĂĄRţđdň/Ť’?Â-?p o­I?2©ĽKÍçĺILý]ň]őo¤3ąfI?ʤżÝ•ďZ/Wş.w{3ÚŚ?čŇ5࿲\Ú°·«ůH~Us[csŰľµ‡ŰöŞ÷›€".ąÎŕ÷ď{ĂmŠI9ŕ¨PćŮýąî $<”ď•Ó ŹlTţ'»gá± čę‘~¸Š Yő!F¬sË$叏°č3>pŘĎD#Ţ›iKŻKßI&˙ŹĹyŢĆg˛Éç~©g˝ź;貫Ĺ^Ç(ľËĄŹMŻ)˝ Ľ&”-o*ÄęBwŮj»a·‡94ĺr§Ą#·6$ö‡ÉMć 7VĆOwč—ÂőUWůwµ#3X<^ĎtÚ10z5DźĂě8 \íFđ$ţŮN}Üĺ©{Ěw>Ď5ăž&ć™ń;B죗Yţż€˙âę8?ˇ €™Ç ÍçĎ ×/¸ę¨Ł¬†ó‹Lą±<ˇĹ ąśkŔť‡‹Á]WMŻi×Ő\KT_ez3ȵFŮő:SŻÓ<>Ţiy˙m‘W t…ĄW¶˙Ż-w§×ußvĐŞÍ^KM{É˝Äáťů–&‹AmŚ—%`Ż'Ćłd§OÓ’(Żž˙–3)ˇ^“RÔËŁ‡|ëÔőýúz2Ó+É–ÔzU"ŠM]’šZźbş4źžÚ¸îHĎ nż‹Ń¤)ףy0ä;%a~NéŐôű-PďĘő힦\ägÎ#ćE ‚F=hŕubÄ'?ű|Q?Ôoš“_@żZŃĂďúŐ&Ô/‚źš»@=őAµÓ•śWő}ŰÁµΦp–˘ßˇéqţŞ‚óS7—Â9꙳úśOŞĐ•o2j®™ŰžoZŰśo) śŁJňú·zµüďżHr»zRn0ű»:0űş ’˝H]çë´ýI‡_âv`>…‹)\R|NÍáő5ęşt@ɵ íwmćŰ4ĆKŰ çäF*Ô’Ďâ|_ćISĄCb赫¸ *GńHľî_)ň‡/;±, ,‡ńńĐÍů<Źž×S3ş-ö§TÔs:†<Č1ôcż¤K­Ó<ˇä``)µŇĽb’BąÔ˘`w:ÓeĹäĽdý–Ą¬ß ‹|ŰÜÓĘ3NÚĎo˘¬ĺĹ8/đŞX6ň;˘U)Úřx÷ź\.aű,űŠsyŔÜ÷;”Awř¨ă0†!Đűu‡ ¸öű^Î0šp%al®dOČ0 üőźSŕ{zőŁé3ôŢ^}=‹aNć3čôŰöör,`X’Ë"°’Aď‹^Ĺ Ó©ŻŻgűú4ôľBľ§wc8Íf†­ ÁÓˇm»3!dľ#ôľó[·1ÜÂPEĐ{oďdŕűyşîah`hdĐ:äš,ĐeiĂ~‚ću@ŕ AďÓmehŹ@G%pţ¨ŹŢ§«íqśáCŘ^Ü0Čý»'cŕT <3 gCpF€ťoxPó?ę™˙ßÇž±ţMí­‡[ŇŮNŐ˝ ]Ä!¸kl@{Kc¶eĚ­“÷ ˝el ¨-cXL°{×ÇŔá|MŽDŕĐ»’~ô?°ŰĆáM%řC°á`nŃŔhĆĎâL5¨áŇŤ"ą8gŠC šç,Ň eĽ/vÁ#×â=…䎤ôô˙8˝ żŇ,˙řz–NÔ{Ű*đYćá°a#Ůő;@÷PÖX¦řďŔăÁÜZ†ń“čy=ÄL4SXú¦±ôh[]EtW3Ý/6Ń8ڏü­V;!¸ĄŚÓϵݥ–čń˝v=7›ž›Ëô™Oö^ČôY@t‹ăÓ˝%L沾Ë~šě·”ěwŃ/côËX^a—ü2=łŠŃb>}Ě­9«!¸Ť »†Ţ2â?—ôÁwâż"›­#}6ŚŤ,·YÚ7Ýf&+ř[ĚPţ6˘ŮÎҶťĄ ·“ýďôěMôě-”G¸=l¨íWČëfJó˙!Ň|=w;…wýn’QBxW‚_gx:xťą‹éUNx5·™ňj#ÉĂnw"{‡MD· JŰń<=”×zî#ýšIżýŕ/GúĄ"=-¶ýAŇ­oŢ<˘m'š»)ě ÚC!ĽµŤ‡Ř¸ üW5ܶŻ_ÝĐvG(˝3YŔ! Ú ŰJśW:N:ŢSŮFĎÝKaŰľűéÉ÷>n}t?IáC¤ó ‘Ö.˘?ćÖłÓŕ—AÝF?‰¶‰–™ó@Ţ÷d|Î|Ţ˝†q?NóŘf]F~|ŕů~ćó‘[ŢÄ–°Ä[Ţ*ťňLg·H/¶~%Ţň&¶†Éôý“”gnýňţAĆ›[˝"ťőţsXŢÖĄÍÜ1ŹFiδmdr'¶ÝbK«Ťď/C_mÚäy›Ím|‡‚3ŻßrjLzą‡âźÄµ:¸źŕŇc[ŹI=†›ô±ÖŃňçG¸ĺ˝)ĺŐôĘQ§ÔĎ%OlĂ’ňÎKy# zĺ€Sęç’'¶[IyoKyćv*ŻŢe­ŻKľŘ~%ĺż#ĺ›»ĄÜň‘ŢÜődî• ÓϦ§Řĺ$őü±”;Ƥ)ăÇB˘¶ç»qőçÖó]©G]2=ľ•źăťňá-)¸Ú S_üŐ˙Ž@ëú\ MwC; ś í[a ­ŘÜäL¨Tś9u©^oŠ[2ß“I1÷5)´<Ţ\?ŕÝ`«kaú¸ĆP®}F@ţđ8˝Ř$óü[:]v2÷äż/ĺ‹ýErÜ)o†[Ţ?Jy3 zĺZ@ęç’7 ÜEx6¸Š°ŇÇĆwŽůÜ­’ď\3ţ¸«Hß|¸ ˝«4Ö5tě;ÜšoëŞëjŻó炦N+ş]Ů1Ź®´îěŞŰßp$_×@wK“=×r'yBĄy¦J÷Ć4ĺ}ú~q›Ä (ýÂL>?Âä Ěř®"݇GRŽ«J-Ś/¶Ý"ăÍm=ćĐ7¨_yCXskPčĆĺnËNRUÄv¤Čí^ćö!ď§2ŢÜ.äýED>[_™\ú.w>/$ĺĚŢ[ąĘŮň„öZ‘˘=8ß•ŕnŠVAü¦¨1Đ[ň¶™oîÚźď¨+üń[ŁvuMMĹ‹ĆÂТîPCG×µE_ť]‡óÜ_”Đďzčąv)ŽýV»­1ă[1ךńlŻR.ţŞÁe Ť«ě­gŮ Ľz¬7é?#ă7ń7»ĘbXÚd<ňÝčÖ3PGn0éźôňÚ*ߦÇ&o·w“•–1"M5§¨ôň$Y’ż’C.A§VĆÎ*Źí Ă©ź$;ĂúCާ×˙PóUÓ‚ŞOÂë*đwzŐ@x_äŃ”ŇęÝbÁßýĺQľ~HvüŇú!ńÔK×ü4¨1ĆU÷nÖ×ĂUüŹôő0u=F_×ƲĄ˙|mş¶,yíˇ®KţľGŞëóúZď|şLÝ[ßţ" Ő‰^j؏ף•^ĄVcŔŘľńc}_oď¨S÷ßŐ÷Çż˝Bćié•ŃcŽĘÇżŹÉ–Ů+’LV2˘YđĄđ•`.Q<.ň駲4뼩yĂ~I—čż§őŞiłGý3^OľÚw }µş.y?› ±ĘÚűś>ŲöŹšoČRě’«ď9LĎÜĹď\umuńŰŻ6ĺ즙§®{űž—bÖh>iď¦Ń|Fó-‹ż^䧇Z Á<¶3ćęú÷8}ď­r÷»Ť4ĺ"żůŕŻÇpř;0\\ä“€<ýaş.çő.çď$1†ÇŢÎmľqx{ôЇéá«âe“ˇëź«É¸Nńű‹ő°T^®K1ß’,ľMSnO×SÔw ř «“ŘwYŻÚ×E¤)ů-ż|áőŠ„vXŃ«vđËYšr‘ßrđşw§‹_á]|oM”Óß_ĺő÷×§żŻý˝GShśâ(˝ć2†·†ÂŐ*î3ú™őn pťŠ/˝ęá«~Ś<1č{±NľÝr‘ßFĹż´dS<}Îpú”˦wŚřä*ýŔߦˇW°ô÷U b‚†á„„áŚdĐ›F°}¸Śár+DüeěYľd A_ŹcoÁDv¶ID˘;E4ýlM?LqóôF…`:†C\ð|pzcČut§Ż—3,#¬s“Ĺ*07„¬Ű˛^`.aŢ@˘Żă:}۰-;¶v‚ZÉ©qsL|D`wîd¸+p&gĂfÂ^B>šnŹŔţčM!ZÇhc8N‚¦ďŠ Y^GĐFô&’{î#ÜďŔ}!xâ9yC’Ç­ xÎŹÚ{‡J,B…bťű-ŘwřcŮÁ>YŹ!°ßĹńA-ÝĂţRŻĽÁëÂX"÷o`®ŞÁÝ ?/`_>”čżjzř+Ůqś0‘řŚ`łß¦Ďl0w`ü|ş·€ÉÄ˙±MĆ9±s ŠŽĐ=¤_Ěčń˝ÓÇ Ď‚ż#DÓ˘íźs÷.W3ŽË‰ĎŠB–˝Nö_IöżžŇŽă ,38~(ĽĂx_c|Po|÷ů&Ův5é˝–tYÇäëňşŽÉ·íŃzĘÝ"ĆÍd›-¤÷Ö~ĂčQźm|Ŕ耿“„vWŔż‚Y.·Sšw‚ď¨ÓľäÜTŔďţČk âĺ˝F~yŢ©îĂÓ`Öź4ňü1˘=CvCçIX.Ď’NŹ˙ţŮź˙ßŔŢŢLci’Ň^hçrżżí”tOAp×ß^O“#^Űxżş2D÷O®Ľţó˛Łű®×¦×§Ŕ^žţČ’÷lÉűgHçB›ťÓmÖůOBt~NéśÎtÖďôĎł|Çg±Ľ~T{ý9(¶Çąź±x¬ż/îa_ÄŰëß‹ě—^*ĐĎ'ú‰ţ%˘™ĺĎ+”Ž/Qř*ĄăË”Ž/Ň3_a2¦‘ŚŻdl:}•č_`;ýçţńţ¨ş}¶#_/đk$(ďŠ˙KPíń×) ýVîU0ű§×X~}‹tř+K:żCáwE:żMĎü řĺëďčŮďÓ3Oá)ü ß ? °O$0™…¨ăŹ(moRšÎŇô ýĚŰľÁ~ć-fg,gOĂč˙/ą“÷y’ńn!î f/ŢŢĽ~{óŹLŢOAµ=?ŁgtŰĽG€_žQîO/äóĎţRđĂ{P:~Ąv)‡ńÔ.ĺ>łŻ˙=÷/ôÜŻ‰îßEZ‹ßrAŤ\KÍśK¸»Fý]kcÁÝŔŽ3ăcďZ«KP©xĚ]kă#Tź`ĆËľď›ę®ľo˘ąKn’AÜ%gněKo—\=8ËxÄnľîď’3w˙Eď’»úď’»ü"Ľ€·$]z˛śĽo+'EAŕK¶é5#ˇf‚3Ţ—UĆ&ße§YvšmÄ{ç"ä[ä"ź9îtźqĺ/ç37Bßy¦ľ3ĘŐw~}‘^lÉ{ÚUżŔË}_Ë×ďú–_ #ŇonÍ“éŚ]­ĺů[řB˝÷ÉtĘ| ©'áů+¶őŇgn±‹ĚßĐ®ČÜzW®caoz’ôąÚgs«_ŔQíxIżÔ´C˝Ś_ĂN6»,7őŘŰÝöe…3]Á±ůJ“^Ľ{™cFm—üU ĺ_a×ŐfĽěźĎ‡ŮUl Ľ“®5ă[]|ĂBÎOlo Ô#±ťMöoÖt¸ĘŻŘţŮŻ™ŰÚď$wÜôç»SN{«ť“ń.s[]pëéf3ŢąőtÓކ6\úy¸3_×^ü~΀Ö5·ŐµĺŹNť¶¤Îż§wčŦ]űşT¬Đc‹©‡s‹)n«óąĐą„nmMMr}·»ŢÜÎzcÝŞęŞ7ŰÁYos%;Lú‘.ů¶ôíŚHßGŚřÜ›>6ľ7»ß ńËńčĆÇZš÷6tĺë:[ …WGw. î{ľĹ`ęmBw™Bď‘ń·‚łQ ˙6Ó8ň( ëÄ‘o,o©Žç‰ÍMŻłR'?5b7$ëęngWHýŕ,zďşSďóąÜEđ.#Ţ[·‹mwÜcň]+ă÷šńëd|Łż^ĆçMů±şđ°*0ąąíHCKsc±čwř+kÎEu ¦pť%ť6[6Aüf›?·Ü5r?$«qÍeŮ´§kÚpŐ´Ü$ٸ闻°I&żČI¤ÓŠrjm¤]ťP«;=“%}›I/'%Ţ´éď˛g»[~`~Č-˙]›ţ.ůw»ĺO‘ň; zy¤RIßâA¤ď4韲ŃKýlzvąőś*ő<ě¶ÓŰIóé¸[îŁfüĚŚĽ7ítNĆßc>_eKżÔ;Ěľśď˝zÝgĆßb+’ż”ăŞ÷3_§IúŘÁ–ŢÝň®’ňN€łĽO“ĺý¤É?ęÉŔ¸ĺ˙!p—ż‡ÁťŹ§Ěř»eüi#>wµ+d»$í&Ë…­?oKď#¬ľ?jŇ?í˘gúÇš„ ą|qÜń!Ďč]őáqGşŮ}ůáTĽ”ë~+7Ý•ľ¨öő9ăĐÇŐßs9’Ż+ýOń^Ädą;ťQíBÜëwÖÔ/ÖY@’ʤóŘ4j¬äź!ę^i3eřgys€_/xPÉ%Ýu]rVĄž+.äĐčô80ü Éľ„—·ßç!ĘďĆů@ł´^¸ $ÉąE´!0µŤ–TŽJç( I¨Ďőáç( Vץ3‰†ĆŇË/OCÓŐ«t&Qµş.mʦ®KgŐ€qvQiěp0Ď,©âKgŐ*˝Jg]ü¬"˙L"}¶ťiT:“Hźu4bžI¤7ţáGňAq&Qřça8^éP:Łh$;Łh2łÎ«J‘WěWöEÁ?C‰`PţYE|cűTđĎ.*µĽŻÝ»^ţ™DÎP|Îi>ł!نúŮ^™MR‡Ó”‹üff’G¦đz^B{Ě»HöHS.ň›«ž{ZóďŰůvHS®GcPä;ü€’賨Wíŕ—Ă4ĺ"ż…ŕ„äAn†~§ÂŤěÝD~е~ĘůďöIŇ÷dŠésčż-‰ţ¨×’„éX’b:’Ě“¦\ä·ü¤ é+."fcq«Űv=ÝeWçáWĄ1„+Ă–B˘•J·,E–:ě …ř'üx´’ŻŻ˙Äź¤+ĘüŻ˙Ä Wb †útU`ž łüÓP0ĽüÓb¬ńŃ…w áŤĎ-ĘHxaNRv©ë{řóCÁ| ÝOĎUOm­SSęv+Ë@ŹVŕýŰ YĆßéWĽˇ‚˙U„€ýúDeŻtę;®G_y{«)ĐrzňĐÉŰ)ĽâŻĚĐôĺ =vőR+,đú. 龜tQµ7ÎĐaŹ’łöB ~ş5ŕŕ·Wń[ÇůUéN÷râWK|p>j ‡¦HľŤŠďzU“ýů⼺ž—·j˛Żţ…Ő&QŁđ×­Ň{e|0ÁŠŢŞSĺ´äMPް¦ úţ°&Ťžr{ʰ÷tغꉭ·ŰĽ·óëH3ëHŤ°3˙Ŭ/żÇ=EŻ NKP_"17PŘBáA ŰÝdM×Já!uż^ßo/^ű'ńw@śÚć?ßéŐ¶rZ‰NĄ˙SńZ _oŢúőŐVÂŁ­0@˝ď¦đ°ş?Ußď˘đ(…Ç™=ŞŔě1kÉž˛wÔ6˝G]W]`2t«˘Ó8ťIňí8¤—oČď…÷Qx/…G(|@Éź¦ĺßOá‰xz—ž;‘˘ŢRîT&7GňNZä•›?­xAľ*9wëëS*ţj}}:ˇ]N÷ ]\娗ĺ^u‘äNé ąa+«´ś°2¶ű^ßO*W˙tz¦đ! qĺU »—ÚĺGáâ”ď4ĺ"żG(|ŚÂNjϩKřŐꤺ’‰>.+™b¤ż4Ţ9—bú=ŇÓ‘ľmi¤o  Ătśˇđ‰Xé÷Ź>"Ĺô'±{/ËťÚrů‘ógÚýlŠzźÜo‰O΂~ •ôg¨r`0C5ˇ¦ T3Ô‚ďMNc”Ł-⊌e¨ ÁD>f^ˇ¦ˇßP§2Ôô5?~^Ó_Í é§ôý™ ł sŔa!Ź›_Äp A_/aX ţ1ô×AđŘůe„ë–;°‚aUÖĚ ¬eXMĐ×üń Ä=’~3a a+ĂFÂ6MŻŻo$lŘ›Ön&čű»"°›áŽŘCĐĎîŤ@Öuˇ9šN?ßv-ëˇ#šN?8] ú8z}ÍŹŁż· ÜĎ ëů„ Ţő' šö!†‡8Ĺ0—pšAëó.ĎúZÓ>ĘPnžk]Ź Ů¬xŇs O9đQ†Ź…ŕă ź‰Ź üˇźrŔFŹř4Ă3<Ëđ\L<+đ§|†aáł„Ď čřt{­Ż?Ď űĄ—^$čë/0|1&ţŚaá« Z'}ý5†oDŕuÂ׾BŔăŚ˙’ ăľÉđ-ţšáŰ1ń· ß#ü !ľ—oÎ3Ľ•?&đçż)đ<á]†×?!Ľź?ařy˙DĐĽQdą?'đëôč#W"·ä[ó›ó .g"śŞĎş”o;˛=ßD4»ç$Ť4jE{Ć­HŤr$˛şä7¶N±\Š`[Wx?ôp<"ż—໎°Ť˙QŐ‰4¦?ŃT ľŰ࣠ÄwĹWS|-ýŻ]O ő^Ľ‡ďZâ=‚=‹şLófŚ›ľëzv4“‡˙ă;ĘŹôř>‡ý~%ĹqnŃ-#:ť–ń`!?•dâ˝ÉtżŤL!Y“Á˙62‚®A¦‘}ô;ÝĎÁ’ń…řn6‰äÝOr¶Ůť 4N4Ź’žg ˛ŹíDű$Ńś%ÝŽ‚y ˝Úí§ŢoŘ7„ÇĐŹi÷LúÄÇ´çÜňöKy&}âcÇűK^.ęú]2ľŇŚowé_ř]Íőc÷ŚŇ»ż)'pŞÁ3^ž>a=‹ÇUŞÚÉ<¶>·OĆ›ÇÖGÚÉyÚËNťzC—ÔkI˙Ś ůć—‹,gŐ=Âí żuAEHyé˛ÝGąCťéĎęSŤSź@ľŚŠJ÷0§|¸TĘžLţĄQňG¸ĺŽä­5éG&•w©ůĽ<•©żKľ«ţŤt¦#×,éG™ô·»ň]ëĺJ×eŕnoF›ń]úáŻüW–Köv5ÉŻjnklnŰ·öpŰ^ő~PÄe ×yüţ}o¸M1)Ę<Ç?wŔťÁ„‡ň˝2ÂŔcşaŕ‘ŤĘe÷,<Öaa]=ŇŹW4«>Ä(‚unů¤üńť`Ćţ™hÄ{3méué;Éä˙±8ĎŰřL6ůÜ/ő¬7âs]vµŘëĹwąô±é5š„ׄ˛ĺM…X]č.[Ťc×#ěö0‡¦\î´täÖ†äĂţ0ąÉĽäĆĘřéýR˘ľę*˙®vd‹Çë™N;†@݆čscg«ÝžĘ?Ű©Ź»<•cŹ9ŕÎçąf|ŔëÄ<3~G}ÔA3Ë˙đ_\ç'´á0óxˇůüYaĂaâúWu”ŐŔp~‘)7–W´¸!—s ¸óp1¸ëŞéˇ íşšk‰ę«LĎąÖ(»^gęušÇçŔű/-ďż-ň*!®°ôʶŕżâµĺîôşîŰ]µŮk©i/yČ—8č 3ßŇd1¨Ťń˛ŚĎě Ď«óqů/wA]aĆ”ń+!QüUXcÄÓ1 )|@Š2W2㝯÷"|¨ţO´ĎTOŻ)í2#>ĄÓ*béĺ?_‘®^ű5ß…•^˘â‹sSÍy|ţ^ŹöWńűtü@Kzlű l'ѱ_âuĆUŠ˙3ZŹ!±ěę§kHşvíŇ|Y®ŞŐuÂSYÔ\P®´ţ׬ó5BŻĘ™Ç踇çy->‡0™–žČ•ĘĐP ‡+\ŞďSץÓéjŐuÉ&#Ôu}})…ę»d®TWčűĐA}­×{Fäq3§O+ŹĄÍCç5P°>ŽOm¤Ęµ›™ź kéíÉjřđçJYj}ÎŁů ÔăŠX†ó3äŠ —$ĂzW®_iÓ”‹üĆ$L÷ĺ×@Üů!”|%…ă([|R͇ŕőÄx–¬âôiZr…ăŐóÓr&%ÔkRŠzyTăoťşľ__Ofz%ŮžZŻJD±©KRSëSL—ćÓS›ŘéÄíw1Z€4ĺz4†|§$ĚĎ)˝š~żę]ąľÝÓ”‹üĚyÄܡAĐł ĽNڏŕägź/ ă‡úMsň čW+zřýBżÚ„úEđSs¨§>´vş’óŞľo;ÄĂŮÎRô;4=Î_UCp~ ăćR8G=sV?óI5şňMF Á5sŰóMk›ó-EäsTI^˙@Ż–˙ýInWOĘífWf_WA˛©ëâ|ťÖˇ?éňKÜ̧p1…KŠĎ©ą#ĽľF]—+ą6ˇý®íÁ|›Ćxi›áśÜB…ZňYś/ăËNżmź/dž% °,+ôéU :ťúúząÇOCď1äű{7†€ÓlfŘš<Ú¶;Bć;BďAż…pĂ- U˝÷Nľ·· ëᆆF­CžˇÉ]–ö1ě'h^ôžÝV†öt$ŔQçŹúč=»ÚÇŽ1„íË ÜË{2NĹŔŁ8Ăp6gŘYI5ú\>|ÇŘÍ ]ÍÇÖ6ěíjďhľ§Áߡ”tSVĄâ”Ŕć±>®oŰCć˝x˘÷éý]KŔ|ÉĂľÇř­Ç28ĆŃË5qrÇضáŘb,Ĺ  p Ń "‘ď<’3žâPĺ]ô<ňÇq…ŢO‚c śTFz ŹĄD‡ń8¶Ŕţ|ńŢCiAşeD‡ş/s˙Ť[ĺ:Ű„ű'‚ gĚ&ďyŰ‹§Ďű{~…đ®ŮĎ”÷yŰ Ř€Ü÷ŕ˝$ůTšr>!ăÍý ŢËö=1n^ÝÜZŰ©nKËvŞ{nO›Ő=âżÝf;ŐmĎ»äŹpËĎvŞ3˝\éĘvŞC¶S=Ű©.ÓëŇw’É?Ű©ŢMyŮNu3>Ű©nÜĎvŞ«řl§:“›íT/ĘËvŞ›Ď…ŢĎvŞ›ńŮNől§zéët¶S˝[vÍvŞg;ŐłťęŮNől§z¶S=Ű©žíT×|łťęŮNuÍő›ćä—íTÇkśOŞl§zOÖ»l§zń:Ű©ÎŇíTĎvŞg;Őľ^e;ŐłťęŮNől§şF¶S=Ű©…>´S’_tíRżd[Ăľ|G™[°››šÚ÷Hw V`ŻXßS±Źíó>}˘w‰aŻŠŁŽ#`ŤĂ‘~‘ÁK?ŠÇöj8BŔéM˝S¬’čPljéGI‰¶†ž;@÷÷ đwr ˇçđöĐ8U¤G8ĘO˙#_-,gŮ0w–ˇî‹ŔÜ)r©…żNňYOü/cş!ź `î¶ŔűŰ@˝^AĎăČâVˇĎXŇGOßfáł”žo'»ďcvjˇ{ËŔßcßć®” Ä…“IćDĘK±¬/éŢű/EĽĆZ‚ĂźĎ{ĹB…ďMüŤb_ŐÔÜ’źy¨ˇkż`ŇĎ2Ň–¨0%]ĆŰE¤±^•ô•&ýí.ă:ç˛h½#_‘ńb/Č[˘¤Ü˘ đßSlz‰ťţ·ş[ż˛cßáÖ|[WÝ]ĄdßU×z¸ł«nOľ®%ß¶ŻkÝś™–»P–»GZă¤ô? °‹Ä™í~ʰ=/ü"t®ŽĐy¨XÖ\cĆÜ•&›üa?—¦8siďţ†Ž†˝]ůލlî0g޵%Ę6ĺFJű8&W h>ăă´ťôµ¦©Ťrθ»Â5{ ßźűĆ!.„ľ©f_›Ex,Î,‚ţ‰5q0ř]ÖÝBŚ˘˙±¤cËXę-•ň&é[ę›×ą~VÝsW†ĄŁ’ɬdŁđJđľÇî9葦×[ĄźşďŻë5ů@µú_éđ?Ąűą1Äs˙í?ŁG‹7ęgţÇÎ{»˙żŢŚâËI&K=g—)ź/цę*ŚźÎ[sFAće`ť´u†ˇ"Ëó>›çĺ©~;Ńo-k݆ćS-řđT?7Ęč5˝˙ʫ׶ŁëxK~}Wk˦ć}ű»¶ďŰÓ—&·˝gßV·Żő˘±ćâ+©6L÷‰mKÁďQń™‰ŕĎĂď5îk¤ř<·uń‘ńC)“‚ăáe¬ÄËÓŰęŔźg×=}ą˝7»ß.źóńÁžÁű÷ ěţŘî碽˙SĘ7ç˘Íą±|§k‚ ˘kIIrąćôµ'ç bőĄGO›ČÖ¶ü–OOé𹢜™.# š§l‘Ů{aÂĄQ湬ĺu‚žâĂžč)eo›«ěEíţŇzĘ2šcËâsŚźÎ“R»¸·˝­«ˇą ?–˝Ě`&ŮÁÜZűrţŚŽ±q]¦ _Óá¶În(Żź“çŃ5źÂŇ“dĚŃŇsL'>ąD­ÉŇ'ÚJ¸fKŞÁ\˙6CBHĽ`Ňď‰YakÜ·“Ž€wLřDí”ÚŇAőˇcă(ű˙Űśź;枦Şv÷¦[BóĄbĺ–]}IÁž…Ö6ć;šŹäqŠ[üÔ4vi‰uvđGˇŘ^ĺ~ ńV…ŕL'¶#zŇžőÖ+B íUîßŔ÷X€tÁôL`[ ‚3§CÁ\±˙Ł˙qÔŠŁŇ‰Äg«F®e:aş–~0Žd/ciŇiÄ´-s…ĹĺŕĎĐÖ“^š‡¦G×㉦Ěs…‘Ç$đĎÖzN&:=¦őĹŻ#¸Î×ěí˙ŚYۙÚ×[v‚ż Ó?ťž»šž›Áô™Eüć0}fÝ\˘Ăřůto“‰˙^€Š+lÎ*v¸ÁâÝCúĹŚ˙×gBăƆg陥Śm˙+vtąšÁt\N|V˛ěu˛˙J˛˙ő”öU Ę ®+]] űăzŻ-ŕ›dŰŐ¤÷ZŇe“ŻËë:&Ńm´čą‘Ńm˘4n&Űl!˝·đFŹúl+ŕF€îi9h›ł\n§4ď˙ŚbLű’sSżcú#ŻŠ—÷ń¸…ž˝•ÂŰÇ.âQ°Ź7Śho'š;)Ľ TůŲß@ĎÝ!§‘Â<Ńď%9MÚéLץğŲ­ßrŃ.řrč–9dµRŘF˛ôůÄíÚu!˛î˙Ťř’ŐCÖ’qôíÂ-ĺçQĘŁ.˛ÍqĘCŢľa}ÓíŰq°·o÷A°­¨'úIîąxÍWÓŐ_&O€jN’NžĽ,óç&Űť*đ™éŚ2Oî}’=÷)Üű8řĺy§şW OYŇČóÇö Ů ĎMĆry–tzü1˙kPšńôŮá2íÓXÚź¤´ÚąÜ/Áo;%ÝS`¶ů¨×^O“#^Űxżş2D÷O®Ľţó˛Łű®×¦×§Ŕ^žţČ’÷lÉűgHçB›ťÓmÖůOBt~NéśÎtNňžgůŽĎbyý,¨öúsPlŹs?cńX_(ÜĂľ·×/ż!Ř/˝T źOô/ýKD˙2ËźW(_˘đUJÇ—)_¤gľÂdL#_-ČŘ,tú*ŃżÁvúĎ)ü âý Puű0lGľ^ŕ×H2PŢ ˙— ÚăŻS>ú­Ü«`öOݱüúéđW–t~‡ÂďŠt~›žůđË×ßŃłß§gţžÂRřľA<~@:`ź0I`2 QÇQÚޤ4ť/¤é0ű™·)|‚ýĚ[ĚÎXÎ0ź†Ń˙_s•íó$ăÝBÜĚ^Ľ˝yüö晼ź‚j{~FĎč¶yŹż<ŁÜź2^Čçź)üĄŕ‡÷> tüJíRă©]Ę}f_˙+zî_čą_Ýż‹´ęϰ­čĆ÷ÔEĚÄöđŞßŔÔŮfp]éëçL_đś{±°7ń9÷•éß·«8ĹÝV/ÖčĘsäš„ľ«lúÚôktwJąćŠZo–[®űFÎ×}Ž»÷C©‡X›Ř/@µ[Ţ›RŢP3Ýc\ĺŃ&ŻĆ-4g®Âő޲éç’7Ü-ďm)o„)ŻŢU˙µľ.ůµnůďHůćŞX·|¤_¶ÇŃϦç(pęůc)÷2“~¤ŚmĆËŻ?ĺô»qőt^ŕű®ÔĂ<Ć Ţ“ô“ zď'2~˛Kż$zÖłŚô;™d{Ç–Î0˝źypP@ţűRţ4“^Ž"ĺ%;s#ôťgę;Ł\}ç'ĐéôO»ęřcąďkůú]B˙ÂňkaDú9Ó»ZË1ňąĆ‘~G:e>†Ô“đü]‘>ó°ďČü íŠĚC»ËöĚ;=Iú\íł8\ú¨/é—šv¨—ńËbŘÉf—ĺ¦{»Űľ¬p¦+86_iŇ‹w/s̨íâ’ż*ˇüë#ěşÚŚ—ýóů0»®1őĽ“®5ăĺnIçŰ&o¸ëŃzpöoÖt¸Ęď·ťýÚF‡ťmď7¸éĎw§śöV;'ă1]›L9·Ęto6㏻†Č›ö6´µµwŐîĚ×µżź×µ7ŐíĹäę&wÖ5·ŐµĺŹNť¶¤Îż×Řžď¬ĂgňÇşňmŤu]űşT¬Đc‹©Ç˝qŰ“­ÎçBçî3úĹPúąĘą!×w¸ëÍŤŕ¬7o'­7ŰÁYos%;LząŮţí¨ň¶3"}1âslúŘřŢîr|3Ä/ÇŁjiŢŰĐ•o¬ël)΢ ó%…ň*Ţb0ő6Hˇ»Lˇ÷Čř[Á٨Ś›iś‰.ă3Á[ŞăybsÓë¬ÔńŞ×n7$ëęngWHýŕ,zďşSďóąÜEđ.#Ţ[·‹mwÜcň]+ă÷šńëd|Łż^ĆçMů±şđ°*0ąąíHCKsc±č×5µw¨ŠŔšsQ$)śAg‰C§……Í–MżŮćĎíwŤÜÉj\sY6íéšv\5-7I6n6Ď8śßA“_ä$R‹iE9µ6Ň®N¨ŐťžÉ’ľÍ¤—“oÚôwŮłÝ-?0?ä–˙®M—ü»Ýň§Hů˝71DßâA¤‹Żź˛ŃKýlzvąőś*ő<ě¶ÓŰIóé¸[îŁfüĚŚĽ7ítNĆßc>_eKżÔ;Ěľśď˝zÝgĆK‡ĐSâäź«ţÝÎ|ť&éH`[ztË»JĘ;Îň>M–÷“&˙¨$NŐ\ʇŔ]ţw>ž2ăď–ń§ŤřÜŐ®|í’´›,¶ţXĽ-˝Ź@˛úţ¨I˙´‹žék2,äňđü‘ý˘«><îH7»/?śŠ—rÝo妻ŇŐ~ >gú¸ú{.GňuĄ˙ #Ţ‹,w§3Ş]rýΚúĹr*'ůH:/xĚŇŹô5¨{Ą‡*Ŕß<ĺ1/4ęd"}¤‹ďä­źş.ť4@]—NŻRĎr”N2:ˇä†ż!Ů‚đrŔůđűCRÔÇŁ~ăC(9ŁŻ‡ĆŇË/OCÓŐëMÍ·Z]żĄŻ‡©ëóúşüc“<áőpđŹ$Âp¤ŠGÇ×*˝Jß.Łp´˘ű±ľ?ŠÂ+ÔýwőýË)ÁÍĄ}-AB›Ű*ů ű Ź$u`ó(Ą>păő$–G•,ŹĐćÇE^!ýdfťW•"ŻŘ/©ˇ÷´^Á÷”ăŃ„-^×ďQĆŁ NĽž ľç–R[AŔűÚłËUôäâŃŻgC¬2ű>§O«Ě&©ĂiĘE~ł€{ĄQ¦đz^B{Ě»HöHS.ň›«ž{Zó_Ďďqú‹a‡4ĺz4EľóÁ÷b“DźE˝jż¦)ů-ĂÎ ýN…#Ř»‰ü ký •ó7lďöIŇ÷dŠésč/·ř;őG˝–$LÇ’ÓŁ\ľŐr‘ßbđ=$%w|«,„ŮŐÁÇy@@i áʰĄŕ{©I’qËR4`©Ăf„./>§Vŕőuŕ{µIşˇśÁ˙ ݧp5…k)\ľç ×S¸ŽÂŤŢ@áe—Ňq«›˝őůŽzîŇm Ů} ĺI=ËŹJâłY]×¶ćöNűËłÖw€Đw éËőëGúmQ×ĹOIĘ×H˙ä‰ÄÇń+«ÁIbŹ­‰ěáw¤[ěˇůŽćŰ-9úlT]Ź=úX„vş‘Âmî p{‘N}9Çkü˘Ł<ľÉéÓě0vRxÓCź÷Öđňt =3„×çű°ĆGŢ $t„7>·(#mŕ…9IeŘĄ®ďáĎó-Tf^ ćšZ§ 2¦ÔíV–­ Ŕű·A˛Śż ŇŻxCţ«űő‰Ę^#čÔw\ŹľňöVS ĺ Ś/'qU˝ťÂ; ţĘ M_ÎĐcwQ/µÂŻď˘đN qHU{ă ö(9k/Äŕ§[ ~{żuś_5$;6|Š…oŁâ»^Ődľ8ŻîźçĺMh©aµIÔ(üu«ôÇ^"L°"¤·ęT9-y”7¬i‚ľ?¬I٧ÜÁž˛ě=ö€®zbëíöďíü:Ň Á:R#ěĚ1ëËďqOŃkÓÔ—HĚŤ¶PxÂ6E7YÓµRxHÝŻ×÷Ű‹×^i,Ó±üÝ×sú´g[’´ťJ˙§âµľŢĽőë«­„G+&hîQ×U ťĆžđA“$ߎCzů†üŽQx…÷Rx„”üiZţýž§wéą)ę-ĺNers$ď¤E^ąůăŃŠäű ’s·ľ>ĄâŻÖ×§ÚĺtÚĹUŽzYîUI¶˛JË [!c»ďőđý¤rőO§ça ˘W^Ű{©]~.NůNS.ň{„ÂÇ(|ĽřśZ±„_­ÎAŞ+™čス’)FúKăťs)¦ß#=éŰ–Fú :LÇ ź•~˙ĺ'RL»÷˛Ü©=!ף•nČ÷lB»źMQâ“ű-ńÉYĐŹˇŇ~Ěu•6ç`5e šˇ–p)tđĹ1ZĐ"®ÁX†şLděŔý†:•ˇž ŻŻbĐôW3húé}&ĂlÂÂl†y ó 1\CĐ×Kđ‹ňu K Ë× ,w`ĂŞ¬AX˰š Ż×3lpŕ†Ml&l!leŘHŘĆ éőőŤ„­;"pĂ:ÂÍ}Wv3Ü‘{úŮ˝hbĐşî#4G@Óéç["ĐΠe"tD@Óé燠‹áA_ßĂpo¸źA×ó 0śpŕ$AÓ>Äđ°§ćN3h}aĐĺY_kÚGĘÍs­Ëă1!ŰO:pŽá)>Ęđ±|śá1ńq?´ŕSŘčźfxĆgž‹‰gţ´€Ď0L |–đ9˙nŻőőçtżôĂ‹}ý†/ĆÄź1L#|•A뤯żĆđŤĽNř:ĂWxśń_tÜ7ľĺŔ_3|;&ţ–á{„$Ä÷ŕMÂy†·ŕÇţü7ž'ĽËđá'„÷ŕ' ?/ŕźš÷/Ę€,÷ç~‚ţ}$⢋ Ţř3n_!ŐĘcĹÍÍ]ű·äŹuA\j/^€hĎř*€Ż3KŔś–Ç._AF^+đuc ™—sŕş’±ŕź¬|9™i´Coä;ŹäčiiTy=ŹüńUbÉÇZřY`é<–Ý(2!÷'€ďŁíR˘[Ft¨űB0Oú­ ´‰-“žô85Ě3č•÷$đźlĽĘ™üŁNö lŔígÄ{źçň8Ý%&ÝK’OĄźńć ĽŢË69f1°şąµřiÚb›ŽâßrOđúB ŞĚ4Ľ"Ó(NóM$'*}Řç{ÖRS¦7 iĘáóú~?uý’ľľD]ż¬Ż1Źj <>˙ŁoN=űŠ~iă|né}n@~jă^âEĎ_ ëA\m[ç˘gn«0Ţ:íK(í®iŮ]\ §a¤ç1=%3üOzúY>ĺR‚á„Úhşj ĺx0ŢËş®Źá˝¬D”y/ËĽ—99dŢË2ďey/ăô™÷˛Ě{¦}ÉÁéćß1ý‘W÷­[!ó^†ĎŢ ™÷˛K,Ď=L¶;™÷2ÝvJş§ ó^¦u~Néśy/Ě{Ů$ČĽ—q~xďČĽ—9ć83ďe"Ţś·ĚĽ—ŮôpÉ«vËËĽ—YŇ'őuÉŻuËĎĽ—©řĚ{É«š*ó^ćěű2ďeD?śe,ó^f‘[ţ˛d›^3Úa&8ó!ó^&âç™úfŢËěrťĺů\ăHż#ť™÷2Gú\íóu} ó^¦é3ďeŽó[îz´śý[ć˝ Ňoçd<¦k“)'ó^¦â3ďeŠ_ć˝,ó^ćŞ\»Ý¬«»ś]mć˝LÄ7šń™÷2ËsűŔ]#÷C˛×\–M3ďeA9®N¨ŐťžĚ{™ ď0č3ďe:ţ¨źy/ct®úw?8ó5ó^F|wů{ÜůxĘŚĎĽ—©ëĚ{łŹ-]gú¸ú{.GňuĄ?ó^†ČĽ—eŢË2ďeBć˝LçUĄČ+öËĽ—eŢËzĹiĘE~sŐs™÷2â;źÂE őYÔ«vČĽ—•“>‡ţ™÷˛r‘ßb 3ďee°ÔagŢËŠö›@şŤ!»Źˇ<©gůQI|6«ëĚ{D,šy/ëa{hľŁůvKNéŕ`ß™÷2Ö˙Ě{Y潬Ç*{Ť ËĽ—ńkM_ÎĐcwQŻĚ{™ćۨřfŢËz©N•Ó’7AyĂš&čűĂš4zĘ}ě)kŔŢÓačŞ'¶Ţn?đŢ.ó^Ö§%dŢËt+Ń©ôĎĽ—Qx”ÂăĚUy/ËĽ—•ź?™÷˛Ě{Yć˝L…¸ň*†Ý3ďe†}3ďeqŇ7PĐa:ÎPy/ËĽ—ĺ,čÇPé?.»ĘÁ Őy/› ™÷˛ĺ¬`X‚5y/C¬Ě{™F;dŢËNBć˝ ±BŕIÎAć˝Lăąx2ďeßŔëy/;™÷2Žsy/Ě{dŢË´śĚ{Yć˝,ó^fá­Óľ„Ň‘ÝĹ%đ˙ďeŘ˝Ýír‡5t[CKľ«+żµiG×ń4wY.Ł››šÚ÷é)Ëtđ‹Ő—•íY5jڱ:ßTäÖŢ{”ńé8ŁŚ Şd{Źů±zřËÄ.˙\ßq jĎdú[  đĄ-Xó–R-Y Ş&Ťńe•&q’jŃő ‘]CöP0}eqŮĂéyÔ’Ü ”ö8ň/‹!“?RČGž·[ä_Ů éo&y'O…ă)DtMEŰuÁ‘ágCtą’t™S—)1t©Ó7×_bż'tąZŘeZL]fĆĐeÓeşĐev˙˘‹¶ËěşĚʎË<¦Ë\ˇKadî ş\#ě˛0¦.×ĆĐe Óe±ĐĄđż7+DmýöĄËĘş¬`ş,ł__`ą•xŕäYŇvd} ůëüµBţĆËv‹|[;RK˙ăó›HŹ-ŕż™mőfv#Ń-#ş~ôĹVľ6LÓMPţ ĘŁ]:\#ÁŠŽ†Ł"úż-×Á— óĐtő|á“'ďiqȱ]ëR:U‡Óř# ü Ý©IâüâxĎLĹŠ—4´u6_aGţ@EÇľ=!ú™ďąAłŠ÷[§Yk‹f]‰ĘmÉîęhhŮ^”ŰĂ&ŻŘÇÄąăa6ßđ6ßÎݰđ®^0°ů~źŽűŁç.Xč"iSIt8 ¶t¸9DéľX MďF}ÉŢáĄ|p ćľ8Ą{Čűö%-Íűöw9e»ÚalŚšŔč~/č» uę•2^ÓG­^‡E}xŁŹ˝7Jú‹có~Ť ńŽ‚^aóK˵ůę‚J˝RÎGöM›‡sńá&`ňË|¸4yo”ňŃ=`ń~ű»ZeżXć€[¸P Ř×t™ć¶ď°˘}×t뽆űĘ>`ŢđŇ;&ÂşcX·Ć´no”Ýq±Śůí5-˙ 6ąu¦Yžwó·űÓô‚ÇR–6ĹĺŔňŤ˝„Ë8fNĎßĂŐIa‡f ¦Ú7 µťĄbNEäŘ÷*ť“˘¨ß¤¨wS¬4±Ó_1ő×KIö"Łż†–kÄrg"xňúĄ`Ő´őö+ńÚżdÇţŕy•d!o6úĂqŻ™_5ś<Őý/†őÝjHă)jýÁ¸\[Ą:áŔU‚{E9iW&4ĺ C.ÂÝňE°{°Ä î3fwë†×Őµ:ěýéÍ©‰Ôíw ‚'­şwĚŢ]Ő¤•Küp…Ă-„!o悜˛čýÜ–ła}$3Üšáu-…z a¨Éýs$7g,R7yĚ™ ž°ÚŢ1y75“&Öěn…—Yčě/ěHmÎcôzNKبľ‘nĹđZ)~…ĹŢÖx$6'1’™»ĚÉ ž†ËS0nĘjHÓiöH7†Â±:Ű[<Ňšó=ká`!s ěÖ‚/”§®“.}íăbşAćKˇbÂ-wQ©~>L_\Éö ×Aę{˝Ç‰OŽĐŻ äô‰Á`{)J‹P‡–j†a„10Śa$aTÉ0š¶§™c4CZéCÇPGOĐű®9͆´l10‰Aęr%ÓL`Đű·ëËß˙mŰ×­uŃ{·µ]8 ß#®÷zĎ(Ófć0H]´]8Í,†ą„ye`.mźąÖEď7×vá4 –”Ĺ zOú2©‹¶ §±íg_Q–3¬"¬ŽU k ëĘŔZ† ܆ U˝'xk63ěp#é¦ |ŢźbźąŁyßĘŽ}¸”|ř}śíYŚă/3ď‡ÓČ˙ođF\ ţUńÎÍ“ëřĺŰŽ4w´·µćŰşĘ\Ă_Zďžâ~c}<*>ßµs˘Ź&"¸k˘Ż*Ú×vLv{‡ńŃŻ”םP÷rüUŻŇ‚ ௼­áĐ{'ů+ŽŢ©ŻkĂ4ŤľÖ4’?˘ÂGw‡5–aNnÁďCç6F+ď‘°±Xüł1ZźHD6FËĆhŤŃ˛1Z6FËĆh˙ŹŁaď˝°»ý‹#˝ÁĆ4‹\CŠ•[vĄÓWvŻ·ô5{f(PŰďh>’DZ@Ăá–.50ťóů8ĂŹŞ˘ťű-Ă:?N ›%Ý­ę.ż’® Ő+÷oŕ­…tÁ‹ĺőł ÚëĎA±=ÎýŚĹcý}ˇpű"Ţ^ż@ü^„`żôR~>ŃżHô/ýË,^ˇt|‰ÂW)_¦t|‘žů “1Ťd|µ cłĐé«D˙Űé?§đ/÷7@ŐEěðůz_#É@y7P<žč»KĹóˇĐoĺ^łzŤĺ×·H‡ż˛¤ó;~W¤óŰôĚ߀_ľţŽžý>=ó÷ţ đ âńŇű„I“Y:ţŇö&Ąé|!MŻ€ŮĎĽMá;ěgŢbvĆr†ů4Śţ˙2ÇĄ>O2Ţ-Ä˝ÁěĹŰ›÷Ŕooţ‘Éű)¨¶çgôŚn{÷đË3Ęý)ă…|ţ™Â_ ~xďJÇ/ Ô.ĺ0žÚĄÜ`öőż˘çţ…žű5Ńý»H«Ţ ‰mEůÓZÁi'1­•xÚILsE»Á5Íd™ţ ¤Ď=ÍĄüp:¦ąŞ„ü3QéÓ\ô‰i¬í2^LCµĘř*3ľÍ•ž‚ľ«âLS!_q‚ËN)WěJšĺ–k/6ąâ(Yţ~(ő4ŰôpÉ«vË{SĘj¦{LŇiĎ·ĽóRžyđ…÷–M?—ĽányoKy#Lyő¶ôI}]ňkÝňß‘ňšNůH?ÂëO~6=Gąőü±”kžÄ`NcĽą‡ °iü‡˘ś~7®žâ©ç»RóDH=ľ•ź® ż·¤|q&€śFWWű|ťCźÂă%ýRÓő2~Y ;Ůě˛ÜÔcowŰ—ÎtÇć+Mzńîe޵]\ňW%”}„]W›ń˛>f×5¦wҵf|«‹oXČů­w=ZÎţÍšWůÝŕ¶s _Űč°łíÝŕ7ýůî”ÓŢjçd<¦k“)çV™îÍfüq×yÓކ¶¶ö®şĂťůşöâ÷óşö¦ş˝- ťťu“;ëšŰęÚňG§N[RçßklĎwÖá3ůc]ů¶Ćş®ý ]*Vč±ĹÔă޸íÉVçsˇs ÷ýâ (ý\ĺżÜë» ÜőćFpÖ›·“Ö›íŕ¬7ą’&˝\"övTyŰ‘ľŹńą 6}l|ow9ľâ—ăŃŤ‡µ4ďmčĘ7Öu¶ gŃ×Î’ByLo1z¤Đ]¦Đ{dü­ŕlTĆżÍ4ÎD—q‚™ŕ-Őń<±ąéuVęxU€k·’uu·ł« ¤ţp˝wÝ©÷ůÜ î"x—ď­‰ŰĹš›ďEpŹÉw­ŚßkĆŻ“ńŤfüzź7ĺÇęÂĂŞŔäć¶# -͍Ţ_×Ôޡ*kÎEu ¦pť%ť6[6Aüf›?·Ü5r?$«qÍeŮ´§kÚpŐ´Ü$ٸ闻°I&żČI¤ÓŠrjm¤]ťP«;=“%}›I/'%Ţ´éď˛g»[~`~Č-˙]›ţ.ůw»ĺO‘ň; zyčjIßâA¤ď4韲ŃKýlzvąőś*ő<ě¶ÓŰIóé¸[îŁf|Ŕĺ13>đtÜ´Ó9Źů|•-ýRď0űrľ÷Fčuź‹­|HţRŽ«ţÝÎ|ť&éH`[ztË»JĘ;Îň>M–÷“&˙¨$ă–˙‡Ŕ]ţw>ž2ăď–ń§ŤřÜŐ®|í’´›,¶ţXĽ-˝Ź@˛úţ¨I˙´‹žék2,äňđü‘ý˘«><îH7»/?śŠ—rÝo妻ŇŐ~ >gú¸ú{.GňuĄ˙ #Ţ‹,w§3Ş]rýΚúýµMż(>’Î ž¶]Ú—ęŢ}]Ć~ť*}źöëůz4JeűvZőµň%«ŢxđşJ=W\ȡ÷ščq`ř’}!/śżĎC˝oHď'ňhá^ă‚čcľüt‚ôŽůB~TŽš5˙! ő’˘>ő’\ŹŠŕőĐXzůĺihşz˝©ůV«ë·ôő0u}^_×€ ¨Gă/Ľţa˘ŽTńďčřZĄWi_ÚeŕŞčŃd)^Ź˙dFŹĆÁx­OlÁcëJ <úZ‚„W‚n†c-˛ňHRGá Ç+~˘YNbyTÉňm~\äŇOf6ĐyU)ňŠýć™뢜‰NQňJ÷ë)ś¦îżŻďOĄp:°¶‚€÷ݦđ* gR8Cń9§ů̆Xeö}NźV™MR‡Ó”‹üfQ8GĄo†–3/ˇ=ć]${¤)ůÍUĎ=­ů/g‡÷8ýŰCšr="ßů.J¨Ď˘^µ_Ó”‹üRxM‘>7CżSáĆön"?čZ?HĺJ{ŁÍQIŇ÷dŠésčż-‰ţ¨×’„éX’b:b”Ë·zB.ň[Láµ*}IŹ´ťî˛«ŹŰm‡C¸2l)…Ëfܲ Xę°/~Äyń9µ’ŻŻŁ°ś•ĺ ţWPx=…«)\Ká WQ¸žÂun¤đ 7(»ÜŞÓł‰Ů[oĐ×;p'ncČîc(OęY~TźÍęú¸¶5·wÚ_žµľ„ľcH_®_?Ňo‹ş.~ŞHRľ¶@ęg#Ăâăř•Őŕ$±ÇÖDöđ;Ň­żöĐ|Góí–}¸…®Ç},B;ÝHá6 wP¸˝H§ľśă5~QŹQßäôiv;)Ľ‰éˇěkxyş„žżÂëżó‹}X㣠ď:Âź[”‘6đÂś¤2ěR×÷đ燂ůşźž«&žÚ Z§ 2¦ÔíV–­ Ŕű·A˛Śż ŇŻxCţ«űő‰Ę^#čÔw\ŹľňöVS ĺ Ś/'qU˝ťÂ; ţĘ M_ÎĐcwQ/µÂŻď˘đN qHU{ă ö(9k/Äŕ§[ ~{żuś_5ń»śh/'~µÄ磦€yhŠäۨř®W5Ůź/Ϋűçyy«&űę_Xm5 Ý*ý±W†Č¬é­:UNKŢĺ kš ďkŇč)÷A°§¬{O‡= «žŘz»ýŔ{;żŽ4C°ŽÔ;ó_Ěúň{ÜSôÚŕ´ő%să…-j_YmŠn˛¦kĄđş_Żď·Ż}·§¶ůĎw@zµ­śV˘Sé˙TĽVÂ×›·~}µ•đ|ÂS´ŢwSxXÝźŞďwQx”ÂăĚU`öµdOŮ;j›ŢŁ®«.0:ŤUŃiLśÎ$ůvŇË7äwŚÂű(Ľ—Â#> äOÓňď§đD<˝KĎťHQo)w*“›#y'-ňĘÍŹVĽ ß•ś»őő)µľ>ťĐ.§{Đ.®rÔËrŻşHr§ô„ܰ•UZNŘ Ű}݇ď'•«:=Sř…¸ň*†ÝKíňŁpqĘwšr‘ß#>FáăĹçÔŠ%üjuR]ɤă+™b¤ż4Ţ9—bú=ŇÓ‘ľmi¤o  Ătśˇđ‰Xé÷>‘bú“Ř˝—ĺNí ą­tCľgÚýlŠzźÜo‰O΂~ •ôg¨r€źî\M¨)Ő µ„KF90ZĐ"Âś$Že¨ ÁD†ÉLaĐo¨Sę úú*M5¦źNĐ÷g2Ě&Ě!ĚfÇ0ź°aťó]CĐ×K čLż(_ǰ”° ‚óËXÁ°*kfÖ2¬&čëő ŕŽî69°™°…°•a#a¦××7¶ ěŔM ë7ôý]ŘÍpGě!čg÷F ‰A뺏ĐM§źo‰@;–uĐM§ź?‚.†c}}Ă˝eŕ~]Ď$<Ŕp“MűĂĂśbK8Í őy„A—g}­ie(7ϵ.ŹÇ„lV<éŔ9†§ř(ĂÇBđq†OÄÄÇţĐ‚O9`ŁG|šážex.&žřÓ>Ă0đYÂçtü ş˝ÖןgĐýŇK /ôőľĆ0ŤđU­“ľţĂ7"đ:áë _!ŕqĆIĐqßdř–Íđíř[†ď~ßK€7 çŢJ€řóßxžđ.Ăk„źŢO€ź0üĽ€"hŢż(˛Üźřuú 0o)I=“ ‰˘˙ú˙Ţâ0aĹm#@ýĎEyŚé&ŹnÓö«Bz~­Ň˙Â҆פM´´ć;¶ç;…´_!~ľĎ;,ă~#dý+^Ź4uű?.€1™`Íç‘ů¦ëń‹đö<ČBqjHâŤ0 H^w*ČÍ ô—ŹV¶75uć»|ÓŚŰlÓĽ7LËFĺ•eUs[csŰľµ‡Űö&Ҳ߅RQô]˛T˛Ýx•lcá˙jú_;&Ä˙Çłxţ˘†®‡Q8ś=7BÓr«fÎX¦ ôŤŞ43™\ŰŇ˙˘Ŕţ5ËŁ™Ňp‡ş:TÔ¬@Ů;ÚŃImĹě@Ö¶´úĄzŽŚ +y %Żä~/VN"ÉÜ úK[Šś‚x8Ş˝TýŹ!ŢÇ{H?Ż@?˙BH+\Ůٱ·…ór‚a®Ň—V¬fBęt?Ô(JÝTj‰+ľ˝Ž¦p­úCĽF”ÉuqĹpqťˇ®ɸJęŐ,/t#SĘ  Đ+7/ŰęÍôŽ|ˇOjë¬ëÚźŻ;šoŢ·—!®ćĆĂ˙öŢ0’ŁĽß]ź+źŕ»imÍhN]^[Ł•ö´´»HZ\KĎLk¦W=Ýăî äy$„HHxČÁ•H^ň’đ€@DpÂ# Bň'áHB€p_áJB üżď«Ş>Ş»çĐ®Ávl°5ÓSU]]]őÝßďÓLć¶ââ>ŘÖŕÚďŚJ\™wÎíÁČ áTl°»Ŕ}ĐiÝżţ(&c7~?c26dĚ[‘~čŘá^}2|ţ{âŘŽĘőż:ŘqIŢ"$LaÍ"öÄĐ 7 ŢĂAŘDµ ťĎŢáWąŠ_Çkg‘°ť«Ü5ë˙•˙Ň]źľm„f§ëŕď3wp“ĺuü/^ÇkŰőYbTü{—ő.ţ˙Ýć¨'Ũřw\Ś:Îżăżą”oxÇ™ ĽÍ7<Ë âóők’ţńWDH`&ţŢ(ţJ48 xp~đ*c‹ą_EŹuč˙{J˙ëBgţ\Z˘[—ŔżÇ§żÎ—ëńżŹ˙ýQüÝበ7vv5ÚŹ^)ᦳ)%śR.F?Â.ŻCϲ§OńčÄŽÇ˙yüźí?™őÜ— ŤĽľÇçkß˙Á‘ëž4qMéć}7˝ř/˙ęPi÷ ~mú Zé¶[¸áđÓßţę˙z{Ő“K©ĚKŢů…W~˛tŮU/ýÄ_oU¦żąř›9ńéŇŤěĐűnüöpéňź¸đ»Ő×+]üůÖÉaĄÔëî»ć˙Péň|i}áâĹŇ%ďúóW~ěÖÍŇm/]üČ[ßő·Ą‹žđc/űú˧J·ířâň»–ŢVşŢůéo=ű_ťţĚC?ţäoüÉÖ—_=ő®ĆgďŢúú×?öťĺ_x~ičłßúö3ź]b?÷‡łq•]:çóÁW~ştáűźó¦7=qWé‰ďĽü9o}áłJ©ę[&^ń™–vżýµüëżřżĄŃk_tţĎ=őČÖÇ—gďřĚ'~­tóŘrúK«ĹŇW/úĄ?uł´sďź˙ÄgžńSĄ‹Ëőźűʧ—vśĽă˛ÁéK§?ý›WŢđGŻúPé–§ţŢß°Xşúuć Ţú O)]qýo¸őžď”.xţ'câŐ»JçüöoÝöáź|óô7ż1řůěC[ď˝üĐ w}űEĄ ~óŹŮoýËD香_řŕ÷úzi÷×ořŁ·—żöߪ˙­đťéOâĎ>y 3Pş|eđÂ_şä=ĄŃ_řßk÷~ďcĄź0Ěž3ţÓĄ+ţĺ ¸đ©çM˙űő˙uäç˙ŁtUv¦jíüČô7&żń{ďřŁ˙ąő…7úĄ—˙ téźöOźřňÓKçüňŻ<çŮ?®—rľęWćÁ K·|ćň٧KOX~UţoďřŮŇß˙“Żůî[˝ôÄCľŰ6GJ×Ţú/żüÁ·—®řő™Ĺן_™ţúż÷×˙đ/ď+ íŻnýĘ+Üú|íRë‚?üńŇŔňó[˙ă«ď™ţĎç–źţçŁW•v^ó «î_ßPşiő™űÉ˙|Ď»wď©,üă/.]÷â®ţBĄ=ýť‡®ą{ď żĽőá˝·|iäyw—®ţ»/^ń•SďţÁÔýż70uŮÖ‡Fžń«__}wéÖ/ě|ç­ďżŘß“×âžDI•Â[8Ż»Ą«Zě<šŐâ[Ď&Ă“j±ł-µŘŮ®Z|ü;ÎëY-ŽÍîÓ¬Gýş™čB8 z0‚\ ÂßvpcŇ ˙‹×ńÚöô`l¬Íщ/Vfń˙Ęim[ĎÄłv­ř›ćźń/~Ç·9ęĨřwHŚ:ÄżăżŰő1*ţ &/á˙nsÔKŨ—*+p)˙w›Ł^&FĹż·‰QoăßńßmŽząőŠ<éZţŻăµmŽzĄĂâfĨ3ü:^Űć¨OŁ˘¤1'Fťă×ńÚ6G!y;Ślżu?żŽ×¶9ęµbÔë”QŵmŽz˝˙މQÇřwü÷a°áHę´c‡oňŢuJbX‹ĎK1v”ĺk2<ůŢ@_Y]ô©1í÷»?đůeśáľüzđé®ÜdŤ¶ŰbeťąM˝b¬z5Úu!8¬¸öô^oó¸Ďô=ÜaĘňľ7ö°äÁĺx¦ş¬ÁGćJkĚěžľ˝DŹgź-ftů,¬ĎgQ×–%Śßé}Ä™őzťďmg8ß۶1ßŰbć{R¶G·3`ćéáĎđ·ń 1Ďđě.k"ç{ËÎ÷–mĚ÷–3ďůqµg(>K“ł¤%7Şc+¦"’ů7)?ţ÷Gţw‡gRľ­ŁšÍ=ŢîŁWÍ ü~VÔloEúRłĂ˝ú´0_‰Áx×ňµ8çţşDĽŹx/˙_ľ ®ë´ Î]Üż0ź´ «Ą×t缮=›{ŕŘ|9˘?yKůéÜ@—¸´Ľ#‹|;×wz;çxQ‘—sâß9–fzqVŹČtĂŮ|AçĂ ˘‰ü^ŤČĎçř˝¶ńІ;˝˘ť›Ź^ şçlľśsáĺlĆ\ď@;wĘö}˝ţÜ;ĆĹéD¬–~„bß!<ÍBŕŽ¶r w˘R˙L;żö0îŕ]Óţ_ů/ÝU۶!ĄĽĂŕßEţ˙âwüw›ŁVĨh 8"F=ÂŻăµmŽŞ‹Qńď bÔř÷ťúĂbô‘oxÇ?pg[o86Îq<ç(é$kÚČŇść_łtGkbĆ łôŠîşš#ϦBG"†62çř{˝ŇöžEíúĐ5. =®T=ţ÷ńw‡w»ßŮ]ŃLs©Ý”2ó6đ_›ţĆ_îďłWľ>ý§ěâ‘Ű˙Ý[ßŮřűÁÝuŐÖÇN}ěŽîa[˙ţś?ąů»W߲őę±?ßřÓswl}«ú„Ż~˙uožţ—ľîý?ő[ÖÖźýŻvúµżó›oŢúŘÁµ«OýÔĆÖC·żj×ţĚó·ľ>ýŐŹßőĚ«¦_óÓ ÚĄźŘ1ý˝ż}ţď8ďů[ź{żţkéĚôgÍ›çžţůWLsíĂ/Űž÷l}ăŘW?tÓ[_¸ő¶÷ľňiϸxÇÖ7ň]Ďřřűž;ý+Ĺç|ćW߼cúS/úĄ—Ľ©ôüéď~ä]—nĽë’­˝ăµOď˙+m˝čgľzîůÚúĆ%˙ů‹Żýâňô»w´_ó×_}vi×gžőĺ7_ňÂwď¸wíC?ýü'NżýŁ˙ëÓyÉó·ţęWżó¦Ď~hú ‹/ţčđč÷÷/vÓ÷ˇ­?ý˝ GŢűËĄéŻţëÉ׾ěÜ­Oüîóľů–ťďŢúÚÚę }dqëo[yŇ·ľgúo~{čŞďŢúŢ+ž3ü˛”vdż÷ľĎ|lcúý…7ţĂáÚŽwź÷Ĺc›ľ˙%[_}Ć?ľéďĎ»úßďşäâ§Ľ1łő…—żč ł^·őëéůÂËžłcúŻýÚ+ßţţço}ë˙{ˉĎ7&¦˙aÇE—ýő{/™ţ‡ýß»ř›»Ţ2ýźwüŐŻřě§˙ň]ź;ą9űîéOuě˘ăďzŰÖżĚîůŐO|oúÝ;tçżŢ÷É­oýÖ?üĹż=ůW·ľńâŃŹ,˙ëeÓ˙o€˝ůí/yţô?ýÜo˙'Ą«ţŐźš=|GéöŐçć5_ýJé »^ös|ĂgKŁ+Ł+ŻąçĹÓźú˙ŢÉ^|ĎÇJ7]ráÔ§–NÝűŃ[^—+ťűé[®|ő®cĄóňW>wçŘôć‚'_óć·MďÖ{ÖŰőĹŇ-?^zŕ{O;Uşá…O˙»Żüt©tů·g?öż7ßXÚőŹ›?ů˛÷}jú OzîýżúßKç˝ěźžň˝ý·nýÉŰfßđëżµQşěilüîofK7ţń+oľŕ–çMyôí˙óĂďţ‡ŇĐyOľć Ë˙1ýÉ׿ňśżxÖ;JWĽŕˇ˙ţ¬'Ś–Ňç˝đó˛‘*=ĄĽ˙Ć_YűdéĘ×Ţy©ő˘ŻMćËĎĽô9ŻţFéęď=0űë;żQÚńÝWLŤľâ·ţćƱ©Űţsoé Ë˙óWä>Rşě›źţ±ÓúJ)łë‹ś˙ďíĄ[Ü»˙ĎĎ~ćJ׾ÖýȇŢöŇŇ5Żşůçżsßré˘o<ăôÎ+•n¸ďăűřŘKKW|üµc­›ţş}ŕKĎřě­Ą;^ň“™ßxĂ5[ßü˝—đńWţä7?;ý­§˙ĂGŮČ5Óű©çNÝü†×mýŰŻĽáM˙·p`ë+oýđŘ˙{Ý ¶>ü‰ß»íúĘźl­żö©żÖúÖ[Kçě}ÇOęîéĎŰOé?wĺÎßĺúÖ­o<ă/_ő‹7}cëĂ?ńSąađu[}Ű}··ůC[»7űâüó~júC·4ţęŕÓG¶ľü’פvżěÝÓ˙ÔŢÂO=ýŽ­oľ˙ŰWýâŰ>¸őţß˙ŕłë7^;ýwCĄËOýÜô_~űÚ‹_÷˛é/üá—~ĺż?’?¬ůA{ĺşszx»ÖÖü@ßĂŘPp ÄŁLúÍeϢß<n^Hgüćb¨śúdOĆ·¦›„ËÁtřA/Ç®8{gŹx3ňü†o#+gć˙ĂŰfr“ô{!T%˝aŰGu¤űQĺÎÖ…Ąx,Kńśâ{!%^šŘpb{<°ůľlčµĺ“Žm!î0)]˝‡wRv»·ĂDr×\ kA~÷÷q&ëuM8ýYĺCtÂŹD —9™䂇şO Ö9[|xhŔX ČćÇčťeň;’ĺv•…dąő[w]űě˙ű˛źţä“_¶~ß·_5ý/'ŹýîG^˙W[ź˝áž©Ë«í­o˝ômO8ńü›¦ßôĺ»ý˙»á[[¸ăőźűíÁ?Ůú§“÷e^ńŃl}üźž{í{~gë3ďŰxč„qËôçf^ňľ˙ńĆöô7¬;Ďýî—^5ýµ­˙wÍôÜó¶>ţĽ[^úš›ÓÓßüĐŐßţîďüËÖ_}ňS…·üŢô÷Řłľ˙ß+ż;ýO˙ňú?żăŮ[źř®ńş—ç_˝őĹ×];[ü›ó·ľńű?ůБŭąřÍđôkž˛őďç•–ľłőłÓßxÁČ׋ß™ţâëž2˙G'ó[yíő_v¬=ýWę;†ĎßÖß]˙ĎoÖţ©tÎO~1őpÓÖÜŐó¦ľ<şő›×|¶ýÇżż6ýˇ]Çß˝ďiËÓź~߇?ö×˝őŢk~âźłűľ{çź˙ôÔ•/Řżő­ń‡ţďŻě{˙ôGľ}ę˘'~ís[?ńÚsÎźúÓ7l}őÚ÷ď˙Ŕ/?cë]o|‡óÖŤoo}ń‰“3˙ńÂÔôw=ď䛞ľë;™˙w{ůÓ»úŠă_Á/Ođ/ľw¸`bú-o}űW®™ŃôĎ˙ňţö{>xóô‡6î,o|ňë[źů“·Ľď©WżaëŹ^đw—9úÝé.˝ú…źůŰééůĺ—ż÷ű‡.ś~OíşW~w÷ŕÖÝzíKŻ˙Ę“¶ľ2úë?ř·{~gë_w<Íşć~yë /řăĎě/W¦żuŮŰť—üŢĹÓź˙ĘO>÷eżşőţkŻzÉW˙íí[Ď\˝ń“»ç¶>öˇ—~dţ˛éŻ}îř÷ç~ű[őĆű?ýo˙Óéo]ó¦Ńý»ŮéĎüîËž÷çţÄô·ţě?ţŹůcëK˙ňPůţĎU§_pË_Üů´#›[_Î\űϧ>źšţô_úç»Ç^8ýGżöˇw\ýžoo}řŇ›Ď{Ű˙śţ×{ŢńcĎúΧ¦˙ňřŹ˙ÜUoÎLíÓoąúˇď~kú ç~˙ĄĎűęÜÖç?ţ´_»˙oź»őé·fÖ_ü–ßś~ÓGOţÂłţötĚöÜ…8©ç\Éwč.ń7ěłŢ;9VH5+)Ó°Ú©šŐV*ŢDąş;©ůĺĽůKjpĂ « ¬Šö»‰¨Ńl¸mą-­lę{”¶;ŐŰž3–Î(—ÎÍerEĺڮ̸z%;ˇ\9ob˘ĎŞ7\T.äY§ů˛aĽ{*3žĘN0‡FTźáę–ŰŞäuîę¶‘)‹ 2+űiXkICs–|<Í©ÔĺCŘ®çěŮt[zĂűÖŇZmůŰy í”íx_ Ëűrî&H)Ţ MČĎ©j›Rw×, Ö<;źfŐÚZM˛‚K@¨@¨đ´ Z¶U“­,ٞŠ~ťěs‹}v~öäěňÇ÷ߥ['ggŇ'–¤&î„‹GO,ě_<<{×,~Y>Ľi0{l~~f9ryáŘŃýË3‹D®ď_Zš9¸I˝~|ćřţĹČÍgŕ~t癹ąEč)¦±~˙ńCpţua˙ĚŇ żö]V8<8<;ł|řŘŃ»f•§ľt†´ŃeŰwa+?_Â_1®™Fą˘îŞËŹŰͧś<¶ÄrŔ[ l~yiGذsŮĽ(ݲôÔňşÉ÷ľű°%^ˇ|w‹v›rHÄČ ‚›Jî© kŽÖ¬ů}wÍaĚŔm,Z·[†éµ®j-ÍŐ˝Ţ^У؆eřQ¤‹vě"uµň|Ŕ)hÁř*1ʤsą”z¸ř!̧"çů"GŻŘ 8´UŠĹ ţtŐ2H¦á‚ÜÉŤjS+ç˙ś˙QnÂrŮÖđŕś®7µMÍaKšłŞ9đ äqťÝĹ*ĂZ»…żT}pĎČŔî <Ł74Ă„VU1DÚĄţ%'ŐtlDĆOŰNmzQ7>ă {lqöđvÍŔ?)ř7ź*d‘Ü‹ůÁ=pٰä$çz@7Ť śÎŚUuôuןé`ĄULPv¸Ţ&=Ů}ć#*íGs¬Ú•vC˘łÇ uT7LéSoęF÷[±ë|Qç5Ç…+ťîÝ0Ü Ľ5ÍŇí¶ËŚ,ßšŽ?ş‰kń´şq á#|ßC©‡îҬ‡ď˛b¨UđT¶ř[Ő“‡?®µéqÚ(Žš‘Ů{/ż Kx¨ŇZ»˛ ĎPMk•´u:fI–Zú _“ýV­Óz¬6UÖÄZěęj(cÎTęF‡|Ľźč{ /3<±cÁÓv:¬ěŚ©oh¸ÁpŘYX*ŘŃŚK©"ň¨™¨ë.H MŰܬŮ|‚ăÚb0$3]˝&žD>Bw>e†5íuÝYi›ÔE7őš÷©ĂN™Č®Ň!¶f¸m ű¦ý O"čŞaąM™2hé’H*7ÂÖŤVF…·×¬k.üD]Aeok¨’‚ş„§Ů<§S š ›7*>+>_kł ÔÝôe–®W]\Kś-´ťŰf+°†L·ěv­ÎZ6ăP… Űm1ËFQĂŞjję¶aĆ´,ifI×Ů´Ľ?Ţćk ‰ Ú¦dŔ´Bń.^dĂwß…ÚU:Łň“ŰďľÔ°íV}„-Ě,-ÁËŕ#ďßh9ÚŘ M-B’‡jŽQE%T0„‘Ŕ* aś7(4»Rw𕟶UĆwΦ®6Žą4pđř<=NN}”ŰꭨãŁâŇN §†ÔvT]Ů«oľ]NĂ®•äZŽ4j¸n»—É=…3¤B*“c™ÂT±8Ug'–gďdrHe/ż[2Ć9 {:°XtG&Ţ+§f;ŁJ“ŹáwÓ1%ÂĎŐgO‡řLĽLäťqÚÎŻ˛á§ÎHą™ Ű~_˘ĎLgŮ9™ÓH Íe@pˇgł=c+uA:ĘőoÎ)!2(ďśDňh"rLP8o®AjĆ›IÂĹ$Ő’m{¦PD=*ĄîÁQő}îíČúďVşź;»8sTąvu`Oe‹S…Ě|€=Ą4»s8hIw˛ąűNć 2 ’ăT¶˙çłmI—š§’\-e±ăZeŐW.¸7$?ž;ÄP ~ÇĂvŚ–T&Î[6Z¦üq÷L¤@Ç--JálNw+ŽŃlů]0›Ďň$Ĺ —Úµšîú‚äáFÓv|©tżU×,_˝p^;˝9okŐŕwž&»ĎĂ! LÜ‹ó’šěk×őŕŘ—Ej=k7š·1yŹČCŢă|ţTrś (0üëÉŰ8¬k´lG.Ęe¸`ŁÇŰeŘC`äóöµ ł•ápE“ß6¸dae˙\8X*mm»Î¨i-btqf˘Ă~(;šłé‘µ˝ĄŤŠ¤™śDrů•ŞnjkšJľv\\ŮYk‘™ÍXšą lSíťIŹĄ˛“á«?ăÉŘ5cMGK3 ¬é(˘¬h ĂÜÄ ‹¶ëę:Š0Â˙!‘zFDń¸ć\(ón”—N„ÇH—ő„»t”Ěs@‹s“©Ba|<*™‡&଩Í;828—†yő˛+اV§‡…vôśžš,{cĺł…R /#kŰÎóeSĹl6›ŹŃ<˘Ď7ß®„źjNg÷f5iműx(:=§Ó`ţë2ŁÁ9Í2pűft¬ mVŤ.")¶ó„Ş4vÚćă–ąŰ¤Ž‡Ń[­Đ¬öm:íý3ťU™*ÁÓÜt»â–ÓzµÝuJóşm´šŇ˝šŁ Ňő™Ż•a­Ř%GGűŃ*PEŇ|»Íé^cC -4©% DŔćĎ|Fk.©Ô.WŇ­ëlö‡gAwVÍn»ş‡i4h˝˘• R‰ŃÓŰZ0*uMŮÖ‡4ÓMÁ= /«Á‡O×ĺ}ěíăÔŞ&áu˝ŃjÔx&ćȱJíJUŻ·ĺÚŃĹ2Błştcţc·ĎĆ‚9-{5×Ď2ĎtWĂ[{źć t66UŁ­÷Iů> oŢ657LĂíĘęşmWĎ|b–#†*üÝ8`" °Â4¶§łrćłYác§]ŻÂp Bó´QKÇŘ~Ô™Rf5w6R˝Ú.5ÝÍJ(·©ő´ąi§ŤC9‚źÎÂ\pŕô) hd'“.' ']¬—ůÜäD*›ÉfşĘÍ:z*ŮńTôřD¨T=eĐű 5Vuąź=`€ĆÇĐ죷6ŃŐlriwMJ»ńj˘aUĚ6šŇQ»]1ś††b?ÎAoäb1ZFśvĄŐv4“é¶ą›†ÁŢdă÷¨ÚŞłJŰY“÷QÍ:»Ń ’OÔ‰/ ł»°ĂÂö ť†|–í4Z#Ͳ±†GŐnĚ:Ľ6Â`ŽUPXkĘ-öÄXM6.LŹrU!Ţh’lľ‰1§ś ‹ĄŞ6WűVĽKş]ăr Ňl—Ąš—ž *0ęż©ÜËć¦rcSůW7×Ô;ďşµ&´^Ť2E€e¤¨ĎćŇĚ“Çi´Î$n>ľLŠŃĽ?^ĺ’-ŇlŔpĂ…KĆJ˙şđ/ŐůżII‹ éĘ˙e•qIÇż$„ć Áź€ů3Źá~ŕ¸nŕGÎ ™äţ/’1Éüź_`śř×*łąvđ;P1F$QZ{:ZÖç5ĽĆ{ 1LAŻ2×^i­!'S:‰.)‡ď˛ŠżË|—éŢ.KłĄ–ćšśÝn±Çnň\YsŤŠbĂí7*«ş“:ÔşŻŠÉSş—†„”¦O±şŢŇAV©čU n_1Z›)Ű\Ś–Ŕ źCłŇőčÂý”pR®N^6ňŢ7Éq°•슩ľĂLâ-`9ŕ)@ö‚ďäĹvŰđ8Ŕ…ogÁ3[Č|gfGŘQ}]ßLÝË8Bw˝o˙Ě˝ű«şçNyłŤÁ ä€ńď8l[zj]ۤľääÄo{îdM oWéSŠž¤Ň w—cĂűŇÉ­ţÇ”˝’‚-ZĹÍŕ†ZÓpĂŢDö°˛m·@ÖšÁfi6cšŢ;m$n˘5›HšQěnŮÂ_C ^0)°)ۦíčb v‹{yÍĆđşyŤ>•a{U@F 7lYgZUkBKq܆}/›8>Â:ä ]ĘËYĄAvbş4L7z=»–ç€ŇAq0Ó$–ŮĂöVmc*›Ig'Ćň㣧\7˝–™,¦ŤLönyeGč‘)Ä÷ČfÓČ$ô Áćc ÍÇŕ“w'ř‚óqľŕËĂjBÔCű˘™ý‹@l4ttkUV=o1|hčý×hŃfšn)ŘQkđ‚AżĐŕŤ™ş9šz4MP5šn.¸ŔtaW s/_ ę- -xgŐô‘t!„SeROŤ"…óř7Żü8$=IŇ‹©ä^ěäÎ÷Ř ť™ áĄë­†:­¨Â<.\„ŹSů1áČ»“ťćŻSi˙ŠSłWϰÇ…B|Źq^×ňŕ^|ŹQ1Îś: Ń*ËácîÂŁÄJŃw„źvo± /a;‹Ât&Ű‹0MB˦@ž–úaďÂt険DU¨ę!}ěą8ŁRôxg)ZÖx9šÇ>I•Ł-öĄŰĘ)ׯ[ĆĹEŁĎQ`ŢGá đ’˛Ă¨w&]L©AĆBâžHĺ”_vţGT|Ţ_­QLa®)QGęmůćl«vŞ6g>€†ńlÜ݇dY Ä©¦ZK7ŞşŁ ’]íă0÷Ša‡ĹcÍJä¤î5L ŇеxÚeÔ%´n+Vw˝ĎQŽ×Ť°Ř>[×0Ő+ôŘÉŔ¸ó͸ÇPŕ…=˛řă¦>¶fh(ýÂÉbn%.ÉÜۆٳáěäÄ$pýąc‡‘ëçň™ńŃěd¨öřÝişăa.ę‚đ"w1—ŤŞݰm¸u­l ¬’8áýŽÉk@ě[R°Ńř­„`Tɉ‰bżČĽQxˇĘ·_đôÝ E«2R.ůZ+°-PB'Hiŕě ďÁ–­`”]•GâÍžĄ;í;<›NŚ3–@T41®‰ ›¨%@›ŹĽn;«´l@óřşˇ"qTă3aKŞw=€R·Ŕ¶)ÔŘHç"Ńji˙R*›Ëćó…~d¨;‘¬>µ­U!µ±ÖâU®áS?Ś…+ÉŐó±a{lVĐáDĂeÓ…Śv ĹÂĆ(ŐÍĄý #Śd5.†­€ŕRÜČ´kFkdŔvŞ,…”ľV-Ł…Ţ ÍY­ÚëÖíÜŞcö}°énŽ&PŃóhdőâx:źŽ´¤čů®2ÔM>]eŮüT>?•vśę)Í_E¤Őł_zYO9Ĺc !RšTcŃ Ú(9=bQ[ăä…Iń/"µ`’BÄ ?7‡ćą7Ž‚÷!ôđŐÚ*'ô`pŮ$Zsc‰BĎ“ú· % 3zTۡ"„žKď5j–* UObąhŃŢŘŐń¨í‡®í·*vŐOiy¬ Gň„v22^¦î1漦`ĺĘtčĚČL‰ŚL!4±¶‹śnhżË?D4}IúĽ»+Ă^ŇčÜč…îÜŇ%_˝KD {×]ÂÚuW Vi"źKM3vHk—ZjEQg Ç8d¤r˝D‰»„[µÓř?źźś ŤH·cĆ\‚ßíŻŹ' ąT~¬8^rž¨2§ˇ‘-€P#ňt*uÝhš˝Ţ¶Mvo©l›ZŮĆ­2xĐAŁU5ôĘjŇÝŹŁ%7ÖűYľL.?‘šś(ćB·>b×éIŘI7ŃĚü¦ű´v`W«SÓ0+âhšŇscÍhą«›}Is¤|=ž19nŞp ŕđçÇrđD Cr{bs“Ç— ĺnĐŇÓ+ôHűřć—5Kُ—p$BĆĽq¶P,¦rĹÉűçÚXĺ1PG´šI ę5‘™ “’9( jłű„ăN39ôýĺ ¸sTíâ" _–Q2~úSĎ`J„Z`H~`ą.#¨ě{Ăő[dÓEÓľŁ7$(_sĘľTđ,¦%ď™JW±ť†h·¤®™5ŚŻ7ř€FŁiR<ż7 Üw@˛‹Ů;î`‚‘‘•\Ô†‚aäš5~¦ -VšMŃq°f¶őAU€żE đc ŔŹŹ—'† óŁŇç.UČď tˇźwq9˙›LĽ…x[MŐ~ÉÁŕY4nÄ·˝ú¦ŇPNÎŮĚG,ŕ0â˛)ŘTpˆa=¨‰;Â˙p~–i7[ޏ–ˇ‰9ş8®7g\ł}G«((s=?öę˙á:Ă€Ż3 ,ě_€©HŐAÜ`"ť…˝^«ˇi772ĐŔZk €(Óŕ+”ËdóĐl ›iŤFQV2#Zš9±‡–)h}¨®P®Vkřľ`ÇÂl¸…«7@ö€‰岩Cݡľ˝č&1A(»EÄJ$`ĺÉ1Ęr~ţUÂďŘ86TFŞD!ü˛ž ŹgjlÜ ’Ü*Âe;Áú¸X]ĐĐ– ‰'ßg’—áËég*(§GëvCĺ˛ÚčśČ†rA`n®Ö\ţBćö/Í.>ŽůŰ;|ăáµęŃŕ[Mąę˝šđĺĂđěż ›ŐĚJŰG0‘’2R¶ă ač놋¨,2Rl`żŚK2@ŽGôéF4˛d`”]ďU˛ÚNłŕ=ž«žŚ)Qó"5o¬ŁJÖs©÷¨dś©ÇŐYŐ@/"ĚÉOÄaě†ĂVîÜô–"1hÎ%iĄ 2+r ÓĆ.áúLŚó6”ă!@ŽčἾR#ú´€"ŤI§ÚčĘ„;á”ďŢ“ćÍĆš­€aFüP%ŰťçÚlÂýTöcHZ —2-‚aŹň5:2C/dóQIád›r{łˇkVPµTnµ§ OŠ.2Lĺ·!bI¬ćšŇč3Ży {%KÖ'ßřä˝řĄý lx/pɦd›^Hąiáľ±¶¦¸XĂ]§Ő®±¶+ÝJܧöŤŘ®nôLYŚÖ*`~¨°]á;PZ_‹Ç•Ý›füxŚW*gQîŤĐţf9tašáXŻł<Ëd¦˛ąN9…×Ćó­s—7›g+­#űčĎ›–ŔżTű“b:RŮŰ•ň;Z“€úž'Î5F\yÔ˘şÄş :Ó‡ŹîëvôÄcŻ]Ě 8˝&"gŠwElqرŹC}÷*§ŞW†ĺM¶0•†•.]đďA8ąń©âdżÎŽłÉ°v˘ćŔ+ÜEaYq$Ůň Éuf/¸Ýűá--âźDŁŠz\˝ęśúËM¸†š…¬hňŚpÖűD3ÜüĽAX*jâí(}jĹŢ(5* ă'EľęnĎ7 YŔŞäČpËşÄRâšŃóĽYj7,â łĎŃhŚăŽQŃ“€Ą®¦›Ř¦Děk}­Ś2ńyźoś©šQët¨©ô÷°ĂG ČŘĺ1ň>­]Míł×Tă©Ňü5ĚsŘ$O„ś,„Ŕ„Č@¶ŐqŇh|ô §Uď<?awđFJWÍ.3>čč5á|°ťSšUéÜ|©‰:©đ?hkÝVp§Ă÷Ë!ÝŔí’ ň!Ä9’î ­çť×Ę6p CwâlT/‹şéâHÇLÚ2 6IëťGźk[îM©jWęť'ď.ůŕQŕ÷Qt2ulx62®«™]¦±O$łÂ+h†łb/“\8¸¸Őiş÷°[)o`đ^ÝÂ(é.ďßŰćŇ—ŘĂ.żĎfŐ0Ún§Ö]ŕĆÔM’šµ˝]qW¬ŕ»I9®H’ě9 Śç˛]*břďZٰŞ#L@m{±Čh*flׄYب ©ĚëÁ¶fµŕĐ…0­„¸' ľŮĄD!ńeSąq4r YĐExmUTúeÍt Âz˘ů6/ĎbęZÓ DPs s€˙]ć.?rÇ´…×B†95Sú'˛Ů4úĂđĂŚ–ššăę 0EIÍ?é›*Oě «Ťąq"ľ‹Ô‘™J…8á&;’†ĹßŕNţ4“ü ^gŽ9‚‘^N•íŻ-úş|ś¬r“ŞŕźśNú)ÇŁ€‰Ďî(l§€µ ĺL%Ć[Čw‘ăA¶[__Oźö co+őžh¶žľk¤ę%ž+`ŕr6ăAáýŕváö»”"hąĂ¸ĽŐ÷cśÇ3bđ‘TRbÓ~ŕ’`ĘŚ8˛Yp_ć±^˙'`łŚóŘ”ךÎ; Žd…çŚf–J¸)±C&xa`tÎ÷gzţuÁŕÇÝńXä ÷ŘX ±,ŕWˇUŕML2¦ŔÄ8b‚ř Ě&ŹJ¬… ľhŹ<„! ¬'e¸rNá_®Ŕ%ř—`’ú«ËĎÉĽşúE÷ARŁĄ!B«Ę]ďíŔ˝ŞÚ_Úë8Ë)h-ßkÚke˛S™‰©|ßAkŰŽÔďϓΪ‚•uW »Çµ=V•9$Î”ą«”Ń.˛ATˇË¤T¨pTčr©L6•QŮÓ…=1?–ô=韉Ş]Xô<3íNĺ±%3ĺ·Kŕ]$Ëh˝‹sRúá—00›.;ą§wă×oKÁđ¦ËÖÝt`‡Śâ–ÝgŰ«n/ÂÇĚK g—čÇ]ΛTcMŻôĎ(F'2SyüjŻÉ:ˇĐ 8Ă=âmťÁ±'€óp&âĐËŚc?yŹý@Ďb*3=‹E/=†ý\őđ˛•ßtCÂě‹ŮôĎ-®óŻŚŠŚÉŃă|ŁË}Ób”­Ŕb°&¸>ËFC_jiŤfÖÔ+3GXX"‘rŞ*¤ćŇ'ŰyDm„u&i*=QÇŢd‘«Ź’yŚ´Ĺ”ćN%3Š]JfŔ ă¨ćgÇ:+ĘâÝťŐü‹Ä×@ĚNĎU4úŇÜcâ_g9TŃŮ1kÇŕ.–ßOz)™¬uvq éc&˙şKثп;®UĽ0„á 8Ć-&±CbŠ×ˇÁ;př %şőVĺá÷•U:8‚ĎxąDkç-QSRŁC°=[Đ#ěřľŮPW^kmpĹŞFş JŇŠ˘‚`@*;˘&HËH„™šBSP8”Ó˘€Îź“Ó#x \9Ú&F’T›ć¦Hjćňa\ĎĄóĺ(Py!ĆqŘ !ëec˛ÉâĄ8‰'"ő&MĹŠA(eâ@żbd!ŇGć c"3ëNĆ)Ňü©śhP\ä¦"ĹČG=FĘ n Ý`ŻBŽúQäOTč ¬W&Gç)ťz sÉhÂ×c(4Ń,D˝‡ŽN 2RCo n2w’@ËŻô/ďLKń„NPÚcź‰âŽĎ`ăÎ\üŠŇŁ‹i,&Îö˙ůâN‹;˘’ą"řäTÁg Ö†•%ÓŹ‡„Ö$Ś[ńË$Ťż8626>eÂR Úąř%IÄ$Ů~„™*(\ŤEĄ¸*ëć,•Űnsnµćö9«Śë%Ä$nXó@Ć„đ5ŻŐÖn·Ë. cFűi\”ĹFµYY1ŃYćfóđ¨mÇ Űµ6—ž:a·jŽÎżŔTK)Îđlt_čŠbś'FĆŠuYo{xVµćjM@4oË4Ö3öM,hA‚á ĺ",›Ëbmq¬“á‹xÇÎ}‰†Żnµ)$ĺçŢlNî™Gë{ň{T]×SĹO’09Íf‚`÷4®Gšů¸Ü˝.qo…7$‰ĺô%äž-+—ăh€+vň›:Yńř “,;1…®ÓbW+^VáŃ.źEŻ˘ĐcI.t9;ěV}…2Ţ(C4´¦rů‰ŕ˛HŮ‘°o±¦­Śrń+Šx‹ąr-57[ç€>^„č:˙­_—_ObŰŢSżĽf¶„˘Ú¨OŔkZ·›nĹnUę'a•Ľ C^˘Baż;ßF«fD| $€yđyˇŇ·[Ő7SčOăr,ĂcĚRĄ±Űz[OłýÖšáŘVĂ“Ĺ9Ú–ą‰Ł*–:óâxÖŻEňŃ2ŘŢ&Ż”¦1K_ÇöhĂî#ÜaË´*Bńµl B© ™)^¶M¬ĄQŕşxůÜÝHLkŘm+ 2˘+–¶Ż=!Şb4AŠ€u!(GYĚBĂp÷ő:¦Ś’?ťgđÉńÇÄéĄŮľKą««‹aM ˙füQQÄşŢ ÁäŘ“OYy¸<łwÜŃżŚ›äőŠ2˙+CŇMŽĚUJ“}~FZ}XCq6G; ăŹďP·öńsŚ ",2E`Óh‘)¦˛Â»$NŻŇľ,<ŁÓŢ·kŽźGşl?öě©«ÇÂwÜ«R•>,UE¬{•™śĘ$äCuwÄńA&IČÂj%˛đ+~(l»cĐ řŁ.éFňTt0=Qńü¦ŁUjŇl’1)’źš§7 EľŚJHŹĂŘ„‹uuf÷‚Šşˇôx®oN˛\vź@bwĐuŹĆŤ ÁBü#ŕŮëëeѬTłíš©€őbz…J2Hî¬ĚĹÓ»łQ˝ű)Á¨j/ÔşCDőGÍĘ1B­N(ŞľójšćqŽ#‹AC z×tĚV‚DkëůČa磠Ëúň˝Ž„aŃGM 8Ű8­ńĽWŹMl]—KR¤7Ňv™k70LŰ4S«z§Ü¦Žů©äY×ŢŻ?I^Šę2ơ…™ĺů™}CŢŹŚ"wĂÔš°MË>!Çv‘ë+› Ďk |n2°kśĂ ˘qă7říű@8%˘ě*Ąíőbc2ą+“ˇYG"M÷&îŇţôł ™ôć†ŕ=˛¨Śĺ@KvC<1ž’‡tłlBW~¬P–µ$ľK$)'םTŁKU:,J¦ôlA/¦2㩬*îť3Đđb8žbIÄ‘8ářÉÄxHŹÂ ÷bmßriç?řY€Ç Ý!¨ÁymEŰÔŮśNX0şÖî  ¤ yęIc”Ú–»ŽŔi-±ţaŕĆsm¸ťké‘Ű©]Ő»UEÇRµá¦Ű É´°&@q»iÝ@ŇéIö;ďőh˝ô¤Şć8±Ćűx÷ …–©FM4·1iŚÁ#iŽ-¦őĆnťS§clˇm Ó8+µzL•8żž/5‹ľ`U¶ćíäűđMr|ŃŘ>žą"Ópč—4RŮŔ"ř?I3zB˙Ęá4S§ qNžđŢčSé÷g©Ü Ö©đ˘wjV§ćAďÔ¬ČScńSł&OŤPř7ęö fTm~D¬\đ*©ŚW ř¦7ĎmQ–:řKď` ~~A%X&?…˙Ď ??-O÷:„ňQǦňťŚc]B ÇIŮËO&…Ë÷.Ťç{ŰćuÝJÚŽ ă °¬$ÖöCgUwvfUAľÓI%ąN6Aů¸äĆMźAŹ&ec,ŁÁ¦öQ]ĐwÓŞÔ۲A…źjčů¦R"*+ĚG¬oTĚ€Glť›u2ÂÇS¶ţ°¦KŚÄ&ć×+ĺÍÂd¬KuçIO‹XÁ"§dĂ5A]¦ŞMÖŻŔňđYúKDf7Aäę§Ă jMV¸•6·˛á-4Ó´×…ŤÍ@ČsN„»SAX¤Â”VˇójńMhŃŇÜU"…2q cđ{ŔŞ‚Ę€¶,ÂĽŔ¤@‹lʍ5ŘHń‹nş:b‹74Pk*d{ăIĐ{Đ™ Ť‡ŽhkÚíí!ﱸq‘üĚ0×MX± /ŇΨĽ  Ť´Řż™ígăÁňŰĽ|ŃŃ~4aëÇFĐ)]âMdsÂTr㢠щu /Žń‚W^±¨8DőĄ•6Z#Ąż70 ü«ˇ8¸&¨’BŁúMyRÄšzoUu‰^$¦sQĎoś ő)Ž[Á8\,6ł=—©†‹©ś >o;Ő­Ô‰%őbŹi7y÷šd˙Ž Gśo•±Ô¬?ůP#F¤¨/ű$C*2Ĺ<_¤c;Ü)‰ĘÝ*÷żĆżŃŢ ˝ë#7€?Ó2ô1,T›Ëc6f1óďş8ÍőGčUě¬ěFŠmť}żâuâg‘’3jÂŃOµ›«ş.Á”b<ʎj$Ź%Ďc—ÄŹlö#>O.ó®R”ĂE€ą1xń­ýŐŞn–ŰřvŁJW 2 ^­–Ş:–5Ĺ:ŻŠvAl+d'±ţëýÉZÝŚŐQ€+ŕ튋đŐ5z˝ÜvOoZîj¤0kl7Y–!({­×ĹR»…ŔŤÇ'SĹěX1ůy–ŚwŐžpĘšĄŻös|*—›Ía<źKľÁhg¶3t+ZOľĎŮäČßóXÝŞ§. Ŕ45Š©\jŮ«ş‡ße…5L<ˇxö^G W=Ç>ұ'ôč>ŕ€ß‡t·Ź$éq_Ű%ůöľv?/& /}>ÇĆ“_ĚSe±ť{ě>źK Ĺ|ňŕËWFŃžÇ,x†µŃß=&&2z”ë°łĐČ pó­ZĂOŽ1č|˛Ă#ÜkH x8#«vOŻëž6·UB´>ĎĐž „/É&OiQ«J€ÓŁşfö3>sŤçSůB¦Ă–¸´N öéfźĂOf&óĺŇ‘ËŐ×qüŞÎžÚÖÍS¶ŢŰqk€ĽĘO7ěĄ5Ͳ×zęw?ÍRŰiWtÍj÷ÔiźAžÓ8ôFG$ÓZŞÔŰ ­RďńtĎXUçˇ×ýYZsüZĎť{-!J7-Ć˝j;=.Ĺ}â©ŕ¬Tµľ|>•ťźHĺsťüÓvdP5VÚ®kz­®÷·…Ćňp›1ŕ)ťvčZ_ÖšÍŢöÎ!ĐřĚ*őşŢ[ŻeNŞ@ţłzŰ3šĂwŰqÝXŐ•*] ŇřDŽOv˘č!Ë’Âög°Âl޶ű<˘™ńTal˘MĄ˛öś­N›$W,SyŘ)žm©§%}ŃűĽAa˘h˛ąÓ_ŇËđÂDŮY­Ń,«t,ůxD‚ÖúXŮlq|,•ËvšÚśÎg5Óji¦Ńßđű,mˇ· TÍ™­ŽQékoäS™ń‰ńTf˘“čëť˝n]Ą‹Ş|>G¨fQj"•ťT~žut´lBsĄĹinťÍ‘Ş@IŁ‹ěĎ^÷Ű5Íâ×|·ÁW6†÷ yI©ĽŹhY‡› ´ ş‹ć”Ď`íôE™-Á†˝"ël¨Q-">©[×RYů!WĂŹ§’Ď ÁĘ mlŕ¸x­Ńvŕ˙ň›Ű´íŐMů­lj«zŢëYÁOĐ3úüä_łą‰ˇ@ ř=ř:€R %ĘŇ·C%#hˇLˇŹúůšK±ř׋9ŕ€¬š;T†…+„uůKŔ9¦Ędn讋c!Z)?p-îYŐÓ츩#z•ec8čŇdÜ6‹'ľ866MażQR—8Ý|t©ˇ&Gô•‡ÖŰw+óşŹ*ż‘1ĂĐ"UOă’Ĺv´‚|ďŠH7ZŔ, •ZËËôŤj;@"}ÝłhLŘŘ Uy§Q˝UĹ·Ć(äÄŃĂ÷§hX")”q^.ů9 4(—âĘŞÓâŤĆl›¸˛ę~ăxÍ&ÖŐß«nqSt¸Xʉ̧mYşÜđBÚq ¶[ďÔŢ&XŢ‘$Đ i×0ľe‚q{0ܱ,â:F{ĂŰ»?ŕćqŞĐ~†ŔÍ"T 0‘Č®Śg gµĚ{Grß‘qÄe9=Vč~ľ3ݧÖÁµ2ÜnÜBůatAłĐnäfÚ°YBŔ°W8ĘšX¦Ä|¤ó ,|qçŹ4Ř»łžs¦@.?Xj|¬Zj}÷6y/ʉ˘íÜ:ÜŤç-Ulk r„Ä@©oű6вV­ažŔEvR+˛FlUo::ߢ4LŢBĂţŁôJ’z›ÉÇ·ë”»š´÷â_”]ŕíĆÔ5ľ-‚÷b¶u8bR+‡AędĹi áĽH ^QMŰ%>'Š€—>đLnŠŹŔ󰂕潡—P˛˛ L_đŹçxŤaZfÜËńŠEĄ{Nź¨týá–üđëřłXA‰cĽŘˇŇ,.qŚgÄł^l ˝:ž‰ţWFîx,ĹËMtćÔ>)ë#—»˘\9ČV*§žă'-‘ÍžĐ5ŽsSď༿ŕĽCŰyű«§QÝ űýV´†LQ7ô˛î64µAđt, ÷H7ůP%8©F6-–B­ęęĐݢ2…ÉÔxf,) >Ó˘]ëôLűĐäYMx¤hQ…îEËň“ąÔX¶é0Ąý-m§É“ZÔ*Fô÷%4:¶çN{©Ý°˘ ŇÓ؇QżMwÖ¶W·5*…X$ŤzŹn´ZŰvŃ.¦;oŻé¦VŮŢ"K‘3ipOÝĆŘGtÇÖ;LüÝpĎÖvÍĄ ™<¨~ą‰N'H˘1&ÍháíLfĄÂ#9¶łęvCsA×čđÔÇő*JA‘=Ý`®ÓľÝ§ń€ŹíŚ«ŻwÚsm Ĺę.Ł÷÷ľ& ŮbŞPśŔđşÝ»wG™ţb©ÝDNNtźűoŮ çL«`Ńfë´Đ˝âTŤÓ ]B¶MÓĐ‘)󂲑pZÇłv°¦WZĄµ´4ŰgXU2˙ ś›™b»÷Vm„¤t17‘=­[vŐN'& ůbönš‹ŁkUY fÝ1Z“g„ł˙ŘŇM!n l6?961Yŕ#Őt›°%tŞ-ëa0ŕč8ŢńĹcG†bǢIɡDÍU©‘6ER/Ĺ ók7XËŃ,łMůŤŇ˘ˇŚzÔŠÖ6[<(ÄÍńů˰‡ŔL7ÓĸpąŞc ë°i[µQn`¨šŁëđJ+¶ ŻĹÂĘ5Ş:vÝÁăó©{.ë]-sRâőҧܕ$ÍL´Ť·uiŻ“=ÉCĹě»đ\*UxŘ’uf )D¦śŰwX|źŘ®Ç(ŇhTG|Ľp7JĚŔ"Bď1Ł%Á3ÇS™=±#;˙¬lÚĺfi–­9Ž˝.ń3«r¦¬?#‘3eqs_µ¸LhÓĄ˙bMQé9Ş9`WË•Ö,kM¸‹…ż0qĐ4©FĽL! (žcÓ =uň¦ĚYzÄ ß.ʬÁC+./¦ńA_aďWá‚×)mbˇľV …Ŕ'ĹZ>)-1ĚÜŃrŐđ§§U`?9ňiUô•Ix6UęÔ«^1žČ&;·×ä·ŢKÚěŚ$§Ýż šÎ§8z•Žđ‘Ě…ŚH§DmŇ zf÷A¬¤¤čń»^=„O°źěAnzq aŤAţ·§č@Oô”›O9zÍ ‘zqh`¨âđ.岽AÓ‡j™ţ¸+ń·&ţR?źxłőŐ˛řËo‰{ź>ŕ^I5tÍEMúĐ•¦ş^…H×Ę#˘şŤwú!!ć÷nň>pşé†ńnĽ‡&ŚĽo)z˙Ô˘§ĺ¤|ńĄ"†Ă\Ô¶ÉűĘ"­ü58/5¬řćĐ_<Ľôá”mX|bňR꿦™bvXŔ“óŹ“úĄ óNF‹/>t«•›ÔÉ;/t Á±ĹĂŰ;Ig‰ľ"Ć‘aWpĽZĽť”Téęd¤Ď§O¢Öř$Ţg P4VZ'‘Ů­vUO¸Şźô–ŮÍń5Ć#+_¤›ÂúG¦¶iń-ĂľY=‰IÂŤTEöâz ˘.še:#B LNe˛SĹ ţuZ-»ó›¤2ˇj†Ľ4$Mq!ˇc0Ô %ä-(€ŚëyŇÉχę4L@“ăĂĄŤqÝ,†%¸^ťÁ ЉÂA"¤Ďř—HIaR Ć™„ f^ ) u€Ţ% ĺ‹°Ş×› '3)oÂ{ŕy¸¬¸†0óĺÜ~ćäI˛‘ÜŮTx ěíh1č+ˇ1ţÎ0ˇ¶H¸ÍyĚ4Î'{ÉdBmg„ŚÎ¨?T_Ż9µ=íşţž$~¶ČfH%Öüşb‰śŐ‹úmáxî@=VÓÔý¶ÁlgŰ ČŇ}°8·YŹ€ć'Dn ôEâ/%úŻ·yď|.3 $#;yć@Ü!Ýl´ĹŇ5ś:}+‘§Gďiůć4ă”Ěáś7E ~ÍÔ;-žaÓĹę™Ěaä\.…©Úů»3Ě—‚ ‹ WmÖŔŤ'ňšÁŤ'AÓnňpK€#ënx 8*,łÂŹQ•Ű T•UşůÂ@,Űŕ=G7…ę­5ě@2ÍDÍőB‘R© ±¬Ě×8xo şŃ~U¸ŐŠŃ 7Łz$®U¬$ Ő060‘ĂExdÎ"KŇĄ{¨+·r8:Ţ]Ăä&ÄáŁó3CžůÁ÷®­ŻŻ§ť”a™î‰ˇYaŰe<ÇkŰŘ*¸ÖÔ%ЧKĂ€ŻŮ‹2`XňodŔ2í&ęô(žîGąş¬µP &Ĭ((.“ŇŐײ˙ć•|řߦ« ©ĎçJŽÚ·~ÚsúĽ˝ÜĐĆ`ˇ^íÔx\}xŔŮ…ŮšŮŔiÚ¨­Śđ—k66>ąćçÍ,.€ŠŚĺ {ĐNg˝ôqĽ 8Ŕ âqdcŢD2.:Ü!Ö´ăˇčжâ»+…k„ĺ{IĐ[Äâ™ â«7LČɤ˛9Ś?ʦňĹ©‚Č©š†Ňö‚ă0d7<;ÎBŕ=y=Ć ŞZPšČLšĄ(ĺđ¨{8žÓsn’>\ÝkĐY€âF¤ă›ăíŤ%ô˝ĘÄŢ˘Ź“L\L’‰óťdb! ÂĚd§ â„´g5r¬3¶ xÚYDŽm#RrŹ~ňŽ‚úŐ3U. ţďHiÔĐőŔŰ]âŐ¸tuŻR)"ŐéV.0€ Ď Pf¬ÚąOo­ëş•”)şă<ĚHU©íËÎne¶ł%ö1ʆĺu@(ÜdĄ˘ âčkR„2Öu¨ú‹ÁĄáM᦬bo2‚iŽąI"NŰŐ 4Ą%„«µSĘtY'w ši…w”˛ĘމĄ#lǔۉʭmĚ»!s$-c ů LŚĐhWęÜѤąčďęćęęŮ÷¤Ü =SŤŰ7·vnÝ1Ƭµ/OTLcĂ‹fč<•DĺÁfžĽÓ%ęl´l´Ć ; ĂÇšÎ)xl„Ĺ”„ßfő÷ŢŤŢŃ ±Ű<ÜĐ,â†ćĆEóÎeÜď<2îĘPg±;bbő°g ŔĄć&+¶&®Šg|ŹÜhŻÇĂş¶S€‰SŽ>ęH\hŽÍËK&ćč]·ŚžL"Ű÷+<¦Ó*ý>ę–rh*íĂšöşî¬´MżJ$ĺ–TCEąÓě„?µÚč|*ĎuiĘäÇîČ}°ČB Ć«Řnk ÔR—)±‘SkóúDëhY.ëĚĹ,–2‹čmXȇà ÍMęŞMż‚CSĽŇJ]Ör=ożfbz%r? rVコ÷ĘŰ%Úh's‰2¸¸Dť‚ą?ŔŇăs¶_`(ŞÓŢ%ą\Ńžřa®îÚˇKäugŕ2źŰeâ\˙—puZRĺׄdźl*S `ĚÜTflŞĐ©NöíąŚxiĽŕŇóć¦Ř˝ň•Ŕ| ťü]t¬L‘‹'§ň“‡í˝"E'żC g‰ćyö][č,rŁG-żč›é«>’v’pľeŚrýÉ3X[¤¨ję¸ŃÔŮ1 CňŚ•Š2*š÷ÎÍh©ĄŻ ‚¬Ź@ĂdNB]ú­Ä˙”ńzşşKE‘:&dŕ sŚšĆYŤ^'Ńx¤±©¤Ź|R5 sd=®ňt§Ä¤řAÁΉü »’·s=PƨˇWęše¸ ŽŹS‡]ŚśIø;ąméëtŰńŠ›řŠmńŠGŘ­wß*ĘđÉkś9‹ć0• a‰† ÚÉÂô#‹˛a ś%›¬’ʬ„e†GýviÉă‚ýYeŐ@ýŃ Ä$â ”— 7q°pŞŽŻŘ…gÜQč®°{ ţîďŕŤ0W×=ŮaM\Ňp_4T!ZÔ-ť-đŤ˘óW38«W f ˇ6ÚÔPIe¸\éÁľŮó~É'ĺNTĘ\Ç™`}˝,á ŽôÔ© 2PŚb:ÄY¬´d«QdIĽ7Öú|Α[÷¦p& 4=|ç09x(–™*LĺÇ;đüź (FÔI2~*,Ř™ĽpOŤXî=I©Kd.e;Ĺ ±ęęSbS“¶!WĐšä3Ňv;ąÍ˛Ă™±T.C KůN5 eÂŇ# <,@ôh…Ť)ŐIÓ},«˛]DŹŕt@‘Pe _Ů7Žl&ę®Fw°JLP7\dây‰ĆJ«[çŰ«:[6tÁ‡öšđ-ŐâßJmĂ^×Đg®˘ \dYGaľj§@ULÁ«oi•VJ«V‘锜”ŹĂeą}1U×Í&C ňbÓF˛×ˇ‹ť{^‹»Žň\!.~©ŞęĄÇ5§Ĺ±űâ–,ÖúDą†…‰©|˛J0Đ“JpáqÇ@°ą˙B§ąŰö˝@,eχű,íâ\dË ,Wşź »ó=ŞŃN;¦\ÜëĺľÓ›ÄBÜ„vÚ"Çn\–üqČKČSĆú©2Ę”í Žx´íŕ!!YÉE×3Ť*R9Đüa«xhuN@váDGڞwí螲“±żŤTý·JŚdî%Ý4`ö+•pÚŚ—\Č,UpEŰ­6Ź».ŘíC%żô‚U zó Ĺ‹U}Čeă¶“fű€f)Ů?ÁŚ9ÓÔ[ýĎŚźF¤řö©č ÖîŢŘ ){uĘă'DĆőî>¨í®âÂCâ®yk±G(Ë7ű)ü<Í!śśJS„-Wz[DN†źâą_ĽäŠŐ*„‹ë„!ŁV [ÁËş92Ý#ťß“ŇżnX•şz±go‹çë"ÂÔ“m/Ž„%űş¨uĽR÷Ţ"ŽŁ'‹ ťž´€dđž•gťśĘ§rťdű÷ö‰0€×9AUĹű;Ót‚đ3~Rĺ(=ť?µŕ‡VŔ—1Ë2hfŚ+č)Ľą€UłĄź/žÍđćmcäőó÷šGj;vDçëú©Ď’ó)Bw(Ł’!$ÚR)Ě/!WĽźÎ.łN:ČŁVÁčâ+ă”§vq±J ăĐĘzV-žě;Ď$|Ńśľ¦›vé€Ňř˘€˛ üôŁÔ#Jţ3HŰWŐůŞ Ă2¨2 ’5J_ âő©něGŤEdOzüc€ć¶“‡ Ű?JűŇĆJŰBľŰŞźŇ6ŕű˝=¸őZ–´MçâG ¦Ó«3ă,»ŃDŤ^e?ńV ®†‹Ř|ăW#ˇUWZ^LżĹ»@—Š`ý‡˘h,j ¶Ż!ň„†ß‚ČŠŠ#AŃ1â1%ălýGŽPč?„†Ó­iŹELăúÎjŽ+ęĎp`©"Îť.w&ë©,—*L'Rą‰B!˛*÷@/> ?ۢ§ĺÜošĽȡv­,¸‡…y¦‘nż4ĂV­ˇŁ,j`™ “´µÄ¶ăEFăĚ0~ ?ËJ¬  ·ôŤ–+R $lć"ţŕÚ(Ă-°2 ýC…áüCKuĂÚäyüŔćd ö¸ p´¸Řj‡oîµŃäc”î±[Ľŕ~o EÓąšJ1=šĘ)xU(ŢzéŇŮ1Ytt€G¦aÎ}@3ÚÔ"Ą .Lp\ââĘ·r×OĘu.RY8}6ČA·rQ–±7;•e•¦Ë›ŇăŰ‚ş° i 8Häa„ňĽË#LЉŔµP)QşÄŹ:çĽ÷hoďÜzPďčĽAíáŮŃdü4ú™ýĹĚ)óܫТ>ŇřŇŹMÁęgĆzBHCt|Y3—Ś&cć)‡ţT‹í'O>jţ©Înuű/SF=żI?÷d.&j€;Ĺ&S9Ő\{ X+9.Ą„zžÁĹćPh6Ęm˘‰ˇá°eËe´ôę€Ř\*^ČŔLU7+uÍś>­Đj(F  @\ęÖi™OҰAÜ?;ÉŃxőś=~»#˛/96LĚŇŮńC‡y[™o~$ŤÖŽzŰŃX‡>Gďĺ˝Bë4;dřĹ#ÔĆKËs^k €)wPOhě˛}Gď=AKµpďľ{ODrĘF"+łWăWŇš¸‚‰ÜÍjÚh©ÔFsd{ ˙¶k·Ľc@Ľu„ŕĐ´[P6Bg·6ů;¦č†jŕ=ű  USUŁÁ‘¶aSXţŢl 2ŽB2†ÂĚś,×(cĺ!ąCŘ0eé<ŚŁÖmúě+Ą±8E0@0E1, Ćq•\Ćń% 7ĚŘŐC3†ť©oTôf‹7¤ČMŃŇź sNł›c†jYŮĘKT«< ţCČG§úď|9őŞô& 26ÂHĚ6  á ÚM^“G.PçqÇ.kePn[XIf-ŕ@lÍĐŕVje4äA¦-UË;˝<‚–żÇx˘#lµíY="Ő»˛#đźţ'˙ąţcŔkÄw””ĂŞ^)lu>AB)Ĺĺ>R0pjąSÓćFl×ŃĄűFŹŻÖRś2őŢ+ŕ\ďS+˛Ů妊Âܦi=r_Ůťă“Ćrßž" a –Ë‚f=•Mbż¬'ĺ:±DWĹ:lĘë‹]'ňL5ýKᡏ´Ę bGőAľËmFY#ĽRĺâ-ł±%Ü“ üÄAZŘn”¦´żë—⨠üĎDUu7üÓ#Ň'oí)ýĄÓÇăLFëfţ¨Wšw)YőzÚ˛•q÷i˘ü𢽎DÓŻťPaíď5ś/rB*z:µŘ.‡C»#}í˛.ęý§šŁ$Z*4J(έç¸Ňľ UžÚÖőÎseĄçőFÜC˛„ĽĘ­†ĹkmVµćt»•ÍëQÚ‡ âÝÚęMŃzŃn;«z˙“;މă*{zHkĂv˛"÷T•Í'˝Śž Si”ńÁËZnĐśH8çŮčJ˙c‹ł¶i;ű}aÚj8:$ÍŞá‡Ý)@p7wE˘¤ ¤7EŔüÓŕÁm®€ŢC©Žîťś7Š¶Ň¦!Ňřđ'‰á¤‡¤ž@8ĺE}˘¨2BCçćP~ÉĎ ¤Ç-äĺ›TŚ ŕBIş–Ć~(™vËuÄň‹üÁĺÍ9’p*QžŠfď‹*a´«„Č'ć¶Ë®N7űhóvŰ XĚME«’f¸ăčŤv¬É­Ů‹‚žâM 7‚8ŕ6OâĂdń!±B#ü üĚtÓ¨ŇŔÍ(rU‡`U)46~<0‹ĚŮ,&t‹qĐ€śŢ” Eů“Y˙/űůS)č±€”ÂĺCèçşýÍaüŃÂeUIó/ˇ”Ťh ňÂTč*HNLŠMk/‡”…b+K=\0z _d1\§c:[·bSB™Ó!C¶‘Î *é+HäLíÄa”ş;đŁÖČŰ Ľ®ŮO.Ű…ÍŐĹÎ(×o%Lí€ ĹmN´‚lQĆoÄ ŐŇľ‘…c‰^׬G'§/×§xaäÎM>ôú˛Múë¬űĐëAn>^1ÖÓ5 ~ě‡í Ľ©‰^âĹc‹ä#ÎŻW&Ę›…ÉxÇë;Ľě3_Î'Q뵋•—đ i6o¸Żp¸ňHk—YŢ»R{`tťpŇ2 DÝë4p®D43#EĺřĚň!Ě«PHüTE¬c7ÉTin2×F_®fv ôhôď–˝+1RnH?ŔR^ń/•Á’ł¦e×.YÓEőU0§ÎaÁđSµ‚x…eA8˙ „ QĆ8"d›ÍlÖSC9Zrí*ŽąMq¬Â“ł˝M‘]Ϩ÷ ŔGn‘¬Ü š÷ ҉ă§/LvĽ$)R4X]^ăÇš‰3ÝL Ă“€Ŕul‡;}ĺA {ń™ )wŰO=úĽĹ…)$š‡Ł)%cŔ™E ȲÁ9` Éuâgú= JQ+Őn®ęzóż€W·KžGăú+»P|P®źOµ⼺¤!dT÷”Ůş ň1;ayž,ŇXŮaÔĄÖ´@´(ťŻ]ڤÎç»âkßkiö`SďÁXwu¨ĺ¤ t‹`â›ň¶ĽLňxąTqĽ8™*ä&îWĆ[DŤÄ©ŇmËÔšˇ!CMç ˝fs‰´c«öĐďćÓë ˛©‰B+Ë'”őńEÜłěä»2ch$°6ůPśnĄľ&'ł™ÔÄXQ}~B]4ô6ŮÓ[FÍôDµ»ÔcVulŁor“™(°­dŃą(°I!`ŽXŽőlf<;­±#ěXꥆm·Ô41·‰¦ /‡d n#ę”Ä!ʶ k)”2JŚNm-‘ABŻŠ]šH’ šŹ+xtĐČÚöMňđP»_Ř ł@ŘrĽÇdͶ”(ZŁ&ٸąĐ©&Ť¤ ń¦~©Żť2xŞ·^\S;ź7N/—ÄŮ5nđHÔJ!™~q'sÜrí\‹)z*A­”"@Â8‘ĂË<Ú! "p’Á8˝1>° qčaô]ŕŁsrŔ€„ pöüžĆôN{Z9'Ľ§§öÎvBu0ôöĆĐö>„,ţŢógfÉ tB ęH®WüšF’„3”äz(ŮťN÷(—ž<˛ÔAzşFň‘ş¨\^2"]ć·¶€3™¦ź 2ÓjiŃdD4›dÂwţô™™Mî3,WÄšĎÖ9.ýŮ1˛śÍ˘á}EŞ+č><¨Ą‡"RĘ/°»d7tfi R…Wד°5@Ô’Ń_”÷˝8g¨y»|Ń<ĘIŘ0ŞËŕ/ś0[˝ !ýĆ«Űi´°,G"t@„qmŠd B’ŻękÜSęŹM[|Ó´×]¬OŽ– ¬(ŰÚÁÝÇ‘ôE^Rh*=ˇÎßŮÉšÂ3v–ÂO2ĚÄ߇ęLçąľ&°Ăř‰Ç^aß`ʱ´) řöš0 ,ÖsĐaę€( Ó‰|b!€Ňyu.O+CﺌćÇ™wŐÔV=sŹŢ°É. fŕ}E*˛ĺÄ$âkŠ'– xöJóéçÜĺĹŞ ©f$Űz«T^ (› a*vŞTţ$ \ŚČVgËP‡TäÎv!Ŕ| "%™í:Ź‹ęÎ8;ůÄŢrfË% {‚ I1LÓ†<1•K–b®ů/d=şFýč,PPŘ’ü÷ëŐß±0\+µbŔqý/`^ëj^"JÝGÂŔyzÉŐ‹ ĺDhËßł“ y«äV˛Ś!ńčŚ źqmS%Ďó#%—E-¤ăH!G|\’ŃĚ’Vi «ę ¤ÄŮuéFńN¤_Ôhq=NŃýŮŢđ]•ŁżsŹ|̆ú=&ÇüÓ °<^DT>_pđJŐh2”~¨‚Ë?$¬čsš`1G-ôă݉_9܆‚­ëF­®;©i k«ĐJË…^{p3¦kűÁľĂjH«:vC˝4·]–a^Ú hËC"ľ¬ˇYFĺ'Š"4UV%vtXŻŠŔfXbŞč"d„l~É%ăŹ2é2·ä>Íf1J»čÓÖ–ÖTÚfo_ Ź:ż·—8+ëťLÔů8ŞąÜ3Đ•L"”ć…MNĺ’˝Î0®<¢T-ŽWt¤˙ 'Ů&u}„!.]ěDIŻTĆH4]^äč\ą©ę*Ą˝ —ÎĺŁXśÖbę_Fůĺ®0”ŢĂkč¶xE5süxžŃŰŘsC†ł““ŞëtçIźŁĹ4Ö¸`ňݡcŹHcź4v(µ[.ÂČĄµ6Ĺ2‡B‘gMĐn(&Ű6#ÁŰĘŘpţđŃă3ł÷řŮ-@^\§2Z˝=˙ěą 0¶Šb׍¦©o†¨Ë1%×éEí=Ý>©EC•H8ëÝĘt¶â’·›UÔ7ŁÖËţQsE-ôXű‰˘! Q§VES9Ć´ÝJ8Ę&©ňŽtzTZ{Ą4ÂýŞŢJ“',Ě,-ĄÓśhĂŽ—†÷×*ß_®·ż† 'C䊉ŞqĐz%@9㶨cÂáo˶˝:…™I¸OFŘBúxš‰v%~źM‹˝ÉŐÍ<¨>Üî ş5ŕ”ŞÇ(Ƭźź$N–­Čŕ-˘çzËJó5Üßüů ˸™íd©‰$oTn{ĆmÄř6bOoj9Ľstۨ›fOh€˝É»˛?lż,BbT&Řq–Ë!»ę€|te<»RAE¶ÍľÎ ő]PN»ë@1JŹZU!ĘŢ$góůT?ěí|DË9qXĺ_ń '„ ÁNˇ›,5@•cK°ýu55kxDáŤß®VT‘€ő‘“uQdÔ#á!Ě‘^°XÔ YńÂĹ`IxZ7ťySŰŞÉ ŇαrZC­Ů”á^Z‹ŕ.y*˘WŇzş|={˛>%ÎČÇ ]ٱď76\+Ô!ˇŢˇŹk/ńţTl Ľ'ňdž2Ĺ»âíZ“Ť(S.8e:UÁ=Ł4ß@¤ š,©|·H%ď}«ďůÄ˝ÁÍ×*Ý8ŐËôD_Xnb*“”@Ćj‚ýDôŕÔzÔRânY¬üőáÓ:/;3»ŘFÜŪΆزŽ+¬9žş ąbčUvĐ´ËĐŕV ę<ÖKóŹşJĄŔ?ďÓ=†#€z§ÉŐř˛ę ÓąĂ)!Á/Űa[QܤîÁ\9ç„[×ĹśVńZżÇ…ÇŤŇoąĂłŕőÓ-ËXXΦ–Żc ›µ[­¤ôÖłCµóÂćę­H*§Í1;ŘĐ:íHW[Ádň±ů›“fŇ´Ć7(ę-zš-hŔD¸—ÍŐŻc˘¦-*ŕ䏣‘}r#˘6—_6Ä%dSĎgGŇBż ˇŞ$NęV‘Zž _Ł‘k8Áyő[}·WžŹtoĺ±ĺÍŽŽ LĘhŞ4b§.Ľ±¨uîĘ_ĄÉ2…_ʰą}‡ýŢPůĆ@\–ĐMł9Ř€‹KOť'?\LŃF•4Ĺ…=ÜĹwŇ4-˝8Ć*âK:Iý«o¨[kôwo ë٦ ;üb”›Z«G§ŢXVtMsřuĎGFßl™ÍźáČż­:}p¬ź˝ŽŮx8!xűôÁ5¬Uú€«ěM”ý4<#uja%<‡˙@rť÷Hđˇ'É aŤ…G˛8áAk(IúýŃ>]Śś0Á<ü.Äń˙bżŢNAšŃĺ@Jś° sĽM䱳ĺś+›ďÝ9 =ňY”˘Ü89ăěQçśLŤzxKx*inŹZQ¶[EOâ2$ŮëUşŰl;N$>Tš A˝XPŁúđr˘1•V÷ľł[ťşw@Ń|Ş0^ÄŞ¸ă÷GDŘţÄá8đlZ,łlâÓÝfgD-í–.Ń­\¨ŻĺŰ.ŕe5/ eŻUŁ%Ü,Z˝Ą»lTňB—p“„«†ŤĆ HľD·ŻötďŃĄŽu ó™~„Ó…yMÂăÉí˛˛BŔ :2 j I‹†0˝¸˘9ގ;^Ľ_Ůę ëăGZ§B˘˛Ů.;F•‚†Ł^T& \W>{@ÖrŔĄâąűĘĽÎEPŹeśŔÖką‹''Pá7uО§zĎ™‹ńř»3X”8b±‡ŠÝżžXK•qş1EǢc»GLxPwDľ9ËYu|âg·>x]ŕĹN‘Ţ=@™ó’áŮ©ÜX˘rýŁM Ů="5Ęe»ł\.ŕĐs …‡1ë±_ŐEľá<˘ÓäreĽ ­vcNwŚ5•Łä2ٱôD*šFsăLĄŇ¦ĐŕŁíô¬ ÚŽO»¦Ň¦ť ‚ÓAÓŠŐaĂm·Ť–‘=h¬ ńv[Ţ€.GŚÜŐ±–¤¬ú÷I3oްhxŘŤ~ë*"wrçôPs@Br‡xPÓqôXVu˝®[ś‰6°›  Dfŕ¶%%ýá0iˇ‘X—&ŔŤ Ô4×TMłĄHchă/V¶ ¬FąÝÂßíJť=Řb§c©UPŕ:?.ZŔ„4°»íęX(ľâŘ®›ŞÔőĘj®Ę÷]ut´nÁšjĽ”&Źîâ•e«ÁÚňĘľx‚ôëgcpÂ{s“GHexą\†JZbŢű>ÍZEű٬fiU- 8›ĂźĆ€«h𦠳Eż1ř=Ó˘¶f°{jTa=•Ö·„ZďmÖř§t«µ6yşdUVŇMe1C_Ť AYś¬%žľ \MS‹µ2d')i»@đ9Ż:P!ËX퍵‰!ĆÓĄŤ/%ńÖ Í&Gw]ĎÇú,¤:ÂçµÓ›ó#zDÝÜ ŁŰ=k77©ŘpŹ”ştŃ5šh—ě"IŞűńÄś‹ ʵd̤Îćö/Í.>ľ|řŘQvV;…Ĺ—`yÎŁ«¨Ż VJśGĄŹ¬#,č†ĹôJşN×zuť,hýo¸ekfxłźęą‰,ůÉÉ3ËV é»g-ń2®soĐ“ŻŹđ˘:ŻmÄnš<ŞÂ@řŮabLXlI®áĂvĆÇc”oěŤFůĆ|$îŚzRşjÜcRMŔmí;#â•mîX9·tlÜŢĄ ň¶K@»DÄ–řhśđ>p5¸VGôLť’ş|mE[kń5ĎŞA·R'–Ô‹1Ą9vŢ:„ŘŁŽoŚçŃ|nJkĄ¸UEü÷8pśR˛˛+žô3´\áShĘn%%É9|Ę(ś \~ž«*[§0ˇJ¸ZúuFüqŰNiMCř xKÔIHN$żlvń’§„ „?‡» śbă$IFĽyŰÎßMâŮ'¨§€"íĹmp‹W"ăᡮ٠Đć×;‚Ô$y â‚–1NČzʱöHÖÝ{úöt¬*ÂsŞ'ú«*Rč$Žś ë~oćŹÄd¤úĽđľ%kľgÇĐ˙Ă–Śňť%#"Ű´Ţ‹”áΧ¨cĄlŮŽŰ0čÄp[¤ ¦Q¬[ čf•zöZ˛đ¶`©AaŁćĹ °XÄşíŐuĐ”^C]&%iŻĘv~„u Żń}ňžź=.Ě{űĺŃ';‘„‹ú' j°ox·ÇP®u;' śĄS‘IŚ ĺű»źrśçĆ`ˇ÷ĽµŻĹz<ĺ ˙p2ńa·C¤\/´#D÷6á[‰jqhíĘŞ ‡"­UŇÖiuGý(wóŇ ČĘ$'ËČ2GÇV´¦We„5ͶË\»ÉĽ.Ďu! ™px´J\áÎËčCq2d—rĆ58'=|›Gl ÎmĺsťĄc–NcĄGĽB[±÷zŽ—©fáßw^0d±ŇU!fÜ-4<Ü‚t}`¨a€fŹ—1ź+h­MS(rnA(–"Ž ź>Ôt×VkŁÝ›÷o[Bźătš>6đýqŁ=WĹđIÜBç-%:}lPU ˇ.‚ŽŐ±f-Z†y~Í1řŹ ĐUŁâhĹÉX«ž'8µ&s°‚IwRďĄ䲢b¦,ÂČ·ŇÜć§’ń#©č–ţ‰btśHcä…*ŮpŹç‚“w6ÔÝ?ľýŢJĐW:>řDbÜXO¬ÉN ZW&ąuJjb†B#ë˘‹ŞŞă™ÁnőXµRŐHQaľŹZßil I-ű¨Ö5ĐvL˘cje{(Ů6-W† 7•U—ăĽĂl9ľ%Ü3ź+7¸—Ő‚Ú±€U‘şZě_Đ)ŇݰLšH–¨‘”(ä´HhűAöęË,>žźLŤg&rłřĂâIX\˘t°~vĽEäĂѢŕ+¤×,ăĆN`\P¤0Ů;RK Ú·IâŇ5ÇÄ(a3$`ŻĹ4GĽhcq§ŠmUPÂ:‰úm<† >p‘ĵ˛Î=Ŕ+TMŠ;€©”î` &9lOÉu7'Ú˝÷ńí=téb0Ź„‰]EsxhÓă} Sőűž‹ó^$d˘‰™QK,Rúl*K•I€Oć|H©SÜA>s;ţ(„éÄ‹˝öuŠ‚[aOś…¶›%Vžn‰íh[<Î4ű°@‘˅쀒9ěUŞ”e)ÇĽśC‘çrýVyäJ=–ĂŤ&;łĚ čG n:öĘZ–nô°´¬éěŢ ^ĘuW Č+ÜxłHi„*ČD/ĎąůěZźY†ś¶fđü¸ů¶Łą•şŃąý˛Ń°[ušěkłsóíă_˘«ü©mÝŮdě¶UĄ%:˝±c‚X!ú‰ý04nĐŇžTD ďvŹ;¬K&<^G_C¨9nŐSb·Ń™ˇŽ-.Ą[QOżA…+÷Ůđ©e›Ë'?8ü˙ĐaEG<ĽĆc–´šfjúZß“E4.ăeҧ\˙&1’O&x עǰ8†Č űwâ{ ‚ô”TO3:`‚ňö]âĺ#Ö™ŕ6’8¤¤‡á32^é>îÄAľäŔ¶Ó ź’už`‚9̤(sŽĆsůÇD’ŽQć;ßeŢ)aŤ(%“dŇ˙ADĆéaŻ!ćŘ"BŕčwÁÂÔeO mČ=4„t%Ht{$J (d(t+ź P;…ŞH‡ľŇ i“„"4\P÷ŢŮ Ż§˝’#§Qč«„ +Šeůe ,“ťĘ=ý±PŔćG’ĺ÷¨•C»ÁŠ bßZĐF Őw•fÓ)5.`€GÔ˘¸˘7îß ˙Ţ2EauóÚ˛~?ľZ^·>Źf7®*sZÝ”N‚ť÷O¨ ›°đBŽ’T@üG¸CŞi;•Â~ÖÄ[Avŕ‰ŞkňX=MpƱ .®ÂůuýÂěť{±- ÍôdëQÚăÝNi$/Ő©ŤR¤&~zşHo´°xhŕ©:uŰÍ©ČÎń¶Ţ:ÝcÇ’đÇW´••žzÍšš°S ÎÔ€Ŕ3MŁŹ®mzaó¶^·xůúî˝=µ`´@•3ÍţzÝW'$¨ž: 2$U›U5ľŻ\­§~ŰFŐć^ÄÍţ:,Uęmł·7vďż:á÷ÔĺNďup^ÓHŹčˇ‡]§»Ü§™«JQŁÄ.męń€ÖŰ^ť7Ö *ś4cUŰ2*=őZůŃŰ;° z›ôjq¨š˝ŮcźÎµť’úń꽤hŁÔŚ©JÓkIo‘Î{@3+vo ¸ÔŇWřVŘ_]Ç›Ţz­é|!4§¬U{Ű 'Ö‰Í(„{¨"Ů-ś]Ůg{ăIą*–],ĘXĹĹ“\+T“¦Ůa§m{kJŻkZÂ?NąuÖÖťŠÎ!•=–‡mČó±Ő=ú‘!Ăąnoé1~FQŚŠ”\–*N Ť5s¦ž# ÉâŘTQ¸M«°Ľ™Ľá°ëU’e3ä׾ę|5aĺFđPƨ߹$óXd@ë| &蜎!›ó1:—1ź‘ů?·bÄŞ‚9?bÄŚüë‚ă°»Ql»L2”@])zhÉ2Ôë‚)Jdű”ź!Ů÷!RÍ€°«—8éöŻ}f‚8ŠPfD~…©ęă6p±m±‚Đ'D'™$’jŕD ™ ˇëđHŚ]đj\+˛Çójă‚Xůב"1Nމć0Apת0ARü«@7'±5ÂŻîëôĺ{˛ÎEÁŞbľ¸wHßY÷ޞޣ»”µÎ^őmf[zŇŹĄŹSÖľ*+PaCU/ʦÇSY5ľ«˛`¸•@ř±„„e…A&F¸âE*Ű9îŘeą9°\×aiŮAÇn7ŮđŰi莹9Ĺöăí÷ڰĺě>CW­W1Č^^FÁÜÔ`&›Ę8Ç+f}nĐÚ,ëVĄ>Â,Ř@Ŕp‘$5`:°»°^<É[‚?®ľ0ÂřrŽŔţl9ĆĆăÔĄ˙śIO«Cll‹Ě¸B<^Ńm@äúfL±‡Xüď$–†KÓ]aľcýíĹěäX*ź)PťOl+‘xÓßżVÓ-C =Ŕ˘Î9†VµŰŃÇŕ–çAÇöž6Ipţ‡(Ą5GÂ[÷{§yŹČ"Ä­^7śěäÖ$Ěvź7r ]sCSżO§»®n*Óď6ŘÇĐ«ŽQ©‡†›×áxŐűj¶nÔSłő6©_ţXŠ'Jş„w čĘá®5Řěw¤Đßë IÔ Ěݰ¶w7UnűBŘmŰĐ“1Ő,ÍÜt <ůu4¸ °smFlśgëĐĂäÚ§Oo2qî)ÓNb‹döUMz"úŇ @"ÍP›‡¶Ť°˛ě§ĚŇĐ5˛OŰÔ]Ńź&‰đâ'K¨@ŻŐ”ĄkH_Ąµz&ĚŇiU6îÚ[ćüŤžq~ cárSxŢ@˛n˝sLČořSŻ%KT„Ç#*Á”AŽŐ¬óL58˛ŚŮg’ß@ś;ćź5_"öŽăG'€ďť éUŘż•=¸'ж8ě䎭•5 ®âŢD"Ý—˝<ËsöóSů¸Š,˝ŘËů ŮÂu[î­HKŘ|Ţ/¦sşšö˙¨5OwAe!9«ź‰sQÚP®u¨Ńrţx:ź+*WEˇő\*;©ürń-‹úÚËŹMdŮ-ĘoŁŇ5ʱ·˘—/Źu0-\ D2ĺň“á}‚`¨ń4ş”Ŕâ­»®÷íäť ¦$¨XçwT†čP0%RFVużW·Č {k!ö„zÂĎsv»f’Ä0¸F68¸Źę­D ŽĂ·RT.˘Ň0±Źd°(ŔbH 1şŠşÜäDô&3f6RťntP/ŁU ő0ÝĘł0śV]yúäş:^ŇTHhÚ¦•šľĚ@e_´–ć˘çľe{,_ľ@üBďppHşc±ÄýVí+/fyi ŕŻđ±ŤuÍäö¨¬ű.QÍ…ç1'ç3Ź™ŔËbNxo¬ľŁ´ Ílëëëi:Ąi{ííŐŃf»<Š7-¨f¶'íĹËĄps•k%' }A™Ł09UČw(Vó©pť)uřâŐ@÷+,JĹŇŚŽ’o °{oÇíN.Q˝ĎäĆďÚłxÚżŇŮžĽ=ŐÍůpĆÉJî8fĹ·]›<ŹŐurŮ©čz(B ‰T1J´ďŠ"4…sµ˘H—Ly<ęťlDWDřůZËĄJąŕň•řä†|„f xŐš9e×ďř‚ŔŚÉ债uş7=TmÍZĄř>Ç÷Űvë´ T»]7Č59¸`¬k=ö»ż­ŻčÜůťÖ3?ßµtô¤je!-Uę:”űí;eËă!ŹŽµŞ5š*SîfIËMRىb˘Ů$ŕ\Đ€ŘĆTÔëv“‰±‰"ę™ä›,]hqźŰ! +źő`\#ĄĹ0Şm©ó\ł©‰U —µyŃ"ŹôŚ«.ű C&ĄxÎX@D)ă Ęś^ľÔĐÎí.ľůEň&1Ť#“›*ŽK¨A: Ęn>†$!ý ša‘čk HS’P†ôÓżÎI$\ědĆń\†Dâ oO&‘0&éWOFŃâv%á˓ԩ§!<’ćD ˘Ń« -@."¨ĆŁę{;R¦ľj)"ôŇş·…ÉÉă ™ěTa¤›Čk‰đÎékşi7‘Âz5HÎc•qJ…@°yßĹsXk˝Fň„´~3qâňz:”“ę„-Ó|I3yćë>çˇwÂţ‚%°řl]ü%U.5醮Ę9ń™ńş|n2Uśś?‹@‘śl?o†ąm ^#Á ť›i­–Ěó¨÷jâ{5Ľ÷J3šť?ěíáůŤ.>~˨0ť3zwŠŐu ™Ą;B!đXţ–˙˘\AfC—?”ŢŞ¤eh—UÚn‹'L6€ý‚RŔĐěŇŇqwćUBĽIDRŕ I硍i–~Ăq¦Ž•oM†ł LÎi“8U¶7đOËŃu1Ş%Â2ж?ÄÜÍFW‡Ś?C3Kł‡aÍla芜†iHĺćčŇa1Ĺ#^1lV¦c Ěţscň’{Ŕ™ě)/&zv“ł|ˇmżŕ–çĹy?´ä#¬jÔČ“^3۲¸ÄbC¤ÇR#˘eą€Óał řDi8•QHOÂaQrq°Ě\·ëD8Č*,rd@ŐšF$ó†¨ĺ#:apnňÔÜŠDźR„”ĂF3Uá©«zńÄŤnd`E9źDoµ6WâcşđL@Ů kĹćĹ"bŇyÚ®Žf|‚ŃŮÍéąĹCżČa°‡LtC§|KÇDd5ÝÇ3Ó)¨•^ŚP «=‰cąě ¤’Ď˙&5:ĚqúCÉŁč|FŐ#`I‚ąĚLĺ“‘G®ę_°úѦ·<žÇ+Ľĺ: oH ;nORF;ź“^uwÎ"O5{YwŘs¬Ýj¶UTüó°ĚŹ‚ě˝ă“? dď\0řś öpÖýMBtŕLµ”{Ë^GVŹÄ™ 77uÍĹ‚dŢÓźGéĂŇ×™ĐĐ$[ľ…–| 6˝,‹-/q´lH C(Y q±‚¤ /eŹ’m]O˘BŰÂ͆ö7´ŠËç3´ħtx94ÖŁhŔĄ–¨ą |ŞsĹç›ő¤Ĺ»'Šü„^EN7ŢXbýŽÂ# ‰›ŃĽĘXŽC€W,śanÂz,¬&l]Ă©»MĂáö&ľŞuÍ\bCG´5m‰’Xdˇöö-Lyőą¸ %ä!Ă \ťPĂcOÖm]šÇ W×|čá€E•7l„RŘ„ #łś 8x˛ „îÜŹ%ESâţ)ľC8ü7]ÝŞÔsz¦iĺŕ)”sR\-+ń×ń{®8Ć;ă—&č -+śö—|s$ú·DŕâKŔ Gô7Č7YýlxĘGě®kîIĽ uĆ/4Q–T ˉ0ň†¦>~Ű&LĄĺ7N­ ś7·nŻ&{Ňn"ŁŔąSV:Ľ KndŃwšé*x-vĽX·>ky>, 1ŢćQ˛ě­¨'ď 1ąNačOzČCŰ€ţ Őăě´.čfA뎎AžmS‹ŕÇ,Č#,ábP…$  îJŮż˛ÔŚďNř1j4ü;҆»=OAëŽ »Ďć©}Á_{đKyî¨2ő/5* ÂűJW4)Ś–‘PĄÂ”tWZ-›Ą˘ŹĆĘüü˛¶Ş“EŹřoĹl““»šR:­ŹKńݶ…Ö6Ś­µ2rŤ fC/ Ť°ˇšŮh,/ěŹhÔŮ#ËNá’S˝˘ Ým;¨Ém—ŐÉŞ\Ž<®ö(ŻX˘ň9‹úmĂá!ZŹv1®K@¦¤Ő}`Sb–”_žĽ¤­č SĎTĐĐJÜLB˙Ď?¬4>ߊ +~ĽĽgąĄj™„_Ś ÔĐ–ź6`Ö1Mx5YŠTy>ôńC±˘„÷čk\h:áÖ“z÷Śř&ńUěQKB‚˘*äőż4ĂŃ##‡:uĘ·Íô.*Ć ¤š©Ô2&®MYË­JÝč<§´MČ÷+DjxR\Ôşs­1Łf{#˧ŇĘî˘ÍĽ'ÚQ|OşżSG1ş/*ŻđßGwôHOťKEŤCľĂ<ŠŔ]1Ť¦\TÇęąňY”kß(‘Šs9`Ŕ˛En杌_im_ŹÂ¬Ź0±Ť»3kÜcLl0˙j°HŻĺ™˝©ç:óúi±Ç˛Ńla*?Ń/\Ř™VÉŠA ;łBY=ňF•Á=JŞ'wó+řǬŚŠ‹Á¬ĘOOZˇŽ~őK0”H0ÍyŮ@Í Ż>;„ Źŕ‡b đńIPŕTçÖťŇâ ‡ônđ/ vVçÎH.'‡Îç"a_ŕ€˝]Ű-®ˇ‹‚X‹2b:ÍŘa(g¸Ě5€+jä»ŕńASS˘î¶á=C#¬Ün ˙6f_â’nÄŁ˙éfŇ´1BSZÇôCśŔ&h›Ô‡47QŮ)¶Ä–Ę}Ž$ęěă"Ô}źa~óÍĘČwô2rżáý7C ”*íhŘŠúŻBçč-ŁŇVŠPÄGŮÄ)í75Wk˘Ë¶ős[N»÷P·îŢŹ[$ĆB¦ÚwqÜËuK־ߥjßI‘đ]”lĘɇYŤ›÷ŔbcÔúPÁ˛>Ŕ:Kޢt)÷U ŞÍÔ“ÇĽ¬‚‡©pCTx´¸7®QĆŚ)xÓfďőŁD™ę,iXđç5 ëAMąPN{eX“n›:ŕč:;ómČŇ×^ĹZžÚÖŞÎYi"¨¨‘,Â(´f×­1x *X)>Ćq˘ÚuB•D©żń¤ÍęU× ,´yíÎ3č b!Ő¶*'’nĐř6”nWL-­WŰ==‹ÄÎźíé1Žjnýě,ăࢶfôđćî…[Ą8^îŞňá‚÷ŞâżPÝ;.›*[ýt`Żŕţ¶ű6őrS3-¸©˝ů–5ŚÔ@AĚňs@QĘ:ÄĎÁ‹ˇ˛ĎtP`¶GŇl.í rÜŽK|Ś••n@bžş Żôşl±Ňl ŹĂd:qqś‹ż+×.f(68źM3ÜâŢ»”É=Č/+wě @iĺ±%·cmŕ!&ÄɲŁk«űűŠfş*•x‚·ŞxwµG݉h;ľž”ľÂż~ÝK ľŤ Ěśn;ú=%/Á¨9TaqÄŁ(pŢ,ýF€‚VË®Â[޶+«đw·$ľS;˝é®Ś0ř±2š¶mÂrÎŔ>¶´vxaiᾣ‹ł&ŇŘÔpçĹCą‘Ĺ#sűfď>mÂ;€ż s·jZ•äGq‰ž =ů«B<v4 ˇpAń[ĄÉÄJ"–ʍíâ&ź“Ü26•‘śĆ…‰óŽ˙Ý/5îî1Uô„+îQKů$‘ěé1YjĘŤöFx_ j¸^ŮÄţ¸µL˛ţłSądłĆuý›5úFBÚľAŁGwÇUÂ:iĂ”ý8ęVě¦jÚüŠHjAóŠU„Ę„÷nÔ8“ĘŁ6Ž  6˛©~@ť´fD~+¦Aľß'żeáf”_†f¨č‚NŕÇ뛦Ť©„ŚÜ˙šm¶ŁF‘Ďů ťűT¨M52ŹŁnbÄĂhĽ}Łěť]K†SMŻ8Ý0ó©|fł &'…řĺÁ8 îĐŮgÚĄP‹ťŚZ¸"öŮĚX´ĄĽz‹}ş€× řë{řp_př#¶«sÇĚ>â1/{şA~"_LMŔC¨K„ĐNZŤŞ'Κ ٶZŰżÍÄdn,Uś/¨ĎŃ6 ľRTd, áߡë=ŕă°sĘ=Ů[’wiŰVňŰu[4*˛r'Ůf‡·ęv8Ż—:gTŤíżű|*SśKMfłę«­e4Î\6{›—żŇs@îtĂÜîIJ©ńń"ÖčČeŐŁđ›ýëFŻK|Ě4Öř!HĄ­'O*Ôoąn78ŞţÁ6.·Óč´qş%…ĺsEŘ6ăEĺ&łuÇ!Ťź˛CşQŢöŠĺRăcĹb*ź‹˘ 8ŹEĘëᵥşľ’Éüx15YĚ©tbźăiÇGlkűw€e*LN µS‘?SyđG«źÁžšKŤ3ęáťÓ,óŤymݵπŇóŮlj,—U—č^ĂÂ(TşćU&SąP·ă°q9»š×VcÎú!©|>ŁnAáďź×yhíhI‡5Sß ĐSřďŞc[öšqu,·%śŘO+»¸2:óVCKrL":褫“•Ţ#k»]łxÁ±4«‚`ħ‚ëŁGFŘľĂÇđĎÂ~ř÷ŢŶ4·ŔďÂŃâdx§/ř%D<誉SÉÂFc7¬¨Ü^>ĘüđŃ#·‹[ÝN÷ą]ÜÓ‚ĐóĘ]÷¤Ů’Ý‚âc<YŢ´íkXȨ"<łĂđä ó#lËj@–SłöĘ ’ˇ…¶[Á°˙ő:°MŘánŰlq|{Goµ‹ü`±ű*SŤ¦ ľÉő÷ѨE"Ő[Ż„čď8[rĐ˝°p`ĺśÜäT1ĂívâáöÜ% LÔbEäÎč\ĘĐ3Ap›&Y4;juĆ33đa˘ 0݆ˇÁpď1Z™zÄ3ÇVć™zĘ3 ů~ĘkŤë˝Źâ)ý|©ë3Rô•ÚQBŁg\ťW~äz;ăJ{ď/ĆSŇ˝ş9㊹rń„Býîőu[ĹŹ0R±•Ń….Í„"­üĘ5fć©Ë˝? §ß-Šd ­‘JÜű‹ňT`YÓ“4_†joďK᩹bµąvËHµí㑤*ËG! –ˇúÚÇ;‘ęęݢ:j©Ś«¨˝Ż‰§’ňQ„&ʸŞĽA®o2©löudąr)ΙŃ`¤PŞű_jŽŚ«Ť}ĽY©&ŠĺÚ!ŞˇrÔWűX(©đ‰# ô<ć)y} ©ÔI2a2R‘S il, ®) zJ™ŇBh_,¤z©ĺqQÇbBÁę}{ OŹbR‰ęc;KĄIngÔ•§(őq@ĄbSą=ÂL÷&Řő{wÚ!+c)Ů x»K¨$[ĦlrťÜ¬•®»‹/âÇëVݤK(ÓO3šÁ wgć•/NFÄ»¸oŇÓ0őŠűëŐl˘7Eó Űżq·¶ öFo’FÂNJ.·$;ÄËĚD2© ń($@D¤ÓÎ_óe^†  ‡É“ó4h4]1â*ŕ¸+ôukaăרȂ=zĂ6\=$G4 Ë8q:cął,]TjäĺĹ2¶Ç+ %îÍ' ňěĘZ`ză(­TUJťöž[ HqęŤÇ-§U’~NörtĺDąŮ™Ď;€ľćů˘qPY$" #‘El@"E:&MPwBK&ňHPOw.a…Â"‘ÝóĐbŹ(;!n8NC˘DčÉ pa+PĐ…‚x™<ÓA,ŕX:7 ×ć–˝ęřşíĐsK¬;_ąZÝ{]$»˘í&ü0°…}Á† ŮNöš¤}cµä丹0ł´»„ÁSŕť©FX&…áIÄ!!UîwxźPx1\źČm⾯ߚJŹ·/‡&Šť'–âÄN5łĽĐ î‘Ęf¨ěŐ‰:l‹H°Ňú—’ÄĐ80ĚMIń‘űŢA*<â-B0۱˛ä rŁ˝žŇ»ăK¬ĘčSůÄBby¤‚÷Ča G:%ęüŻ –ÄŚUÁ†ä:Íjm*rŻ‘ě˙ăĹ6T°±®§Ěâ–3ŤŢĘU¶cÔ Lݎ˘QhÔYJŠŠ R¤3.M3>µĺIđ•Ţ”ęMľA7mo¤µJş˝ŠO¸[™%(ż˛řŞľ#^ŔPťěääd*…Ä`„ůOăů\îlH|”K~XUGc‹i.k§Okf8yqĹ;c€úu­EaiÍjÚhĹ=V§Ř®Śşˇ»ŃŔ‘ŃĐäśŰ•Î.ű‘§=aŃ[Ż ®$†·0­ŠE‰ĐÁłÝ4)b>xŐ¨ňŽ´¶Ş˝ö Ł%ĂE÷Ë E`Ú-ڤl6˝AV~XEčńłWuGX&kÇŚźâ5^ť™4A’ŐB$:˘ő%ÍîMłC†µŠĽr6Âř›=q|Ď·™ÍMĘflé ĘOŁcĹw¸ú8cţ¤ü>ćŹ;ŠúŢžĽ:{Ú/áň“ŰvÖŚ5MőĆX´b.í>aQĐl„ E‘§ř$e¨î©DĎ’›Jéđ—ˇç%ń‚ w$"uŁf8}ÂčÚßY¦łsžyŽMüń@Dp)ę(gL}SqMyŮŹľŞgĺ±–lqr*źě{{bĽ(ń­÷™ĺ¸ç|ŚÜ–{:ęqz3‰ŤĘ<;1:?l!!ťčâCÂŐÉ˝©2Ňxµrĺ2˘¦‰y„ŚĎ©JĂŐű%´¤(9.J +Íţŕ°µâ‹wÚ•VŰáGÎĄ”eÓy4 ąĆáâéšl[‚ţţq„?Uçţ§*9˘@+đ{ň,]J8çŃń¦ľh/„‘aW×1ŚŔʢR;–=ĺşéµLľ62Ů»÷(tvçµŃ°Î™JťŚ_~tĺÓtŘbÉ@ZÁŔNęś”ĐN…_w%šĚN¤ňăccžíJĽ?Ŕmü Ď:¶I-Š(öI{íJ@ÖRŽl ż""Ŕ•‹žţśŮĎ@:f+Gó7 ŐA Śî§ůň)íźFkËÄÚöŞG’ë‘řŕĚ{đŘ8Ę;ÂwÚŰáĄöî˘Ŕ- §+‚J™é®RĘ6:>UL®M}i<ď5_ާřxEe|Ś„Bv)#(č^?€ç°ú†rőBbË…ôd &vťQ™ÚżŃÔšZ…ă Űć&h*ËK·ňÄD…Ŕ˝®2Ü Ú‰—Šá/HŃśdJ‡¶ÓS zĘAˇM5t3DúÇB÷ÇÓ'ŃM6+ťŞ7 Q· Býi ßžwŢ´ M‘¤<É'`őő˛h~6GejĽ.–˙k«†^YMş źL­hĽYÄÉ0ČÁć9Öü޸EVHήa?Ş‹9‡v‹®îÚ,ĂĽˇ!â/[Ŕ_‰°áý†FwŻ˘ŠÖT˝ČˇcPM39#G†@÷MŁćäęaŚťą e„Çv1é{ĂĎpC‰ÁSs¤¨-ç‚b€fm’č ŁÂkI3+yŚŠ7S~śá=CTiş kˇ9~슋) Ć ËFĽ§r‰yĚšMÚ˘í¬kN5 2ľkűi .sír´»c ďE ‚†ŔŇ:ŕÚ&*ÁHBW[ŃkmćvT_G‹©X+^ŇaźU®<ĹÂzĂ‚ą:÷čB^—Ő¶Ş khńľT˝ŰŕőGU’‘+őT "ÎŮ„ŰďTe4–´Ĺ̵Źw5ťó@äŇ5V»Aĺ4FeB_Ý3ZĄˇ łQAb-ZtT˙ĹŁGŘľ}#¬]—»BV]ˇ‰Ť 啚[ÎWF}BÍ·Ü$đçÁy}mƬ%ŕy/¦·©.gÜĹh\I~÷“}>@)pĹ©‚° źb 4. D8Ň#¦"GŹFÉ$Aô UEcA*ĆëQ¦ášf†eŠŰĐM3™Nqˇg;ü¬—«"etŢÖ¤lŁXŃE˘Ţ¬ë]Ěá׋źÉń9Z1uÍJˇď%Uµ+ŹL·K  ý˛Â¦‰( çeŇ)5qď&‘ćG<ńö"ЏČxÔ«?/ˇńĄ–rő4ŹS8®—u·˝¨HE:öI7yÔŞRŤ6ě)´ćn¸»‰La25îcĆ!±ÂV6ŰA0ZUµkđĄ˛áTŇZ;]]U0–q,Ž%Ş™đwŐě¶ś—î~ČĐEÝÍĄ.?ô»Ť8x˘˘©á#™mřą´˘W‡4ĺnë4VĹ®X,fÖ‰Í üF„HquKť.uQEŻ‹ń* Śď»ÍáAšŕ ČŕřÜU čF4 j·Xµô+’úĄĐS¶Ťňsýzč4TB)ô@ŹŃ8Ž[ =Ň©ŹRč±)0!<ÄŁ<ĹLĹ#b)a.µăóÄ›ä«îŐŕ/Ü&ĄÜ(žÄČůó™C š·™kF­Î‰r‡x.¦xČVݦáPÉ6šĘńM„frĺŰ’/ŹżOŰôĄ Ź–®ŻŻ§›ÔŤjU_męM˙şőäÄ(Ą´ŁěŔďîöŃ=WÝ@Sy-S`Lę©m8¸<DŮ^áŃAýtÓ§°/FĆŇtkt $ÚQÄź# &5zshä5%GMeď>jäݱůâł}níSÔ·TÖťUöʱżĎ˛ô@ ]zh=ÎoÁXŐ8°Ç­¦ElńŠ |ÎW4ĐqÎä[öLΞ,†˘ń0•†§M30‚Ç98ş>jcOąvۦŇX‹&J˶E á÷ćU†Ž/V(bţým‚ Ô*‚łľĽ_xćâÓőŢyŚÝ:XÉĆ bŽÁO”ľm‚"ÖĚFéÖ"j` Ą^L˝g5ćË,9n;rŮĐ,&6ĄŮ1 }í R5‡ZĺŘŇ(Ç+PŇ68R/‘Î8±€‡§ˇř‹ÎĄÇÓŚ ÁÇqöŕ›&Č^;"–ÜÉ—iÝŔÚŃü2ŽŐ’;"nşk†šä}† (4ކ˛Ë-¬ę’Ý®ŐůhCpx“enóZd{1?2›ŢÂIÖ­\Ćř‘v€Uc” t5`öOĄŽ€Ď+"ÄşSz%(oCŞ|‘W°=Żj—­JłĆ}ĹŹ­×ŤJ].nµM|—|áá^´ě˛=4Ö-8 ‘e§Ť$?ÇqT^Ég€Ö;P§“= ń¸†˝äĘ»Řňâ‰ýęěc7 ëŕ%p”6ă ťÇ)¬űbôxŤ„ŹQe"[đËÇo0ŞŚń1!⥧ü‰óů ĘŐK´¦‘öo×›Ř[.Sٵ1OĘR®ONTscăĺęäxfĽ0‘/Ś­”Ç'ňů1]ĎgĆ*9MĎęĺ±ÉÂ#çÖ7aĆƧň“SyQR îć;żĹĹt†2şďĚŕ25;fBަ•ÄÉ<ĺ ˛Ś¤áP¦±ţ©°e,¶,Ź”_EAŠŇIÇ„é 0É‚’¤˙S8ąݞáNŻ_ňăÂ[Ď}dŃ .}ů# IŽĆW óÓ{Ňz)ů0{üŃądĂP¬ń/’¤ â_çb##ÖytkřťíŤŐETŰH`w|&{~nŠ7pśU„۰±#Ů}Łš.f…›Ţ¬í+I–ŠóO¸úüň1ß` eWŮn+|‡—D’_‘Kkx®3Ůn%|a©.Óa ŽÄݍ#Év+áŽK‡f˛Ű4¸üp‚«Wę#Ťh7†˛Ć!‹śźIçRąŚrµCöń­ómJ– XI P{Mř–jńoĄ¶aŻk„«tşnÖ¦ Brs`s‘úx×RËŮrŮo©4Ů+YUôŘÖ ÷dŠIöMZŔs@€S.EăYźĚMݶŤ‘’,)ÂAńJă¶[ —Ałk&Ă ŕgD8g6G)*Ét¬·„5Ź0|úĚŚžť`†íĄŁüĐÍť]Ş Č=Óé¨^®Śy!°0ŠšV®OĎj®žş!t8Hve/~aNDXa"–c4„ý ľbĘů‹‰¬ŚdîühîÜ2ŻHď§HÜG€P±6ś»Q{…{şąÚNNUÝ ĺltNŰ_­iáÔŤÝYĹÔúä™őhÂmĐ@z©R?č‘Ék"«ď$íˇPň­JsOď†ZeódueCt°aBDäGeh·§cÎi Ź!´Ť2ŞëÄŠZ ]Q&ÇcťAŮâ)XšIóC(P·ŕpőź•şĎ7čŕśúËKŤ=ň·÷ĐĄK=ÁBTâlWL#®:7ýÜSĎżéăŐ `Fą¨ąSˇL6µ0NÎŻMĚEŤ)jřA‘I*ę–M» ˙u [Ô¦as†Fj ľč%ČękšŮÂ>2 Ţ%ĆŹOţŰpq±¦¨ˇ#lĄf†ŻRokł˛b"±›Í{Ő‚ŕCŰql9JV6bŠćöxY­=gÔĆZWČľ“xM„ŤËČ‘č,)ľ$čXwOň­«Ő‘ĂâŢő"ĘE’p˛ěčÚŞúSÜ­bńěz«uŻxsÇifśl‘Oáĺ ĂkÎQP~‹ó+¶đĐ;MSdçö…ëq…_ď†Sq&‰u0D5śŢ+Żw(WĂ'?¨L~o„'öa˝#A.Ń9Ý“ővڬ·ÜGź\ˇý†xŮńQ—¦ŰCbm—ÔÜkÔź˝âęü÷ëŐßÝ–ć´R+†ă…±^%š .–ŰÚĘíVě¦z˙ŔŻÄËÄĎOŚüě4ŞĘoqÇŹZ3t—@WÁű:Ő×+žĎůJ…fmÓn#NÇ_: UŰl7¬HPl6ťÍF@UôÇEěžDěmĘÜĺ­ Żň$Ă!ţf‡xŽY^¨eiU}Č+bŚĹ ‘.p#9ľÝ€(Xá/šŇúPřă ‡ÜT$@ŤŚ7Ú(ĹĂc+oRLś¤î4Љ°ŤŠS’gńçč­děnŽ  6Ź—ź.k;ćdŤľp}éx!oeB„YęÓ›Ô÷1!îÍí;Śčĺv cb$˝Xůn "É‘ś(2ť†)@Ŕ9jmĂrC*.Ý Čv˛ NL%F¬(e)ţÇmśAB-ţH@ť/ŐI2vť\iź>-W/pédNŠĚü"HN-ó¤wT”Ż'łę5ţ OÉńZ»»¦áÚŽž*ăśő”sW!jŻčQ Ś5zIb™FŇçŠ^=śXyrý‡(OÄÇU2äĎ>ŮB3ô("^ľ0UH6!^˙˙‹Ę}׊źkum”PćSBÚ‘Oţ_Qř̬đw­2`B°ÁnĎJ üp‰ź^thyAMăąyŰ„Z‘uWYĹÖ GRŽ(!“1g5˙7¸d`i„ B—Ď.l^a˛eÇ …lŢ>Íq( sp©R7mÄŤŕÓ(ÓIŹŇűÍł©ÉÉ /D8ăb[Gb˘W·Y-ŽŹĄrŮÜXäÖő6!ZßoŢÄ+=ľş#úĘ ™P{Î..áŽ[ĂŰ” ĽCda»Ýj¶[Ş@šq$N|ä6ŢQßžćďJóŻłć5Réďčeäxéô ^:_!šŃwSBĆ şU‘ĺ©Ńëí¶ZÓ«řĚ«!ÎéXpŇ Č˛ŇćI˘«2pjV3›ĘC±ŃŃj5ë†µé ŠýČ~qź$áA ›& GVQµg"ţťZęő!Ň~7˝8Ć@ă0é.đÉ*™Q`ôM˙Đa­©Ă÷ţťĐúĽźéťHvCWŤ2ú¸jÁ˘śli5—ş»şIxŕô&Č3lşíN>ŘÖ~oZoyť÷—R|Q)Ćr8(AČÉ0ĺBBđVš.§–á;o‰ 2%RĘyí«Ď#—\čă4’y˛'DdŹęń1bŠiw™„G»D® ’'Ô*X‰{e… ňŻő…+¨.Đ^…÷ô,X LŔ":Ş3qŐĐîô’S“ýxSV“Ż•ł „B=j¬— ®Ö)9N L!ŮŽ\Z=H}=˝ĚÚ¦©=úĺÄ.Y¶>gé *>IÝÇč„R®=qźć†0‚ŔPŮ1â«*AF^ăGqőî?t¸ĺ˝ž—.śuz˝S5„ŕčjđ9]Ă*@ˇŘ®xů1<¨g§;Sy坡ŕ^Q-¬LkkĐĘr‰eÍon -„&Ł™ëÚ¦Ë(ŽĄ¬±¬3âŤlx"U6¨ä U^v4Ëőq­¸iWB3L’*Śx…Ĺô ¬ýLE¬<łč1‚ěÂrIVmv˝˘¤ŕ¸Ł|«^Ł^ĚÖ»Ącă~‰Ż¨JŃBWJĂެ0=CőćŇ=”E¸EúYpŠŮ©śŔB mË·°rŔ6Ď °—ź&ŽŠ’™Ň#»äR†Úâúâš9Ďš3ľM8^$źa™ĚT~ĚËЉášOzÄqJ•5>ŽŞ»T]"}đľ]‹cĘ•,žÖtŰxřZ‚jăđX›Eť0+:[ŇXDĄ‰GËĄÇ":ĘËşç°vÔó;rŞ3FúÉ,đL€¬ŐńŐ•Ź:‚•Š ŚÁ‚ňCśEě`ʰĽrBT‹×¨ŚţŚů{ň3gvIń~1+ňl FŽ8x0ÉMQ ˛%Q^/„rmŢ®jS3ĐHţ-Żî¤Ř˘§|rÍ4íuÖ¤­ËçDLŃ!°/b(¸‰8`äu83ʱ#”¶Éepot±&VaĚGÔ”öÍţůmÖ3LŚőÄm#›=.Z6í—Ó^oÚe·ŐŻŹçµ¸¦†Qql2  =bd€»°¶ËŚŁé¤ń»‹)ňq`H¶8•ĽXśLĄýT§ĎţôÎł—çz22żb'H1čÉaYx^ŚŃ.<Î.kě2Ű™]Â)ďŔ,oT»`Ąˇ»ő^1"n_ĆĽŻěĹUEťóŐş ÄŘŮä¨fę‰%Ozřâ®'.*ąŢĂ":oXŐšCVg/6H¬•6Ĺń¸Ö±śu$ŽĐ‹RZśČç±´\6‰Ń<™ś$(pĽ°3pŚ·CÍMđsů\KŔ‹ąh0cU7O«·™ÖÓ.5čöT*`u;Çeü6˘B5&]"„/\k#”q‹(sW$‡ O±Íá¸4‹˛S\HJăŻ%·á¦őŞýWćŇcŘßĎ N‹Wő¦Ü®ŕ5ĺâĺ‘!|uMx«Oý€†ólçżO«ÔÍŕôËxaE+źÁâŠĐĐp=UqŔ´›:ŠzĄ łp(îfĄq˛il ˛>|sAoť4){v†a™ZŮiĆl»†rź‡Î€iZ—–Ü&Ę pĘYKž::«.źgEŔ`ÁŃ@‚ÎŃ·1î¸Ň67®b65Âr).ăäSUŁÁë«cÉthćÉDđ$kđL +¶Y2#9vĹ ăŤ×/^î}Ń})/Öô˛e›¶ąYYń ­(;ÂÉf‚J‘d†iáł{%—ůŇ3ß#^ŁVČ*,S>ä®č)·‰aSDŤ°ň" ‡4’ Š7䡪Ó\€™›Tş˝%łÝ†ťź’2Ý·dÚęŘśvÁ §ŢŔv3ͦäî ,Ąuč”nšşlNÓëhâÎe2c{ĽB—ŮLf|4ź*2©<˝LMDŠL]éĄdîńބҤ*b‘ŕ5ë$ňÜHč(‰ç…ŕ^Í&w4Ü’¤*pČ0/’ÇJĹąŽ,±ř›éOD=5µVĄŽČg …ĘA=p4”.>:53Í.ťbc)Ş(Iď;*`qâR @Ü{âőÇ×ß tŤçŚ©ŢzĹKÚ,`ąĐH´Đ2đ›L …7b.@Č6*złĹ\§2 Ô¦Š»6tĄ‚»čbJY4~¨Ę–ęúzĄŢ†ĄÍNNŞjAŚ©ę ęĆFÖĎŢqGV-f Ócˇ®ťßÂŢű7|\UG˘‹ôľ–5áŤ#âÄ?•í ňĆUlÝytiĄmáIĄŻľ‹°"ÜŚ4™‚W·ˇá™¦ţUŇď"gCřWô˙+˙Đ+xä5úťźî|ôŮ}71~ł˘źĚU©—üz”?"Ńó(ěŃ'IźĹ—f(u%°A>(ŢÚűp2[ő?çźóü–ô™´YIýnŮŐöÝ8Yo ÷«mav _=ţ0č/­ńpWNz÷„ĎľkTÔAćďČmĘVĐŐçŤÜ‡ LI,®ěÝĂŽ{Š˙E>ů˘W­kEȊʆúµ°ěć)xĺ¦×9OHĽ{„%4'’l!$4’ÖD®î6$7>ŠTBĽCmCŘâÉb].şŁ'g IHܵGé{-z“TËÂPx…÷&čý…’‚Üä˘őZřó“SŮdč ăµěł ˇŢ—{¶ ˇÝłvsÓA[]ťůĚëĺv QLÎÖŽŔ%„Q^B_ĺoއťČÎk§717ůŃb ël ŇHćóó«ŘP•\â éÍŞ¬@Čh’Ťť-V•bđÇʧVWĐ´®â¬ť® «.[PĐę@)śíh: s9l»uK[µ×’*f%BLĆ·öĘÍ#]–ă—€!Węäş“şńŔîÝŠchö1‘źLĺ c÷Đ“#ľj ÂÂhÉÁô ˘6 — óáźyűt•FBRGÜßóÝ„˘,߯¨Ľ¨ŕ!ŮüŹŔC©–ů°o@:ZĂ{hżčď8~·)r‹Ő!ΚTĽ%0_ńäŕĎ$ÁÜI]a˘Çö5ŇŠŃ (c<˘ çď©›šj¨l”[úĆđ®Ó”\d4 Ťěű݇NńrCň=Gď.3}E·XWwčŠ «ŮÔąÖ8´8ÄYłpD ¤tŰäżaľ†WY<zxp©×ÉşW+ććť4 Ľ®ÍŔâÇĽA(° dĚ«ň‡T5ÍEOíŃmÜü…ŠÓ‹Q6 ŻkO¬V‡¤h QHPŮ|\ăpÇxťę*/´˛ŘA f"ŤZh­N™`ÉLWč’‘ňT™€–ěÇIŠ@G­iŔgŘĽ§ۆ˵ň˘ZG˘/ř.PIJcbrb•„@hQ%Ąy•ÓLvKôrđiĐŰďg Qw'ÂÍ(÷Ź»çŢ®Dł?ŘÇIQš7ö1šŔxĚOöëůáa<ö%Ĺ)‚‰-ó  =Ý]Ň(ič ŕ\Ł ¸Ű;ąĘ¨hË:@d4’ăĐA˙—Úĺ*ťlDO/!Ó*ßz—KŰC&mé˝fŃö‘C«<ŃűírCÓÝ4xaEÔâL}ĂŔ/M­Uwy\Ľ2hëÜRŠ1j´Š¸ä*y?!wó5\Ď•®!PŠ\p,‹ ěÔ 4ŠJ(éÖ>ç!XO×ŇT9ŃĂnô›9:Zdš[˙.ů’ç’—§·ěÖ¤}‡?¦ô肇ăźăAq2ąTI{M„UŕĹűHčÍCźśÚgÖĺgR‚ržź*NŠřł„LĘŁg7“Rý,'Hâ#Áóô‘ ÉM…l'śŚG^9ű$Ď<ଠZ<¦’»Ąű„ŞĐč%Ę6ËĆše;j=Đ›îĺśő4ţ}Áü´tv}|&›ť; Ň› în•Ţä2Ů"aŞä©ćŁ‚…čĆ@ŮAÝ:ťFĚcyuz&A-şG·Vu“óLŻTĎLU7+uÍś>­ů2†\6ÔŔ'iynA•­ě Čö–ů÷ô*}O¶[Ö`akţÂ,ú®WTĺ<7ŻU“`e­ěđ@}VCŹťUEĎPŮ[UË[ŐŢ3ę⢷ĹÓ¬Ž&ĽSćżLo*ŚMe0’č©´ŹŃŠâHŕ•ÁaǰŇ\NŐ›zB(& 0Ě«ů<‰ń’ţ)♢'K•b$–˝y„!ËýŃŹ„~%(*,7ݧ—v*Iµµâę*rěeĎ\üľ‡Ł$M׺/Éą»ńĺkÄť{Ş]säČŢŐ JâTrő›äí„Q˘ Ýg9[;áľŃ îm'j+ŮŇ 7T2¨·ź3-}÷tU9^W ĺDß4ožxkäi8֜ьľ©čĂÂi/,Őç;[éÝ ĺ‹N=ófĄě”âE^D“ şd„jšâ҉Ăňę`—»yNPP“kuľóťŚÖvúây”7žóŃőőőQ·Žˇđ٧()85sbůбťtkC]ÂČĚŕÎhrţô>ż¶1šű@Öš /bđV±é!–afV+ü¶·3bĐŻ#[Ć/ŕ™Žż j0}‡8‘TAl^o€Đ¦źÝá—Ł×4·-,čÁ Ł‚|ijg÷Fł@97io˘fŮÎY>P˘MŰ<Žđ[}íśžVŞĄŻpę~\o™y7jáÝ&…>Ú¦QYĄlĐŘ˝*« üóşŮIęç&ű06’îˇkkF7áČ  ĄOąI/!XŤľO?ĄŮÄÍű>Ĺß@JËf7“îç‚‹Ă–Žrjď·Á /Bâ[2Ťjň*-Á–"HkÔŰNŹqN—Ö1Äg…ŞŰu#xKMgsAŻ›7 ·w(¨ŢĂ$–ŃśřJŽŘuz! ’»ÁLń®ďŁnŻŁ©˛ĂŰ–CtÚĺł<ôaQżpI«i¦¦Żő>xݨŐ)Ç-yt-’Íb4ň˛®5zżAKsü¨cáGU1ľâÎÝ Ú*z20ˇ­‚ńŁexëşćn˘ˇ“íŞďĺhŞ•Ľ®—ąÉ>°,Ň$Ó ”Y»AĄŤťwdeá1)ë­u]·xĽëy»y&<÷,ë䇷i::Oô[7Ş5ô€7`–8In]r&ČŮq+Ś2ޱŇĆ0`ÝmÚ4Č1_×ř%fĆ `/hé™Üv"đAO¤J"ěąťĚţOň­íą$żňΧ ‡rŔ]ŚÖ’öšp,y_<ŠtË1ź‚ť_ŕ—&ÓŮ1¸ş!€"Wб®S˝Ţ€Çw{@d·Ç|šÂJąäîoŞęl·ťŠ.\ÝTä,„‹ŽáćT §7Ç˙ć­ N݇ČÄ›RˇhÁ$ÉWŔ•-ŰBż‚řu\Ŕn˛ŕřeN‚sŚbĽ+ZĄ’QÚ(Śăž!ź„ň:>X±;Ô v]cŇç–GaÉUO÷Äř90^ś\2‚|OÉ˙čE­ÓN7íÚ@<Ľü¦Ö0˙öž>ŠâëÍĄzŻÂZIH!tŘŁw MŠpÉ]’#—»pw‚€`Ĺ¨Š Ň¤Ł˛4Ą4é˝$t!ßĚÎĚîÜŢŢĺ˛$ţ_ňcx·SŢÔ÷ćÍ›73ÂkŇ:ĐxIЦ+S°É°áŰ–!˱ Ď[Út6h1/ěbÉ·UZ%› ű' =űKřÂ%%=IÜâ+î-ůîol˛$č°á. §0hďo _éˍ ĄŚY&tŁ`Í+| Ź›˘P‹%¶%Â&/; ¤’ř 3íLşLŔG°·©ömŘć9]v“ }eŘ2Ă ‡J„¦Ű¶0[şŃl6XQbY «&ˇ“•Io /Ę%ćáÉf‹ µ‡ŔŰô}©äŢ*CFşh3-Ś!áť(ň¦®kGž)`)gÁ†í) ÉlâĺV°‘lŇ-Va„y‡YŇíJţBBÁKŞ“Ŕ˘Ăt‰˘ :ň.ć!¶óŽ^ÉVKF:UO†ô)5TRaŁUŠbÎHG™(źt@ c,V=•>ba :»ĹL— g´‡ =Q m @tˇb@j“}‚•°ŽJB74Č—@f…/˛tR śŮĎőz“ŞCµ:z"‹vŔňQ!©(–D0öˇŔŹ›Ś&b×oŹŁž†—'‘ŮŚX°–“ Š“aŔ>–d0RŁŹ.uZ ĄŞ>L<„€˝E;~ü-L?(B†9,Ăj"żů#~Ї:“­äľ4ëhµ(şÓ&¤0Á8€ ‘ÚŽ\±šČ‡ľ¬Mđó‡¸3„ßřy2’Ř2&Q‡ Ň <ěŠWą6Ă;°ŮĂP‹IßbŃ·@°M4 ŞJ,' N—Â'~Mmx‚m8Ś8­„¤$:L†‹XJ7’\,(ó‘xJ !_,íŁôFĂ»\©®ţ´O ĐÚ°1r?s$šŘG fZ1-#›»˝×Îż†«S÷yŘywĽINᢼîÝY¬ w{yž§űü<Ľ>/wTN·čyx žxöKTKaÂţ&RKžXéË"ŤŻ§·éÁNş[t4쉎6„Â@kěŢ–ÎUĺJ,gsQ»Ň™ÉT¬JůąŐ˘şÉŇQ“*d Ő§,Ôť’c1NşA4.ˇb”%ZQ÷q•5ťîÓĐÚKŇKĘ1%Ő$ ő’Îh•SBJ¤td‘Ć1é:‘ĹşÄ<$…¬Ł–0( KôyHHéôśŰÓu‰…+hëž;]ý¤ ‚Ë[JAµĆ"˝šCJ%Ő*Ą /c±˛L9Ť’>Śô&ČkŔŇşPrá,ÓŚ,Vk9$rŁąB ĺZ*‡ÔΊ(< ¤»Á6Ő±vÎ* )>Ň'yę‰X˘$rHˇ¤’PJ‡.ő:ňEp>Ţ+fč¦ęîŮŹq}âÍ…Yľžxs´’ČĎpŽÇÁžý\›ëŰOź[Ó°&î >Ž!Ί‰‡1<łřh/ĎlĐźÖé,žÉéĎ,ˇ§=VF‚&ŁEXzgâë3ť^ôuşÓŃűmOÎźĺËQłbqÖ,(Ž…:›¶…˛fř¤°tş,4ĄĹĄ hĹŤßÇ‚z=3y„VĽ‚ĐĘč@sÉÚé0ž\ÓÝ!Ĺ*lP[eö4ç';eÍ…Ż“u® Ľ ˇa(ŮČây4 ŤD+hÔ„Eh”|ĂÍ{clqnkL5v>Q褮Gw,8TŁÁť˝’Wí1*WC§×Ű n+1÷€ŮIg6r ŃäôVU^ň ąÝXŁ9<1T¸e"Ád|Ú†Jäx(QyË‚ŕwČ›ĘÚP«aˇq$ťJÔU4×]Ń!55íťj5Ą™¬Ť¬Zč7×s]Ž:łŃঠ,–T5ĄĐ x ‰ 9}ż…«b ŰWW…č¤Oł–ăÜÎ6„Î%±jmć‹ ÷|®xŁÜ™“_ř Ł.Y´‡_ŃĺÓ™– DA@öÖ2şdx´U0vnŇĄyßšśn$4Âk˛íV8í§67ŁŤ– ›)“\‰x±„Š#±­Č4Ž9…GWU+sE{:ľ˛WUÁV–Č"v&OjéĆŘÂmŃPŕe“-–d“ró8ňŃÁdÉĐÇÖ 8dśP+ĽĐs±P¸ÇÁłk©#Ă"#áÓđŞ&-cđ<‰ŽŚ“yÓŐ›śňg# ź»+¬θ ţYHo’§°§!Ž~ĹŰę¸ĐFRlČSąµGSáPW$IdŃ‚Ĺ]äW ľ #˘IËh×]—Ďű)®ůáĎ˙ĺŰŞsą ŠĐxN‡ąP ú!»;™oí®ýúĹ ňű@CBĽ%1îÓ ülOT9šHřÜěöĚ€›ůř*fĽANĺ§pŤĎeѻș°ě±ęô:¶˝U7Z~ćĂé`“Ő‚L«űXŇä§- ÉÇF 'ŔŹ4# ‘Tc’E<ţŁ”EČDg OIO—##&c´x[„«ăn#xॠÁ ,o˛Ł+Ěyζƙ…° Žž¤3Ş•í ÚYtŹÖaé:«MÚL“Qn«ĐđwÁh.¶ä­¤¶ŚńţÔ–¬Ýj0„; «nĐŕĚ i ßÚ ÖT6ŔńŚi¨Ýž!GŔ˝ěĂÓíř9PáËl·¤‡’‹>Đ©'© á/KŇŞJ§ä cuĐÖ Ó.4J{–¶°ŮÓ¶‡ĄŮF'FED4Oa…m»4đ” !ň"t$Ťgn“t{ |B,,É8–(ké\â-ćL¶—% p`ÎH7!P»ö—k{hűbNÂvDw‹>ceA—Y-F}1I§×[má)ˇN^Neéa0! śLěĄKěˇËü—óďĆVr¦Ž „Ę&@de;Ç6k ĆI3xsl´p#·Jń€ „ÜÍ6Şy‹Č¦!˙rYăí†Ńt,Ǩ—Í]®ňŽďÚ.,ŇI{/ă›`E"0ťöV˧ӭπ¸=>^h…ć˙âEoěć‚ŘAÄŔjI—ę!ţ^crAßó¦3ńäVĚ+=ěmŹ*Đ-Mîµ…>ąâ35‰(˝NŕuLĽ‘Âdf‚úz°2D)üˇÝ’h1‰Ź'Ás÷äŠ!K >á%`|ÍX– ś®f3Ź g» 7BĄ[Ťi:°hÉÄöXČĚ]%śźéťöG3y| ŕ ‚Ą\šŢ ÖŨÁt`r‚7hX©1ÂĄŠal2Ř…ó0Ž'K2l44: »p–śů%ź°SŃ…#B•OćHµNíW&€âĂ$cRډ) sá5 rťrB&ë ‡ÇÄĹ9ÚŰ‚Ě6‚rn&´Zm(>ž.×GT•®q4¦¶Ű—°ÄpĄËäönvŚó»ŮMĄ.áÍN¸Ŕs1č-ńL3Źd7„úxš%Ăj’Žć8ĽŽmH@Ă]–˛¸?ĘĆCő€łn©.˝ű  BŮq çdˇ:§đQk!ÓlĐÇ–´á˘ő2m[-<ÇK–ĚČc¸díâšu…ť­šäĹČ6˛YË&ŕ_$¶čMŽŽ–]ßëűŞ‚ńm®Ďj!»S°xAVvĐ-TX‡U RB ›X¸"aárDňÄK–Zw«=za!°L׫ ’Ä1]$<ĽĺŮ:Áu>5‹1ˇ«P@aŔ˘%€c!”d|dä–›`ďŹ(ą#^™GéYD’™%ňş» ]äh+TĘĚ´$î§LčEönäk7¸ĐĚŁ€Ď­äśBOD>!,łH vWgg”Š9!´Ď$ę˘RŘ=,‰‹RB, %X˛-­$Ib3l —˛‚PškÜöĐ`[3ITE9L6V±čH’8ˆČ\Ű…@HzĆuNPĚc‘ŚG"S„/ź'óŃhLMáŢ3Ľ{°©Ú—$`&‰jŇ2şi®v¤ôfsáąš0Ť®Óٍx]?qđżňŇ}.WůbA0ŐľÂĹďr± ,(„Ĺ X)Č•»@sľ!0 ËHđORŤľpU|KIŠôéŐ.>^ć·LÜë¦nľ0¦ ›Ý?WHý‰Űжp„J†ĄÇÍVü')ťM&Ł`·4Ŕ`ŚĺĺŠb9Ű0¬K,6Ů%ňB“‹FE´)]jŮć.\a™áż – ÷žfŽ®ydűfŔLJÇ!3w(ÄLIa}¬É:łqŚ×K—ît˙| Ç·:8"w¶¤`Ě5ÂąY pż!X›Ś3&\čâpËXd•Ó8=#ˇ1ěŮ&ŤsĎŁ–4ŚŕŤłŕąňĐ*ô”,zS|dC“?E„¤fˇËXŇ_Ó˰„8`iízdäÉ 5ŚhÓ2:Z•@%,š‚C^÷ćbńWeŢN_˛čž/{2 8Ě"ĹŰgÚ µŠ9¸ś%ž[FÜ؉,Pw^¬÷•x«oĐĄkc±aŁFÂBż+%gâ‘ ÷§ŠGNäfD›$®ÚŃn-ë¤×L đf`“Ë}3ę:=^ŻŐŕĂUĎTć¶ą\%Ř´Id‹°ͤ«ťxnśp¦_€¦Łü¦=G…E5iŇ$¬Iuk¤SĆn/Ě{ž€”#›5 kŃĽis×yö0ŚFuíoKˇ'8ő™F5oÖ¬ID3×™ö5˘ýÓ –ŚgĎtjłćMĂbšÄD»Î˛·xoc\†Íf0™‚7{ťŇuŰşB'ěőOÔąUZ{\Ř& ‘bbb"\¶Ł%ChžöđŮČüČłytdÓ°1nÜĚi «Óí’21CłExrń.e¨—A ç8JřĐŮŘ1 ˝!„ żů´Ą¬%) ,Ľt¬Ť°ú!;áµ"̉ÂáCU™đő"ť]Ç ¤¬Aϱđ‰“C Wž˝MLE/€i%j‰aćPF­3 –VH]›¤K„fţ°ˇ‘"QŔoÜš c±]¶TÎf%–Óžb´ęá:Ξ)©†Ă_Ó du@˛˛“FÔäB{ Zb<Í®3±ŁÉKgXBCŠ€ß&ľd âčĐ[…*¶ |q͚ـ…b9«łK‡’QH¸D¤‰PdU¦˝3Ą902>',ľj*˝jŰĽitłĆ#m¶đŃM"ÂŤÍۆ dđv'\Á‚!ĐńQÜÍš‡E†5iŮ$¬)`JaMÚ†/'ą,Ű^gŇĄe€>‡8›;ŕlOäGGFGÄ„Ŕfá‘ŃÍbZ´hŇJPü5 oH¦žMR¨L“P‹*›»J᫢”W Qv|—ťá[đ5"91ŢŚʦ§&÷€§¸ÍXŻît·žô XIŹHÇ-ô`V 7Pµ´ípř5"Ă‹dgŔŞAcřĆ SşëŰÁ•ě÷0)köëò ç"µđÔ˝-܆NXi±U.+4Ux)ÉÓ#5$™‚ŤŚjÓ\TdÖr”24uˇlá8†ň~1%% ŰD ŃF®ś§}|Ĺ…ě> OPóx[¬s6+LŘyÁ"NĚ‹0 ł`Î˵âL‹pôĆ/Ł)UÚ9@ł& §ĚV K1ҵîâD'TG›‘5Ž#wÓŮŰ­ćÔĆ™z®†ś”…§ZešazéČî'îQN'Ę4€«9Š5űÂ÷í@VĹ">EN·J< ßäř‹ŹS¬´ÇëČTč¶ ÜĎ`)†!ľqďÄČž·ťĄą‰ŻLňާ|Ú& éŘůT/%·‹T&C4±ł­•H<˛éč¨Hĺ7J=’Ý’¤‰ëĂ-.nŰq#®Éuëbž“,çßšioť=óóóN¬Ëä45âß˙‚F>1O`4nÄĽę2tš$9jÚÁj±ŮÂbAł@@áÚlpŔö3¶_iOž:Ńnµ‘‹ĺóöŚ«ú·Vť®‡--ôU‡>±/ĆuëҵźÜ BŮÖ`ëďłY¸Ó}\L1er•łęŠöE©Ń-Äx ŽŕČĽSJ‡h]¸E¬†Ĺ|FfÉšG“Ňg7 íg]^ŕ*«lYZ+3ÉĽ„EA[gRS$ŃĐV tX¤KQ§zŢŐT˙­‹çjL Ü=!›ËĹ:XŇ3­đ˛I¸ĚÉR{ĺÉňěą•§"ÝËSInďC)'g5ă,ň3ü~‘áÍĂ"eĆďDeÖ$,˘…,$.>y’Ug|7>ž§Ä“CŇďf%Ď”÷÷źĆŕÖ<¸-°Ź  —őI€6ţhŠ•MDóÍ*íSQLşÍb° :ŮËK.Ś$„Äá8GÚŽÜŚZD6‹nÖÔµá‚Xđ.:$ŃIďb…śŃ¬7ťNdQ7&&SŃ”îţPÎ/˝ÝhE’h;ŮŹq™:wO3‚„áşp+”· -¶” áĆ^˛üú›¬ĆÄ'Ĺő¤-%<-«ÉFDľe×v—Ëł6Ě˝ö+wu—\擉„˙¶ŁQî%+@gîUUeŘü3lh“$'[üÚśĹÍ!0ĚXĽ¶Š7Ř3Ňe)|Łť­H5dš)Uę&ZE§Iłf`¤6s~`ş;|˙ ť,ooE"Ľ6x+ĺěîâ·\ D›¶h ŘdL §2ôŇ™-¦4´ ź,±ŁB¤!ôś¶]IY–ç†jŃ",¦yTŚS!z ź!>†Jz73ÜŽ|ž˝˘Âš5o"ĘąžUvE™éÔČ$«~™,|̆nn2„°¦c´HA  4i:s”ŹÂŮ~Đ*ĎHnHËA€ đ8»pŞ…„¨öĐĆ/ÝŢ Â2ŕ1 Ę’0”íŐ6˙wÍHhJN  ˘6i/Án@Ęo Ĺw„[źĺN8LŇéć”Éßőťp8~µt^µMFQ™źßéVÍQŐÁsŕřĐ9<2:$żţ×DxĎ0É&>o“%Ăm,1'§ŕOôŢ |1N ť0w|ôP|¤1ĂjµÂ« ŇÓőF+ť¤‹îÚĎ »Ëj±Śa±điz]şQÜ”E×bńj h¶Tx\]Pâ˘"Ág eM9é/±Ţ2M—lLDƉđI;é}GˇŠ’ 3ĐŠt H’nĂ ‘ôšTi…›t­bCÁW!e:O°ľ–“^:[˘Ěl6A´TŇW!3Í$?g蘆ôé×_>„+Łń†_ÇHLťÓ•…yŇh:ůwľ°&ş”72,*F0×˙đ±0?ČsC%őd.˘Ą81ac6<±ÂTä©„JÍ-mń»GÂÄŔ˛{TqfhKžĽÉdń\ŕAzе·Í‹ţµs-Y˝[;Nży¸„]Váţő”ń˛B!Etî\7˘Ş>oJÎgP]V‘Ą5´37áđęňpŔ׬đmI«í”ťĎ­ŕťËMŠdfĚ^łŕç‰BËęÇZŤŁˇŚz źO€:ťq L®xëłÄfŃ–C)Ç-Y¨Ę ‰Ŕ €Mt(~Gî6ę ŚELu –Č"‚ĽÓÇ-µ.:éĆHL0/g ÷ý— s9)62nD» łN°˘2čó./)íŔů*ť¨ŹćbéB˝Ń†:JD‡hůlâR†{˝ĽÂÉÔ„Ęâ—â´č<ŮŐŤŠlŃ",* ^%ĐđĂ×»tn9±„§…{NÜDäÄ`jÁF6iţµČ«.Á'ÎŤeäÎĺć1Ďň–•ZčÂv…˝4ę”Y›CŻ •€!zÇŽV›ô„?~Öśt\şU—F˝lŁľ:=|3Š4ąYФ@·J“á x'LUë Ř’H´ô±ľct&˝x;Óź"ßä‰qňť¶ ĹÄš€| çLđ§{ĆőÉqřĄ™A=ěbiŇĹ*Ą& w¨‰™@őu73‰éŹĄ}’Ť>óMš·‡ÁjŽOK1ŁŮŘż›X;ÁK’‹9#­ŁL/¤Mŕ‹ŕ.MHh’źżŢ”dII˛k4ᕱEüA˙$ŤĐo¬đš±(šGF4‹$h…›pŞ´ŃvłÔÉŢ`UH ĺ ÉĎ _*IË DŞAđ“Őd ›@\Ž‘ŽÁď>Ăű×H±@“Ť"λc{ŇxŢ:ńÂ?|Ą9iH¸ľ"9Úҡ9ŻX ™đä+؆@ň8 iřN:ÁÓŐŚä'Ň´±â|€b*¸–%ŃĚ&‘´~1xşŚÎ Í`Ą{ŮW¸*ŤŽ´°&őM¶‘Rű!#‘,{’ ÚŽµ°I[j⚊¤ťf°Ą™ůĹé!Ç 8ÄĄłŘl ĆŃÔđžŻc‹/Ó‘ń‚Ż°Ç¸ń]w8)şŚ—M8C‡ g.p9“DŢ 7•1Z˘Q˞ʥżŢ¤Ë0Éď˘kŹx(ŕžX‰.jĐ[€4źŠ†ož‚±_zę?˘"Âmňi:˙1úU}ÔŃ:pěR¤ÖqáŁfÓbpF’ 3„HÓöqł(ćŰÇÁ8ÜN]dÍ0›)»Ň¸Ţ]R%ţ÷ŢbS“Ĺ&d;Ę#r>ľ Ĺľ×ŮÁŕ!|Ú÷lGŘ_ĎvĐ:š$íŮn8©‰ňÔHxA7Č Ä9LÚ+¨ JËß©TÚ°čÍ–Ü9ű¸;ÉŻÜŕďM¸űÂFSgî‘×á€%çńg|WýY{îfîŃńޡ]çłüń¤őűRłfóY5ţîZíĺO¸Źźr*Í2ż}ő̦ĐąĂă6}5ď,ó{­ُ}{Ă/›YŹż»ţÁ'«×âÍ“ö=ţ45’ű«ńŢÎďVčŔ˙9ęhł9G§qWßxŁäÔŰř¬Fţ©ťŹă.•Řď~©ü­Y­ÎW}¤ăď®.—q®]ţÖg'Ö{s%ůë‡Ű_řr`]ţfÝű¦Ä]^÷fĄÓáVĽů×®ʧó‡ÖőݏiÉ}ţvB_źS™˙đŮíÚ®©qŕ,ećOëVŽźËßľ6üŁh+Ďź\zîi—mQÜź7·6(UŽżsľ{ÔÖ×/p_ Ť¶ţÓ…ż÷řĂŕi]üůu«OŚ›Z!L«ąßxMŕÂ(îĆ$ď*ßzĎă÷ŐŮvtŢšüőU"ľÜy’;÷Őۆň‡Nńo~űĎË+ţ¨Ç}ňŮ!Ż›ąCÚ}ßżŔźî:;íVÜy­oÇ[Ż\]8…{t.5©bŁÜ•;Cn]á.8µsJí·ůłĂ»e/›Z‰»1¨Çů´rŮü‘>#*$ÔüĎfźVg?÷´öTꉗnó77ÔžńjČcţŔˇ†®Ţwś?żäűµď?ŕoőuˇřô0î|ĂßnÝţî˙×ő9ë^çwé“ÖŚÚÂź1űáÁłůmkţ|ÝOü~§d7<Ęźřŕőź?zĚź»;e~ĺä\–ˇ×ÚwbôTaúŘÓŇ“Ťź7ňŹŁÜ»$¤-ŕ*ĂQގ˙ÖâďĘ(~4¤ ýÝÁyŔUę ÎyĆ8›÷¤XŇ Ť,& 4&§ăm@tĽÓÖđŰ&‚ÚŔ&*6%;a„ávkf0<Ďť„EĚ–ŤµHí3lFÚo€jĂśŠÁ°/ĚĄ§p1në0ÖÄ›ÇÁwË‚mđ;>Óä1ytpPĎ^ťš ď×)ľßđžťtę ű°:[86Z¶…°“ÍŔFĘ2hP*ú cíÁA¶Ś4x%.Ľ)©qşŐh¶ Đž R®ň°<Ăaµ`%‚BŮń8¨$ —żá6°Ž ńX¶;,isÂYÖ ż##H̲˝ˇGw¶!Křs>´¨Ţ‰Á1ˇlT(Ű„ ¬Í˛0@0ľl…3l0L š˛{(d>dYü«,ËŽ Ź„‰PěŢ!t@”B@5–MĽ éÁ‘-»‡ ?Ě3vP LˇF`ß †9 ,Đ3†$‡F aI…?X1ŠDŚRŚ%FŚ&Ł©ĄqDYéI×jY,ąë"xl›¨K‡Vbá– bŘ…žF}ź ÂCÁúHfm"ĹşVx<‰‰!bÇ×CĄ#$Ă– ę,ś®ÁÇŔZÂłq‰Y%ĽË–8dLK0î“í)×02A±ěüł!Ëv: 3xVÄj1 ·­¦Ç¬m‚1qŚU—ŠSp¬ÂÔÁn5µ7ʵ[LĂu  r†°¦ˇlý)V·˦‰g˛…k$tG#6ýŚd_f“CĐ.(X›‘$y<*÷äČĂ’˛°…„BŔ Ns ’˘B¤Î®S‡íÜmPŻN-B«Ő`ŻţH˘»:\°™͇ě¦Ěpڧ€§`4‘!¬Ś§°mÚÂŤ`ęĚú†¬. Z6ca> łJ‡G€ŠÄ ę%x ĎM„ݢ˘'*Řđî$Â" "1µÇxČ›UĐŘ?‰:hHW)ĎĚ€`°’ĘbLµ0& Ü”@÷zmBůŘ$ť$Św˘Ť±dô¬É*śF€WÓ˘čđ‚ »ž Ę(X˘™-vÖŤ/Ťö6^éb´sR·ŮQw ^ěĎ2,;z4 ťhMősEP]ĹS]0 ě uŁ z(H Z´® lĂÚ„ 'ÁJ…aŞ?„ŰŐ‡×Ó‡[őĐ8PśWÄq_Že cÓA{7€e”)ŘI+HFS‰ÎŽc¶v˘?‡´ť@s ;Üńv}8ŰÉj…¦|čĄ0P$ŚŁ•3Ž`á˛ŕDCş=ůÄ„7!á1čGd”»b@šsř‹ o!ˇ ŘbÜR¬Ă_“đ ĆŐ\,FgbX”sXGŞíLmo)¬žsJřl#k‹ę)fŁĆ«ĄHR1r]U‘ŁZišDAŔ)n|ţ©*PhěG…<'ă ˙Ě㸊˘ÇD~Ś«h\ŚŹĆU¤sX.ă*ź‡UÓ< «Čč¦0Md„'ĂJ3!Dł›Éĺv˙ sŞŮ2Ćě(Ť7‡Ń…hČa˙pI—Á^íŽ×i)‘_ľžh)/W)š‡Ç)§ôÄAě­\T§5^!•żB…A獠W°ă·°:˘a°Pe ř*¤‡}đoî‹a …âňĂţĹe0§)©žŕ÷ŁÂK`řĆqűW ű×”A82\¤'ř‹)ä_“ /IŐŻ– †2HkBÂkcX—žf-G…;B/Ż<ŢĂ0ËSAw`ĘĂIů*RéĂeÖż’B˙…Sé«áßd xKíéŰ–.űÇ·ŁW ®s…ô^ ĂŇ8}ë×ű—Ą i§şTx9 +3ŇřŞ\ě_…‚$=lă– éIůPáU)HęŚŰúWǰUŘĆMŇü ©đš6 ĘßAýéŤó"”ޱ& é ţ0*<ĂŚD°Ż#°K ’ńŃŘEz‚?B!˙–TxŞ~­(HđÇ(´/ťľ©B˙´˘Âaé˙Ö$ř[Qám1ěBµ/ôÓb˙®$íËářňô$-ŢŤ‚d|´®öďNARľö.ŇüňďN…wˇę×Ă>8˙˛¸.$Ľ/ ˙€¸z(„ü=¨ôĄÂ{3ÎôM‡÷Áż oHűýrrße¤9BÂ_`űCŤß‹Ř?‚¤)¤¤Bz’˙‹Txq Ë0Ňř ÜPě_–‚„q‘žŕJ…—§ L?¸ Î1ţ¸müÇůľ°ŁÇţĹ)Hę—\ŞBz’żž /AAҿК"I!ś¤O˘Ň—¤ źÉ ů—¤Ň§âúŕpÉř‡ ٰż/†¸Żţ\†Bz‚N;R?xŽÜ¦NŇŰđÓá¸üĹin˘Ë?¸qŘßCşü™ŔMTHOđŹŁÂI>d|C|pŚĽ¬NŇż¬€źźËĂ $ĺź Ü«Řß—‘h” po+¤'ř_ĄÂ(HđOî5ěO;"ŹLî-…ô˙kTx üŻ÷¦B8I˙¦~:ü-…úŃáoăö#˛ ˇq’˙ ŕŢĂţ$é?ë]ŕľUHOđżG…ÓŽĐ˙Lŕ>Ŕ~%(Hč˙}ŕ*¤'ř? ÂKRŚŻűH!ś¤˙J_Š‚„˙͢ÂËPŕź Ü' á˙'Tú˛$řçQáĺ)HđĎî …p‚˙ *} ţµ@ˇý*Pé2ÎýG‡‹ÇG F’miúZ Üěď‹!M_ß·_!=Áż„ 'ůţýż¸ĺŘżÉřXÜ^…ô˙r*Ľ4†ĺ)ü+€[‰ý+Pŕ˙¸Ť é ţ•TxE ’öYÜě_™‚„?¬nBz‚ ^•‚d|¬nťB8IżŽJ_Ť‚d|¬W(?ť~Bý«Qá©ö­NA2ľy*ü ’öŮ Ü/Řż&Iúm.Ň“üˇÂY ’öů¸] á$ý.*}m ’öŮÍ8ŹŻÚTz&ßtř~L?Dv„Đ—Ş˙ŕţŔţţ’ůŇĎQŕ.(¤'ř˙ Â1Äô!ŚďcŔťŔ~Ą)HĆ÷qŕÎ)¤'řOPáe(Hʸ?±Y ’ö;ĺ"=Á˙§Bţe©đs ő§Ă/ŕö-ÍHkgş}/wűűcH·/ÔýÜWHOđ_ĄÂ©6$í{ ¸Řźv¤}ŻwW!=Á /CARţ›Ŕea˙˛$í{ËEz‚?K!şýî*ÔźżŹŰ· '”ď/ŕa_ iţ˙7€5Ňüʍp’˝>x ÜĆqnĄ×˙€ź5ŇüO¨đ$üę sÂIúĽN‚ţ%)óo‰€NŹqÜ>^’zÓ}„ů›—†*ťçÓŠřK(„űPéËbHÍo^¸  âöó˛śWe…ô ^‘‚¤~ /ĽH»T˘ ©_ é ţ’Tx ü L^ĺrG‚xü{•s‘žŕ/ŻP?j~abűUŁ Á_Ea|Qó sßtxML?DwC ©_ŕęa_ )úńŞ ÜB…ô=*<€‚x|CިgĄĂIzćŐű—  –O„1DÂKQŚŘF]±i ËQő8B±_y ÂôChĠـňô¤|ˇTx ’ú…®N҇Sé+Rć? €Ć ůÓă„yuĆţ•)Óò7ˇÂ«RÔ?¸fڤç¦őݰţM먞äߌ ŻNA‚ż9p-± úká"=Áß’ ‚¤}ŰÇ)„“ô•ľ&IűjęGíŔ0±ýjQĐ_'…ńE§ďL…—˘Ň“đ®Ôř­MAŇÝ€Ĺ8Ňťľ;/ŹĂ!$ól˙žŔőĆţ%(Hč§pé é ţŢTx) ú‚qĚŘż4#ŃÉ?¸8ěO;2ľú÷˘Bz’^‚¤˙ăë§NŇ÷ŁŇW¤ é˙ţ ůÓôÂĽLŘż2I˙ ¦Â«RÔÖq#íHę?¸‘ éIţèđę$ř_nöŻAAB_Ă]¤'řGPá/P´Ż8B8Io Ňפ iß$…úŃô1’jżZ$ô•Ş0ľčô&*Ľ•ž„›©ń[›‚¤˙,ŔÍaÇ?ť>]FňđQ8}!M6ŕ2ǵ;Mvŕf+¤'ř3¨đR$ô7¸Ź°iFšcHţc€Ëdi¦ż±ŔMRHOňϤÂiGĆÇ8ŕĆ+„“ôă©ô)HĆÇË ůÓôÂĽ>Ŕţ•)Húo2^•‚¤ţS€›Šý«QÔ˙Uŕf*¤'ůOĄÂ«SŕźÜëŘż ý˝ć"=Á˙:ţIűľ Ü; á$ý;Túš$í;]ˇ~4ý̤گ ý˝Ż0ľčôPᥨô$ü#jüÖ¦ éżYŔ}Í8Ž:ýlL_ĺ\„ĎÁé+âp˘#"당ŔÍĂţ%)HčçŕľTHOđĎŁÂKQô˙§Ŕ}ŽýKS´ßg.Ňüź+ä_š ˙ׯś‹pć ËĂbůľ2#íťSúsŻĹŔ-Áţ$Ą?÷ú¸?ŇüK¨pbÁOř\Ű-î(ă8wţŰNÓ8L×Ë©đŠ$í»‚ '®.Ő˙+[ŤýëQäż ¸C éIýVSáő1lHá_Ü:ěß‚˙Zŕö*¤'ř×QáˇFQř×÷#öʦ Áż¸- é ţ©đ&$ý˙p± Iűţě"=ÁżQ!˙*| Uż¦$üq+Ţ ĂÖ¸|pí· oCA׎;©đ¶$üóWŕv)„“ňí˘Ňs$őß­Đ•~/5>´$é÷)Ś/-•ţ5~‹+„U ?:üLßUÉv†¦ďŔťÂţ$Mß'FS]!=ÁŠ /Ž!Mß‚đjŘż<Éř4ƇqÔ­”“ƇĐś¦¸Bz‚߇ 'kG2?‚ňkŹÓzW¤ î?Ťź‹ôżżBţ”ü ĂÄúU˘ –/5%Ú—N_Rˇ*Qáeq˙CăMA«Ă Ý“p’ľ2ĹŠ+„W“ń7yxuĚ?k0’m Őľ5á©0ěď‡!á/ ľ ‹jş)¤'řY*Ľ#­ŃÉř´¬©Ă8®(ý·&¸. é ţ:TxE Éúˇ|” ŻIA<jęQáµ0 aDţŁq‚±C bţŁiŕ"=)_0—ďFZ?Á´aTx ’ň…SáıTű5.űצ iżŕÚ+¤'勤Â0$ő‡ĺ‹˘ÂR”/š o„!¶ß…ň‡ČJš…p’ •ľ1Iű6ĄÂI=›SĺkI…·  )_+*Ľ%†m¨ňYKÓF!ś”Ż •ľ- i«Đľ”|ĂÄţă(HŇwŤoNŇw‘Ń—<Ľ¦_bŰ !Mż=ëŤýý0¤é·păŇü˝©đbŚd@ĆŚÓű—¤ ±ŔŤUHOđ÷ĄÂKQ”?¸~Řż !ţ‰ ,8“Bz‚żNtÓôüѸؿńú\3¸! é ţTx «Qř7qä=5(ü/—Şžŕ¬?>„JO;ŇţC3bżZ$ăÎa/)„ü L“ýkS”8^ĂzTýG—€ýP†±¬Ń—¬žäź@ᯥžHĄˇ É_\öoHABŞ}čô…ż–Bx2•ľ&…ź„©ţiDAÂßFRăżśBúT…ńM‡›¨ôaâő±ŔÓ©đ&$üqaSŞý¬Ŕٱ3 ’öłąHOĘgW ˙fTřXţC‡ŹĂü­‡ćoPFzűűaHó7Č#–)¤'ř_ˇÂ‹aHó·IŔMÁţ%)Hčk2pKŇüS¨đR$ĺ¸iŘż  › Ü é ţiT8ŮŁůŰkŔ˝ý+QĐďëŔ˝Łžŕ Ż‚!ÍßŢîmF’}$řßnľBz‚˙m…üéđw¨ô4 ’öźÜgŘźv„żÍî]…p‚„i>Ä~µ)HĘ˙^CšżÍîě߀‚$ýűŔÍQHOň˙€Â_K!üC*}†Ť¨ü?n6öŁ áŻł€›§žŕźMᯥ>‡Jß‚$˙ŹűűGPđ‡ąT˙Đé ţO(üµÂçQékRřIřgÔř¤ ᯟSôWN!ý|ú˘Ăż ŇGcHäKČ_ż¦Â[Rđ×…Tx+ ‰~¶ß7Ŕ}‡ýŰP´ß·.Ň“ň}§Ŕhůu‰˙ŁĂ—aţĘâp)ű<ÍŔ­ÂţţýäŻ+ۤžŕ_E…bHŮkV·ű—˘ ˇď5ŔmTHOđŻĄÂKcX†*˙:ŕ6`˙˛$í»ŢEz‚Bţ´~bŁBýéđM¸}kăđÚ˛öÝ Ü/ŘßCş}··_!=Á˙ !ÝľŰۉýKQ´ďŕö*¤'řwRáĄ1¤Ű÷Wŕvc˙˛$í»ËEz‚·BţtűíU¨?ľ·o‡P‹Ëu‡pxa*ü(Ż‹ĂëĘŇÇáőp8„í©đS8Ľ>‡°~‡7`¤łŹÝ©đó8<‘ÎNŇňÍ%ŕ®`? iůć2p÷Ň“öąB…Ă–o®wű—¤ ×€»ŁžŕżN…—Â7€»…ýËRŚŹ›.Ňü·ň§ű˙ŽBýéđ{¸}CéŚ(ÝľűűűaH·ď_ ™ŻBz‚˙o*Ľ†tű>îě_’‚¤}ôŢ é ţ¨đR–¦Ęőż9Řż Iű>u‘žŕĎQČźjćT:Ü·oCŢб}˝Aw ö÷Ăj_o§w9…ô ^ CJč]śA·¨A˙ Äíë ÚŇ»ŚBz‚ż$^‘‚¸ýŕu Né)ý. s*?^·O#Ţ‘ö§`ů@\ďĘŘßź‚¤ü@V÷Ö*¤'ř+Sá$˛żŰČÜŢŐ° ±|ä]ŐEz‚ż^Ă’~ “yłŘż ţZ.Ňü,^ò~ŔŹ˝ëc˙r$řëąHOđ×§Â+0Ň5–߼RáU)ĺ7ďFTxu kSýËŽý(HúČâŢ­Ň“ň…Sáu0l‡ń:đ˛°w$öoOAR˙é ţH*Ľ#†=©ökvďfŘżÉřoę"=ÁßLˇ~˝¨đVTűő¦ ÁßZa|÷¦Ňk1ý„âpÉú¶/(“wgě_š‚¤ý;7O!=Áß™ /!=ţş× ű—Ł i˙®.ŇüÝpx'”ÔŐ;ű—Ą )?Ä1[!=ÁK…—ĂŚO8~úŹý(HĘç"=ÁŹĂĂq8„-)ü€Śý[QŕŃEz‚0oŚĂËđN‡ý[Qŕá"=ÁŻĂá8˝ăű‰ńB”âŃż˝„’(8ÇřţíÉ5‰ťúR_Ĺz÷ďĺ€ŢŹbV~'yÖ g§Îý†·‹ŹďÖĄ·BdM·ÎÎTŃyĘô_kçĽDyćJ{ťO§žńär{·]ëę·‡>˝zuęÝ/_2T)žwńĎĐ2>n=n˝B€U>Lć^{OĆB“śű>GM>ĹË•x şľůŔ{öYëM5ˇ7”bynÍüžą´HŻT%ĺe˘˘'†)ϨŤň”G~»‹‚xĐŤT󻢶ô¨-‹ÚµŕŰőßžTó©RBç•"uč׫]Ďxç‚ý;˘ÎżŃ”Ľ0.ČŮüY:ZjýËčü™¸Ý%ös´üďť"rŚ2ˇ0‰ąŇ†‡ťśž‚(š‡kĹ˙ü˙íŐĹDO"y$‰ĺ:R%ĘĄń\Hš>qy¤ű<1 V)ą ŠB˝v{ž»>ĎlŃXůďdĐB]8™ţ:? uµ˙_Îâü[ú'ő‘ @V*0YÜE”‚jä¬zQĽ|Ź÷/ŽžYeP4ź§xjǡ‹µ¸SlÁ(„“…xŰ­™ř§W0ţÁ±‡^šw\ÎůzUţz+^äO?ôP=ńnCJ ź­—§‘#+&>7Ś=4­ĂdQ4Ć$y©ýĐ[÷®*ăes‰,0>Óžl°ĚŁ]Ą.${Ý:÷–Č5 Pg 7g€–5&ćZh—Ř| &›DŠt‰Ŕuŕăᆱöŕ ôƨqśŃśÜXx>µťfŃtA$/ˇ†ĂW´]  82Ķ•ź<ú`3ŘĂmńimçŠFäÖ|^Ý]öźWsWMmv=€"ĺ9Љz»Î”Á«ˇ«ś\5˝O 5×]Ź€Wćĺ2¤‰Çc1Ăe‘üŇtv«q¬«růZÍkšËR»n¨hŹËę„Ěi|yŚĚ{lx¤ËŞćR—Ţą!§2‰*đLĽ’]fám5¤»Ě@ÎĽZćÚĽá5»J-áÍ;‹ĚtYGçz4”Ť&5Ż!ą¦&÷h$'g$É.+ť;z—•n$ó Ć¬3yVY'‘ż•ͽǕU !µ•vb ů[éÜŃçąŇůĹÄÉĆž–Nä#g HĘ0'Â÷ÝĺzŤ•gT*Q—nϰÂ-öô —b€Ż A¸ őÇď™»¬źS¶.§?˝1Ůh…""U:Sť“ô[ÓůŘA«ä˝É4‰‰ňDˇÇkŚK|>ÉnXj™ ÎƱ=kHJ2$Úm-]ŠW ™»ŞŐi¨“bŠ3‚( >ŮîryŕAöN´!LČ­Ŕ\ĎךĐŮH˛V‹ÉUáŠYŇíĆ4ă8¸ ĄxŮÇXué.[ÖDč`·šäi}LF›Ëq0Ön1 ×%8 OźHCXSWC: )/©<ך4×íçŰĎ%5Št:QBĎG sU”«0'öíL®Ť˛xŮšäÜęîÔĆň˙DÇÁCš\tąTškQďůh_OfŕÂÝމ‰n95:ł®´Ľd⦧Ýgĺi&mëÔa;wÔ«SK6ŃbµL:8ٰ–$6‰ž XažßF3h=ŕEłÝ”ޱ´Xş%±Á‘!¬L[Á¶iĂFFD° uf}CV—d7XYk†Ů ý:“ fP[¬TqX®ţmˇ¬Í’f°§ŔÁXÄš,:=ÇB JÁ‚µ=Ôp!lbŠÎśl śL+`±YX¨A˙PeÂPečŠÚXťŐŔš-1Ho%ŐÄx^đ $”ĹŚ6ˇll’Îh"™u‘ĆX2LzÖdL5°v ČŘjG‘AR68«Aů·1T9dggm@¶aŤö6ÖjO?9ŇyvwCK’śzť”ą3‘ŃŁ]g2:ŃâR•‡ń«±ąV|·l6ĐţÝĚI—üĘĄćɦmđ €NR‹Xiç ±¬NA>IF“áţ6a¤¸¤ŔZApś„aůs8ü0Aµâđzúp«^çrúwR@zľ„-a›F÷pè ťKáD\ÎË —š ŹĹ –úë|šÎn`ăíúp¶“Őj±˛vv´Î”ap!¸ @k˘!Ý‚ĐÄ„7!#ÂcĐŹČ(7ŔLĂ:üE†·0d1n1D9bh!aŔŘŁš»Ź\Ő ęŕČfQÓvĘ­iË M Ç¢ş‰ #„E„GD’Š»ŤkŐBHŇ$:ď fʆ^nĽ+×)KRË=#µ‰š‘EŹłg©Ń¸ ®1š‘ÚÔó‘Ý&‰ŚP1RťVT a«ŢĹbĽGN×Ym†Ž:;Ľłć)r5â”fM„SE˘%ťÚţŘK!Aď˘X I"nÍĚ!¦×#ó1ö÷ŁRČ5#čt6+EśD} B9Óčby°žß)Âe3äď©cýĹ^đ2mxHs­ßĎńë´Ő­ďÜ1ůwˇ\W_¸łŤżńqËźÓ.µĺłłŹ?č7w’¶ÁĄ îˇeß˙ńĐŘJmďÓߏš}^°gü7ßTĐh+üTvüš)/iĂôË›xaжŘúĎ÷Ü˝V۸ę4ż÷űvçOôëĐčÂÉŻµušö żžŁ­Z|Ţľ™ZŻÖ»^»0ôMm‰ „”÷Ń2Ă• âJsçż/_căś}Úş}W6ę˛ N[yľiňšąµµĺŞ/=`ßň@ë?é̢ćk´ŢK—Ô?đú·ÜÝ;AW"·ňŰËv­Ńćţ4­˙÷›Ů%·›kkµ›»÷ÉÖlm±ě^q56®×e˝˘ĄÉîüÉ_ĎtŽÔ–M Wj‹¶ńÜĹŁüs\[łd0;ľŮ;Úr·üĐ×—ű{ŻaV÷k+E¶Ó›˝ŽpwZÜYąaăGüս̛™Ł-}mđŮ“7†h˝?ýrüW Ú¨€9_˝;*@[÷BŮŢă´%ű͉>Úč=m…=ŻöhÍwÚ ]Gm˛BµUë-šYvÔzmąďÚĹ}á—ČeoŢţÝŹż ÔgíŻwóĂQü•äŇf˙_Őö›dűÖîéË Cv5®¤őŞ27Őv°†¶Vę°ŁgžnŮT,$±ß‰oh«˝±7unb÷`k•¶­§Üŕ´®{=tB[mĺ?®•»9r—ÓrĐĘŔ–eř}ˇCżĘNݤ­wŐë§z{JqČ/iSuÄÚŻrg^1fŕý9Üíá}Vůb?©FŹ–eőü˝éëJöźT‹űćĆƇkÜăoôĹĺĄAŰřłĂF|xl2âÇ!QźoYĆ_Ř9vkc]îr»·vľ˝0»cnĺóčú.‹ßQ…ë8?1ˇîôĎę„sw÷Uľ˙hŮm~˙™˝-›,_ÉýĂľôdjâ îěí/~mÖhň‘qţĚčŹůkó«v9äÇßYÔéĚÖîqüíß®RĄ6˙·Ż6ţ˙wgrhvĚ?ˇÜµůµ{nÍ˙Vµz—}2¸ý&Řo'˙Gő‹ë‚ugµŢŻ_ [˝şŐ–ęŰňFcţű*—26ŻÍíÓÄnj?¸w~çÂŕăňŰ«Ľv1˛S—M^»ŢiY~r'ţ^ł­kżlż‡;rdń Y—ů×>÷ökůËţVŐ=ť~˙t(˙ó Ö5cďó×*´h÷xJ·W3ař7C:ń~‹ţŰŇow4őĂŘěÉźr{w˙Óßčßś[ľfýÍ*=§q|úăŇ-{ëpűƶJ{&›ż°můÎľ•đ'˙Q¶{ďGÜEíÇS.ĺ¸ŰźÎÜţ¤k·%ąÚěGĹ‚řŤőŞNŻ~ł"łńw9őXĆ?d›«¬ţ”ż:yó…N ‰Ü˝2ë­o­,Á]YťřúË3ľâ÷T­ôÖ­żÖó'"*Ź}˝XGţřľ™WB{–á˛.Ç>é¸ôC~˙ÂAç˙:ń wŻĘ7ŤţŃ»°bĆ„]Nr÷~}üéw#ýöÖ„A—őÜäş»[ îžÉߨzqä•0î|…黊5ťÂmüz߆Ę[îóJ×ń]·8{ŘcĂÄ—śă~‹}őýJßFpYç—WŢúčwŐçÉô ·:ňWN ţzĐŃ—ůók"ĆĽ±ü{î›cĂçľttś8ďT*mXôfKîś}ÜťäWnđ÷&Ü}aŁ©3÷Čëp@Ť’óř3ľ«ţ¬=w3÷čxďĐ®óYţxŇú}©Yłů¬w­öň'ÜÇO¦|?t/7/hâ—eç6çťóďÂ]›Çeź 9•fĚßľzfShŹÁÜáq›>‰šwž;˝čÇS/ď;Âm^Ľ¦Ô´ÓřŤĆ™Ď÷ă~íµvçń-·řŰU‡˝ŢÉëmţęĘMŢ||ď¬o»d÷w×RÍľ 0r–ů˝ÖŤQÜľ˝áŹÍ¬Çß]˙ŕ“ŐëńćIűšÉýŐxoçw+tŕ˙u´ŮśŁÓ¸«oĽQręm|V#˙ÔÎÇq—JěwżÔ@ţÖ¬Vç«>ŇńwW—Ë8×®ëł뽹’üőĂí/|9°.łnŹ}Ó‹â.Ż{łR‰éżp+Ţük×ÇÓůCëúWÜ´ä>;ˇŻĎ©Ěřěvm×Ô8p–ż2ó§u+ÇĎĺo_ţQ´•çO.=÷´Ë¶(îĎ›[”*Çß9ß=jëë¸‡Ż…F[˙éÂß{üađ´.ţüşŐ'ĆM­¦ŐÜoĽ&pawc’w•o˝çńűęl;şbQMţúŞ_î<ÉťűęmCůC§ř7żýçĺÔăŹ>ůě׉ÍܡAmŚľď_ŕOwťťv+îĽÖ·ă­W®.śÂ=:—šT±Ń îĘťÁ!·.Äp—śÚ9ĄöŰ€tË^6µwcPŹóiĺ˛ů#}FTH¨ůźÍ>92¬Î~îií©>/Ýćon¨=ăŐÇüC/ ]˝ď8~É÷kßŔßę=ęBńé`<6üíÖíďđŤXźł®áu~—>iͨŤ!üąó·<›жćĎ÷×ýÄ˙ŕwzAvĂŁü‰^˙)đŁÇüą»SćWN>Čez­}'` S¤QĚGŤ˘“C´ˇ¬2hă‹dąĐ–ş`)/J’žp´ÎjÔ% 6TúXŠ V)é Š®Cńö2y…¬/č?~N—“ú ^˘ď$˛˘#‹„<ÔÚAąĺ&š\Ş,(ܤK0JÇܱ86±ĹŞ7XqŤČŞĘKŞ­ÔäF˘x`¤wg䑬`a1Ű ÎqśÔ*¸sÝ-q§[ zĐďyďrŞ˝ô:»®IgłÁ‘َ{Éßń`ЇźŞÇąSŃJ‘ę… 6#TŇ Hm‹ =\–ÉIi±VťYoIs_jU¤YîçY–jJéTŻĐN‹ô: Ą‹u± „#ŻÓÔ/^ół!4+ň©!ÖŁ‚a'RúzamK,S4ďĺçNšź`{C83Q{‹ĆŠâiŃÂ^<Ç$‚ň"±^ÍČŹć®ô\IşD»Ĺ*uv%y Âý'’ ťé¤0M4Ăy— Gu8Ą‚¦YŠë,ťźÉ2FtJ1’JŹÉÉfd2a …Úr䲞ę®ÉĂż^¬ÄŠó_sW"?]ýZŁŮhŽ˙–¨ČĽµßźsčş˙›ÜÓ?Ăß8őY=m™Ş“/˙´8Š7‹Ä+˘k-ç¬.»śŰ±±b‰é­ţć“WG„Dk8-“8#čjŹ$îv‹źĘv\Č]ž8ţöĽŹ»rßęńơăWřě†oÍ.=„ۡŰ}úĐGůăn6,6c˙×Đ=câź6ä7ymý:p@_ö}륛SůĂW'šŹ˙q¬Řgöî’ÂŻ>ŮĘöéăźäÚ$˝at˘%-]Ú•ŃŔbją¸°µŞ¶×ÖnŢúÎ÷Íiů—ÚyxomdăwoÝž’¨ww†żüŠĐ–ţ ´VÍ˝%ěCä›»8˛ôÎɸ»)Łg<Ú´JÖkdŻÂǤď%v–>nůđc-Ö|2l¶Q$R:ŕ«·Ú2Č៸N˝ÄÚzqŻŇßfLNÓ‰!Ĺ„O!*R“-;8Jz1dJ“F.CŹ YmJHűř‡h”NJdN#?˝F‰~â ß ›!žLú~VC?Ibń±Ąw6(ÔѧKĎ^˝ČďŢđ·3=RňNs÷ŃÓ¨˝2ió =ÝQ‹Ëŕ7í| —‡ăŁQ€lgdăíŹw;üťHr pb ř¤˛–¸’ޤË0ŮŰÍzŁ9ą39˘¬3ö‡&´=®ś·c®¸ĚŔ„ÖĆ—¤~—Âż‹ÓÓŁČ ÂĂÚâŇ8 +żËbXŽÂQžÄ-ăźb“8…x‘č´™‚¬¸Ĺťfb™L ˛…†ŚŚ*ü=•÷ń w}<裏ĺsRđwÓÇ$şÇ},ë_eOĐ– šn«H(D&–ßż]Co0%0ąLŠh„UĎq3°ĽcíVC«¸a, Ě:S:‰R(ÇW *ü™Ç”hYˇEśB[Ă)Ř[JEŮ1ĺipů‚ĽŰĄŮá‘ęćcd^ůÉđĘ/HDůü‚D”Ď/Ĺůbůa'ĎGeŁ’ů!_(ťĐq¦JÇ™ôeĐźwśn @\AgĐłFФÚ@ž m jW“AϢ1či$řś+|¦>• ź­ gĐ“RQ zŢ>‘VK“I𹯶Ŕiôt|ţ>÷Ů•AĎhCÁÚ“Ä´(S<śŕł”C{ ¸ŔAF y:´)€O>ŽFĆŔşBʆj2řś"śWŕţÜs†›Ů“€›|Şđ5ŕ iÜ[Ŕ˝Ü ŕŢî}ŕ>nps€› |šď3F n¸r™Ck!Ë0D«áµH®…,ă´ęt^~:ŻCť¤Î+Sç%ŞóZ•Z´J«Wćă8Ó—Ó‚Áj5č‡ŰŔL,ŘĎŕo Ă%+UX"$ČQ”‚«%°ţn4Űm†Q.0”ÄĐ,Ť†&EfsLŇŕoŃ6¦ťO⊧Ů@%ßx#UŚŹ7TĹo˛±Jâă V1o´ŠßxĂUüĆŻâ7Ů€%řČF,ů&˛äoĚJřđ- ǵb8ٰ%ádă–|ă \1>ŢČżń†®řŤ7vĹoĽÁ+~“Ť^±üxĂ—|ăŤ_1>Ů&áx#X ÇÂä›l ‹áxXü&ĹŮ0&ßxăXŚŹ7É7ŮH–úo(“ôxcY ÇĚâ7Ţhżń†łÔžxă™ŕĂĐb8Ů&ádCZŚŹ7¦É7Ů &ßdŁZ¬?Ú°–ĆÚ¸żÉ6‰O6˛É7ŮĐ&ßxc[JŹ6¸ĹoĽŃ-~ă o©żđĆ7ÁG6ŔÉ7Ţăă qiĽŁŤqń›l“ôxŁ\˙xĂ\Ěoś“o˛.†ŁŤt1=ŮP'áxc] 'ě$śl´“oĽá.Ć'ď$ślŔ“o˛/ÖoČ“oĽ1/âĂôâ7٨'ńĹ {˛•FŢT”÷‹é“;ô˘śN"ľ •¤\a˘ŮęnBTŠËÇ˝™BąqX˙µf~-Iä8•ŰĆ)Č—N“'ť#j­–ć0ľ¤ÓÂĺMYŇh6ÚŤ:“qśA\C6vÚ‘"ˇň ±@TčÂ#1t6L°ÓG@ «!©—Đ­ˇU¨ýîd4 ßv®Ă !°ţ] űëb’Ę4ÉqĄŞ— ăQĄŮ…G•Łp°]Á׿§.-AŻS ňÁ:äiIŚ3”úÝ—ÂNvÉŐ©ę§ #)I}7ËkuE¬P¬†acü»1ţn®k Ś Â`ü;·PŤµ%Ća8ţŽż[ŞĆÚ c‚0˙Žfħ‘UbmŤ1AŘ˙nż[«ĆJcŠÂżŁđwŐXŰbL6Áż›ŕď¶Ş±r„őđďzř›SŤU‹1ieXµČ©ÄÚc‚°>ţ]·SŤµ=ĆWą}đď>ڏňU‰µĆ×ÍÝńďîŘżłj¬]0¦®Ôď.ŘuUŤµUľ®TÝźJ¬=0¦ž˛čüTbí…1ő–ŤÝ^ČO%VşßăńďxüÝG5ÖXŚ©/ăH±ČO%Ö8Ş|4Ö8ä§k?کꬷú!§kŚ j‡Śř·űPŤőEŚ Bz6|9•XG`LŇłáäTbŐaLŇű9”>Mľ’“a:¨€é &zŃč Ů!d‡Ô";L![Fűąż•Š?„öSnsÍb)ľ×*ş ]ÄßKĹ_ť{|JŃ>Ę9Ł ĄÖGĐŤIf ukĂLŞvÝäµţ2Ũ»t‡sO§NĄűú-­fŕ˝V ţ~f㨠ËţňęˇÔ7Ę}JmĚĹ ¦6ť]‘Ý ę÷‹Ž¤Ą9.ĎçOŇŕđŘ˙=$\á+E5,ă!Ž\›ˇż¸?©˛N(7ˇÜÓŕ8/ŃŐp]t͸Ą»ňîPŃm;”» ­˛ź­Ű”qäÚměž­NŞh†“ĘÍ@Ů3Ť^E4Ă3ŽŢS*Fď)çjŠŁ×©ř®ŠîK잡đşČĚe<µ…őÁV%ĎPÖÓ*út~44,{Ćł•ýŚŠ˛źqSö\XĄĚxĆrÖĂ"ĆS]Ňţvĺ’’©ž°ąĹŽ9‰Vň˘(çJňŚw˝†ődÉčŕ6áR-zGB¨Çßf5Üd0;– îţ^ĆQ—)ˇÖ$›ęŁhĄżj5q?`îaĄw}zÚ©6לÇíĄcÍ9…ńçÔk~=ui‹ćrN.9jQw&ČFU®Acě6—yk®ąľń(Ö\••ÂŁ6s¤G ‡¬ =D´ůtŇ­ś0Ĺ>ďĆ•ĐpÍAVČS8 Łbł8…PâJž¶śP7t×M¦‰b/É7% cGi~§Âźąk°Ą s€ĂęX¨“äÍüUsúA˛tsJŠďXÎţEŤEŤ…ӢɖE†ŚE†Śč±BÔěĂL׋EÍ~Wq‹l‹l‹l‹l‹lÉwá˛M”ÉŞpą#ls#´ě†nSĆ$ňKVľ˝mܧáÚ€Ş|­ĎO\ĺ¶÷}»ĆŤŤľÚ€š5'VŇűĆëŹGqťŃÔŢÚÚëëźř^žTůř‚C ýĐ ţĂîđ‹:lěßoßemŔ ?,•Ď-nĽiç´őÚ€·ľoş”[Őx絪ĄżÓT?ĂTŘ·ăC-©×—ż4Ž}Ż×ě7¸G‡>şcî¶ť»÷˸Ő1ľ µŢz•®X˛żgÍĂf\é¤-ţwIÍšřőüíźvÝdµVłŕŤc˝_źÉźcŞ|u¶{oîÁÚ·ćÄâÖ}ôýŰËĆj˝?‹5oĆQîčä^oý|Ô¦Ő°?ďšż¨/wyżĎ¤nĄrOŇ?»›ş.߰뵏ۥTĺ˙đć·ŤŕŻZ—ö«Čť_'mßôÜŮ­ÖśzŔŰú”ţnôöżř‡Łü—mą•;YjŇ#żGřÓ~XőÉ…öÜąłn¶QÖž*í„™‚ł>Ě ĂŔ?´ň«‡áaä§Ú:j“$ť§w ĂLŁ)M}VmU;݆´˝éäTb=Š1AŘ‘‘,Ź"W¶:¤‹F˛ŐQÓE±Ň±jŰFečŔdŃł’đn쌶 zŹmČ:î?u"ÄH0ä$^şílNyÚ§Ä{wŠĽ˛đźˇĐü–źś’: ďäúČ˝űů,·@ř |šđË2Ú^cs:˝°°Ô¦Ş%Ţ©\gÍSmĎǵü‡¶ţ^ŰůĄůŹş¬Óö=qé·ŕµ^Úf_4˙íăZ{´]â-i);Kl*9vŐéî6đ}ődŁŘ^Ąřśî/í‰z?QۣΫ?éYBUďÁ™´ťZl·*`6˘ö?Ë~žĽ@«3čžľM}mH­:ű<ýK*),ĄV-o®)tĽj˘ ?ţqäÍłź:Ţś+†Ř#(A}ĎRÍ.ˇ˝†qřwţž­ëŚ BúPÂä € “ľ`‰ «é e&ÜĚ>Ćh^c4Y’×…÷Í:łňcčŤv…Ů)“Á–šÉŠ÷hĺĘšŃwbÍŠíŤÜĘQŘިÂHôÝjô˝hôťfô}dDO«Ńi¸’úş,•Éŕ%řŽŇŚ¤Ę†Ăş"#ŞłŐ·eÔ·;‘Ô”U\í =/ţ˙ŽšˇZeŮ‹¶Ĺ˘m±˘m±˘m19_-¤[PŢwŘFÚř…ŐWřeüŔe­úłÝínÜ/ő)zú—5bĚâzä®u<˛8xl8—iyo˙çăů3k'­yĽóo.{čÜ{CŁňYb—Ťţú—őđŁĎţěÂ-¨4ú»¸¤ \v™~ź…ďČoß;éÖEć.»ţâţNŕŹw<ÇĽzŕ—]seë]Ĺęó‡ľú îŻ\vxjüî‹;řÓi noNĺůp馣íľŕÎ~Ô¬LĘýźą¬ÇŠ]őwýĎW¶ß뱉Ë2W¸35`wĹ«´˝4÷ Ŕgz'¶Ć!ţĐÎqS«ž˙ËęŢŐŢá2ËÝĽ˙á´ßqŮĺ'ű¦%őŕw|óÖÚ_{s·ž®ů¶ś»ßá|Ú÷ĆpYß|9öĄŢ܉ Ęoźł4á˛Ů¶z/ŞĹľňóř KąěV?TOxťżP{Hßy¦m\v?ß5ßźMço´čŢnőŇ4.»ç’QKđWwś8÷ââŐ\vú•öýú]äď\űńăFÇt üˇ‡&ý2›»ţ¸^ňČ’]ą¬i/ő«}ĺwˇ¶ÎĐ"p—]zÝ7ÓfNŕÉąÓgi…\ÖŃďÓo¦ľĂýşŮX5D÷—]í#Síěßř-{śŇl'wë“>[ż?Ě=y#ÝçńĎý¸ě~ű«ś:ÂźoëgNß7ôox—č‘gůŻŰ¶±nÉÚÉeg4s+%p;cjú«˝‘ËújôŹŰËvćN]‹űqĚ[{¸ěâ۵yz–ß´ę›ůµ«/ç˛ç_­‘łűţŃĄ§^—ç.ಇTčńY»ţÖűżL ęÎeíŠ)á˝k·Č·cźôŻÁeĺü3»çň~rµţm¶Ż™Éew}óÄő#üĄ-ľĄĆF‚ňřĎ»_5‰_“ęŰiăÂj\vK{ŰĚřďůókç¦ÇĹÍŕ˛NÔëűW–?·cÔťĹGŁqŮI&‡ü¸ŹżÝ¦Ýű;7Ôá˛~ žzóô n˙Şý¸e—@}´Ă ăűp;»÷ůli .ëŢąWČqßuşŢjQÔ\Öă9Őąl_núwiY-.oă˛ţ¸W"č‹ÜÎË©óŁg€ń–đS…Ű?ń§“Óąi^5AůNuřkż¶Ě˛7ľhĎe}ş«dÖž2Ü™˛I»~\˙;—őR;ţÚ€űܵŹŽß|ň»:6éÁ_ą®/vé…0~ÓŻń/ňkv˝÷ćŁOsŮí^=•~ę©,ż*ćG.;yĂŁ ßOŕo'Ţ\߮嫠ż$—KÄźďzjżqăn.«Ë?[ÇÔăn ěÓč•'繬Ö?»Ęť[:8´ćv@ŻĄ4y§Ý~ţ—¶şß˘şŢă˝BÎĺČ5üˇ-ZżĘ´á˛_řvô↓ŕufîÝăø¬4]Ű;Q{ą+5ď…9tŚ˙¶s*W«ÁďZ®Ý¸ú•@~«.–Ď<ĂÝJě9ěOĐżYóű…ýZí#ît÷Éă^Ř[‹Ëj—ňhkűC\–eT@ç%Ń\vŰŁšĎ¬Ě_dfĚ{őW.ëIČ÷1!‹ąĚ§w{ŢµŻŠmčĆeť*—úĺáoąí!GŇ˝vÔgÔO?ŹŰÉ]©sÖ~q?—ő΢ěwŹçÎ]{łĆΖ§¸ěfKÚ5}PŤ?·»Ô߉.»Ń?~»GlŕOýžr·*óŕOź”l6óEnA€¦ňťň« H6dVć’Ć6nş5:LXčVčđ \•Ă –^ˇŹB~´B‡Ř#(A}ŹR˝–†‚B5 “ńďdümUŤŐ†1A‰Gâo[¬ĐI_0Ś´BWÓĘ+ôžV=Ăj¶ ‹q˝Á ÖâzËł^g7čĺ«r6 ľ‰â w܇á—×XáŃG¸˛·1®—ídPÇQ'Ľí ‰‚©=‘\˙Ó?T¸ňŽĎş‰ĘTçgÝi8·gÝhÖŇĹťŇĎŁ‹\$®SxË â'ëGŢňňËGŢâ#Ë5‚‚Ô÷ŞąŔJQ>„´öo%r*±®ÂÖ0âSŽ‚[…üTb]‹±@X‘|k‘+ŽEza$ŽĄ¦‡]čiŽE.zeÓ-Â)ˇ¬Ől0¬:»ŃśĚ“Xł!>:Ś@wÚŢP:eë4 4˛N Ł`ő˝Ju'©EXCŘ˙WH'‘AĆ`čĄf9t’¬eÉĐĂęT ;ü ć.Ü\Im°ťukŠgŽçu{í!ž/†â‰5ĺ†p6Cä}kMs6)śł‹Q/;üqÖîsböNmŻâ—O{]ÝHü7Őh”}ĺ›´Od]ŰĽP?ż÷;˙lĂÂŽ}‘7ăd_äŢ”P%Ś{eľůňćČ“Śă|y ů©›/}Čnµ'ć 0§h FSßÇTłşă b8Ň—GN%Ö„ôµN'+Jú…a¤YNMż(Ďra+É8·ˇ× ČKÇ‚nłŇE©\GhXIđ.FF0eďŕ™*;•$…ź.)td5“ҧ2˛š‹ü h‰ ±GP0‚úž«zĐ‚:„Cđď!řűŐXçaLŇ÷ÂÍC®H‰ôĂH¤¤¦/”II›ë&´´âE+`ĎwŁKJ»ŃÂhW^Ů"ĺ¸Ű“­‚=ł˘ÄRčO¶jnć§Ŕ"w;‡¸>Ë*%P!±ě$K¶|żĄÁ˝^ôřůxŃŕEo€˙·o€;­ôc‡•ľĂWO•ËýBxpÁČ µ´uˇ×%FäW@ë=‚‚Ô·Qő ÚěTĂ0Ž‘Ôă#‘S‰5cJĹe¬†a*r°.!}Á0ŇşDM_x ČN̰Z `E2ZgĘ0¨6ŽűJ‡¨ĄČźn_xŔ· =ŻęÓ_ós5Bż™ ŞĂMryX’Ŕş÷PҸ0.X™Ň†`abk‹ÄĘV0ŽlmňËG¶ć+Ë5‚‚Ô÷"Ő h1pU[ ëÁ«b¸ů©Äşc‚°ţÝ /UŤuĆakü»5ţ^¦ërŚ Â¶řw[ü˝Ľ@X07 #±`5ăĆ;תS~NĽ´!šVÎnbćá*fęî·+â ŹŃ­łäN8rýŞt•*ş×“\l)ÝŃF.×C÷G’űÉ݆ŇÉŽ· şŞcńś›ÁŢOz¦:ŤË]úr˘r9ęĎđ-s†kąa¨ŕˇŁ˝ĽíĐ;ÎFđ‘qu'ŁÄÇ‹ —śĚ Î8•qä’“‘ßż°×sЦ`4ő=Y5żÂ 1 Ânřw7ü=E5ÖW1&飪Ż"W\ô ĂH\HMż( ‚áŽöT‰đËhâ`^7{ÄĂQ ďZy¶ßŁüp1Ü6‚şŃ2\Öµ–sV—]ÎíŘX±ÄôVóÉ«#B˘5ś–IśtµGw»ĹOe;.ä.O{ŢÇ]ą‡oőxăĐń+|vĂ·f—ÂíĐí>}臣üq7›±‡˙kčž1ńOň›Ľ¶~¸¬_ö}륛SůĂW'šŹ˙qŹż:9qfď.)üę“­lź>ţ éjwçéj‹`a€EşÚ"]m‘®¶HW[¤«•ëjż×$"dB˙[üĎĎÉ ůxcń¦xp7h0šhH·‡uĂŘđHégŞŕRAoŚkqdĄbi¶äřDťÉ0‘lŐ±®íLnd<·Ş6oM~ŞÚ(3š6ú)÷XźĘĺşqësŰ9š¬üěé^©<ô őHď;ě–hĐ«ĘýÍŔ“ ÖBÜ/{ň›hđ‹łNAbS8 •DíMc0g¬đĽ8öż–Ç‹ŕ˙oÇ5·ŚŤ×甡{űä7ăôµ϶T’<ͶŚČÚO¸ťqű?Ď3îťüžqűçyĆíź÷WrüÝ'ĂlKT©e’:-űg ҬÁ8jŮ?C~db±GP0‚úţLµüsé˝!L`¤Ç[?GN%Öů„ôýcór9J~kÖI_0ڤYWÓĘšő.ĐŠF°4ÓłŁuVŁÎśhK´ź,Ú®#*6‹*w4ćťTî2ń©u‚¸"ăp¸”“ŰáŽXŹ(YŹö.NÎG ´ębŁŇł $ž“;eß<ˇp9ŻĺËgoŘk•ČP,G‚ɍʸ>řĘ0ZŇĆZhŕźĐ`ýÔqćŤ~z –PÔO1$Fó1F4 ÂÖ'Ň9Áa±Ś#Ů… _śV8ń‡‰¶2¬ˇ&Ę;ČŻ!©uŮ<׺0VŐ‡ł,…jévĚ˝ ÝRĆ7ä’çó@©ýśîúwósŰMňł› áš]2éđŘpŤN“·ÎBÚ@ŞłÎ¸ë¬˙Nó™}ők>}ČÎTOťÎ­§žŰžzŽ/«ö!ƬTOýé–ţw–»ůŇUĎąĺ.|8Ňů˘XÜqâEť^’źĂE“Śčźűľ8}\rćL ÝB˙ŮŰžů2ĞϷ=Ńüę#ëţknąö¦ëĚ—ůőůŐu:X©ˇžrÜ%'8î.w˝čőź ĎJŰťź=č{PÁßő‘p/Â}Č®)Ed§Üu϶Aś/=ô|nŁnobr§°“ątá€ç–Ć®çP ÉçGÄ}čK<čŔnYäóŰ};ó›Eć­óĽTvÝ‹<á–ľţ«˝|éˇçuGĎ˝g÷ż°9çv5ňź=9/Ăëů|rőËÍ<0đăn9ÄtőQľôŕsző¬6Ľ\óÜŐÝvP¬Kî¸ÁXX{ Ý#šź˝«ČĆeŰ­N]ëÄĘŹş ™ Rěű°Ű•˙f™/őĽšG˘žą÷ż1é^q7ŔČ^ďs<ńŢËĎAF˝–ÇÉ×Ď!Y‡šâsvĎßP;än¨ýÇoçËX»•źcí?xůŰiä1Ť`¸Ě@D*!u€—ëAŁ0ŮŢdÝ`6ăhCxůÁřył[##Lj¤uöäĐ>Ě4š‚ŃÔ÷ÍĽFÄz‹A†Ň4ßBN%Ö,Ś Â¶řw[üť•W¬ňŘŠ¦…¤‹F2-TŐEĘ4ŁQĘö·ł:łžŔ&Y-iě`ô5ͰÁ÷±c ĆäqA2 ÔäPś€:źďHўø(†2Ś3¨$+*}ˇŁŞ«’n0ŽTuů©§*?Šo»%%S c¨ď«Şý5<Đ!ě‡÷Ăß×Tc˝Ž1AŘ˙)‘~ˇIIUż(’R LJěVzúčÚäŽ6_X’0-ô¬Ő`3ę3t&wvąe/–†˝˝ ßř> 4Zdsť4Ě"ň ¬tDQč¨đ"¦Ľ+Ś#^D~ę¨0WĘŘ#(A}_TM#—0]@އăďKޱ^Ć l…·Âß— „ňH_0ŚDyŞúB‘ňĘcĘC#R >ęćŔÜ.krXĽř9ŰĽ;Ź?NŁŽrÄÔ…ŽhÎ2čÝÜ ¸X Ď"ż"˝QßgUďsxHź“Í9äTb=Ź1AŘ˙nŠżĎŃľ ‰FU_äŃ”–Ť‡ôRÂáB´g™nČťj…ŤrN1hŠ9Ă8N7§_>,ĄĹĚ:“=SŠă–Ş`Î9ęű”ęń˙'óvŔż;ŕď?Uc=Ť1A‹ÇâďÓBU¤źF˘*Uý¤HUÁ„ŞBٸÁŞŠ„Uýíˇ@6DË,ŃÜôăÄFNvŢ ĺG/«DĹ Ąyš•ŁŽ®ţ?ĽE©čµ¨ü!žBýZ”ćoeŞˇGŠŹCµWIA>¶QÖB(ËĆ„ó‡Ś#żc˘!0šú>¬z¸ÁCÂÖřwkü}D5ÖŁ„ô5śG‘+""ýB‘Ş~Q$˘Ú¶Q:0đX“ÁślO‡Ś¶¤¶!K¶ˇç¶J‘F¤Í`ďO‡¨[‘Ô…Ž”öcň9$#ĄýČ/„;ďŃ:x?ż'TµSŃÔ÷~Őă˙ó¶ÁżŰŕďޱÄ ¤'ĽČU‘.b‰ŞTu‘"U!Š^8®µeŤf2 ţ˘NFą]<‰=jó®ŕµe<µBéď7QŘ>Ć‘Ú~C~Ş© µ¦'$ö&)Ł©ďßTĂď ¤IěwäTbÝ‹1AH“Ř^ä €ÄHż0ŚDbŞúE%‰9Ď\.I,÷gBÝ“źÍbm诎ÂHâBG`ż2¨ö0Žö+ňSG`ąÄAÁęűWŐĂňÂżáď]ޱîĆ ŚÁżcđ÷î!*Ň #•ŞľP$Ş6ÂP–OîI‹µM™l0<6Ęmč ™Ć5˝‰ďJ±î‘:ĐW­ŽŞpÚBGTż`BÚÉ8Ő/ČŻ€ęLDFPßż¨ţŰń‡°ţÝ oWŤuĆ!ýďä €¨H_0ŚDTŞúB‘¨˘< *˘*¨íËE8,é@Iڧ„d°Vą‹Ó:BÚŚ‰găHH›‘_>,¶Š ¶÷¶¬Ć3yfÝ‚‚-¨ďÍŞéa ¦Łé~˛-ȩĺc‚¶§ŘŠ\Pé(šĘTu”"•U1šmvťÉÄš cĐr6@^ě`j«Ö -ˇ!ž› ř‚; źREfRňBGi?3ş61Ž”ö3ňSMič©%O ćCÁęűgŐ$°{›áßÍđ÷FŐXyŚ ÂîřwwüÍa‘~a‰°Tő‹"aŐ „Ą“H _H?·C”OsÜčHzb˵®#QMGíĄa ­gíüÄ8ŇŃzä§žŽţô”ŽÖcş!0†ú^ŻzÄoŔ٦Śdë°9•XÄ ¤éčGä €ŽHż0ŚDGŞúE‘ŽŞ» Ł%2’’ŃŻŐµ§néqC^*Ww›VJďi:–Ds…‰¦~Ŕt´Žq¤©_>.§|dąFP0‚úţAő_‰G9„qŚô‚đJäTb]…1­Á¸UČO%Öµ „5đďř{mP'éa†‘¨SUçţ.19ŃȦ[ŕy9k(k5$̫ΠtŤI€‚ 6›ÎšÉ(žé&źč4 J#ë¤0 †Qß«TwŇjŕjbŘ˙WH'‘AĆ`čĄf9t’¬e ěŽauě!ă}$ŚÄą÷Pâ…Ś ¶÷˙í­a× °č­aë2¦č­a5o kžP~`żçöUaqą“ËëÁâɧ\ŢMů”ŢvX&Çâd¬ÎŞňl”†BÇ×2—}Ç8ňµ…ČOýbÉcł$S4Ł©ď…Ş)üÍŚĆ2’ ë7Č©Äú-Ć!­Íűąŕ¤_FâŞúEQ‹Á†±‚N\¸ž”µ[ĐŮ(¤ÜËŰ#ÁĺÉHvôĎfĹd2š!J•v$uˇŁĽ ˘¶ŻGĘ[€üţĘ[€)ŤŔhę{jůÓ„=ńďžřűKŐXżÂ ě‚wÁß_ĺ‘~a‰ňTő‹"ĺE }AÚ´©AgeÓÁH4"*ËŐ‰fâ`WAqŢľj n˙ĽČăŮ0ÄÁ˝Čó?ő"Ź·_ăLRÔdŐN%éřšôq˘ íĚĹôň)ăH;s‘_ŃÎ\L+FPßsUŹňOđȆpţ=˘ë<Ś BÚzbr@;¤/hÚQŐдٵŹ1&âÉČ’Ěę!!¤Í:łťP‹Ţ2Ć …Eh:a¶Ř)“Á–š‰§('˘Ń<Ę…h´j瓾g!¤™YN>–ŃĚ,äW@43 ÓÔ÷,ŐŁ{6ŃĆ1’Š|6r*±ÎÁ ¤ç›9ČÍľ iFU_(+łsĄT‰ř*r0i‘~aiŇRŐ/Š“V¸ăއ2“őL×çíĄ4WáoŹz^*$‚t…Ž–&`ú™Ä8ŇŇä÷/ĐŇL;FSßTŹú‰x¤CŘ˙îż'ŞĆú Ć!}4ţä €–Hż0ŚDKŞúE‘–šČÎĂ[̬ĹjL6B›A ‘G=^12g#1ż¸AzŁ.YĺA)ś¸Đ]{™q$¶LäW@+,=‚‚Ôw¦jR‡‡?„đďř{śj¬ă1&éRă‘+#}Á0©ę EkE› ÁA)ÜBA‚BRKä¶Ę’ЊǤČHw·ö’H&nQE ) 9e`Ë8’Sň+ rĘŔäC`őťˇzŕŹĆ}´ÂďŃŞ±ŽÁ ŚÂżŁđ÷!'Ň #‘“ŞľP$§!49ÍŁ P9á5‰çŞTOSQşÁš–a×Á‡ČmÍ„pcÝOިűIĺşžóLăT‡‹şźzĆşźR1NO9×M§Ne–•÷Ďg,ŻüZ­\ăĺ±|§ź±|§U´çéghĎ3ĎXŢ3*Ę{ĆMysăSgź±Ľg]ŕw/Źĺ;ç˘|d®%|i±#~Ż Ř_”Ää4NÍáçĺqß…$Í ĺßeů€0ŻË(ŚČVBĽKŽĺÂůrŮbľtY1žGĎpÓ(µ‘™.Se!ő:D·Ą‹vľB§WŔ{Ő͸ćď5ý7ĆKĄó¨ iBÂ!+CÇv†§J<żâ źÓRÖĂ˙g範bb5wqü[#kŢRřwqY“A÷űĂ1TśĆ8x়,­«e[őŰś#á!~Jg©*`XQŢuT~©t™ä7ÝLµęŮŕ=űf‹ťŐ±BwÁËŤí)Ŕ/źWÂÉÇŃŢFÄËđ[8“4 u™¬JÍ5AÖ\¤™ťšŤĘç›<Ť<»U—čjč?ydSţž!6#5›źňť×,¶›Ůf°ÚYˇZ¬Ţ‘ś o ”,C ‰FĐ}zeβý€·Îšśn×Y (¦. řŰÄ”Ćŕ6)Ăś(Řś€îO×%¦ę’ lP‚Îf¸’ŚV›]ÄČÚR,&xÚ6„hńŽ!*ĽU'ăׇ˛Ł2,Đ& ä ĆZx` *ź^o„™ęL"b4ěP·aufÄ–‘žn‚µď׿ś‰ł4›2Caˇ-V˝Á*\ĺ#´‘ŽéX|É"ÜŐLiH´łÁ†đäđP6Čl‚ 8EgDă߀#ÚHRąđ|&Ëč8ČËŕž+‹á»Ô ď‹GŔ{xp“0CFL Ým€O6ŘÇ­óŐ[NQ ĎčOʡαĘił…T›%IbóU^ßi·đ´˝­ęn> sO_Ş=ĘSá_ç8úU ÂśÎébE•5öć䥍ݝ¬Îm‡˝ L[Ç© bź}öá>bŤY¦!?Őű슇¸ťöÉýd%á(ČQßÓTk°_cÖÂPü;ż¦ëë„ôžůëČ©ÄúĆa[FÚŰ}9•XßÂ>`o!~ ů©Äú!Ć!m8ô!r°3@F(ĂH;ŞF¨šk<=ćŻtŤŔ<\˛OsĐ÷grö‚ă)]đy."®Ëëčđ¬HŰŰá čKÁľÔ÷[ŞËŰ şů} ‰{ůŔ`!ťa¤Űó<Ř奠î\p{áůt?X‡úž®şGf„aü» ţžˇë»Ó{ zr>Ăw‘źJ¬31&cńďXü=ł@F§ †^jĆ©+Vó?|“ô›OăSđ.â_P8p™4¤Lď˸ň*î—4ÇĹů Eś–ěç9Ôsf‡˝"|Ď••úĎ΋ĐW,Qg2Ĺg¤»4[.4rµ¨÷ “ÇëŤV¸öµ°Á•˘X°ţ dx@Pg2ę[˛dq+"‘"¸žÍQFʼn–´t0¶LvŚŃž‚Ď~ÚsŐcRJ»Î Ř›”ů8yA±˙ře:CĚoăÜ‹ÚĘë Ł÷ ô†$ŁYěp˛gćŁŐb†Š\羥YťË>”†.@˙…GQ̉ąÝMîN¤F·cÍeTév*ĄV·c§Pˇ‘&şXą6`kIń¸)«ĚMYÂN‘eť‘áÎíŕ‘Ä…T™žűÜąΑĺ…(Žseq팇ć4•ś¦ňđ±uÂËâ8Ć’ź/ăĺ]ům•ĎÓ2› §Śńf ÁąMžŢąš”ÝU.0 \ńń–$źí”(°CěěV ý©ßDdŘN üg+=ÁB0Â$;q‰‰đň+-–WÄ%…{˝ S¸rŘOkCר$ŢöĆC˙)îű–rÍl`&łu3ë cĄ2írÓŠ»©ßr;kş% ŢŁDzŇhShwĄ%ŰoTl§1ç˛ÔŁÓ—§sŃ#żËĆ ôŰKZ·ć>:öŰýJ1ÚXEé¶tĽ0d:ŤµĚ6Ađlě–WĂD‹8@\w¸XmzĽ) ždw@);YĎ:07 ź˛đçź}ćĆBź}ňwĎxµNĂ·3ŢkAH?˙[L÷˙´ôĽr>jüq˝"®—‡e_H›ó‘ń} ÷sß‹0‡«)ÜđOŹłQ]ĺc‘áń– Ř"îYř¸gń"±Ń5eţE ˝…śÓn¬‡,’‹äĆçŽóѸďýg‚cÁđ=Ç_Ąň+‰7ň…©Üdm0ˇbkđˇ_˝7_ĺ—ŻŻ\lł7ĎŤ`~D™/´“`v^LŰdËf- _ĘB_ţq‹l†úÖFň˙áWź>pÇßÚ'çn‹ßż$Îß;9›“Î}YuzŁÄ¬ü»ÂŮ_gV¨}ćb N(˝A'(t&ąw3DÖk{÷ěŰoxç~}zŹëÔ®C×N[˛}@G§ǡlvKz:4â3$ę2lVh}«ÁŤóHO°ÁşËhC;Fgc­]bŠA.ő—őT7pMÎţýđb%Vś˙š»ůéę×Í–U$€Ś' *…ÁJ'Ńb¶[-&B$zŐ8š ř*…h†f­3IŚÂfÓ%H‹ŹŃYÍ€˝tŢ0¦kzńMhíeŃ{F.N$ŁI‹’{MŽô[Xpű Ć!ŹŁ­UG`´Śź;Fë;Ƹ >ë/ĽŢaL,.ëýě\–)ťź\6pYÜNaR[8ůŇi<ć°>BÝ+P ŤX:-ĆČed YÍ:“đ«bRoŔO ÉäŻH™ĹÍŔŰČĎ ähIJ˛DFfeµăđi•>ÇŚÉ)v›c_ ŻLB[qťző”hŞ2(E<řŠ§Ë ź)-Î`Kw)˙g¶1~îÖřĎĹV·Ć'•~f‘ó_µ‰ń¸Ô˙źVéĎçęÔÝĘ´0ŰÂ<#ÝZ›´|Ń®©¦ĎÜö4ţ=ÝŢ˙2§Č7}žŘĎ®ĘSľ˝ĄH™çV™—§É˝°íţ>#ý76,0[¸vWž©ůc Y40…m2(˛„üŻg}+űg˙a Č˙'3A‘lÎVv\džYÄŠó¦ůxľÍ2zŻ@,2ź?ĂĎ"¶Ě6¶\d÷é84=˛űĚOÎ\F>` 9gţ_¶÷,’’‹ŘńËŽ‹ŚQ˙S1ąŚ|¸€Ş_î–J‚—|Ą0}+!yÁš¤ćmFÉŁIŞć\ŽÉ:d%Ĺş5GĹ)b“C'đ·Ó)޲\C%Hśk÷Ľć*bí`U ;ŁßÂočTb퉱B†±†ˇočň†U[é)±/F…Tő…ňɡVę˝d¶fĐÇ Śú ť‰µe¤Á» lŁ2t’9!čËN×&Šn»8QâbAî¸hH÷ܲ±:ůÉĆ[$/|Ěß1U¬%&Ƹŕ\%áŰFťÉ8ÎKŘ›óyŽS˛«ŕ€¤Íđ ‚±Á‡Íę8‚ALę#ýˇ_>26Y®‘$NČuj4”^Äň`SôBčýTb} c…° ĆÚ}C§ëpŚÂfk3ô ]°KŇĂ #>2§Ş‡h?SÍT§ü üĂ` ëcČbXĂ ëbčGÓˇ g…üeřX7éWĘŇWs ydĺ-đ-¸č%V‰E°ţE…šîDh‹˙ÜJ µňSJđRlŚĽ1AOÔůSôWô÷ßţQ2k 8.+1N˛l4Ż=Éé^­bó*Ú:ík˝ńŰţ®Úb5˛¸:mýšößktĹÝż5ëCvÎ Ú°·~ş:űڶLĄé'ň‰Üݸß'¶ë^[“íşłćý`mŮ×é?ëŁ-qĹľpž•Ő†ÍXĺôŞ®Ú˛9×Çô*§-őó®ŮÇëejëOŹ;˛ćçŁÚâ%'ÎČžŮR[źąÖďçřuÚęÖwîŤ|‹»P®Á«/ÜŮĆßř¸ĺĎi—ÚňŮŮÇô›;IŰŕŇ÷‡ŤĐ˛ď˙xhl%‹¶÷éďGÍ>Ż Ř3ţ›o*h´~*;~Í”—´aúĺÍ?Ľ0E[lýç{î^«m\ušßű}»ó'úuhtáä×Ú:Mű…_OŤŃVH->ď@ßL­Wë]Ż]ú¦¶DPBĘűʇh™áŤĘqĄąóߗݱqÎ>mÝľ+uY§­<ß4yÍÜÚÚrŐ—°oy őźtfQóŹ5ZďĄKęxý[îîť +‘[ůíe»ÖhsšÖ˙űÍě’Ű͵µÚÍÝűdk¶¶Xvݏ×k˛^ŃżŇäwţäŻg:GjË&Ě+µEŰxîâŃţ9®­Y2ßěmąŰ ~čëËý˝×0«űʵ•"ŰéÍ^G¸;-î¬Ü°ń#ţę‚Ţ ćÍĚŃ–ľ6řěÉC´Ţź~9~Ä«mTŔśŻŢ ­{ˇlďŔŔqÚ’ýćDmôž¶Âž×?{´ć;m…®Ł6YLˇÚŞőÍ,;j˝¶ÜwíâľđKä˛7o˙îÇßjłö×»ůá(ţJrił˙ŹŻjűM˛ż}k ÷ôĺ„!»WŇzU™›j;XC[+uŘŃ3O·l*’Řďĉ7´ŐŢŘ›:71{°µJŰÖSnđZ×˝:ˇ­¶ň×ĘÝąËi9he`Ë2üľĐˇ_e§nŇÖ»ęőS˝=%¤1YŽIrDŐÍuus][źçeq˝‚X[U-‹­j—ű9ŚŻÇËâ@iE«J­'¤^{±Ü:¸8#ĽľëUAʤ ˇ?ôS·†1éTśÖÄ%d% qB Š«^gBZ«Ša8ú !ü†N%Ö’+„ 0Öč:•XKa¬ŇŠÉRČ©ÄZc--kŇČ©ÄZc…°>ĆZ}C§kYڵ€í1ÖöČú©ÄZc­`;ڵň‡~*±VÄXˇ¤ŃcíüˇźJ¬•1Ö*vÂX;!č§kUڵš +öS‰µ:Ć aSڵ)ú†®t8„;1ڤňVĂť\NXô»âÓt”Ąź‚Ůš@Ą÷Uďęý¶ex‚Ň*> Y>S|đĆ–nH4& z礽h´Řo§Ů+Tw(•¶››"“|kzĐäts “7+]e´hU(ÝupŠ—čş)`'uaóXy۲.đ»ë%µž§ĺ­˙Śĺ­Ż˘ĽőĘ;śÄ‡Sý«uzĆ:©¨CBFäŇ&¤Ľuź±ĽuU”·î3”׏«S¨ýtQ9^RSŽ[¦*dţ"•rüĎ!#Ş”ë»]f“‹ZžŰev*<_–Ůb‹äi™í*ŹćňŽG‰íâ|»›çv^’CĂ š»a€ŻâQwĘ1P5?Ç€?řf"§ ±)ś‚|¨$ôëÜn{_ęťęîzÇ[´2pęÇK¨ mŐČĎň$´SěJ.y°·”JE»ë"ŻĚç—†ägçř€ÎÉTđwĂ;˝Hüâ¤QClqşcX]·‡ÂB­ş’Ž-ŞŠ`ˇ€ŚHĚKÝÍ;Ĺŕ›ďńđ˝XŐ;eąM=e% > `Đ 4qś żĽó'Ý‹+ /ł‹vsi˛˘]ĆĽc-Ĺí2í2í2í2:JŞTÚ˘]Ƣ]Fĺ-Úe,Úeüov%—«0č#“ŕ#%(Ă€śĘ k 4$¶Fż!„ßĐ©Ä:c$Ă:9•X_ÄX!l€±6@ßĐŔäJVK #isT­–”ŽaUŁü–)Ś`ĹIS#?ĄLQËf˘jь׋QůbŮH<Ć9żŮJş[‡TAÂĂ"HtčŔ“Rs{Ťŕ”™ť^ëć~‡ďOoډĺŻÔţ÷§AŮüŢ?ƛ껓ˮ]aŐůşűříµíc÷·™Ď˝“_>–ážľ}˙Ăĺ9üŐ±›bý}‚ą‡ówÔ Ţś{2őű•×>śĂźů.ĽćîöeřkĄc~ćgÔŕů>wÎלÍđwľ^ťŢbĎ~_ăN·Ż břěđ^e_;d⮞Ş[ótçÇüŻßڏBËť°>Ţ1Í^†»Ýĺŕ’U­ÖńYÝC¦˝ž’Îe9ÉöÂܶOĘ˝]%ua÷°%őcąkÇľ¸bż©BYăďhů3†_Vl Öň§{˙|hőŘܡ7ŰiÜA[iBŹ—:ŤoŻ­°ş¶Źaâ!­W•˛•ç4šŞ ÉÚ<%A·Z[ˇbŮVőíjËÍßăýµĎ$mýÝw~zů±Ż¶\Dč—ŻýxD[Š~jĎ…cµµ&˛Í·4+ĆďhtÇâ{’żÔ¸ů‚Łßâţöń•‡Sµő~~üCŰĂWµAŻżdÚ÷ÎmÝ[Ç^NlĄőź˛kâýéť´•űOhüWřMmŁź_:[şŰHmŕ†3—Ň×·ŇF”Î^~´ęenŮÁĂť§ž,Ł z?‹hřž¶řŻĹ}˙ř-RëwysŹĺ=ÍZ˙SŐżÜ{pw˰úi‰'qOSŤ–µu®W˙Ó˝Ú ż ÓĽ -{îóčŔ¶M´>“ŢmݸS-.ű…7†žý­•ÖďÝ+»ÇµÂýÔ}ŕ"[ŮMÚ2oí]X-y‰¶f­ŁA{6ŻänŻ/m*ĎlÔÖďXíƆ»2wŔMűʵĺŢś»ÎëlimčźŐJŹ©uY[űó‡íꦩ-—Ţ8ĽÚˇeÜΕ‹j†Őޤ­UwďĆîj™˛%ú}őđ%ţĚů˛ăú®Ň–ěÖwćŕá˝´Ąl˙fÚ­DmÄOÚ5ź>w+űěĂZÚJK6Ľ—2âiţ±ůúm™ŢO>j˛C«­ZgŃĎ!ĂL ßţţtßh.§Â¸F˙ŘĄ ŢŢç"“Îź˙í—ű_şŞ č÷Ö?ˢYîčŠk;˙hU{Řű^ý'OiYżËO~xuŃ&˙łeKfÔ[ ­öůGo·ió¶šąĄęé^-nÖÖ±\¨6îóÝŽĂł€8šwséý3ř‡Ň^'rŢ®yĎlOŕ¬čçb–óO˛XÓ2Lx+éiŁ™‰¦ ™~¨…•×çßšy~NOMŽ‚•f…{J‚3ÂűÔ ·fˇÂT›ăPöďr¤oxňŘ `E§°ŠNaŠSXÂ8ä—´©:bíŚWą3/Ě3đţîöđ>+Ž|±źżTŁG˲ú ţŢôu%űOŞĹ}scbĂĂ5îńż7úâňŇ müŮá#><6™?ńă¨Ď·,ă/컵ż±.wąÝ[;ß^ÁÝ1·ňyt}—Ĺď¨ÂuśŔźPwúguÂą»ű*ß´ě6ż˙ĚŢ–M–Żäţa_z25qwööż6k4‚?ůČ8fôÇüµůU;Äňăď,ętfk÷8ţv‰oW©R›˙ŰW˙€Ź»394;ćźPîÚüÚ=7Źć«Z˝ËŚ>Üţě·“˙ŁúĹuÁşłZďׯ…­^]‹żjKőmyŁ1˙}•K›WŤćöib7µÜŹ;żsađńůíU^»Ů©Ë&Ż]ď´,?ąŻŮÖµ_¶ßĂą?˛x…¬Ëükź{űµüe«ęžNż:”˙yáëš±÷ůkZ´{<%ŚŰ«™0ü›!ťřżE˙mé·;šúalöäOą˝»˙éoôoÎ-_łţf•žÓ¸>ýqé–˝u¸}c[%Ś=“Í_ض|gßĘ řŤ“˙(Ű˝÷#î˘öă)ŽrÜíOgnŇ5€Ű’\möŁbAüĆzU§WżY‘żŮř»śżz,ă2ÍUVĘ_ťĽůB§„Dî^™őÖ·V–஬N|ýĺ_ń{ŞVzëÖ_ëů•Çľ^¬#|ßĚ+ˇ=ËpY—cźt\ú!żá óťř…»Wĺ›Ć˙čŔ]X1c®'ą{ż>ţÁô»‘ż~{k ËznrÝÝ­wĎäoDT˝8ňJwľÂô]ĹšNá6~˝oCĺ-÷ůĄëř®[Ä=ě±aâKÎqżĹľú~Ąo#¸¬óË+o}tŹ»ęódú„[ů+'=ččËüů5cŢXţ=÷ͱás_::N‡w*•6,zł%wÎ>îNň+7ř{îľ°ŃÔ™{äu8 FÉyüßUÖž»™{tĽwh×ů,«‘jçÁă¸KĄö»_j kV«óUéř»«Ëeśk×€żőىőŢ\IţúáöľX—żY·ÇľéĹq—×˝Y©Äô_¸oţµëŔăéüˇuý+nZrźżťĐ×çTć?|v»¶kj8Ë_™ůÓş•ăçň·Ż ˙(ÚĘó'—ž{Úe[÷gÄÍ­ J•ăďśďµőő ÜĂ×BŁ­˙táď=ţ0xZ~Ýęă¦VÓjî7^¸0Š»1ɻʷŢóř}u¶]±¨&}Ő€/wžäÎ}ő¶ˇüˇSü›ßţóňŠ?ęńGź|vČëÄfîĐ 6Fß÷/đ§»ÎN»w^ëŰńÖ+WNáťKMŞŘčwĺÎŕ[b¸KNíśRűmŔ?şe/›Z‰»1¨Çů´rŮü‘>#*$ÔüĎfźVg?÷´öTꉗnó77ÔžńjČcţŔˇ†®Ţwś?żäűµď?ŕoőuˇřt0ţvëöwřżF¬ĎY×đ:żKź´fÔĆţÜůŰžÍ?h[óçűë~âđ;˝ »áQţÄŻ˙řŃcţÜÝ)ó+'ä˛ ˝Öľ0‹/±Ô267§ńĐy{č|ŰHŻ‚ŇŔzj»ŚśôKEźďµŐRÇÄ~łş˝6ö“U›k|ĐHm­VíĹŘăÚţc[uůárÂ+B?ř/ĐŽš¶Ş-§Hľąě¶śů`:Wű¤ą"ëü@Qó¦ďI†¸ŻI7| {sńď ›m‰”Nřę­¶Ś4K8›‚‡›Ţ0šp`›19M'†>Ą7ąEá*;ČZŕ]¬Uđ($ăźÁaŇh“jS‚ ĺŢ䇙üH'%2§‘ź^ŁD?{ ©I†ÍO„?«ˇź$®řŘŇ;ęčÓĄgŻ^äwořŰ™Ş‰üăť(ćîŁ7¦I}š_e1ŘjQ¸_`ýpT4Άhv¸=‚·XťÎ†řĄéěVăXŞŮg=Ňëaźáhf'ž/GC(ř‹ÍŕâE˘çéZja Fó«Č°×čhŹf—ŰîôÜvßîüîľAyë>=oÇ!5{Č !Ą!K4Q y^ü©zý–ëZčćè|Ž˘nüťšގšŤÓ“ađoţ&2żďżü›Čü˙ňoa± \ńů7†`_—ú——fĐĐ-ű/˙.Ç !§ÂżüÚ"C“©Ę˙îoHŰ{ =eŹđÇ;{Ĺpź”Će…é  ­µk2衰dŚË2či„ŕ˘dÍÝ‚AćllńˇÝxWŕŕă ˝q~ý€Úih:ď6<ÜŤÁŚŔ™€łů4·…sîxŕ&7¸©Ŕ˝Ü[ŔMî=ŕ>np7¸Ď[Ü×Ŕ} Übŕ–·¸UŔ­np?· ¸­ŔmîWŕö·¸ŔîŕN÷'pg»Üeŕ®w“x"lÓ9˘ ·Y,Ň´.Ęa5­UśÖřÎ?˘\˙výىë1®4uýŁ™ëÍ~0Ě-ˇžš}xű–ĚeD‘ëOtX8î~WqKâ¸H”€Ł†quVMn„ŰýC˛I\˛3,îĚ\d§ďÔ‰ţdçěÜŮ Ç;‘b|Ľ3.îLĽSNv*EŢą';§b|Ľ“/î¤b˛łOvVĹřd§źě´˛óŹw^Ĺ|±%ىý‰eŢ™ń`K˛SKüEËĽs+ŤsdI îäüز@ÜŮ%ń±ĄŮéý‰ĺŢůý‰%Ţ –úY&ťa1_b©€wŠĹřŘrě‹ń±%¸“,âÁ– xgYôÇ–âN3ń'–xçYjl w˘%:Ĺ–xgZôÇ–âN5ÁC,'đεė%ŮÉý‰eŮŮń#K ˛Ó-úË Ľó-úK ˛Nü‰eŢóĹ–d§\ôÇ–âÎ9Á-9ÄťtâŹ-;ÄťuâO,=đN»ÄݰĺŮy'ń‰%މ—ʉ,CČÎĽčŹ-EÄťz1>˛!;÷"~lIBvňĹřIJďě‹ń±Ą Ůé—čYž;˙Ä[˘K¶L!–b|l©B,DląB,¤vC–,Ä’@ô'–-ز@Ě—Xş`KŃ[ľ–¶„‘,ČN6ýâžÓ˘˝>ąC/J×ä´N÷#ˇŇR5€hý]k|í)»Î….ˇ€ď­Éíý¦č3ëÂĂÚâöp sswŤ/ť&ŹŹçťôRĄăďyşĂĆű@b­}GţźśŠgbtyDý>LýŢ*ýFĺđo·ŞŞS5/9ER0’ún–ךXá:ˇ†ŤńďĆř»ąj¬-0&ńď`üÝB5Ö–„ářw8ţn©k+Ś Âhü;·RŤ•:FFżě%|·VŤ•Ć…Gáď6ޱ¶Ĺ l‚7ÁßmUcĺ0&ëáßőđ7§«cŇʰj‘S‰µĆa}ü»>ţn§k{Ś Ţ-Đ˙îý;ŞĆÚ cęĚ8\=%řwVŤµ ĆÔ•úÝ»®Ş±vŁĘוʡňS‰µĆÔSÖ=źJ¬˝0¦Ţ˛±Ű ů©ÄJ÷{<ţŹżű¨Ć‹1őe)"ů©ÄG•ŹĆ‡üTbí‡1ő“őV?äTbíŹ1ÁÝZ#ţmÄţTc}c‚ž _DN%Ö„ôl89•Xu„4ĎŇ!§kĆ” ëąäTbĹ×ĺ nDäň†U[é(´(ď1ŚxZ•Ľ÷źŢ3‚Ź7#Yű} ÷s(}š|Q&ĂtPÓA%LôúϲC Č©EvB¶Śös+í§ÜćšĹR|ŻUtşż—ŠżÚřGđtŽŻ9J•{&ő»›ĽĐ_~śÝMşĂą§Ó §Ň}$ýÖüAý>ćşí˝z(µł‹ţ9îݸą<ĄwĆďő‹'ipřÇľA}ę _)ŞÍq¸¨ű‰g¬ű ĺş»»8Ä1 Žó]v7ĺÝńŚĺݡ˘ŻÄ4ŽíL.%z–ľRĆá˘î'ź±î'UÔý¤rÝ Ďy¦qŞĂEÝO=cÝO©§§śë&ŽS§2ËĘűç3–÷Oř]ĆËcůN?cůN«hĎÓĎĐžgž±ĽgT”÷Ś›ňćƧÎ>cyĎzŘ˙bĽ<–ďś‹ň‘ą–đĄĹŽřĹÓ%˘$&§qj?/Ź ü.äP–aŕű˘,¸…ŃW÷h.9–KńdĘbŞÎâNľźŰ‹ŔŇ(µ‘™.Se!ő:D·Ą‹vľB§WŔ{Ő͸ćď5ý7ĆKĄó¨ iBÂ!+t35ÚF9éÖ s€}Ŕsk!|ť Ď[Lˇ1śC\Ú{K ň´}@”ýnžKěęőXů†Zˇěšßółkŕ镞ŽuXĘ5b’áŠóÇçOĽţs­ÚÚÝ_[ţÝţÜŽ^Ł÷>Ú›żó÷YKŰÜŇj.­y¤ťŰ^¶ZĘöĆ5ůs­Z}y»÷đÓ‡÷ľľ4źŰ·3ő苇OssŽŽšU˙†Ö§ţĘ~çös»ß|p6ŁĂVîŕ§ĂFůDOŐjxźűrŢâvľ»xrîâW ľ^»ňO.‡­ň`ÚöÜĘٶíă6›ÓĺënŰřóćÖçSÎ]Ńúůj®÷ż7‹ż°ąńŞ?JľÎííu1`VN¶ÖëŘ;ďÔÍŇq×ĘtĽ¶wżąďŰƤĺ´ţ›:ß»ż{+˙ Ěô/6žĆî1˙·™ŤvsOÖG}ą~ůţל{w^ŰĚíg˝·őŐÚâ“^ęw%ˇ÷đĺb1ŰBFrűűľ˝ä•:Zż™Ńď˝Y«wh¶÷·çÇ ä~ß['îĹŇťµŢ_|ŃváĹnü훏N^ZSš?ĽđÔůN7oi™9-ßÚ¶Ťş6r1Ţ›‘©żQvČíóÎ=ui zÝs­»•źz0řŔłŘ&yS†ů;¦óX#†şéś[Me˙纇nä·¦˛Ţ5•ýUj*łČ Í[›™UkôţńÁÚ›7ׯřĘIí¨Č׼W9ÂŐÓŢÝŁŇ;˛Nćů>¶QÖž* ó™‚3LJzh® u •đďJڍoPoŽźMŤ%'3zoY ˘)M}Vmŕ{¬†´é÷äTb=Š1AŘ‘‘ډŹ"Wfs¤_F2›SÓ/ĘďÁÖ¶ŤĘĐÇš ćd{ kIb3"ŘFl’.‘mČę ¦ F$dü’«ć6EÜ](¢÷Ô˛ßi·oĎĽ\°żçŕŇoůÉüŕŰó¨9ś\Bňˇ’¨¸)éaU´}żxÜ=ů:»©Îâ§÷—úMŰljó2aĂ‹kűü~őł§OŻk»xŘV˛árí ľ4¨ŕPŰżYő™ű’µÍgÍź2mcYm‡˝+§îÚCŰ=íäµ?B›l*s÷ô¶r—Ť›Ö† ćŐ“´˝ŞŘP*˝Ű¦ Q[Žî}\Űjî•=3ďÔĆ.\eÜęż\×ă}fV¬¶3·nä©éÚ®ëâÚě`×F®űzč™>뵑ăîv1żsTŰţl›ĘÁg´ˇćěąűćTÔ}±„9va™T7Ř«ZµěZ¸y­Đ±k¨Z†,úcĆ‘]c•ł:vť+‹†Ř#(A}ĎRÍLg3BÇ ßłUcť1AHźš\°hŇ #±h5}áâÉnűc˘Ax°ŰdI<ŢŐk4ëĚvČ­ˇ·-]gµŘ)“Á–šÉŠ—XĘ÷]%Ć­čK¸Ą´ďÁH^Ô0ŽWŹĘ÷-É~˘|_‘ě÷É÷ýČ~ś|_®4nÉľtĺç}-˛ßäjß©*U˛÷äĎHűO%iŞ<#íCÁtd/Ş#íGA‚${RŤq_Jq_¦ŠÂľŚÜ°Ö;Âi˙}tůţyQüüŤ_ zŁ{Eć Eć Eć Eć Eć ůgŢůk!5XÜăŘ­źOp3ή^–0?›żřt蔄Sqwúí»_ö;w˘Á›•ýظ#ŁÂŁÓ®änu‰Ţňxw*w; ×ßíęŹâŻ\ďóöĺŕw¸űuF›7”ąÄ_n6®dăcĄ¸¬ů-ńÇćpwî$„L豊żÓú@jßz#řăO–|ŕSź»7xA‰†7šđKš$2gß+ĂeÇ˙hŻňĂďÜíc®\ŽáůťýĎO)?·3żŻdF™ Kq·­öŹîůŚăOd_ÔŔřîÚąJďÍçî,Îţ`ţ‹1ü±Aí‚öÔ½űÉ´Ť?ýŔÝąqnŰ 6•ůs©éµ–›Y˝Ëŕ~jq·üGŐé~iîʰ˛źżËgJűŕŻĘżqwZ,úpws_.ëÝĆÓľ[;‚»0iaĐŮŰë¸[·ćť¨K粪ĎXőÖ"ţâÎíŽŔÝ­42%úÚUţxŻ& ÷V©ĎíŞąáĆŻ ąŰ/±óŰŰĘÝž9o×­ž;Ř®üËËáî|ÝůţÔÁ•ů}żŐ=?6q·zB±N/é?á˛Nťîv ÷÷ş‘ŹÎUkÇ˙0áťW"Jäp·7 _Ř´}îôŤř-qŁZr‰Ň®Ú»–»Ý”KŻ;0›?t^3çawąu-. ăîx{Ő/_cimÇń ¶8ţt»ńĂŇŞŤŕn?ZŇđ˝ŁÇů¬Óâ?Ř´†ż¸řN}4r÷_ =5y>Ű÷÷ˇ[p·6öyőő> ąűŹ& ţQĂ˙ýíĚ>çnÖťę?ĽWUîv˝KQßWlĘe\ýݱ;·-ýTűöá`<ä4ýëPîÚ‡9ˇ’űň—˙y<­ĺ€*Üý××'Űů]Ł·M™ła>źđvÖś{#Âą»§żňűťą­o,ľ–<ľ;wÓ8őĎ-'şr·oĆýx†;ÂŞ»áű¦#;đ¦úđFÝY\¶îčËGěĹ´^ÉoüýŞwşÄÚÁ5˙XĂÝţéä’Đß_á/Ć˝2ţL­nüą»i‡¤űqwkď+_ué`~m‡Rkć•ęÎ?şţäŽQ\ö;3:•m”Ŕh2ĹPăŻĹüą9÷ăç{ŹËzĹwÔ[Ă.p^üuµ÷ˇAüĺ‡Ç[ŻŕnŰőµéE†_˙ĂÆ GÝăĎ}ýó¤ŕ:ÜÝ7ÓĆ/op—Ď™y燽[×ńgnô]^k˙Qîΰ;©Ő;­ĺożuăŤ}Ą˝řłëükŢ{˛’»ł.Ë6뽓ÜJé>9żŻçNţ‘yŁaâÜť6ÖN=—ŽçßąľjŃÁƸŻűyýUjČDîÎŻďGěZWŽż¶kPí¸n;ř_ŁzOíüÓH.{÷ÖŤöoŕżzü×ďű¦tĺ/ÖŮyo«Ąw{Uý;m‰üĹ}Żi¦öjŔźßÖţ€±O$—˝Żć±§§ksűoęz{(ęĚÜQó|>ĺîtJ-¶l_ţîqG?żT…żřkë—üZŽ»]­uéyçZpGýF˝Đň,ż?ýË‹{ţšÄÝyąąióŞ¶ÜŻĂÄv ţž;0dčî…5úpŮ3ÎÚnܦ÷źľôËŹÇůKo•Ľî˙3wŻÚ˘Ä”EKů6Kmú{îĆ'­ćÔźŻă˛KWÜTzţîŕßo—ýxńţęÔ űł˛Jrw6˙ܧ鮱üąő_ÓĆŤä—–xíÚ{øűă:~üî ~ďą…ÁşŤą‡%Wč:Oü›»ó>óĺ'ŤrgżíĂZ¸łýę,ß2č—ýęŃ>¦”/¸ě.šâĺő•ř­óG®ÚĚ| Ú-)ĄrýnGżIË?Ľń揞hśĹÝ-mďňă¬*ü–zkwśÍY<˙ÁÔ_frwĂüÖm |“żöŽ} ±…˙J“đťA׸»=Ćţĺ‹#ů{ÝÜýÁ‡üoˇ/řĆlî#‡íJŕ/śś47r6·óg{“5ö-\¶O—/ŰWšÇÝůqň7ćOkó}“ź-µť»w´ţé߸łÖĎ®^és”űűTWvům woQjÇć˙á6Ęjź:˝%—=h‘˝ň›oqw—yťüóóşü‰5ßŘ›îĹý9 ˛ÉoĎ{ÜÝY>ń«0‘?Q+˛Ď›+×p'6GD|ůÉ[\v›Ëż&ßżČÝ*żc`›F‹řĂl5ÓĄ]YńÍáϸŰçżX2đÝXţň’÷V<9;?Wľö„Ź«ZąŰëOr=k(÷ń’«iőĺ·_ĚĽŢĆ´KÜŢ.e?/Ă_™xżAÝ”xţč­bý—1ťąěŕm>żÎüŤ;ßhlČŔß?ĺĎĄő©lţí>wç÷Y#˛ŢŽä~řÝ÷xOŻ ÜŃŢ+ŇS¸lĂ/Űb<˙Kź3ł~ĹßüÚ«ĚÜY€o4ě{¦Úŕ-Üýä­-gÝá7•(Ţęow»rŁęo|~‹Ű[˛d•R/ě揼Xň»_q·"úFdíZÇe}ß7ćçžUůë%zó-˙w»öŠŞŢç.]ý|w†î ˙őő ű»žű‡»cŰ`xđ‹űJ,[ęłźß·m°aÉÁ-Üťâ9Mę—_Âź90ňŰ^ŻçŹ˙fö·7´ÜÝ”“Cë­Őňď56”ZšZ‰;_éäÄMšäZĘ1ôĘ]s_ĄŇQ7¨đ©G1H«÷Öh•ă(äW@*G=‚‚Ô÷(ŐĘA(ęVĂ0˙NĆßVŐXm„‘řw$ţ¶Ę‘ôĂH*G5}ˇ¬rěi5Ř3¬f› ]ÔĚ6đżeŚYŻłôr5#›Ś—dkЇ’’ ‰v›®/@Ů V㤇|ŕR‰"Ĺ­ć9˙Cw|CDÜpr~‡Ů‘Čs{‡™ŢćčâŽăxt}śÄ– óůA găČ|~@~ůČ||dąFP0‚úţA5›XÉ Ö!˝ß±9•XWaLk0$nňS‰u-Ća ü»ţ^[ ,Ťô0ĂH,MM»ŘEˇYy‚M·áŁ\ˇ¬Ől0¬:»ŃśĚ“Xł!Ń`łé¬™Śâ°ŇŐ NJ#ë¤0 †Qß«TwŇj)‹ ěŽwÇß« ¤“Č c0ôR3Č:IÖ˛xŽ`şcXťjaÇCą”ŁâÁÜ…§E*Éă!#„łn-°2"ž_„‡TxľŘ_ÁĆČ‹‚FL ÂüAŚg‹ĺšüŹ»°vďłwj{ż|ÚëęFâż©FŁě+ßô ­x"3čÚć…Úřů˝ßůg–†Ś(Éţ¤LZźĄRZ÷Ę(|óĺ1Í‘'ÇůňňS7_úäĹś ćMÁhęűjVwśA BúŢÂăČ©Äzc‚ľqňrŔ@Iż0Ś4Ë©éĺY.Ěb#Ůç6«Î¬·¤±D ‡bşÍnHĹvˇaJ2˙[I2Çßʦ]¨¸íTR~ҰĐQŃ\L9źĘ¨h.ň+ %/ÄAÁę{®ę1ţ ×Áż‡ŕďOTcť‡1AHßP;ą Ň #QŽšľP¦m®V6Ň ­s5·y¤DL”(rÜí}"qąE ˙}"7óS÷‰Ťáâú>) Yd'‘E˛ĺ|E°ţ›śĎ…“sŕřÜ79çMÎu‹ç¸Éąm|N[<—ŤĎa‹ç®É9kr®źŁĎMăsŇä\´xšś{Ď9ŁsÍâ9frn™śSĆç’É9drîś3Ď“sÄřܰxNź Ďăsżäś/9×+žă%çvń9]ń\.>‡KÎÝŠçlńąZń-97KÎÉâs±â9X|îU<çŠĎµŠçXÉąUrNźK%çPÉąSrÎTGIÎMŠ÷ŕűÄűđ}âýř>r€x_ąß ť˙GçýĹóýä/OÎÇ‹çáńůwńĽ;>ß.žgÇç×Éyur>ťśG'çĎĹóćä|9>ONÎŹ“óâä|89N΋ç˝ńůnń<7>żMÎk“óŮâyl|ţšś·ĎWăóÔäü´x^źŹ&çˇĹóĎäĽ39ߌĎ3‹ç—ńyer>Y<ŹŚĎ“óĆä|19O,žĆç…Éů`rś˙%ç}Éů^ržW<żKź×u\ĂÇ2kx8_?V»~/„DZ ]\m@Ű,zĺíµ hĺ±GP0‚ú6Ş^#ŚdĐşÂ8FŇwŹDN%ÖTŚ)—±†©ČŔĘôĂH+5}áf:1Ăj5€5Çhť)ĂWűţrYpüéö¨]ńüŞ?ÍĎ5| ·G^4 ľtš<,<`Ý{(11ĆçRÚĐ+L\l8× Ć‘‹-B~ůČĹ|eąFP0‚ú^¤šß@‹ÖŞŔ-aĐË#U1\ŚüTb]Š1AŘ ˙n…ż—ŞĆş c‚°5ţÝ/SŤu9Ća[ü»-ţ^^ —چ‘8®šqăŔ đť˛h«HĆ:źP~yxĎş—Ü€‹_M ·í“É ôäfwrË9ąń›ÜtKn&7k“¬ÉÍĐä•Ç›“eµyęXSÇ ¨x9˛x×”ăy3ň–s6@Đ|«öśe‚řü`aâ`Đţr­©Ś#Ăvń˙Â> Ě)š‚ŃÔ÷dŐ´<…A„Ýđďnř{Šj¬ŻbLŇÇâ_E®8醑8„š~Q–ÉÂŤ™-ŕ—1Ń$3Ď6RĽ˝”D1ü­Ľ‘"¨˝5ĐŞ«p·ÚŚęËřß-—ö íÜ,Y?° ±•?¶?Pß(ß4öăűŻ#¸±ÝşĹ/Ş‹T©»sŠT©E°0Ŕ"Uj‘*µH•Z¤J-RĄĘU©Ŕßk‘@ˇ˙-ţçç&…|Ľ±DV<¸´ÔL4¤ŰCȢblx¤ô3 Up© 7F„Ő/P¸ň¦Ô*D'v&·K‰2ž[•&óK%†/%ĘP r)I˘âeŹSą<ąb}n;]9—_ťŢ\±ć­oĽĄyĽĆđ°[˘é ZŐUż@sëdµ÷Ëžü&ÔÎAbS8 •$ozűőcě-oÁ˙ßqŠkn9Ĺ 1vŰsËÁ­ĺ'§@Í‘§é•J’§é•yů ·Sl˙çyŠ˝“ßSl˙ĹJ2t_µjő ł-±đ©Ő?c*ý ĆQ­ţň+ ó=‚‚Ô÷gŞ•Ţź3HŃ a#=Ňţ9r*±ÎÇ Śf¤ë ç#WŞtŇ #©ŇŐô…˛*˝ ´`€Qg2čŮŃ:«QgN4„%ZČOí¨cŹŹ{űQ$í|ť!:z[:z[Žg84ĘÉŠčp§´G”đF{' şt±očYOÉ‹˛ožP¸ś×ňĺł7ěµJdŘ•#Áäv\điďOľčŚą#4Ť ěÁŃOŤW`ÎŘl€´&˘~ŠÁ$1šo1˘Á6űVĽ «_ n»Ž¤ŽĘa­ Y<&˛FŕwŔ˙±÷/’di](ŢÝóěšÝŮÇěkö5gkŐ˝S™•ĎzMĎL˝ú9UÝ˝YŐ3»°ŘDFžĘŚ®ČśŚŞÎńę|^A.   řş Â\…UTTPŕ˝* ĽČKń*ÂŢďűÎ9ń8‘YÝ3;3»˝;Ý™‘çś8qâśďýý>ůy ¸G¸sŘâű›¶áK±é‡Ő–>©‘jljy®Óçΰ0Ą~Gę„—oočťU-~DÝďčX}FgSd±ăď_ďź~ĚsĎ» ţ†…şď~đ€\Ř•2~&w|ś7gČ7bźOËĎ?ăßw7{5Š»ü#9c.güŹăRĐŰOD¦5´r˝á„ i ľqF{˘7JšßWž˙ɤéoć·÷}ŐüËN‡ßŽćôccVńźÄ>Ź“Řů9T˛łw[ĆşăL“ŮţYěüh|äß+Ţď˝_ÎůqmźŕµźP«'WóźÇŰČk˙B)ä±bÄ™ÂŐ›viËśâřSHĘ/ß9|Ců8D¤ČAä[hšřٱkź»ßfÇžĹô‹ś5Ť×3ÍPËů“¨ÁźÎ cŘgJ)ÓŢč$âżÝOfÝN{ł)eO»Ď#ńÇĚŮYŻMň9‰„Ţ=óOx×RŰ÷UNxö^éçőEt?¤Ą×*ĺ‹íß/P˝/P˝)Ôľ—EÚü©{Hřţ´~mü[ÄŰüCŤrÝőm2DĆĽű¸Ú8÷iö ÔóŐG=ů‚ŘO@OĽ‚ôa}÷ľĘ či`»×Ú·¸ůe={7}An<ńަ|ń üş÷9_ş—ô0<5˙,ńF×(2xdöćÁŰýëŚý7ź=qň”$Á ťü#1‚€9u˙^Ľ_ŔëŹEýľKr=ŽÔţ˘vŻ˙˙gOÜW‘óřŹĎ޶PëÓâHX`UŚi˘-N¨`_ ˘»˙lg|öĹŻűÚ?ňëđďŢ?ţŮ_űŇ'^m^ű×˙ľ?ýcźţ{ĐđĄ?ŕýý–})hZ«üý]üöěż˝˙âż/ýżoý4ýűß˙âwŇő_Üř(}˙ěWâíÖ>ÚýQú÷ľżúŽŻÄë?÷§żśÚýĘOý8µű‘ýĄńńT»µŐ/»…˙ľô«?}‹ÚýĆźˇv?đ^–¸ŻO¶[küť*]˙ť‡/ŕżź~đěÉŻŚĎOÝWŽ§Ú­-ýv˙áwM<‡šźĽo8žl·¶Ńü‡!|]‰y6Rôű”zu]ĎčX~čŠ5†“ńÚb»"NëRCŢ›.c·Şä€Ö‰ä.ý˘«Ű×®ďÝĽ°wműfëüúćĄó[«ěÚ`hő­;D™?tŢamnĎí6ŹŰ “7ĺÎcgڶ{Čϲ#Ăg7Ě‰Ę}§W ”ŐUőŔĚŞŃ>¬Î•+fÇUxÁC¦ë =×VÔˇĂ=ëP†űáÇCC°Ď ;˘ľotązG†ç]UýîĂ–ů„â!XZoÇíŁ9˙ťúnIĎD´ôä¤?źúfůďź×äĄvÔöÔ÷dŤA'–&˘Ć’ôü;3č#ň±żő٧ľ+bě§ţ6|ľßĺý'Txôď~öʻ߾ü®µn<ńŐ˙ě_\Z;ýއíŮo7Ö>ňţ᏿÷ň‹Ďţ×˙üg˙ űĆ÷­•*_ű©_ţ†ź_{ó;ľîç~ę%óŮßjýřď_żń kďg—ţŃű˙뙵·ü‘‡˙Gç[Ż­˝á—†ßůÍ[+ý…Ţőo˙ÎĄµ·|ö?íĽˇµöčţŘ7ü̇GkůşÖ˙ő}?ř/×yăď˙ú_˙“«k9ń+{?¸űw×Ţăý±˙ňĄđ??ű‹oťűCďűÍż˙Ň˙óçV°˙žyé×ýg~{rmî?üöÜý’/]cęďýôíw¸ks÷ýŰżţâ7üÂÚĂ˙ôËţň_~Ű©µ·}ę-_ö}_őűÖJťď^ţ3żřUk§ż˙Ď˙ÄOý“˙smáń?üŕźúŘ•—~voóÉ_üąďXűŕâ^ů?4×ŢvđČ7˙äÇFk'ĎýŘůĹO~ÍÚfŰ˝?ő;_Ľvâć“ož}öMĎţÂ_ě˝?ôŤ˙|íCűŰO^üöÖÚ;˙‚ýżď›>°öÖ÷üÍźţČoŻ=ô•?˙W—˙Ü©µűţćßřČOţŻĺŮßúÍŮ_Ş~fćĄ}ËĄ÷>ý_˙đÚCý‡ŮßřŤĺµ'Öżé'~÷3żľvú×wZďýˇď_›ýµ?ĐůŤß~ö~î˙ü…ĘĚÚ[ögţćGdmá›ţÚáó˙ógÖŢ˙Ć3ěË–ţŘÚ[ăŰüáŹ=đě˙ ţgŻüéßY{Gu˝ăśüżžýÍ•ßüŰ?đC˙ŰKżüíWçľůO~víMżňE˙îçţź/^»ď[ţâ—}éâkµ‡żń/ýń^űĐ/ľĺęĚĚťµ7î}cý_>ů'ÖŢöO˙×oýß÷]ko»ôâ§]{~íń˙Ő?ů–żí­ßµŢú¶Ígý‡ô»ţŢ?{aíĚŻý‹˙ęźyńĄ_ęľÉyčďýˇµ™˝ŻţŃ˙ü#ĎţŢ—·żřÇޱvň]ßtŕ˙Ô{מ8ř’ůóż÷#ź>}ÖÜűŮźýęµwőO|“<űŰźy×3çľę˙yé'Ď}č?ÍĹ3kďüżĺ­żzëžýěęÇ˙öĚę›_úçóźüKż~đéµ˙ňÉO}řźľAíĂ/¤Ą~!-ős™–îĂ/¤§~!=ősšžJŢő‘.4éżS˙»Żŕ÷üď‚˙=X𿇠ţ÷p±˙2çýRž;9Rbˇ–4+–eŃţĘI"’ţÔ÷~VĚď…¤Ś—”ĺb2Řý˛¬Ú)Uµýĉ¤Đbüµ”î!«Č߯§'Oů\ ŐsL3ůß§k«ăWě˙T3ľďDbwâoWý»öýék‘}X©@ ř¸äÚw˝~`KڤßÉöO KČ©8Ćú{JP+F[OőőŘ»LÍăSEć.Űţ ţJrďCÍhÂĐ1Ąá^*0YýŽ«Ŕśř·áAřJŃďzŽ+a¦c Ťň>fIżátëě˝ôjŐäÔűIY¨NJËő_ŕwĎ%N}Z·LśT‡édxdëęCC}hŞ‹ęĂ’ú°śłí Ku;ŇÉ rÁ7Ä|L8Őx˘C‚TćáBäßF ů#Ęăo•ţ|ö×OhîWŕyÔîŮ_ű=ă…ďűěŃKŞ|ú ßó ßńě/Użĺ{˙Č“ß Úý•°ÝÚŰ˙Ô7ţôzčkžý˝Sţęý­^{óă_ů׾ű[íţ¬jşŔݬ~ă÷ľĺ»źý‡?ôö7|ÝS˙ýĄî÷VÎÖO=»vÂüúŮ_~n˙ŮßXůÔ[¶ţÚĚł˙ń÷Ůo|óź»ôěűÚçľú§ć—^úőŹţÔţ†7}ńł˙Đř'˙ö§˙Öż|é·ďüęGOý?}é˙ýä?=Úý˝Źľô铟ůŽ™ďŮëËřÚß÷«˙ËK˙ż_ţýÎĎüß˙tóO^˝Ř{é{î)˙[~çSb>_-í)i'ťY{¶UúÉ'ßXűŔňąßüëK_űřCoúä…›Wת ü?˙ĆW™kźlýÖÇO˝ô˙­×Cßľćťú/ýöO«ďĎţÖĚ­7ýŁ?řĎţVďđë˙ǧ˙Žö2fBSg[í3YFţpä…žžűßQ5Ä~x ăůA_µjťßŮVŻżĂ•˝ě!ßęöŤđ—Óô•š ó¤’T®źpĄwN(^mÂń]˘=ÍÔÖşŞ>8ęĂ@ÍČ髏'_ Ż {ęIźď*ű Ç÷"Ţż?¸Ŕ3žńţ‹Ű;;ęóUüśo˘˝Ď ď~ÇęG~ŔS˙ Y—ňÔŹ~öóŘ«pßKďúßń+đáŮëK_óďżôĉ—ľôÍß¶ö•x;Y—¬ń#?Ľ†ż˙Íy†W_úťÚďęűZőĄ˙Iż˙ňďývâwů}mĺçľéÓáôóę’˝J¬ěgO|®¬ěă©ě뚎gwę3öj=U×z¦CšşŢń(ŢtúŮ{÷©ŕgÝęK·.˝ůëţ{Ügo>úÇżőfëGĺ÷Żzö‡żúß˙Ú;~lńĄöŹ˙«ç>řěŞüýGä÷Ąg˙·/:őőżď˙V¤N*·Í§+·ŤĂ~‹2ë?*OÁŁZŻÇn//Ţ\l”fɶśŕv©ëúŔ˘‰vőt^ó·ćó,ŻÁ{o8°ăXÉŚ;Ŕv&püˇŃ¶ą~ŞNę·˝o±\Ń÷N­Rkj×NU–ô+ŐeíĘËËŤzUżˇî=«µŘ¸ů˛3x÷Re©T]fŤ¨?Ă;o8~°żĎ=, í:>1ŕŽÉ}í¸>ŞÖŔ6†¨…¨Ç3Úďh?˝cŻmůě˘|4.ÖÎ˙}Ô<3€ĺrť3ł[śŚ‘áĚÎłŮ]Ă;0<ř|”ł§™yfÖ†ř‹éńŮłó3§Yěď– ­f;r˛Oý׼ŇŔs1$«ězÝYčEÝÄŚ‡4ěµÖćĺ-ěZ?%řŻ^jT‘Ü4›őŮłp#–řŁćzŰÖmśÎşÓńř‘ÍtÖ¶cTž·IOö‚gu{C­ý|lNł× ú*‚*c¨«Ü˛q¤çl>ŕÖä[_q{bQ· Đ^\gÜ˝ű–oÂ[3î>łú°|‡ôgs×â‹zÖ-Ů™+|?KÉwô’wŮ·lÄâ@9É <ř·Ăó‡żnô¸;X™Ä¶Sł_ţ®áˇ*yĎĐ)fŮą“±$»Cľ/ÖäĽÓ·‡– D• lwZ mĚułgőqČ/‚÷“~/Ée†'ö¸b»Ţ•]·ům7» K;"˝±q©†¸:j¶áyî‘’ÂŔµG]×Op\‡ †d¶Ď»ňIÔh$đäÖŮŔ=âŢ~`Snó.–ŁěÁ.‘ñC˰íWxIW-ÇXČ”Ű#¦H˘róěČö`Tx{žáĂOÔµŘC‹pY†ś/łmA§4A6/@Đéů†ŁPw;”9św|\Kś-´7lßeű°†Ś;nĐí±ˇËŕ8tŕBßő‡ĚqQÔp:†×®üb3¦e)Ă0»śłgŐýńŽ0_ EűN@‘eŤâ˝ˇĹÎ<ó4k”+ĺŠÎO>úĽđÝľë{ólg}w^†ůüíˇgĚË˝00R$y®ëYťy2„ůŘ* ™g‚7h4ŰěyřĘď¸:ă»oÄőĆ—f.^ߦǩéŹň‘Ţp8đWä”˝,N˙ŤQŰ}TŻ.Ľů ]†]» ČµiÁňý Čä> RŁT©±JcµŮ\m.±{›O15¤¶—?­ ś…}1°XtŹ ;sNMÍőL«C“ĎŕĎĐ1%ÂĎ$Őg_ 'đKđ2‘w&h»¸ĘÎ$č8uFĘÍ$ŮŽú}f’8«Îů„FŇh.‚ ==č™A\© ŇQ&‰htsA Auç<’G‘c’Â…sŤS3ŃL.¦¨–j[BI ©”ľô÷yn,ëFë~˙fkýŞvíť±=Um®6*«đö”Öě©pĐ’žbr÷S,d$ÇŐjţ/6fŕ(Ő2TIŢ©d±ë†y©=źďßb¨żëžĺzÖP)ěYC[ýxz=)Đó×ZJ8ŰâľéYa4ŘC[°ůśPR|x7čvą ’—ű׋¤ŇóNĎp"!ôámăÎhŰ5:ńď”Ä »oĂ! LÜ-e/śŮş-űÍW‘Zoşýe±>,CÝăAńTjś(0üĘŰ38¬o ]O-Ę›qÁ®mŘClä6ËćxŢ:·Ť/©řߪ·\\|oÁvő,€ć°ĐZ€»sŘmĎđF!)ŰáCcAZöT9ÉâŹéB·m:É:ń.ŕ<ČęžGv lÝ1ě°J˝wĄĽXŞ®$ŻÎüńP®îZ‡@Šź8ä(–ě}Ëá…–ëűśHˇ â‰Ô3%~g5‚Xxٞ|íĆExŚr›çÜe¬4^ú[[)5KKii<ń€4É=ŽŐëL¸ŐěVć{Ô+Ȣ`o:ăÚŃsŽy>h˛ŽUŻ6ÖşxŮŮqžŻZjV«ŐŇâŇR†¶‘~ľíŔL>Őg/Xv'om§x(şĽĹi°čŤMŃě–áX¸}b3şÖ†6Ö„ ‘ä:~B»ěŠńbËő^ÔÔŠbbŠ€0Ä(Qźm•Y(ŹÓhăŠIÜb |™ŁEĽ*$[&ĄŮ±F—L”Ńu)á±HŞ‹~S’“ŇUôËů’NtI ,8â?óg!ĂŹý 80‹qÝŘŹ‚2Ĺ˙˘_;bŠE?IľŔ/®Uf[Aü;P1F$QYxĆZÓBJ%­iHŤ @˘ż¶±>”Ř+ç2őʢƝp6W›i—ŃšťAăNŤ;dÉiŔTK•%´äT–Vő\KÎcŮ–ś„yF3ëĂZŁYgŇ6Íţ˘›gŮ ą°¸dh^ł™ć$ QĚ)ě1űŔ,Žŕphר—«%Ý:ŁvVuQűĺ-·ŔůÝŚćE ;ď-âc:i<ˇYm€«*·RİSţ%Ý:±dę\–ÖZIoč$©˘˛R].Ő—'K{=·o$MKŰAß棳JL1śÚ°lS‹5ÍY7qZŤZłYj6ę t:s>WŤa/mš¸č=Łźď@t]jQŤŰtr§ł"ŘRµV…éÔš‹c¦łŔŽr’zŰsnÚ™yVăŰ÷}«)1†)đóÝýár2ź“čRňÄ.K×3ŕá.+łÝˇ*An0dűžŰ§RmĂ·LÍ$"‡;o™Ü+] €–^čÁbęT$n%¤!)ĄńUÖĂZ ®oňŽ·7­á¨r›ŹŘsiSąŁA„/ŔD §äsň¬‘ď𤋮ÁHŽ­äš.z2ś$ď°ž{ Xx ˝ŕ;y.Ďř<0@éĎ™cđĚ2ßőÍyv•ńQéXĆyşë çן?[ŐłO©űŘ€Ó%şă×áĄ#cD}ɱ‰ßÎ>Ĺޯҧ=‰9LvWcĂűâäĘ@źcÉÝ/©HL?Ńš†;Nä,k»îäacoVfë¶ľ3ŘFň&Ć`€¤Ĺîˇ+}4čŃĹ@xć†ÜkĚĄí«i ‡Âłk÷ĎśĄ›wéS¶— 2ą^Űśc-ĺ}`pöĽlâř>lBŹś˛»u5«2ČbŔNlź†iăFĐ›ë„N'Š]¦Ŕ°ĘYv®ăZ«ŐJąşĽX_Z¸ĺűĺĂĘJłlUŞĎ¨Ó¨:BŹJ#»GµZ¶@&ˇ‰7_Ěiľ7Xy&Ç˙[Ďň˙ľ%©&¤˝˛xý| Ťá®,ó ôÇ>Çżţ6ŁÔ,pKÁŽ:„ ú…oĚćö<>ôŘ j |.řŔtaW CŻŢ‰ë- -xçtůüŚş%BLă“z#hĄűr†˙ֵ甠§CąUş@ŽŕÖ8Gp˝`7t`‚†Wî űú´Ň  ąp>®ÖĄóî)vGĽN­ýżŃ™E˝Á!O”Jń=&x]ĺ#Ć˝Ä!Łb‚9Ť˘u–#ĆÜ…GÉ”˘źL>íą1bÁTÂ4.v…éJµ0MB«6VAžVúaqazŚ[ônÝ şŰS÷Š~>¸5—ĆKŃę°fËŃ"Ćđíşí¸°/ýaM»ţî=\\4ú\ć}ľ/Ů!;Ś.qWĘÍ’X,%îĺRMűĺäď¤Ĺçóť.ĹNçZPuJ >–?aËuş·‚¤9óhOČĆ“}HŽBśnŞu¸Őáž.HN´ŹĂÜMËMŠÇqÂĆó–ŤÜH‰§FÝĺđ =Włşó)GąŢł’bűfĎŔě†T ă8ăÉż‚{ ^Ř%Gl1aęc‡–Ň/ś,ć(ůIćůfĎÎTW–W€ëo]»Ś\żVŻ,-TWŞ@µ—ž)Ó/ Q„µ‹…lÔ±č†ĺ÷ڶe°JâDř;ČLp[c¨CÜzF FmŚś(öKÍ…7Ş,uű}‰_gĐ­P´j#™’ŻłŰ%t,ćgy¶¬‰‘u}·~y“î´qył ś ȵ 6Ď Pa‘b„ZtqĹČG®w@Ë4O¬*W 1¶‹áyp× (µ l@áýŔŢ@:żôAź`»çwKŐĘbµ^oL#C=…dőcŃą@†ÔţáPXT…†Oý0b¬"Wó,‚ń+,ŘěŁĂ‰†«–5í0‹ťŰó @tF»çwćÉjB ŰÁ ¤0¸‘ív­áüŚëu,X %}8Öd:Żox÷Č™§}Aa2Ěľ/üŃB}€FÖ/.•ëĺTKŠź(C=ŃUV­ŻÖë«UT'¨žÖü‰´†öËP‚"ë© xěhT&UIŔXH´â6JAŹXšĹBŐya@R˘‹H-˘™ÂĎó<—EÁ§zÄę,mČËz0 l-µĹ\ˇçíÓ[ăĐÝ =şíP“bBĎ›ž·ş•ŹN(±<ŇroŹ@uĽęFájçÓíDi,ŻWáHťĐqFĆ7ë{L¦äĹŻ=R-WA»(Ż€ŻýTŮzřU§rşąó,˙Ńô]mčž1ĎĚ„‰ sŁz¸ó+ľú´Ś’ö®§ĄµëéX¬Ňr˝şXZiVD¬’n‡LK0ÚŽÁÍž #¬•–—›Ą•é¸Tn`Öě†kŕX${==ŰnÓ÷'qŮö9ş•&°Ť»g­Z[*UŤäCěů!ÝöCܶŕ4ę+ŤŇJei91Z+}ě’´ZjEQg Çxd¤ňĂä§Ą[uÜř ż^_YIډ;žucî‹ďö7ŀˍZ©ľŘ\J.ąHNŮ2¬ÄH±@¨‘ą9fŹ[»č-aŰT—đ–Ú¶ąh´]Ü*ł=4 9‹›ywżŽ–@ŃOł|•Z}ഞܬ%n}ĹíŃ“\poçÝPF0‹›nAlWëS30âj™Rr<ëĐúŁŘľ¤9RĚŮĐś5U8přë‹5x˘Y!…=q01ĺŕl!rĘ—%†Jâ‘Î÷ńÍÍîŽAq/ÉH„” ;~ăjŁŮ,Őš+Ožjë@Ä@Í^1şF*ihüő&l˛ÚJ];®ďł-Z¨ wdÓ ňtŁń·Ü¦‹kéď“^%×đŚZńě[®¨8ýZ˝´\YI’’u9(ői4ů’q§•úţę Ü93şvń†/HË(?#‹ih0M”–"üĚ^OEP?Ř÷†č'vȦ‹¦}OAhĂ`‚˛ď6B‹)FƇ¦R†Ă™®Çi`¨¤pĂîb”xŻ/´ú›břĂáľ3Š]l>ů$“ŚŚ¬äa †Qhw9üLžk™ě8۵>« đRü"đóŇăŠáŇü¨őyG•ň;(]MčŢG^®Ă˙VĘŤpD)žĂVÓµ„oŽB0DćŚ?Ŕ‰lŻ‘©4‘‡3O6óů8Ś|„j 6ܲo9/ňŽđ?śHxňZ…&ćqy0ýpθfřÎĎ´:(hs}0óęß:ĂL¤3Ěěśß©Î(ŐAŢ`ą\…˝Ţí˘i·6?Ó·ű-~ŞUŞuh¶ÍŚ~ż(™‘g.í®ßhŐáU@Ę Zźg:űÔ†ëšp ßěXŤ·đydŐnŰÚpŹúŃM2‚PNË•TŔĘű2”!äüâ/]ÂŰ83TF©D üÍ… Źwkl< ’ÜÂ=7ÇúŘęěč Ë‘ÄsÄď»ÉĹäô»”Ë =·Ď„¬¶°%3 |]_Ľ­ó»›­Ë×1gűDd<|\?b«iWĂW“Ľ|^Űňg˛MĂ6ˇ] íEIĘHŮ®„ÁŹ,źłÝ0Rl漊Ë3@.Ąôé~:˛d`”]fź×˛voĐ‹ńžĐUOĆ”´y‘š÷ăQĄëySř¨dś1ĺărֱЋsęqwáp±U ;ÂĄČ šóIZ€ĚŠö¤±Kşţ$ŁÁB†… ŐxĐFŤôp›ďÔ>- H‹Ę©¶°żě/{ígΖĹ@›™f+ŕ`…?tČvş6p?ťýXЍĄ,K˘`ą bG-ĚĎdĐ Ő|AQ8Ő¦ŚúÜ0]XAžh©Ý8+jO4›˝!Î0µßć%±®o+`ÄĽĆä~žS,AYź"ăSřâwĎď°3ç€C(6ĄÚ!ĺa¤aŠűfÚš˛b OÝľŁwÍ´]q§tqC]˝?t0U1Z«9ˇŇv…ď@ký8Wö|™‰ă3^éśEkx.}@§sŐĐý…©…‹EfuV©¬VkăňĎć[÷ďŤ÷*m,űΛ–Ăżtű“f:ŇŮŰcę;Z“d)«1†¨í$ĘĘkÖ5!ÖMŇ™)|t÷Xw˘Ź}ĽU“Ľ+<‡g’¬]üzóĚLĚŰŠ,¬śqö˛ČJ„OH’Ü_ňdJP m“ľŁĐePt—4z–7썟@”°;{#Ą;ö„_ôxW:\ď–áă›ďP'•ţăpŇ ¶p:bż\ân—Ľť„!Ëwc_>ď¶ŃvYÜˉłŃ˝t,í¦ËZ Ž™´ev\’ÖÇŹľ8¦đ¦ÔqÍ޸ÁÉ{…K>{ř}‘LžŤŚ+׺ö„ilČdVxdöAFă=’ gwÇM÷ v+ĺ Ě>ĎŚ’žđţĂm®|‰vů 0«ľřăZO€Ó7IiÓ wĹÓ™‚ď ¦ä¸&Ir@°·(0^ČvĄ”Aâ1Ú–Ó™g„Ą;ŚEFS1s`Ł€Ľ& ĚŇFÝ(5`^/†3„C—Ŕ±’âž4dDf{”ĄÄW-Ő–ĐČ-eASJTúĂöŇz˘ůml( ^ˇÄćĆŔŹEP sFü»#Í]QäŽíJŻ… 1ňş¶ňOT«eô x–;?…í Ďç;0EI->ń‘Î o'ă»HY7Mâ„#vĄ ‹[8ůËLń#R@Öxť8ć7OAQŠ»l±€s2¸o«-ńă÷a_ÎöAŚdŰ—7Ď_Ý<Ż5 =@â‡ŮO',k}žR}2/ =ž…§í<][i|¤ëąÁŕ&|YÔ}§ď·-Š^eŢöÄW˘ Ľ:s:VQ!ßđ+ŰŁ* PJ“‘˙§ 3d˛Ří˘§ľěö¤xČśjÁééyńéĺF1OµzDsě@9Ý!±ő˛ ?L#˙_ćĄĹjŁ´¸Ľ˛2«U¸˙Ěƶv´łó››®mc =!VP'4…Žĺť@ýeÜřg>‰e'> 3˙düxA Pźśoč“(]Ë %‡Ă–űm—±JŤ˙ô^ëĆyŚ5 ‰‡śľźŐ—Nh÷döj>8ţÂŐAżmÖKU…É]‰ťó{—wU¤s~łMrżŠ2-eőDbsñ Ľş s~ܡˇ?!˛ 4ď¤ĂÎ ď¸F˝Ń,5j•Jţ\/^˝Á®™CăĎ!p(á80žÜőútáîvÓ°- bŽ•~Zxůd›ç=Ą{ögţR—§JTd>ô¬ĺXaĘ0áúL392*g{< Ů“ł­k-ZÂÚť;UçÖbç…É«¬5ç+vĆÂËę*)˝ë1UÄCşł“G+™µD°yL>&<ďýÂh®Šř@Ű}ńţÉşnŞőَi™î5Qř^tÜ!!ĎÇŞ0¶…á”GśaM<ĽĺÂGË-±E/–Y0qÜĚŽüÚ (í° đ+«5‰ő H}’eÝwU3…€đ Ů‘@ŔHŮ‹b †|CŽCÜ‚«(0ŹWp !/  ?ÍC§ůĎB&§ú Y„śşčÄi9ą¶˘ˇb„\ŇńĐ€!Ią˘äůŮČ6Ë$é.„ţRégć‘cš€$ÉóljŇ{V 2˘Ą—mIÄč*L(Mˇ3="Ź`Š9²‰TSŐ‰ 5Ź‘>Ő.$jólśÂđV8ĆC¦°C2 ÖˇÁ;př›Ztë%Ł#Âf_°Ě:8ŹĎxyŤÖÎ[®¦¤G‡`{¶+ˇ˙ćŮőŤÍDWQ_mvß餺JJ2̢b‚`L*»ś &HËH„Y]ESP8”ÓfŇ€Î˙QMŹŕ-pń,*[Ýp€·JM!X‘°D/<•ĺÓ<ö˝S:† ©|Äćčiŕ3ăе€ă ËlN˝Ľ9ŞňĄî(¶E %ôňâ ˘Ć>¤Ř@gşE€0iT)Ěr­Pö@  3Báß.lÜ·ÝŁ9Ý„đÖťË{ěÉí`W·<­x‘štŮĂ}‹Li> ň~]ČŮžg&v:ÇääN(cÜX§(ŰVţ…%qŶÂ0x¤)#4ľŰ±şQČÇbąŽť°¸q€Ô*I{Ţ‚mi[â"ô^./ťĹR¶űÜ™vÔ”˛. ©‡2ɲ¦.Ę<Ň™ÁA×vŤŽě‡‡x&5©a*tÉbęß–°Śóťř˛Í’Č6]”7iŇ(”˛ĺ{ž CUŽ »ăΨ§ÄŃqÇ„ľrĘŤŕ|Ţšđ»^'˛LF´ăfśôóz–MV&Č&ő›Â`”“ý‘$ýL¬cÄt2/ŠhÜ1k aIô!PÇŚ˘łČ'rjĺŢ”rŚ=Ůő5–šKp—>ž6&ą}Cřú±nĎgţ˛kĄ# ŠŢ§VŞ5ŤRŁV[LÝ'-茑Bžł<‹ iĚî|ćSv"ţ`ę)UŐĹR˝Q­edš żţěóFĐíQ ĺšĂŐ$V\™^ŢyV‰'t‚Ę!űĚw"›uć˛ŕW´Lcq¶˙0wBÜ‘ŐË5Á§¦ >3™6¬*™~B$´aÜĘ_VhüÖâüLŇřTIJ-hç—S@hdű‘f޸pµ–âţ]›;łÔö\·/Í}¸APÔÚÚ¸ rV×KŠI°‚ŚIákŰčő ¬×î¶}Ć,Ósi\”Ĺć™32÷mt–ůŐ:/¶Ěč ßĐĄ ”.H†Ť‘âmצÁ†žˇ‹WĚÝď„ÁŚľ81‘]±´őDí YcR¬ A9Şb†»ő0e”üÁčľs“ÚgKĚ‚Š´Č4MŁE¦ŮX­Jď’<˝Zű¶<đŚNűÔ®9qé"°ýĚł§ŻKŢńśNU¦°T5±îUeeµ’“5Ů'Y!9  «•ËÂßúаíĆ ĎřŁ éFęTŚ1˝MńÁg}=i6ĎTÉOĎÓ›Q"_E'$ł×alÂĹş:ł{ÇE=„ŽĐz|ydNr|ö‚Db÷ĐuŹĆŤ¸ÁBţ‘đ콣¶l¶ÖuÝ®ÍcŔz˝%wÖćęÝŐ´ŢýxTuj=&˘ú­WmóˇVçU?ůNšću#‹AC zw9f+aA"ĵ }Dä°‹PĐU}y‚^ÇA’°č󱦜mÝ1DŢkȦ¬¶®/$ŚX)R„ |ć»} Ó¶íŇŢ)Ŕ1?<{\âýF“Ą¨n cśŰYßŰ^ß dą+¦1€ĹxXö 9¶Ź\ĎÚ1<ŻđąůŔ®Yzl'HÇŤż7ÚŔhß©`Wimß#7&S»2šu>Őô\î.ťN?«PI17„čQEe¬úXľâmŮ”<ˇ›˝B° ůA°BLYzÍ’ř ‘¤‚\ŹSŤŢ¤Ó±xQ2ť WszłTY*Uu!đÜ–…†/Ăń+"ŽÄ Ç÷H&Ć»@z>Exkű¶S H'˙M”xÝâá@ÍnűĆł-NX0ÜĆ(h)Cˇ:fÓkă!pAŮČ­»ńV·óžşťŢUż[Gv\ëôýršĚk‚I‡¬›šč¦’NO˛AhědĽçézéyUÍqbŤ/î@ mSŤštncŢłWĘ[ŚÇőĆIť.S§kl'°Žś•n/ŁżNśżM,5Kż`]¶íÔűLrbŃ؆Č\Qi8ôK©ll˘ź®”=atĺr™éÓĎ„8(çOř\z‡éôű;7©Ü ćTx1<5ű±SóbxjöŐ©qÄ©9T§F*|—ű=w3*Č6?/×.„•Tćă+˙Ó›·­@–ĄŽ˙Rě"ÇĎ/©«ÔWń˙Uéç§ĺ™<ÂPB1ęâj}śrqB(á){őŐĆŠT2ůŢ›˛ůޱyÝ$†R@ŰŃa4–•ÇÚ^qVőÔxVç;ăT’wkĂć(śŘ·Ň‰€Këčŕ1”lŚe4DĂŇŐ]÷GŽŮó\Ç!~ę˘ç›J‰č¬°ž˛z|§fĽâraäd„Ź·\ţ˛¦KĚg&ÖŹĚĺö¨±’éR=y3Ô"ö±Č)Ůđ@MĐ—©ă’ő+¶pű–Ë‹·>Č«âtĂ^:4÷°PżËâiv/0ąá…:mČä-ġQLk×ě}Ăě<ÝëNÇűĚ·ýŮ=ô˘ZĎă{í"J7-ĆŢq˝‚Kń‚|*8+cŞ_/U——–KőÚ¸Áv=TŤ•¶{ďöřt[h±·Yž2n‡Š ő=c0(¶w.> f¶c^ä=^¬×ž Ő; ˙9ĹöŔşá‰Ývť[\«B1‘ --WářT—ÇŞ,)l+̶]wĘ#ş\Y*5—ÇĐT*k/ŘšĺM·IjÍfłT‡ť2ć Đ–zGŃ>ĺ ËMD“­Ť™ţ.oĂ “eC6Ťţ ­Ó±üă‘ Z›be«ÍĄĹR­:nj[\Ěj}84lkşá›‹ XÚĆ8n«šłŮł<ËśjoÔK•ĄĺĄReyśčž˝~O§‹şü GčfYjąT]Ń~9łéq´lBł9d— żÇ¶HU ¤Ń»&˛’ýN-¤łřŤČm0'”Ť3gç¤Tď#[öŕ&3í‚îbxmŕ3X;˝Ą˛%Ř™°Č:›ëwšOę÷ŚRU}¨5ńŁé™őÚ¬ÜÜíŰ8.^ëü_}ó®{0RßÚ¶qŔëaO?AĎ:čós"P|­Ö–çfb5ŕĎâënHn”(KHߕڠ…˛Ą>ĺ{>Ĺ"ŕżaĚÁŚd5üą0,\!¬“(^αÔ&pźű>Ž…hĄü ´L¸g‡—Ůu›#z•ăb8čŇ3"HO*‚h Dôş>l|LSÁ€ŔŘî‹aÓ †®ŚA«(·"ým—ë˘A’ęÝv˛ŚťÁĄ9˛@7T €ŐÔ3±ąkîěînĎ1żçvďMQ…Ú¶{>Ă(ČcŠç‚Ř‘˝±ŚľoA]p9dÓ,LńR±»LHi©§CkČ źÉ÷L=›f$jćPčĎ+ü¦ń?|otÜ˝]\­Čwxú¤ŕÁBŠĹ•ţ˘©1µ]dHť‘~ć %ś…¸Vf䀅:v!ŕąPµ÷$5šIş|žRťCÔCËeBGŽW5E‘+°BŞ.“zně9H™e‘&;ąÂ (¤Lhٱ) rÂ_…ŕC5S<©” ôÉBťC5Râ- •‘)}±Đˇš¨0Q%dۇZ {¨ŠîBĺc¤ďE ‚J]ˇ7*r2óF(m 5¶B[+TÔDˇ”1” u1µ±Héb‘ĆۤV±P§Š~ʼn…ZSl?b¦ŹĐ‹bŁŕÉŤ4źX…ˇŢ0ˇŰÄ íäö’,ÍĂ„~RhˇCµD<©PAX\˙(´`ˇÚˇÖÄFúEülˇÁ¤+0Hč±ÇFE€I- j¨ţCZpŔbR~±×®„{1 ňĽQŚ)á]΀u&¤ôb›^ ç’*Aś))<ţšáâž-ŻeľlJ&äčBÝCń9" +ĺäBŹŠÇń=BrpfĄ§Ů47;—4PO˘.ř§S8vşd1&jS×ňM)Śř¸·ĹçőŘŹbYfź/¸™RířľçúV_wę攼gǰ –ÍE82Hó;—wÎ3t¦B•*ĺT0äÓbC>aőÔg?nĄĂ3ś;·-ľ6Â>d\@›Ĺß\\\„¦°ß(©Kžn1 şôP“+|߆5äö“ĘĽnPĺ72fXFŞęiV˛Ř‰ŕ"Č÷ľŚtŁÂ*P©}ąĽŚß˘¶$2Ň=1‹‰Ć„Ť zPGtZŕCsßb˘HW/ĽDĂ éTˇŚ˛pÉďĄA»”UVťo!cŰd•UŹgk6™®ţ˘şĹIĐáfcµ&3oĽŔq¸ÜđU´ăl·âÔá&’XŢ©$Ń i×0±eâq{0Ü™,âÝŃŚÎ%·÷tŔÍKTˇý.›—e¨@c9—5<–Íîi™÷±ä~,ăČĘrz˝ĐýúxşOlŚţťÚp§Cp 퇅ĂA» ’›mhĂ6 ĂÝ(kr™ró‘ 4°äĹ“˝Ú`ďî xÎÝąüńŘRăë`fb©ůmÜŰHäĂ<&жó{p7‘·dşÎ!ä0 ‰RD6жŃébžÄEöJűŞFl‡<.¶( “wŔpú(˝5E ĂÍáŰŤË]ÍŰ{Y/ZŹ đv‹ú$…÷b\‡N™ÔÚI:Uqh@2$/WETÂv‰…ĎÉ" Äe <“'˛#đB¬`­y1ôJVÖ)ł ţ‰ŻE C«,…9^™¨t_6%*Ýt¸%źü:ńě VPâ(v¨5ËJqÍjŰźÁDß™ÍD?ź‘;^OńrËă9uDʦđ?ĺďkW˛UŞéçří»dłg¸!p2ę<đOďPÁv!&ĆůÎTw’~ż}ŁoÓ@Ô Ţć~ßĐ€§cń=¸Gy †ZĂQę°i±j‡ëCOŠŞ4VJK•Ĺx¤€ţL-·;î™6ĐäŮÉy¤tQ…ÉEËę+µŇbµQ3ĄóC m§ů“j¦•ţ=C MŹ:€óĆŢ úNzA Ť}őŰĽq7]÷ŕXŁREިĎqk8<Ö°-·mŤ™î¶{ČmĂ<Ţ"+‘3ođP=ĆŘW¸çň1żćöý{µ]kĄFĄŞ_myÜ RhŚy3ÚůdP©ě›"’ă8 çö tŤ1O}ťwP Jµ(t­qűvĂÇ—ŤŰ[bő„ѧ{_+ŤjłÔh.cxÝĚéÓ§S‰L˙d7 ''ş/ü·l_đfE4ŹŮ:CtŻxëh„íŇ482eQP– îp¬1K`‡Üb”14ĘlĂr:dţ›»¸µľ=ÇfNźë¸Iĺfmąşp‡;nÇ-7——őfőš‹ÇŤŽŞsäYC…É3/†9mwަ5PµZ_Y\^i‘şÜl ťjˆ 8:Žw˝uíĘ\ćX4)5”¬ąŞ!ҦHęĄxa~Aź =Ăń1ŰTܨ, Ú¨Gí=A!~MĚ_…=Äf:ŠMkŕÂĺÇÖ3¶ët@¸ˇşçđJM×…×â`ĺ]{÷ĹëŰĄűrV\-óJňőĹҧüý<ÍL¶]H‰™Đ<['{{Š9&váË©TáeGŐ™i”™rkă˛üľ|6YŹ1V¤ŃęĚĎDxá~-‘%E¤ŢbĆPg.•*g3GNţă¶í¶ç™c8®áyî‘ÂĎě„Č™ŞţŚBÎTĹ]ě#|ŐňlH0ˇźţĆš0ó˛Ňs TsĆí´Íy6h¸‹…aâ iRŤx•BSľŁ›ÎW‘8†•Žđ‘Ě%ŚH§dmŇezf˙E¬¤¤éń§ţÜ>Áy˛ůĺÖ›Ăâ)n%AŃžđ’_/yĽk‘HÝš›™3=ŃĄÝvoÓ$ĹôˇÓ¦ü}SţŰ•˙R?źDłŁ¶üWÜ÷>}Ŕ˝RęsĂGMúĐ•şžI$,lQ.g^ ~HĹ˝˘śnú``Ľ›č˘ c‡đ[‰Ţ?µ0á´ÜT!żr8ĚE lŃWi7čÂyéÂdĺ7ŹţĹĂKną–#&f /Ąţ‡†-g‡<˙¸ÉoSްčd ĹâC·n{@ťÂóBWń°1Ľ˝›t–č+ÂavŔ«ĺŰ))•‘Ţ!'ë }ľsµ+&Ů?c€˘µ?Ľ‰ĚĆ.źđ€ß —ŮŻ‰5Ć#«^¤_ÂúG¶1rÄŠ¶aßÜÄ$aÄFę »5§ź‚´‹ćý*ťˇVV+ŐŐ㞠˙şŁŽ=ů[¤2©j&Ľ4$­ !al0Ň ä-(€LčyĘÉ/†7LL“ĂHĄŤ Ý,†%Ă„^ ťÁ Љ’A"¤ĎD—HIaJ‰Ç™$ fa ) u€âŹ“ňeŘ‚ŐN0Ä™’·cá=đ¤ Jřd`d‚żvdů&bý¤üx©ďs™kÂ%Ě]ŚÇ[|ŤŠ§Çš˛ÜX,ţ·˘ßFP©»łëęŞú"ń—5úۋǼw˝VY’Q]J=s,î·ű\şľ×Łokäéá…–o˰n©ÎmkV±×l>nń˘› V‡ĘJ #çjŐ4LŐÉďYg‘”]EĽă˛>n<™G0o<ÂXp“—‡™űÉ1ŕ¨XfEŁ*7JÔQUşĹÂ@,Ű=<ŹŰRő6ún¬ ™aŁfŹzˇ„H1M3V5‚ĹÇoԳү ·Ú·†ÉfTO‚ĵބ•¤ˇúÖmL¤ŔĹđ™ĂYa ăB&tOtVŹă}Ń5La2@\ľş˝>š"ďÚŃŃQŮ+YŽmPŔáŮT šŽ]ö tĽ¦°Ť-©‚®PBX"Í^–Ă’ó3ŽíP§Gńô<ĘŐĐĺpb0!®`EAy™”Ć´ľVMů73Ŕż×Ašî€¤;<ż\q,ĐľůťĐéóö sŔzµSăqőá7w6»v§é˘¶?/^®ÝŹŮ şřXäšßş´ŢÚËĐN7ĂôyĽă 8Ŕ ˛qTcŃD2 .:Ů!Ó´˘čж»«„k„ĺ{IĐkańLPńőćä‡TJŐĆU«őćjCć‡tlKkű›’ă0d71<;ÁBä…<Ě!cU-(Md˝Ě®R”rBꞌ°ô<š›˘Ď W :‹QÜ”tüÁřxç2 }Q™8\ô%’‰›y2q}śL #TpDYTśS€öžFŽŤÇŔÖONjȢmJJ.č'+¨żs˝#dĐ˙=%ŤZü5Ľ=!^ŤËY÷:E¤:ÝÚĹŮ pá- ĘŚU;7řđs'/SôÄ‘ŞSŰŻż·•Ůîq”ŘĎP6¬¨űBáíXV*Ę ?Ä”"”°®C'Z ( o 7eëx“Ěđě‰8Ď 4Ą%„«“µS%Ęt›“»Í´Ň;J™y`cé—Ä1ív˛rk€y7dޤ e,!ż„‰‚úŮŽ&Ă·@×7×DĎĆR(Őŕn(TL5kß|x|ë±1fŤ´}yŮ´- /FšˇëTU›…ň΄¨ł…¶5\lě8, źi:§ŕ±y–QţŐß‹˝ÓAb qC«Z[’uĚÇ—qę.ʸkCÝĂběâ!šąQÔgBűP .µ†0áX±5ßôŽlĆ÷ęŤöúBX×q 0 Ę1E‰‡Íqay©d˝wďˇ'“Čö ń Źĺ˛NDuK54•öa÷{űU‰¤Ü’N˘(w™Ýpŕ§a€Îg ňB—¦L~ěŽÜ‹, a<Óő‡« –ú„H‰5Ľn ęˇeąÍ™ŹY,Cd]Đ۰Ť—›ŇUQ‡1¦xĄfOŐňCożacz%r? rÖăJÎ^”·+´Ńqć=d¶µKťâą?ŔŇłsŽ_`(­Ó>­¸ZŃBü0gם™ŘaBäu gŕÍ·«dąţę´˘$ÚŻ9É>ŐRĄAŔµŐĘâjc\ťěŹŽĺ2ňĄ‰‚CZĎć0•Řî(ĘWbómŚó;Lб*M ,^Y­Ż„¶xEŠq~‡ Î’Îóśş¶Đ=äFŻY~163ęIő4Ěcő¬ĘÓ㓲‰;çňÉJŢÉŁXŁ>7{†ců}ŹÓ]ŚśÉŔ¸; ąíđ#şíľ|Ĺ|Ĺ®|ĹóěĂĎ|X–áS×s–Ía*8Ď$ :´!’éGeĂ8K.1Y$‡Y Ë /DíĘŠÇ{űłĘŞ…úŁ‹IÄA(/nâa1áR_±Ď»ŁÔ]a÷üÜ? Ŕ›g>çˇěp( .e¸Ż *‚µ¸ĂŮŽŘ(\ĽšŮMnZĚ™Cmt` ’ĘpąĘłSłçóŠOŞť¨•ąÎ2ÁFzYÎAť/Ôi2P†b:'X¬˛dëQdyĽ7Óú|ß'R·.¦pć 4ľkś <ËL5VëKcxţźH(FÔI1~*,8žĽOŤ\îły©Kd.Nd;e ™ęę2S“Ž!WĐšÔ+Ęv»r̲ÕĹR­B Kőq5 UÂŇ« <)@´Âf”Ŕ§éľžUŮ ˘IHpĆ HĚč2)V6ĺŤ#›‰ľ«Ń¬Ô [Lľ 0ŃXkőáíŕ€ł=‹{>tΆoĄˇř¶Xî‘>sýŐpXŕ"{…ůŽ[U±Ż~hĂ’Ńé ÓYóJ2< —壭RŹŰ†.äŶŚäśGÇ÷|w!ĺ1µBBüŇUŐ7]7ĽˇŔîËZ˛Lëĺ6–Wëů*ÁL!•ŕáëž…`?j˙%Nó¤íű\ʇűíâZj« ¬Vzš »=ęŃN»¨]<ćľÓ›ÄBÜ„vZK`7î)ţ8&äic}Í:eÚîmx·íŕ!!YÉG×3Ť*S9Đüa["sÜta“P"4:Ä' şĘŽđ ÂQ$ŁmÇS'&§ěgdě#U?Ă­’!™‡I7}ýľ™L› “ ĹŹk&®h0 0xÜ÷…Ŕoź(ůťŁ‡ô¨VĐ[±¸(^đ9ź ŚO ŘΛí' GËţ‰gĚŮ6N?3q‘Rŕۧ˘/X»űömšrX§<{Bd\źě:Žá*+<$ëZ(°6 BYţ•(…_¤9$“óAi2AŘň•·EćdD©!ˇű%L®8čb B˛¸ŽL‘ńŚ4jŲ¬{™s Ň=Ęőł9)ýG–cöô‹…˝-ˇŻ‹S!Ű^ Ë÷uQëlĄ"뽥Gď“A;…´€|đž•g]Y­5WkădűťaŻ ‚ ŞŠOw¦éáf⤪Q ťżµŕ+ËXe•e43f‚ on`Áę2Fé×›÷2ĽůfĆ yýÁ ËđŕHÇŽň|Ď@?ő=˛b~@ęmT2¤ÄA[Ş„ů%$ŕĘ÷3Ţe6NyÍ*|e‚ňŚŃ.Ţ Č,´˛ÂŞĹű"療/Úâ‡ÜvH´ĆŹÄ”í§ĎĄ±=˛}u˘g™ŻÓ·‹*"YŁôŐ8Đ”ęĆyÔXdödČ?1ćhnŕŮ"dŘu(řQŮ—nďňÝaď–qľ?_Ŕ­hYŇšÎ^…šNQgĆ=:v ą˝Ęiâ­r\ Ź °ůĆŻ¦B«ŢziogX0ý–íb]*… ö;š˘Ń2úl!QCä żĹ‘5G‚¦cdcJfŮúŻ\ˇĐ -oRÓ‚ELłúnž/ëĎXp`©"Îť.O&+ŽTV+5VšËĄÚrŁ‘Z•ç —D”mQh9Ď۶¨r)čöâ·ł°0ď6Ňí›×Ůľgô9jÁ˛6–i:I[Kn;QdÔăg†ńkXřYUb]xČo}™J `3[řď˘ ?×"`eúçB )Ăůçv{–3yüŔćdKöx p´¬ŘjOlîĂ…ücT.Ř-[p>–"ŹŤéÜKMĄY^MĺĽ*oĂtéę˘*::#"Ó0ç>¦ŤŚT)‡sŹú¸€*Ŕ-ĄÜM“r]KUNGźÍ Đ­B”U@ě­®V%D™9đĹaÓzüWI]Xś´Ä$ň'0BEŢĺ&éDěZ˘”(]GťÉs^<Ú;<·!Ô;:/TP{rvt ™8ŤQ&ćt1sÚ<Ďi´h „4±ô‹«°ú•ĹBiŽ€/ cćňŇTĚÜ«Ĺá0ťjqüäÉ׬Ŕż:^ŕŹÓ­1b˙›µQěcŇOĘ=YˆšN±•RM7×^FÇÂÖĘFNËW)ˇ^dp±-š­v A4ń"t°<¶çaąŚ!ďĚČÍĄă…̬w¸mö,¶~çŽB«Ą%€fqąČť;*ź¤ď‚¸v’gę9gŁv;Ve_5ň\ĂŮőK—E[•o~ĄŚÖŽ^ŕlLź«Ď‹^ˇu™]˛˘âzăÝ˝­°5P@Ě”»Čsűlăęó7h©vžßxţF*§l>µ2ç qĄlČ+Č=č”­ˇNm¤y°F¶·äo§–#Ë;ÄËŔAYGM0 ˛:{8ď˘:±÷E0€Ô)u¬ľ@Ú†MáD{cv8Ëţ É O0Cp˛|«Ť•‡Ôagp(‡‹0Śr8r鳬”Ćp@ÁÁĺ°0ŔUň™Ŕ—€Ţ0cź'f ;“ß6ů`(Rä¦lM†9—ŮŽ+‚1µ¬\ĺ%ŞŚŐŹ†č!ÔŁSýw±śĽŁĽ Ś„Ť03€ ĽA05éqä…x^÷ܶŃĺv…TÖÄ-ná”vPFCd»Jµ|*Ě#F{lF$:bÁ&YŰž™čé<]ť‡żjřWţzţ˛ŕ5â;J*`Őcݶľ?ߨ ”˛r)8µÚ©es#·ëÂî ׺%A™ ¤·e 8Ůěj«Min3Ś‚ÜWuř¤™Ü·Pd! ˛ĚjUЬW«ůAěo.¤\çV€¨X'MyS±ë\ž©§i<ôŐVąAî¨)"ČOů4k„WŞ]üĐ&blI÷äŽ8qDv%¶ĺÄ%)í÷DĄ¸%*h ˙3WU=  "}ŠÖˇŇ/P:#<Î|´nÝz•E—5§×+;®6î†!Ë·Ü#$šQíě k˙Ľĺux‘ň"PŃ;ĄVĐN†v§ú´Ü6—ő~­[}ĂÉP’c­cçÖ[Biß1ĚŹśŹź»,+˝ÍűYÉrţ„•[-GÔÚ¶śN×›t+WÔŁľ6· â“ÚňlÝrď€O?ąë8nRŮÓKFŰÉIÝSW6ß÷2†6L­Q%/ú9@s2á\dŁkýݵ6]Űő6<~„0m]’vÇŠÂî4 ¸›żŻPŇ$Ň›&`ţřÁíÇ®„ŢC©ŽîS‚7ʶʦ!Óřđ'…ᤇ¤žX8ĺ E}˘¨2OC×¶P~©oI¤ÇCäĺŁX*F\đˇ¤Ü-c?‹lwÂ:bůEńŕęćÉŤ8c•(cOE3÷ŚE•0Ú5Bó¶Ďéóp mŢ~ЇĹÁ,†f™]ňĺ“Tĺ‰ŔŐ9µ¨ §1 cŞ«é!ÄŐ=Žă2Çâž60ÇŶqWb¤éą4"jďŢęł •ćBµąŔ]›Ä´~ŕ’ äçĄ+*ą…—3 D]đ ˇÓWŐžă@BfÇŤ“e5ş˙Ůö`Í`+űĺ[__‡żiď•6[»řąµ[’o*üE2ŹrkF~е~ ŢŃ[_wáĹůQń=olń+r§ hÔ»…?äő'ĄOżeěbÔo&Ż_ĆÍł~MÍŕ"‹=wKÚéĂ_$Ô5–şżWâÇm”‡ˇGükŢÜéÇŘH,óz^ďë®=ꢵ3ő&ÄőĚw!~Š-A^§Ř]ăë“Ćg­QţíJđf¸‚?vŕ{*[Ny ~ÍhjÖŔ6F;áxpR\Ô˝ »Ő'ś=dćüŰ0>51«P’µ˛" -bÜů3†oZ–€Ř*(P^Ńw(D[ dť>λŘň•űś ~ň#Ű·­ÁîĹ­ đŃěí[4cŚféó±g¨°ď·\ź&xű†É×=nĐhךݒôojů1Äp¦Š‰áßŘĎŚŰV‡Ô@‘ëx¨Kˇ™ńăąĐ€U d®V1ˇ«ŮĚ‚Üđ‰% #Źozń3ßÖvIÝô?óm ·JŻŹëĺ®?Ŕa» oj®—¸u­E>âú‘ąÜ5V˛Ż?fźEr>‰ÂXŻ]®Ľ‚)łm—Ŕ}ĄĂUDZűĚ ß•ŢŁë¤“–ah ęB§s%Ł™)*××÷.aćI!QđS}°ž; SĄ=bľ‹ľ\Ă!ěčŃźŢ-űtn<¤ÚQ€Ąş_jĺgM«®˛¦›ú«h`NťÇâá§z+đ Ë‚pţ·.D㊠ ŞŐP hůµ«ć6űJ|FÎö1!FfTta˝˘Ü»ů‚dVĐzT¸Nś8}Išpâkó"Eă5ĐŐ5q¬™<ÓSÁ”0QgR©Ż••jĄ´ĽŘÔźźP-=}huíPT{Z8cU—1ú¦¶RIŰ*]K›4bÖá”ĺW+KŐyaŤťgĎÁRďö]w¨§,ú4e„9$‹pY§$ yth9#¤PÚ(:µłK Ţ‘ş 4‘$7›xtĐČD‡‡&Ě,ux¨]„/l†Ů lyác˛Aŕ%JרÉ7nIŁhB6‚iTj&l§ ^*ÖKbzç3ÂI˛ĺ’,»Ć{CµŚRHEĄ_<Ĺ<żť¤A'SfŠB%¨µRHC *@clxYH;dAA2 1#Ň'FŹŃ1ş  hAÂgźŃÁ/4fxÚcĐŞpČ™<á…ž:<Ű)ŐŮÄ[8—Aۧ˛Ä{Żßť9¤*Ń}%hZ ą˘>ř»4Ťä 1w)É(ŮťN÷—žB˛4Fzz—6äC2uQ»|f×ę t•ßrŮÎdŰQ2Čúph¤“ŃlRI^<ůÇîÎlň‚ĺř2Ö|ł'péĺ^ ź*R]C÷9@CžXT)żXÂî®ŰçĚ1ú’)Şë)Ř k©č/ĘűnÍfjľ_˝hĺ$mŐe‰N­a†Ś~Őí ÚŘ–J : ¸d2!Éwřˇđ”Fă@ÓˇĶÝ#듣ĄÄ +ŠĂ¶öp÷ $}™—”J!Ôů§ĆYSDĆnĚ2CXăy†™ĚŕűřPÓé|yd‡©Çě0QâqXŘ7žr¬lJ3‘˝&‰‹uÁʬGďŇ: ¶¤řý=úďXnXÚ·ŕ¸~—'š—RO‘0đ€^rý"H9)Ú2#öě HŢ:9•lcH<zÄcĂ×=Ďéň+˘HÉ=Y é:RČŮů—dH4sÍ0űČŞĆ)YvťKÜjŁ#ŢKőK-ŢS`tv.yWíčź<«łŻ?¦AŹ)0˙ ††,Ź•/ÂR5† Ąź3qůçd€}.3,¨…QĽ;ń+OŘP°uĎęö¸WĘĆăŔZéřĐë,N`ÝöÝ38rXÍĎ`¨—ámćeě¶<'ăËú†c P~˘(2ISUUbŹĂz™a›ĺČ袋”ŞYř%ʆŚ? Čd˛s*ÍÜŢ«öiµŠQÚͶŤÖ¶{űZx„ÔůĂ˝$XYqn°BPçK¨ć ĎŔDn°‚P¶˛ZËOôşË¸ňgHSµ,^1–ţkśäÔőU†¸@tq%}Lo&×tůÇ…rÓá:Ą}¨V®ŐÓX‚Öbę_Eűĺé$”ŢĂkč¶xe5süřžŃʰ+.憜©®¬č®Ó“7#JŚ#ŇXł‚ÉO'bŚC"Ť}ĘŘa-ú#W6ŠeN„"oÚ ÝPL¶k§‚·µ±c:ŕöĺ«××7ꋞ[€ĽřžąĐůh*ţ9t`lĹ®[›ŹÔčŮŠkĚŹŤ˘źnCDjŃPk­8ŇÎú´6Ý#ŔV\ň`ĐA}3a˝5_†ŃBŹC¸ź,ÂuŠ4•c @ŕ'TÂP6±€HGt¤ÓŁÓÚÇ”ľUőÖšĽqg}w(ťáĄÓN|]rýĺ‡űë ádČ\1Y5ZźĄ(ĎqÜ•uLümŰuV13 ÷É<Ű)_/Ó"Ń®Äď›eą7٬ľ™gő‡;}T·>śRýeősŕ“ä©Â˛uĽeôśGoYk~ű[ś˘(a73Łť¬4‘üŤ*lϸŤŘF싇„‚ZŽčśŢ6ú¦9›ŕ\ţ®śÎ[EĹŻ‹›UŔ»Äj5dWcŹËfW:¨Č±Ů×ý1±~Ęéd(@é5«*¤Ů›âlźš†˝=h97.ëü+ôd–p!ŘŤË t“Ý>¨rl¶?×S±†GŢřű5ĂŞ†*ł> ˛.‹Ś†$<9ňĘ‹Ą­f.K"ŇşéĚŰƨFL$'HK8ÄĘi ŤÁ@…{C‚»© ^Iëé‹ő,d/ü@–‘Oş2ßof¸V˘CN˝Ă×^,âýéŘx-KäĎ eĘ4ve۵&Q¦:"\ĘtËÄ=Ł5ß!RMVT~R¤Rřľő÷ü®hÄsńÍ7*ÝŐË.\T z¬ /¬¶ĽZÉŹAĘ!Ä/c5Ái" 8µ^ł”xR«8FSř´ČÂά¶Ä]ěp6÷ü<Çö8®°á!xę,äľĹ;ě˘í¶  ÁĂ Ôy¬—<ôťnĽOĎYž Úů̧lˇFŔ—ĎîŰŢ“Ţü¶{;i+ĘšÔs+‡ăÜđ{\ÎéŻř=+ä8k”iËŢŻwk_`y##'_5öé‡yé­÷†ęäĂëĚçĂT*/lîv¤oěcH2ůآÍI3é« Úő^f;0áeóylđ#LÔtee’üq4R®On^ÖćŠĘ†ř„lúěBZę4T‡ÄIîĚ0 MhXř}BÉĎkúŘęgÂňŚx¤‹•gÄ–ô8&0iŁŤ©Ňť&xđÓÖąÇ2|µ&{~=϶6.G Ľ‰ňŤ±¸,©›Vk°[»Ű&?\FŃFť4e…˝ÜĹO^™3 ŁÜšcs¦HR‘źG¤ĺŇ×N[üĂáp–řm8ř­ą™9ŞćiŘ@ëJôKÔF~˘•¤ĎÄnŇG|I7©Ç ąsH˙â­a=ʰĂ/V{` {±q8őƲ˘‡†'®‡>2úćŞl6ř GFţ;ěŃĎéŠŮsĚĆĂ ÁۧľĺĐ\ĺp2 üó;đŚÔi•đ<ńÉuá#Á‡B’ÂKŹds9„ÖĐ<’"ôű_MébüIću!vŔD§ővJŇĚ.ÇRâ¤Yŕc"ŹÝ+ç¤\Ůzqç$ô¨WQŠFpăüŚł×śs2'6ęĺ-ᩥą˝fEŮI=‰ËŚ‘dߣÓÝAŕy©řPe‚9ôf`Aý>ęĂ{YĆTX#Ü÷¶:uq@Ńz©±ÔÄŞ¸KO‰°Ó‰ĂY2ŕ˝´XäfŮd§»m®ËZÚC®Đ­| ¨ŻŮ.ŕe b/ eŻk(Ý,]˝e˛l´†.á&IV [Č"‰ k_ťťÜcBë@ç—DN‹F4Iʧ°s¨Ę 17čüL:¨)^$a1ÂôŐ¦áy÷Âř¨˛Ő×—Ž´G…de;h{V‡‚ú–gXaT% \šU>{FŐrŔĄąűÚĽîEĐŹe–ŔV´ÜĹűň¨đ›>hˇđ©â9s^¨bw‹’Gl¨Řý]ąµT™ «t,ĆF±‡ÄDu§ä›{śU'&~oëWĐŢé]Ę\” Ż®ÖsĹ÷ĽÖÄÓŰ RˇÜsÇË%É…K(ĽŚ!XŻçřŞ ňŤŕcś&oŃĆ{Ř ú[ÜłuŽR«TËËĄtÍű×M3 Đŕ«Azš6‡#ŔÓę´éäĎÄÁé ©)CuŘ™ŔĐ2rŤ4ŢĚi'Âĺ‘ű‹aI@ĘNtź2 狆—™Óč·î r§pNĎI5$”ą9N„ \GŹeUŹzÜQŔŕÄHŚ™ÓB¸Í@„ÄnKQRĘSP…uir€0.PÓX\S§ĚvSŤˇM´XŮ*¶í`ż÷łÇ^ €Řq,µ Üř'ÂE‹™fN>ÇBń¦çú~Éěqó  WŐ{I®z­[°¦†(Ą)˘»DeŮNĽ¶Ľ¶/ިüúŐ śđbîoňé ŻV«PIKĚ{ß0ś´źmŽŃ1Ę@€«5üi¸ŠĎxѲŰi„đ÷ÇŁgj‡{¨FÖSkýˇDës®řTWî¬9ć~Ů4t3'ńEŃxŃ·”Ĺ+ÁZâé‹;Ŕő4µL+Cu…’¶źÓëˇr¬b¬M±.Íjv)ŃŚwĽnh5?şë-Ů|lĘBAş#|۸3ÚĆ$Ů#íćÖÝéMw0˘bĂ)utŃĎ5šč„ě"EާńÄÜŹ Úµ÷î¨IζÎďn¶._ß»|í*»«ť‰ÂI°"çŃ×Ô×—+%ËŁ2EÖô@ĂbyżÜŁkE]';ĆgţÜŽ˛Ź ; Ľ9MőŽÚrÄúĘĘÝe+%ôÝ»‚–řz®Žą7čÉçó˘(áµýĚÍA“GU?»LŚ ‹Ĺ5B`ŇÎÄxŚňŤĂŃ(ßX,‚ÂťŃOĘDŤ{Q© ¸­#gD¶˛- ŕCcO€wičĽíQĐ.±%;Z &˝B îö=“SRW¤Í˘â}+»ćŕ=u#p§tcWżQšăä‡ç{Ô‹Śń"šĎ/Ă’°ĘŁ?SJVvÍ~†ˇ/} őÁ7KŠ|‘3!˘ŚŇ© äwéYp:Şu ޤ›aČoSgÄwÝ’1°¤Ż@´Dť„äDňŔf—(yJş@Äsř#ŕ·o’d$šžtDnČ>A=%i·Á‡ÂuÍI€6ß5¤&ĎSĺp´Ś BV(Ç:$YĎśťÚ0¶ŞXĚ©^ž®ŞHcś8r/¬űĹĚ_ŤÉH)<ômé}Ë×|˙•–Śęă%#"Űc´ŢG´á¤¨c­lىŹ`ЉĺI˝CMŁX·“ĐÍ:ő,Z˛đ#ńRŇF-ŠA`±#׳;G …i˝ć&LJŃ^ťí|ëľ+ňɇ~ö¬0ďă—G_G™ž$čÁľÉÝžA &Öź€rŹNE%7‚VěďiĘqŢź…^xk?ŽőxËţ’p2Ůa·s¤\˘çđmŤjqy`á(fŮąŁď¨ĎĺnŢ]Y™ädąBćČŕXÓ„őQćŮŔ|ć»}LćőE® IČ„ĂcY…;ßCĘ’!'”»®ÁąâŰĽjkp+źëłrî1Ă33 @ęChúsŰ·ôËهĺ±-h-Ën˛kmÜ ú{6/ŠDśŚŔŢ­; á]hł!¶¦+zŇ8 Ú2I;´ĐúË÷Rˇ¬ČD™Ű®”ëe=ěłI‹}žÝ@ĚmR¤/ľMNm‰˝Ö¦_@YĹËk#ŁçşB1§ŽY°mIőYŚŻ ›7Ęł˘ę'•­·°\´ßĆ•ţÄŘHLÔÇśź‰©ňOĎ^“Q{lS/,Ëł3ÂÔ(|1lÝîâŽďőÓyTaÄZ5*6¶PQÎżX¬‹ Ů{'Ëg¬őČVh3 2ŻçřfŃ,ůűɇć€,3Bşş2ÄLX˘Ą†‡[®ĎĚő-Đěń2Ćă m8˛Ą"ç7¤b)ă¸đ éC—‹¸¶n€voŃ?p¤>'č4}ěăűF{ˇĘfŕ“Ľ-:}ěSU ©.‚ŽŐ—±f·‡2´ ňâšg‰A ë¤5ÄÓÉ8Ň«^'8˝&sĽ‚ÉdR¦ÔŞ˛b¦*Â(¶Öܧ’‰#©é–щbtśHc…*Ů™‚ç‚Sx6ôÝ?—ĽýąJ0U:>řrnÜX!VHT—­«’_Ž:%57C!‹‘MĐEuŐńî`· V­Ô5RMGÔďkÖw:›BQË)ŞuÍžMtLŻlpâ,%;Ŕ¦eđĘ0áĆ<đÎË5|Ŕ–ł+P˘Á˝óą {[/¨ť X•Ş«ËţEť"Ý-‡Á¤‰ä`éX‰BA‹”vdŻ©ĚâKő•ŇReą–2‹ż,ž„Ö.ĄM“0pâ»e>- ľBzÍ*n,ćĆE S}!µŚ¸}›$.nx6†DI›!{µĘń"ŔâN¦ë¨aťDţb€ÇÔ!’€¸ÖćÂĽOŐ¤„ @qK0©a %×}0×îť»Ź?Z Ëy*Lěd0‡‡¶CŢw»oë~ßűŃb^DA&ť™¶Ä"ĄŻ–ŞT™řd-‚”ş%DÉ3wâ‡N˘ŘëT§(ľÎfYh'YbŐ)–رFaąĹłLł/ ąZČ1(™gÂJ•Ş,ĺ‚— (ňZmÚ !ŻŢ@©×s¸ŃĘx–ŁÓhÁĎÝ?LÁŇ-\V’CΞŹëĄBwŠĽ/Ś7-J#ÔÉ@% |yßďm őÝeȇ–ČŹŰ<Ă7{Öřö{Vßöh˛;@üťŃřćÇÇżDWůÇîŤŘ7p:´äq§7vĚ+d?ąfóĆŤ[ş““J©á“îń”„ńÉ„'ęăkHÔ#Ç­zëEě¶°~cďҵÖnyx;íé·¨pĺě† o‘JQN7±­zţĂoŮ=V4wÄ١8f×č¶Á§ž,˘qŮ/SľĺG7É|*ńcx>†Ř1D^8˝?Ä•t PRa6Í *ÚO—OYgâŰHá’ž †Ż¨`x­űR"ůNÇN'ü@^ÔyŽ ć.2 ó˘ĚČĺ_”HĆF™źüöÜ(óq kD)™"“Ń’$2A‹†c‹ŁßAKR—ł±¶ ÷\Ü2‘ Ń,H”:P"&ÉPâVA vUQ}­Ň ¦Eb¸," ď˝{^O{ĄFN˙¦Đ× ÁDĘň«4XĄşZm†ű례Íç$Ëď5+‡N‚•Ä~´ ŰCTßubX-/—ô¸€QŰH㊾˙ümňďíáPV·měńŹcŕŰĄ˝ťídëĎF`v[@á:Ňq±eôěYUŕ$&Ř…ťH0]ÂÂK8J2RńŹt‡tĘ>vZKúYsoŮ'"¨:¬ÉăšŕşçXB\…óëG…ŮÇ÷şâ:š5čÉŽ˘´ŕÝn$ďö¨ŤV¤&{z\¦7:X<4öTăşm@s*˛s=ŕĂ;»xŽ‚·¸ľoěďęµiŇN5»Ţfζ­)şô¶]ŢsDůúÉĂ=µc A•łíéz˝Đ#$¨Bť.P’ŽË:†ŘWľQ¨ßĹŔę¸Â‹8š®Ă®Ů ěboě˛Ř8áęr…Ó{ťÝ6 Ň# ôp{t— ű@+j”Ű% ź0ŠíŐmëТÂIëNÇsË,ÔkäÇpďŔ.(65č5P51{ł`źńµťňú‰ę˝¤hŁÔΨJ•Ńk—Iç˝`ئ[lw‡|_l…óť#̱)Öë‹…0Ľ¶Ń)¶n1Ú¶P,HöĐE˛ vAdźťË&ĺşXöYĆ*+žäq©š ěţ<»ăşóXSúĐ:4RţYzȇ7]î™\@*‡,Úç1b«){ô‡d†ŚŕşĹŇc˘Ś˘ )ż,U–@šiL˝F@“ÍĹŐ¦t›v`y+u-ÂáÔ7*–Í_GŞGüŐ$•ÉC™` Qä’,d‘1­GňA&™`¬p:†l.Âč@^Ć"Fý@ÜŠ«Š_ü3Š®KŽĂběF˙1đ™b(±şRôĐŠeč×%S•ČŽ(?C˛ýB¤ša×/ Ň]úĚ$qގ ĚüĆ Ső&lěbŕ°OġON2E$cŐŔ‰2I×ᑺřŐ¬"VdŹŐĆ%±Š®#Eb‚Ĺ.Ía’ŕÄ®Ua’¤DWn0A42k„ż3ľŻkŇW/dťoĘ‚UÍú8pďľ{î}<˝)Cw‹)kă˝ęÚ̱ô¤Ď-Jź ¬SUV Â†ş^T-/•Şz|—ącůf,üXFB²ÂÁ #\ #•í\÷ܶŠÍěő8,-»čąÁ€ťąŕz}îŮŁUvovžíÝ`/X\·^-g {…E%sÓCf€™Üiă\7í}nĐÚnsÇěÍ360\$I}ě.¬×O2ĎváźďĚ3±śó°?‡žu{ž HjŚRIŽßJ¨Ő!6¶Cf\)ď}Ä6D r>Ę(ö‰ßţ Abi¸2 1ć;Óßެ®,–ę•ŐůÄö™I8ýó‡]îXFâ¶uÎłŚŽ¤CXžsťpŘç’ŕ˘1/QJk*Ž ·.ö.‹©EČZ˝I08Ő•e¬IXť®`JL‚Ęt~§e1SREaTU÷çąCŤĚ[K±'Ń~Ţr®MĂěNŮŕěŐ[IA'o)¤´\DĄa2-Î`Q€Ĺ@bt¦şÜĘrú&ëv6RŹnt‘·Ń*0|™nZ‰/Xް§=}~]ť0i*! \ŰKË Hf ˛/ĆĐđŃs?tC–Ż^ ~ˇwŹ8»$ÝsŘ:âţ«Ž”łĽ;ËÎ4ŕ_éc›ęZ©ťŐY÷Ó˛šKÎcKÍgž19źeśđb¬~¬´ ĚlGGGe:Ąe÷6Ú…AĐ^Ŕ›6t3ŰŰĎáĺµdsťkĺ' }A™Ł±˛Ú¨Ź)Vóď“uf”Ô‰ T=\¬¤(!OŰ)3:J‘9$!dŔîľťµ;…D!÷>SbÁâi˙*g{ţöÔ7çËQ§F(ąKßEaś‡ÍX±ß¦ + P$'¨b”l?E(n"Jć ľfE‘ ™ňxÔÇŮŢšâç‡C”*íňŇ<4`K#4Ŕꎛú€/T˛“ę)š5VkŇä”S˙G$¬ŰB¸Čť;ĹôdPµ ç€âűĽČo;©ÓPí g‘krvÇ:2 öűxŔ÷ąp~ç„ufĚ/2¤-c=©F[ŠE»fŹA)Řoă– ,O„ű –Ŕłőń—R{mĐ/÷ą.çdgbd{č굕RseyéE ˛ýëĚxŤ$tnf ‡*ĎĂ”ďŐĆ÷j…ď•frfnsű˛?wv^ä7úřřCËd\0z•ő¸ĚŇź§x,˙KŠ˙˘\AfC_<šeUÚgfŕEÂdŘ/9 ĚmîîÎwga%!Ä›D$ĺ±tţÚfč7<`ęXůÖf8ŰąŘ伀ĩ¶{˙zśËÉP-ůŽ…¶ý9ćŹúm\2ţĚ­ďn^†Q {ˇ+p¦ˇ”˙ő«»—ĺtlŹDŰŰĐ€°*0k`NźSWÜÎdˇĽôŮÍĎň…¶Ó‚[>eäý÷ LKh1Ď:V—<é];PĹ%5ňL,=&–‘.Ëś+݆O”†3XŤň -ËLŔĺz˛N„‡¬Á"çgd1Pc`Ą2oD U>bçH, á›u|JJĐö,ÍT„§îpńÄŤn~fß9ꄇ#ŕ•ř><PvËŮwE±Śtž™Ŕç(af'ÝŰśž…č5 BřĺIč”ß=6YO÷ Ítjeă„”Ĺčj!q,$—STŠů?ˇgB'9ÎtČ#uťďŞz ˛B0—•Őz>ňČ;¦¬>·é-_ČcÉŢjă…7$Đc··kŁ=(HŻľ;7‘'š˝Ç˝>ö\ †@GĹËühČŢ'~ţ•@öÎŔĎą`/g]ĐżN’Iˇv€rď¸GČę‘8Sá†ë67|,(!đ@ćŕ=͉yÄ>~Ĥ†† Ůę- Ő[pé-`YluI eÓ@J°CÉbN$U„){”lë‡ÂÚFn6wľoľĎÜyźĘÉQÔĐXŹ"Ë ,Q{|jsĹçŰ Ą%Ľ'Šü„^ENŽ0Ţ8bý®Â#K‰›ŃĽÚXN@€w,śeŹ`=öbVvdŕÔýĺ {“XŐža̱ą+ơ±KI.˛T{§¦Âú\B’ňĺJ®q¨á™'ë#šg WŹÇ|čÉ€Eť÷]„RÁÎYî<_HĐÂ?OžÇ’˘%y˙’Ř!ţ›®‹š˝žF»"x ĺś’eK3ű:~Ż5Egü2=ab…Óţ’€ožB˙VÜ3sb‰c¸áţćů&«ź„ /EÝ=Ăż‰wˇÎř…¦"Ë’Ębˇ1d9&AŢĐÔ'n;€© ŁĆĄC‰óć÷ÜŁŘdoşÄa”8wÚJgĂ‚7TÉŤ*úN+ŻÖXÁKu›˛–çË>`%ËbE=E‰©Ť Cű«@:ľôyTŹsBĐş¤›S­Ďx<ŰHáÇě¨#¬ŕbP…$  áJ9żżÔŚ]ČîNř1z4ü§âŇF»ž§¸u'ІÝpEj_ü×~©ĐŐ¦ţk}łOx_eÓ‘2ńhU*MIOǡժµ%P*őt¬ĚźŢ38Yôčń˙šv@Náj*qZźâ_]­'ě ¶6†ČČ !lŘ}Ţ›gs]»ßßŰŮ€ŹhÔ9«ĘNá’SŢQ…ÔäŔg=˛*ć—#Ď*ŢK˛űŢ3ˇÎ29Ţűő´ÜßęŕćÓZ?yőť¸¨Ľ;َ4wĐBhÍŢŽ–°3aUń§}ÔßČ ©édŐĐ~ą[ډ˝”Qq\QĆŘHůžŤz.˝ÓtşžŔކ‚yň+.çÄ–Ţ-qŽkhq¤=ŐIs«¤Ássť’üćSăIdő•AŰŠNŔ4Öý‡) Ý2őcsmů ŚěÖŮEŮôž!»®ŠÁXľZO‹©Zq-n“L?tg0zÎf¬!ęiJZ-k 'żâŐXňxǸŤ#>ô¤=żoÜ.Xë#Ă(Âóy#č ôřŇÁ«ŻţjÉ_qŮ‘©T'09¸oAQpRIëÁ¤j‹Gşˇ b HFŐĆŠ—Ślň&m/ŕŠĆŔ.Sͧ×ăžŮ‚˘e=˘]VĘÁĚÜEkx)hë6Ťj¨·‡…Ź˙oľćăq(ÔS„d4źĎ3č$Ĺp&É Ôt^ŞÓ6‚ 39>çěşo˘p°efľË=˛=Ćíč¶’a è*Č«H™łÄFń/¬í‹ă ÄMµ)ćéÓ¶ź„ýyöó€ń§ ËĹâ͆ÎQ00ěím \=‡Wç`ŞÂÔëĹ6ˇn3Ą 2ËéÝüč\,LPBďÍuř!y™çPíy`}×ެuBpF ´é0őĂ=DťŹB¬ăÔBĘFČcdŤÁ"2ŠlűA,PŘOKšÔ-[P ‹Źd ¦Ľ7Y+ÄßÎ2GKŰăGó,ôőw¸l,Ýţ„ß S«y(łV'‘FřňgBc6 9H„ť(ż}5×eź))ŰŘGF¶¬”‰Tsʍtą”…Ýp#ËPW±)ýC‡–&qľź$I»p˝T]B‡|ŁşÚlN˛ ˙ł±vᬲâÚ88N0IT..9,$gÓ`qćP(Č©=Ü˝7I‹µ­2J®I:!•5(ŁvÓeš/o%Ę×?ĺ[w©|N‹żXžŃz­‹q2­ž›2ł¤ýňľ]cźN˝n˘ˇ•¸™‚ţ_ż~Yk|3»;cíGńňˇĺ–Ş]`d|1&{ -?íĂ($aš<đj˛é,ňA éK)‡˘©‰„ĎńC!4Ýđ{ů ˝gç#“řöX“KB‚˘.^™őż Ëă©ăCÝşŮfŠ‹Šéf*˝Ś ‚kSÖňĐěYăçÔ…¶yE~…T “PŠK[wž 5f´Ŕě\jůtZ9Y´ŮE9JäIŹvęF÷ĄĺńűB/Ô)·„YÚ¨19ĚÓܦm dŕ˘>VáĘgi®ý~…T\«Ë–-s3źb´řZk+ţz4f}…Ém<™YăcrEWă…@Š–g§^_Ě#î§ĹËČF«ŤŐúň´paw[%+5ěî eäŤ:{ŤTOžäWŽŮŹÄ‚YµźŢޡŽ~őK2”T0ÍŐ„@- îŢâ>‚WÄá“^ Ŕ©ń­ÇĄd)nđČ. vOçîJ.˙”€Î"áHŕ€˝]ˇĐĐeA¬–Š.3vYĘY>ó-ŕŠů.D|ĐęŞl†»íĚŮąyֆҿŤŮ—¸$±‰čş™2mĚÓ”Ž0ý'0m“úć&+;e–Řҹϕ\ť=v\¤ş1ĚŘo‘Ů@ůÉ"#OŢ˙^`±RĄc퉨˙.(tZf ˇČޞźÉRÚźte—c)ę÷˝ x¨ŰdďLJĆBĄ‰Úws)ĚuË׾P׾ó"á'(Ů1TŹč˛7‚Ĺf¨ő‰‚eS€Ť—ÂE™Pî«W›©&.†Y/Sᆴ8đZqoĽK˙3¦ŕMŰĹ5ę× ˛:^‰Ó°)ŕ)č[΋†v1§śöeX“n[şŕqήÁ|űŞôuX±ÖÇŔ‡ŹFĂ9Í™ő‚ŠZů"ŚFkN}8TáAe+ĹĂÇNTN»q¨©(5`âĎ!ž4°Y"QMśŔN ĘhŹźA!…XTŰšHąOăŘP90mŁĚ;AˇgQŘů›…ăŞá÷îÍ2ζŚC«Ŕ›{n‡â@ŠÜUçĂŤđU!Ä‘x  şŹ]6]¶úc±ý˝ŹűŰŤďoŘÔ/ŞMÍŚř¦çŰ60R1'ĘE)ë?/&Ę>ÓAŮ^)ł­r8Ču7+ń1SVú2óä^6,ĽÖëÍ-s0‡•r5ĺâ¸×®=|ńę Ö7t’‘÷^a%^F+10ŻÚ đ/©Ë÷ő¸‡1VfŃżšëűo+D+ gňűŚ} Ůŕ|łĚp‹Çx?ěR¦ö ¸¬Ý±x䲬îŐX}ť“ćź[űećß{>˝m9X©wĎ˝g6çâÜ2Ée_xIâăT÷wëŰ~kă˛vém-­Cĺőg±»,ô& ŰŻDÇ[čňőTŃęÝ71ŔŚn€¨¸(Žş·ĎδJ»—/–¶6ÎŢS×~–Ę _čňš9r¤(pŢýF€‚áĐíŔ[ęćü;[_‡mÜůűó ~4çŮŔumXÎuŘÇŽ1Ď.ďěîĽpcˇµi#ťM wn]ŞÍĎ´®lmlĆŢ |Á;€Açv=´*©Źň:=zŠW…x íBá‚âw@“É2”¤,iŰĹ&ąeqµ"#ŤKçmZj<Ů!‘aŞ(„+RKů'‘ě‹3˛ÔfµťKń©Ôp˝Şą9üY j•eýWWkůfŤwOoÖ éřŤ‚îŽwHë¦ Söă‚oşÝ´ű‘Ô‚ć[V*^ܨq&•×lÁldSÓ€:”üÖ,|"K~«Â1¬hżĚ­SŃNŕ×{#ŰĹTBHFîţе´Qdć?F ťçT( ł×Q7±˛a´ăŢ‘Ń@ő.Ë®k–×)ď{“0ëĄzeł VV¤řÂ8Y}áĐٰ]ĚRčfNF/\‘y‹je±ÚR]żĹ—đš±SźĚâ‹ĹőąpĚl€€ŤyYčőĺzł´ ˇ/B;]Şž¸i#*dŕ Ź›ĺ•Úb©ą˛ÔĐź#°-±RTd, Ýaâ=ŕK°kËÚ=.ąŰUw \'˙m'şµ,SUî„#;óÝ.őR·¬Žuüw_/Uš+‹Ą•jU5°µ\‹ĆŮ 0ałŘĽ˘•ŢrÇ-ű¸«–––šXŁŁVŐWŚÂoÎYE—řšmŠ%B3ŕů“JôŰëą}Ş1Ŕĺöúă6Τ¤°z­ Űf©©ÝdłçY ¤‰Sv‰[ícŻX­´´Řl–ęµ!Zw€ó8¤Ľ^>SZ`â+Y©/5K+ÍšN'6ĽP;ľâ:Çż,Sce©ťţü‰ĘłĎyFď.öÔňâbi©YŃď–áX‚olGľ{”®YŻVK‹µŞľDĎ[FˇŇ-0Ż2źĘ%ş]‡Ť+ŘŐ6vŘÉ8›†/—ęőŠľĄż›÷Ç:Ç>°@n›uÜ…Í °ď(뢖¶} ËAŮç·ýyfć< űßőśLCLKTÉ ‹ćDĄwôü UřPşŤçz?f„ĺ¨*đ .Ł®gxIRF…ű~7Y’Í8źóěČŁ ŻXAŘŠO¨€Ľn!¦8áF b„Ý”eܸ„ďă¬)ÔJ [3’˝ö•q®°§ ÉP<3L |PŁ%ÇíX”‘±Ż ˘bb¦çrĄ°ĚË o8KĐ+†4¶HÚşşÎ|ţbŔ‚k’,‚Ä33'0mî1Z:l©đ> $śŘ’FܰÜM•%VÉç‡X N˘±úŮĂnp^‡Üžó™D•U‘óF„ËŠ‹Őa‚`GŮ®@Â'O¬-éĂć· ôţ>đ\Ç=´î ŽĺĄóűmW†łp…0´Ô#Ç!˘Nz 0Yé=˛ŔĐč†# ćŮÜé{˘ń€;rÚDű<λî±ę¸N ±\9.—áp´ÇVžŞůÉť„/+"łőÄËÁ»‘±šfŁ~`p÷®CNžr¨µŽâO,Í: ‰© Áúę•y¶qůţłsţ{ľ5Ďv·vÄ]Z<ŚđôĹߣ‚‡ݱq* Y¸hě†UŰ+B™?sőĘGĺ­>J÷ů¨Ľ%¦Ĺˇçµ»ž-ł]·ĹÇx,˛Ľ{hŰ7°‘)=łgŕÉw¶çŮ&–-4€,ě•6Ýý}$C;obŘ˙QŘ&ěp?°‡ßŢăĂŔs(Á»5U™Â,h4.řĐß҉R±^9ŃßY¶ä {iáŔĘ9µ•ŐfEŘíä-’ízZ4<čĹŠČť1ľ”ah‚6M˛<0evŐ6š0LhfäAa& ‘@Ţc´ 02$4ČÇ‘VšŠšä|H?µĆyńQBĄ_Ś˘t}FŠľV;JjôL¨óÚŹBogBi/ţbB%=|1 ›3ˇkwO(Ő©ŰŇ,~…‘Š­Ť.ui&iíWˇ1łP].ţ€ˇzüŚ,’)µbF*qńŞŔަ'iľ ŐŢâKŞąrµ…vËHµťâ‘”*+F! –ˇú:Ĺ;Qęę3˛:j©L¨¨Ĺ×$TIĹ(ReB ŐŢ Đ7™R6§:˛Bą”çĚę3R(őýŻ4G&ÔĆ)ެRĺrJíIŐP»ę€L(€S,”Rřäz •Ľ)†RęÄ0ĄČé46S×´1˝ŚIĄLk!µ/–P˝ôň¸¨c1©`ßơB%ž$ÔŁR˘¦ŘÎJiRŰu%*JSPĄĄŕT>šb¦çrěúĹťvČĘBJŽŢžę$©61©š_'7keŚë.áâKůń&Ő+™ĘôĐYx…»»ó ŢŁt¦W˝ë EČ©`µ łÇő`żŞ"ˇ‹˝›Ř”µŘµ6á> …b]Á,łëě©@ÚKĎńQéĐŔ: ©!»a·čVf4ĽW¶±Î6‰žÜÂ:Y¨1X9ô>h\LÔČbŞ#‘.\»Ž}—&ÇÎ@¶;ěÉ$#-o)ŰR•ľ|ŻR7qP˙¶PŻŇçë´@ŻŚÔ)řx$®ĆÁŃĆâĽDˇµSĺ*éhrvk¦‘•Z˛Öć ýeꌒÎÚKŹS‹y¶ořĂľ11;–ه•“[źsŶŰöSń;É$›˘Š‚P5‘06±†¸ ŚňÝéë‘Ne‰ÂT§Ę;Ń’bÎé{eŠ€Ž¦Şˇ^Y­VŹ[C˝Ia°‹«ÍĹqRs@ÇŐPĎ Ři1Ü2ŁŞi~,¬Î_&†Zx.ÚĹŠ„aĽf™Ĺ$Hb:°S%ˇ`0ýH?vŮI(T•,B¨)îŠLFk2-7üŔKťÉ+ĺF©¶¤]ý;9&˛Řv,•Źr,ęŔu-SótUô±ąB-FüXK`ö†©Â©:iű3×CÔHGÄŹú YňČ諊>2ľżo™ŞHđĘ(ßP.•„‰Ňs}ż$’d)MĂFS1V=oArG„PLʎ.YfÚCŁ~#Mšß·ŔëÄŐlëIIĎyĽ‹•qGĺV†‹áü㫍€¸Wt5yeď‚í¸˙čű/+ą"ľ#LAŤŘ–©ú󢔞źb}|÷Z늨}MŰBŁíákgâUgćĚĹűźËÝcEI»ř « I^­çŠýőq¤ť©V¤ˇ>ý+á%¨O•c¨áÁk<â5K‹'d6aGŠß¨S]€®’”©ťôť†GP»ö¦ČÓ–UČu®Ĺ1®— véN,ň!ÚáóZ·Ź§Ęןkă?"źëČňMĘç»/X¶m}vµĚžçBô@ó ¸XV_×Lßňܲ‘Ę«É ŕ=Ě>×qKĎK˛®yÉčtpęk޸Ó÷ŃV 1ÚQô'W˘łs]ßóLliÄKy*„‰–FWŢt]VŐ•°[úĎ ˘=c7ĘŞşµTŞ.#ycEÖDͤo,$ŕ=|Ýł0ut”}’tbŇÔŞĐOÖďu:‘G îŃy­¦ÎkŔ+޸Ăú¨6ŘĂa˛ó1Oë‡e)IQďAĆDŐm!$€ňŞsËGb‡äUt~ţ|üYÔÂHGµ!ĽÖQÁ†6•¸@ËĘgg†Ć—`®*W‡ę]cmô µŹ`ŚXĎ!Ł©ď¸G$EÉB˘„„ń^hĽű´Ç6„Š$=%Ą“fźć·ŕTćY«ŹuŹú–gX/ĂqĎOk|ôXÇýĺ=ßÄP{ľđĘ˙´ť-äÔrÇNVü@VËGź§l& ë]*‰ĘÂtńä_ľËŇYů‚۰"ńw(´ >Útńe)0ň†ň™ ÚgĐË+4<Ű2:Öm†©4Qjw4ŇĹôt¸w㬠@°<*ŻëYmŠA` šÉV÷¸öމĎna#H7X8ĎqCŐ äĐ‚ -˘,вI9l˘@µ†˘°Â,q4"tH¬™>;ܶKűn@‰‰8`ÉtągĘ  G/yÜ™vĹdňĂXѡy¸p3C(Ź8Vr äÚ@ň‡Tî`?°i>",‰B¤(«­<=Âđ˛22Ňą)f~Ě:bYUvb­'  7ÓŞđąE¨!*ţb~#0ż}ZYBţÖµâ˝ŐôX·m ©Ú¨'"—ËÍłQń‰ox€ŽLOÜ(7Îä0UßYĄ)ÄáxväL˛ C‰„3>2쎫0Ž1ćč‰Č˝ů™; “ŰnĘBű˛s§tQ/;”iÎ1ÔŃV©˘ťł¶´Z•Ę0(­őżĚKůT’‰W©!2h”Lŕ˛3S‘*:uÉŐ4•ĺ˘$'~.I«‹*Ô˛Ö&žd^,Uë(ł Ćb~aŕ/ § äoËÂńˇŔ˙ú)1Á^"č÷"ŘĂ đ^»ţŃ=bŞC ç8ŕl‹rŰP-=UIÂgç ßJ‰öÔ€řęÚf íŢ NŰx…;0)OdÔŤ”v .ŹĂ÷bqeą^Ş-5WRâ] Ü·€ôt ‚Ü cĂšMô¦hôb§3ž ÁäŢ(&iäě¤ürKŞC¶ĽĂ\@$ŞŹBD¤Š0ťüŽHe:pBi9?HÖŔ—c ®Ž»O_g°6~M‹,ŘłĎű®ĺó„Ń·ëĆeęŚĺÎŞtQ«qPWRČâٰ(”Ľ·0Čłű‡±é-ˇ´bö;”:> ¶”âÔŹ[M«*$ýx‚ěŐč"Ę$ţČrŞłw }-ôEă ŞHDF˘ŠŘŚBŠôlš ÷K&óHP’OžOîb…Â"QÝëĐů¬,;!o¸DC˘DĘ pa+PĐ…†|™"ÓA.ŕbą¶×¶öÂęřşÝ.ĐsG®»Xąn/|]$»˘í&ů0°…#Á†™!ŮNőZˇ}ă Ő䄹łľ» »DÁSť©FR&…JÄ !Uíwxź1Px9\źČŕľ–ŻßšNŹŹ/‡ćŠť7vłÄN=łĽh…đHU+Töj‘D ¶E$XkýÍybhf̦˘řŚČ}qŠxËPÄĚv¦,9«Ýč\Чw|ÉőA}µž[H¬‚T5Śáh@§üBťźÂă1¤Ă×+ŔÄ„zc!?#?ľMß´m7Ąů>âq! u`)´h —Ąz6EeąTÓ±4°$Öť.6$×Îp¤Éu˘Frô'Śm0±±‘¬§Ě˛c–3ŢĘU®gu-Lݎ˘QhÔŮÍ‹Š R¦3¶¬ťť:ôě<řĘpĘő&ß _vo— łŕžÖf ĘŻ*>„Şď|°T§ş˛˛R*!1gŃÓ„~_8reÝĆ’NÇ3X«,¤căÎĂN&O"®řx Ш®µě/!,kĐ)[ì§Á ă.Ȩ·ąźYHLŽ©™±sŮ÷Đéě^tEÚ˝ ˡŕJbx 3:X”í"ŰÍP"ö áw¬ŽčHk« Ů/%˝ÂhÉđŃý˛Oî#)0GF„Ő:DţVÝĹöČÚ±Ąx͢Wg˝Ś@dµ‰Žh})łçËě’ĺ Ż<aižm޸~v>ÜĚö˛‡ś`AĹÉbt¬Ä×g1šTô`g®EŁeŽ˘ż·÷µŇxOűŁB~ňďĐ:4ta†E+ăŇéͦČPZů@D‚X…ęž*ô,µ©´˙,ńĽ$^°3cɆL]Á¨A¤đ$şNw–é¬eśg‘c“}<\‰:ÚÓßÔX\SQöcŞęYu¬%Ű\Y­çűŢŢ–-Ф|ëS@fĄ9îý1&ź!·$ĺžńú FÜĹ#ńÓQ™÷&Fç•Ęą.>$\ăÜűoŇFz肨V®]FŃ’f " Žń5]ixçy-)KŽËčZłď˝ěě{Ŕâ˝Ŕž8r!(Ą*›.˘É5OĐdבô7öÇCţROřź:ä­ ę)˛t)á\DÇŰ|?Ö^ #g|Î1ŚŔZ­˘R»X_Z¸ĺűĺĂJ˝Q¶*ŐgÎjtöäăé°ÎułGĆŻ(şň‹8l±| ­x`'u.ËZh§ĆŻ'­T—KőĄĹĹĐvĄ‹ áŚ?!m˘ oz®…I/Š›(ö)‡íÖ€>–<˙¸"~ĄD€ÇZˇţ\9›Í@Ćf+§‹6 ŐA ŤîwÄňiíżÖ–ɵ-ŞGĆRč‘řŕ,|đĚ8Ę'“w:7ćĄwQŕ6Ó5AĄ¬LV)U ]Zmćצ~S6/š/U(>^S_'ˇĘJş7 ŕ¬~[»ú0±ĺFy%»®čż¬žż=0š؆)p P„m 4•ĺĄ[Î…b˘Fŕţ‚yf´?/Ă_’ ˘9ů”m§·LzÄĘAˇM5q3DúgB÷gÓ'ŮM5[»Őë[˛nAŠú]2@4~!6ĽčĽ´ M㑤<©'`ł˝Ł¶l”|6“Ee/˘.Vô=k;7ňn#&ÓíĆšĆo–r2Ě °y5.k‘5’sęLŐŹĹś»…ë»…6ËQÄ0Śń—€-ŕ_…°ţ†F÷°˘ŠÖTÝĐ1¨¦Ů‚‘#C ű–QsňyŁ3ż˛ ‚đ¸>&€ăŢŽ2ÜPbŐ%j«ą `8#˝aTx-e†bĄQ g*‚wćěUšŔZ^»âcJ‚µ/Ŕ˛/ÄÄ€\2łë’¶čzG†×)Śď»QZĎ|·/žíî…"z‘@‚ !°ô ř®ŤJF<’Đ7öy7€1anWůZLĺZ‰’;ř¬jőŕ)ÖĚçŢĂĄ}¤ŞmuÖĐ}©z·%ęŹĆ«$#W*T "ËŮ„Űď–ąIÚ˛ f'Úg»šîűDęŇ»ś Oĺ4ć™cC_Ý3†Ů×…Ů´ q.: ŞëęĹy¶±1Ď^î>ąŹ^4ćYgź&6?c·÷»~»nÎ3ú„šo{@ŕ=0΋ŰüpÝîćŕy·Ęž?Đ—3ëb:®$ żű} ¸ćjCZo1Đ·ă"é‘Q‘B G#dŠ F…Ş˘±8ż”i„¦Ya•ć1tÓJe\\č˝ÎżçĺŞHÝv %ŰhVô\‘¨u}‚9ü=ňgr|.67śú^J×|u޸%©&6MJy R^.é‰{OČ4?â‰7°QÄQŻŃ˘„ĆŠa)wî8…ëĽÍý~6ô˘&qěS¨U•úě)´ćĺJcĄ´af!±ÂV¶8­®ÚőEµ¶ĺ™e#(wô Ś=K`‰¶ĽÄ?°fLJm祻_˛¸¬»9¦ÔĺĺĎ|ŹA#ÎŢ0 =|$6S+€ź×öy8qBSž´N‹ PěšÍf%gťŘ¶ÄoDź;út©‹.z˝!˙ ÓŔ đľ·ÄĘ"Uku‘ţňŐË»{´Q1 !Ü…˛DĽE"’’śâ3QüeUęÜjĆ* ÓşŰE€: 7 Äj¬ţÄLÜđ{رö÷˝¨:óˇ¨ď řĄ~Ś2ü×§ÎĹ“%bĂčů„Lx(NÔ|˝&@(Ŕ×3FţjoÁ]C*S,‘’ZŞh(xHtSđ‚ ®ŃMźb :’§€ę¦Ó$L,µ"P E¬p™rU𫢻~m÷ňÇÍ!•°1и`@“¸FU"»(ěqăęĺ­ő˝utÄóKJF}ńJT÷×Kȉx91Fa í0Z!ËmąffĐĘâ©st·9ńd,v‡I´P[í“ÔjžIBÁ>BĂÉËÎÔ*ŐĹůĐHVŻ-V ­+%Ľ\ŞĆM$YĘš4Q=pi´CÉ·žbhq›3-1Í3ł4ÁYÁńą;@Đ­t@Ôiąj)é3S$ŤJˇ—^ ŤňsŁzč4TN)ôXŹ…,Ž‘Y =ŐiŠRč™))0'<ÄŁ:ŬÄĹ#b)I.uâ—7©W]Ôă/Â&‰ĄÚ(ˇÄ(ř‹C,šA¸™BQRP|†ä^ąfĆN$$ŕ‰‰l#ş“$Ů™˘h)ůÜçƲۢ¶9µěµüR«“ÇŠKřî°€]>„ENČ8‹‰ö¸ FĄÎ ‘8żŽŰÝV×bD^Ż ˘‡y™Bî˝ó<´kďˇrBŹcŇ B’CÁbGž‘ } Z^Ö3O~D ű;Mômm©ŽÄf9]“mlđÄL­{|—ąT'ßş^ťĺ+ö*|ń*lů*­úËŁ’m4•ë#„fśóŐŰR/OĽO׎¤ –•ÔŤj‡. řŔÇż@·^Y^ ”v”ÄÝý)ş×šK˛;h0Ż= Ś)},€+r@´í•ÔOż| űbd,Ý; ‡ Ń. ţ9©…&F.‰QKjÔRő™»ˇĆRŁ-óc¨Ł€ĚŚ3•Cťě0ˇî»-ť—€ű5*ßjkăr ”*¬[—*V'p¬âéÂÚfYUŕ5­ęÂÇ’«š"Ý*ŁZfkF×^›;&†dź§Řĺn·Íą§Şj(0ɲOžÓ‡d_ ÷Ž[‡ľxÍůY Ťm@Đ޲VŁ™űőX×IđżŠěIÜË{ţ:UZŐ١°ÇŔöZ)Ő+čť­`t\lŻjë·UŞ n¬‚„ôzŤÍKą‡©VŻ§ÔŞúxá¨ěŮč m¸…ß@§»Ů¨`okEEwŃńuuúęÄĽ†F•ň śÇä/lGVÂ+Üe4f?1čë\B4s8¸5­¦-cNsB=@ŮňCQVă"Öcgä(LÔésÇĚ@[áÇÇf›Ę~‘ť:ęsYSfwhô“éYSĄbś˛Ź¬™ŽçS}ą “Î®t¶JW}±ŮČ 1Ďs’ŢÄšĺ9…ÇO:î'vÝ®ÍcÎâěĺÚ˛<ôĎžďt¸ÝHŘÓÝ“w:k޶ g,\~ô{Ä6Hťx®É}Ь ă­®ĺ]?ýwö’ë9VĘńý˛Ü2V˝®g˝ë™mNő[?ô ‘ë8»Ţ±ÚŚŘ´ă_‚ě^¦ľ1·ý±ök˝rAe©RĎÝŻłZŮsżeXň ÷\±8×Üţ”[űő]ksď€Ăţ‘1Ů÷ŮS´ AŁŕüv¬C{\1şFĘŻ Ę÷ÍEç"\AąĺaĎ´áě©b(†CĐixYŇ4 ă!DśÇů‚ Ś˝ä»M•±M”Žë ŠÂĆî5/Í«" _¬TĢűÚ“¨=Tg.|˙xżäĚ%ħ˝‹şuĽ’MÄśź¨ |»ElŘ]ŚŇíőeÔŔ.>*y’aKé@[ŇĘ,U1”¬ýá-ĐÍőpĐúČŞďz\>$†oJťVX—ŁhýŘŤ >aL}h5Ë,9”†ÄÓ+ɇŘŤ.$†bMt‘Ħdčş3əΣ'ßŮąL]D·ŤLv'vaľçç‰lÇ=E¸M;ňÝ7şYá!iVă±)fýk_ÉłT’¸˘Ź¤Úí';î^ZŻÓŕňĘWI®4EŃi eÍBy°R®•jíęěăo •ěY°’@ ÎŮđ­4ßÖË=2…WëôîM—€ÉÍŹÍĄęă=N-×UË˝¨ĄÖpFeŻTuŃăX3<“@*& Ţs!oďN»”Žg}ź0˝bÚ6FJb°¤ Ĺ{hŤÇŘni€ZÍ®•\ FśŮáśŐĄ¨äÓ±b 'zaň0L™ >;ń ÇKGyĹ͝˪ ¨=3Eóa`a5­]vÓđyé„Đ ŮĘ^âÂ–Ś°ÂD(<,;ÖmĐÎúŠUh(ç/#˛2•Axň{Óąs{˘"}”"ńBeÚ 8wÓö ˙Îŕ (NŐ%r6Ć'ČťďtŤdęĆ÷0µ>fM¸}ŻőAę=Rd©Ă>T--U›ËĄĘ˘,‚}:óAR™~-×÷9W’h é`GőGŁ'ß.°›9EΕŽÔ†1冡 ťpĂ;í.÷Kźö‹ĄĂ$M,{4t)Ë9j¦nĚK¸ců faźEÆ…A¬N`ŘL]/‹´†>jűÚFhĽˇ%ňŕv!ŐŻIŮäb˘;ťct­c9 “ł ¨ą ÓF@…č.zxUŘqŞŤĹĘRuEç3W˘JÓč.M˘ˇŔ€bF¨Ma±ZALýam~ÓÂŹ,ôŹÚơa豖M s]%AčüK)ţ©ŔÔ¬*°ătŹŕč-䇌t|<şěŞ”yČtřNĄ†nôV岳źĹĚš­XE` „d™ĺ9LWéz1šD2ł0‡Véh“µŚŘ™Šĺ~Ę#3mŞĂ"áű¬7-–ę ŕ$뫵Eé;Íä¦oÉć¦/o­‹|§h÷LsŕT~ţ«+ĺ`ôŽ:Ódw>@GíbŽq륅Y’Çî‚Nß 5,Âó2yţ67‘únăČ‚žZ?śŮvÝAFôVC7“ťş>ąÜĬ…Tˇ8=^Ëĺb<ž1^| [.ĎfăŮ tŃHGwŇ1EÓr×p×üžuŕf/pË9~&řY*KÍ 2üĺí(ňK›;–Q Č÷qH‡cxťŮ,(uŚ;»€žŤ6÷zh‰WÖŁČŕÔŇŹ1«Ł~ëó‡ÂÁwôw/áď˝ç7ÎĚŠřKr‹"rOŰ’㤅†íÍXĘ&eřmŕž­Ĺ\đmBôL%¬dšĐ‹}Ÿ„Zg­ąZ‘u^Ěn˝®ŮoO6ÇU2zĂŘD¦ZI=ŽBQX!>%Kăéfęh+k.Ádg$ÚăÝŹ.SçöžŚŞ-ů˝*â(^á05ÇzM˛Rk­†~ÇTúĘIvĐńQ^cë}¤˘çŹo }ÝűťĹ.ČŕƇ_ ŚÎŔsuZ—#KU"“ řŚŕÉ‚ż.¨*ý>ĘV×e@Zpj¦HŘL­R]µ$mĐüo»‘#ôČ ô#;ý¶…6{윸T–ßcJRPŇb”.G8mËXĽŔaŠ”›ť“×Ęѵ5Ó*#ĐR1Ě>ŽtĆ%5Ľď ň¦ Lí¸č|9ÓMa/l_ľz}}óąµ˙ś1PM·öą†°îţY=:–ęq–iË0?Ík};{ń´1ś9l`?9v‰7ĺÇ?š€ŻóĹđ%b/YĹč\?ĚßĚŕlů t'{"ÚXü°Ň|‹ôřŨj4Ärn~|ˇú‰M$Í y6ëˇî\Ü*[”ŞĆsé'ŃźęćkÄ$;AITdj‹ě}]?U] „­ů‘»µA)şÚoyÁ*áL«z¬ť@X°†˶Ĺü’˝Nî%í±O~ĐrŰ"úą2Ű-G`?Oc`ä夕ÄnřôlŹš•='7ÉŮ\Y†ťŰ¨6ÇŁ—==K„đhv^ÍkÓ6JŘĆy=-yݧgÉ+ÝÇhÉ LŁkţ}zv Ú˘ Ąî°x@yzŮwxŃ‹•Ę@Býpö›©Ş€]×:mφp{«¤1Éř‚ÄÓČ‹39ď\'zOŇ+fô~™x©ě\ö[ÓiôY8młĘÝBŚ˝ŢÝg'÷(ómOS8ą5ÜsBä;‹É Ąb˛·u…Éýˇ:$w„ľĆŕ˝U ˝­B©Y´źĹšUŞ«  ÷óÄű›šWĐhuňŕUę«ÍĺimŽKĐhúř”ÔüP n‘QĄoŠ,ŤÜ(‚cu.ô˛UîKf7řc+÷˝WíAQ%KźÍ.Š"nÁ. Ź%%úRqŽäĹSSb»éîĄç,ϲmÝ}óš}2¨TöM›"©“Ť yóBßÝhÍ9ž‘R=ÁĆWmTKőFµc/i\8Qń&ďaÂ:8™’ĺű‹D]ĂxąšÜi´\ÄÎźĽ5Đ]4{AÜn9Ť˝ć•`©zo ’ŽźM”y›7™Ź;ýdŇ%|ň×DUßÉŰC‰ä[ťćމŢÍ ŰöÍÎţś€č`gQ•ąłÂžŽ9§&hmT׉÷Ť!ş˘MNÄ:˛%R° ›ć‡P nÁáš>+u#2čŕś¦ËKÍ<ň-ĐeB=ÁFZâ LŰĘŞĹÎÍ(÷4ôoFx53Q.kî”ɦĆ©Eµi⹨E Bf’Ęz„mŰmĂßžĺĘÚ4ólË2H ä­0A–v„}~FľKŚŹ%ž"8üÝ÷q±ű¶¬ˇ#mĄvĂw¨·32÷m!ö«ő°Z|eŰ2;wÚ(Ü“¨(Üěz7‚Š3E¬ă!ŞÉô^u}Lą1ůYmňçRŤľź‘âŢÖĆeD˙k]ŚČô2ĺ»™”$Gpp Ét¦çč–ă' T| )ÜŹÉvŞ NF%F¬¨d)ţ'm‰AA-~N@.–ę&»nîwî¨Ő‹]şYS"ł¸’ÓĐľíëÍŞ~AŹ?Rr|/­ÝÓĎÂ!t=^jăśyÉ{ş‘¶W(ÓAŤa’XĄ‘ôµfX'Sž8°(7‡F×§î>· ś~ĂË´æ+Đîć‹÷Ä˝i˝ŐuŃ_IyđE{¤ Ëá¬J`!§ÚŔ” Ák|A-“=N~(+Č”H)“äµ8V_H.…Đ'h$ d!Däę‰12ŠiODH»d® ’'Ô*^‰{ź Š®M…+¨/Đ9Ť÷L,Ř LŔ&:Ş+YŐĐž “SóŁxSVóWł‰…B˝f¬— ®ö(9N L ŮŽ\Z¤ľBďC›®mŻ}9qB–mÄYĆŠo×÷1:ˇ´koŰ0|Ëd# •]#ľŞdä5Q4Pď>űŠĂ-_üĚ·‰Ňeł›ţgľÍëXRpô ř\îb DlW¶ü4´ÓÝ­Ľň©DpݬÖ¦µµhe…Ä2Źć7?–B“1ě#cä3ŠŁGék,sFĽ‘ťY.µ-*ůB÷<Ăń#\+aÚ•…Đ,[†¤J#Aa1~k?SŃgÄ\ zŚ »°\’Ó=†]Ż©(8î¨ČŞ7ƨ—±ő>4¶ń´ŔÄŹKTĄtˇ+­a1+La¨ŢZą@Y„)B_# NłşZ“X´mĹÖŘčî{Ĺiaň¨h™)ŮĄČś6Ôąě7׬…ÖśĄcÂń ő «TVë‹a†N×|ű«ŽSę¬ń ¨şÇAŐ%1ď;ŐZÔ®”`ńŚŕáGh ŞŤ#bmZś0MÎvy‹¨©x´Zy1ĄŁ|ýäÖ±zţXNu×H˙_» ü ÍřŁzáŁúęQç±R‘…1XP~N°(‚,YN¬CXNj‰•éź1O}Ěó )ŢĎ#fEž ÄhŕřA€'“É‘C‰xňz#1ďŠv—šI„Fňo…u'ĺŢĹ<Ő“¶í±m]1'bš}CÁŹMDÂ1#ďqŕĚ(ÇÎSÚ¦TEŔĂŃ=ÄšŘ'„EX°QSŮ7§ç·ŐĐ0±Xۦ6{V<´j:-§}Źí¶ýa!^»”ÍkcqM}Ëô\2  =b~F¸°ŽËŚÓé¤Ů»›%ňq`HµąZ•ĽXžL­ýę¸ĎéôÎ{—çz22żć8H3î©aYx^ŚŃn|]ľŢŘeu<»„S>†Yľ_ěˇý>÷{E1">ş‡!x] ^;ŘK¨ -.řęEî1öFŐL?±äIO^<ő߉‹*®wÁrn[N§ë‘Ő9Ś ë”můC6®u&gťO€#QJ›Ëő:––«ć`"1š'S“Nvn‚ńv¨ąI~®žkx± ÖťÎ(ţT°zŁ2/űÔ`ŇSé€Ő1ě—‰ŰČ Őt‰ľp-@(ă!1Pćď+7›śb ŕ¸w ‡]răSÜ)_*ăŻk~ß/óŽý×rć%†cŘ?ĘŤOKTő¦xMFą„yd_Ý•ŢÉę“Sż` ä<;_ĆůofĎŽOżŤöŤö],®Ľ ×KlwŔQŚŕfłđ(îfżs`ÝFd)|*řć2>ĽiSö(ě ˱Ť¶Ěfl§Î\>΀i:†–üĘ pĘŮPť::«ľ§)a°ŕh  ômŚ;6[‚pă*VKó¬V2N˝Ô±ú˘ľ:–L‡fˇLOrĎ‚ˇµďÚ)3‚ăšo´přQńrč Ź¤ÂlX;Ě–¸ö¨ łâZ3Pv„9’Í”("É ÓÁgJ!óI¤g±GÂFĂ„U$^¦|Îß—ŃSţæaĺE:L4’ĚIŠ7˘ŞÓ<Š™ŰTş}¨˛Ýć._Ý^źS2Ý|¸d±ÚęŘśvÁ¬ áŔvëâţ¬*Ąué·m]¶eđš¸ĎÔ*•ĹłaˇËjĄ˛´P/5•R‹^––SE¦ S2φoBkŇ‘±Hp=ůcn¤Xt”ÂóBđްf“żnIRdXI$bĄ˛\GŽ\üQLú“QOchöů,§P9¨ž!‚ŇĺGŻk'ŁŮ•Sl±DeSé}W•,O\ č{Oľţěú›±. Ůś±T¬W¶¤ýĐ– ME íż©”Pxc ć„ě¶ÉCć{ćP›î"ŘЦ‰»č bJiY?Ôa»=~döXÚęĘŠ®dŞî˘hfdýć“OVőbÖ™`0 uťüźsŘűüíČ×áHt‘Ń×¶!˝qDśÄ§¶{›Ľq¦kŁ;Ź."­t<©ô5ršŇÍA“%xu· <ÓÔżc @ú]ćlHßŕ>ď‹Ő?ôĘc^ĆuŤ~g@8#vFßmŚß4ůÍZ‡z©ŻWĹă!˝ř€Â}RôY~ €ňQWâ­Ă7«ťčs-öą.nIźI›ő‘”ŃďŽëPmßŰ7{tżşf—ŐţŇ®X˙fxOřąFedńŽüj]#Ţ(|¨Ŕ”äâŞŢvÜÂř/đ©7Ăj]űRVÔ6Ôw$e·PÁS(7EcćB!ń™y–#Ň ˇHH˛…”ĐHZ“ąşÇÜÄP(RIńJu aK$‹M¸čގś%%!yׂґđZ“tËÂ\r…ĎĺčÓ…’‚<䢄z -üő•Őj>tĐűłµě{ ˇ>•{v ˇÓ›î`䡭n‚Î|÷őr'…(ćgk§ŕŹrÂ(ĄŻę·đ‰“N䇷Ť;#ĚM~­Ç”42…ůüÁVę’K¶A |cĐQčY˛±łVG+­} auuAMë:ÎÚóŚî˛í" LálWËyËńś`×ď9Ć{W1+b2»u¨Pviĺ¶ ˛Ů#םҍgNźÖtČ C°ŹĺúJ©ŢXüx =9ĺ«VP ,‰–OżQŕ z“dٰţY´/whä8$uĘŤđ?#G7ˇ(«÷++·4<$WĽăy x¨Ô˛Ńá HÇđĚYÚ/<öÇp+‘"×ęĚ Ö¤ă-EEЧ& ć)ę 5=7ŇHMkSĆDDÎ?T7%4Ő\Űjůí9é]§)ůČi9ň»Ďy‚âŐćÔ{Nß]eúĘ ną.>÷芫9ŕBkśkÍ Ö,)Řâ7Ě×Pá*ˇBŁô:U÷jß=EĂŔëĹ?ă Ň@±U c^G<¤®i¶Bµ‡»¸ůc •  ě Ľ®ł™Z^<˛%4D!AgóYŚ“łuŞw„ˇ•Í1j0“iÔRkőÚKfűR—L•§ŞÄ´ä(NR: >Ăć˝ĺą.\î¶[z‰©ŕ»@«¦\ŚąÉ!|UbˇD•´ćA3ŮU,Ń#ÉU̧Ao\śAŚD=“ 7ŁÝs)ëžç&Íé`WdiŢLŘÇtzH 㱾2­;ä•ĂxśJŠÓ5[¶AA{ş;&¤QHŇ0FŔy—6ŕéđäj? ˘A,ë‘yĐH®CCýß Ú;18ŘJź^B¦Ő.ţHfčYV.mLÚéEłh§ČˇŐžčµÜv€ˇé·-QXµ8›ß¶đËŔö|QGŻ Zŕ‘°”bŚ­".ą€JžĂŹsČݢ_-?tĄ”˘Ë"H;uŤ‡„˘b%ÝĂç<2ór·L•Cěƨ™ÇŃ"ëŃܦwÉŻ….yµqŠe·ćíł,ü1­Ç<” ˙ű–ŠSÉĄZÚk.¬ňŚ(ľ8E @1}~>č”Y—wťI Ęyeiµą"ăĎr2)ŻŢŰLJmô{ś ‰ŹĎ3E‚¤0U4Şăp2^}ĺě &HŢ},Ŕ=Aµx]%/NJŹŐ ŃGµ1´­CÇőôz O>›mn]ĐéMw·Noj•j“° uňÔŤĐAÁBtc ě"wî”óX]Ý@Ď$¨EĎqç€Ű‚g†ĄzÖ;Ü6{[żsÇňeÍůl®ŹO2 Ý‚:[9›ťk‹ďĺúžo·ěĹŔÂŁ…iE®WTĺB7ŻÓU`mŁđ@}Ö@ŹťÓAĎP;\U'\ŐâuYŃŰňirŢ)‹Ţ¦75W«IöÔÚghEY$đ±ř°‹Xi®¦ëM…ŠÉ ójb>O.E|tzŠx·¨ÄąÄR§ąeo^eÄjL#ˇ?@ ŠÚĹ ä/đvÜĂ.@%©¶VV]E}Łí™7üŁ—Ł$ÍÄş/ůą»Ůĺkäť Ő®ąrEfď…Aĺ q+żúMFňvÎ(é„î{ś­ťsßt÷±µµléśjÔÇĎ™Vľ{ ş2Ż÷´B9é7-šçŢy޵e Ňo*˝Ä°pĹKKőůîUzwNů˘[ĂĽŮX);­xQѤ‚®dˇš¦Ľt㲺:;ánˇÔüDăďü…µ}†ľxĺŤç|áččhÁďa(üÂ-J .­ßŘ»t­µ[ŢÖ—053x†»š\´ĹçX ů3ÄrQŐ7{m8ŚD話Il€Ř°1ČyłW ÓĄ‡Ř™9ĂäŰ>ÎqżŽj™˝€w;ţ¨ÁTôń˛cNÚŁ×áşÇűěŞqdÜ!@{qÜ NÔ0±°ąEÝ ě k9úřĎ[(ŇBűp ďńč[IĶy„6~o‡ßő@Ž>4ü@2YĐAFůŇ6îíŤ6rŽhoϢć¸Ţ=>V˘Í]Gř­©vNˇ•ň}AÝŻóaś™O˘ámJčŁXćefîUUŐ៏ě)HŇ47ŮŔŘHş7­)n"@*ßňóßE°4}ß2\âćÓ_o dT«ŁĽűŔąÇâ˛ĂQN-~ ú"$ľ]ŰęäŻŇ.l)€Ś~/đ¦xŚ+p‚„´Ž!>űTÝnÁŰxŁޱ ¶mőAnS&Pż†Iěˇ!8÷•\q{ôB@$÷ă™âßGĎ=BSĺ·­†ľčí{<ôeYżp×č¶Á‹Ţłş=ĘqË=B‹d›ŤĽÇŤ~ń /Š:–^qTő[ŮĄOžŢ1Đ“ m&ĆŹ¶á­sᡓí:ďĺ&ŐJ>âma˛Ź,Ë4É2eÖíSiŁYŹ‹ł¬-=&m><âÜ đ~čí™đÂłĚocŢfŕq‘čwduşčďĂ,q’ ÝúäLPłV2޵`0÷. 2/CĚŹ¸żd̸ě- “»^ >čmTI„}ů8ł˙Ű#k{-ĎŻ|ň‹¤C9ć.FkIp(ËMŃŹ˘]ÄrĚ·`'Áç3âŇJąşWoK Č}ô_qŞ·"řî‚ěöOÓ8K)—ÂýMUťÝŔ3ątuS‘ł.:†[XS)ťŢ˙[´&8ő"oJ…˘u "“$_P¶\ý ň×% »Éâă·}8 rĚEŠń6 ł’QÚ(‰ă^!ź„ö:~Ât=7Ń v}Ž1é[{󌰎Ԫ—šg3ü/N. A~6Ť} ŁÖi§Űnw&^~dômŞ&mŔâíS ÓQL†/Ń–fä ©ĽĄoř1O^,Ý­˛˘Śldű(+E/Çż$—˛ě$s“Úgú–řs]Űm2pÎS ăýąúv3n„‘2N§DŻ‘˘yé+7żşî®Ąˇ/']#ńA í°ŤĐÇíÓľ/cžSŘK| üQ )”‰ˇŰ~ÉXŽĂ=ŃYűQŚŹŹTІÓćÔᇔ«ÂĂ»Žë‹ő ÚÖáťlČ…[ĹA3M;‚ú)Ú)n ľ•:×..ö@•se`{–ĚÁ­p‘üĹŞ¤wÉ ł®SGş=‘č’a†1čâó¨Řů䥮çXÓŽÚŃWkb]ÉŃ5q‚>¦2Ĺ® ŕ(ą^'Ö‹X¸ Đ ]'>S!śĹ/ôëčm]b-đ´i_A6b]âËYđâÚńŻEß”ęL=‰rřy«Ó±9šCJâ´&/Šv ůb’±&® {~ąô°›T\ż‹Ĺ‚Ĺ›F0ŕ}ĹÍT‚ $gÓ ¸ĽâvĆv‘Ü]<–-áá¦ôÄAí”Â$y9Śă—߉ýS <[}†ă/řá6ÉžÂKóˇźXQ#Ď‘ü&H ©DÁ±_˘uÁť>¦¸kŁ+áýń‹|ôY–'SťÝ#Ó҇IĂ…a&”ŰĚl™vŕKbŢďáĹwę@±‰\oňP)˝‚ xaîWh<Ž~#˙¦0GĄŃ— ‹oQ4=l‘˛Ý hv¦Ťöll„¸Ĺ.Q[z˘ÉUEÎN0»Ćo¦™Xłî7ÖŠ:ć–IK*Ýͧ m§*-&eű ŁLYEǷͶtŽď·^Ş·”Ý22M2´K¦‡Í2LQOatdÂâ8E?aNdŇ–8EÇĐPČ’VÂ)†  Söż):ĆlzéőĚź1ěYëoś­,^’LpÓő$ÓvµDĎ,Ó™%ŮË4–e÷ɲ‡©· ÷‘°Dß#—ĽeßbҬ•č4Ćr%:ęVŞDď´!Jry}î%ź.mŠÚ {Rˇöh'bĘH”č‘e˘.1ŁO˘C®]GW‚ď!®ŚŕĐ‹ÇĂŮoćgĽĺ„‘ÝÓŚ·d”Ä˝L€K¦Ý}^[>úék64¬1>ŕCئH8;&c‹ř8×BđĚą ™­s!ĚÉŮÄśez6¤1ZŘ–KŞ÷HÂg¦*ú¦0ďűŁEňĎîIŞŮé—#×l¶ĹpCĎËжyć`Iá(»ÍHą$C«\ü9Ů ízŽŞ żĂ*ÂČ /A U ÍłęÖ©d<ÝŇ˝ŮóČas•Ă~şd§¶\N6ý€†đŃy)˛)ŚŽ0źGlCKbɢFJč>Jľe‡dÄąż :-¤3 Sćz±xŚÁSEŻôÇ>ĆěÇ0:m[ćä w2‡'ňËNŐŞšćţ°Hín[NŮś'”‰¶=:í‹%“ł]jüÄ˝c·ÁJ„Ä7$ö3µÚI«q=éĆPtwĆ—´’°ą! )k!PŢvŚĐŔauÉjŚcž>Ńjŕg ž pŕ§óNÇň?7z5ćÔ‘+3 a$ŠÖT‰…„+üG„e¶GŚŤ‡Ŕ1ŕ\ń]úL™í Â5Α8Ť“Ź'R"akTE–K†ĺG‹©8Ń`Ę…đé¬É*–ň°bŕE,$ŃŞŹÁsHWŠgö;‚Ó§SĄj…€äWëË«•1ů{'żs|ţŇăq”^dĚÜ5µ—.H řB•ÂýËWfŽ˘™†*ľÝ…Ä,±m­UŞ[‚v*áťČ#C’o6†ÄeŠäĐm*’Ąď±—92Ü?Ë«őqč •q%LЬ¬¬V§†T~eů{[ !©ç ÜoOč}ŢŹKéŻzi|R˘FxśĆ$j<¦ ް®•Ş’üîąşNOAŮ{!@€N4kĺJ,Čš’ î;%HIŞŔ諤ě=U5Č›Şu?…ÜqĂXňĽ±e„yćĐK§*3@ˇťXĐU$©g˝<»o{Ozkxť‰@őň'˛e83‘M×=8Î,:4.7ˇ{ß"o"ö5oç;}HNú¦cÓ3ńÖüŔéą¶|#:ŻřęMôĚé€F dŃĄäW>=rq‚@öĂhŁ‹©­ěBQFřľ× "ˇ…0ŮĂŔC¶ßŁ›CË |{¤€#…€€ŔÇH‰}J±qI) AUgS•Ěx…xűl1ďńŚXX˘5Ľ JjG~ŮŻŁŔ‰˛]×íÚ©yK}Ů´Ý ł ¤(d‹žĂC@Ââb!á8Ą®–ŞU,Ť€(TŤŐ¦dÁ·„H$ś'ľ&Ż&§^6ŻŤ°ÎČqĄëâ 2ô-8#ÖlVDĽü3‰`Ă.÷}`Ř1Áa‘—ţ1fp1€Üx  rNę ]V]âyéXă A^Ŕ˛(I ŐcWQŃ~9ç!pśp[—†çGδ¨SěDZŹpč;­cr±;ÝLý â§®˛ˇÇy9µ­.cŔ™gK˘6NĺĹł‚ľX·»¸#PŻáÍÁP–ĄoÎĐĚ+ ‘ő-!~ÂV‘U5Ę’ă· Śu’gŇîf-ü!ía©ďšµJeąÜcgČm×÷á2ÎęS¸H’Ć]ŻÉ`ŘĂbĄ}ë¶2ÖĆď˛ë:#¶ă¶Q€žŃGŕ&aZßxůîş±/(¨¨p¶%°Eďňaá•y®Ő)YűF§ăůĺŢ|ęRj.Ďq¶e&îćsĆčľ˙yŘ[Ý‘ÁÎPŮ‘}ž]¸ľ´űd ‘cë„Čí Šî¶ĽR©.ž}…çş;ä‡\¤ĺXŤwĺÝ{÷Ňz©š˛Ţkt4":ž{”Ęn˝‹7dzˇ‡á˙Ç5v' ś ×9hKĆAÁńw¶šÇz~:ł«P$­,ř¶ =Ŕĺ®`î0´Ď\;rډdU'8ůŻBD Ű=*ŮhŻÍ”D)Y‚pčš®OÂĽ{ńO·ĚÁ°„JŔć ÔR˘ś¨Í1o•ŮeB„xVߥe$ă±Dµ˘ J>éRdű ƬŠ/a>] Hąľ(± ‹3€9!‚†Ë!PEN ˛Í‡”“Ě, |Bš4ŚaĂą+3•ó3KX‹R¶pqPuf.Lë1e¦Ź]Žz–Ů›S5 §Ü±„rf—‡Ęąđm!±ÇEČľ›-´XðxBY·G<A€ŚOŤůŔŘJŘbx¸c˛Ă¤şŮÍtÝěĹ(ĂĄR^Nd¸`^ڍe&Ŕ,ĺÉţ(ÚS0›%đě(5'Q›·Ĺv×z>B÷·)hHGŕ>zńę J€šgwŕÍiż)|±Z"4ޱۿF/Çc«)äy7ŠdnFŘ90ëž­÷+Ĺj“U—Vđ˙ŞŚčíÖë|ď(#řvbY-w Ę‹˛ĂëBQa -E!DL,j$ Ő‘č˘T=XLďPQ{qĹ‚Hfľ6ˇşÓĂ'}PĹô„ü;ĐxÇQÂŽy M´&T€ä$˛d|ä6I°7N(ą Z9Ąô.""GfJ^wĂ\¸B#ˇśFŽKâăĆÔ„^Ź8Fľ3–ŕ<㍕ś' XD䣻H™ xÜ3§‡ĚĽ“ö®D]1 ˝ŕLrfAB,C VąĄł$I† r)#ˇtbŰ Ř&9S5͔ô˝*EGŐ%-ŠpíP˝™ü;ˇÇ„ڧÇľÎ'ďaĐ(0Eô=#öŕâq+'Đ ŔIjŤŐúâÄ8ҸłůŐM8Á˘›*JPŔÄ›_âŕőRé~”ݧpT?@ŔďşX )7 )čĆ]ŔŇ3b[Vá˙Ú/†°˛¤ČűwÖwwµk˙GčëŽ!_Xrv.Wűşi´˛j­U’RLŇŮ*˙DFg۶(noöyîP°Ľn(ÖÉĆW<z‰ř<-yTĄ;(9x—Ź–%~Űnâń6\tđwóČ>`ńá;"Ě…‚]nď—®y]ñî`»cÂźo˛Áfb“eŘ7R0(5”÷ŻýHř† ›•é—ÝŰ"*ga´đÍ6&ßă‰h!â,ü_Azô¦´ć‹2e~ÓK ©™^SďKPzm”ł‰QÎĺďŚ)<=Aµ˛Zk®ÖëÇ 0‚AęĄJŤÔ…EЦőÍ=|]&ĽfÓö8Čâxş\„ $¸Č#Ł!¤5ĽC.—xÍâ…!V4N÷4ŃűYŢ޿ˍ>ěXźÉ Â'ź$EB֕҉x5?}&L9ŃĂ>QŐ-K –ťďt¸ÝŘÎő›Ĺŕôx§łÖáX¸Šhf6µť%¸Ř¨®”V*K”ŕ˙×ÝŐ-·m\alj%G͸Ӵ3mšNłU3QÔ ŔşO$9V˙HˇěĚ47)‚$"dP¶<˝hgú}‚ܵ—}…úľoĐű>E¦çěîY‹R¦M’Ń8$ě.öçśłgĎůľŚĚíóś~ €ęßÓ‘ö.Qqݨ7›MŁYO Ff*.¬^',e«Ó4zÝv·¸Îî™x×§á8©ŕ._i˝Ű5ŤNÓěWú‰'ÎO×ĚWݵÓm­f«Q\ĺc…ŰŘ_„ˇ;™¬çöfž;xů›ź®?uěR§őŇŤmB'µZ-ł¸±÷f Ţ=»HůMÔŮmXmŁ×2K:™`ł1=q ş¤ff\˙''@)˘°”Ń/#Îý„ńa‡ěô7ţŠäüŢŇ56aăełDO’ČŽłIITC˘Şsd/˛#›q‡€pÖú"†''îCrEN{ëś ¦P+côcĺhŁźŮi%ܵCŰÁ0ěháČĹÉqë»ĎÖd\vü®zĐb­™ŃŘ ¸Ź‹Îc×p-ͦµĆl°¬"ę4î&çýĹ˝Ä!fłŰvFLgŇBŽ(?TL¶pŹ-¸ yQlׂó †f9łŁ89a$®Ô¸Ť[["ŞĚ†QÇJ“Xź“ČCV[ËÚŠYm»íFgű‹0¬ť™Młć™Ý»›˘0D‡É”ő>w ¬ĄIq{ť®aͶŐ4Ú ”ŚćÝMĹśTŘ$¶kOěéĆËě¦Ę욑߰f«;5«ŃiőzćÝÍßqÇßqHPw04a[ˇP“čEŐt×- •żS¨GKMgäB@6"×wĆŚłĹć§ŁĹíKż¶UËŕqhTĐ`Ą‰Ó- knâíą·§ß6żdr“3đŐ0~;GĄŁçĹďĄJĘ÷쿇mt‘`Ö}X ‘ $ÍVÝVhç0%-›˘ń‹Ř¦`Výv««ŮĐ[i+ăú»h[¤çPu`Š„• Đ„EŻŤ JíK Ďb™Bzü®t‚Îf\aW)E)fQ W 4pŘ ĄiEŹ%“±P©ńÉĐš UfĄŇI5Jâ*PŚëŔ*…(]G "cîAăJM”ŁÍŻőěśą“65«Ąg×1˛y5ŽRx©Żş·Ĺ›°‚,Źeaî—ň´-ť“­í¶˛Ž¸Ŕö O–‚Đ(v¦-›üń­ßŞ5. żB[!xň52Ő#'W5˰Ú ÚČ7t[âaŰ|čˇ+ÜÇ3®ßŕŰ#ď9‚‰†Ö#PE µ(¶uoÄŰşŹgáËżó Ď»^ ÇSnĄâEĚ^+´Ľqő­Xh'K[ĚŃÂĂ“‹ÂâŽmďÔćŰĘ{îI– ,âŘťyĹŐ‹[çşsűśGS;Oś[`«°ŔŽŹvö¤MYixÖ„µaśë«^ŇsąŻđ#q UÓyYAbѰ!ćĐMíÂćí |úőOAÜs×#K K>Bś3ľ.Wz"Kz˝oű§ĐędŮgv€§™Ô13Ű é|gĺ=čü¬ů]ówSEžä.«Řç{¬ú‹–˙EŰ‚’nbýŰ  ą§źÚďÝ÷"Éď=ťăńáľ š“x9új9N±' W.Ç)_Žş«¸ĆÚY(Îwt4íçŁČ_ŻÝ~ =¨[ěxçW|±ˇ–Ď(Vhţś´řÉb–šŹ?écw2˙ ěSe¨žůé¶ű„MnGÁÂ?ÝFaşĽg%)Ă솞JüŐ<Ă\ľ2ŕ‘ôSg”$é”MR-mÖÄâKâí ¨bBNQvk,“$’Ź?LźĚ]-qĆ›*É[ ˘6,!0Ç}F8Đ™wÄ’R€îĎ_ňé,_ľ¶éô:Îfő&ěvµĘô9”\ěěNŢŻ`»Ń@×­|ŽŇĄl7QH i'· í”kşo=ećeląŐ= ÓP\gW¦źĎ¬kvÚeĚżďGţ3Ź š3ďm­¸ëC]µ÷‚YGĐ-ČasdŔ;Ť'ăWv‰ňlGcd@$1;&NŽňę_zrŚ'm‘3[– Cąż‰,_L†‘y»ËĺÓěżüęD¦´„/ż ž(Ă mř\Ůp1‘şdZÍ7›mňżĚ(ąO6ú÷ÚvçΜ¦GÚŽKtŻ,óh¦ćŃ–ĺ IÇÂĘyĹö¨˝Ő“O-ŇĐĂp©ĽÓĚZX/ą5ß[µ¦¬!˝{VóůĆ˙(˛LťŔ>ÇCrIË R ih“`â ÔńpîNP´ĹI§©čČ;9™¸)ô3' B–ŻFăzy®Ő <ěůXíýľ°˙Ń= "?ÖőŤ§™;;µ ×µ› {íB;ë]_Ä R=uĎĄ€iáuíßyI´E ·BÔ0)g´HÖŠ!ĄWÝTńł…®ÚËnh/p'_HV «c¬Ŕ•ÜTPHcZ0`Vˇ©óvu7Ő˙7¬€®6'Ä ŚBö€Á×÷fóóÁ& ,*°¸üŃ"îŻJ‘gßY{Ę*·§†Ąx(oę˘ćĹLĎá_±j]ĂŇ‚ßÉeÖ4ĚžvĄÜ€E> ěä®D‚žR“ăŇ?¦ü âź»xôÇŢ˙l#\; `ú€]vx‚1ţBĹjŠčş›EVŮqĆÜ‹Ń,>saŇiĚKAüáš|`)oÇEA=«k4:íâŔŐđ}[XtqĂ÷”ŚţŔsťLFV1q”¸-ű#ż>Gp7ÂÝŃűçv5#ŔiëčBmŇ˝ňçźÁĚćgń’wGC|vGłČž@U39}=ŕ>—Ŕ#ężYbN«´Żdv– «a€§ŃžZ  8ä D+lČ$ׄäN·§6’uËC~°Z9Ů˝˛SPňi?šŮ­0t¤a“Qä»>»ś%n›xźmDdŢć-Ý@Řk‰uá‡čńťs ×"#pĆđ¬Zśßc´uXÖ‚T$]”btŽo™qŰý U+ŽXŐnůÓ·}tAlřwĚbľůhK°ÜĚď,Šd(˘·…tX,1ŁÉ1Q ^ýż? ±…źýs,?ÁĂQ(žiŹ©(”Č© S’E˘2ŤzG·ŔKc;•©^ë÷ů sJ-áżc±XÇ#ą–ÂLy!ÄŁv˙߸ědRv¦PĺÇł$!ʼn#—‚,)ůҤ ŻŘNŤˇ|J2 \aŹjLČ‘8=ŠŻ 1ćâąü6Ýî;%* š‰h"ŢáUMD‹™&ô·›Ĺ„ÝoVö†•{ż.vwé6źf~cGëĺ–¬ł2GŐ[Zi«‹ĐĹ$}ŮJ¶9—ÉîŕóHî­ŽÝh1מ¸ŃČF‘^ßÓĂa¨č ń±cŃu,y4–_ß ň!®%3ĚÓ¤‡Š¤qBĚç/Ó)ş#·_€ĂĚfT16KfÓŰsOĘ 8â5i^=n;Ĺtuî"”o(š„4†ZWţEř/ĄßrjŹăµ|íI˙©>…*ć›dÇC wâÚČÂJÍlĘđ—”×2ę-®ň€ëm2˙&Ď=yi©“ f“ÚqU´¬…šĐ-w%ďW’+ZŞ%J3Ü%Ę›s&uÁĎ'DűÝ*ţOŃĎďhď}'­~+€0 °Błś=ĄĄŔ ů SnIBÔ[ß5'ç\—?Ó/ĂÖăĚ'ňúŰúukrKáśťßYĂű$EŇŚüšŻÇbV9ÜJ9hW/y ńWŘ0'Ő6É#‰§Ť6ÚXŞ^°E¸˝s(ďžBŻ‹Í„oŚî˝|Îń~8×E”)!2SčBÜ´[ř6Ź˘rŐíĄĽ¸yď ]Ň Ľ¦žH %ÓˇˇkËÍBJŤúŻ"şÄůćW®ZĚ*»wë¦Ő3ĚžQŻ#”@äˇY|JW*‰ărzĺ’¸©$1( ¶Q7™ŐĽÝ‚ż^U_B™$ľHd\,őđ«pY]6úŰaĎş|Ń–µOé%Đ Ü!1˛ňpŁŁéч;źÓ›ä«F’( Äý_Äĺö˘Ä#lme4/tests/testthat/test-factors.R0000644000176200001440000000352715103764661016676 0ustar liggesuserstest_that("factors", { set.seed(101) d <- data.frame(x=runif(1000),y=runif(1000),f1=rep(1:10,each=100),f2=rep(1:10,100)) d2 <- transform(d,f1=factor(f1),f2=factor(f2)) expect_that(lm1 <- lmer(y~x+(1|f1/f2),data=d), is_a("lmerMod")) expect_that(lm2 <- lmer(y~x+(1|f1/f2),data=d2),is_a("lmerMod")) expect_equivalent(lm1,lm2) }) ## this will fail/take a long time unless we handle interactions carefully test_that("savvy interactions", { dd <- data.frame(y = 1:10000, f1 = factor(1:10000), f2 = factor(1:10000)) F1 <- lFormula(y ~ 1 + (1|f1/f2), data =dd, control = lmerControl(check.nobs.vs.nlev = "ignore", check.nobs.vs.nRE = "ignore")) expect_equal(dim(F1$reTrms$Zt), c(20000, 10000)) }) test_that("savvy factor level ordering", { check_f <- function(n = 200, frac = 0.7, fix_order = TRUE, check_order = TRUE) { dd <- expand.grid(f1 = seq(n), f2 = seq(n)) dd <- within(dd, { f1 <- factor(f1, levels = sample(unique(f1))) f2 <- factor(f2, levels = sample(unique(f2))) }) dd <- dd[sample(nrow(dd), size = round(frac*nrow(dd)), replace = FALSE), ] dd <- within(dd, { f12 <- f1:f2 f12d <- droplevels(f12) }) new_levels <- with(dd, levels(`%i%`(f1,f2, fix.order = fix_order))) ## don't want to pay the cost of checking if unneeded {for benchmarking} if (fix_order && check_order) { stopifnot(identical(levels(dd$f12d), new_levels)) } return(TRUE) } ## should fail within check_f() if levels don't match expect_true(check_f(), "'savvy' factor levels match brute-force version") ## library(microbenchmark) ## set.seed(101) ## m1 <- microbenchmark(check_f(fix_order = TRUE, check_order = FALSE), ## check_f(fix_order = FALSE)) }) lme4/tests/testthat/test-rank.R0000644000176200001440000000744215103764661016170 0ustar liggesusers#context("testing fixed-effect design matrices for full rank") test_that("lmerRank", { set.seed(101) n <- 20 x <- y <- rnorm(n) d <- data.frame(x,y, z = rnorm(n), r = sample(1:5, size=n, replace=TRUE), y2 = y + c(0.001, rep(0,n-1))) expect_message(fm <- lmer( z ~ x + y + (1|r), data=d), "fixed-effect model matrix is .*rank deficient") ## test reconstitution of full parameter vector (with NAs) expect_equal(names(fixef(fm,add.dropped=TRUE)), c("(Intercept)","x","y")) expect_equal(fixef(fm,add.dropped=TRUE)[1:2], fixef(fm)) expect_equal(nrow(anova(fm)), 1L) expect_error(lmer( z ~ x + y + (1|r), data=d, control=lmerControl(check.rankX="stop")), "rank deficient") expect_error(lmer( z ~ x + y + (1|r), data=d, control=lmerControl(check.rankX="ignore")), "not positive definite") ## should work: expect_is(lmer( z ~ x + y2 + (1|r), data=d), "lmerMod") d2 <- expand.grid(a=factor(1:4),b=factor(1:4),rep=1:10) n <- nrow(d2) d2 <- transform(d2,r=sample(1:5, size=n, replace=TRUE), z=rnorm(n)) d2 <- subset(d2,!(a=="4" & b=="4")) expect_error(lmer( z ~ a*b + (1|r), data=d2, control=lmerControl(check.rankX="stop")), "rank deficient") expect_message(fm <- lmer( z ~ a*b + (1|r), data=d2), "fixed-effect model matrix is rank deficient") d2 <- transform(d2, ab=droplevels(interaction(a,b))) ## should work: expect_is(fm2 <- lmer( z ~ ab + (1|r), data=d2), "lmerMod") expect_equal(logLik(fm), logLik(fm2)) expect_equal(sum(anova(fm)[, "npar"]), anova(fm2)[, "npar"]) expect_equal(sum(anova(fm)[, "Sum Sq"]), anova(fm2)[, "Sum Sq"]) }) test_that("glmerRank", { set.seed(111) n <- 100 x <- y <- rnorm(n) d <- data.frame(x, y, z = rbinom(n,size=1,prob=0.5), r = sample(1:5, size=n, replace=TRUE), y2 = ## y + c(0.001,rep(0,n-1)), ## too small: get convergence failures ## FIXME: figure out how small a difference will still fail? rnorm(n)) expect_message(fm <- glmer( z ~ x + y + (1|r), data=d, family=binomial), "fixed-effect model matrix is rank deficient") expect_error(glmer( z ~ x + y + (1|r), data=d, family=binomial, control=glmerControl(check.rankX="stop")), "rank deficient.*rank.X.") expect_is(glmer( z ~ x + y2 + (1|r), data=d, family=binomial), "glmerMod") }) test_that("nlmerRank", { set.seed(101) n <- 1000 nblock <- 15 x <- abs(rnorm(n)) y <- rnorm(n) z <- rnorm(n,mean=x^y) r <- sample(1:nblock, size=n, replace=TRUE) d <- data.frame(x,y,z,r) ## save("d","nlmerRank.RData") ## see what's going on with difference in contexts fModel <- function(a,b) (exp(a)*x)^(b*y) fModf <- deriv(body(fModel), namevec = c("a","b"), func = fModel) fModel2 <- function(a,b,c) (exp(a+c)*x)^(b*y) fModf2 <- deriv(body(fModel2), namevec = c("a","b","c"), func = fModel2) ## should be OK: fails in test mode? nlmer(y ~ fModf(a,b) ~ a|r, d, start = c(a=1,b=1)) ## FIXME: this doesn't get caught where I expected expect_error(nlmer(y ~ fModf2(a,b,c) ~ a|r, d, start = c(a=1,b=1,c=1)),"Downdated VtV") }) test_that("ranksim", { set.seed(101) x <- data.frame(id = factor(sample(10, 100, replace = TRUE))) x$y <- rnorm(nrow(x)) x$x1 <- 1 x$x2 <- ifelse(x$y<0, rnorm(nrow(x), mean=1), rnorm(nrow(x), mean=-1)) m <- suppressMessages(lmer(y ~ x1 + x2 + (1 | id), data=x)) expect_equal(simulate(m, nsim = 1, use.u = FALSE, newdata=x, seed=101), simulate(m, nsim = 1, use.u = FALSE, seed=101)) }) lme4/tests/testthat/test-NAhandling.R0000644000176200001440000002016215103764661017232 0ustar liggesusersstopifnot(require("testthat"), require("lme4")) #context("NA (and Inf) handling") ## Modified sleepstudy data : sleepst.a <- sleepstudy rownames(sleepst.a) <- paste0("a", rownames(sleepstudy)) sleepstudyNA <- within(sleepst.a, Reaction[1:3] <- NA) sleepstudyNA2 <- within(sleepst.a, Days[1:3] <- NA) sleepInf <- within(sleepstudy, Reaction[Reaction > 400] <- Inf) ## Modified cake data : cakeNA <- rbind(cake, tail(cake,1)) cakeNA[nrow(cakeNA), "angle"] <- NA ## Create new data frame with some NAs in fixed effect cakeNA.X <- within(cake, temp[1:5] <- NA) ## NA values in random effects -- should get treated cakeNA.Z <- within(cake, replicate[1:5] <- NA) test_that("naming", { ## baseline model fm1 <- lmer(Reaction~Days+(Days|Subject), sleepst.a) ## default: na.omit fm2 <- update(fm1, data=sleepstudyNA, control=lmerControl(check.conv.grad="ignore")) expect_equal(head(names(fitted(fm1))), paste0("a",1:6)) expect_equal(head(names(fitted(fm2))), paste0("a",4:9)) expect_equal(names(predict(fm2)), names(fitted(fm2))) expect_equal(length(p1 <- predict(fm2)), 177) ## predict with na.exclude -> has 3 NA's, but otherwise identical: expect_equal(length(p2 <- predict(fm2, na.action=na.exclude)), 180) expect_identical(p1, p2[!is.na(p2)]) expect_equal(length((s1 <- simulate(fm1,1))[[1]]),180) expect_equal(length((s2 <- simulate(fm2,1))[[1]]),177) expect_equal(head(rownames(s1)),paste0("a",1:6)) expect_equal(head(rownames(s2)),paste0("a",4:9)) ## test simulation expect_is(attr(simulate(fm2),"na.action"),"omit") expect_is(refit(fm2,simulate(fm2)),"merMod") expect_equal(fixef(fm2), fixef(refit(fm2, sleepstudyNA$Reaction)), tolerance = 1e-5) fm2ex <- update(fm2, na.action=na.exclude) expect_equal(nrow(ss2 <- simulate(fm2ex)),180) expect_is(refit(fm2,ss2[[1]]),"merMod") ## issue #197, 18 new subjects; some with NA in y d2 <- sleepstudyNA[c(1:180, 1:180),] d2[,"Subject"] <- factor(rep(1:36, each=10)) d2[d2$Subject == 19, "Reaction"] <- NA expect_equal(dim( simulate(fm1, newdata=d2, allow.new.levels=TRUE) ), c(360,1)) ## na.pass (pretty messed up) expect_error(update(fm1,data=sleepstudyNA, control=lmerControl(check.conv.grad="ignore"), na.action=na.pass), "NA/NaN/Inf in 'y'") sleepstudyNA2 <- within(sleepst.a, Days[1:3] <- NA) expect_error(fm4 <- update(fm1, data = sleepstudyNA2, control=lmerControl(check.conv.grad="ignore"), na.action=na.pass),"NA in Z") expect_is(suppressWarnings(confint(fm2,method="boot",nsim=3, quiet=TRUE)),"matrix") expect_error(update(fm1, data = sleepstudyNA2, control = lmerControl(check.conv.grad="ignore"), na.action = na.pass), "NA in Z") expect_is(suppressWarnings( ci2 <- confint(fm2, method="boot", nsim=3, quiet=TRUE)), "matrix") }) test_that("other_NA", { expect_error(lmer(Reaction ~ Days + (Days | Subject), sleepInf), "\\") fm0 <- lmer(angle ~ recipe * temperature + (1|recipe:replicate), cake) ## NA's in response : fm1 <- update(fm0, data = cakeNA) expect_true(all.equal( fixef(fm0), fixef(fm1))) expect_true(all.equal(VarCorr(fm0),VarCorr(fm1))) expect_true(all.equal( ranef(fm0), ranef(fm1))) fm1_omit <- update(fm1, na.action = na.omit) fm1_excl <- update(fm1, na.action = na.exclude) expect_error(update(fm1, na.action = na.pass), "NA/NaN") expect_error(update(fm1, na.action = na.fail), "missing values in object") fm1_omit@call <- fm1@call ## <- just for comparing: expect_equal(fm1, fm1_omit) expect_equal(length(fitted(fm1_omit)), 270) expect_equal(length(fitted(fm1_excl)), 271) expect_true(is.na(tail(predict(fm1_excl),1))) ## test predict.lm d <- data.frame(x = 1:10, y = c(rnorm(9),NA)) lm1 <- lm(y~x, data=d, na.action=na.exclude) expect_is(predict(lm1), "numeric") expect_equal(1, sum(is.na(predict(lm1, newdata = data.frame(x=c(1:4,NA)))))) ## Triq examples ... m.lmer <- lmer (angle ~ temp + (1 | recipe) + (1 | replicate), data=cake) ## NAs in fixed effect p1_pass <- predict(m.lmer, newdata=cakeNA.X, re.form=NA, na.action=na.pass) expect_true(length(p1_pass)==nrow(cakeNA.X)) expect_true(all(is.na(p1_pass[1:5]))) p1_omit <- predict(m.lmer, newdata=cakeNA.X, re.form=NA, na.action=na.omit) p1_exclude <- predict(m.lmer, newdata=cakeNA.X, re.form=NA, na.action=na.exclude) expect_true(length(p1_omit)==nrow(na.omit(cakeNA.X))) expect_true(length(p1_exclude)==nrow(cakeNA.X)) expect_true(all.equal(c(na.omit(p1_exclude)),p1_omit)) expect_error(predict(m.lmer, newdata=cakeNA.X, re.form=NA, na.action=na.fail), "missing values in object") ## now try it with re.form==NULL p2_pass <- predict(m.lmer, newdata=cakeNA.X, re.form=NULL, na.action=na.pass) expect_true(length(p2_pass)==nrow(cakeNA.X)) expect_true(all(is.na(p2_pass[1:5]))) p2_omit <- predict(m.lmer, newdata=cakeNA.X, re.form=NULL, na.action=na.omit) p2_exclude <- predict(m.lmer, newdata=cakeNA.X, re.form=NULL, na.action=na.exclude) expect_true(length(p2_omit)==nrow(na.omit(cakeNA.X))) expect_true(all.equal(c(na.omit(p2_exclude)),p2_omit)) expect_error(predict(m.lmer, newdata=cakeNA.X, re.form=NULL, na.action=na.fail), "missing values in object") ## experiment with NA values in random effects -- should get treated expect_error(predict(m.lmer, newdata=cakeNA.Z, re.form=NULL), "NAs are not allowed in prediction data") p4 <- predict(m.lmer, newdata=cakeNA.Z, re.form=NULL, allow.new.levels=TRUE) p4B <- predict(m.lmer, newdata=cakeNA.Z, re.form=~1|recipe, allow.new.levels=TRUE) expect_true(all.equal(p4[1:5],p4B[1:5])) p4C <- predict(m.lmer, newdata=cakeNA.Z, re.form=NA) d <- data.frame(x=runif(100),f=factor(rep(1:10,10))) set.seed(101) u <- rnorm(10) d <- transform(d,y=rnorm(100,1+2*x+u[f],0.2)) d0 <- d d[c(3,5,7),"x"] <- NA ## 'omit' and 'exclude' are the only choices under which ## we will see NA values in the results fm0 <- lmer(y~x+(1|f), data=d0) ## no 'na.action' attribute because no NAs in this data set expect_equal(attr(model.frame(fm0),"na.action"),NULL) fm1 <- update(fm0, data=d) ## no NAs in predict or residuals because na.omit expect_false(any(is.na(predict(fm1)))) expect_false(any(is.na(residuals(fm1)))) fm2 <- update(fm1,na.action="na.exclude") ## no NAs in predict or residuals because na.omit nNA <- sum(is.na(d$x)) expect_equal(sum(is.na(predict(fm2))),nNA) expect_equal(sum(is.na(residuals(fm2))),nNA) expect_error(fm3 <- lmer(y~x+(1|f), data=d, na.action="na.pass"), "(Error in qr.default|NA/NaN/Inf in foreign function call)") expect_is(refit(fm0),"merMod") expect_is(refit(fm1),"merMod") expect_is(refit(fm2),"merMod") ## GH 420: NAs in training data should *not* get ## carried over into predictions! fm4 <- lmer(Reaction~Days+(1|Subject),sleepstudyNA2) pp4 <- predict(fm4,newdata=sleepstudy) expect_equal(length(pp4),nrow(sleepstudy)) expect_equal(sum(is.na(pp4)),0) }) test_that("NAs in fitting data ignored in newdata with random.only=TRUE", { set.seed(101) dd <- data.frame(x=c(rnorm(199),NA),y=rnorm(200), f=factor(rep(1:10,each=20)), g=factor(rep(1:20,each=10))) m1 <- lmer(y~x+(1|f)+(1|g),data=dd,na.action=na.exclude) expect_equal(length(predict(m1,newdata=dd[1:5,],random.only=TRUE)),5) nd.NA <- dd[1:5,] nd.NA$x[5] <- NA ## ?? not *quite* sure what should happen here ... predict(m1,newdata=nd.NA,random.only=TRUE) }) lme4/tests/testthat/test-predict.R0000644000176200001440000006536115103764665016677 0ustar liggesuserslibrary("lattice") testLevel <- if (nzchar(s <- Sys.getenv("LME4_TEST_LEVEL"))) as.numeric(s) else 1 ## use old (<=3.5.2) sample() algorithm if necessary if ("sample.kind" %in% names(formals(RNGkind))) { suppressWarnings(RNGkind("Mersenne-Twister", "Inversion", "Rounding")) } do.plots <- TRUE L <- load(system.file("testdata/lme-tst-fits.rda", package="lme4", mustWork=TRUE)) if (getRversion() > "3.0.0") { ## saved fits are not safe with old R versions gm1 <- fit_cbpp_1 fm1 <- fit_sleepstudy_1 fm2 <- fit_sleepstudy_2 fm3 <- fit_penicillin_1 fm4 <- fit_cake_1 } else { gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) fm1 <- lmer(Reaction ~ Days + (1|Subject), sleepstudy) fm2 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) fm3 <- lmer(diameter ~ (1|plate) + (1|sample), Penicillin) fm4 <- lmer(angle ~ temp + recipe + (1 | replicate), data=cake) } if (testLevel>1) { #context("predict") test_that("fitted values", { p0 <- predict(gm1) p0B <- predict(gm1, newdata=cbpp) expect_equal(p0, p0B, tolerance=2e-5) ## ? not sure why high tolerance necessary ? works OK on Linux/R 3.5.0 ## fitted values, unconditional (level-0) p1 <- predict(gm1, re.form=NA) expect_true(length(unique(p1))==length(unique(cbpp$period))) ## fitted values, random-only p1R <- predict(gm1, random.only=TRUE) expect_equal(p1+p1R,p0) if (do.plots) matplot(cbind(p0,p1),col=1:2,type="b") ## neither fixed nor random -- all zero expect_equal(unique(predict(gm1,re.form=NA,random.only=TRUE)),0) }) test_that("predict with newdata", { newdata <- with(cbpp, expand.grid(period=unique(period),herd=unique(herd))) ## new data, all RE p2 <- predict(gm1,newdata) ## new data, level-0 p3 <- predict(gm1,newdata, re.form=NA) p3R <- predict(gm1,newdata, random.only=TRUE) expect_equal(p3+p3R,p2) if (do.plots) matplot(cbind(p2,p3),col=1:2,type="b") }) test_that("predict on response scale", { p0 <- predict(gm1) p5 <- predict(gm1,type="response") expect_equal(p5, plogis(p0)) }) test_that("predict with newdata and RE", { newdata <- with(cbpp,expand.grid(period=unique(period),herd=unique(herd))) ## explicitly specify RE p2 <- predict(gm1,newdata) p4 <- predict(gm1,newdata, re.form=~(1|herd)) expect_equal(p2, p4) }) test_that("effects of new RE levels", { newdata <- with(cbpp, expand.grid(period=unique(period), herd=unique(herd))) newdata2 <- rbind(newdata, data.frame(period=as.character(1:4), herd=rep("new",4))) expect_error(predict(gm1, newdata2), "new levels detected in newdata: new") newdata3 <- rbind(newdata, data.frame(period=as.character(1), herd = paste0("new", 1:50))) expect_error(predict(gm1, newdata3), "new levels detected in newdata: new1, new2,") p2 <- predict(gm1, newdata) p6 <- predict(gm1, newdata2, allow.new.levels=TRUE) expect_equal(p2, p6[1:length(p2)]) ## original values should match ## last 4 values should match unconditional values expect_true(all(tail(p6,4) == predict(gm1, newdata=data.frame(period=factor(1:4)), re.form=NA))) }) test_that("multi-group model", { ## fitted values p0 <- predict(fm3) expect_equal(head(round(p0,4)), c(`1` = 25.9638, `2` = 22.7663, `3` = 25.7147, `4` = 23.6799, `5` = 23.7629, `6` = 20.773)) ## fitted values, unconditional (level-0) p1 <- predict(fm3, re.form=NA) expect_equal(unique(p1),22.9722222222251) if (do.plots) matplot(cbind(p0,p1),col=1:2,type="b") }) test_that("multi-group model with new data", { newdata <- with(Penicillin,expand.grid(plate=unique(plate),sample=unique(sample))) ## new data, all RE p2 <- predict(fm3, newdata) ## new data, level-0 p3 <- predict(fm3, newdata, re.form=NA) ## explicitly specify RE p4 <- predict(fm3, newdata, re.form= ~(1|plate)+(~1|sample)) p4B <- predict(fm3, newdata, re.form= ~(1|sample)+(~1|plate)) ## **** expect_equal(p2,p4) expect_equal(p4,p4B) p5 <- predict(fm3,newdata, re.form=~(1|sample)) p6 <- predict(fm3,newdata, re.form=~(1|plate)) if (do.plots) matplot(cbind(p2,p3,p5,p6),type="b",lty=1,pch=16) }) test_that("random-slopes model", { p0 <- predict(fm2) p1 <- predict(fm2, re.form=NA) ## linear model, so results should be identical patterns but smaller -- ## not including intermediate days newdata <- with(sleepstudy,expand.grid(Days=range(Days),Subject=unique(Subject))) newdata$p2 <- predict(fm2,newdata) newdata$p3 <- predict(fm2,newdata, re.form=NA) newdata$p4 <- predict(fm2,newdata, re.form=~(0+Days|Subject)) newdata$p5 <- predict(fm2,newdata, re.form=~(1|Subject)) ## reference values from an apparently-working run refval <- structure( list(Days = c(0, 9, 0, 9, 0, 9), Subject = structure(c(1L, 1L, 2L, 2L, 3L, 3L), .Label = c("308", "309", "310", "330", "331", "332", "333", "334", "335", "337", "349", "350", "351", "352", "369", "370", "371", "372"), class = "factor"), p2 = c(253.663652396798, 430.66001930835, 211.006415533628, 227.634788908917, 212.444742696829, 257.61053840953), p3 = c(251.405104848485, 345.610678484848, 251.405104848485, 345.610678484848, 251.405104848485, 345.610678484848), p4 = c(251.405104848485, 428.401471760037, 251.405104848485, 268.033478223774, 251.405104848485, 296.570900561186), p5 = c(253.663652396798, 347.869226033161, 211.006415533628, 305.211989169991, 212.444742696829, 306.650316333193)), out.attrs = list(dim = c(Days = 2L, Subject = 18L), dimnames = list( Days = c("Days=0", "Days=9"), Subject = c("Subject=308", "Subject=309", "Subject=310", "Subject=330", "Subject=331", "Subject=332", "Subject=333", "Subject=334", "Subject=335", "Subject=337", "Subject=349", "Subject=350", "Subject=351", "Subject=352", "Subject=369", "Subject=370", "Subject=371", "Subject=372")) ), row.names = c(NA, 6L), class = "data.frame") expect_equal(head(newdata), refval, tol=5e-7) }) test_that("predict and plot random slopes", { tmpf <- function(data,...) { data$Reaction <- predict(fm2,data,...) if (do.plots) xyplot(Reaction~Days,group=Subject,data=data,type="l") return(unname(head(round(data$Reaction,3)))) } expect_equal(tmpf(sleepstudy),c(253.664, 273.33, 292.996, 312.662, 332.329, 351.995)) expect_equal(tmpf(sleepstudy, re.form=NA), c(251.405, 261.872, 272.34, 282.807, 293.274, 303.742)) expect_equal(tmpf(sleepstudy, re.form= ~(0+Days|Subject)), c(251.405, 271.071, 290.738, 310.404, 330.07, 349.736)) expect_equal(tmpf(sleepstudy, re.form= ~(1|Subject)), c(253.664, 264.131, 274.598, 285.066, 295.533, 306)) }) test_that("fewer random effect levels than original", { ## from 'Colonel Triq' summary(fm4) ## replicate 1 only appears in rows 1:18. ## rownames(cake[cake$replicate==1,]) predict(fm4, newdata=cake[-1:-17,], re.form=~ (1 | replicate)) predict(fm4, newdata=cake[-1:-18,], re.form=NA) predict(fm4, newdata=cake[-1:-18,], re.form=~ (1 | replicate)) predict(fm4, newdata=cake[-1:-18,], re.form=~ (1 | replicate), allow.new.levels=TRUE) ## p0 <- predict(fm1,newdata=data.frame(Days=6,Subject=c("308","309"))) p1 <- predict(fm1,newdata=data.frame(Days=rep(6,4), Subject=c("308","309"))) expect_equal(rep(unname(p0),2),unname(p1)) p2 <- predict(fm1,newdata=data.frame(Days=6,Subject="308")) nd <- data.frame(Days=6, Subject=factor("308",levels=levels(sleepstudy$Subject))) p3 <- predict(fm1,newdata=nd) expect_equal(p2,p3) expect_equal(p2,p0[1]) }) test_that("only drop columns when using new data", { ## Stack Overflow 34221564: ## should only drop columns from model matrix when using *new* data ## NB: Fit depends on optimizer somewhat: "nloptwrap" is really better than "bobyqa" library(splines) sleep <- sleepstudy #get the sleep data set.seed(1234567) sleep$age <- as.factor(sample(1:3,length(sleep),rep=TRUE)) form1 <- Reaction ~ Days + ns(Days, df=4) + age + Days:age + (Days | Subject) m4 <- lmer(form1, sleep) # fixed-effect model matrix is rank deficient so dropping 1 column / coefficient expect_lte(REMLcrit(m4), 1713.171) # FIXME !? why this regression?? had 1700.6431; "bobyqa" gave 1713.171 expect_equal(unname(head(predict(m4, re.form=NA))), c(255.203, 259.688, 265.71, 282.583, 294.784, 304.933), tolerance = 0.008) }) test_that("only look for columns that exist in re.form", { ## GH 457 set.seed(101) n <- 200 dd <- data.frame(x=1:n, f=factor(rep(1:10,n/10)), g=factor(rep(1:20,each=n/20)), h=factor(rep(1:5,n/5)), y=rnorm(n)) m1 <- lmer(y~1 + f + (1|h/f) + (poly(x,2)|g), data=dd, control=lmerControl(calc.derivs=FALSE)) expect_equal(unname(predict(m1,re.form= ~1 | h/f, newdata=dd[1,])), 0.14786, tolerance=1e-4) expect_equal(unname(predict(m1,re.form= ~poly(x,2) | g, newdata=dd[1,])), 0.1533, tolerance=.001) ## *last* RE not included (off-by-one error) m1B <- lmer(y~1 + f + (1|g) + (1|h), data=dd, control=lmerControl(calc.derivs=FALSE)) expect_equal(unname(predict(m1B,re.form=~(1|g),newdata=data.frame(f="1",g="2"))),0.1512895,tolerance=1e-5) set.seed(101) n <- 100 xx <- c("r1", "r2", "r3", "r4", "r5") xxx <- c("e1", "e2", "e3") p <- 0.3 School <- factor(sample(xxx, n, replace=TRUE), levels=xxx, ordered=FALSE) Rank <- factor(sample(xx, n, replace=TRUE), levels=xx, ordered=FALSE) df1 <- data.frame( ID = as.integer(runif(n, min = 1, max = n/7)), xx1 = runif(n, min = 0, max = 10), xx2 = runif(n, min = 0, max = 10), xx3 = runif(n, min = 0, max = 10), School, Rank, yx = as.factor(rbinom(n, size = 1, prob = p)) ) df1 <- df1[order(df1$ID, decreasing=FALSE),] mm2 <- glmer(yx ~ xx1 + xx2 + xx3 + Rank + (1 | ID) + (1 | School / Rank), data = df1, family = "binomial",control = glmerControl(calc.derivs =FALSE)) n11 <- data.frame(School= factor("e1", levels = levels(df1$School),ordered=FALSE), Rank = factor("r1", levels = levels(df1$Rank), ordered=FALSE), xx1=8.58, xx2=8.75, xx3=7.92) expect_equal(unname(predict(mm2, n11, type="response",re.form= ~(1 | School / Rank))), 0.1174628,tolerance=1e-5) ## bad factor levels mm3 <- update(mm2, . ~ . - (1|ID)) n12 = data.frame(School="e3",Rank="r2",xx1=8.58,xx2=8.75,xx3=7.92) expect_equal(unname(predict(mm3, n12, type="response")),0.1832894,tolerance=1e-5) ## GH #452 ## FIXME: would like to find a smaller/faster example that would test the same warning (10+ seconds) set.seed(101) n <- 300 df2 <- data.frame( xx1 = runif(n, min = 0, max = 10), xx2 = runif(n, min = 0, max = 10), xx3 = runif(n, min = 0, max = 10), School = factor(sample(xxx, n,replace=TRUE)), Rank = factor(sample(xx, n, replace=TRUE)), yx = as.factor(rbinom(n, size = 1, prob = p)) ) mm4 <- suppressWarnings(glmer(yx ~ xx1 + xx2 + xx3 + Rank + (Rank|School), data = df2, family = "binomial",control = glmerControl(calc.derivs =FALSE))) ## set tolerance to 0.1 (!) to pass win-builder on R-devel/i386 (only: ## tolerance = 3e-5 is OK for other combinations of (R-release, R-devel) x (i386,x64) expect_equal(unname(predict(mm4, n11, type="response")), 0.2675081, tolerance=0.1) }) test_that("simulation works with non-factor", { set.seed(12345) dd <- data.frame(a=gl(10,100), b = rnorm(1000)) test2 <- suppressMessages(simulate(~1+(b|a), newdata=dd, family=poisson, newparams= list(beta = c("(Intercept)" = 1), theta = c(1,1,1)))) expect_is(test2,"data.frame") }) set.seed(666) n <- 500 df <- data.frame(y=statmod::rinvgauss(n, mean=1, shape=2), id=factor(1:20)) model_fit <- glmer(y ~ 1 + (1|id), family = inverse.gaussian(link = "inverse"), data = df, control=glmerControl(check.conv.singular="ignore")) test_that("simulation works for inverse gaussian", { expect_equal(mean(simulate(model_fit)[[1]]), 1.02704392575914, tolerance=1e-5) }) test_that("simulation complains appropriately about bad family", { ig <- inverse.gaussian() ig$family <- "junk" model_fit2 <- glmer(y ~ 1 + (1|id), family = ig, data = df, control=glmerControl(check.conv.singular="ignore")) expect_error(simulate(model_fit2),"simulation not implemented for family") }) test_that("prediction from large factors", { set.seed(101) N <- 50000 X <- data.frame(y=rpois(N, 5), obs=as.factor(1:N)) fm <- glmer(y ~ (1|obs), family="poisson", data=X, control=glmerControl(check.conv.singular="ignore")) ## FIXME: weak tests. The main issue here is that these should ## be reasonably speedy and non-memory-hogging, but those are ## hard to test portably ... expect_is(predict(fm, re.form=~(1|obs)), "numeric") expect_is(predict(fm, newdata=X), "numeric") }) test_that("prediction with gamm4", { if (suppressWarnings(requireNamespace("gamm4"))) { ## loading gamm4 warngs "replacing previous import 'Matrix::update' by 'lme4::update' when loading 'gamm4'" ## from ?gamm4 set.seed(0) ## simulate 4 term additive truth dat <- mgcv::gamSim(1,n=400,scale=2,verbose=FALSE) ## Now add 20 level random effect `fac'... dat$fac <- fac <- as.factor(sample(1:20,400,replace=TRUE)) dat$y <- dat$y + model.matrix(~fac-1)%*%rnorm(20)*.5 br <- gamm4::gamm4(y~s(x0)+x1+s(x2),data=dat,random=~(1|fac)) expect_warning(ss <- simulate(br$mer), "modified RE names") expect_equal(dim(ss), c(400,1)) } }) test_that("prediction with spaces in variable names", { cbpp$`silly period` <- cbpp$period m <- glmer(cbind(incidence,size-incidence) ~ `silly period` + (1|herd), family=binomial, data=cbpp) expect_equal(round(head(predict(m)),3), c(`1` = -0.809, `2` = -1.801, `3` = -1.937, `4` = -2.388, `5` = -1.697, `6` = -2.689)) }) if (requireNamespace("statmod")) { test_that("simulate with rinvgauss", { dd <- data.frame(f=factor(rep(1:20,each=10))) dd$y <- simulate(~1+(1|f), seed=101, family=inverse.gaussian, newdata=dd, ## ?? gives NaN (sqrt(eta)) for low beta ? newparams=list(beta=5,theta=1,sigma=1))[[1]] suppressMessages(m <- glmer(y~1+(1|f), family=inverse.gaussian, data=dd)) set.seed(101) expect_equal(head(unlist(simulate(m))), c(sim_11 = 0.451329390087728, sim_12 = 0.629516371309772, sim_13 = 0.481236633500098, sim_14 = 0.170060386109077, sim_15 = 0.258742371516342, sim_16 = 0.949617440586848)) }) } ## GH 631 test_that("sparse contrasts don't mess up predict()", { dd <- expand.grid(f = factor(1:101), rep1 = factor(1:2), rep2 = 1:2) dd$y <- suppressMessages(simulate(~1 + (rep1|f), seed = 101, newdata = dd, newparams = list(beta = 1, theta = rep(1,3), sigma = 1), family = gaussian)[[1]]) m1 <- lmer( y ~ 1 + (1|f), data = dd) p1 <- predict(m1) p2 <- predict(m1, newdata = dd) expect_identical(p1, p2) }) } ## testLevel > 1 test_that("prediction with . in formula + newdata", { set.seed(101) mydata <- data.frame( groups = rep(1:3, each = 100), x = rnorm(300), dv = rnorm(300) ) train_subset <- sample(1:300, 300 * .8) train <- mydata[train_subset,] test <- mydata[-train_subset,] mod <- lmer(dv ~ . - groups + (1 | groups), data = train) p1 <- predict(mod, newdata = test) mod2 <- lmer(dv ~ x + (1 | groups), data = train) p2 <- predict(mod2, newdata = test) expect_identical(p1, p2) }) test_that("simulate with a factor with one level", { set.seed(1241) y <- factor(c(rep(0,1000), 1, rep(0,1000), 1), levels = c("0","1")) x <- rep(c("A","B"),each = 1001) mod <- glmer(y ~ 1 + (1|x),family = binomial, control = glmerControl(check.conv.singular = "ignore")) s <- simulate(mod,newdata = data.frame(x = "A"), nsim = 10) ## very low mean, all simulated values zero expect_true(all(s == 0)) }) test_that("prediction standard error", { # note that predict.lm returns a list with # fit, se.fit, df, residual.scale mod1 <- lmer(Petal.Width ~ Sepal.Length + (1 | Species), iris) p1 <- predict(mod1, se.fit = TRUE) p2 <- predict(mod1, se.fit = TRUE, newdata = iris) p3 <- predict(mod1, se.fit = TRUE, re.form = NA, newdata = iris) p4 <- predict(mod1, se.fit = TRUE, re.form = NA) p5 <- predict(mod1, se.fit = TRUE, re.form = ~(1 | Species)) p6 <- predict(mod1, se.fit = TRUE, re.form = ~(1 | Species), newdata = iris) p7 <- predict(mod1, se.fit = TRUE, newdata = iris, random.only = TRUE) p8 <- predict(mod1, se.fit = TRUE, re.form = ~(1 | Species), random.only = TRUE) p9 <- predict(mod1, se.fit = TRUE, re.form = ~(1 | Species), newdata = iris, random.only = TRUE) expect_equal(unname(head(p1$se.fit)), c(0.0271816400250223, 0.0272298862268211, 0.0286188379907626, 0.0297645467444413, 0.0270330515271627, 0.0295876265523127)) # re.form = NA expect_equal(unname(head(p3$se.fit)), c(0.451147865048879, 0.451497971849052, 0.451930732595154, 0.452178035807842, 0.451312573619068, 0.450778089845166)) # random.only may need checking -- tolerance maybe too high for this? expect_equal(unname(p8$se.fit), rep(0.451569712647126, 150), tolerance = 0.001) expect_equal(p1, p2) expect_equal(p3, p4) expect_equal(p1, p5) expect_equal(p1, p6) expect_equal(p7, p8) expect_equal(p7, p9) }) test_that("NA + re.form = NULL + simulate OK (GH #737)", { d <- lme4::sleepstudy d$Reaction[1] <- NA fm1 <- lmer(Reaction ~ Days + (Days | Subject), d) ss <- simulate(fm1, seed = 101, re.form = NULL)[[1]] expect_equal(c(head(ss)), c(266.139101412856, 308.148180398426, 296.081377893883, 338.367909016478, 360.294339946214, 401.91050930589)) ss0 <- simulate(fm1, seed = 101, re.form = NA)[[1]] expect_equal(length(ss), length(ss0)) ## correct dimensions with na.exclude as well ? fm2 <- update(fm1, na.action = na.exclude) ss2 <- simulate(fm2, seed = 101, re.form = NULL)[[1]] ss3 <- simulate(fm2, seed = 101, re.form = NA)[[1]] expect_equal(length(ss2), nrow(d)) expect_equal(length(ss3), nrow(d)) }) ## GH 691 parts 1 and 2 test_that("predict works with factors in left-out REs", { set.seed(101) df2 <- data.frame(yield = rnorm(100), lc = factor(rep(1:2, 50)), g1 = factor(rep(1:10, 10)), g3 = factor(rep(1:10, each = 10))) m1B <- suppressWarnings(lmer(yield ~ 1 + ( 1 | g1) + (lc |g3), data = df2, control = lmerControl(check.conv.singular = "ignore"))) expect_equal(head(predict(m1B, re.form = ~(1|g1)),1), c(`1` = 0.146787496519465), tolerance = 1e-4) }) test_that("predict works with dummy() in left-out REs", { set.seed(101) df3 <- data.frame(v1 = rnorm(100), v3 = factor(rep(1:10, each = 10)), v4 = factor(rep(1:2, each = 50)), v5 = factor(rep(1:10, 10))) m1C <- lmer(v1~(1|v3) + (0+dummy(v4,"1")|v5), data = df3, control=lmerControl(check.nobs.vs.nlev="ignore", check.nobs.vs.nRE="ignore", check.conv.singular = "ignore")) expect_equal(head(predict(m1C, re.form = ~1|v3), 1), c(`1` = -0.035719520719991)) }) test_that("predict se.fit on response scale", { p1 <- suppressWarnings( predict(fit_cbpp_1, type = "link", se.fit = TRUE)) p2 <- suppressWarnings( predict(fit_cbpp_1, type = "response", se.fit = TRUE)) p3 <- suppressWarnings( predict(fit_cbpp_1, type = "response", newdata = cbpp, se.fit = TRUE)) expect_identical(p2$se.fit, p3$se.fit) expect_equal(p1$se.fit*binomial()$mu.eta(p1$fit), p2$se.fit) }) test_that("predictions work with se.fit and subset of grouping variable levels", { ## Idea: when predicting where the newdata has less groups than what ## the full model accounted for, Cmat needs to be subsetted to match ## the dimensions for cbind(Z, X) ## Code inspired: https://github.com/lme4/lme4/issues/866#issue-3358828496 set.seed(123) dat <- data.frame( outcome = rbinom(n = 100, size = 1, prob = 0.35), var_binom = as.factor(rbinom(n = 100, size = 1, prob = 0.7)), var_cont = rnorm(n = 100, mean = 10, sd = 7), grp = as.factor(sample(letters[1:4], size = 100, replace = TRUE)) ) m1 <- lme4::glmer( outcome ~ var_binom + var_cont + (1 | grp), data = dat, family = binomial(link = "logit") ) ## d <- insight::get_datagrid(m1, "var_binom", include_random = TRUE) d <- data.frame(var_binom = factor(0:1), var_cont = c(9.24717241397544, 9.24717241397544), grp = factor(c("a","b"), levels = letters[1:4])) pp <- suppressWarnings(predict(m1, newdata = d, se.fit = TRUE)) expect_equal(pp, list(fit = c(`1` = -0.4338277, `2` = -0.5993396), se.fit = c(`1` = 0.4255397, `2` = 0.2779372)), tol = 1e-6) d2 <- dat[sample(1:nrow(dat), size = 20),] d2 <- d2[!("c" == d2$grp), ] pp2 <- suppressWarnings(predict(m1, newdata = d2, se.fit = TRUE)) expect_identical(lengths(pp2), c(fit=16L, se.fit=16L)) expect_equal(lapply(pp2, head, 2), list(fit = c(`37` = -0.5109994, `29` = -0.5704263), se.fit = c(`37` = 0.5151070, `29` = 0.3258730)), tol = 1e-7) set.seed(123) dat2 <- expand.grid( grp.1 = factor(c("a.1", "b.1", "c.1", "d.1")), grp.2 = factor(c("a.1", "b.1", "c.1", "d.1")), rep = 1:10) dat2$y <- simulate(~ 1 + (1|grp.1) + (1|grp.2), family = binomial, newdata = dat2, newparams = list(beta = 0, theta = c(1, 1)))[[1]] m2 <- lme4::glmer( y ~ 1 + (1|grp.1) + (1|grp.2), data = dat2, family = binomial(link = "logit") ) dsub <- expand.grid( grp.1 = c("a.1", "b.1"), grp.2 = c("a.1", "b.1")) p1 <- suppressWarnings(predict(m2, newdata = dsub, se.fit = TRUE)) p2 <- suppressWarnings(predict(m2, se.fit = TRUE)) ss <- subset(dat2, grp.1 %in% c("a.1", "b.1") & grp.2 %in% c("a.1", "b.1")) w <- as.numeric(rownames(ss)[1:4]) expect_equal(lapply(p2, function(x) x[w]), p1, check.attributes = FALSE) ## Example: we have grouping variables g1 and g2 which each have levels a, b, c, d. ## This safeguards cases if we ask for levels a, b in g1 and b, c in g2 set.seed(1) dat3 <- expand.grid( g1 = factor(c("a", "b", "c", "d")), g2 = factor(c("a", "b", "c", "d")), rep = 1:10 ) dat3$y <- simulate(~ 1 + (1|g1) + (1|g2), family = binomial, newdata = dat3, newparams = list(beta = 0, theta = c(1, 1)))[[1]] m3 <- lme4::glmer( y ~ 1 + (1|g1) + (1|g2), data = dat3, family = binomial(link = "logit") ) dsub2 <- expand.grid( g1 = c("a", "b"), g2 = c("c", "d")) tp1 <- suppressWarnings(predict(m3, se.fit = TRUE)) tp2 <- suppressWarnings(predict(m3, newdata = dsub2, se.fit = TRUE)) ss2 <- subset(dat3, g1 %in% c("a", "b") & g2 %in% c("c", "d")) w2 <- as.numeric(rownames(ss2)[1:4]) expect_equal(lapply(tp1, function(x) x[w2]), tp2, check.attributes = FALSE) ## Case where there are multiple grouping variables set.seed(1) sleepstudy$Subject2 <- rep(1:5, each = 36) m5 <- lmer(Reaction ~ Days + (1 + Days | Subject) + (1 | Subject2), data = sleepstudy) d <- sleepstudy[sample(1:nrow(sleepstudy), size = 30), ] pms1 <- predict(m5, se.fit = TRUE, re.form = NULL, allow.new.levels = FALSE) pms2 <- predict(m5, newdata = d, se.fit = TRUE, re.form = NULL, allow.new.levels = FALSE) psw <- as.numeric(rownames(d)) expect_equal(lapply(pms1, function(x) x[psw]), pms2, check.attributes = FALSE) ## Case where we are adding new levels lm1 <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy) d373 <- data.frame(Days = 0, Subject = "373") pred373 <- predict(lm1, newdata = d373, se.fit = TRUE, re.form = NULL, allow.new.levels = TRUE) expected_373 <- fixef(lm1)["(Intercept)"] + fixef(lm1)["Days"] * d373$Days expect_equal(pred373$fit, expected_373, check.attributes = FALSE, tol = 10e-16) ## Extending previous example: multiple new levels for different groups dsub3 <- expand.grid( g1 = c("k", "m"), g2 = c("k", "m")) tp3 <- suppressWarnings(predict(m3, newdata = dsub3, se.fit = TRUE, allow.new.levels = TRUE)) expected_tp3 <- fixef(m3)["(Intercept)"] expect_true(all(tp3$fit == expected_tp3)) ## Case where user specified allow.new.levels = TRUE but ## but no new levels were actually added tp4 <- suppressWarnings(predict(m3, se.fit = TRUE, allow.new.levels = TRUE)) ## Ideally: predictions should remain the same as before. expect_equal(lapply(tp4, function(x) x[w2]), tp2, check.attributes = FALSE) ## Test that this also works under glmer. gm1 <- glmer(round(Reaction) ~ Days + (1 + Days | Subject), data = sleepstudy, family = poisson) d2 <- data.frame(Days = 0, Subject = "373") gp1 <- suppressWarnings(predict(gm1, newdata = d2, se.fit = TRUE, re.form = NULL, allow.new.levels = TRUE)) expected_gp1 <- fixef(gm1)["(Intercept)"] expect_true(all(gp1$fit == expected_gp1)) }) lme4/tests/testthat/test-summary.R0000644000176200001440000001266415103764661016734 0ustar liggesuserstry(detach("package:lmerTest"), silent = TRUE) testLevel <- if (nzchar(s <- Sys.getenv("LME4_TEST_LEVEL"))) as.numeric(s) else 1 #context("summarizing/printing models") test_that("lmer", { set.seed(0) J <- 8 n <- 10 N <- J * n beta <- c(5, 2, 4) u <- matrix(rnorm(J * 3), J, 3) x.1 <- rnorm(N) x.2 <- rnorm(N) g <- rep(1:J, rep(n, J)) y <- 1 * (beta[1] + u[g,1]) + x.1 * (beta[2] + u[g,2]) + x.2 * (beta[3] + u[g,3]) + rnorm(N) tmpf <- function(x) capture.output(print(summary(x),digits=1)) tfun <- function(cc) { w <- grep("Fixed effects:", cc) cc[w:length(cc)] } C1 <- lmerControl(optimizer="nloptwrap", optCtrl=list(xtol_abs=1e-6, ftol_abs=1e-6)) m1 <- lmer(y ~ x.1 + x.2 + (1 + x.1 | g), control=C1) m2 <- lmer(y ~ x.1 + x.2 + (1 + x.1 + x.2 | g), control=C1) cc1 <- tmpf(m1) cc2 <- tmpf(m2) ## FIXME: correlation of fixed effects printed inconsistently. ## If (1) LME4_TEST_LEVEL == 100 *and* after running all of prior ## tests, something (package load? options setting?) changes ## so that the fixed-effect correlations are no longer printed ## out, and this test fails ## would like to sort this out but realistically not sure it's worth it? t1 <- tfun(cc1) vv <- vcov(m1) ss <- sessionInfo() save(m1, vv, ss, file = sprintf("test-summary_testlevel_%d.rda", testLevel)) expect_equal(t1, c("Fixed effects:", " Estimate Std. Error t value", "(Intercept) 5.4 0.5 12", "x.1 1.9 0.4 5", "x.2 4.0 0.1 28", "", "Correlation of Fixed Effects:", " (Intr) x.1 ", "x.1 -0.019 ", "x.2 0.029 -0.043" )) expect_equal(tfun(cc2), c("Fixed effects:", " Estimate Std. Error t value", "(Intercept) 5.4 0.4 12", "x.1 2.0 0.4 5", "x.2 4.0 0.3 15", "", "Correlation of Fixed Effects:", " (Intr) x.1 ", "x.1 -0.069 ", "x.2 0.136 -0.103" )) }) ## Tests with regards to auto-scaling; making sure we get expected behaviours. set.seed(1) sleepstudy$var1 = runif(nrow(sleepstudy), 1e6, 1e7) form <- Reaction ~ var1 + Days + (Days | Subject) scf1 <- lmer(form, control = lmerControl(autoscale = TRUE), sleepstudy) scf2 <- suppressWarnings( update(scf1, control = lmerControl(autoscale = FALSE)) ) test_that("lmer(): ensuring we get the internal scale for X with getME", { res1 <- getME(scf1, "X")[180, ] valtest1 <- c(1, 1.456867279040504, 1.562340900990911) expect_equal(res1, valtest1, check.attributes = FALSE, tolerance =1e-10) }) test_that("lmer(): ensuring we get the internal scale for beta with getME", { res2 <- getME(scf1, "beta") valtest2 <- c(298.507891666666751, 1.621716753196637, 30.161580776828778) expect_equal(res2, valtest2, tolerance =1e-10) }) test_that("lmer(): model.matrix should provide unscaled version at default", { res3 <- model.matrix.merMod(scf1)[180, ] valtest3 <- c(1, 9127734.503475949, 9) expect_equal(res3, valtest3, check.attributes = FALSE, tolerance =1e-6) res4 <- model.matrix.merMod(scf1, noScale = TRUE)[180, ] valtest4 <- c(1, 1.45686727904050395, 1.5623409009909106) expect_equal(res4, valtest4, check.attributes = FALSE, tolerance =1e-6) }) test_that("lmer(): fixef.merMod() should provide unscaled version at default", { res5 <- fixef.merMod(scf1) valtest5 <- fixef.merMod(scf2) expect_equal(res5, valtest5, check.attributes = FALSE, tolerance =1e-10) res6 <- fixef.merMod(scf1, noScale = TRUE) valtest6 <- c(298.507891666666751, 1.621716753196637, 30.161580776828778) expect_equal(res6, valtest6, check.attributes = FALSE, tolerance =1e-10) }) test_that("lmer(): vcov.merMod() should provide unscaled version at default", { res7 <- vcov.merMod(scf1) valtest7 <- vcov.merMod(scf2) expect_true(all.equal(res7, valtest7, check.attributes = FALSE, tolerance =1e-6)) res8 <- vcov.merMod(scf1, noScale = TRUE) valtest8 <- as( matrix(c(8.12278783645280e+01, -3.24525171154812e-15, 26.5884231100835215, -3.24525171154812e-15, 4.39230297872591e+00, 0.0344711252408276, 2.65884231100835e+01, 3.44711252408276e-02, 19.7018459306493092), nrow = 3, byrow = TRUE), "dpoMatrix") expect_true(all.equal(res8, valtest8, check.attributes = FALSE, tolerance =1e-10)) }) ## Doing autoscaling tests with glmer instead. set.seed(1) cbpp$var1 = runif(nrow(cbpp), 1e3, 1e5) form <- cbind(incidence, size - incidence) ~ var1 + period + (1 | herd) gfit1 <- glmer(form, control = glmerControl(autoscale = TRUE), data = cbpp, family = binomial) gfit2 <- suppressWarnings( update(gfit1, control = glmerControl(autoscale = FALSE)) ) test_that("glmer(): back transform matches similar model", { gres1 <- fixef.merMod(gfit1) og1 <- fixef.merMod(gfit2) expect_equal(gres1, og1, tolerance = 1e-5) gres2 <- vcov.merMod(gfit1) og2 <- suppressWarnings(vcov.merMod(gfit2)) expect_true(all.equal(gres2, og2, check.attributes = FALSE, tolerance = 0.04)) }) lme4/tests/predsim.R0000644000176200001440000000460215022107260014040 0ustar liggesusers## compare range, average, etc. of simulations to ## conditional and unconditional prediction library(lme4) do.plot <- FALSE if (.Platform$OS.type != "windows") { ## use old (<=3.5.2) sample() algorithm if necessary if ("sample.kind" %in% names(formals(RNGkind))) { suppressWarnings(RNGkind("Mersenne-Twister", "Inversion", "Rounding")) } fm1 <- lmer(Reaction~Days+(1|Subject),sleepstudy) set.seed(101) pp <- predict(fm1) rr <- range(usim2 <- simulate(fm1,1,use.u=TRUE)[[1]]) stopifnot(all.equal(rr,c(159.3896,439.1616),tolerance=1e-6)) if (do.plot) { plot(pp,ylim=rr) lines(sleepstudy$Reaction) points(simulate(fm1,1)[[1]],col=4) points(usim2,col=2) } set.seed(101) ## conditional prediction ss <- simulate(fm1,1000,use.u=TRUE) ss_sum <- t(apply(ss,1,quantile,c(0.025,0.5,0.975))) plot(pp) matlines(ss_sum,col=c(1,2,1),lty=c(2,1,2)) stopifnot(all.equal(ss_sum[,2],pp,tolerance=5e-3)) ## population-level prediction pp2 <- predict(fm1, re.form=NA) ss2 <- simulate(fm1,1000,use.u=FALSE) ss_sum2 <- t(apply(ss2,1,quantile,c(0.025,0.5,0.975))) if (do.plot) { plot(pp2,ylim=c(200,400)) matlines(ss_sum2,col=c(1,2,1),lty=c(2,1,2)) } stopifnot(all.equal(ss_sum2[,2],pp2,tolerance=8e-3)) ## predict(...,newdata=...) on models with derived variables in the random effects ## e.g. (f:g, f/g) set.seed(101) d <- expand.grid(f=factor(letters[1:10]),g=factor(letters[1:10]), rep=1:10) d$y <- rnorm(nrow(d)) m1 <- lmer(y~(1|f:g),d) p1A <- predict(m1) p1B <- predict(m1,newdata=d) stopifnot(all.equal(p1A,p1B)) m2 <- lmer(y~(1|f/g),d) p2A <- predict(m2) p2B <- predict(m2,newdata=d) stopifnot(all.equal(p2A,p2B)) ## with numeric grouping variables dn <- transform(d,f=as.numeric(f),g=as.numeric(g)) m1N <- update(m1,data=dn) p1NA <- predict(m1N) p1NB <- predict(m1N,newdata=dn) stopifnot(all.equal(p1NA,p1NB)) ## simulate with modified parameters set.seed(1) s1 <- simulate(fm1) set.seed(1) s2 <- simulate(fm1,newdata=model.frame(fm1), newparams=getME(fm1,c("theta","beta","sigma"))) all.equal(s1,s2) fm0 <- update(fm1,.~.-Days) ## ## sim() -> simulate() -> refit() -> deviance ## ## predictions and simulations with offsets set.seed(101) d <- data.frame(y=rpois(100,5),x=rlnorm(100,1,1), f=factor(sample(10,size=100,replace=TRUE))) gm1 <- glmer(y~offset(log(x))+(1|f),data=d, family=poisson) s1 <- simulate(gm1) } ## skip on windows (for speed) lme4/tests/nlmer-conv.R0000644000176200001440000000171215022107260014454 0ustar liggesusers### nlmer() convergence testing / monitoring / ... ## ------------------- ### The output of tests here are *not* 'diff'ed (<==> no *.Rout.save file) library(lme4) ## 'Theoph' Data modeling if (lme4:::testLevel() > 1) { Th.start <- c(lKe=-2.5, lKa=0.5, lCl=-3) (nm2 <- nlmer(conc ~ SSfol(Dose, Time,lKe, lKa, lCl) ~ lKe + lKa + lCl|Subject, Theoph, start = Th.start)) (nm3 <- nlmer(conc ~ SSfol(Dose, Time,lKe, lKa, lCl) ~ (lKe|Subject) + (lKa|Subject) + (lCl|Subject), Theoph, start = Th.start)) ## dropping lKe from random effects: (nm4 <- nlmer(conc ~ SSfol(Dose, Time,lKe, lKa, lCl) ~ lKa + lCl|Subject, Theoph, start = Th.start, control = nlmerControl(tolPwrss=1e-8))) (nm5 <- nlmer(conc ~ SSfol(Dose, Time,lKe, lKa, lCl) ~ (lKa|Subject) + (lCl|Subject), Theoph, start = Th.start)) } lme4/tests/lmer2_ex.R0000644000176200001440000000564314677066752014151 0ustar liggesusersstopifnot(suppressPackageStartupMessages(require(lme4))) ## Using simple generated data -- fully balanced here, unbalanced later set.seed(1) dat <- within(data.frame(lagoon = factor(rep(1:4, each = 25)), habitat = factor(rep(1:20, each = 5))), { ## a simple lagoon effect but no random effect y <- round(10*rnorm(100, m = 10*as.numeric(lagoon))) ## Here, *with* an RE, sigma_a = 100 RE <- rep(round(rnorm(nlevels(habitat), sd = 100)), each = 5) y2 <- y + RE }) ## FIXME: want lmer(* , sparseX = TRUE ) {as in lme4a} if (FALSE) { # need to adapt to new structure ##' ##' ##'
##' @title Comparing the different versions of lmer() for same data & model ##' @param form ##' @param data ##' @param verbose ##' @return chkLmers <- function(form, data, verbose = FALSE, tol = 200e-7) # had tol = 7e-7 working .. { # m <- lmer1(form, data = data) # ok, and more clear # m. <- lmer1(form, data = data, sparseX = TRUE, verbose = verbose) m2 <- lmer (form, data = data, verbose = verbose) # lmem-dense m2. <- lmer (form, data = data, sparseX = TRUE, verbose = verbose) ## Eq <- function(x,y) all.equal(x,y, tolerance = tol) stopifnot(## Compare sparse & dense of the new class results identical(slotNames(m2), slotNames(m2.)) , identical(slotNames(m2@fe), slotNames(m2.@fe)) , Eq(m2@resp, m2.@resp) , Eq(m2@re, m2.@re) , Eq(m2@fe@coef, m2.@fe@coef) , ## and now compare with the "old" (class 'mer') # Eq(unname(fixef(m)), m2@fe@beta) # , # Eq(unname(fixef(m.)), m2.@fe@beta) # , ## to do ## all.equal(ranef(m)), m2@re) ## all.equal(ranef(m.)), m2.@re) TRUE) invisible(list(#m=m, m.=m., m2 = m2, m2. = m2.)) } chk1 <- chkLmers(y ~ 0+lagoon + (1|habitat), data = dat, verbose = TRUE) chk2 <- chkLmers(y2 ~ 0+lagoon + (1|habitat), data = dat, verbose = TRUE) chk1$m2 ## show( lmer() ) -- sigma_a == 0 chk2$m2. ## show( lmer( ) ) -- n <- nrow(dat) for(i in 1:20) { iOut <- sort(sample(n, 1+rpois(1, 3), replace=FALSE)) cat(i,": w/o ", paste(iOut, collapse=", ")," ") chkLmers(y ~ 0+lagoon + (1|habitat), data = dat[- iOut,]) chkLmers(y2 ~ lagoon + (1|habitat), data = dat[- iOut,]) cat("\n") } ## One (rare) example where the default tolerance is not sufficient: dat. <- dat[- c(14, 34, 66, 67, 71, 88),] try( chkLmers(y ~ 0+lagoon + (1|habitat), data = dat.) ) ## Error: Eq(unname(fixef(m)), m2@fe@beta) is not TRUE ## ## but higher tolerance works: chkLmers(y ~ 0+lagoon + (1|habitat), data = dat., tol = 2e-4, verbose=TRUE) } proc.time() sessionInfo() lme4/tests/lmer-conv.R0000644000176200001440000000133215022107260014274 0ustar liggesusersif (lme4:::testLevel() > 1 || .Platform$OS.type!="windows") { ### lmer() convergence testing / monitoring / ... ## ------------------ ### The output of tests here are *not* 'diff'ed (<==> no *.Rout.save file) library(lme4) ## convergence on boundary warnings load(system.file("external/test3comp.rda", package = "Matrix")) b3 <- lmer(Y3 ~ (1|Sample) + (1|Operator/Run), test3comp, verb = TRUE) if (isTRUE(try(data(Early, package = 'mlmRev')) == 'Early')) { Early$tos <- Early$age - 0.5 # time on study b1 <- lmer(cog ~ tos + trt:tos + (tos|id), Early, verb = TRUE) } cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons'' } ## skip on windows (for speed) lme4/tests/REMLdev.R0000644000176200001440000000315715022107260013637 0ustar liggesuserslibrary(lme4) ## show important current settings {for reference, etc} -- [early, and also on Windows !]: source(system.file("test-tools-1.R", package = "Matrix"), keep.source = FALSE) ## N.B. is.all.equal[34]() and assert.EQ() use 'tol', not 'tolerance' str( lmerControl()) str(glmerControl()) str(nlmerControl()) ls.str(environment(nloptwrap)) ## see Details under ?deviance.merMod: fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) fm1ML <- refitML(fm1) REMLcrit(fm1) ## 1743.628 deviance(fm1ML) ## 1751.939 deviance(fm1,REML=FALSE) ## FIXME: not working yet (NA) deviance(fm1,REML=TRUE) ## from lme4.0 oldvals <- c(REML=1743.6282722424, ML=1751.98581103058) ## leave out ML values for REML fits for now ... stopifnot( is.all.equal3(REMLcrit(fm1), deviance(fm1,REML=TRUE), deviance(fm1ML,REML=TRUE),oldvals["REML"]), all.equal(deviance(fm1ML),deviance(fm1ML,REML=FALSE),oldvals["ML"]), all.equal(REMLcrit(fm1)/-2,c(logLik(fm1)),c(logLik(fm1ML,REML=TRUE)),c(logLik(fm1,REML=TRUE))), all.equal(deviance(fm1ML)/-2,c(logLik(fm1ML,REML=FALSE)), c(logLik(fm1ML,REML=FALSE)))) ## should be: ## stopifnot( ## all.equal(deviance(fm1),deviance(fm1,REML=TRUE),deviance(fm1ML,REML=TRUE),oldvals["REML"]), ## all.equal(deviance(fm1ML),deviance(fm1,REML=FALSE),deviance(fm1ML,REML=FALSE),oldvals["ML"]), ## all.equal(deviance(fm1)/2,c(logLik(fm1)),c(logLik(fm1ML,REML=TRUE)),c(logLik(fm1,REML=TRUE))), ## all.equal(deviance(fm1ML)/2,c(logLik(fm1,REML=FALSE)),c(logLik(fm1ML,REML=FALSE)), ## c(logLik(fm1ML,REML=FALSE)))) lme4/tests/agridat_gotway.R0000644000176200001440000000462315022107260015405 0ustar liggesusers## require(agridat) ## dat <- gotway.hessianfly if (.Platform$OS.type != "windows") { ## don't actually use gotway_hessianfly_fit or gotway_hessianfly_prof, ## so we should be OK even with R< 3.0.1 load(system.file("testdata","gotway_hessianfly.rda",package="lme4")) # Block random. See Glimmix manual, output 1.18. # Note: (Different parameterization) ## require("lme4.0") ## fit2 <- glmer(cbind(y, n-y) ~ gen + (1|block), data=dat, family=binomial) ## params <- list(fixef=fixef(fit2),theta=getME(fit2,"theta")) ## detach("package:lme4.0") lme4.0fit <- structure(list(fixef = structure(c(1.50345713031203, -0.193853259383803, -0.540808391060274, -1.43419379979154, -0.203701042949808, -0.978322555343941, -0.604078624475678, -1.67742449813309, -1.39842466673692, -0.681709344788684, -1.46295367186169, -1.45908310198959, -3.55285756517073, -2.50731975980307, -2.08716296677356, -2.96974270029992), .Names = c("(Intercept)", "genG02", "genG03", "genG04", "genG05", "genG06", "genG07", "genG08", "genG09", "genG10", "genG11", "genG12", "genG13", "genG14", "genG15", "genG16")), theta = structure(0.0319087494293615, .Names = "block.(Intercept)")), .Names = c("fixef", "theta")) ## start doesn't work because we don't get there library(lme4) m1 <- glmer(cbind(y, n-y) ~ gen + (1|block), data=gotway.hessianfly, family=binomial) m1B <- update(m1,control=glmerControl(optimizer="bobyqa")) max(abs(m1@optinfo$derivs$gradient)) ## 0.0012 max(abs(m1B@optinfo$derivs$gradient)) ## 2.03e-5 abs(m1@optinfo$derivs$gradient)/abs(m1B@optinfo$derivs$gradient) ## bobyqa gets gradients *at least* 1.64* lower lme4fit <- list(fixef=fixef(m1),theta=getME(m1,"theta")) ## hack around slight naming differences lme4fit$theta <- unname(lme4fit$theta) lme4.0fit$theta <- unname(lme4.0fit$theta) ## difference in theta on x86_64-w64-mingw32 (64-bit) with r-devel is 0.000469576 stopifnot(all.equal(lme4fit, lme4.0fit, tolerance = 5e-4)) ## Fun stuff: visualize and alternative model ## library(ggplot2) ## dat$prop <- dat$y/dat$n ## theme_set(theme_bw()) ## ggplot(dat,aes(x=gen,y=prop,colour=block))+geom_point(aes(size=n))+ ## geom_line(aes(group=block,colour=block))+ ## geom_smooth(family=binomial,aes(weight=n,colour=block,group=block),method="glm", ## alpha=0.1) ## dat$obs <- factor(seq(nrow(dat))) ## m2 <- glmer(cbind(y, n-y) ~ block+ (1|gen) + (1|obs), data=dat, family=binomial) } ## not on windows/CRAN lme4/tests/modFormula.R0000644000176200001440000000501115022107260014475 0ustar liggesusersif (.Platform$OS.type != "windows") { library(lme4) library(testthat) .get.checkingOpts <- lme4:::.get.checkingOpts stopifnot(identical( .get.checkingOpts( c("CheckMe", "check.foo", "check.conv.1", "check.rankZ", "check.rankX")) , c("check.foo", "check.rankZ"))) lmod <- lFormula(Reaction ~ Days + (Days|Subject), sleepstudy) devfun <- do.call(mkLmerDevfun, lmod) opt <- optimizeLmer(devfun) cc <- lme4:::checkConv(attr(opt,"derivs"), opt$par, ctrl = lmerControl()$checkConv, lbound=environment(devfun)$lower) fm1 <- mkMerMod(environment(devfun), opt, lmod$reTrms, fr = lmod$fr, lme4conv=cc) fm2 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) ## basic equivalence fm1C <- fm1 fm1C@call <- fm2@call expect_equal(fm2,fm1C) expect_equal(range(residuals(fm1)), c(-101.18, 132.547), tolerance = 1e-5) # these are "outliers"! expect_is(model.frame(fm1),"data.frame") ## formulae mfm1 <- model.frame(fm1) expect_equal(formula(fm1), Reaction ~ Days + (Days | Subject)) expect_equal(formula(terms(mfm1)), Reaction ~ Days + (Days + Subject)) new_form_modframe <- (getRversion() >= "3.6.0" && as.numeric(version[["svn rev"]]) >= 75891) expect_equal(formula(mfm1), if(new_form_modframe) { Reaction ~ Days + (Days + Subject) } else Reaction ~ Days + Subject ) ## predictions expect_equal(predict(fm1,newdata=sleepstudy[1:10,],re.form=NULL), predict(fm2,newdata=sleepstudy[1:10,],re.form=NULL)) expect_equal(predict(fm1,newdata=sleepstudy), predict(fm1)) lmodOff <- lFormula(Reaction ~ Days + (Days|Subject) + offset(0.5*Days), sleepstudy) devfunOff <- do.call(mkLmerDevfun, lmodOff) opt <- optimizeLmer(devfunOff) fm1Off <- mkMerMod(environment(devfunOff), opt, lmodOff$reTrms, fr = lmodOff$fr) fm2Off <- lmer(Reaction ~ Days + (Days|Subject) + offset(0.5*Days), sleepstudy) expect_equal(predict(fm1Off,newdata=sleepstudy[1:10,],re.form=NULL), predict(fm2Off,newdata=sleepstudy[1:10,],re.form=NULL)) ## FIXME: need more torture tests with offset specified, in different environments ... ## FIXME: drop1(.) doesn't work with modular objects ... hard to see how it ## could, though ... ## drop1(fm1Off) drop1(fm2Off) } ## skip on windows (for speed) lme4/tests/drop1contrasts.R0000644000176200001440000000144415022107260015364 0ustar liggesusers## drop1 may not work right with contrasts: make up an example something like this ... ## options(contrasts=c("contr.sum","contr.poly")) ## drop1(fecpoiss_lm3,test="Chisq",scope=.~.) if (.Platform$OS.type != "windows") withAutoprint({ library(lme4) oldopts <- options(contrasts=c("contr.sum","contr.poly")) fm1 <- lmer(Reaction~Days+(Days|Subject),data=sleepstudy) drop1(fm1,test="Chisq") ## debug(lme4:::drop1.merMod) drop1(fm1,test="Chisq",scope=.~.) fm0 <- lm(Reaction~Days+Subject,data=sleepstudy) drop1(fm0,test="Chisq",scope=.~.) options(oldopts) ## restore original contrasts ff <- function() { lmer(Reaction~Days+(Days|Subject),data=sleepstudy) } drop1(ff()) ## OK because sleepstudy is accessible! }) ## skip on windows (for speed) lme4/tests/priorWeights.R0000644000176200001440000001340715076743456015114 0ustar liggesusers## use old (<=3.5.2) sample() algorithm if necessary if ("sample.kind" %in% names(formals(RNGkind))) { suppressWarnings(RNGkind("Mersenne-Twister", "Inversion", "Rounding")) } compFunc <- function(lmeMod, lmerMod, tol = 1e-2){ lmeVarCorr <- nlme:::VarCorr(lmeMod)[,"StdDev"] lmeCoef <- summary(lmeMod)$tTable[,-c(3,5)] lmeOut <- c(as.numeric(lmeVarCorr), as.numeric(lmeCoef)) keep <- !is.na(lmeOut) lmeOut <- lmeOut[keep] dn <- dimnames(lmeCoef) if(is.null(dn)) dn <- list("", names(lmeCoef)) names(lmeOut) <- c( paste(names(lmeVarCorr), "Var"), as.character(do.call(outer, c(dn, list("paste")))))[keep] ## get nested RE variances in the same order as nlme ## FIXME: not sure if this works generally vcLmer <- VarCorr(lmerMod) vcLmer <- vcLmer[length(vcLmer):1] ## lmerVarCorr <- c(sapply(vcLmer, attr, "stddev"), attr(VarCorr(lmerMod), "sc")) ## differentiate lme4{new} and lme4.0 : lmerCoef <- if(is(lmerMod, "merMod")) summary(lmerMod)$coefficients else summary(lmerMod)@coefs lmerOut <- c(lmerVarCorr, as.numeric(lmerCoef)) names(lmerOut) <- names(lmeOut) return(list(target = lmeOut, current = lmerOut, tolerance = tol)) } if (.Platform$OS.type != "windows") { set.seed(1) nGroups <- 100 nObs <- 1000 # explanatory variable with a fixed effect explVar1 <- rnorm(nObs) explVar2 <- rnorm(nObs) # random intercept among levels of a grouping factor groupFac <- as.factor(rep(1:nGroups,each=nObs/nGroups)) randEff0 <- rep(rnorm(nGroups),each=nObs/nGroups) randEff1 <- rep(rnorm(nGroups),each=nObs/nGroups) randEff2 <- rep(rnorm(nGroups),each=nObs/nGroups) # residuals with heterogeneous variance residSD <- rpois(nObs,1) + 1 residError <- rnorm(nObs,sd=residSD) # response variable respVar <- randEff0 + (1+randEff1)*explVar1 + (1+randEff2)*explVar2 + residError # rename to fit models on one line y <- respVar x <- explVar1 z <- explVar2 g <- groupFac v <- residSD^2 w <- 1/v library("nlme") lmeMods <- list( ML1 = lme(y ~ x, random = ~ 1|g, weights = varFixed(~v), method = "ML"), REML1 = lme(y ~ x, random = ~ 1|g, weights = varFixed(~v), method = "REML"), ML2 = lme(y ~ x, random = ~ x|g, weights = varFixed(~v), method = "ML"), REML2 = lme(y ~ x, random = ~ x|g, weights = varFixed(~v), method = "REML"), ML1 = lme(y ~ x+z, random = ~ x+z|g, weights = varFixed(~v), method = "ML"), REML2 = lme(y ~ x+z, random = ~ x+z|g, weights = varFixed(~v), method = "REML")) library("lme4") lmerMods <- list( ML1 = lmer(y ~ x + (1|g), weights = w, REML = FALSE), REML1 = lmer(y ~ x + (1|g), weights = w, REML = TRUE), ML2 = lmer(y ~ x + (x|g), weights = w, REML = FALSE), REML2 = lmer(y ~ x + (x|g), weights = w, REML = TRUE), ML3 = lmer(y ~ x + z + (x+z|g), weights = w, REML = FALSE), REML3 = lmer(y ~ x + z + (x+z|g), weights = w, REML = TRUE)) comp <- mapply(compFunc, lmeMods, lmerMods, SIMPLIFY=FALSE) stopifnot(all(sapply(comp, do.call, what = all.equal))) ## Look at the relative differences: sapply(mapply(compFunc, lmeMods, lmerMods, SIMPLIFY=FALSE, tol = 0), do.call, what = all.equal) ## add simulated weights to the sleepstudy example n <- nrow(sleepstudy) v <- rpois(n,1) + 1 w <- 1/v sleepLme <- lme(Reaction ~ Days, random = ~ Days|Subject, sleepstudy, weights = varFixed(~v), method = "ML") sleepLmer <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy, weights = w, REML = FALSE) sleepComp <- compFunc(sleepLme, sleepLmer) stopifnot(do.call(all.equal, sleepComp)) ## look at relative differences: sleepComp$tolerance <- 0 do.call(all.equal, sleepComp) if (require("mlmRev")) { n <- nrow(Chem97) v <- rpois(n,1) + 1 w <- 1/v Chem97Lme <- lme(score ~ 1, random = ~ 1|lea/school, Chem97) Chem97Lmer <- lmer(score ~ (1|lea/school), Chem97) Chem97Comp <- compFunc(Chem97Lme, Chem97Lmer) stopifnot(do.call(all.equal, Chem97Comp)) ## look at relative differences: Chem97Comp$tolerance <- 0 do.call(all.equal, Chem97Comp) } set.seed(2) n <- 40 w <- runif(n) x <- runif(n) g <- factor(sample(1:10,n,replace=TRUE)) Z <- model.matrix(~g-1); y <- Z%*%rnorm(ncol(Z)) + x + rnorm(n)/w^.5 m <- lmer(y ~ x + (1|g), weights=w, REML = TRUE) ## CRAN-forbidden: ## has4.0 <- require("lme4.0")) has4.0 <- FALSE if(has4.0) { ## m.0 <- lme4.0::lmer(y ~ x + (1|g), weights=w, REML = TRUE) lmer0 <- get("lmer", envir=asNamespace("lme4.0")) m.0 <- lmer0(y ~ x + (1|g), weights=w, REML = TRUE) dput(fixef(m.0)) # c(-0.73065400610675, 2.02895402562926) dput(sigma(m.0)) # 1.73614301673377 dput(VarCorr(m.0)$g[1,1]) # 2.35670451590395 dput(unname(coef(summary(m.0))[,"Std. Error"])) ## c(0.95070076853232, 1.37650858268602) } fixef_lme4.0 <- c(-0.7306540061, 2.0289540256) sigma_lme4.0 <- 1.7361430 Sigma_lme4.0 <- 2.3567045 SE_lme4.0 <- c(0.95070077, 1.37650858) if(has4.0) try(detach("package:lme4.0")) stopifnot(all.equal(unname(fixef(m)), fixef_lme4.0, tolerance = 1e-3)) all.equal(unname(fixef(m)), fixef_lme4.0, tolerance = 0) #-> 1.657e-5 ## but these are not at all equal : (all.equal(sigma(m), sigma_lme4.0, tolerance = 10^-3)) # 0.4276 (all.equal(as.vector(VarCorr(m)$g), Sigma_lme4.0, tolerance = 10^-3)) # 1.038 (all.equal(as.vector(summary(m)$coefficients[,2]), SE_lme4.0, tolerance = 10^-3)) # 0.4276 ## so, lme4.0 was clearly wrong here ##' make sure models that differ only in a constant ##' prior weight have identical deviance: fm <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy,REML=FALSE) fm_wt <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy, weights = rep(5, nrow(sleepstudy)),REML=FALSE) all.equal(deviance(fm), deviance(fm_wt)) } ## skip on windows (for speed) lme4/MD50000644000176200001440000004032115113602772011427 0ustar liggesusers2e5b726f280690ac96aa8279ec72c848 *ChangeLog 247001f9ca948654f39fb8bf47c97c61 *DESCRIPTION c75721978ea4c8363ac3575f9c73ab5b *LICENSE.note 52047840f2270edb6ec0fd495ca83427 *NAMESPACE afd711c6c33c483ebe5399e100dc0b13 *R/AllClass.R c1eda7d4300d934fccc1271aba17f3a1 *R/AllGeneric.R 06258906fcb33c60df0495fc736fd54d *R/GHrule.R 2715e7f28589021d8f47cd8ba2c495fa *R/allFit.R 3ab1905c48a13e835d3f477f88dad24f *R/bootMer.R 136db4e6d4910b733fdcd4d3e0f6195c *R/checkConv.R 6cdc50a61ae595a0694fecbd5ac4c3d9 *R/deriv.R 977d9b9359bf2288205f43ce6ec2a4f8 *R/error_factory.R e0f3b75ca9b112e2dc05895ef8edb0dc *R/lmList.R ae0ce111a17d19ddb9de73d1f4d50d7f *R/lmer.R aa5720e8e88f862e0f46281506d0f04b *R/lmerControl.R 4bde5438bd9ddba5d3cd26e5a43a494b *R/mcmcsamp.R 4d66a162740ab5637e9d2287cc4128ba *R/methods.R 0675625c9590b92bf6a72936131594d2 *R/modular.R fce30fededd71e3c542daf4f1a12f04c *R/nbinom.R e81eeaea1aed45340dc7c174f1d70291 *R/optimizer.R c3c06649069a8058007de677b453de4a *R/plot.R 8d2664f50aa1a47013591cf615bba911 *R/plots.R e5bae64d482fa01cb05d3336b398f9f5 *R/predict.R 69b076f5ecb6af0f43ad30a78de14464 *R/profile.R b0c02d0440df7255bfebefc55ecf9881 *R/rePCA.R 45399ee1c1598026259815d74ebe651f *R/reformulas_imports.R 301c7dc5694f9591adf7c237c0f1284e *R/simulate.formula.R 7b20c93bea72e7623e2899de44fb370b *R/sparsegrid.R e057bf248efa620aa2c5c7ad122cd98d *R/sysdata.rda bd1e0d1201bda063a019bbd2a33e6c2f *R/utilities.R 6eedd85037874069e2d5564c3cd19206 *R/vcconv.R 0dab1aea9bc39a8cbc5d1c2915f57c2e *R/zzz.R 00493dd5b392e49f0b3eb42ea62bed9b *build/partial.rdb fc706e1febef71dfea3ce46c733a739f *build/vignette.rds 7b16a3ab29bb34e105b8edd5333ae95d *data/Arabidopsis.rda 8cf70603a6660d10c170d9e7159c2951 *data/Dyestuff.rda 2f1c751f7de40daa241601f64726c9e0 *data/Dyestuff2.rda 5d257c44f24c98310fbb2e9f85e3e396 *data/InstEval.rda b61a31e7665881741ebd2f88acc98891 *data/Pastes.rda bfd53f3fec03c93b634a4250d03c17a1 *data/Penicillin.rda a545020034749ad9c56e4510fdba6dc1 *data/VerbAgg.rda c80348b333f026d7fe927398894c6f34 *data/cake.rda 09bbd2170531a7256a2cf743f4bec399 *data/cbpp.rda 4c4a08dc8d84fc416de4e8307f1a9aca *data/cbpp2.rda 0e98ab6640deba83977ae969345dc66b *data/culcitalogreg.rda 7e92f3d4a9db18c3be015abe4d5ed940 *data/culcitalvolume.rda b19645e17675ab15d5d678e63291152c *data/gopherdat2.rda 28d1ffd0a450108d274431f7335e859d *data/grouseticks.rda f1b30525638fb87c6dd6d3e372f41370 *data/salamander.rda c69f0363b4e8bbbe1d76db4e6c72dcb8 *data/schizophrenia.rda 3eb17ae1551f7a264c4214460041908c *data/sleepstudy.rda d05d0e603063851a7d795d7dad09a9db *data/toenail.rda 8c81a4cdd4cd634e4102999545422b7e *inst/CITATION ac0fa4cdcd5d758c24ca2e8ae532119f *inst/NEWS.Rd a856da9c8879aeeccab6f3cb2ddf8766 *inst/REFERENCES.bib 7ea2caa8013f7ffc6e4c333fa1db1534 *inst/doc/PLSvGLS.R f84eeec527edf425f54bb4754e23da61 *inst/doc/PLSvGLS.Rnw 212ace1f4b25b1bf490dcae630f76960 *inst/doc/PLSvGLS.pdf 8734899d5f18360ec1ea4ea4e5e3d59e *inst/doc/Theory.R 4f0f087495b31139690072d1aca33c00 *inst/doc/Theory.Rnw 5a0b5ed5d0b77d69b5a9dc802d816cc5 *inst/doc/Theory.pdf bdc7f7ab0cf113a0df145922b2749396 *inst/doc/autoscale.R 2cac53cff977b93012764e4a2a5b5e95 *inst/doc/autoscale.Rmd 90c81beb80dd8a6d39136b2871b5a6e7 *inst/doc/autoscale.html 2ea17dbf8a14a6142fadb7b0d226625f *inst/doc/lmer.R e15e5b341081b1a16626a3dcdd83f130 *inst/doc/lmer.Rnw 546daf1d0f47196b1e0f595d5725328e *inst/doc/lmer.pdf e9ab0fb8b5c0d7d8df0b0be3dda381d0 *inst/doc/lmerperf.R ecde401260019bb51fa974bcda985f37 *inst/doc/lmerperf.Rmd 81ed432c59bca55675a5e694b5d110b0 *inst/doc/lmerperf.html b63ce45d087ac1ac15e011620990b796 *inst/testdata/Johnson.rda 0ad4852aad9639f10ad13606ecf09908 *inst/testdata/SO_sep25.RData 56173e2cb895c04358bf1bf81bab1495 *inst/testdata/Thailand.rda aedcb80c37b6d01f4db5bd076ebc3298 *inst/testdata/badprof.rds da186eafec8322a55ec78451e19fd01a *inst/testdata/boo01L.RData b4b99dec3880c755f42a8dc9e77a067b *inst/testdata/colonizer_rand.rda 8a445ad28ddc63a87ff828ec55be99cb *inst/testdata/confint_ex.rda 5f381198d17abbc54763cb7afe2608f8 *inst/testdata/crabs_randdata00.Rda 693aae2f30886fa217ca1b82b0ed43bb *inst/testdata/crabs_randdata2.Rda 038cc2f0fce197eb134607eee63fe83c *inst/testdata/culcita_dat.RData ec60161c46be3b6dbb2840490204eb79 *inst/testdata/dat20101314.csv 2c5596646060c432ca9e53cb5b61e307 *inst/testdata/dataEx_Glmer.txt c340d92f256024616f2aaf56b3460c23 *inst/testdata/fakesim.RData db58d90a120922be1d62a9252b8f1e2d *inst/testdata/gopherdat2.RData 8fb10b3889a527fbb661415f7cbb8e11 *inst/testdata/gotway_hessianfly.rda d10397932e1069526d47be9e961e609c *inst/testdata/harmel_density.R cb4e78532620e108c5c3af0c77fdb092 *inst/testdata/harmel_profile.rds eeae66bdabc2c1af320e278718105a29 *inst/testdata/hotpower.csv cf78ea240b9aa971169ec4e513b328f7 *inst/testdata/koller-data.R 4635d7c7d32300f4dcd9c5c810cde517 *inst/testdata/lme-tst-fits.R 8e789eec8fededa43e13ebeed8711c54 *inst/testdata/lme-tst-fits.rda 4e4f8105bf0b78e879e2f96fbf87323f *inst/testdata/lme-tst-funs.R f01648354c4d6c08320a551d7bdd3c7a *inst/testdata/lmerperf.rda 3dffc4c30b964f86f938b6d8c656d13d *inst/testdata/mastitis.rda 3313df191ef524ea5b887dcb54b3f153 *inst/testdata/polytom2.RData fd199a7fcece25952b873986d3ac0b1a *inst/testdata/polytom3.RData 10d8d2dab0664031ff18831a9213d1f3 *inst/testdata/polytomous_test.RData 36f44d658986561eee513a4a2789afe7 *inst/testdata/polytomous_vcov_ex.RData c3a152c99372c2097426afb07adea841 *inst/testdata/prLogistic.RData 402feea181e789a9b24bd0df88b73717 *inst/testdata/radinger_dat.RData 0de901759722680f5c73ed77a6f6aae2 *inst/testdata/rankMatrix.rds e7fc63ccb18cc703074586afaa6cb4a6 *inst/testdata/respiratory.RData f3e1a564e23849bf8db38440b543c944 *inst/testdata/sbTobb.Rdata 3a50c8e1daec82e4208e7893cc963e18 *inst/testdata/strip_env.R 7c4e1116306646d99c9ef1a20c98afa7 *inst/testdata/survdat_reduced.Rda dca0ccff30089606e068a486f5b51d67 *inst/testdata/tprfm1.RData 0eec27a5b9eab6d5b3d190cd37ec6634 *inst/testdata/trees513.R 145eb2c3cf4bac44b217618a0525e0e4 *inst/testdata/trees513.RData 1ee31759538f3cdd154c45c9b2a826ea *man/Arabidopsis.Rd b0980448dc54f6b5bacb98a60b0f3599 *man/Dyestuff.Rd 074e24a7f48fad74c46966d938191c8f *man/GHrule.Rd 63bcaefc2718a7d338bf093d44f6ac5b *man/GQdk.Rd 63677bddce89a841f9f69c5f467b1516 *man/InstEval.Rd 1d25a90dcaa8ba7bc62594892d2f5006 *man/NelderMead-class.Rd ad16fef8b8dc2ac1d116bee141e48baa *man/Nelder_Mead.Rd 0b05bd206b85ecf1d063a3e59ae1c6c8 *man/Pastes.Rd 68bbfa336af152b1507633f65a20b1c6 *man/Penicillin.Rd b1e2798575af465dffaff51b3aec7554 *man/VarCorr.Rd 9c9b75fd0fb50f825dfa75ace2363640 *man/VerbAgg.Rd aeed6d066ba4b2940eead7a80b75ae0c *man/allFit.Rd dcb487f26297f6b6dda052581f4ae2f0 *man/bootMer.Rd 76ab479994a53c97d9d606b1fcb33786 *man/cake.Rd ca3d9d3c2b33977283b0f22cdc94a445 *man/cbpp.Rd 3d09c46d89f672165dac5ee86a359616 *man/cbpp2.Rd 5273de0b5e620c2f6807c4162c19359c *man/checkConv.Rd 55f28dffc25501a32780e726124b42f8 *man/confint.merMod.Rd 1dab3afe2e04f5b9b69519b6b5c0f5fd *man/convergence.Rd 34206be023f56a92b14031218dd9cb67 *man/culcitalogreg.Rd add82d29763137363248ec6661e59b7f *man/culcitalvolume.Rd 3824501b16af01f2424271e95ba7c7ba *man/devcomp.Rd 22fc3d76c1055a4ca437278ac06b706a *man/devfun2.Rd a934cdd2a196abbc1e9f332281077ede *man/drop1.merMod.Rd 0ffadf84fce25e56463e86ccf165e04b *man/dummy.Rd 20e78573b5222c04c999b4abd03f04a2 *man/factorize.Rd 934c16e84d48545569fdb9528cc9fb23 *man/fixef.Rd 2fa58c5a47024f77c29be94508844328 *man/fortify.Rd 4ae84a0ac87f3d359403ec1fb7698ee0 *man/getME.Rd c0c66bc34fc7cd0b242d62901a9d4cb8 *man/glmFamily-class.Rd b595fec321f7ca73ed88b843126baeef *man/glmFamily.Rd 7a77561f95c366c8e7baf40fb0fa6d5e *man/glmer.Rd a2f6e4133eff7b2288bcc20c01ca3c29 *man/glmer.nb.Rd 36383a0393e3f8f285f7c1d3fe04160b *man/glmerLaplaceHandle.Rd dc26eb9f86b5056b90e2e90d531490c1 *man/golden-class.Rd bd73285cac844cd4b17a8eb3a4214d9a *man/gopherdat2.Rd e93d4db92b0710b1ea4123ce0ae126eb *man/grouseticks.Rd c4236aab077a04046402a23b86635a7b *man/hatvalues.merMod.Rd 27794153f059fd9816a7970b843e130c *man/influence.merMod.Rd e10407c28ced55696cb726daac2d9c05 *man/isREML.Rd 5ffff650182e51d27a4877d35f6c84f0 *man/isSingular.Rd 5bb3bf291c363e7f818e48ce962027fa *man/lmList.Rd e4faeace55fd64773ae425a8d0f72713 *man/lmList4-class.Rd 7d8ebc023d6f58fd43e3a35047240342 *man/lmResp-class.Rd d9e3572637ffe3760c4a531f0a9828c0 *man/lmResp.Rd 5be68d6000e53966c5c7fbb470609929 *man/lme4-package.Rd 36b814d230675b6fedced4d5aeaa8840 *man/lme4_testlevel.Rd b788876901050fb7439f999025b17770 *man/lmer.Rd 51512a2eb2219f8806df082e3b2d7c03 *man/lmerControl.Rd e072d35deb74888e1e1aa858bbc9124e *man/merMod-class.Rd 67daa8376c15b9f3eebf77f83cd5b6c7 *man/merPredD-class.Rd 2c4a82fb8f0e4d1d3a5f754c242ccee5 *man/merPredD.Rd 439f14f756516340826b45c677739178 *man/mkMerMod.Rd bd4ec2cbbfbdeb9a6b862b1f7dc4f82d *man/mkNewReTrms.Rd 01b2b9af87d5a480bd424980f688df20 *man/mkRespMod.Rd 97cd5db2899f0c8587e1205df415cd21 *man/mkSimulationTemplate.Rd c061c134315aa205c8f412e3114e6617 *man/mkVarCorr.Rd b302fd7328985459f2a19ae272cb4902 *man/modular.Rd 1afe7f8a3c84ec0759662f5c8718c2ae *man/namedList.Rd b6a57f539f0628c52c83ec28a3a1e1c2 *man/ngrps.Rd 2e75c4db38b56068b22793f2d0a5d56e *man/nlformula.Rd 25b163f661adaa3db2240d0c91a6f2ab *man/nlmer.Rd 9d0550af0e7bca952d48bc8e25535e6e *man/nloptwrap.Rd c0979349ce65d5994dcf4d898230f5c9 *man/plot.merMod.Rd ca94cfa042f96d97bf2639c88f508f63 *man/plots.thpr.Rd 6b6b81db97d494acb567f47f934ce3ce *man/predict.merMod.Rd dd60f6a51469cba3eec02f0f9e077e10 *man/profile-methods.Rd 64d299749bf5c9a8ed4889a14edd0dad *man/pvalues.Rd b88b10a913d43a8c2625b03185c48c09 *man/ranef.Rd d54f71f92db8797776738cb8f3a4706d *man/rePCA.Rd f1619455da67c1fe4ebb48da69d41663 *man/rePos-class.Rd 24efcd0c579045d6aa2b74818a3b3e62 *man/rePos.Rd 5f0d75e8351fd01aea599bf45d233292 *man/refit.Rd fc1dffbf663939a2c12d6a64ab2488a1 *man/refitML.Rd 9b1cd52429ad025bf875e80e05ae4a0e *man/reformulas_imports.Rd dbe8547e6c2911509a4310514b506803 *man/residuals.merMod.Rd c6dabdb5c15f937458b00ddd0bea67cf *man/salamander.Rd 5f07d8f601ac86e964ddaf858fabff27 *man/schizophrenia.Rd 7372ddbda395871db2dc6252240262e6 *man/sigma.Rd ac312d5990e96c04a3bef4613ab693a6 *man/simulate.formula.Rd 328b07623879f637b4ae0875d9ccc1c2 *man/simulate.merMod.Rd 28b90443ea22ac4c7cef2eae06d612de *man/sleepstudy.Rd 02414062c3472f0c473276a615ec1663 *man/summary.merMod.Rd c03c6600e94a62f0902f540dac92610c *man/toenail.Rd a6be665c1a6b719b2ef02a30d1d16068 *man/troubleshooting.Rd c1561df41718c5e4f33413944777d45b *man/utilities.Rd eeb3cc1e7dda77e29d74b46216ca483a *man/vcconv.Rd b5fee42ee072ae6ddc1d427019d095d3 *man/vcov.merMod.Rd ac607ddbd1be24663cddb063de18ce48 *src/Makevars 9faf9df33ef6101441741d018009a391 *src/Makevars.win 2ad2fef6fff1b12bd60f5cb4c8646aaa *src/external.cpp 29f517a9f513c55cb34ede9d56604895 *src/glmFamily.cpp fd71b2c3113a00e013aa1818b5e316a3 *src/glmFamily.h a56932e09562f68b7c4d00f854159f95 *src/lme4CholmodDecomposition.h 32c841db506eca816f556d7afa42dff6 *src/optimizer.cpp e84ed1741b657d321391c2e98b24083b *src/optimizer.h 453a58aff4da0690a3151f4075962299 *src/predModule.cpp c3694080138b784156b16c3ca6783614 *src/predModule.h cdf2dbfbe86509142c71bc0f240da638 *src/respModule.cpp 9e54026971ddeae1ec36a759e38ec699 *src/respModule.h 8bbacc62f05c91663ae579ddf04f7a35 *tests/AAAtest-all.R 0c78c74ab39d4d99cdceb6c66c30c43f *tests/HSAURtrees.R a810120b26ea54a7c44ec24aa9f441f5 *tests/README 98a404e235e377a972b4bc6684b67231 *tests/REMLdev.R 1d7c93d885154b156d3a387f1735e080 *tests/ST.R 4d36e8f04cc6dc309d6fe69f715271a0 *tests/agridat_gotway.R 82889c8158caa7257cae9143f34d407f *tests/bootMer.R 976dae1d199acbb54363e8cf0a65ccef *tests/boundary.R ffeb3bd97a922f9a5ff96d21609f37e7 *tests/confint.R e0947bd9ce40080d115a7f35304d623a *tests/devCritFun.R ebc403e112bc9788710262665525e2ba *tests/drop.R d296f685d1731f8eb26cc21c8aa45229 *tests/drop1contrasts.R 6d3709bac2db9daf69e1e29aa3d2d273 *tests/dynload.R bae09675aa2568fe2505d8b62d1264b7 *tests/elston.R 4a15fbb6260ecf8c0db04bdcb37729c8 *tests/evalCall.R 65c300f2156a21d8492b0a050800057f *tests/extras.R 46e18635f440a030fe3e0e57c902ad81 *tests/falsezero_dorie.R 5e49f8a8d4b7275dfa584ab6b5e1c08c *tests/fewlevels.R 22abbcf0bf53d87a69fb887b6dc29ee6 *tests/getME.R 88d16563d7fe047623b4ccb992dc8114 *tests/glmer-1.R 87fbf8bcb9704fe0d95928f441e2c85d *tests/glmerControlPass.R 46de511d77c5e07b8de44c9abcb7b63f *tests/glmerWarn.R 07b053d64e430c968e7849adacbb4e4a *tests/glmmExt.R 1c3dbc408c2995ffd9263f68fc40f944 *tests/glmmWeights.R 214757f88c9e26dc7936ea9ec1594bf9 *tests/hatvalues.R 3693e1cc55ebb3bcf5aaf46ee0bf1eb1 *tests/is.R fd186269bb93bbac5dd07ec81ea3ec2f *tests/lmList-tst.R 1d2d60b8842fae30078e428d29c253d6 *tests/lme4_nlme.R 0e1a2e95602e958f00b0802afd210dee *tests/lmer-0.R deb3ea8a35d4a647eae7d7579acef6f3 *tests/lmer-1.R d01e36cf014c17a45a448da442fec402 *tests/lmer-conv.R 3626933bc63874cc482b23542cfb1325 *tests/lmer2_ex.R b14e84bbdf9344cb4514151d99d513d4 *tests/methods.R ef374523e11228e4f2df65883ac1ba42 *tests/minval.R dc038e000b1d664c0c3fc1afa713dd73 *tests/modFormula.R 59670cafae675128957c07dc8307e4c3 *tests/nbinom.R c44581c823bf500428f485bb6d02ea84 *tests/nlmer-conv.R 4182acd6af58c584c25d745f98d3491f *tests/nlmer.R b7265658c2f03aef75e1ae2fe1617fd2 *tests/offset.R f3f4fe4f43b835de94f56df46940c87e *tests/optimizer.R 243906ce404ce78f0e54487f9f128419 *tests/polytomous.R d43a3e94c09040bc3ea42155f9ac3e11 *tests/prLogistic.R b9add26a39ae6e9b7640010a25ff4ce0 *tests/predict_basis.R bd056d4618a5af1874bbd14e36f99ea9 *tests/predsim.R 962e548f367fac7d7ac6f6a74fd0aac8 *tests/priorWeights.R f66f45c2d7efe66c1a899ac004c6cc7c *tests/priorWeightsModComp.R 851ab07ade90afa06519d5b6524f9c2c *tests/profile-tst.R b2a49dcf6fde0fd4c2f163604fbfa613 *tests/refit.R f41d72b2048efd5d4aee555f78e1292f *tests/resids.R 59b7d77420eed731836649460fabdd3e *tests/respiratory.R 7ff092a47c0f3c2f0d951b907388e520 *tests/simulate.R 14328f790312794d092fe203766763dc *tests/test-glmernbref.R 8375fd1d85d82c024a5a2bbab8b01a14 *tests/testOptControl.R 8c2cb194b2102d830e8ec03a7d90e05c *tests/testcolonizer.R a9b61b064c85d067e523cdd9923f8c76 *tests/testcrab.R c89f52e97268257f7ae4d37361287636 *tests/testthat/test-NAhandling.R 1e579dd7d22d896b476722358bdcc989 *tests/testthat/test-allFit.R c443c382fb65bfcdc8b20d0c55a1df1b *tests/testthat/test-catch.R ec55ced63e3642bc93a1d411ad363599 *tests/testthat/test-doubleVertNotation.R 16ce5ce01d101a5db4714e91e10f5f06 *tests/testthat/test-eval.R 2f7b02e3ba999923e94609eef3beaaa1 *tests/testthat/test-factors.R 17855de40fa65a94c0100104a2c4b3bd *tests/testthat/test-formulaEval.R 56bcd8740107722e1113f9ba90bbcad1 *tests/testthat/test-glmFamily.R 05a9650561485708c7d11acfabe57fe1 *tests/testthat/test-glmer.R 2d6c000df4ee0bd9559edbcd1d66b14f *tests/testthat/test-glmernb.R 74dd6fd7dbe3b334265d451458d10a3b *tests/testthat/test-glmernbref.R c0891296b9d37be43892867f2257772d *tests/testthat/test-glmmFail.R 64784f21e7157a56178f48828fce50f9 *tests/testthat/test-lmList.R 93fb00d5b78f6d21b115a86343650f84 *tests/testthat/test-lmer.R 5116f7095cd0ddb87ed4752f5a4993d9 *tests/testthat/test-lmerResp.R 2302456cdf381139257f71ee6bc6f225 *tests/testthat/test-methods.R 71678cf550b8ae33232bf8f04fb8d05c *tests/testthat/test-nbinom.R 60136bd54929dfdf4ed40a07cfa7ccb5 *tests/testthat/test-nlmer.R 0ca42d66dc6ea4226299f05c81d311dc *tests/testthat/test-oldRZXfailure.R e0e2d76c4155dbbf7bc59a8280583816 *tests/testthat/test-predict.R 1a8b04ad038f9f670233f4fdad2d5f23 *tests/testthat/test-ranef.R 0909b4a79a002fc184764efd6dc6ec4e *tests/testthat/test-rank.R a1cd7808a41dd53d01fdd3f9ba6fac24 *tests/testthat/test-reformulas-import.R 147a57d98b1a560d1a07607c53720358 *tests/testthat/test-resids.R 17a9539066a0f01b7c6e71a4887d02d5 *tests/testthat/test-simulate_formula.R 88d3e95d5e1f2f8cfc3fc0e1fca8baf2 *tests/testthat/test-start.R 6e8174813b41061670d252ff1a767d47 *tests/testthat/test-stepHalving.R d4e4ef4fa0f3ee02da87bc4dbf0decb1 *tests/testthat/test-summary.R 7601de36f58e40f62efb5123b8523af9 *tests/testthat/test-summary_testlevel_1.rda 33023714f8b040785c16b369b7bd56f7 *tests/testthat/test-utils.R ce72dd3a6585a6d08e5af85b3ca8c1da *tests/throw.R b8d09265b05a579ab6b218887b59b70b *tests/varcorr.R 888b6d0b47901ba9a40003d6868a65aa *tests/vcov-etc.R f84eeec527edf425f54bb4754e23da61 *vignettes/PLSvGLS.Rnw 4f0f087495b31139690072d1aca33c00 *vignettes/Theory.Rnw 2cac53cff977b93012764e4a2a5b5e95 *vignettes/autoscale.Rmd 6831b97f724b344ded70e58bfb0197df *vignettes/autoscale_ref.bib f2563cc2cd06b069af388369c295c3e1 *vignettes/downstream_methods.html 9c40378d0fbc0a8a8709908391461f5b *vignettes/lme4.bib e15e5b341081b1a16626a3dcdd83f130 *vignettes/lmer.Rnw b0e17938f9d8feac0ec8df7ba1c4aba3 *vignettes/lmer.bib ecde401260019bb51fa974bcda985f37 *vignettes/lmerperf.Rmd lme4/R/0000755000176200001440000000000015113144725011317 5ustar liggesuserslme4/R/nbinom.R0000644000176200001440000001401515022107260012715 0ustar liggesusers##' @importFrom MASS negative.binomial ##' @importFrom MASS theta.ml ## ==> user should use getME(object, "glmer.nb.theta") getNBdisp <- function(object) environment(object@resp$family$aic)[[".Theta"]] ## Hidden, originally used at least once, well tested (!), but if(FALSE) # not needed anymore currently getNBdisp.fam <- function(familyString) as.numeric(sub(".*([-+]?\\d+(\\.\\d*)?([Ee][-+]?\\d+)?){1}.*", "\\1", familyString)) ## Package "constants" {only on depending the glmResp definition in ./AllClass.R}: glmResp.f.nms <- names(glmResp$fields()) glmNB.to.change <- setdiff(glmResp.f.nms, c("Ptr", "family")) ##' setNBdisp(object,theta) := ##' NB-object with changed [DISP]ersion parameter 'theta' (and all that entails) setNBdisp <- function(object,theta) { ## assign(".Theta",theta,envir=environment(object@resp$family$aic)) rr <- object@resp newresp <- do.call(glmResp$new, c(lapply(setNames(nm=glmNB.to.change), rr$field), list(family = MASS::negative.binomial(theta=theta)))) newresp$setOffset(rr$offset) newresp$updateMu(rr$eta - rr$offset) object@resp <- newresp object } refitNB <- function(object, theta, control = NULL) { refit(setNBdisp(object, theta), control = control) } ##' @title Optimize over the Negative Binomial Parameter Theta ##' @param object a "glmerMod" object, updated from poisson to negative.binomial() ##' @param interval and ##' @param tol are both passed to \code{\link{optimize}()}. ##' @param verbose ## show our own progress ##' @param control passed to \code{\link{refit}()} ##' @return the last fit, an object like 'object' optTheta <- function(object, interval = c(-5,5), tol = .Machine$double.eps^0.25, verbose = FALSE, control = NULL) { lastfit <- object it <- 0L NBfun <- function(t) { ## Kluge to retain last value and evaluation count {good enough for ..} f_refitNB <- factory(refitNB,types=c("message","warning")) lastfit <<- f_refitNB(lastfit, theta = exp(t), control = control) dev <- -2*logLik(lastfit) it <<- it+1L if (verbose) cat(sprintf("%2d: th=%#15.10g, dev=%#14.8f, beta[1]=%#14.8f\n", it, exp(t), dev, lastfit@beta[1])) dev } optval <- optimize(NBfun, interval=interval, tol=tol) stopifnot(all.equal(optval$minimum, log(getNBdisp(lastfit)))) ## FIXME: return eval count info somewhere else? MM: new slot there, why not? attr(lastfit,"nevals") <- it ## fix up the 'th' expression, replacing it by the real number, ## so effects:::mer.to.glm() can eval() it: lastfit@call$family[["theta"]] <- exp(optval$minimum) ## output warnings/messages from last fit for (m in c("warning","message")) { if (!is.null(x <- attr(lastfit,paste0("factory-",m)))) { for (i in x) { get(m,pos="package:base")(i) } } } lastfit } ## use MASS machinery to estimate theta from residuals est_theta <- function(object, limit = 20, eps = .Machine$double.eps^0.25, trace = 0) { Y <- model.response(model.frame(object)) ## may have NA values if na.exclude was used ... mu <- na.omit(fitted(object)) theta.ml(Y, mu, weights = object@resp$weights, limit = limit, eps = eps, trace = trace) } ## -------> ../man/glmer.Rd ##' glmer() for Negative Binomial ##' @param ... formula, data, etc: the arguments for ##' \code{\link{glmer}(..)} (apart from \code{family}!). glmer.nb <- function(..., interval = log(th) + c(-3,3), tol = 5e-5, verbose = FALSE, nb.control = NULL, initCtrl = list(limit = 20, eps = 2*tol, trace = verbose, theta = NULL)) { ## ?? E() is a placeholder; [-1] removes it ## left with a 'headless' list of elements in ... dotE <- as.list(substitute(E(...))[-1]) ## nE <- names(dotE <- as.list(substitute(E(...))[-1])) ## i <- match(c("formula",""), nE) ## i.frml <- i[!is.na(i)][[1]] # the index of "formula" in '...' ## dots <- list(...) mc <- match.call() if (is.null(th <- initCtrl$theta)) { mc[[1]] <- quote(lme4::glmer) mc$family <- quote(stats::poisson) mc$verbose <- (verbose>=2) mc$nb.control <- NULL ## ** FIXME: specifically add check.conv.singular="ignore"? ## suppress other warnings unless explicitly specified? g0 <- suppressMessages( eval(mc, parent.frame(1L)) ) th <- est_theta(g0, limit = initCtrl$limit, eps = initCtrl$eps, trace = initCtrl$trace) ## using format() on purpose, influenced by options(digits = *) : if(verbose) cat("th := est_theta(glmer(..)) =", format(th)) } mc$initCtrl <- NULL ## clear to prevent infinite recursion ## in initCtrl$theta reference above ... mc$family <- bquote(MASS::negative.binomial(theta=.(th))) ## ** see FIXME above g1 <- suppressMessages( eval(mc, parent.frame(1L)) ) if(verbose) cat(" --> dev.= -2*logLik(.) =", format(-2*logLik(g1)),"\n") ## fix the 'data' part (only now!) if("data" %in% names(g1@call)) { if (!is.null(dotE[["data"]])) { g1@call[["data"]] <- dotE[["data"]] } } else warning("no 'data = *' in glmer.nb() call ... Not much is guaranteed") other.args <- c("verbose","control") for (a in other.args) { if (a %in% names(g1@call)) { g1@call[[a]] <- dotE[[a]] } } ## FIXME: optTheta should also work by modifying mc directly, ## then re-evaluating, not via refit() ... control <- eval.parent(g1@call$control) res <- optTheta(g1, interval=interval, tol=tol, verbose=verbose, control = c(control, nb.control)) res } ## do we want to facilitate profiling on theta?? ## save evaluations used in optimize() fit? ## ('memoise'?) ## Again, I think that a reference class object would be a better approach. lme4/R/plot.R0000644000176200001440000004756115103163201012422 0ustar liggesusers## copied/modified from nlme ##' split, on the nm call, the rhs of a formula into a list of subformulas splitFormula <- function(form, sep = "/") { if (inherits(form, "formula") || mode(form) == "call" && form[[1]] == as.name("~")) splitFormula(form[[length(form)]], sep = sep) else if (mode(form) == "call" && form[[1]] == as.name(sep)) do.call(c, lapply(as.list(form[-1]), splitFormula, sep = sep)) else if (mode(form) == "(") splitFormula(form[[2]], sep = sep) else if (length(form)) list(asOneSidedFormula(form)) ## else ## NULL } ## Recursive version of all.vars allVarsRec <- function(object) { if (is.list(object)) { unlist(lapply(object, allVarsRec)) } else { all.vars(object) } } ## simple version of getData.gnls from nlme ## but we *should* and *can* work with environment(formula(.)) getData.merMod <- function(object) { mCall <- getCall(object) data <- eval(mCall$data, environment(formula(object))) if (!is.data.frame(data) && !is.matrix(data)) stop(paste(sQuote("data"),"object found is not a data frame or matrix")) return(data) } asOneFormula <- ## Constructs a linear formula with all the variables used in a ## list of formulas, except for the names in omit function(..., omit = c(".", "pi")) { names <- unique(allVarsRec(list(...))) names <- names[is.na(match(names, omit))] if (length(names)) as.formula(paste("~", paste(names, collapse = "+"))) # else NULL } getIDLabels <- function(object, form=formula(object)) { mf <- factorize(form,model.frame(object)) if (length(ff <- reformulas::findbars(form))>0) { grps <- lapply(ff,"[[",3) } else { grps <- form[[2]] } if (identical(grps,quote(.obs))) return(seq(fitted(object))) fList <- lapply(grps,function(x) eval(x,mf)) do.call(interaction,fList) } ## TESTING ## lme4:::getIDLabels(fm1) ## Return the formula(s) for the groups associated with object. ## The result is a one-sided formula unless asList is TRUE in which case ## it is a list of formulas, one for each level. getGroupsFormula <- function(object, asList = FALSE, sep = "+") UseMethod("getGroupsFormula") getGroupsFormula.default <- ## Return the formula(s) for the groups associated with object. ## The result is a one-sided formula unless asList is TRUE in which case ## it is a list of formulas, one for each level. function(object, asList = FALSE, sep = "/") { form <- formula(object) if (!inherits(form, "formula")){ stop("\"Form\" argument must be a formula") } form <- form[[length(form)]] if (!((length(form) == 3) && (form[[1]] == as.name("|")))) { ## no conditioning expression return(NULL) } ## val <- list( asOneSidedFormula( form[[ 3 ]] ) ) val <- splitFormula(asOneSidedFormula(form[[3]]), sep = sep) names(val) <- unlist(lapply(val, function(el) deparse(el[[2]]))) # if (!missing(level)) { # if (length(level) == 1) { # return(val[[level]]) # } else { # val <- val[level] # } # } if (asList) as.list(val) else as.formula(paste("~", paste(names(val), collapse = sep))) } getGroupsFormula.merMod <- function(object,asList=FALSE, sep="+") { if (asList) { lapply(names(object@flist),asOneSidedFormula) } else { asOneSidedFormula(paste(names(object@flist),collapse=sep)) } } getCovariateFormula <- function (object) { form <- formula(object) if (!(inherits(form, "formula"))) { stop("formula(object) must return a formula") } form <- form[[length(form)]] if (length(form) == 3 && form[[1]] == as.name("|")) { form <- form[[2]] } eval(substitute(~form)) } getResponseFormula <- function(object) { ## Return the response formula as a one sided formula form <- formula(object) if (!(inherits(form, "formula") && (length(form) == 3))) { stop("\"Form\" must be a two sided formula") } as.formula(paste("~", deparse(form[[2]]))) } ##' diagnostic plots for merMod fits ##' @param x a fitted [ng]lmer model ##' @param form an optional formula specifying the desired type of plot. Any ##' variable present in the original data frame used to obtain ##' \code{x} can be referenced. In addition, \code{x} itself can be ##' referenced in the formula using the symbol \code{"."}. Conditional ##' expressions on the right of a \code{|} operator can be used to ##' define separate panels in a lattice display. Default is ##' \code{resid(., type = "pearson") ~ fitted(.)}, corresponding to a plot ##' of the standardized residuals versus fitted values. ##' @param abline an optional numeric value, or numeric vector of length ##' two. If given as a single value, a horizontal line will be added to the ##' plot at that coordinate; else, if given as a vector, its values are ##' used as the intercept and slope for a line added to the plot. If ##' missing, no lines are added to the plot. ##' @param id an optional numeric value, or one-sided formula. If given as ##' a value, it is used as a significance level for a two-sided outlier ##' test for the standardized, or normalized residuals. Observations with ##' absolute standardized (normalized) residuals greater than the \eqn{1-value/2} ##' quantile of the standard normal distribution are ##' identified in the plot using \code{idLabels}. If given as a one-sided ##' formula, its right hand side must evaluate to a logical, integer, or ##' character vector which is used to identify observations in the ##' plot. If missing, no observations are identified. ##' @param idLabels an optional vector, or one-sided formula. If given as a ##' vector, it is converted to character and used to label the ##' observations identified according to \code{id}. If given as a ##' vector, it is converted to character and used to label the ##' observations identified according to \code{id}. If given as a ##' one-sided formula, its right hand side must evaluate to a vector ##' which is converted to character and used to label the identified ##' observations. Default is the interaction of all the grouping variables ##' in the data frame. The special formula ##' @param grid an optional logical value indicating whether a grid should ##' be added to plot. Default depends on the type of lattice plot used: ##' if \code{xyplot} defaults to \code{TRUE}, else defaults to ##' \code{FALSE}. ##' @param \dots optional arguments passed to the lattice plot function. ##' @details Diagnostic plots for the linear mixed-effects fit are obtained. The ##' \code{form} argument gives considerable flexibility in the type of ##' plot specification. A conditioning expression (on the right side of a ##' \code{|} operator) always implies that different panels are used for ##' each level of the conditioning factor, according to a lattice ##' display. If \code{form} is a one-sided formula, histograms of the ##' variable on the right hand side of the formula, before a \code{|} ##' operator, are displayed (the lattice function \code{histogram} is ##' used). If \code{form} is two-sided and both its left and ##' right hand side variables are numeric, scatter plots are displayed ##' (the lattice function \code{xyplot} is used). Finally, if \code{form} ##' is two-sided and its left had side variable is a factor, box-plots of ##' the right hand side variable by the levels of the left hand side ##' variable are displayed (the lattice function \code{bwplot} is used). ##' @author original version in \code{nlme} package by Jose Pinheiro and Douglas Bates ##' @examples ##' data(Orthodont,package="nlme") ##' fm1 <- lmer(distance ~ age + (age|Subject), data=Orthodont) ##' ## standardized residuals versus fitted values by gender ##' plot(fm1, resid(., scaled=TRUE) ~ fitted(.) | Sex, abline = 0) ##' ## box-plots of residuals by Subject ##' plot(fm1, Subject ~ resid(., scaled=TRUE)) ##' ## observed versus fitted values by Subject ##' plot(fm1, distance ~ fitted(.) | Subject, abline = c(0,1)) ##' ## residuals by age, separated by Subject ##' plot(fm1, resid(., scaled=TRUE) ~ age | Sex, abline = 0) ##' if (require(ggplot2)) { ##' ## we can create the same plots using ggplot2 and the fortify() function ##' fm1F <- fortify(fm1) ##' ggplot(fm1F, aes(.fitted,.resid)) + geom_point(colour="blue") + ##' facet_grid(.~Sex) + geom_hline(yintercept=0) ##' ## note: Subjects are ordered by mean distance ##' ggplot(fm1F, aes(Subject,.resid)) + geom_boxplot() + coord_flip() ##' ggplot(fm1F, aes(.fitted,distance))+ geom_point(colour="blue") + ##' facet_wrap(~Subject) +geom_abline(intercept=0,slope=1) ##' ggplot(fm1F, aes(age,.resid)) + geom_point(colour="blue") + facet_grid(.~Sex) + ##' geom_hline(yintercept=0)+geom_line(aes(group=Subject),alpha=0.4)+geom_smooth(method="loess") ##' ## (warnings about loess are due to having only 4 unique x values) ##' detach("package:ggplot2") ##' } ##' @S3method plot merMod ##' @method plot merMod ##' @export plot.merMod <- function(x, form = resid(., type = "pearson") ~ fitted(.), abline, id = NULL, idLabels = NULL, grid, ...) ## Diagnostic plots based on residuals and/or fitted values { object <- x if (!inherits(form, "formula")) stop("\"form\" must be a formula") ## constructing data ## can I get away with using object@frame??? allV <- all.vars(asOneFormula(form, id, idLabels)) allV <- allV[is.na(match(allV,c("T","F","TRUE","FALSE",".obs")))] if (length(allV) > 0) { data <- getData(object) if (is.null(data)) { # try to construct data alist <- lapply(as.list(allV), as.name) names(alist) <- allV alist <- c(list(as.name("data.frame")), alist) mode(alist) <- "call" data <- eval(alist, sys.parent(1)) } else if (any(naV <- is.na(match(allV, names(data))))) stop(allV[naV], " not found in data") } else data <- NULL ## this won't do because there may well be variables we want ## that were not in the model call ## data <- object@frame ## argument list dots <- list(...) args <- if (length(dots) > 0) dots else list() ## appending object to data, and adding observation-number variable if (length(data) > 0) { data <- cbind(data, .obs = seq(nrow(data))) } data <- as.list(c(as.list(data), . = list(object))) ## covariate - must always be present covF <- getCovariateFormula(form) .x <- eval(covF[[2]], data) if (!is.numeric(.x)) { stop("Covariate must be numeric") } argForm <- ~ .x argData <- data.frame(.x = .x, check.names = FALSE) if (is.null(args$xlab)) { if (is.null(xlab <- attr(.x, "label"))) xlab <- deparse(covF[[2]]) args$xlab <- xlab } ## response - need not be present respF <- getResponseFormula(form) if (!is.null(respF)) { .y <- eval(respF[[2]], data) if (is.null(args$ylab)) { if (is.null(ylab <- attr(.y, "label"))) ylab <- deparse(respF[[2]]) args$ylab <- ylab } argForm <- .y ~ .x argData[, ".y"] <- .y } ## groups - need not be present grpsF <- getGroupsFormula(form) if (!is.null(grpsF)) { ## ?? FIXME ??? gr <- splitFormula(grpsF, sep = "*") for(i in seq_along(gr)) { auxGr <- all.vars(gr[[i]]) for(j in auxGr) argData[[j]] <- eval(as.name(j), data) } argForm <- as.formula(paste(if (length(argForm) == 2) "~ .x |" else ".y ~ .x |", deparse(grpsF[[2]]))) } ## adding to args list args <- c(list(argForm, data = argData), args) if (is.null(args$strip)) { args$strip <- function(...) strip.default(..., style = 1) } if (is.null(args$cex)) args$cex <- par("cex") if (is.null(args$adj)) args$adj <- par("adj") if (!is.null(id)) { ## identify points in plot idResType <- "pearson" ## diff from plot.lme: 'normalized' not available id <- switch(mode(id), numeric = { if (id <= 0 || id >= 1) stop(shQuote("id")," must be between 0 and 1") abs(resid(object, type = idResType))/sigma(object) > -qnorm(id / 2) }, call = eval(asOneSidedFormula(id)[[2]], data), stop(shQuote("id")," can only be a formula or numeric.") ) if (is.null(idLabels)) { idLabels <- getIDLabels(object) } else { if (inherits(idLabels,"formula")) { idLabels <- getIDLabels(object,idLabels) } else if (is.vector(idLabels)) { if (length(idLabels <- unlist(idLabels)) != length(id)) { stop("\"idLabels\" of incorrect length") } } else stop("\"idLabels\" can only be a formula or a vector") } ## DON'T subscript by id, will be done later idLabels <- as.character(idLabels) } ## defining abline, if needed if (missing(abline)) { abline <- if (missing(form)) # r ~ f c(0, 0) else NULL } #assign("id", id , where = 1) #assign("idLabels", idLabels, where = 1) #assign("abl", abline, where = 1) assign("abl", abline) ## defining the type of plot if (length(argForm) == 3) { if (is.numeric(.y)) { # xyplot plotFun <- "xyplot" if (is.null(args$panel)) { args <- c(args, panel = list(function(x, y, subscripts, ...) { x <- as.numeric(x) y <- as.numeric(y) dots <- list(...) if (grid) panel.grid() panel.xyplot(x, y, ...) if (any(ids <- id[subscripts])){ ltext(x[ids], y[ids], idLabels[subscripts][ids], cex = dots$cex, adj = dots$adj) } if (!is.null(abl)) { if (length(abl) == 2) panel.abline(a = abl, ...) else panel.abline(h = abl, ...) } })) } } else { # assume factor or character plotFun <- "bwplot" if (is.null(args$panel)) { args <- c(args, panel = list(function(x, y, ...) { if (grid) panel.grid() panel.bwplot(x, y, ...) if (!is.null(abl)) { panel.abline(v = abl[1], ...) } })) } } } else { plotFun <- "histogram" if (is.null(args$panel)) { args <- c(args, panel = list(function(x, ...) { if (grid) panel.grid() panel.histogram(x, ...) if (!is.null(abl)) { panel.abline(v = abl[1], ...) } })) } } ## defining grid if (missing(grid)) { grid <- (plotFun == "xyplot") } # assign("grid", grid, where = 1) do.call(plotFun, as.list(args)) } ## no longer defining `fortify` S3 generic ##' @rdname fortify ##' @S3method fortify lmerMod ##' @method fortify lmerMod ##' @export ##' as function, not as S3 method, see ../man/fortify.Rd : fortify.merMod <- function(model, data=getData(model), ...) { ## FIXME: get influence measures via influence.ME? ## (expensive, induces dependency ...) ## FIXME: different kinds of residuals? ## FIXME: deal with na.omit/predict etc. data$.fitted <- predict(model) data$.resid <- resid(model) data$.scresid <- resid(model,type="pearson",scaled=TRUE) data } ## autoplot??? ## plot method for plot.summary.mer ... coefplot-style ## horizontal, vertical? other options??? ## scale? plot.summary.mer <- function(object, type="fixef", ...) { if(any(!type %in% c("fixef","vcov"))) stop("'type' not yet implemented: ", type) stop("FIXME -- not yet implemented") } ## TO DO: allow faceting formula ## TO DO: allow qqline to be optional ## TO DO (harder): steal machinery from qq.gam for better GLMM Q-Q plots qqmath.merMod <- function(x, data = NULL, id=NULL, idLabels=NULL, ...) { ## klugey attempt to detect whether user forgot to specify argument ## names explicitly (after addition of required 'data' argument) ## NOT completely tested! if (!is.null(data)) { idLabels <- id id <- data warning("qqmath.merMod takes ", sQuote("data"), "as its ", "first argument for S3 method compatibility: ", "in the future, please ", "specify the ", sQuote("id"), " and ", sQuote("idLabels"), " arguments explicitly ", "i.e. ", sQuote("qqmath(fitted_model, id = ..., [idLabels = ...], ...)")) } values <- residuals(x, type="pearson", scaled=TRUE) data <- getData(x) ## DRY: copied from plot.merMod, should modularize/refactor if (!is.null(id)) { ## identify points in plot id <- switch(mode(id), numeric = { if (id <= 0 || id >= 1) stop(shQuote("id")," must be between 0 and 1") as.logical(abs(values) > -qnorm(id / 2)) }, call = eval(asOneSidedFormula(id)[[2]], data), stop(shQuote("id")," can only be a formula or numeric.") ) if (is.null(idLabels)) { idLabels <- getIDLabels(x) } else { if (inherits(idLabels,"formula")) { idLabels <- getIDLabels(x,idLabels) } else if (is.vector(idLabels)) { if (length(idLabels <- unlist(idLabels)) != length(id)) { stop("\"idLabels\" of incorrect length") } } else stop("\"idLabels\" can only be a formula or a vector") } idLabels <- as.character(idLabels) } ## DON'T subscript by id, will be done later qqpanel <- function(x, subscripts, ...) { dots <- list(...) panel.qqmathline(x, ...) panel.qqmath(x, ...) if (any(ids <- id[subscripts])) { xs <- x[subscripts] pp <- setNames(ppoints(length(xs)), names(sort(xs))) ## want to plot qnorm(pp) vs sort(x) ## ... but want to pick out the elements that corresponded ## to ids **before** sorting xx <- qnorm(pp)[names(xs)[ids]] yy <- sort(x)[names(xs)][ids] ## quantile(values, pp)[ids] ltext(xx, yy, idLabels[ids], cex = dots$cex, adj = dots$adj) } } qqmath(values, xlab = "Standard normal quantiles", ylab = "Standardized residuals", prepanel = prepanel.qqmathline, panel = qqpanel, ...) } ## qqmath(~residuals(gm1)|cbpp$herd) lme4/R/profile.R0000644000176200001440000015067515113136605013116 0ustar liggesusers## --> ../man/profile-methods.Rd profnames <- function(object, signames=TRUE, useSc=isLMM(object), prefix=c("sd","cor")) { ntp <- length(getME(object,"theta")) ## return c(if(signames) sprintf(".sig%02d", seq(ntp)) else tnames(object, old=FALSE, prefix=prefix), if(useSc) if (signames) ".sigma" else "sigma") } ##' @importFrom splines backSpline interpSpline periodicSpline ##' @importFrom stats profile ##' @method profile merMod ##' @export profile.merMod <- function(fitted, which=NULL, alphamax = 0.01, maxpts = 100, delta = NULL, delta.cutoff = 1/8, verbose=0, devtol=1e-9, devmatchtol=1e-5, maxmult = 10, startmethod = "prev", optimizer = NULL, control = NULL, signames = TRUE, parallel = c("no", "multicore", "snow"), ncpus = getOption("profile.ncpus", 1L), cl = NULL, prof.scale = c("sdcor","varcov"), ...) { ## FIXME: allow choice of nextstep/nextstart algorithm? ## FIXME: allow selection of individual variables to profile by name? ## FIXME: allow for failure of bounds (non-pos-definite correlation matrices) when >1 cor parameter prof.scale <- match.arg(prof.scale) parallel <- match.arg(parallel) do_parallel <- have_mc <- have_snow <- NULL # "-Wall" are set here: eval(initialize.parallel)# (parallel, ncpus) if (is.null(optimizer)) optimizer <- fitted@optinfo$optimizer ## hack: doesn't work to set bobyqa parameters to *ending* values stored ## in @optinfo$control ignore.pars <- c("xst", "xt") control.internal <- fitted@optinfo$control if (length(ign <- which(names(control.internal) %in% ignore.pars)) > 0) control.internal <- control.internal[-ign] if (!is.null(control)) { i <- names(control) control.internal[[i]] <- control[[i]] } control <- control.internal useSc <- isLMM(fitted) || isNLMM(fitted) prof.prefix <- switch(prof.scale, "sdcor" = { transfuns <- list(from.chol= Cv_to_Sv, to.chol = Sv_to_Cv, to.sd = identity) c("sd", "cor") }, "varcov" = { transfuns <- list(from.chol= Cv_to_Vv, to.chol = Vv_to_Cv, to.sd = sqrt) c("var", "cov") }, stop("internal error, prof.scale=", prof.scale)) dd <- devfun2(fitted, useSc=useSc, signames=signames, transfuns=transfuns, prefix=prof.prefix, ...) ## FIXME: figure out to what do here ... if (isGLMM(fitted) && fitted@devcomp$dims[["useSc"]]) stop("can't (yet) profile GLMMs with non-fixed scale parameters") stopifnot(devtol >= 0) base <- attr(dd, "basedev") ## protect against accidental tampering by later devfun calls thopt <- forceCopy(attr(dd, "thopt")) stderr <- attr(dd, "stderr") pp <- environment(dd)$pp X.orig <- pp$X n <- environment(dd)$n p <- length(pp$beta0) opt <- attr(dd, "optimum") nptot <- length(opt) nvp <- nptot - p # number of variance-covariance pars wi.vp <- seq_len(nvp) if(nvp > 0) fe.orig <- opt[- wi.vp] which <- get.which(which, nvp, nptot, names(opt), verbose) res <- c(.zeta = 0, opt) res <- matrix(res, nrow = maxpts, ncol = length(res), dimnames = list(NULL, names(res)), byrow = TRUE) ## FIXME: why is cutoff based on nptot ## (i.e. boundary of simultaneous LRT conf region for nptot values) ## when we are computing (at most) 2-parameter profiles here? cutoff <- sqrt(qchisq(1 - alphamax, nptot)) if (is.null(delta)) delta <- cutoff*delta.cutoff ## helper functions ## nextpar calculates the next value of the parameter being ## profiled based on the desired step in the profile zeta ## (absstep) and the values of zeta and column cc for rows ## r-1 and r. The parameter may not be below lower (or above upper) nextpar <- function(mat, cc, r, absstep, lower = -Inf, upper = Inf, minstep=1e-6) { rows <- r - (1:0) # previous two row numbers pvals <- mat[rows, cc] zeta <- mat[rows, ".zeta"] num <- diff(pvals) if (is.na(denom <- diff(zeta)) || denom==0) { warning("Last two rows have identical or NA .zeta values: using minstep") step <- minstep } else { step <- absstep*num/denom if (step<0) { warning("unexpected decrease in profile: using minstep") step <- minstep } else { if (r>1) { if (abs(step) > (maxstep <- abs(maxmult*num))) { maxstep <- sign(step)*maxstep if (verbose) cat(sprintf("capped step at %1.2f (multiplier=%1.2f > %1.2f)\n", maxstep,abs(step/num),maxmult)) step <- maxstep } } } } min(upper, max(lower, pvals[2] + sign(num) * step)) } nextstart <- function(mat, pind, r, method) { ## FIXME: indexing may need to be checked (e.g. for fixed-effect parameters) switch(method, global= opt[seqpar1][-pind], ## address opt, no zeta column prev = mat[r,1+seqpar1][-pind], extrap = stop("not yet implemented"),## do something with mat[r-(1:0),1+seqnvp])[-pind] stop("invalid nextstart method")) } ## mkpar generates the parameter vector of theta and ## sigma from the values being profiled in position w mkpar <- function(np, w, pw, pmw) { par <- numeric(np) par[w] <- pw par[-w] <- pmw par } ## fillmat fills the third and subsequent rows of the matrix ## using nextpar and zeta ## FIXME: add code to evaluate more rows near the minimum if that ## constraint was active. fillmat <- function(mat, lowcut, upcut, zetafun, cc) { nr <- nrow(mat) i <- 2L while (i < nr && mat[i, cc] > lowcut && mat[i,cc] < upcut && (is.na(curzeta <- abs(mat[i, ".zeta"])) || curzeta <= cutoff)) { np <- nextpar(mat, cc, i, delta, lowcut, upcut) ns <- nextstart(mat, pind = cc-1, r=i, method=startmethod) mat[i + 1L, ] <- zetafun(np,ns) if (verbose>0) { cat(i,cc,mat[i+1L,],"\n") } i <- i + 1L } if (mat[i-1,cc]==lowcut) { ## fill in more values near the minimum } if (mat[i-1,cc]==upcut) { ## fill in more values near the maximum } mat } ## bounds on Cholesky (== fitted@lower): [0,Inf) for diag, (-Inf,Inf) for off-diag ## bounds on sd-corr: [0,Inf) for diag, (-1.0,1.0) for off-diag ## bounds on var-corr: [0,Inf) for diag, (-Inf,Inf) for off-diag if (prof.scale=="sdcor") { lower <- pmax(fitted@lower, -1.) upper <- ifelse(fitted@lower==0, Inf, 1.0) } else { lower <- fitted@lower upper <- rep(Inf,length.out=length(fitted@lower)) } if (useSc) { # bounds for sigma lower <- c(lower,0) upper <- c(upper,Inf) } ## bounds on fixed parameters (TODO: allow user-specified bounds, e.g. for NLMMs) lower <- c(lower,rep.int(-Inf, p)) upper <- c(upper, rep.int(Inf, p)) npar1 <- if (isLMM(fitted)) nvp else nptot ## check that devfun2() computation for the base parameters is (approx.) the ## same as the original devfun() computation basecheck <- all.equal(unname(dd(opt[seq(npar1)])), base, tolerance=devmatchtol) if(!isTRUE(basecheck)) { basediff <- abs(dd(opt[seq(npar1)])/base - 1) stop(sprintf(paste0("Profiling over both the residual variance and\n", "fixed effects is not numerically consistent with\n", "profiling over the fixed effects only (relative difference: %1.4g);\n", "consider adjusting devmatchtol"), basediff)) } ## sequence of variance parameters to profile seqnvp <- intersect(seq_len(npar1), which) ## sequence of 'all' parameters seqpar1 <- seq_len(npar1) lowvp <- lower[seqpar1] upvp <- upper[seqpar1] form <- .zeta ~ foo # pattern for interpSpline formula ## as in bootMer.R, define FUN as a ## closure containing the referenced variables ## in its scope to avoid explicit clusterExport statement ## in the PSOCKcluster case FUN <- local({ function(w) { if (verbose) cat(if(isLMM(fitted)) "var-cov " else "", "parameter ",w,":\n",sep="") wp1 <- w + 1L pw <- opt[w] lowcut <- lower[w] upcut <- upper[w] zeta <- function(xx,start) { ores <- tryCatch(optwrap(optimizer, par=start, fn=function(x) dd(mkpar(npar1, w, xx, x)), lower = lowvp[-w], upper = upvp [-w], control = control), error=function(e) NULL) if (is.null(ores)) { devdiff <- NA pars <- NA } else { devdiff <- ores$fval - base pars <- ores$par } if (is.na(devdiff)) { warning("NAs detected in profiling") } else { if(verbose && devdiff < 0) cat("old deviance ",base,",\n", "new deviance ",ores$fval,",\n", "new params ", paste(mkpar(npar1,w,xx,ores$par), collapse=","),"\n") if (devdiff < (-devtol)) stop("profiling detected new, lower deviance ", sprintf("(deviance diff = %1.3g, tolerance = %1.3g)", abs(devdiff), devtol)) if(devdiff < 0) warning(gettextf("slightly lower deviances (diff=%g) detected", devdiff), domain=NA) } devdiff <- max(0,devdiff) zz <- sign(xx - pw) * sqrt(devdiff) r <- c(zz, mkpar(npar1, w, xx, pars)) if (isLMM(fitted)) c(r, pp$beta(1)) else r }## {zeta} ## intermediate storage for pos. and neg. increments pres <- nres <- res ## assign one row, determined by inc. sign, from a small shift ## FIXME:: do something if pw==0 ??? shiftpar <- if (pw==0) 1e-3 else pw*1.01 ## Since both the pos- and neg-increment matrices are already ## filled with the opt. par. results, this sets the first ## two rows of the positive-increment matrix ## to (opt. par, shiftpar) and the first two rows of ## the negative-increment matrix to (shiftpar, opt. par), ## which sets up two points going in the right direction ## for each matrix (since the profiling algorithm uses increments ## between rows to choose the next parameter increment) nres[1, ] <- pres[2, ] <- zeta(shiftpar, start=opt[seqpar1][-w]) ## fill in the rest of the arrays and collapse them upperf <- fillmat(pres, lowcut, upcut, zeta, wp1) lowerf <- if (pw > lowcut) fillmat(nres, lowcut, upcut, zeta, wp1) else ## don't bother to fill in 'nres' matrix nres ## this will throw away the extra 'opt. par' and 'shiftpar' ## rows introduced above: bres <- as.data.frame(unique(rbind2(upperf,lowerf))) pname <- names(opt)[w] bres$.par <- pname bres <- bres[order(bres[, wp1]), ] ## FIXME: test for bad things here?? form[[3]] <- as.name(pname) forspl <- NULL # (in case of error) ## bakspl bakspl <- tryCatch(backSpline( forspl <- interpSpline(form, bres, na.action=na.omit)), error=function(e)e) if (inherits(bakspl, "error")) warning("non-monotonic profile for ",pname) ## return: namedList(bres,bakspl,forspl) # namedList() -> lmerControl.R }}) ## FUN() ## copied from bootMer: DRY! L <- if (do_parallel) { if (have_mc) { parallel::mclapply(seqnvp, FUN, mc.cores = ncpus) } else if (have_snow) { if (is.null(cl)) { cl <- parallel::makePSOCKcluster(rep("localhost", ncpus)) ## explicit export of the lme4 namespace since most FUNs will probably ## use some of them parallel::clusterExport(cl, varlist=getNamespaceExports("lme4")) if(RNGkind()[1L] == "L'Ecuyer-CMRG") parallel::clusterSetRNGStream(cl) pres <- parallel::parLapply(cl, seqnvp, FUN) parallel::stopCluster(cl) pres } else parallel::parLapply(cl, seqnvp, FUN) } } else lapply(seqnvp, FUN) nn <- names(opt[seqnvp]) ans <- setNames(lapply(L, `[[`, "bres"), nn) bakspl <- setNames(lapply(L, `[[`,"bakspl"), nn) forspl <- setNames(lapply(L, `[[`,"forspl"), nn) ## profile fixed effects separately (for LMMs) if (isLMM(fitted)) { offset.orig <- fitted@resp$offset fp <- seq_len(p) fp <- fp[(fp+nvp) %in% which] ## FIXME: parallelize this too ... for (j in fp) { if (verbose) cat("fixed-effect parameter ",j,":\n",sep="") pres <- # intermediate results for pos. incr. nres <- res # and negative increments est <- opt[nvp + j] std <- stderr[j] Xw <- X.orig[, j, drop=TRUE] Xdrop <- .modelMatrixDrop(X.orig, j) pp1 <- new(class(pp), X = Xdrop, Zt = pp$Zt, Lambdat = pp$Lambdat, Lind = pp$Lind, theta = pp$theta, n = nrow(Xdrop)) ### FIXME Change this to use the deep copy and setWeights, setOffset, etc. rr <- new(Class=class(fitted@resp), y=fitted@resp$y) rr$setWeights(fitted@resp$weights) fe.zeta <- function(fw, start) { ## (start parameter ignored) rr$setOffset(Xw * fw + offset.orig) rho <- list2env(list(pp=pp1, resp=rr), parent = parent.frame()) ores <- optwrap(optimizer, par = thopt, fn = mkdevfun(rho, 0L), lower = fitted@lower) ## this optimization is done on the ORIGINAL ## theta scale (i.e. not the sigma/corr scale) ## upper=Inf for all cases ## lower = pmax(fitted@lower, -1.0), ## upper = 1/(fitted@lower != 0))## = ifelse(fitted@lower==0, Inf, 1.0) fv <- ores$fval sig <- sqrt((rr$wrss() + pp1$sqrL(1))/n) c(sign(fw - est) * sqrt(fv - base), Cv_to_Sv(ores$par, lengths(fitted@cnms), s=sig), ## ores$par * sig, sig, mkpar(p, j, fw, pp1$beta(1))) } nres[1, ] <- pres[2, ] <- fe.zeta(est + delta * std) poff <- nvp + 1L + j ## Workaround R bug [rbind2() is S4 generic; cannot catch warnings in its arg] ## see lme4 GH issue #304 upperf <- fillmat(pres, -Inf, Inf, fe.zeta, poff) lowerf <- fillmat(nres, -Inf, Inf, fe.zeta, poff) bres <- as.data.frame(unique(rbind2(upperf, lowerf))) bres$.par <- n.j <- names(fe.orig)[j] ans[[n.j]] <- bres[order(bres[, poff]), ] form[[3]] <- as.name(n.j) bakspl[[n.j]] <- tryCatch(backSpline(forspl[[n.j]] <- interpSpline(form, bres)), error=function(e)e) if (inherits(bakspl[[n.j]], "error")) warning("non-monotonic profile for ", n.j) } ## for(j in 1..p) } ## if isLMM ans <- do.call(rbind, ans) row.names(ans) <- NULL ## TODO: rbind(*, make.row.names=FALSE) ans$.par <- factor(ans$.par) structure(ans, forward = forspl, backward = bakspl, lower = lower[seqnvp], upper = upper[seqnvp], class = c("thpr", "data.frame"))# 'thpr': see ../man/profile-methods.Rd } ## profile.merMod ##' Transform 'which' \in {parnames | integer | "beta_" | "theta_"} ##' into integer indices ##' @param which numeric or character vector ##' @param nvp number of variance-covariance parameters ##' @param nptot total number of parameters ##' @param parnames vector of parameter names ##' @param verbose print messages? ##' @examples ##' fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy) ##' tn <- names(getME(fm1,"theta")) ##' nn <- c(tn,names(fixef(fm1))) ##' get.which("theta_",length(tn),length(nn),nn, verbose=TRUE) ##' get.which <- function(which, nvp, nptot, parnames, verbose=FALSE) { if (is.null(which)) seq_len(nptot) else if (is.character(which)) { wi <- integer(); wh <- which if(any(j <- wh == "theta_")) { wi <- seq_len(nvp); wh <- wh[!j] } if(any(j <- wh == "beta_") && nptot > nvp) { wi <- c(wi, seq(nvp+1, nptot)); wh <- wh[!j] } if(any(j <- parnames %in% wh)) { ## which containing param.names wi <- sort(unique(c(wi, seq_len(nptot)[j]))) } if(verbose) message(gettextf("From original which = %s: new which <- %s", deparse(which, nlines=1), deparse(wi, nlines=1)), domain=NA) if(length(wi) == 0) warning(gettextf("Nothing selected by 'which=%s'", deparse(which)), domain=NA) wi } else # stopifnot( .. numeric ..) which } ## This is a hack. The preferred approach is to write a ## subset method for the ddenseModelMatrix and dsparseModelMatrix ## classes .modelMatrixDrop <- function(mm, w) { if (isS4(mm)) { nX <- slotNames(X <- mm[, -w, drop = FALSE]) do.call(new, c(list(Class = class(mm), assign = attr(mm,"assign")[-w], contrasts = NULL ## FIXME: where did the contrasts information go?? ## mm@contrasts ), lapply(structure(nX, .Names=nX), function(nm) slot(X, nm)))) } else { structure(mm[, -w, drop=FALSE], assign = attr(mm, "assign")[-w]) } } ## The deviance is profiled with respect to the fixed-effects ## parameters but not with respect to sigma. The other parameters ## are on the standard deviation scale, not the theta scale. ## ## @title Return a function for evaluation of the deviance. ## @param fm a fitted model of class merMod ## @param useSc (logical) whether a scale parameter is used ## @param \dots arguments passed to profnames (\code{signames=TRUE} ## to use old-style .sigxx names, FALSE uses (sd_cor|xx); ## also \code{prefix=c("sd","cor")}) ## @return a function for evaluating the deviance in the extended ## parameterization. This is profiled with respect to the ## variance-covariance parameters (fixed-effects done separately). devfun2 <- function(fm, useSc = if(isLMM(fm)) TRUE else NA, transfuns = list(from.chol = Cv_to_Sv, to.chol = Sv_to_Cv, to.sd = identity), ...) { ## FIXME: have to distinguish between ## 'useSc' (GLMM: report profiled scale parameter) and ## 'useSc' (NLMM/LMM: scale theta by sigma) ## hasSc := GLMMuseSc <- fm@devcomp$dims["useSc"] stopifnot(is(fm, "merMod")) fm <- refitML(fm) basedev <- -2*c(logLik(fm)) ## no longer deviance() vlist <- lengths(fm@cnms) ## "has scale" := isLMM or GLMM with scale parameter hasSc <- as.logical(fm@devcomp$dims[["useSc"]]) stdErr <- unname(coef(summary(fm))[,2]) pp <- fm@pp$copy() if (useSc) { sig <- sigma(fm) ## only if hasSc is TRUE? ## opt <- c(pp$theta*sig, sig) opt <- transfuns$from.chol(pp$theta, n=vlist, s=sig) } else { opt <- transfuns$from.chol(pp$theta, n=vlist) } names(opt) <- profnames(fm, useSc=useSc, ...) opt <- c(opt, fixef(fm)) resp <- fm@resp$copy() np <- length(pp$theta) nf <- length(fixef(fm)) if(hasSc) np <- np + 1L # was if(!isGLMM(fm)) np <- np + 1L n <- nrow(pp$V) # use V, not X so it works with nlmer if (isLMM(fm)) { # ==> hasSc ans <- function(pars) { stopifnot(is.numeric(pars), length(pars) == np) ## Assumption: we can translate the *last* parameter back ## to sigma (SD) scale ... sigma <- transfuns$to.sd(pars[np]) ## .Call(lmer_Deviance, pp$ptr(), resp$ptr(), pars[-np]/sigma) ## convert from sdcor vector back to 'unscaled theta' thpars <- transfuns$to.chol(pars, n=vlist, s=sigma) .Call(lmer_Deviance, pp$ptr(), resp$ptr(), thpars) sigsq <- sigma^2 pp$ldL2() - ldW + (resp$wrss() + pp$sqrL(1))/sigsq + n * log(2 * pi * sigsq) } ldW <- sum(log(environment(ans)$resp$weights)) assign("ldW", ldW, envir = environment(ans)) } else { # GLMM *and* NLMMs d0 <- getME(fm, "devfun") ## from glmer: ## rho <- new.env(parent=parent.env(environment())) ## rho$pp <- do.call(merPredD$new, c(reTrms[c("Zt","theta","Lambdat","Lind")], n=nrow(X), list(X=X))) ## rho$resp <- mkRespMod(fr, if(REML) p else 0L) ans <- function(pars) { stopifnot(is.numeric(pars), length(pars) == np+nf) thpars <- if(!useSc) transfuns$to.chol(pars[seq(np)], n=vlist) else transfuns$to.chol(pars[seq(np)], n=vlist, s=pars[np]) fixpars <- pars[-seq(np)] d0(c(thpars,fixpars)) } } attr(ans, "optimum") <- opt # w/ names() attr(ans, "basedev") <- basedev attr(ans, "thopt") <- pp$theta attr(ans, "stderr") <- stdErr class(ans) <- "devfun" ans } ## extract only the y component from a prediction predy <- function(sp, vv) { if(inherits(sp,"error")) rep(NA_real_, length(vv)) else predict(sp, vv)$y } stripExpr <- function(ll, nms) { stopifnot(is.list(ll), is.character(nms)) fLevs <- as.expression(nms) # variable names; now replacing log(sigma[.]) etc: fLevs[nms == ".sigma"] <- expression(sigma) fLevs[nms == ".lsigma"] <- expression(log(sigma)) fLevs[nms == ".sigmasq"] <- expression(sigma^2) sigNms <- grep("^\\.sig[0-9]+", nms) lsigNms <- grep("^\\.lsig[0-9]+", nms) sig2Nms <- grep("^\\.sigsq[0-9]+", nms) ## the in ".sig0" and then in ".lsig0": sigsub <- as.integer(substring(nms[ sigNms], 5)) lsigsub <- as.integer(substring(nms[lsigNms], 6)) sig2sub <- as.integer(substring(nms[sig2Nms], 7)) fLevs[ sigNms] <- lapply( sigsub, function(i) bquote( sigma[.(i)])) fLevs[lsigNms] <- lapply(lsigsub, function(i) bquote(log(sigma[.(i)]))) fLevs[sig2Nms] <- lapply(sig2sub, function(i) bquote( {sigma[.(i)]}^2)) ## result of using { .. }^2 is easier to understand == == levsExpr <- substitute(strip.custom(factor.levels=foo), list(foo=fLevs)) snames <- c("strip", "strip.left") if(!any(.in <- snames %in% names(ll))) { ll$strip <- levsExpr } else { for(nm in snames[.in]) if(is.logical(v <- ll[[nm]]) && v) ll[[nm]] <- levsExpr } ll } panel.thpr <- function(x, y, spl, absVal, ...) { panel.grid(h = -1, v = -1) myspl <- spl[[panel.number()]] lsegments(x, y, x, 0, ...) if (absVal) { y[y == 0] <- NA lsegments(x, y, rev(x), y) } else { panel.abline(h = 0, ...) } if (!is(myspl,"spline")) { ## 'difficult' data if (absVal) myspl$y <- abs(myspl$y) panel.lines (myspl$x, myspl$y) panel.points(myspl$x, myspl$y, pch="+") warning(gettextf("bad profile for variable %d: using linear interpolation", panel.number()), domain=NA) } else { lims <- current.panel.limits()$xlim krange <- range(myspl$knots) pr <- predict(myspl, seq(max(lims[1], krange[1]), min(lims[2], krange[2]), len = 101)) if (absVal) pr$y <- abs(pr$y) panel.lines(pr$x, pr$y) } } ## A lattice-based plot method for profile objects ##' @importFrom lattice xyplot ##' @S3method xyplot thpr xyplot.thpr <- function (x, data = NULL, levels = sqrt(qchisq(pmax.int(0, pmin.int(1, conf)), df = 1)), conf = c(50, 80, 90, 95, 99)/100, absVal = FALSE, scales = NULL, which = 1:nptot, ...) { if(any(!is.finite(conf) | conf <= 0 | conf >= 1)) stop("values of 'conf' must be strictly between 0 and 1") stopifnot(1 <= (nptot <- length(nms <- levels(x[[".par"]])))) ## FIXME: is this sufficiently reliable? ## (include "sigma" in 'theta' parameters) nvp <- length(grep("^(\\.sig[0-9]+|.sigma|sd_|cor_)", nms)) which <- get.which(which, nvp, nptot, nms) levels <- sort(levels[is.finite(levels) & levels > 0]) spl <- attr(x, "forward") [which] bspl <- attr(x, "backward")[which] ## for parameters for which spline couldn't be computed, ## replace the 'spl' element with the raw profile data if(any(badSpl <- vapply(spl, is.null, NA))) { spl[badSpl] <- lapply(which(badSpl), function(i) { n <- names(badSpl)[i] r <- x[x[[".par"]] == n, ] data.frame(y = r[[".zeta"]], x = r[[n]]) }) bspl[badSpl] <- lapply(spl[badSpl], function(d) data.frame(x=d$y,y=d$x)) ## FIXME: more efficient, not yet ok ? ## ibad <- which(badSpl) ## spl[ibad] <- lapply(names(ibad), function(n) { ## r <- x[x[[".par"]]==n,] ## data.frame(y = r[[".zeta"]], x = r[[n]]) ## }) ## bspl[ibad] <- lapply(spl[ibad], function(d) data.frame(x=d$y,y=d$x)) } zeta <- c(-rev(levels), 0, levels) mypred <- function(bs, zeta) { ## use linear approximation if backspline doesn't work if (inherits(bs,"spline")) predy(bs, zeta) else if(is.numeric(x <- bs$x) && is.numeric(y <- bs$y) && length(x) == length(y)) approx(x, y, xout = zeta)$y else rep_len(NA, length(zeta)) } fr <- data.frame(zeta = rep.int(zeta, length(spl)), pval = unlist(lapply(bspl, mypred, zeta)), pnm = gl(length(spl), length(zeta), labels = names(spl))) if (length(ind <- which(is.na(fr$pval)))) { fr[ind, "zeta"] <- 0 for (i in ind) ### FIXME: Should check which bound has been violated, although it ### will almost always be the minimum. if (inherits(curspl <- spl[[fr[i, "pnm"] ]], "spline")) { fr[i, "pval"] <- min(curspl$knots) } } ylab <- if (absVal) { fr$zeta <- abs(fr$zeta) expression("|" * zeta * "|") } else expression(zeta) intscales <- list(x = list(relation = 'free')) ## FIXME: is there something less clunky we can do here ## that allows for all possible user inputs ## (may want to (1) override x$relation (2) add elements to $x ## (3) add elements to scales) if (!is.null(scales)) { if (!is.null(scales[["x"]])) { if (!is.null(scales[["x"]]$relation)) { intscales[["x"]]$relation <- scales[["x"]]$relation scales[["x"]]$relation <- NULL } intscales[["x"]] <- c(intscales[["x"]],scales[["x"]]) scales[["x"]] <- NULL } intscales <- c(intscales,scales) } ll <- c(list(...), list(x = zeta ~ pval | pnm, data=fr, scales = intscales, ylab = ylab, xlab = NULL, panel=panel.thpr, spl = spl, absVal = absVal)) do.call(xyplot, stripExpr(ll, names(spl))) } ## copy of stats:::format.perc (not exported, and ":::" being forbidden nowadays): format.perc <- function (x, digits, ...) { paste(format(100 * x, trim = TRUE, scientific = FALSE, digits = digits), "%") } ##' confint() method for our profile() results 'thpr' ##' @importFrom stats confint confint.thpr <- function(object, parm, level = 0.95, zeta, ## tolerance for non-monotonic profiles ## (raw values, not splines) non.mono.tol=1e-2, ...) { bak <- attr(object, "backward") ## fallback strategy for old profiles that don't have a lower/upper ## attribute saved ... if (is.null(lower <- attr(object,"lower"))) lower <- rep(NA,length(parm)) if (is.null(upper <- attr(object,"upper"))) upper <- rep(NA,length(parm)) ## FIXME: work a little harder to add -Inf/Inf for fixed effect ## parameters? (Should only matter for really messed-up profiles) bnms <- names(bak) parm <- if (missing(parm)) bnms else if(is.numeric(parm)) # e.g., when called from confint.merMod() bnms[parm] else if (length(parm <- as.character(parm)) == 1) { if (parm == "theta_") grep("^(sd_|cor_|.sig|sigma$)", bnms, value=TRUE) else if (parm == "beta_") grep("^(sd_|cor_|.sig|sigma$)", bnms, value=TRUE, invert=TRUE) else if(parm %in% bnms) # just that one parm ## else NULL : will return 0-row matrix } else intersect(parm, bnms) cn <- if (missing(zeta)) { a <- (1 - level)/2 a <- c(a, 1 - a) zeta <- qnorm(a) format.perc(a, 3) } ## else NULL ci <- matrix(NA_real_, nrow=length(parm), ncol=2L, dimnames = list(parm,cn)) for (i in seq_along(parm)) { ## would like to build this machinery into predy, but ## predy is used in many places and it's much harder to ## tell in general whether an NA indicates a lower or an ## upper bound ... badprof <- FALSE p <- rep(NA,2) if (!inherits(b <- bak[[parm[i]]], "error")) { p <- predy(b, zeta) } else { obj1 <- object[object$.par==parm[[i]],c(parm[[i]],".zeta")] if (all(is.na(obj1[,2]))) { badprof <- TRUE warning("bad profile for ",parm[i]) } else if (min(diff(obj1[,2])<(-non.mono.tol),na.rm=TRUE)) { badprof <- TRUE warning("non-monotonic profile for ",parm[i]) } else { warning("bad spline fit for ",parm[i],": falling back to linear interpolation") p <- approxfun(obj1[,2],obj1[,1])(zeta) } } if (!badprof) { if (is.na(p[1])) p[1] <- lower[i] if (is.na(p[2])) p[2] <- upper[i] } ci[i,] <- p } ci } ## FIXME: make bootMer more robust; make profiling more robust; ## more warnings; documentation ... ##' Compute confidence intervals on the parameters of an lme4 fit ##' @param object a fitted [ng]lmer model ##' @param parm parameters (specified by integer position) ##' @param level confidence level ##' @param method for computing confidence intervals ##' @param zeta likelihood cutoff ##' (if not specified, computed from \code{level}: "profile" only) ##' @param nsim number of simulations for parametric bootstrap intervals ##' @param boot.type bootstrap confidence interval type ##' @param quiet (logical) suppress messages about computationally intensive profiling? ##' @param signames (logical) use old-style names for \code{method="profile"}? (See \code{signames} argument to \code{\link{profile}} ##' @param oldNames (logical) deprecated; has the same purpose as the \code{signames} argument. ##' @param \dots additional parameters to be passed to \code{\link{profile.merMod}} or \code{\link{bootMer}} ##' @return a numeric table of confidence intervals confint.merMod <- function(object, parm, level = 0.95, method = c("profile","Wald","boot"), zeta, nsim=500, boot.type = c("perc","basic","norm"), FUN = NULL, quiet=FALSE, oldNames, signames = TRUE, ...) { method <- match.arg(method) boot.type <- match.arg(boot.type) if (!missing(oldNames)) { warning("'oldNames' is deprecated. Please use 'signames' instead.", call. = FALSE) signames <- oldNames } ## 'parm' corresponds to 'which' in other contexts if (method=="boot" && !is.null(FUN)) { ## custom boot function, don't expand parameter names } else { ## "use scale" = GLMM with scale parameter *or* LMM .. useSc <- as.logical(object@devcomp$dims[["useSc"]]) vn <- profnames(object, signames, useSc=useSc) an <- c(vn,names(fixef(object))) parm <- if(missing(parm)) seq_along(an) else get.which(parm, nvp=length(vn), nptot=length(an), parnames=an) if (!quiet && method %in% c("profile","boot")) { mtype <- switch(method, profile="profile", boot="bootstrap") message("Computing ",mtype," confidence intervals ...") flush.console() } } switch(method, "profile" = { pp <- profile(object, which=parm, signames=signames, ...) ## confint.thpr() with missing(parm) using all names: confint(pp, level=level, zeta=zeta) }, "Wald" = { a <- (1 - level)/2 a <- c(a, 1 - a) ci.vcov <- array(NA,dim = c(length(vn), 2L), dimnames = list(vn, format.perc(a,3))) ## copied with small changes from confint.default cf <- fixef(object) ## coef() -> fixef() pnames <- names(cf) ## N.B. can't use sqrt(...)[parm] (diag() loses names) ses <- sqrt(diag(vcov(object))) ci.fixed <- array(cf + ses %o% qnorm(a), dim = c(length(pnames), 2L), dimnames = list(pnames, format.perc(a, 3))) vnames <- tnames(object) ci.all <- rbind(ci.vcov,ci.fixed) ci.all[parm,,drop=FALSE] }, "boot" = { bootFun <- function(x) { th <- x@theta nvec <- lengths(x@cnms) scaleTh <- (isLMM(x) || isNLMM(x)) ## FIXME: still ugly. Best cleanup via Cv_to_Sv ... ss <- if (scaleTh) { ## scale variances by sigma and include it Cv_to_Sv(th, n=nvec, s=sigma(x)) } else if (useSc) { ## don't scale variances but do include sigma c(Cv_to_Sv(th, n=nvec), sigma(x)) } else { ## no scaling, no sigma Cv_to_Sv(th, n=nvec) } c(setNames(ss, vn), fixef(x)) } if (is.null(FUN)) FUN <- bootFun bb <- bootMer(object, FUN=FUN, nsim=nsim,...) if (all(is.na(bb$t))) stop("*all* bootstrap runs failed!") print.bootWarnings(bb, verbose=FALSE) citab <- confint(bb,level=level,type=boot.type) if (missing(parm)) { ## only happens if we have custom boot method if (is.null(parm <- rownames(citab))) { parm <- seq(nrow(citab)) } } citab[parm, , drop=FALSE] }, ## should never get here ... stop("unknown confidence interval method")) } ##' Convert x-cosine and y-cosine to average and difference. ##' ##' Convert the x-cosine and the y-cosine to an average and difference ##' ensuring that the difference is positive by flipping signs if ##' necessary ##' @param xc x-cosine ##' @param yc y-cosine ad <- function(xc, yc) { a <- (xc + yc)/2 d <- (xc - yc) cbind(sign(d)* a, abs(d)) } ##' convert d versus a (as an xyVector) and level to a matrix of taui and tauj ##' @param xy an xyVector ##' @param lev the level of the contour tauij <- function(xy, lev) lev * cos(xy$x + outer(xy$y/2, c(-1, 1))) ##' @title safe arc-cosine ##' @param x numeric vector argument ##' @return acos(x) being careful of boundary conditions sacos <- function(x) acos(pmax.int(-0.999, pmin.int(0.999, x))) ##' Generate a contour ##' ##' @title Generate a contour ##' @param sij the arc-cosines of i on j ##' @param sji the arc-cosines of j on i ##' @param levels numeric vector of levels at which to interpolate ##' @param nseg number of segments in the interpolated contour ##' @return a list with components ##' \item{tki}{the tau-scale predictions of i on j at the contour levels} ##' \item{tkj}{the tau-scale predictions of j on i at the contour levels} ##' \item{pts}{an array of dimension (length(levels), nseg, 2) containing the points on the contours} cont <- function(sij, sji, levels, nseg = 101) { ada <- array(0, c(length(levels), 2L, 4L)) ada[, , 1] <- ad(0, sacos(predy(sij, levels)/levels)) ada[, , 2] <- ad( sacos(predy(sji, levels)/levels), 0) ada[, , 3] <- ad(pi, sacos(predy(sij, -levels)/levels)) ada[, , 4] <- ad(sacos(predy(sji, -levels)/levels), pi) pts <- array(0, c(length(levels), nseg + 1, 2)) for (i in seq_along(levels)) pts[i, ,] <- tauij(predict(periodicSpline(ada[i, 1, ], ada[i, 2, ]), nseg = nseg), levels[i]) levs <- c(-rev(levels), 0, levels) list(tki = predict(sij, levs), tkj = predict(sji, levs), pts = pts) } ## copied from lattice:::chooseFace chooseFace <- function (fontface = NULL, font = 1) { if (is.null(fontface)) font else fontface } ##' Draws profile pairs plots. Contours are for the marginal ##' two-dimensional regions (i.e. using df = 2). ##' ##' @title Profile pairs plot ##' @param x the result of \code{\link{profile}} (or very similar structure) ##' @param data unused - only for compatibility with generic ##' @param levels the contour levels to be shown; usually derived from \code{conf} ##' @param conf numeric vector of confidence levels to be shown as contours ##' @param ... further arguments passed to \code{\link{splom}} ##' @importFrom grid gpar viewport ##' @importFrom lattice splom ##' @method splom thpr ##' @export splom.thpr <- function (x, data, levels = sqrt(qchisq(pmax.int(0, pmin.int(1, conf)), 2)), conf = c(50, 80, 90, 95, 99)/100, which = 1:nptot, draw.lower = TRUE, draw.upper = TRUE, ...) { stopifnot(1 <= (nptot <- length(nms <- names(attr(x, "forward"))))) singfit <- FALSE for (i in grep("^(\\.sig[0-9]+|sd_)", names(x))) singfit <- singfit || any(x[,".zeta"] == 0 & x[,i] == 0) if (singfit) warning("splom is unreliable for singular fits") nvp <- length(grep("^(\\.sig[0-9]+|.sigma|sd_|cor_)", nms)) which <- get.which(which, nvp, nptot, nms) if (length(which) == 1) stop("can't draw a scatterplot matrix for a single variable") mlev <- max(levels) spl <- attr(x, "forward")[which] frange <- sapply(spl, function(x) range(x$knots)) bsp <- attr(x, "backward")[which] x <- x[x[[".par"]] %in% nms[which],c(".zeta",nms[which],".par")] ## brange <- sapply(bsp, function(x) range(x$knots)) pfr <- do.call(cbind, lapply(bsp, predy, c(-mlev, mlev))) pfr[1, ] <- pmax.int(pfr[1, ], frange[1, ], na.rm = TRUE) pfr[2, ] <- pmin.int(pfr[2, ], frange[2, ], na.rm = TRUE) nms <- names(spl) ## Create data frame fr of par. vals in zeta coordinates fr <- x[, -1] for (nm in nms) fr[[nm]] <- predy(spl[[nm]], na.omit(fr[[nm]])) fr1 <- fr[1, nms] ## create a list of lists with the names of the parameters traces <- lapply(fr1, function(el) lapply(fr1, function(el1) list())) .par <- NULL ## => no R CMD check warning for (j in seq_along(nms)[-1]) { frj <- subset(fr, .par == nms[j]) for (i in seq_len(j - 1L)) { fri <- subset(fr, .par == nms[i]) sij <- interpSpline(fri[ , i], fri[ , j]) sji <- interpSpline(frj[ , j], frj[ , i]) ll <- cont(sij, sji, levels) traces[[j]][[i]] <- list(sij = sij, sji = sji, ll = ll) } } if(draw.lower) ## panel function for lower triangle lp <- function(x, y, groups, subscripts, i, j, ...) { tr <- traces[[j]][[i]] grid::pushViewport(viewport(xscale = c(-1.07, 1.07) * mlev, yscale = c(-1.07, 1.07) * mlev)) dd <- sapply(current.panel.limits(), diff)/50 psij <- predict(tr$sij) ll <- tr$ll ## now do the actual plotting panel.grid(h = -1, v = -1) llines(psij$y, psij$x, ...) llines(predict(tr$sji), ...) with(ll$tki, lsegments(y - dd[1], x, y + dd[1], x, ...)) with(ll$tkj, lsegments(x, y - dd[2], x, y + dd[2], ...)) for (k in seq_along(levels)) llines(ll$pts[k, , ], ...) grid::popViewport(1) } if(draw.upper) ## panel function for upper triangle up <- function(x, y, groups, subscripts, i, j, ...) { ## panels are transposed so reverse i and j jj <- i ii <- j tr <- traces[[jj]][[ii]] ll <- tr$ll pts <- ll$pts ## limits <- current.panel.limits() psij <- predict(tr$sij) psji <- predict(tr$sji) ## do the actual plotting panel.grid(h = -1, v = -1) llines(predy(bsp[[ii]], psij$x), predy(bsp[[jj]], psij$y), ...) llines(predy(bsp[[ii]], psji$y), predy(bsp[[jj]], psji$x), ...) for (k in seq_along(levels)) llines(predy(bsp[[ii]], pts[k, , 2]), predy(bsp[[jj]], pts[k, , 1]), ...) } dp <- function(x = NULL, # diagonal panel varname = NULL, limits, at = NULL, lab = NULL, draw = TRUE, varname.col = add.text$col, varname.cex = add.text$cex, varname.lineheight = add.text$lineheight, varname.font = add.text$font, varname.fontfamily = add.text$fontfamily, varname.fontface = add.text$fontface, axis.text.col = axis.text$col, axis.text.alpha = axis.text$alpha, axis.text.cex = axis.text$cex, axis.text.font = axis.text$font, axis.text.fontfamily = axis.text$fontfamily, axis.text.fontface = axis.text$fontface, axis.line.col = axis.line$col, axis.line.alpha = axis.line$alpha, axis.line.lty = axis.line$lty, axis.line.lwd = axis.line$lwd, i, j, ...) { n.var <- eval.parent(expression(n.var)) add.text <- trellis.par.get("add.text") axis.line <- trellis.par.get("axis.line") axis.text <- trellis.par.get("axis.text") if (!is.null(varname)) grid::grid.text(varname, gp = gpar(col = varname.col, cex = varname.cex, lineheight = varname.lineheight, fontface = chooseFace(varname.fontface, varname.font), fontfamily = varname.fontfamily)) if (draw) { at <- pretty(limits) sides <- c("left", "top") if (j == 1) sides <- "top" if (j == n.var) sides <- "left" for (side in sides) panel.axis(side = side, at = at, labels = format(at, trim = TRUE), ticks = TRUE, check.overlap = TRUE, half = side == "top" && j > 1, tck = 1, rot = 0, text.col = axis.text.col, text.alpha = axis.text.alpha, text.cex = axis.text.cex, text.font = axis.text.font, text.fontfamily = axis.text.fontfamily, text.fontface = axis.text.fontface, line.col = axis.line.col, line.alpha = axis.line.alpha, line.lty = axis.line.lty, line.lwd = axis.line.lwd) lims <- c(-1.07, 1.07) * mlev grid::pushViewport(viewport(xscale = lims, yscale = lims)) side <- if(j == 1) "right" else "bottom" which.half <- if(j == 1) "lower" else "upper" at <- pretty(lims) panel.axis(side = side, at = at, labels = format(at, trim = TRUE), ticks = TRUE, half = TRUE, which.half = which.half, tck = 1, rot = 0, text.col = axis.text.col, text.alpha = axis.text.alpha, text.cex = axis.text.cex, text.font = axis.text.font, text.fontfamily = axis.text.fontfamily, text.fontface = axis.text.fontface, line.col = axis.line.col, line.alpha = axis.line.alpha, line.lty = axis.line.lty, line.lwd = axis.line.lwd) grid::popViewport(1) } } panel.blank <- function(...) {} splom(~ pfr, lower.panel = if(draw.lower) lp else panel.blank, upper.panel = if(draw.upper) up else panel.blank, diag.panel = dp, ...) } ## return an lmer profile like x with all the .sigNN parameters ## replaced by .lsigNN. The forward and backward splines for ## these parameters are recalculated. -> ../man/profile-methods.Rd logProf <- function (x, base = exp(1), ranef=TRUE, sigIni = if(ranef) "sig" else "sigma") { stopifnot(inherits(x, "thpr")) cn <- colnames(x) sigP <- paste0("^\\.", sigIni) if (length(sigs <- grep(sigP, cn))) { repP <- sub("sig", ".lsig", sigIni) colnames(x) <- cn <- sub(sigP, repP, cn) levels(x[[".par"]]) <- sub(sigP, repP, levels(x[[".par"]])) names(attr(x, "backward")) <- names(attr(x, "forward")) <- sub(sigP, repP, names(attr(x, "forward"))) for (nm in cn[sigs]) { x[[nm]] <- log(x[[nm]], base = base) fr <- x[x[[".par"]] == nm & is.finite(x[[nm]]), TRUE, drop=FALSE] form <- eval(substitute(.zeta ~ nm, list(nm = as.name(nm)))) attr(x, "forward")[[nm]] <- isp <- interpSpline(form, fr) attr(x, "backward")[[nm]] <- backSpline(isp) } ## eliminate rows that produced non-finite logs x <- x[apply(is.finite(as.matrix(x[, sigs])), 1, all), , drop=FALSE] } x } ## the log() method must have (x, base); no other arguments log.thpr <- function (x, base = exp(1)) logProf(x, base=base) ##' Create an approximating density from a profile object -- called only from densityplot.thpr() ##' ##' @title Approximate densities from profiles ##' @param pr a profile object ##' @param npts number of points at which to evaluate the density ##' @param upper upper bound on cumulative for a cutoff ##' @return a data frame dens <- function(pr, npts=201, upper=0.999) { npts <- as.integer(npts) spl <- attr(pr, "forward") bspl <- attr(pr, "backward") stopifnot(inherits(pr, "thpr"), npts > 0, is.numeric(upper), 0.5 < upper, upper < 1, identical((vNms <- names(spl)), names(bspl))) bad_vars <- character(0) zeta <- c(-1,1) * qnorm(upper) rng <- vector(mode="list", length=length(bspl)) names(rng) <- vNms dd <- rng # empty named list to be filled for (i in seq_along(bspl)) { if (inherits(bspl[[i]], "error")) { rng[[i]] <- rep(NA,npts) bad_vars <- c(bad_vars, vNms[i]) next } rng0 <- predy(bspl[[i]], zeta) if (is.na(rng0[1])) rng0[1] <- 0 if (is.na(rng0[2])) { ## try harder to pick an upper bound for(upp in 1 - 10^seq(-4,-1, length=21)) { # <<-- TODO: should be related to 'upper' if(!is.na(rng0[2L] <- predy(bspl[[i]], qnorm(upp)))) break } if (is.na(rng0[2])) { warning("can't find an upper bound for the profile") bad_vars <- c(bad_vars, vNms[i]) next } } rng[[i]] <- seq(rng0[1], rng0[2], len=npts) } fr <- data.frame(pval = unlist(rng), pnm = gl(length(rng), npts, labels=vNms)) for (nm in vNms) { dd[[nm]] <- if (!inherits(spl[[nm]], "spline")) { rep(NA_real_, npts) } else { zz <- predy(spl[[nm]], rng[[nm]]) dnorm(zz) * predict(spl[[nm]], rng[[nm]], deriv = 1L)$y } } fr$density <- unlist(dd) if (length(bad_vars)) warning("unreliable profiles for some variables skipped: ", paste(bad_vars, collapse=", ")) fr } ##' Densityplot method for a mixed-effects model profile ## ##' @title densityplot from a mixed-effects profile ##' @param x a mixed-effects profile ##' @param data not used - for compatibility with generic ##' @param ... optional arguments to \code{\link[lattice]{densityplot}()} ##' from package \pkg{lattice}. ##' @return a density plot ##' @examples ## see example("profile.merMod") ##' @importFrom lattice densityplot ##' @method densityplot thpr ##' @export densityplot.thpr <- function(x, data, npts=201, upper=0.999, ...) { dd <- dens(x, npts=npts, upper=upper) ll <- c(list(...), list(x=density ~ pval|pnm, data=dd, type=c("l","g"), scales=list(relation="free"), xlab=NULL)) do.call(xyplot, stripExpr(ll, names(attr(x, "forward")))) } ##' Transform a mixed-effects profile to the variance scale varianceProf <- function(x, ranef=TRUE) { ## "parallel" to logProf() stopifnot(inherits(x, "thpr")) cn <- colnames(x) if(length(sigs <- grep(paste0("^\\.", if(ranef)"sig" else "sigma"), cn))) { ## s/sigma/sigmasq/ ; s/sig01/sig01sq/ etc sigP <- paste0("^(\\.sig", if(ranef) "(ma)?" else "ma", ")") repP <- "\\1sq" colnames(x) <- cn <- sub(sigP, repP, cn) levels(x[[".par"]]) <- sub(sigP, repP, levels(x[[".par"]])) names(attr(x, "backward")) <- names(attr(x, "forward")) <- sub(sigP, repP, names(attr(x, "forward"))) for (nm in cn[sigs]) { x[[nm]] <- x[[nm]]^2 ## select rows (and currently drop extra attributes) fr <- x[x[[".par"]] == nm, TRUE, drop=FALSE] form <- eval(substitute(.zeta ~ nm, list(nm = as.name(nm)))) attr(x, "forward")[[nm]] <- isp <- interpSpline(form, fr) attr(x, "backward")[[nm]] <- backSpline(isp) } } x } ## convert profile to data frame, adding a .focal parameter to simplify lattice/ggplot plotting ##' @method as.data.frame thpr ##' @param x the result of \code{\link{profile}} (or very similar structure) ##' @export ##' @rdname profile-methods as.data.frame.thpr <- function(x,...) { class(x) <- "data.frame" m <- as.matrix(x[,seq(ncol(x))-1]) ## omit .par x.p <- x[[".par"]] x[[".focal"]] <- m[cbind(seq(nrow(x)),match(x.p,names(x)))] x[[".par"]] <- factor(x.p, levels=unique(as.character(x.p))) ## restore order x } lme4/R/reformulas_imports.R0000644000176200001440000000120315103764665015404 0ustar liggesusers## transient patches for moving formula manipulation machinery to lme4 without breaking downstream packages mkWarnFun <- function(FUN) { fn <- function(...) { msg <- sprintf("the %s function has moved to the reformulas package. Please update your imports, or ask an upstream package maintainter to do so.", sQuote(FUN)) rlang::warn(msg, .frequency = "once", .frequency_id = FUN) reformulas_fun <- getExportedValue("reformulas", FUN) reformulas_fun(...) } assign(FUN, fn, envir = parent.frame()) } for (f in c("findbars","subbars", "nobars", "mkReTrms", "expandDoubleVerts", "isNested")) { mkWarnFun(f) } lme4/R/mcmcsamp.R0000644000176200001440000000654314677066752013273 0ustar liggesusers##' @name pvalues ##' @aliases mcmcsamp ##' @title Getting p-values for fitted models ##' ##' @description One of the most frequently asked questions about \code{lme4} ##' is "how do I calculate p-values for estimated parameters?" ##' Previous versions of \code{lme4} provided the \code{mcmcsamp} ##' function, which efficiently generated a Markov chain Monte Carlo sample ##' from the posterior distribution of the parameters, assuming ##' flat (scaled likelihood) priors. Due to difficulty in ##' constructing a version of \code{mcmcsamp} that was reliable ##' even in cases where the estimated random effect variances were near ##' zero (e.g. \url{https://stat.ethz.ch/pipermail/r-sig-mixed-models/2009q4/003115.html}), \code{mcmcsamp} has been withdrawn (or more precisely, ##' not updated to work with \code{lme4} versions >=1.0.0). ##' ##' Many users, including users of the \code{aovlmer.fnc} function ##' from the \code{languageR} package which relies on \code{mcmcsamp}, ##' will be deeply disappointed by this lacuna. Users who need p-values have ##' a variety of options: ##' \itemize{ ##' \item likelihood ratio tests via \code{anova} (MC,+) ##' \item profile confidence intervals via \code{\link{profile.merMod}} and \code{\link{confint.merMod}} (CI,+) ##' \item parametric bootstrap confidence intervals and model comparisons via \code{\link{bootMer}} (or \code{PBmodcomp} in the \code{pbkrtest} package) (MC/CI,*,+) ##' \item for random effects, simulation tests via the \code{RLRsim} package (MC,*) ##' \item for fixed effects, F tests via Kenward-Roger approximation using \code{KRmodcomp} from the \code{pbkrtest} package (MC) ##' \item \code{car::Anova} and \code{lmerTest::anova} provide wrappers for \code{pbkrtest}. \code{lmerTest::anova} also provides t tests via the Satterthwaite approximation (P,*) ##' } ##' In the list above, the methods marked \code{MC} provide explicit model comparisons; \code{CI} denotes confidence intervals; and \code{P} denotes parameter-level or sequential tests of all effects in a model. The starred (*) suggestions provide finite-size corrections (important when the number of groups is <50); those marked (+) support GLMMs as well as LMMs. ##' ##' When all else fails, don't forget to keep p-values in perspective: \url{http://www.phdcomics.com/comics/archive.php?comicid=905} ##' if(FALSE) ## C++ code in ../src/mcmcsamp.cpp -- is also #ifdef 0 # @S3method mcmcsamp merMod mcmcsamp.merMod <- function(object, n=1L, verbose=FALSE, saveb=FALSE, ...) { n <- max(1L, as.integer(n)[1]) dd <- getME(object, "devcomp")$dims ranef <- matrix(numeric(0), nrow = dd[["q"]], ncol = 0) if (saveb) ranef <- matrix(, nrow = dd[["q"]], ncol = n) sigma <- matrix(unname(sigma(object)), nrow = 1, ncol = (if (dd[["useSc"]]) n else 0)) ff <- fixef(object) fixef <- matrix(ff, nrow=dd[["p"]], ncol=n) rownames(fixef) <- names(ff) ## FIXME create a copy of the resp and pred modules ans <- new("merMCMC", Gp = object@Gp, # ST = matrix(.Call(mer_ST_getPars, object), dd[["np"]], n), call = object@call, dims = object@dims, deviance = rep.int(unname(object@deviance[["ML"]]), n), fixef = fixef, nc = sapply(object@ST, nrow), ranef = ranef, sigma = sigma) .Call(mer_MCMCsamp, ans, object) } lme4/R/optimizer.R0000644000176200001440000000613215022107260013456 0ustar liggesusers## --> ../man/NelderMead.Rd Nelder_Mead <- function(fn, par, lower=rep.int(-Inf, n), upper=rep.int(Inf, n), control=list()) { n <- length(par) if (is.null(xst <- control[["xst"]])) xst <- rep.int(0.02,n) if (is.null(xt <- control[["xt"]])) xt <- xst*5e-4 control[["xst"]] <- control[["xt"]] <- NULL ## mapping between simpler 'verbose' setting (0=no printing, 1=20, 2=10, 3=1) ## and internal 'iprint' control (frequency of printing) if (is.null(verbose <- control[["verbose"]])) verbose <- 0 control[["verbose"]] <- NULL if (is.null(control[["iprint"]])) { control[["iprint"]] <- switch(as.character(min(as.numeric(verbose),3L)), "0"=0, "1"=20,"2"=10,"3"=1) } stopifnot(is.function(fn), length(formals(fn)) == 1L, (n <- length(par <- as.numeric(par))) == length(lower <- as.numeric(lower)), length(upper <- as.numeric(upper)) == n, length(xst <- as.numeric(xst)) == n, all(xst != 0), length(xt <- as.numeric(xt)) == n) ## "NelderMead" reference class and constructor: --> ./AllClass.R : nM <- NelderMead$new(lower=lower, upper=upper, x0=par, xst=xst, xt=xt) cc <- do.call(function(iprint = 0L, maxfun = 10000L, FtolAbs = 1e-5, FtolRel = 1e-15, XtolRel = 1e-7, MinfMax= -.Machine$double.xmax, warnOnly=FALSE, ...) { if(...length() > 0) warning("unused control arguments ignored") list(iprint=iprint, maxfun=maxfun, FtolAbs=FtolAbs, FtolRel=FtolRel, XtolRel=XtolRel, MinfMax=MinfMax, warnOnly=warnOnly) }, control) nM$setFtolAbs(cc$FtolAbs) nM$setFtolRel(cc$FtolRel) nM$setIprint (cc$iprint) nM$setMaxeval(cc$maxfun) nM$setMinfMax(cc$MinfMax) it <- 0 repeat { it <- it + 1 nMres <- nM$newf(fn(nM$xeval())) if (nMres != 0L) break } cmsg <- "reached max evaluations" if (nMres == -4) { ## map max evals from error to warning cmsg <- warning(sprintf("failure to converge in %d evaluations",cc$maxfun)) nMres <- 4 } ## nMres: msgvec <- c("nm_forced", ## -3 "cannot generate a feasible simplex", ## -2 "initial x is not feasible", ## -1 "active", ## 0 (active) "objective function went below allowed minimum", ## 1 (minf_max) "objective function values converged to within tolerance", ## 2 (fcvg) "parameter values converged to within tolerance", ## 3 (xcvg) cmsg) if (nMres < 0) { ## i.e., in {-3, -2, -1} (if(cc$warnOnly) warning else stop)( msgvec[nMres+4] ) } list(fval = nM$value(), par = nM$xpos(), convergence = pmin(0, nMres), # positive nMres is also 'convergence' NM.result = nMres, `message` = msgvec[nMres+4], control = c(cc, xst=xst, xt=xt), feval = it) } lme4/R/AllClass.R0000644000176200001440000013331515022107260013136 0ustar liggesusers### Class definitions for the package ##' Class "lmList4" of 'lm' Objects on Common Model ##' --> ../man/lmList4-class.Rd ##' ~~~~~~~~~~~~~~~~~~~~~~~ ##' @keywords classes ##' @export setClass("lmList4", representation(call = "call", pool = "logical", groups = "ordered", # or "factor"? nlme does use ordered() origOrder = "integer" # a permutation ), contains = "list") ## TODO?: export setClass("lmList4.confint", contains = "array") forceCopy <- function(x) .Call(deepcopy, x) ### FIXME ### shouldn't we have "merPred" with two *sub* classes "merPredD" and "merPredS" ### for the dense and sparse X cases ? ## ## MM: _Or_ have "merPred" with X of class "mMatrix" := classUnion {matrix, Matrix} merPredD <- setRefClass("merPredD", # Predictor class for mixed-effects models with dense X fields = list(Lambdat = "dgCMatrix", # depends: theta and Lind ## = t(Lambda); Lambda := lower triangular relative variance factor LamtUt = "dgCMatrix", # depends: Lambdat and Ut Lind = "integer", # depends: nothing ## integer vector of the same length as 'x' slot in Lambdat. ## Its elements should be in 1: length(theta) Ptr = "externalptr", # depends: RZX = "matrix", # depends: lots Ut = "dgCMatrix", # depends: Zt and weights Utr = "numeric", # depends: lots V = "matrix", # depends: VtV = "matrix", Vtr = "numeric", X = "matrix", # model matrix for the fixed-effects parameters Xwts = "numeric", Zt = "dgCMatrix", # = t(Z); Z = sparse model matrix for the random effects beta0 = "numeric", delb = "numeric", delu = "numeric", theta = "numeric", # numeric vector of variance component parameters u0 = "numeric"), methods = list( initialize = function(X, Zt, Lambdat, Lind, theta, n, # = sample size, usually = nrow(X) ...) { if (!nargs()) return() ll <- list(...) X <<- as(X, "matrix") Zt <<- as(Zt, "dgCMatrix") Lambdat <<- as(Lambdat, "dgCMatrix") Lind <<- as.integer(Lind) theta <<- as.numeric(theta) N <- nrow(X) p <- ncol(X) q <- nrow(Zt) stopifnot(length(theta) > 0L, length(Lind) > 0L, all(sort(unique(Lind)) == seq_along(theta))) RZX <<- if (!is.null(ll$RZX)) array(ll$RZX, c(q, p)) else array(0, c(q, p)) Utr <<- if (!is.null(ll$Utr)) as.numeric(ll$Utr) else numeric(q) V <<- if (!is.null(ll$V)) array(ll$V, c(n, p)) else array(0, c(n, p)) VtV <<- if (!is.null(ll$VtV)) array(ll$VtV, c(p, p)) else array(0, c(p, p)) Vtr <<- if (!is.null(ll$Vtr)) as.numeric(ll$Vtr) else numeric(p) beta0 <<- if (!is.null(ll$beta0)) ll$beta0 else numeric(p) delb <<- if (!is.null(ll$delb)) as.numeric(ll$delb) else numeric(p) delu <<- if (!is.null(ll$delu)) as.numeric(ll$delu) else numeric(q) u0 <<- if (!is.null(ll$u0)) ll$u0 else numeric(q) Ut <<- if (n == N) Zt + 0 else Zt %*% sparseMatrix(i=seq_len(N), j=as.integer(gl(n, 1, N)), x=rep.int(1,N)) ## The following is a kludge to overcome problems when Zt is square ## by making LamtUt rectangular LtUt <- Lambdat %*% Ut ## if (nrow(LtUt) == ncol(LtUt)) ## LtUt <- cbind2(LtUt, ## sparseMatrix(i=integer(0), ## j=integer(0), ## x=numeric(0), ## dims=c(nrow(LtUt),1))) LamtUt <<- LtUt Xw <- ll$Xwts ## list(...)$Xwts Xwts <<- if (is.null(Xw)) rep.int(1, N) else as.numeric(Xw) initializePtr() }, CcNumer = function() { 'returns the numerator of the orthogonality convergence criterion' .Call(merPredDCcNumer, ptr()) }, L = function() { 'returns the current value of the sparse Cholesky factor' .Call(merPredDL, ptr()) }, P = function() { 'returns the permutation vector for the sparse Cholesky factor' .Call(merPredDPvec, ptr()) }, RX = function() { 'returns the dense downdated Cholesky factor for the fixed-effects parameters' .Call(merPredDRX, ptr()) }, RXi = function() { 'returns the inverse of the dense downdated Cholesky factor for the fixed-effects parameters' .Call(merPredDRXi, ptr()) }, RXdiag = function() { 'returns the diagonal of the dense downdated Cholesky factor' .Call(merPredDRXdiag, ptr()) }, b = function(fac) { 'random effects on original scale for step factor fac' .Call(merPredDb, ptr(), as.numeric(fac)) }, beta = function(fac) { 'fixed-effects coefficients for step factor fac' .Call(merPredDbeta, ptr(), as.numeric(fac)) }, copy = function(shallow = FALSE) { def <- .refClassDef selfEnv <- as.environment(.self) vEnv <- new.env(parent=emptyenv()) for (field in setdiff(names(def@fieldClasses), "Ptr")) { if (shallow) assign(field, get(field, envir = selfEnv), envir = vEnv) else { current <- get(field, envir = selfEnv) if (is(current, "envRefClass")) current <- current$copy(FALSE) assign(field, forceCopy(current), envir = vEnv) } } do.call(merPredD$new, c(as.list(vEnv), n=nrow(vEnv$V), Class=def)) }, ldL2 = function() { 'twice the log determinant of the sparse Cholesky factor' .Call(merPredDldL2, ptr()) }, ldRX2 = function() { 'twice the log determinant of the downdated dense Cholesky factor' .Call(merPredDldRX2, ptr()) }, unsc = function() { 'the unscaled variance-covariance matrix of the fixed-effects parameters' .Call(merPredDunsc, ptr()) }, linPred = function(fac) { 'evaluate the linear predictor for step factor fac' .Call(merPredDlinPred, ptr(), as.numeric(fac)) }, installPars = function(fac) { 'update u0 and beta0 to the values for step factor fac' .Call(merPredDinstallPars, ptr(), as.numeric(fac)) }, initializePtr = function() { Ptr <<- .Call(merPredDCreate, as(X, "matrix"), Lambdat, LamtUt, Lind, RZX, Ut, Utr, V, VtV, Vtr, Xwts, Zt, beta0, delb, delu, theta, u0) .Call(merPredDsetTheta, Ptr, theta) .Call(merPredDupdateXwts, Ptr, Xwts) .Call(merPredDupdateDecomp, Ptr, NULL) }, ptr = function() { 'returns the external pointer, regenerating if necessary' if (length(theta)) { if (.Call(isNullExtPtr, Ptr)) initializePtr() } Ptr }, setBeta0 = function(beta0) { 'install a new value of beta' .Call(merPredDsetBeta0, ptr(), as.numeric(beta0)) }, setTheta = function(theta) { 'install a new value of theta' .Call(merPredDsetTheta, ptr(), as.numeric(theta)) }, setZt = function(ZtNonZero) { 'install new values in Zt' .Call(merPredDsetZt, ptr(), as.numeric(ZtNonZero)) }, solve = function() { 'solve for the coefficient increments delu and delb' .Call(merPredDsolve, ptr()) }, solveU = function() { 'solve for the coefficient increment delu only (beta is fixed)' .Call(merPredDsolveU, ptr()) }, setDelu = function(val) { 'set the coefficient increment delu' .Call(merPredDsetDelu , ptr(), as.numeric(val)) }, setDelb = function(val) { 'set the coefficient increment delb' .Call(merPredDsetDelb , ptr(), as.numeric(val)) }, sqrL = function(fac) { 'squared length of u0 + fac * delu' .Call(merPredDsqrL, ptr(), as.numeric(fac)) }, u = function(fac) { 'orthogonal random effects for step factor fac' .Call(merPredDu, ptr(), as.numeric(fac)) }, updateDecomp = function(XPenalty = NULL) { 'update L, RZX and RX from Ut, Vt and VtV' invisible(.Call(merPredDupdateDecomp, ptr(), XPenalty)) }, updateL = function() { 'update LamtUt and L' .Call(merPredDupdateL, ptr()) }, updateLamtUt = function() { 'update LamtUt and L' .Call(merPredDupdateLamtUt, ptr()) }, updateRes = function(wtres) { 'update Vtr and Utr using the vector of weighted residuals' .Call(merPredDupdateRes, ptr(), as.numeric(wtres)) }, updateXwts = function(wts) { 'update Ut and V from Zt and X using X weights' .Call(merPredDupdateXwts, ptr(), wts) } ) ) merPredD$lock("Lambdat", "LamtUt", "Lind", "RZX", "Ut", "Utr", "V", "VtV", "Vtr", "X", "Xwts", "Zt", "beta0", "delb", "delu", "theta", "u0") ## -> ../man/lmResp-class.Rd ## ~~~~~~~~~~~~~~~~~~~~~~ lmResp <- # base class for response modules setRefClass("lmResp", fields = list(Ptr = "externalptr", mu = "numeric", offset = "numeric", sqrtXwt = "numeric", sqrtrwt = "numeric", weights = "numeric", wtres = "numeric", y = "numeric"), methods = list( allInfo = function() { 'return all the information available on the object' data.frame(y=y, offset=offset, weights=weights, mu=mu, rwt=sqrtrwt, wres=wtres, Xwt=sqrtXwt) }, initialize = function(...) { if (!nargs()) return() ll <- list(...) if (is.null(ll$y)) stop("y must be specified") y <<- as.numeric(ll$y) n <- length(y) mu <<- if (!is.null(ll[["mu"]])) as.numeric(ll[["mu"]]) else numeric(n) offset <<- if (!is.null(ll$offset)) as.numeric(ll$offset) else numeric(n) weights <<- if (!is.null(ll$weights)) as.numeric(ll$weights) else rep.int(1,n) sqrtXwt <<- if (!is.null(ll$sqrtXwt)) as.numeric(ll$sqrtXwt) else sqrt(weights) sqrtrwt <<- if (!is.null(ll$sqrtrwt)) as.numeric(ll$sqrtrwt) else sqrt(weights) wtres <<- sqrtrwt * (y - mu) }, copy = function(shallow = FALSE) { def <- .refClassDef selfEnv <- as.environment(.self) vEnv <- new.env(parent=emptyenv()) for (field in setdiff(names(def@fieldClasses), "Ptr")) { if (shallow) assign(field, get(field, envir = selfEnv), envir = vEnv) else { current <- get(field, envir = selfEnv) if (is(current, "envRefClass")) current <- current$copy(FALSE) ## deep-copy hack +0 assign(field, forceCopy(current), envir = vEnv) } } do.call(new, c(as.list(vEnv), Class=def)) }, initializePtr = function() { Ptr <<- .Call(lm_Create, y, weights, offset, mu, sqrtXwt, sqrtrwt, wtres) .Call(lm_updateMu, Ptr, mu) }, ptr = function() { 'returns the external pointer, regenerating if necessary' if (length(y)) { if (.Call(isNullExtPtr, Ptr)) initializePtr() } Ptr }, setOffset = function(oo) { 'change the offset in the model (used in profiling)' .Call(lm_setOffset, ptr(), as.numeric(oo)) }, setResp = function(rr) { 'change the response in the model, usually after a deep copy' .Call(lm_setResp, ptr(), as.numeric(rr)) }, setWeights = function(ww) { 'change the prior weights in the model' .Call(lm_setWeights, ptr(), as.numeric(ww)) }, updateMu = function(gamma) { 'update mu, wtres and wrss from the linear predictor' .Call(lm_updateMu, ptr(), as.numeric(gamma)) }, wrss = function() { 'returns the weighted residual sum of squares' .Call(lm_wrss, ptr()) }) ) lmResp$lock("mu", "offset", "sqrtXwt", "sqrtrwt", "weights", "wtres")#, "y") lmerResp <- setRefClass("lmerResp", contains = "lmResp", fields = list(REML = "integer"), methods= list(initialize = function(...) { REML <<- as.integer(list(...)$REML) if (length(REML) != 1L) REML <<- 0L callSuper(...) }, initializePtr = function() { Ptr <<- .Call(lmer_Create, y, weights, offset, mu, sqrtXwt, sqrtrwt, wtres) .Call(lm_updateMu, Ptr, mu - offset) .Call(lmer_setREML, Ptr, REML) }, ptr = function() { 'returns the external pointer, regenerating if necessary' if (length(y)) if (.Call(isNullExtPtr, Ptr)) initializePtr() Ptr }, objective = function(ldL2, ldRX2, sqrL, sigma.sq = NULL) { 'returns the profiled deviance or REML criterion' .Call(lmer_Laplace, ptr(), ldL2, ldRX2, sqrL, sigma.sq) }) ) setOldClass("family") ##' @export glmResp <- setRefClass("glmResp", contains = "lmResp", fields = list(eta = "numeric", family = "family", n = "numeric"), methods= list(initialize = function(...) { callSuper(...) ll <- list(...) if (is.null(ll$family)) stop("family must be specified") family <<- ll$family n <<- if (!is.null(ll$n)) as.numeric(ll$n) else rep.int(1,length(y)) eta <<- if (!is.null(e <- ll[["etastart"]])) as.numeric(e) else numeric(length(y)) }, aic = function() { .Call(glm_aic, ptr()) }, allInfo = function() { 'return all the information available on the object' cbind(callSuper(), data.frame(eta=eta, muEta=muEta(), var=variance(), WrkWt=sqrtWrkWt(), wrkRes=wrkResids(), wrkResp=wrkResp(), devRes=devResid())) }, devResid = function() { 'returns the vector of deviance residuals' .Call(glm_devResid, ptr()) }, fam = function() { 'returns the name of the glm family' .Call(glm_family, ptr()) }, Laplace = function(ldL2, ldRX2, sqrL) { 'returns the Laplace approximation to the profiled deviance' .Call(glm_Laplace, ptr(), ldL2, ldRX2, sqrL) }, link = function() { 'returns the name of the glm link' .Call(glm_link, ptr()) }, muEta = function() { 'returns the diagonal of the Jacobian matrix, d mu/d eta' .Call(glm_muEta, ptr()) }, ptr = function() { 'returns the external pointer, regenerating if necessary' if (length(y)) { if (.Call(isNullExtPtr, Ptr)) { Ptr <<- .Call(glm_Create, family, y, weights, offset, mu, sqrtXwt, sqrtrwt, wtres, eta, n) .Call(glm_updateMu, Ptr, eta - offset) } } Ptr }, resDev = function() { 'returns the sum of the deviance residuals' .Call(glm_resDev, ptr()) }, setTheta = function(theta) { 'sets a new value of theta, for negative binomial distribution only' .Call(glm_setTheta, ptr(), as.numeric(theta)) }, sqrtWrkWt = function() { 'returns the square root of the working X weights' .Call(glm_sqrtWrkWt, ptr()) }, theta = function() { 'query the value of theta, for negative binomial distribution only' .Call(glm_theta, ptr()) }, updateMu = function(gamma) { 'update mu, residuals, weights, etc. from the linear predictor' .Call(glm_updateMu, ptr(), as.numeric(gamma)) }, updateWts = function() { 'update the residual and X weights from the current value of eta' .Call(glm_updateWts, ptr()) }, variance = function() { 'returns the vector of variances' .Call(glm_variance, ptr()) }, wtWrkResp = function() { 'returns the vector of weighted working responses' .Call(glm_wtWrkResp, ptr()) }, wrkResids = function() { 'returns the vector of working residuals' .Call(glm_wrkResids, ptr()) }, wrkResp = function() { 'returns the vector of working responses' .Call(glm_wrkResp, ptr()) } ) ) glmResp$lock("family", "n", "eta") ##' @export nlsResp <- setRefClass("nlsResp", contains = "lmResp", fields= list(gam = "numeric", nlmod = "formula", nlenv = "environment", pnames= "character"), methods= list(initialize = function(...) { callSuper(...) ll <- list(...) if (is.null(ll$nlmod)) stop("nlmod must be specified") nlmod <<- ll$nlmod if (is.null(ll$nlenv)) stop("nlenv must be specified") nlenv <<- ll$nlenv if (is.null(ll$pnames)) stop("pnames must be specified") pnames <<- ll$pnames if (is.null(ll$gam)) stop("gam must be specified") stopifnot(length(ll$gam) == length(offset)) gam <<- ll$gam }, Laplace =function(ldL2, ldRX2, sqrL) { 'returns the profiled deviance or REML criterion' .Call(nls_Laplace, ptr(), ldL2, ldRX2, sqrL) }, ptr = function() { 'returns the external pointer, regenerating if necessary' if (length(y)) { if (.Call(isNullExtPtr, Ptr)) { Ptr <<- .Call(nls_Create, y, weights, offset, mu, sqrtXwt, sqrtrwt, wtres, gam, nlmod[[2]], nlenv, pnames) .Call(nls_updateMu, Ptr, gam) } } Ptr }, updateMu=function(gamma) { 'update mu, residuals, gradient, etc. given the linear predictor matrix' .Call(nls_updateMu, ptr(), as.numeric(gamma)) }) ) nlsResp$lock("nlmod", "nlenv", "pnames") ##' Generator object for the \code{\linkS4class{glmFamily}} class ##' ##' The generator object for the \code{\linkS4class{glmFamily}} reference class. ##' Such an object is primarily used through its \code{new} method. ##' ##' ##' @param ... Named argument (see Note below) ##' @note Arguments to the \code{new} method must be named arguments. ##' @section Methods: \describe{ ##' \item{\code{new(family=family)}}{Create a new ##' \code{\linkS4class{glmFamily}} object} ##' } ##' @seealso \code{\linkS4class{glmFamily}} ##' @keywords classes ##' @export glmFamily <- # used in tests of family definitions setRefClass("glmFamily", fields=list(Ptr="externalptr", family="family"), methods= list( aic = function(y, n, mu, wt, dev) { 'returns the value from the aic member function, which is actually the deviance' nn <- length(y <- as.numeric(y)) stopifnot(length(n <- as.numeric(n)) == nn, length(mu <- as.numeric(mu)) == nn, length(wt <- as.numeric(wt)) == nn, all(wt >= 0), length(dev <- as.numeric(dev)) == 1L) .Call(glmFamily_aic, ptr(), y, n, mu, wt, dev) }, devResid = function(y, mu, wt) { 'applies the devResid function to y, mu and wt' mu <- as.numeric(mu) wt <- as.numeric(wt) y <- as.numeric(y) stopifnot(length(mu) == length(wt), length(mu) == length(y), all(wt >= 0)) .Call(glmFamily_devResid, ptr(), y, mu, wt) }, link = function(mu) { 'applies the (forward) link function to mu' .Call(glmFamily_link, ptr(), as.numeric(mu)) }, linkInv = function(eta) { 'applies the inverse link function to eta' .Call(glmFamily_linkInv, ptr(), as.numeric(eta)) }, muEta = function(eta) { 'applies the muEta function to eta' .Call(glmFamily_muEta, ptr(), as.numeric(eta)) }, ptr = function() { if (length(family)) if (.Call(isNullExtPtr, Ptr)) Ptr <<- .Call(glmFamily_Create, family) Ptr }, setTheta = function(theta) { 'sets a new value of theta, for negative binomial distribution only' .Call(glmFamily_setTheta, ptr(), as.numeric(theta)) }, theta = function() { 'query the value of theta, for negative binomial distribution only' .Call(glmFamily_theta, ptr()) }, variance = function(mu) { 'applies the variance function to mu' .Call(glmFamily_variance, ptr(), as.numeric(mu)) }) ) ##' Class \code{"glmFamily"} - a reference class for \code{\link{family}} ##' ##' This class is a wrapper class for \code{\link{family}} objects specifying a ##' distibution family and link function for a generalized linear model ##' (\code{\link{glm}}). The reference class contains an external pointer to a ##' C++ object representing the class. For common families and link functions ##' the functions in the family are implemented in compiled code so they can be ##' accessed from other compiled code and for a speed boost. ##' ##' ##' @name glmFamily-class ##' @docType class ##' @note Objects from this reference class correspond to objects in a C++ ##' class. Methods are invoked on the C++ class using the external pointer in ##' the \code{Ptr} field. When saving such an object the external pointer is ##' converted to a null pointer, which is why there is a redundant field ##' \code{ptr} that is an active-binding function returning the external ##' pointer. If the \code{Ptr} field is a null pointer, the external pointer is ##' regenerated for the stored \code{family} field. ##' @section Extends: All reference classes extend and inherit methods from ##' \code{"\linkS4class{envRefClass}"}. ##' @seealso \code{\link{family}}, \code{\link{glmFamily}} ##' @keywords classes ##' @examples ##' ##' str(glmFamily$new(family=poisson())) NULL ##' Generator object for the golden search optimizer class. ##' ##' The generator objects for the \code{\linkS4class{golden}} class of a scalar ##' optimizer for a parameter within an interval. The optimizer uses reverse ##' communications. ##' ##' @param \dots additional, optional arguments. None are used at present. ##' @note Arguments to the \code{new} methods must be named arguments. ##' \code{lower} and \code{upper} are the bounds for the scalar parameter; they must be finite. ##' @section Methods: ##' \describe{ ##' \item{\code{new(lower=lower, upper=upper)}}{Create a new ##' \code{\linkS4class{golden}} object.} ##' } ##' @seealso \code{\linkS4class{golden}} ##' @keywords classes ##' @export golden <- setRefClass("golden", # Reverse communication implementation of Golden Search fields = list( Ptr = "externalptr", lowerbd = "numeric", upperbd = "numeric" ), methods = list( initialize = function(lower, upper, ...) { stopifnot(length(lower <- as.numeric(lower)) == 1L, length(upper <- as.numeric(upper)) == 1L, lower > -Inf, upper < Inf, lower < upper) lowerbd <<- lower upperbd <<- upper Ptr <<- .Call(golden_Create, lower, upper) }, ptr = function() { if (length(lowerbd)) if (.Call(isNullExtPtr, Ptr)) Ptr <<- .Call(golden_Create, lowerbd, upperbd) Ptr }, newf = function(value) { stopifnot(length(value <- as.numeric(value)) == 1L) .Call(golden_newf, ptr(), value) }, value = function() .Call(golden_value, ptr()), xeval = function() .Call(golden_xeval, ptr()), xpos = function() .Call(golden_xpos, ptr()) ) ) ##' Class \code{"golden"} ##' ##' A reference class for a golden search scalar optimizer using reverse ##' communication. ##' ##' ##' @name golden-class ##' @docType class ##' @section Extends: All reference classes extend and inherit methods from ##' \code{"\linkS4class{envRefClass}"}. ##' @keywords classes ##' @examples ##' ##' showClass("golden") ##' NULL ## Generator object for the Nelder-Mead optimizer class "NelderMead" ## ## A reference class for a Nelder-Mead simplex optimizer allowing box ## constraints on the parameters and using reverse communication. NelderMead <- setRefClass("NelderMead", # Reverse communication implementation of Nelder-Mead simplex optimizer fields = list( Ptr = "externalptr", lowerbd = "numeric", upperbd = "numeric", xstep = "numeric", xtol = "numeric" ), methods = list( initialize = function(lower, upper, xst, x0, xt, ...) { stopifnot((n <- length(lower <- as.numeric(lower))) > 0L, length(upper <- as.numeric(upper)) == n, all(lower < upper), length(xst <- as.numeric(xst)) == n, all(xst != 0), length(x0 <- as.numeric(x0)) == n, all(x0 >= lower), all(x0 <= upper), all(is.finite(x0)), length(xt <- as.numeric(xt)) == n, all(xt > 0)) lowerbd <<- lower upperbd <<- upper xstep <<- xst xtol <<- xt Ptr <<- .Call(NelderMead_Create, lowerbd, upperbd, xstep, x0, xtol) }, ptr = function() { if (length(lowerbd)) if (.Call(isNullExtPtr, Ptr)) Ptr <<- .Call(NelderMead_Create, lowerbd, upperbd, xstep, x0, xtol) Ptr }, newf = function(value) { stopifnot(length(value <- as.numeric(value)) == 1L) .Call(NelderMead_newf, ptr(), value) }, setForceStop = function(stp=TRUE) .Call(NelderMead_setForce_stop, ptr(), stp), setFtolAbs = function(fta) .Call(NelderMead_setFtol_abs, ptr(), fta), setFtolRel = function(ftr) .Call(NelderMead_setFtol_rel, ptr(), ftr), setMaxeval = function(mxev) .Call(NelderMead_setMaxeval, ptr(), mxev), setMinfMax = function(minf) .Call(NelderMead_setMinf_max, ptr(), minf), setIprint = function(iprint) .Call(NelderMead_setIprint, ptr(), iprint), value = function() .Call(NelderMead_value, ptr()), xeval = function() .Call(NelderMead_xeval, ptr()), xpos = function() .Call(NelderMead_xpos, ptr()) ) ) ##' Class "merMod" of Fitted Mixed-Effect Models ##' ##' A mixed-effects model is represented as a \code{\linkS4class{merPredD}} object ##' and a response module of a class that inherits from class ##' \code{\linkS4class{lmResp}}. A model with a \code{\linkS4class{lmerResp}} ##' response has class \code{lmerMod}; a \code{\linkS4class{glmResp}} response ##' has class \code{glmerMod}; and a \code{\linkS4class{nlsResp}} response has ##' class \code{nlmerMod}. ##' ##' @name merMod-class ##' @aliases merMod-class lmerMod-class glmerMod-class nlmerMod-class merMod ##' show,merMod-method ##' anova.merMod coef.merMod deviance.merMod ##' fitted.merMod formula.merMod logLik.merMod ##' model.frame.merMod model.matrix.merMod print.merMod ##' show.merMod summary.merMod ##' terms.merMod update.merMod ##' vcov.merMod print.summary.merMod show.summary.merMod ##' summary.summary.merMod vcov.summary.merMod ##' @docType class ##' @section Objects from the Class: Objects are created by calls to ##' \code{\link{lmer}}, \code{\link{glmer}} or \code{\link{nlmer}}. ##' @seealso \code{\link{lmer}}, \code{\link{glmer}}, \code{\link{nlmer}}, ##' \code{\linkS4class{merPredD}}, \code{\linkS4class{lmerResp}}, ##' \code{\linkS4class{glmResp}}, \code{\linkS4class{nlsResp}} ##' @keywords classes ##' @examples ##' ##' showClass("merMod") ##' methods(class="merMod") ##' @export setClass("merMod", representation(Gp = "integer", call = "call", frame = "data.frame", # "model.frame" is not S4-ized yet flist = "list", cnms = "list", lower = "numeric", theta = "numeric", beta = "numeric", u = "numeric", devcomp = "list", pp = "merPredD", optinfo = "list")) ##' @export setClass("lmerMod", representation(resp="lmerResp"), contains="merMod") ##' @export setClass("glmerMod", representation(resp="glmResp"), contains="merMod") ##' @export setClass("nlmerMod", representation(resp="nlsResp"), contains="merMod") ##' Generator object for the rePos (random-effects positions) class ##' ##' The generator object for the \code{\linkS4class{rePos}} class used ##' to determine the positions and orders of random effects associated ##' with particular random-effects terms in the model. ##' @param \dots Argument list (see Note). ##' @note Arguments to the \code{new} methods must be named arguments. ##' \code{mer}, an object of class \code{"\linkS4class{merMod}"}, is ##' the only required/expected argument. ##' @section Methods: ##' \describe{ ##' \item{\code{new(mer=mer)}}{Create a new ##' \code{\linkS4class{rePos}} object.} ##' } ##' @seealso \code{\linkS4class{rePos}} ##' @keywords classes ##' @export rePos <- setRefClass("rePos", fields = list( cnms = "list", # component names (components are terms within a RE term) flist = "list", # list of grouping factors used in the random-effects terms ncols = "integer", # number of components for each RE term nctot = "integer", # total number of components per factor nlevs = "integer", # number of levels for each unique factor offsets = "integer", # points to where each term starts terms = "list" # list with one element per factor, indicating corresponding term ), methods = list( initialize = function(mer, ...) { ##' asgn indicates unique elements of flist ##' stopifnot((ntrms <- length(Cnms <- mer@cnms)) > 0L, (length(Flist <- mer@flist)) > 0L, length(asgn <- as.integer(attr(Flist, "assign"))) == ntrms) cnms <<- Cnms flist <<- Flist ncols <<- unname(lengths(cnms)) nctot <<- unname(as.vector(tapply(ncols, asgn, sum))) nlevs <<- unname(vapply(flist, function(el) length(levels(el)), 0L)) # why not replace the sapply with ncols*nlevs[asgn] ?? offsets <<- c(0L, cumsum(sapply(seq_along(asgn), function(i) ncols[i] * nlevs[asgn[i]]))) terms <<- lapply(seq_along(flist), function(i) which(asgn == i)) } ) ) ##' Class \code{"rePos"} ##' ##' A reference class for determining the positions in the random-effects vector ##' that correspond to particular random-effects terms in the model formula ##' ##' @name rePos-class ##' @docType class ##' @section Extends: All reference classes extend and inherit methods from ##' \code{"\linkS4class{envRefClass}"}. ##' @keywords classes ##' @examples ##' ##' showClass("rePos") ##' rePos$lock("cnms", "flist", "ncols", "nctot", "nlevs", "terms") vcRep <- setRefClass("vcRep", fields = list( theta = "numeric", lower = "numeric", Lambdat = "dgCMatrix", Lind = "integer", Gp = "integer", flist = "list", cnms = "list", ncols = "integer", nctot = "integer", nlevs = "integer", offsets = "integer", terms = "list", sig = "numeric", nms = "character", covar = "list", useSc = "logical" ), methods = list( initialize = function(mer, ...) { stopifnot((ntrms <- length(Cnms <- mer@cnms)) > 0L, (length(Flist <- mer@flist)) > 0L, length(asgn <- as.integer(attr(Flist, "assign"))) == ntrms) lower <<- getME(mer, "lower") theta <<- getME(mer, "theta") Lambdat <<- getME(mer, "Lambdat") Lind <<- getME(mer, "Lind") Gp <<- getME(mer, "Gp") cnms <<- Cnms flist <<- Flist ncols <<- unname(lengths(cnms)) nctot <<- unname(as.vector(tapply(ncols, asgn, sum))) nlevs <<- unname(vapply(flist, function(el) length(levels(el)), 0L)) offsets <<- c(0L, cumsum(sapply(seq_along(asgn), function(i) ncols[i] * nlevs[asgn[i]]))) terms <<- lapply(seq_along(Flist), function(i) which(asgn == i)) sig <<- sigma(mer) nms <<- names(Flist)[asgn] covar <<- mkVarCorr(sig, cnms, ncols, theta, nms) useSc <<- as.logical(getME(mer, "devcomp")$dims['useSc']) }, asCovar = function() { ans <- lapply(covar, function(x) { attr(x, "correlation") <- attr(x, "stddev") <- NULL x }) attr(ans, "residVar") <- attr(covar, "sc")^2 ans }, asCorr = function() { ans <- lapply(covar, function(x) list(correlation=attr(x, "correlation"), stddev=attr(x, "stddev"))) attr(ans, "residSD") <- attr(covar, "sc") ans }, setTheta = function(ntheta) { stopifnot(length(ntheta <- as.numeric(ntheta)) == length(lower), all(ntheta >= lower)) theta <<- ntheta covar <<- mkVarCorr(sig, cnms, ncols, theta, nms) }, setSc = function(nSc) { stopifnot(useSc, length(nSc <- as.numeric(nSc)) == 1L) sig <<- nSc covar <<- mkVarCorr(sig, cnms, ncols, theta, nms) }, setResidVar = function(nVar) setSc(sqrt(as.numeric(nVar))), setRECovar = function(CV) { if (is.matrix(CV) && length(covar) == 1L) { CV <- list(CV) names(CV) <- names(covar) } covsiz <- sapply(covar, ncol) stopifnot(is.list(CV), all(names(CV) == names(covar)), all(sapply(CV, isSymmetric)), all(sapply(CV, ncol) == covsiz)) if (!all(lengths(cnms) == covsiz)) error("setRECovar currently requires distinct grouping factors") theta <<- sapply(CV, function(mm) { ff <- t(chol(mm))/sig ff[upper.tri(ff, diag=TRUE)] }) }) ) lme4/R/simulate.formula.R0000644000176200001440000001317315022107260014726 0ustar liggesusers## NOTE: Unlike the rest of the package, the functions in this file ## are licensed under the MIT License to encourage incorporation. ## ## Copyright (c) 2020 Pavel N. Krivitsky and Benjamin Bolker ## ## Permission is hereby granted, free of charge, to any person obtaining a copy ## of this software and associated documentation files (the "Software"), to deal ## in the Software without restriction, including without limitation the rights ## to use, copy, modify, merge, publish, distribute, sublicense, and/or sell ## copies of the Software, and to permit persons to whom the Software is ## furnished to do so, subject to the following conditions: ## ## The above copyright notice and this permission notice shall be included in all ## copies or substantial portions of the Software. ## ## THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR ## IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, ## FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ## AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER ## LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, ## OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE ## SOFTWARE. ## #' A `simulate` Method for `formula` objects that dispatches based on the Left-Hand Side #' #' This method evaluates the left-hand side (LHS) of the given formula and #' dispatches it to an appropriate method based on the result by #' setting an nonce class name on the formula. #' #' @param object a one- or two-sided [`formula`]. #' @param nsim,seed number of realisations to simulate and the random #' seed to use; see [simulate()]. #' @param ... additional arguments to methods. #' @param basis if given, overrides the LHS of the formula for the #' purposes of dispatching. #' @param newdata,data if passed, the `object`'s LHS is evaluated in #' this environment; at most one of the two may be passed. #' #' The dispatching works as follows: #' #' 1. If `basis` is not passed, and the formula has an LHS the #' expression on the LHS of the formula in the `object` is #' evaluated in the environment `newdata` or `data` (if given), in #' any case enclosed by the environment of `object`. Otherwise, #' `basis` is used. #' #' 1. The result is set as an attribute `".Basis"` on `object`. If #' there is no `basis` or LHS, it is not set. #' #' 1. The class vector of `object` has `c("formula_lhs_\var{CLASS}", #' "formula_lhs")` prepended to it, where \var{CLASS} is the class #' of the LHS value or `basis`. If LHS or `basis` has multiple #' classes, they are all prepended; if there is no LHS or `basis`, #' `c("formula_lhs_", "formula_lhs")` is. #' #' 1. [simulate()] generic is evaluated on the new `object`, with all #' arguments passed on, excluding `basis`; if `newdata` or `data` #' are missing, they too are not passed on. The evaluation takes #' place in the parent's environment. #' #' A "method" to receive a formula whose LHS evaluates to \var{CLASS} #' can therefore be implemented by a function #' `simulate.formula_lhs_\var{CLASS}()`. This function can expect a #' [`formula`] object, with additional attribute `.Basis` giving the #' evaluated LHS (so that it does not need to be evaluated again). #' #' @export ## See https://github.com/lme4/lme4/issues/566 for further discussion simulate.formula <- function(object, nsim=1, seed=NULL, ..., basis, newdata, data) { ## utility fun for generating new class cfun <- function(cc) { c(paste0("formula_lhs_", cc), "formula_lhs", class(object)) } ## grab the arguments and the call and replace the function to be called with stats::simulate cl <- match.call() cl[[1L]] <- quote(stats::simulate) if (length(object)==3 || !missing(basis)) { ## two-sided formula or basis given if (missing(basis)) { # If basis is not passed, evaluate LHS. if (!missing(data) && !missing(newdata)) stop("At most one of ", sQuote("data"), " or ", sQuote("newdata"), " can be specified.") evaldata <- if (!missing(data)) data else if(!missing(newdata)) newdata else environment(object) lhs <- object[[2L]] .Basis <- try(eval(lhs, envir=evaldata, enclos=environment(object)), silent=TRUE) if (inherits(.Basis,"try-error")) { ## can't evaluate LHS stop(simpleError(paste("Error evaluating the left-hand side of the formula:", .Basis))) } } else { # Otherwise, override LHS. .Basis <- basis } ## Set the basis object and class. attr(object,".Basis") <- .Basis class(object) <- cfun(class(.Basis)) } else { ## one-sided class(object) <- cfun("") } ## Replace the dispatched-on argument (object) with the updated formula. cl[["object"]] <- object ## If data argument was not actually passed, remove it from the call. if(missing(data)) cl <- cl[names(cl)!="data"] ## If newdata argument was not actually passed, remove it from the call. if(missing(newdata)) cl <- cl[names(cl)!="newdata"] ## Always remove basis from the call (since it's an attribute of object now). cl <- cl[names(cl)!="basis"] # Evaluate the modified call as if in the environment from which simulate.formula() was called. (A poor man's NextMethod().) eval(cl, parent.frame()) } #' @describeIn simulate.formula A function to catch the situation when there is no method implemented for the class to which the LHS evaluates. #' #' @export simulate.formula_lhs <- function(object, nsim=1, seed=NULL, ...){ stop("No applicable method for LHS of type ", paste0(sQuote(class(attr(object, ".Basis"))), collapse=", "), ".") } lme4/R/lmList.R0000644000176200001440000004333715103163201012705 0ustar liggesusers## List of linear models according to a grouping factor ## Extract the model formula modelFormula <- function(form) { if (!inherits(form, "formula") || length(form) != 3) stop("formula must be a two-sided formula object") rhs <- form[[3]] if (!inherits(rhs, "call") || rhs[[1]] != as.symbol('|')) stop("rhs of formula must be a conditioning expression") form[[3]] <- rhs[[2]] list(model = dropOffset(form), groups = rhs[[3]]) } dropOffset <- function(form) { ## atomic if (is.symbol(form) || is.numeric(form)) return(form) ## binary if (identical(form[[1]],quote(offset))) { NULL } else { ## unary operator if (length(form)==2) { form[[2]] <- dropOffset(form[[2]]) return(form) } nb2 <- dropOffset(form[[2]]) nb3 <- dropOffset(form[[3]]) if (is.null(nb2)) nb3 else if (is.null(nb3)) nb2 else { form[[2]] <- nb2 form[[3]] <- nb3 return(form) } } } ## dropOffset(y~x) ## dropOffset(y~x+offset(stuff)) ## dropOffset(y~-x+offset(stuff)) ## dropOffset(~-x+offset(stuff)) if(getRversion() < "3.5.0") { ##' Utility for lmList(), ...: Collect errors from a list \code{x}, ##' produce a "summary warning" and keep that message as "warningMsg" attribute warnErrList <- function(x, warn = TRUE) { errs <- vapply(x, inherits, NA, what = "error") if (any(errs)) { v.err <- x[errs] e.call <- paste(deparse(conditionCall(v.err[[1]])), collapse = "\n") tt <- table(vapply(v.err, conditionMessage, "")) msg <- if(length(tt) == 1) sprintf(ngettext(tt[[1]], "%d error caught in %s: %s", "%d times caught the same error in %s: %s"), tt[[1]], e.call, names(tt)[[1]]) else ## at least two different errors caught paste(gettextf( "%d errors caught in %s. The error messages and their frequencies are", sum(tt), e.call), paste(capture.output(sort(tt)), collapse="\n"), sep="\n") if(warn) warning(msg, call. = FALSE, domain = NA) x[errs] <- list(NULL) attr(x, "warningMsg") <- msg } x } }# R <= 3.4.x ##' @title List of lm Objects with a Common Model ##' @param formula a linear formula object of the form ##' \code{y ~ x1+...+xn | g}. In the formula object, \code{y} represents ##' the response, \code{x1,...,xn} the covariates, and \code{g} the ##' grouping factor specifying the partitioning of the data according to ##' which different \code{lm} fits should be performed. ##' @inheritParams lmer ##' @param family an optional family specification for a generalized ##' linear model. ##' @param pool logical scalar, should the variance estimate pool the ##' residual sums of squares ##' @param ... additional, optional arguments to be passed to the ##' model function or family evaluation. ##' @export lmList <- function(formula, data, family, subset, weights, na.action, offset, pool = !isGLM || .hasScale(family2char(family)), warn = TRUE, ...) { stopifnot(inherits(formula, "formula")) ## model.frame(groupedData) was problematic ... but not as we ## are currently using it. mCall <- mf <- match.call() ## MM: I had this (instead of below (inherited from nlme?)): ## if(!missing(subset)) ## data <- data[eval(asOneSidedFormula(mf[["subset"]])[[2]], data),, drop = FALSE] ## in contrast to the usual R model-fitting idiom, we do **not** ## want to evaluate the model frame here; it will mess up any derived ## variables we have when we go to fit the sub-models. We were previously ## using model.frame() on the entire data set, but that does not ## exclude unused columns ... and hence screws us up when there are ## NA values in unused columns. All we need the model frame for ## is evaluating the groups. ## keep weights and offsets in case we have NAs there?? m <- match(c("formula", "data", "subset", "na.action", "weights", "offset"), names(mf), 0) mf <- mf[c(1, m)] ## substitute `+' for `|' in the formula mf$formula <- reformulas::subbars(formula) mf$drop.unused.levels <- TRUE ## pass NAs for now -- want *all* groups, weights, offsets recovered mf$na.action <- na.pass mf[[1L]] <- quote(stats::model.frame) frm <- eval.parent(mf) ## <- including "..." data[["(weights)"]] <- model.weights(frm) data[["(offset)"]] <- model.offset(frm) mform <- modelFormula(formula) isGLM <- !missing(family) ## TODO in future, consider isNLM / isNLS groups <- eval(mform$groups, frm) if (!is.factor(groups)) groups <- factor(groups) fit <- if (isGLM) glm else lm mf2 <- if (missing(family)) NULL else list(family=family) fitfun <- function(data, formula) { tryCatch({ do.call(fit, c(list(formula, data, ## don't use model.offset()/model.weights from stats() - warning with tibbles weights = data[["(weights)"]], offset = data[["(offset)"]], ...), mf2)) }, error = function(x) x) } ## split *original data*, not frm (derived model frame), on groups ## we have to do this because we need raw, not derived variables ## when evaluating linear regression. ## need to apply subset first ((or even much earlier ??)) ## (hope there aren't tricky interactions with NAs in subset ... ??) if (!missing(subset)) { data <- eval(substitute(data[subset,]), list2env(data)) } frm.split <- split(data, groups) ## NB: levels() is only OK if grouping variable is a factor nms <- names(frm.split) val <- ## mapply(fitfun, lapply(frm.split, fitfun, formula = as.formula(mform$model)) ## use warnErrList(), but expand msg for back compatibility and user-friendliness: val <- warnErrList(val, warn = FALSE) ## Contrary to nlme, we keep the erronous ones as well (with a warning): if(warn && length(wMsg <- attr(val,"warningMsg"))) { if(grepl("contrasts.* factors? .* 2 ", wMsg)){ # try to match translated msg, too warning("Fitting failed for ", sum(vapply(val, is.null, NA)), " group(s), probably because a factor only had one level", sub(".*:", ":\n ", wMsg), domain=NA) } else warning(wMsg, domain=NA) } new("lmList4", setNames(val, nms), call = mCall, pool = pool, groups = ordered(groups), origOrder = match(unique(as.character(groups)), nms) ) } ## (currently hidden) auxiliaries isGLMlist <- function(object, ...) { D <- getDataPart(object) length(D) >= 1 && inherits(D[[1]], "glm") } ## does a glm family have a "scale" [from stats:::logLik.glm() ] : .hasScale <- function(family) family %in% c("gaussian", "Gamma", "inverse.gaussian") family2char <- function(fam) { if(is.function(fam)) fam()$family else if(!is.character(fam)) fam$family else fam } ##' Does a lmList4 object have a "scale" / sigma / useScale ? hasScale <- function(object) !isGLMlist(object) || .hasScale(family(object[[1]])$family) ##' @importFrom stats coef ##' @S3method coef lmList4 ## Extract the coefficients and form a data.frame if possible ## FIXME: commented out nlme stuff (augFrame etc.). Restore, or delete for good ## FIXME: modified so that non-estimated values will be NA rather than set to ## coefs of first non-null estimate. Is that OK?? coef.lmList4 <- function(object, ## augFrame = FALSE, data = NULL, ##which = NULL, FUN = mean, omitGroupingFactor = TRUE, ...) { coefs <- lapply(object, coef) non.null <- !vapply(coefs, is.null, logical(1)) if (any(non.null)) { template <- coefs[non.null][[1]] ## different parameter sets may be estimated for different subsets of data ... allnames <- Reduce(union, lapply(coefs[non.null], names)) if (is.numeric(template)) { co <- matrix(NA, ncol = length(allnames), nrow = length(coefs), dimnames = list(names(object), allnames)) for (i in names(object)) { co[i,names(coefs[[i]])] <- coefs[[i]] } coefs <- as.data.frame(co) effectNames <- names(coefs) ## if(augFrame) { ## if (is.null(data)) { ## data <- getData(object) ## } ## data <- as.data.frame(data) ## if (is.null(which)) { ## which <- 1:ncol(data) ## } ## data <- data[, which, drop = FALSE] ## ## eliminating columns with same names as effects ## data <- data[, is.na(match(names(data), effectNames)), drop = FALSE] ## data <- gsummary(data, FUN = FUN, groups = getGroups(object)) ## if (omitGroupingFactor) { ## data <- data[, is.na(match(names(data), ## names(getGroupsFormula(object, ## asList = TRUE)))), ## drop = FALSE] ## } ## if (length(data) > 0) { ## coefs <- cbind(coefs, data[row.names(coefs),,drop = FALSE]) ## } ## } attr(coefs, "level") <- attr(object, "level") attr(coefs, "label") <- "Coefficients" attr(coefs, "effectNames") <- effectNames attr(coefs, "standardized") <- FALSE } ## is.numeric(template) } coefs } ### FIXME?: nlme *does* export this -- we export sigma() [instead ?] pooledSD <- function(x, allow.0.df = TRUE) { stopifnot(is(x, "lmList4")) if(!hasScale(x)) { if(allow.0.df) return(structure(1, df = NA)) ## scale := 1 if(!useScale) ## else stop("no scale, hence no pooled SD for this object") } sumsqr <- rowSums(sapply(x, function(el) { if (is.null(el)) { c(0,0) } else { res <- resid(el) c(sum(res^2), length(res) - length(coef(el))) } })) if (sumsqr[2] == 0) { ## FIXME? rather return NA with a warning ?? stop("No degrees of freedom for estimating std. dev.") } val <- sqrt(sumsqr[1]/sumsqr[2]) attr(val, "df") <- sumsqr[2] val } sigma.lmList4 <- function(object, ...) if(hasScale(object)) as.vector(pooledSD(object)) else 1 ## 1 for GLM <==> 1 when useScale is FALSE for [G]LMMs ##' @importFrom methods show ##' @exportMethod show setMethod("show", "lmList4", function(object) { mCall <- object@call cat("Call:", deparse(mCall), "\n") cat("Coefficients:\n") print(coef(object)) if (object@pool) { cat("\n") poolSD <- pooledSD(object) dfRes <- attr(poolSD, "df") RSE <- c(poolSD) cat("Degrees of freedom: ", length(unlist(lapply(object, fitted))), " total; ", dfRes, " residual\n", sep = "") cat("Residual standard error:", format(RSE)) cat("\n") } }) ##' @S3method confint lmList4 confint.lmList4 <- function(object, parm, level = 0.95, ...) { mCall <- match.call() if (length(object) < 1) return(new("lmList4.confint", array(numeric(0), c(0,0,0)))) mCall$object <- object[[1]] ## the old recursive strategy doesn't work with S3 objects -- ## calls "confint.lmList4" again instead of calling "confint" mCall[[1]] <- quote(confint) template <- eval(mCall) if(is.null(d <- dim(template))) ## MASS:::confint.profile.glm() uses drop(), giving vector d <- dim(template <- rbind("(Intercept)" = template)) template[] <- NA_real_ val <- array(template, c(d, length(object)), c(dimnames(template), list(names(object)))) pool <- list(...)$pool if (is.null(pool)) pool <- object$pool if (length(pool) > 0 && pool[1]) { ## do our own sd <- pooledSD(object) a <- (1 - level)/2 fac <- sd * qt(c(a, 1 - a), attr(sd, "df")) parm <- dimnames(template)[[1]] for (i in seq_along(object)) if(!is.null(ob.i <- object[[i]])) val[ , , i] <- coef(ob.i)[parm] + sqrt(diag(summary(object[[i]], corr = FALSE)$cov.unscaled )[parm]) %o% fac } else { ## build on confint() method for "glm" / "lm" : for (i in seq_along(object)) if(!is.null(mCall$object <- object[[i]])) { ci <- eval(mCall) if(is.null(dim(ci))) ## MASS:::confint.profile.glm() ... ci <- rbind("(Intercept)" = ci) if(identical(dim(ci), d)) val[ , , i] <- ci else ## some coefficients were not estimable val[rownames(ci), , i] <- ci } } new("lmList4.confint", aperm(val, 3:1)) } ##' @importFrom graphics plot ##' @importFrom lattice ....... ##' @S3method plot lmList4.confint plot.lmList4.confint <- function(x, y, order, ...) { ## stopifnot(require("lattice")) arr <- as(x, "array") dd <- dim(arr) dn <- dimnames(arr) levs <- dn[[1]] if (!missing(order) && (ord <- round(order[1])) %in% seq(dd[3])) levs <- levs[order(rowSums(arr[ , , ord]))] ll <- length(arr) df <- data.frame(group = ordered(rep(dn[[1]], dd[2] * dd[3]), levels = levs), intervals = as.vector(arr), what = gl(dd[3], dd[1] * dd[2], length = ll, labels = dn[[3]]), end = gl(dd[2], dd[1], length = ll)) panelfun <- function(x, y, pch = dot.symbol$pch, col = dot.symbol$col, cex = dot.symbol$cex, font = dot.symbol$font, ...) { x <- as.numeric(x) y <- as.numeric(y) ok <- !is.na(x) & !is.na(y) yy <- y[ok] xx <- x[ok] dot.symbol <- trellis.par.get("dot.symbol") dot.line <- trellis.par.get("dot.line") panel.abline(h = yy, lwd = dot.line$lwd, lty = dot.line$lty, col = dot.line$col) lpoints(xx, yy, pch = "|", col = col, cex = cex, font = font, ...) lower <- tapply(xx, yy, min) upper <- tapply(xx, yy, max) nams <- as.numeric(names(lower)) lsegments(lower, nams, upper, nams, col = col, lty = 1, lwd = if (dot.line$lwd) { dot.line$lwd } else { 2 }) } dotplot(group ~ intervals | what, data = df, scales = list(x="free"), panel=panelfun, ...) } ##' @importFrom stats update ##' @S3method update lmList4 update.lmList4 <- function(object, formula., ..., evaluate = TRUE) { call <- object@call if (is.null(call)) stop("need an object with call slot") extras <- match.call(expand.dots = FALSE)$... if (!missing(formula.)) call$formula <- update.formula(formula(object), formula.) if (length(extras) > 0) { existing <- !is.na(match(names(extras), names(call))) for (a in names(extras)[existing]) call[[a]] <- extras[[a]] if (any(!existing)) { call <- c(as.list(call), extras[!existing]) call <- as.call(call) } } if (evaluate) eval(call, parent.frame()) else call } ##' @importFrom stats formula ##' @S3method formula lmList4 ##' @return of class "formula" ==> as.formula() rather than just [["formula"]] formula.lmList4 <- function(x, ...) structure(x@call[["formula"]], class = "formula") ##' Get the grouping factor of an "lmList4" object ##' Important as auxiliary method for many of the nlme-imported methods: getGroups.lmList4 <- function(object, ...) object@groups ### All the other "lmList4" S3 methods are imported from nmle : ## .ns.nlme <- asNamespace("nlme") .ns.lme4 <- environment() ## == asNamespace("lme4") during build/load ## ## To do this, we need to make them use *our* namespace, e.g. to use our pooledSD() ## However, then we get from codetools : ## ## fitted.lmList4: no visible global function definition for 'getGroups' ## pairs.lmList4: no visible global function definition for 'gsummary' ## pairs.lmList4: no visible global function definition for 'getGroups' ## plot.lmList4: no visible global function definition for 'c_deparse' ## plot.lmList4: no visible global function definition for 'getGroups' ## predict.lmList4: no visible global function definition for 'getGroups' ## print.lmList4: no visible global function definition for 'c_deparse' ## qqnorm.lmList4: no visible global function definition for 'getGroups' ## qqnorm.lmList4: no visible global function definition for 'gsummary' ## residuals.lmList4: no visible global function definition for 'getGroups' ## ## which we avoid via for(fn in c("gsummary", "c_deparse")) { if (exists(fn, envir = .ns.nlme)) { assign(fn, get(fn, envir = .ns.nlme, inherits=FALSE)) } } for(fn in c("fitted", "fixef", "logLik", "pairs", "plot", "predict", ## "print", <- have our own show() "qqnorm", "ranef", "residuals", "summary")) { meth <- get(paste(fn, "lmList", sep="."), envir = .ns.nlme, inherits=FALSE) environment(meth) <- .ns.lme4 # e.g. in order to use *our* pooledSD() assign(paste(fn, "lmList4", sep="."), meth) } rm(fn) lme4/R/utilities.R0000644000176200001440000012536515113136610013463 0ustar liggesusers ## From Matrix package isDiagonal(.) : all0 <- function(x) !anyNA(x) && all(!x) .isDiagonal.sq.matrix <- function(M, n = dim(M)[1L]) all0(M[rep_len(c(FALSE, rep.int(TRUE,n)), n^2)]) ### Utilities for parsing and manipulating mixed-model formulas ## abbreviated parse for long strings: deparse1() pastes w/ collapse instead abbrDeparse <- function(x, width=60) { r <- deparse(x, width) if(length(r) > 1) paste(r[1], "...") else r } ##' @param bars result of findbars barnames <- function(bars) vapply(bars, function(x) deparse1(x[[3]]), "") makeFac <- function(x,char.only=FALSE) { if (!is.factor(x) && (!char.only || is.character(x))) factor(x) else x } factorize <- function(x,frloc,char.only=FALSE) { ## convert grouping variables to factors as necessary ## TODO: variables that are *not* in the data frame are ## not converted -- these could still break, e.g. if someone ## tries to use the : operator ## TODO: some sensible tests for drop.unused.levels ## (not actually used, but could come in handy) for (i in all.vars(RHSForm(x))) { if (!is.null(curf <- frloc[[i]])) frloc[[i]] <- makeFac(curf,char.only) } return(frloc) } colSort <- function(x) { termlev <- vapply(strsplit(x,":"),length,integer(1)) iterms <- split(x,termlev) iterms <- sapply(iterms,sort,simplify=FALSE) ## make sure intercept term is first ilab <- "(Intercept)" if (ilab %in% iterms[[1]]) { iterms[[1]] <- c(ilab,setdiff(iterms[[1]],ilab)) } unlist(iterms) } ## copied from glmmTMB, replace by upstream utility package? ## test formula: does it contain a particular element? ## inForm(z~.,quote(.)) ## inForm(z~y,quote(.)) ## inForm(z~a+b+c,quote(c)) ## inForm(z~a+b+(d+e),quote(c)) ## f <- ~ a + offset(x) ## f2 <- z ~ a ## inForm(f,quote(offset)) ## inForm(f2,quote(offset)) ## @export ## @keywords internal inForm <- function(form,value) { if (any(sapply(form,identical,value))) return(TRUE) if (all(sapply(form,length)==1)) return(FALSE) return(any(vapply(form,inForm,value,FUN.VALUE=logical(1)))) } ## was called "replaceForm" there but replaceTerm is better ## (decide on camelCase vs snake_case!) replaceTerm <- function(term,target,repl) { if (identical(term,target)) return(repl) if (!inForm(term,target)) return(term) if (length(term) == 2) { return(substitute(OP(x),list(OP=replaceTerm(term[[1]],target,repl), x=replaceTerm(term[[2]],target,repl)))) } return(substitute(OP(x,y),list(OP=replaceTerm(term[[1]],target,repl), x=replaceTerm(term[[2]],target,repl), y=replaceTerm(term[[3]],target,repl)))) } `%i%` <- function(f1, f2, fix.order = TRUE) { if (!is.factor(f1) || !is.factor(f2)) stop("both inputs must be factors") f12 <- paste(f1, f2, sep = ":") ## explicitly specifying levels is faster in any case ... u <- which(!duplicated(f12)) if (!fix.order) return(factor(f12, levels = f12[u])) ## deal with order of factor levels levs_rank <- length(levels(f2))*as.numeric(f1[u])+as.numeric(f2[u]) return(factor(f12, levels = (f12[u])[order(levs_rank)])) } ##' @param x a language object of the form effect | groupvar ##' @param frloc model frame ##' @param drop.unused.levels (logical) ##' @return list containing grouping factor, sparse model matrix, number of levels, names mkBlist <- function(x,frloc, drop.unused.levels=TRUE, reorder.vars=FALSE) { frloc <- factorize(x,frloc) ## try to evaluate grouping factor within model frame ... ff0 <- replaceTerm(x[[3]], quote(`:`), quote(`%i%`)) ff <- try(eval(substitute(makeFac(fac), list(fac = ff0)), frloc), silent = TRUE) if (inherits(ff, "try-error")) { stop("couldn't evaluate grouping factor ", deparse1(x[[3]])," within model frame:", "error =", c(ff), " Try adding grouping factor to data ", "frame explicitly if possible",call.=FALSE) } if (all(is.na(ff))) stop("Invalid grouping factor specification, ", deparse1(x[[3]]),call.=FALSE) ## NB: *also* silently drops levels - and mkReTrms() and hence ## predict.merMod() have relied on that property : if (drop.unused.levels) ff <- factor(ff, exclude=NA) nl <- length(levels(ff)) ## this section implements eq. 6 of the JSS lmer paper ## model matrix based on LHS of random effect term (X_i) ## x[[2]] is the LHS (terms) of the a|b formula has.sparse.contrasts <- function(x) { cc <- attr(x, "contrasts") !is.null(cc) && is(cc, "sparseMatrix") } any.sparse.contrasts <- any(vapply(frloc, has.sparse.contrasts, FUN.VALUE = TRUE)) mMatrix <- if (!any.sparse.contrasts) model.matrix else sparse.model.matrix mm <- mMatrix(eval(substitute( ~ foo, list(foo = x[[2]]))), frloc) if (reorder.vars) { mm <- mm[colSort(colnames(mm)),] } ## this is J^T (see p. 9 of JSS lmer paper) ## construct indicator matrix for groups by observations ## use fac2sparse() rather than as() to allow *not* dropping ## unused levels where desired sm <- fac2sparse(ff, to = "d", drop.unused.levels = drop.unused.levels) sm <- KhatriRao(sm, t(mm)) dimnames(sm) <- list( rep(levels(ff),each=ncol(mm)), rownames(mm)) list(ff = ff, sm = sm, nl = nl, cnms = colnames(mm)) } ##' Create an lmerResp, glmResp or nlsResp instance ##' ##' @title Create an lmerResp, glmResp or nlsResp instance ##' @param fr a model frame ##' @param REML logical scalar, value of REML for an lmerResp instance ##' @param family the optional glm family (glmResp only) ##' @param nlenv the nonlinear model evaluation environment (nlsResp only) ##' @param nlmod the nonlinear model function (nlsResp only) ##' @param ... where to look for response information if \code{fr} is missing. ##' Can contain a model response, \code{y}, offset, \code{offset}, and weights, ##' \code{weights}. ##' @return an lmerResp or glmResp or nlsResp instance ##' @family utilities ##' @export mkRespMod <- function(fr, REML=NULL, family = NULL, nlenv = NULL, nlmod = NULL, ...) { if(!missing(fr)) { y <- model.response(fr) offset <- model.offset(fr) weights <- model.weights(fr) N <- n <- nrow(fr) etastart_update <- model.extract(fr, "etastart") mustart_update <- model.extract(fr, "mustart") } else { fr <- list(...) y <- fr$y N <- n <- NROW(y) offset <- fr$offset weights <- fr$weights etastart_update <- fr$etastart mustart_update <- fr$mustart } if(length(dim(y)) == 1L) y <- drop(y) ## avoid problems with 1D arrays and keep names if(isGLMM <- !is.null(family)) stopifnot(inherits(family, "family")) ## FIXME: may need to add X, or pass it somehow, if we want to use glm.fit ## test for non-numeric response here to avoid later ## confusing error messages from deeper machinery if (!is.null(y)) { ## 'y' may be NULL if we're doing simulation if(!(is.numeric(y) || ((is.binom <- isGLMM && family$family == "binomial") && (is.factor(y) || is.logical(y))))) { if (is.binom) stop("response must be numeric or factor") else { if (is.logical(y)) y <- as.integer(y) else stop("response must be numeric") } } if(!all(is.finite(y))) stop("NA/NaN/Inf in 'y'") # same msg as from lm.fit() } rho <- new.env() rho$y <- if (is.null(y)) numeric(0) else y if (!is.null(REML)) rho$REML <- REML rho$etastart <- etastart_update rho$mustart <- mustart_update rho$start <- attr(fr,"start") if (!is.null(nlenv)) { stopifnot(is.language(nlmod), is.environment(nlenv), is.numeric(val <- eval(nlmod, nlenv)), length(val) == n, ## FIXME? Restriction, not present in ole' nlme(): is.matrix(gr <- attr(val, "gradient")), is.numeric(gr), nrow(gr) == n, !is.null(pnames <- colnames(gr))) N <- length(gr) rho$mu <- as.vector(val) rho$sqrtXwt <- as.vector(gr) rho$gam <- ## FIXME more efficient mget(pnames, envir=nlenv) unname(unlist(lapply(pnames, function(nm) get(nm, envir=nlenv)))) } rho$offset <- if (!is.null(offset)) { if (length(offset) == 1L) offset <- rep.int(offset, N) else stopifnot(length(offset) == N) unname(offset) } else rep.int(0, N) rho$weights <- if (!is.null(weights)) { stopifnot(length(weights) == n, all(weights >= 0)) unname(weights) } else rep.int(1, n) if(isGLMM) { ## need weights for initializing evaluation rho$nobs <- n ## allow trivial objects, e.g. for simulation if (length(y)>0) eval(family$initialize, rho) ## ugh. this *is* necessary; ## family$initialize *ignores* mustart in env, overwrites! ## see ll 180-182 of src/library/stats/R/glm.R ## https://github.com/wch/r-source/search?utf8=%E2%9C%93&q=mukeep if (!is.null(mustart_update)) rho$mustart <- mustart_update ## family$initialize <- NULL # remove clutter from str output ll <- as.list(rho) ans <- do.call(new, c(list(Class="glmResp", family=family), ll[setdiff(names(ll), c("m", "nobs", "mustart"))])) if (length(y)>0) ans$updateMu(if (!is.null(es <- etastart_update)) es else family$linkfun(rho$mustart)) ans } else if (is.null(nlenv)) ## lmer do.call(lmerResp$new, as.list(rho)) else ## nlmer do.call(nlsResp$new, c(list(nlenv=nlenv, nlmod=substitute(~foo, list(foo=nlmod)), pnames=pnames), as.list(rho))) } subnms <- function(form, nms) { ## Recursive function applied to individual terms sbnm <- function(term) { if (is.name(term)) { if (any(term == nms)) 0 else term } else switch(length(term), term, ## 1 { ## 2 term[[2]] <- sbnm(term[[2]]) term }, { ## 3 term[[2]] <- sbnm(term[[2]]) term[[3]] <- sbnm(term[[3]]) term }) } sbnm(form) } ##' Check for a constant term (a literal 1) in an expression ## ##' In the mixed-effects part of a nonlinear model formula, a constant ##' term is not meaningful because every term must be relative to a ##' nonlinear model parameter. This function recursively checks the ##' expressions in the formula for a a constant, calling stop() if ##' such a term is encountered. ##' @title Check for constant terms. ##' @param expr an expression ##' @return NULL. The function is executed for its side effect. chck1 <- function(expr) { if ((le <- length(expr)) == 1) { if (is.numeric(expr) && expr == 1) stop("1 is not meaningful in a nonlinear model formula") return() } else for (j in seq_len(le)[-1]) Recall(expr[[j]]) } ## ---> ../man/nlformula.Rd --- Manipulate a nonlinear model formula ##' @param mc matched call from the caller, with arguments 'formula','start',... ##' @return a list with components "respMod", "frame", "X", "reTrms" nlformula <- function(mc) { start <- eval(mc$start, parent.frame(2L)) if (is.numeric(start)) start <- list(nlpars = start) stopifnot(is.numeric(nlpars <- start$nlpars), lengths(nlpars) == 1L, length(pnames <- names(nlpars)) == length(nlpars), length(form <- as.formula(mc$formula)) == 3L, is(nlform <- eval(form[[2]]), "formula"), pnames %in% all.vars(nlmod <- as.call(nlform[[lnl <- length(nlform)]]))) ## MM{FIXME}: fortune(106) even twice in here! nlform[[lnl]] <- parse(text= paste(setdiff(all.vars(form), pnames), collapse=' + '))[[1]] nlform <- eval(nlform) environment(nlform) <- environment(form) m <- match(c("data", "subset", "weights", "na.action", "offset"), names(mc), 0) mc <- mc[c(1, m)] mc$drop.unused.levels <- TRUE mc[[1L]] <- quote(stats::model.frame) mc$formula <- nlform fr <- eval(mc, parent.frame(2L)) n <- nrow(fr) nlenv <- list2env(fr, parent=parent.frame(2L)) lapply(pnames, function(nm) nlenv[[nm]] <- rep.int(nlpars[[nm]], n)) respMod <- mkRespMod(fr, nlenv=nlenv, nlmod=nlmod) chck1(meform <- form[[3L]]) pnameexpr <- parse(text=paste(pnames, collapse='+'))[[1]] nb <- nobars_(meform) ## call ORIGINAL recursive form fe <- eval(substitute(~ 0 + nb + pnameexpr)) environment(fe) <- environment(form) frE <- do.call(rbind, lapply(seq_along(nlpars), function(i) fr)) # rbind s copies of the frame for (nm in pnames) # convert these variables in fr to indicators frE[[nm]] <- as.numeric(rep(nm == pnames, each = n)) X <- model.matrix(fe, frE) rownames(X) <- NULL reTrms <- reformulas::mkReTrms(lapply(reformulas::findbars(meform), function(expr) { expr[[2]] <- substitute(0+foo, list(foo=expr[[2]])) expr }), frE) list(respMod=respMod, frame=fr, X=X, reTrms=reTrms, pnames=pnames) } ## {nlformula} ################################################################################ ## Beginning to think about exposing tools to create devcomp lists. ## Could be useful when extending merMod objects. Commenting them out ## however, because R CMD check is complaining: ## https://github.com/lme4/lme4/commit/8d71e439758999ea8f90eb4752487e189407ef33#commitcomment-8773017 ################################################################################ ## ## .dims <- function(pp, resp, nAGQ, ## reTrms, n, p, rcl, ## compDev = NULL) { ## if(missing(rcl)) rcl <- class(resp) ## if(missing(n)) n <- nrow(pp$V) ## if(missing(p)) p <- ncol(pp$V) ## c(N=nrow(pp$X), n=n, p=p, nmp=n-p, ## nth=length(pp$theta), q=nrow(pp$Zt), ## nAGQ=rho$nAGQ, ## compDev=rho$compDev, ## ## 'use scale' in the sense of whether dispersion parameter should ## ## be reported/used (*not* whether theta should be scaled by sigma) ## useSc=(rcl != "glmResp" || ## !resp$family$family %in% c("poisson","binomial")), ## reTrms=length(reTrms$cnms), ## spFe=0L, ## REML=if (rcl=="lmerResp") resp$REML else 0L, ## GLMM=(rcl=="glmResp"), ## NLMM=(rcl=="nlsResp")) ## } ## ## .cmp <- function(pp, resp, dims, fval, ## wrss, sqrLenU, pwrss, ## sigmaML, rcl, fac, ## tolPwrss = NULL, ## trivial.y = FALSE) { ## if(missing(rcl)) rcl <- class(resp) ## if(missing(fac)) fac <- as.numeric(rcl != "nlsResp") ## if(missing(wrss)) wrss <- resp$wrss() ## if(missing(sqrLenU)) sqrLenU <- pp$sqrL(fac) ## if(missing(pwrss)) pwrss <- wrss + sqrLenU ## if(missing(sigmaML)) sigmaML <- pwrss/dims['n'] ## c(ldL2=pp$ldL2(), ldRX2=pp$ldRX2(), wrss=wrss, ## ussq=sqrLenU, pwrss=pwrss, ## drsum=if (rcl=="glmResp" && !trivial.y) resp$resDev() else NA, ## REML=if (rcl=="lmerResp" && resp$REML != 0L && !trivial.y) ## opt$fval else NA, ## ## FIXME: construct 'REML deviance' here? ## dev=if (rcl=="lmerResp" && resp$REML != 0L || trivial.y) NA else opt$fval, ## sigmaML=sqrt(unname(if (!dims["useSc"] || trivial.y) NA else sigmaML)), ## sigmaREML=sqrt(unname(if (rcl!="lmerResp" || trivial.y) NA else sigmaML*(dims['n']/dims['nmp']))), ## tolPwrss=rho$tolPwrss) ## } ################################################################################ .minimalOptinfo <- function() list(conv = list(opt = 0L, lme4 = list(messages = character(0)))) getConv <- function(x) { if (!is.null(x[["conv"]])) { x[["conv"]] } else x[["convergence"]] } getMsg <- function(x) { if (!is.null(x[["msg"]])) { x[["msg"]] } else if (!is.null(x[["message"]])) { x[["message"]] } else "" } .optinfo <- function(opt, lme4conv=NULL) list(optimizer = attr(opt, "optimizer"), control = attr(opt, "control"), derivs = attr(opt, "derivs"), conv = list(opt = getConv(opt), lme4 = lme4conv), feval = if (is.null(opt$feval)) NA else opt$feval, message = getMsg(opt), warnings = attr(opt, "warnings"), val = opt$par) ##' Potentially needed in more than one place, be sure to keep consistency! ##' hack (NB families have weird names) from @aosmith16; then corrected isNBfamily <- function(familyString) grepl("^Negative ?Binomial", familyString, ignore.case=TRUE) normalizeFamilyName <- function(family) { # such as object@resp$family if(isNBfamily(family$family)) family$family <- "negative.binomial" family } ##' Is it a family with no scale parameter hasNoScale <- function(family) any(substr(family$family, 1L, 12L) == c("poisson", "binomial", "negative.bin", "Negative Bin")) ##--> ../man/mkMerMod.Rd ---Create a merMod object ##' @param rho the environment of the objective function ##' @param opt the value returned by the optimizer ##' @param reTrms reTrms list from the calling function mkMerMod <- function(rho, opt, reTrms, fr, mc, lme4conv=NULL) { if(missing(mc)) mc <- match.call() stopifnot(is.environment(rho), is(pp <- rho$pp, "merPredD"), is(resp <- rho$resp, "lmResp"), is.list(opt), "par" %in% names(opt), c("conv", "fval") %in% substr(names(opt),1,4), ## "conv[ergence]", "fval[ues]" is.list(reTrms), c("flist", "cnms", "Gp", "lower") %in% names(reTrms), length(rcl <- class(resp)) == 1) n <- nrow(pp$V) p <- ncol(pp$V) isGLMM <- (rcl == "glmResp") dims <- c(N = nrow(pp$X), n=n, p=p, nmp = n-p, q = nrow(pp$Zt), nth = length(pp$theta), nAGQ= rho$nAGQ, compDev=rho$compDev, ## 'use scale' in the sense of whether dispersion parameter should ## be reported/used (*not* whether theta should be scaled by sigma) useSc = !(isGLMM && hasNoScale(resp$family)), reTrms=length(reTrms$cnms), spFe= 0L, REML = if (rcl=="lmerResp") resp$REML else 0L, GLMM= isGLMM, NLMM= (rcl=="nlsResp")) storage.mode(dims) <- "integer" fac <- as.numeric(rcl != "nlsResp") if (trivial.y <- (length(resp$y)==0)) { ## trivial model sqrLenU <- wrss <- pwrss <- NA } else { sqrLenU <- pp$sqrL(fac) wrss <- resp$wrss() pwrss <- wrss + sqrLenU } ## weights <- resp$weights beta <- pp$beta(fac) sigmaML <- pwrss/n if (rcl != "lmerResp") { pars <- opt$par if (length(pars) > length(pp$theta)) beta <- pars[-(seq_along(pp$theta))] } cmp <- c(ldL2=pp$ldL2(), ldRX2=pp$ldRX2(), wrss=wrss, ussq=sqrLenU, pwrss=pwrss, drsum=if (rcl=="glmResp" && !trivial.y) resp$resDev() else NA, REML=if (rcl=="lmerResp" && resp$REML != 0L && !trivial.y) opt$fval else NA, ## FIXME: construct 'REML deviance' here? dev=if (rcl=="lmerResp" && resp$REML != 0L || trivial.y) NA else opt$fval, sigmaML=sqrt(unname(if (!dims["useSc"] || trivial.y) NA else sigmaML)), sigmaREML=sqrt(unname(if (rcl!="lmerResp" || trivial.y) NA else sigmaML*(dims['n']/dims['nmp']))), tolPwrss=rho$tolPwrss) ## TODO: improve this hack to get something in frame slot (maybe need weights, etc...) if(missing(fr)) fr <- data.frame(resp$y) new(switch(rcl, lmerResp = "lmerMod", glmResp = "glmerMod", nlsResp = "nlmerMod"), call=mc, frame=fr, flist=reTrms$flist, cnms=reTrms$cnms, Gp=reTrms$Gp, theta=pp$theta, beta=beta, u=if (trivial.y) rep(NA_real_,nrow(pp$Zt)) else pp$u(fac), lower=reTrms$lower, devcomp=list(cmp=cmp, dims=dims), pp=pp, resp=resp, optinfo = .optinfo(opt, lme4conv)) }## {mkMerMod} ## generic argument checking ## 'type': name of calling function ("glmer", "lmer", "nlmer") ## ## NB: called from lFormula() and glFormula() checkArgs <- function(type,...) { l... <- list(...) if (isTRUE(l...[["sparseX"]])) warning("sparseX = TRUE has no effect at present",call.=FALSE) ## '...' handling up front, safe-guarding against typos ("familiy") : if(length(l... <- list(...))) { if (!is.null(l...[["family"]])) { # call glmer if family specified ## we will only get here if 'family' is *not* in the arg list warning("calling lmer with family() is deprecated: please use glmer() instead",call.=FALSE) type <- "glmer" } ## Check for method argument which is no longer used ## (different meanings/hints depending on glmer vs lmer) if (!is.null(l...[["method"]])) { msg <- paste("Argument", sQuote("method"), "is deprecated.") if (type == "lmer") msg <- paste(msg, "Use the REML argument to specify ML or REML estimation.") else if (type == "glmer") msg <- paste(msg, "Use the nAGQ argument to specify Laplace (nAGQ=1) or adaptive", "Gauss-Hermite quadrature (nAGQ>1). PQL is no longer available.") warning(msg,call.=FALSE) l... <- l...[names(l...) != "method"] } if(length(l...)) { warning("extra argument(s) ", paste(sQuote(names(l...)), collapse=", "), " disregarded",call.=FALSE) } } } ## check formula and data: return an environment suitable for evaluating ## the formula. ## (1) if data is specified, return it ## (2) otherwise, if formula has an environment, use it ## (3) otherwise [e.g. if formula was passed as a string], try to use parent.frame(2) ## if #3 is true *and* the user is doing something tricky with nested functions, ## this may fail ... ## try to diagnose missing/bad data checkFormulaData <- function(formula, data, checkLHS=TRUE, checkData=TRUE, debug=FALSE) { wd <- tryCatch(force(data), error = identity) if (bad.data <- inherits(wd,"error")) { bad.data.msg <- wd$message } ## data not found (this *should* only happen with garbage input, ## OR when strings used as formulae -> drop1/update/etc.) ## if (bad.data || debug) { varex <- function(v, env) exists(v, envir=env, inherits=FALSE) allvars <- all.vars(as.formula(formula)) allvarex <- function(env, vvec=allvars) all(vapply(vvec, varex, NA, env)) } if (bad.data) { ## Choose helpful error message: if (allvarex(environment(formula))) { stop("bad 'data', but variables found in environment of formula: ", "try specifying 'formula' as a formula rather ", "than a string in the original model",call.=FALSE) } else { stop("bad 'data': ", bad.data.msg, call. = FALSE) } } else { denv <- ## The data as environment if (is.null(data)) { if (!is.null(ee <- environment(formula))) { ee ## use environment of formula } else { ## e.g. no environment, e.g. because formula is a character vector ## parent.frame(2L) works because [g]lFormula (our calling environment) ## has been called within [g]lmer with env=parent.frame(1L) ## If you call checkFormulaData in some other bizarre way such that ## parent.frame(2L) is *not* OK, you deserve what you get ## calling checkFormulaData directly from the global ## environment should be OK, since trying to go up beyond the global ## environment keeps bringing you back to the global environment ... parent.frame(2L) } } else ## data specified list2env(data) } ## ## FIXME: set enclosing environment of denv to environment(formula), or parent.frame(2L) ? if (debug) { cat("Debugging parent frames in checkFormulaData:\n") ## find global environment -- could do this with sys.nframe() ? glEnv <- 1L while (!identical(parent.frame(glEnv),.GlobalEnv)) { glEnv <- glEnv+1L } ## where are vars? for (i in 1:glEnv) { OK <- allvarex(parent.frame(i)) cat("vars exist in parent frame ", i) if (i == glEnv) cat(" (global)") cat(" ",OK, "\n") } cat("vars exist in env of formula ", allvarex(denv), "\n") } ## if (debug) stopifnot(!checkLHS || length(as.formula(formula,env=denv)) == 3) ## check for two-sided formula return(denv) } ## checkFormulaData <- function(formula,data) { ## ee <- environment(formula) ## if (is.null(ee)) { ## ee <- parent.frame(2) ## } ## if (missing(data)) data <- ee ## stopifnot(length(as.formula(formula,env=as.environment(data))) == 3) ## return(data) ## } ##' Not exported; for tests (and examples) that can be slow; ##' Use if(lme4:::testLevel() >= 1.) ..... see ../tests/README.md testLevel <- function() if(nzchar(s <- Sys.getenv("LME4_TEST_LEVEL")) && is.finite(s <- as.numeric(s))) s else 1 ##' General conditional variance-covariance matrix ##' ##' Experimental function for estimating the variance-covariance ##' matrix of the random effects, conditional on the observed data ##' and at the (RE)ML estimate of the fixed effects and covariance ##' parameters. Applicable for any Lambda matrix, but slower than ##' other block-by-block methods. ##' Not exported. ##' ##' TODO: ##' - Write up quick note on theory (e.g. Laplace approximation). ##' - Test. Speed? Correctness? ##' - Do we need to think carefully about the differences ##' between REML and ML, beyond just multiplying by a different ##' sigma^2 estimate? ##' - is it better to do this term-by-term as in C++ code? ##' ##' @param object \code{merMod} object ##' @return Sparse covariance matrix condVar <- function(object, scaled=TRUE) { Lamt <- getME(object, "Lambdat") L <- getME(object, "L") ## never do it this way! fortune("SOOOO") #V <- solve(L, system = "A") #V <- chol2inv(L) #s2*crossprod(Lamt, V) %*% Lamt LL <- solve(L, Lamt, system = "A") ## From ?Matrix::solve, The default, '"A"', is to solve Ax = b for x ## where 'A' is sparse, positive-definite matrix that was ## factored to produce 'a'. cc <- crossprod(Lamt, LL) if (scaled) cc <- sigma(object)^2*cc cc } mkMinimalData <- function(formula) { vars <- all.vars(formula) nVars <- length(vars) matr <- matrix(0, 2, nVars) data <- as.data.frame(matr) setNames(data, vars) } ##' Make template for mixed model parameters mkParsTemplate <- function(formula, data){ if(missing(data)) data <- mkMinimalData(formula) mfRanef <- model.frame( reformulas::subbars(formula), data) mmFixef <- model.matrix( reformulas::nobars(formula) , data) reTrms <- reformulas::mkReTrms( reformulas::findbars(formula), mfRanef) cnms <- reTrms$cnms thetaNamesList <- mapply(mkPfun(), names(cnms), cnms) thetaNames <- unlist(thetaNamesList) betaNames <- colnames(mmFixef) list(beta = setNames(numeric(length( betaNames)), betaNames), theta = setNames(reTrms$theta, thetaNames), sigma = 1) } ##' Make template for mixed model data ##' ##' Useful for simulating balanced designs and for ##' getting started on unbalanced simulations ##' ##' @param formula formula ##' @param data data -- not necessary ##' @param nGrps number of groups per grouping factor ##' @param rfunc function for generating covariate data ##' @param ... additional parameters for rfunc mkDataTemplate <- function(formula, data, nGrps = 2, nPerGrp = 1, rfunc = NULL, ...){ if(missing(data)) data <- mkMinimalData(formula) grpFacNames <- unique(barnames(reformulas::findbars(formula))) varNames <- all.vars(formula) covariateNames <- setdiff(varNames, grpFacNames) nGrpFac <- length(grpFacNames) nCov <- length(covariateNames) grpFac <- gl(nGrps, nPerGrp) grpDat <- expand.grid(replicate(nGrpFac, grpFac, simplify = FALSE)) colnames(grpDat) <- grpFacNames nObs <- nrow(grpDat) if(is.null(rfunc)) rfunc <- function(n, ...) rep(0, n) params <- c(list(nObs), list(...)) covDat <- as.data.frame(replicate(nCov, do.call(rfunc, params), simplify = FALSE)) colnames(covDat) <- covariateNames cbind(grpDat, covDat) } ##' very flexible and convenient wrt formula, ##' very unflexible wrt everything else ##' ##' starting to get a little too sugary? quickSimulate <- function(formula, nGrps, nPerGrp, family = gaussian) { pr <- mkParsTemplate(formula) dt <- mkDataTemplate(formula, nGrps = nGrps, nPerGrp = nPerGrp, rfunc = rnorm) response <- deparse(formula[[2]]) dt[[response]] <- simulate(formula, newdata = dt, newparams = pr, family = family)[[1]] return(dt) } #---------------------------------------------------------------------- # formula parsing sugar #---------------------------------------------------------------------- ##' these functions pick up where findbars leaves off, in terms of sugar ##' @param REtrm an element of the result of findbars ##' @param REtrms the result of findbars ##' @return \code{reexpr} gives a one-sided formula with the linear ##' model formula for the raw model matrix. \code{grpfact} gives an ##' expression with the name of the grouping factor associated with ##' the raw model matrix. \code{termnms} gives a character vector with ##' the names of the random effects terms. reexpr <- function(REtrm) substitute( ~ foo, list(foo = REtrm[[2]])) grpfact <- function(REtrm) substitute(factor(fac), list(fac = REtrm[[3]])) termnms <- function(REtrms) vapply(REtrms, deparse1, "") ##' mmList(): list of model matrices ##' ------ called from getME() & model.matrix(*, "randomListRaw") mmList <- function(object, ...) UseMethod("mmList") mmList.merMod <- function(object, ...) mmList(formula(object), model.frame(object)) mmList.formula <- function(object, frame, ...) { bars <- reformulas::findbars(object) mm <- setNames(lapply(bars, function(b) model.matrix(eval(reexpr(b), frame), frame)), termnms(bars)) grp <- lapply(lapply(bars, grpfact), eval, frame) nl <- vapply(grp, nlevels, 1L) if (any(diff(nl) > 0)) mm[order(nl, decreasing=TRUE)] else mm } ##' examples ---FIXME?--- put in tests // or export + 'real examples' if(FALSE) { library(lme4) m <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy) gm <- glmer(cbind(incidence, size-incidence) ~ period + (1|herd), cbpp, binomial) simForm <- y ~ x + z + (x | f) + (z | g) ## ::: triggers R CMD check NOTE ## simDat <- lme4:::quickSimulate(simForm, 10, 5) simDat <- simDat[simDat$f != "10", ] # unbalancedish design requiring # a flip in the order of terms sm <- lmer(simForm, simDat) ## ::: triggers R CMD check NOTE ## lme4:::mmList.merMod(m) ## lme4:::mmList.merMod(gm) ## smmm <- lme4:::mmList.merMod(sm) } nloptwrap <- local({ ## define default control values in environment of function ... defaultControl <- list(algorithm="NLOPT_LN_BOBYQA", xtol_abs=1e-8, ftol_abs=1e-8, maxeval=1e5) ## function(par, fn, lower, upper, control=list(),...) { for (n in names(defaultControl)) if (is.null(control[[n]])) control[[n]] <- defaultControl[[n]] res <- nloptr(x0=par, eval_f=fn, lb=lower, ub=upper, opts=control, ...) with(res, list(par = solution, fval = objective, feval = iterations, ## ?nloptr: "integer value with the status of the optimization (0 is success)" ## most status>0 are fine (e.g. 4 "stopped because xtol_rel was reached" ## but status 5 is "ran out of evaluations" conv = if (status<0 || status==5) status else 0, message = message)) } }) nlminbwrap <- function(par, fn, lower, upper, control=list(), ...) { if (!is.null(control$maxfun)) { control$eval.max <- control$maxfun control$maxfun <- NULL } res <- nlminb(start = par, fn, gradient = NULL, hessian = NULL, scale = 1, lower = lower, upper = upper, control = control, ...) list(par = res$par, fval = res$objective, conv = res$convergence, message = res$message) } glmerLaplaceHandle <- function(pp, resp, nAGQ, tol, maxit, verbose) { .Call(glmerLaplace, pp, resp, nAGQ, tol, as.integer(maxit), verbose) } isFlexLambda <- function() FALSE #' convert a list of matrices (n, pxp blocks) to a p x p x n array mlist_to_array <- function(m) { p <- nrow(m[[1]]) n <- length(m) array(unlist(lapply(m,as.matrix)),dim=c(p,p,n)) } #' @inheritParams bdiag_to_array bdiag_to_mlist <- function(m,n) { if (length(n)==1 && n1) parallel <- match.arg(parallel) do_parallel <- (parallel != "no" && ncpus > 1L) if (do_parallel) { if (parallel == "multicore") have_mc <- .Platform$OS.type != "windows" else if (parallel == "snow") have_snow <- TRUE if (!(have_mc || have_snow)) do_parallel <- FALSE # (only for "windows") } }) getSingTol <- function() { getOption("lme4.singular.tolerance", 1e-4) } isSingular <- function(x, tol = getSingTol()) { lwr <- getME(x, "lower") theta <- getME(x, "theta") any(theta[lwr==0] < tol) } lme4_testlevel <- function() if (nzchar(s <- Sys.getenv("LME4_TEST_LEVEL"))) as.numeric(s) else 1 # stolen from car package # the following unexported function is useful for combining results of parallel computations combineLists <- function(..., fmatrix="list", flist="c", fvector="rbind", fdf="rbind", recurse=FALSE){ # combine lists of the same structure elementwise # ...: a list of lists, or several lists, each of the same structure # fmatrix: name of function to apply to matrix elements # flist: name of function to apply to list elements # fvector: name of function to apply to data frame elements # recurse: process list element recursively frecurse <- function(...){ combineLists(..., fmatrix=fmatrix, fvector=fvector, fdf=fdf, recurse=TRUE) } if (recurse) flist="frecurse" list.of.lists <- list(...) if (length(list.of.lists) == 1){ list.of.lists <- list.of.lists[[1]] list.of.lists[c("fmatrix", "flist", "fvector", "fdf")] <- c(fmatrix, flist, fvector, fdf) return(do.call("combineLists", list.of.lists)) } if (any(!sapply(list.of.lists, is.list))) stop("arguments are not all lists") len <- sapply(list.of.lists, length) if (any(len[1] != len)) stop("lists are not all of the same length") nms <- lapply(list.of.lists, names) if (any(unlist(lapply(nms, "!=", nms[[1]])))) stop("lists do not all have elements of the same names") nms <- nms[[1]] result <- vector(len[1], mode="list") names(result) <- nms for(element in nms){ element.list <- lapply(list.of.lists, "[[", element) # clss <- sapply(element.list, class) clss <- lapply(element.list, class) # if (any(clss[1] != clss)) stop("list elements named '", element, if (!all(vapply(clss, function(e) all(e == clss[[1L]]), NA))) stop("list elements named '", element, "' are not all of the same class") is.df <- is.data.frame(element.list[[1]]) fn <- if (is.matrix(element.list[[1]])) fmatrix else if (is.list(element.list[[1]]) && !is.df) flist else if (is.vector(element.list[[1]])) fvector else if (is.df) fdf else stop("list elements named '", element, "' are not matrices, lists, vectors, or data frames") result[[element]] <- do.call(fn, element.list) } result } ## copied from glmmTMB::check_dots checkDots <- function (..., .ignore = NULL, .action = "stop") { L <- list(...) if (length(.ignore) > 0) { L <- L[!names(L) %in% .ignore] } if (length(L) > 0) { FUN <- get(.action) FUN("unknown arguments: ", paste(names(L), collapse = ",")) } return(NULL) } ## quadratic form from emulator package: ## quad.tform == x %*% M %*% t(x) ## quad.tdiag == diag(quad.tform(M, x) ## rowSums(tcrossprod(Conj(x), M) * x) quad.tdiag <- function(M, x) { ## only real-valued, so drop Conj rowSums(tcrossprod(x, M) * x) } ##' attempt to modularize vcov scaling; more details in the autoscale vignette ##' @param vv represents the variance-covariance matrix before modification ##' @param sc represents the scale vector ##' @param ce represents the center vector scale_vcov <- function(vv, sc, ce) { other_vars <- setdiff(colnames(vv), "(Intercept)") ## 1. Modifying the intercept sig_0sq <- vv["(Intercept)", "(Intercept)"] sig_0isq <- vv["(Intercept)", other_vars] total1 <- -2 *sum((ce/sc) * sig_0isq) small_vv <- as.matrix(vv[other_vars, other_vars]) total2 <- crossprod(ce / sc, small_vv %*% (ce / sc))[[1]] vv["(Intercept)", "(Intercept)"] <- sig_0sq + total1 + total2 ## 2. Modifying without intercept updated_2 <- (sig_0isq)/sc - (small_vv %*% (ce/sc))/sc vv["(Intercept)", other_vars] <- updated_2 vv[other_vars, "(Intercept)"] <- updated_2 vv[other_vars, other_vars] <- vv[other_vars, other_vars] * outer(1/sc, 1/sc) vv <- as(vv, "dpoMatrix") } ##' Used for padding NAs to Cmat accordingly in predict.merMod ##' @param mat represents the matrix that needs to be modified ##' @param mat_names represents the names of the new modified matrix ##' @param insert_after represents the placement before the zeros that need to ##' be added ##' @param n_add represents the number rows/columns that will be padded with zeros zero_padding <- function(mat, mat_names, insert_after, n_add = 1) { mat <- as.matrix(mat) old_dim <- nrow(mat) new_dim <- old_dim + n_add m_pad <- matrix(0, new_dim, new_dim) rownames(m_pad) <- mat_names colnames(m_pad) <- mat_names ## Top right corner m_pad[1:insert_after, 1:insert_after] <- mat[1:insert_after, 1:insert_after] ## Top left corner m_pad[1:insert_after, (insert_after + n_add + 1):new_dim] <- mat[1:insert_after, (insert_after + 1):old_dim] ## Bottom right corner m_pad[(insert_after + n_add + 1):new_dim, 1:insert_after] <- mat[(insert_after + 1):old_dim, 1:insert_after] ## Bottom left corner m_pad[(insert_after + n_add + 1):new_dim, (insert_after + n_add + 1):new_dim] <- mat[(insert_after + 1):old_dim, (insert_after + 1):old_dim] m_pad } ##' if allow.new.levels = TRUE, then adds 0 padding to Cmat for prediction ##' @param Cmat represents Cmat that was computed prior to subsetting ##' @param C_factors represents the factors explicitly shown in Cmat ##' @param Z_factors represents the factors represented in the Z matrix, which ##' includes only levels of groups that need to be predicted ##' @param Cmat_names represents the names of the Cmat matrix ##' @param cnms same as cnms from object pad_Cmat <- function(Cmat, C_factors, Z_factors, Cmat_names, cnms){ n_padded = 0 for (grp in intersect(names(C_factors), names(Z_factors))) { n_lvl <- length(levels(C_factors[[grp]])) added_levels <- setdiff(levels(Z_factors[[grp]]), levels(C_factors[[grp]])) if ((n_add <- length(added_levels)) == 0) next levels(C_factors[[grp]]) <- c(levels(C_factors[[grp]]), added_levels) ## add names for clarity added_nms <- as.vector(sapply(added_levels, function(lv) paste0(grp, ".", lv, ".", cnms[[grp]]) )) ## add padding n_padded <- n_padded + n_lvl * length(cnms[[grp]]) n_new <- n_add * length(cnms[[grp]]) Cmat_names <- c(Cmat_names[1:n_padded], added_nms, Cmat_names[(n_padded+1):length(Cmat_names)]) ## alter Cmat Cmat <- zero_padding(Cmat, Cmat_names, insert_after = n_padded, n_add = n_new) n_padded <- n_padded + n_new } list("Cmat" = Cmat, "C_factors" = C_factors, "Cmat_names" = Cmat_names) } lme4/R/zzz.R0000644000176200001440000000745715113136605012312 0ustar liggesusers.onLoad <- function(libname, pkgname) { ## don't do this in production; also flags problems in downstream packages ## options(Matrix.warnDeprecatedCoerce = 3) options(lme4.summary.cor.max = 12) Ons <- parent.env(environment()) # our own namespace if((Rv <- getRversion()) < "4.4.0") { assign('%||%', envir = Ons, inherits = FALSE, function(x, y) if(is.null(x)) y else x) if(Rv < "4.1.0") { ## https://stackoverflow.com/questions/49056642/how-to-make-variable-available-to-namespace-at-loading-time/67664852#67664852 ## not quite equivalent; this *forces* ... entries whereas true ...names() doesn't assign('...names', envir = Ons, function() eval(quote(names(list(...))), sys.frame(-1L))) if(Rv < "4.0.0") { ## NB: R >= 4.0.0's deparse1() is a generalization of our previous safeDeparse() assign('deparse1', envir = Ons, function (expr, collapse = " ", width.cutoff = 500L, ...) paste(deparse(expr, width.cutoff, ...), collapse = collapse) ) ## not equivalent ... assign('...length', envir = Ons, function() eval(quote(length(list(...))), sys.frame(-1L)) ) if (Rv < "3.6.0") { assign('reformulate', envir = Ons, function(..., env = parent.env) { f <- stats::reformulate(...) environment(f) <- env f }) if (Rv < "3.2.1") { assign('lengths', envir = Ons, function (x, use.names = TRUE) vapply(x, length, 1L, USE.NAMES = use.names) ) if(Rv < "3.1.0") { assign('anyNA', envir = Ons, function(x) any(is.na(x)) ) if(Rv < "3.0.0") { assign('rep_len', envir = Ons, function(x, length.out) rep(x, length.out=length.out) ) if(Rv < "2.15") { assign('paste0', envir = Ons, function(...) paste(..., sep = '') ) } ## R < 2.15 } ## R < 3.0.0 } ## R < 3.1.0 } ## R < 3.2.1 } ## R < 3.6.0 } ## R < 4.0.0 } ## R < 4.1.0 } ## R < 4.4.0 rm(Rv, Ons) ## check Matrix ABI version check_dep_version() } ## https://github.com/lme4/lme4/issues/768 ## https://github.com/kaskr/adcomp/issues/387 get_abi_version <- function() { if (utils::packageVersion("Matrix") < "1.6-2") return(numeric_version("0")) Matrix::Matrix.Version()[["abi"]] } .Matrix.abi.build.version <- get_abi_version() ## simplified version of glmmTMB package checking ##' @param this_pkg downstream package being tested ##' @param dep_pkg upstream package on which \code{this_pkg} depends ##' @param dep_type "ABI" or "package" ##' @param built_version a \code{numeric_version} object indicating what version of \code{dep_pkg} was used to build \code{this_pkg} ##' @param warn (logical) warn if condition not met? ##' @noRd check_dep_version <- function(this_pkg = "lme4", dep_pkg = "Matrix", dep_type = "ABI", built_version = .Matrix.abi.build.version, warn = TRUE) { cur_version <- get_abi_version() result_ok <- cur_version == built_version if (!result_ok) { warning( sprintf("%s version mismatch: \n", dep_type), sprintf("%s was built with %s %s version %s\n", this_pkg, dep_pkg, dep_type, built_version), sprintf("Current %s %s version is %s\n", dep_pkg, dep_type, cur_version), sprintf("Please re-install %s from source ", this_pkg), "or restore original ", sQuote(dep_pkg), " package" ) } return(result_ok) } .onUnload <- function(libpath) { gc() if (is.loaded("lmer_Deviance", PACKAGE="lme4")) { library.dynam.unload("lme4", libpath) } } lme4/R/bootMer.R0000644000176200001440000002037715022107260013052 0ustar liggesusers.simpleCap <- function(x) { paste0(toupper(substr(x, 1,1)), substr(x, 2, 1000000L), collapse=" ") } ### bootMer() --- <==> (TODO: semi-*)parametric bootstrap ### ------------------------------------------------------- ## Doc: show how this is equivalent - but faster than ## boot(*, R = nsim, sim = "parametric", ran.gen = simulate(.,1,.), mle = x) ## --> return a "boot" object -- so we could use boot.ci() etc ## TODO: also allow "semi-parametric" model-based bootstrap: ## resampling the (centered!) residuals (for use.u=TRUE) or for use.u=FALSE, ## *both* the centered u's + centered residuals ## instead of using rnorm() ## BUT see: ## @article{morris_blups_2002, ## title = {The {BLUPs} are not "best" when it comes to bootstrapping}, ## volume = {56}, ## issn = {0167-7152}, ## url = {https://www.sciencedirect.com/science/article/pii/S016771520200041X}, ## doi = {10.1016/S0167-7152(02)00041-X}, ## journal = {Statistics \& Probability Letters}, ## author = {Morris, Jeffrey S}, ## year = {2002}, ## } ## for an indication of why this is not necessarily a good idea! ##' Perform model-based (Semi-)parametric bootstrap for mixed models. ##' ##' The semi-parametric variant is not yet implemented, and we only ##' provide a method for \code{\link{lmer}} and \code{\link{glmer}} results. bootMer <- function(x, FUN, nsim = 1, seed = NULL, use.u = FALSE, re.form = NA, type = c("parametric","semiparametric"), verbose = FALSE, .progress = "none", PBargs=list(), parallel = c("no", "multicore", "snow"), ncpus = getOption("boot.ncpus", 1L), cl = NULL) { stopifnot((nsim <- as.integer(nsim[1])) > 0) if (.progress!="none") { ## progress bar pbfun <- get(paste0(.progress,"ProgressBar")) setpbfun <- get(paste0("set",.simpleCap(.progress),"ProgressBar")) pb <- do.call(pbfun,PBargs) } do_parallel <- have_mc <- have_snow <- NULL # '-Wall', set here: eval(initialize.parallel) if (do_parallel && .progress != "none") message("progress bar disabled for parallel operations") FUN <- match.fun(FUN) type <- match.arg(type) if(!is.null(seed)) set.seed(seed) else if(!exists(".Random.seed", envir = .GlobalEnv)) runif(1) # initialize the RNG if necessary mc <- match.call() t0 <- FUN(x) if (!is.numeric(t0)) stop("bootMer currently only handles functions that return numeric vectors") mle <- list(beta = getME(x,"beta"), theta = getME(x,"theta")) if (isLMM(x)) mle <- c(mle,list(sigma = sigma(x))) ## FIXME: what about GLMMs with scale parameters?? ## FIXME: remove prefix when incorporated in package if (type=="parametric") { argList <- list(x, nsim=nsim, na.action=na.exclude) if (!missing(re.form)) { argList <- c(argList,list(re.form=re.form)) } else { argList <- c(argList,list(use.u=use.u)) } ss <- do.call(simulate,argList) } else { if (!missing(re.form)) stop(paste(sQuote("re.form")), "cannot be used with semiparametric bootstrapping") if (use.u) { if (isGLMM(x)) warning("semiparametric bootstrapping is questionable for GLMMs") ss <- replicate(nsim,fitted(x)+sample(residuals(x,"response"), replace=TRUE), simplify=FALSE) } else { stop("semiparametric bootstrapping with use.u=FALSE not yet implemented") } } ## FIXME:: use getCall(x) ? check for existence of slot? ## is control used except for merMod? control <- if (!is(x, "merMod")) NULL else eval.parent(x@call$control) # define ffun as a closure containing the referenced variables # in its scope to avoid explicit clusterExport statement # in the PSOCKcluster case ffun <- local({ FUN refit x ss verbose do_parallel control length.t0 <- length(t0) f1 <- factory(function(i) FUN(refit(x, ss[[i]], control = control)), errval = rep(NA, length.t0)) function(i) { ret <- f1(i) if (verbose) { cat(sprintf("%5d :",i)); str(ret) } if (!do_parallel && .progress!="none") { setpbfun(pb,i/nsim) } ret }}) simvec <- seq_len(nsim) res <- if (do_parallel) { if (have_mc) { parallel::mclapply(simvec, ffun, mc.cores = ncpus) } else if (have_snow) { if (is.null(cl)) { cl <- parallel::makePSOCKcluster(rep("localhost", ncpus)) ## explicit export of the lme4 namespace since most FUNs will probably ## use some of them parallel::clusterExport(cl, varlist=getNamespaceExports("lme4")) if(RNGkind()[1L] == "L'Ecuyer-CMRG") parallel::clusterSetRNGStream(cl) res <- parallel::parLapply(cl, simvec, ffun) parallel::stopCluster(cl) res } else parallel::parLapply(cl, simvec, ffun) } } else lapply(simvec, ffun) t.star <- do.call(cbind,res) rownames(t.star) <- names(t0) msgs <- list() for (mtype in paste0("factory-",c("message","warning","error"))) { msgs[[mtype]] <- trimws(unlist(lapply(res, attr, mtype))) msgs[[mtype]] <- table(msgs[[mtype]]) } if ((numFail <- sum(msgs[["factory-error"]])) > 0) { warning("some bootstrap runs failed (",numFail,"/",nsim,")") } fail.msgs <- if (numFail==0) NULL else msgs[["factory-error"]] ## mimic ending of boot() construction s <- structure(list(t0 = t0, t = t(t.star), R = nsim, data = model.frame(x), seed = .Random.seed, statistic = FUN, sim = "parametric", call = mc, ## these two are dummies ran.gen = "simulate(, 1, *)", mle = mle), class = c("bootMer", "boot")) ## leave these for back-compat attr(s,"bootFail") <- numFail attr(s,"boot.fail.msgs") <- fail.msgs attr(s,"boot.all.msgs") <- msgs ## store all messages (tabulated) attr(s,"boot_type") <- "boot" s } ## {bootMer} ##' @S3method as.data.frame boot as.data.frame.bootMer <- function(x,...) { as.data.frame(x$t) } ## FIXME: collapse convergence warnings (ignore numeric values ## when tabulating) ? print.bootWarnings <- function(x, verbose=FALSE, ...) { checkDots(..., .action = "warning") msgs <- attr(x, "boot.all.msgs") if (is.null(msgs) || all(lengths(msgs)==0)) { return(invisible(NULL)) } wstr <- "\n" for (i in c("message","warning","error")) { f <- paste0("factory-",i) m <- sort(msgs[[f]]) if (length(m)>0) { if (!verbose) { wstr <- c(wstr, paste0(sum(m)," ",i,"(s): ",names(m)[1])) if (length(m)>1) { wstr <- c(wstr," (and others)") } wstr <- c(wstr,"\n") } else { wstr <- paste0(i,"(s):\n") wstr <- c(wstr,capture.output(cat(cbind(" ",m,names(m)),sep="\n"))) wstr <- c(wstr,"\n") } } } message(wstr) return(invisible(NULL)) } print.bootMer <- function(x,...) { NextMethod(x,...) print.bootWarnings(x, verbose=FALSE) return(invisible(x)) } confint.bootMer <- function(object, parm=seq(length(object$t0)), level=0.95, type=c("perc","norm","basic"), ...) { type <- match.arg(type) bnms <- c(norm="normal",basic="basic",perc="percent") blens <- c(norm=3,basic=5,perc=5) bnm <- bnms[[type]] blen <- blens[[type]] btab0 <- t(vapply(parm, function(i) boot::boot.ci(object,index=i,conf=level, type=type)[[bnm]], FUN.VALUE=numeric(blen))) btab <- btab0[,(blen-1):blen,drop=FALSE] rownames(btab) <- names(object$t0) a <- (1 - level)/2 a <- c(a, 1 - a) ## replicate stats::format.perc pct <- paste(format(100 * a, trim = TRUE, scientific = FALSE, digits = 3), "%") colnames(btab) <- pct return(btab) } lme4/R/allFit.R0000644000176200001440000003165015113136605012660 0ustar liggesusersmeth.tab.0 <- cbind(optimizer= rep(c("bobyqa", "Nelder_Mead", "nlminbwrap", "nmkbw", "optimx", "nloptwrap" ), c(rep(1,5),2)), method= c(rep("",4), "L-BFGS-B", "NLOPT_LN_NELDERMEAD", "NLOPT_LN_BOBYQA")) ## ugh: hardcoded list (incomplete?) of allowable *control* options by optimizer ## could make more of an effort to match max-iterations/evals, ## (x|f)*(abs|rel) tolerance, ... opt.ctrls <- list(bobyqa=c("npt","rhobeg","rhoend","iprint","maxfun"), Nelder_Mead=c("iprint","maxfun","FtolAbs", "FtolRel","XtolRel","MinfMax", "xst","xt","verbose","warnOnly"), nlminbwrap=c("eval.max","iter.max","trace","abs.tol", "rel.tol","x.tol","xf.tol","step.min", "step.max","sing.tol","scale.init", "diff.g"), optimx=c("trace","fnscale","parscale","ndeps", "maxit","abstol","reltol","method"), nloptwrap=c("minf_max","ftol_rel","ftol_abs", "xtol_rel", "xtol_abs", "maxeval", "maxtime", "algorithm"), nmkbw=c("tol","maxfeval","regsimp","maximize", "restarts.max","trace","maxfun")) ## name of 'max function evaluations' for each optimizer maxfun_arg <- c(bobyqa = "maxfun", Nelder_Mead = "maxfun", nlminbwrap = "eval.max", optimx = "maxit", nloptwrap = "maxeval", nmkbw = "maxfeval") nmkbw <- function(fn, par, lower, upper, control) { if (length(par)==1) { res <- optim(fn=fn,par=par,lower=lower,upper=100*par, method="Brent") } else { res <- dfoptim::nmkb(fn=fn,par=par, lower=lower,upper=upper,control=control) } res$fval <- res$value res } ##' Attempt to re-fit a [g]lmer model with a range of optimizers. ##' The default is to use all known optimizers for R that satisfy the ##' requirements (do not require explicit gradients, allow ##' box constraints), in three categories; (i) built-in ##' (minqa::bobyqa, lme4::Nelder_Mead, nlminbwrap), (ii) wrapped via optimx ##' (most of optimx's optimizers that allow box constraints require ##' an explicit gradient function to be specified; the two provided ##' here are really base R functions that can be accessed via optimx, ##' (iii) wrapped via nloptr; (iv) ##' ##' @param object a fitted model ##' @param meth.tab a matrix (or data.frame) with columns ##' - method the name of a specific optimization method to pass to the optimizer ##' (leave blank for built-in optimizers) ##' - optimizer the \code{optimizer} function to use ##' @param verbose print progress messages? ##' @param catch.err catch errors? ##' @param start_from_mle (logical) initialize the refitting process with starting values from the fitted model? ##' @return a list of fitted \code{merMod} objects ##' @seealso slice, slice2D in the bbmle package ##' @examples ##' library(lme4) ##' gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), ##' data = cbpp, family = binomial) ##' gm_all <- allFit(gm1, parallel=TRUE) ##' ss <- summary(gm_all) ##' ss$fixef ## extract fixed effects ##' ss$llik ## log-likelihoods ##' ss$sdcor ## SDs and correlations ##' ss$theta ## Cholesky factors ##' ss$which.OK ## which fits worked allFit <- function(object, meth.tab = NULL, data=NULL, verbose=TRUE, show.meth.tab = FALSE, maxfun = 1e5, parallel = c("no", "multicore", "snow"), ncpus = getOption("allFit.ncpus", 1L), cl = NULL, catch.errs = TRUE, start_from_mle = TRUE) { if (is.null(meth.tab)) { meth.tab <- meth.tab.0 } optvec <- meth.tab.0[,"optimizer"] if (!requireNamespace("dfoptim", quietly = TRUE)) { optvec <- setdiff(optvec, "nmkbw") meth.tab <- meth.tab[meth.tab[,"optimizer"] %in% optvec, ] } if (!requireNamespace("optimx", quietly = TRUE)) { optvec <- setdiff(optvec, "optimx") meth.tab <- meth.tab[meth.tab[,"optimizer"] %in% optvec,] } if (show.meth.tab) { return(meth.tab) } stopifnot(length(dm <- dim(meth.tab)) == 2, dm[1] >= 1, dm[2] >= 2, is.character(optimizer <- meth.tab[,"optimizer"]), is.character(method <- meth.tab[,"method"])) parallel <- match.arg(parallel) do_parallel <- have_mc <- have_snow <- NULL # "-Wall" eval(initialize.parallel) # (parallel, ncpus) --> ./utilities.R ## |--> (do_parallel, have_mc, have_snow) fit.names <- gsub("\\.$", "", paste(optimizer, method, sep=".")) ffun <- local({ ## required local vars object verbose fit.names optimizer method maxfun function(..i) { if (verbose) cat(fit.names[..i],": ") ctrl <- getCall(object)$control ## NB: 'ctrl' must become a correct *argument* list for g?lmerControl() if(is.null(ctrl)) { ctrl <- list(optimizer=optimizer[..i]) } else { if(is.call(ctrl)) # typically true ctrl <- lapply(as.list(ctrl)[-1], eval) ctrl$optimizer <- optimizer[..i] } ## add method/algorithm to optCtrl as necessary mkOptCtrl <- function(...) { x <- list(...) cc <- ctrl$optCtrl if (is.null(cc)) cc <- list() cc[[maxfun_arg[[optimizer[[..i]]]]]] <- maxfun for (n in names(x)) { ## replace existing values cc[[n]] <- x[[n]] } cc } sanitize <- function(x,okvals) { if (is.null(x)) return(NULL) if (is.null(okvals)) return(x) x <- x[intersect(names(x),okvals)] ## ?? having names(control) be character(0) ## screws up nmkbw ... ?? if (length(names(x))==0) names(x) <- NULL x } ctrl$optCtrl <- switch(optimizer[..i], optimx = mkOptCtrl(method = method[..i]), nloptwrap = mkOptCtrl(algorithm= method[..i]), mkOptCtrl()) ctrl$optCtrl <- sanitize(ctrl$optCtrl, opt.ctrls[[optimizer[..i]]]) ctrl <- do.call(if(isGLMM(object)) glmerControl else lmerControl, ctrl) ## need to stick ctrl in formula env so it can be found ... form <- formula(object) env <- environment(form) tmp_env <- new.env(parent = env) # temporarily changing the environment environment(form) <- tmp_env assign("ctrl", ctrl, envir = tmp_env, inherits = FALSE) # Using the MLE as a starting point if (start_from_mle) { if (isGLMM(object)) { pars <- getME(object, c("theta", "fixef")) } else { pars <- getME(object, "theta") if(isNLMM(object)){ warning("results are not guaranteed when using nlmer") } } assign("pars", pars, envir = tmp_env, inherits = FALSE) } fit_call <- if (start_from_mle) { quote(update(object, start = pars, control = ctrl)) } else { quote(update(object, control = ctrl)) } tt <- system.time( rr <- if (catch.errs) { tryCatch(eval(fit_call), error = function(e) e) } else { eval(fit_call) } ) attr(rr, "optCtrl") <- ctrl$optCtrl # contains crucial info here attr(rr, "time") <- tt # store timing info ## restore original values to environment of the object on.exit({ environment(form) <- env }, add = TRUE) if (verbose) { if (inherits(rr,"error")) { cat("[failed]\n") } else { cat("[OK]\n") } } return(rr) } }) seq_fit <- seq_along(fit.names) res <- if (do_parallel) { if (have_mc) { parallel::mclapply(seq_fit, ffun, mc.cores = ncpus) } else if(have_snow) { if(is.null(cl)) { cl <- parallel::makePSOCKcluster(rep("localhost", ncpus)) ## consider exporting data/package ? ## parallel::clusterEvalQ(cl,library("lme4")) ## try to get data and export it? ## parallel::clusterExport(cl,??) res <- parallel::parLapply(cl, seq_fit, ffun) parallel::stopCluster(cl) res } else parallel::parLapply(cl, seq_fit, ffun) } else { warning("'do_parallel' is true, but 'have_mc' and 'have_snow' are not. Should not happen!") ## or stop() or we could silently use lapply(..) setNames(as.list(fit.names), fit.names) } } else lapply(seq_fit, ffun) names(res) <- fit.names structure(res, class = "allFit", fit = object, sessionInfo = sessionInfo(), data = data # is dropped if NULL ) } print.allFit <- function(x, width=80, ...) { cat("original model:\n") f <- attr(x,"fit") ss <- function(x) { if (nchar(x)>width) { strwrap(paste0(substr(x,1,width-3),"...")) } else x } ff <- ss(deparse1(formula(f))) cat(ff,"\n") cat("data: ",deparse(getCall(f)$data),"\n") cat("optimizers (",length(x),"): ", ss(paste(names(x),collapse=", ")),"\n", sep="") which.bad <- vapply(x,FUN=is,"error",FUN.VALUE=logical(1)) if ((nbad <- sum(which.bad))>0) { cat(nbad,"optimizer(s) failed\n") } cat("differences in negative log-likelihoods:\n") nllvec <- -vapply(x[!which.bad],logLik,numeric(1)) cat("max=",signif(max(nllvec-min(nllvec)),3), "; std dev=",signif(sd(nllvec),3), "\n") ## FIXME: print magnitudes of parameter diffs ## cat("differences in parameters:\n") ## ss <- summary(x) ## allpars <- cbind(ss$fixef, ss$sdcor) ## par_max <- invisible(x) } summary.allFit <- function(object, ...) { afun <- function(x, FUN, ...) { f1 <- FUN(x[[1]], ...) nm <- names(f1) n <- length(f1) res <- vapply(x, FUN, numeric(n), ...) if (!is.null(dim(res))) { res <- t(res) } else { res <- as.matrix(res) colnames(res) <- nm } res } which.OK <- !vapply(object, is, "error", FUN.VALUE=logical(1)) objOK <- object[which.OK] msgs <- lapply(objOK, function(x) x@optinfo$conv$lme4$messages) fixef <- afun(objOK, fixef) llik <- vapply(objOK, logLik, numeric(1)) times <- afun(objOK, attr, "time") feval <- vapply(objOK, function(x) x@optinfo$feval, numeric(1)) vfun <- function(x) as.data.frame(VarCorr(x))[["sdcor"]] sdcor <- afun(objOK, vfun) theta <- afun(objOK, getME, name="theta") cnm <- tnames(objOK[[1]]) if (sigma(objOK[[1]])!=1) cnm <- c(cnm,"sigma") colnames(sdcor) <- unname(cnm) sdcor <- as.data.frame(sdcor) res <- namedList(which.OK, msgs, fixef, llik, sdcor, theta, times, feval) class(res) <- "summary.allFit" res } ## should add a print method for summary: ## * fixed effects, random effects: summary of differences? ## not yet ... plot.allFit <- function(x, abbr=16, ...) { values <- opt <- NULL ## R code check/non-standard evaluation if (! (requireNamespace("ggplot2"))) { stop("ggplot2 package must be installed to plot allFit objects") } aes <- NULL ## code check ss <- summary(x) ff <- stack(as.data.frame(ss$fixef)) ff$opt <- rep(rownames(ss$fixef),length.out=nrow(ff)) if (!is.null(abbr)) ff$opt <- abbreviate(ff$opt, minlength=abbr) (ggplot2::ggplot(ff, aes(values, opt, colour=opt)) + ggplot2::geom_point() + ggplot2::facet_wrap(~ind,scale="free") + ggplot2::theme(legend.position="none") ) } lme4/R/methods.R0000644000176200001440000002266415103163201013104 0ustar liggesusersinfluence.merMod <- function(model, groups, data, maxfun=1000, do.coef = TRUE, ncores=getOption("mc.cores",1), start=NULL, ...) { .groups <- NULL ## avoid false-positive code checks .vcov <- function(x) Matrix::as.matrix(vcov(x)) if (...length()>0) warning("disregarded additional arguments") if (!do.coef) { ## simple/quick/trivial results result <- list(hat=hatvalues(model)) class(result) <- "influence.merMod" return(result) } if (missing(data)) { data <- getCall(model)$data data <- if (!is.null(data)) eval(data, parent.frame()) else stop("model did not use the data argument") } data <- as.data.frame(data) ## prevent tibble trouble if (missing(groups)) { groups <- ".case" data$.case <- rownames(data) } else if (length(groups) > 1){ del.var <- paste0(groups, collapse=".") data[, del.var] <- apply(data, 1, paste0, collapse=".") groups <- del.var } unique.del <- unique(data[, groups]) data[[".groups"]] <- data[, groups] if (!is.null(start)) { par <- start } else { par <- list(theta=getME(model, "theta")) if (inherits(model, "glmerMod") && getME(model, "devcomp")$dims[["nAGQ"]]>0) { par$fixef <- fixef(model) } } fixed <- fixef(model) fixed.1 <- matrix(0, length(unique.del), length(fixed)) rownames(fixed.1) <- unique.del colnames(fixed.1) <- names(fixed) Vs <- VarCorr(model) nms <- names(Vs) sep <- ":" if (length(nms) == 1) { nms <- "" sep <- "" } vc <- getME(model, "sigma")^2 names(vc) <- "sigma^2" for (i in 1:length(Vs)){ V <- Vs[[i]] c.names <- colnames(V) e.names <- outer(c.names, c.names, function(a, b) paste0("C[", a, ",", b, "]")) diag(e.names) <- paste0("v[", c.names, "]") v <- V[lower.tri(V, diag=TRUE)] names(v) <- paste0(nms[i], sep, e.names[lower.tri(e.names, diag=TRUE)]) vc <- c(vc, v) } vc.1 <- matrix(0, length(unique.del), length(vc)) rownames(vc.1) <- unique.del colnames(vc.1) <- names(vc) feval <- numeric(length(unique.del)) converged <- logical(length(unique.del)) vcov.1 <- vector(length(unique.del), mode="list") names(vcov.1) <- names(feval) <- names(converged) <- unique.del # control <- if (one.step){ # if (inherits(model, "lmerMod")) lmerControl(optimizer="optimx", optCtrl=list(method="L-BFGS-B", maxit=1)) # else if (inherits(model, "glmerMod")) glmerControl(optimizer="optimx", optCtrl=list(method="L-BFGS-B", maxit=1)) # } else { control <- if (inherits(model, "lmerMod")) lmerControl(optCtrl=list(maxfun=maxfun)) else if (inherits(model, "glmerMod")) glmerControl(optCtrl=list(maxfun=maxfun)) # } deleteGroup <- function(del) { data$del <- del mod.1 <- suppressWarnings(update(model, data=data, subset=(.groups != del), start=par, control=control)) opt <- mod.1@optinfo feval <- opt$feval converged <- opt$conv$opt == 0 && length(opt$warnings) == 0 fixed.1 <- fixef(mod.1) Vs.1 <- VarCorr(mod.1) vc.0 <- getME(mod.1, "sigma")^2 for (V in Vs.1){ vc.0 <- c(vc.0, V[lower.tri(V, diag=TRUE)]) } vc.1 <- vc.0 vcov.1 <<- .vcov(mod.1) namedList(fixed.1, vc.1, vcov.1, converged, feval) } result <- if(ncores >= 2) { message("Note: using a cluster of ", ncores, " cores") cl <- parallel::makeCluster(ncores) on.exit(parallel::stopCluster(cl)) parallel::clusterEvalQ(cl, require("lme4")) parallel::clusterApply(cl, unique.del, deleteGroup) } else { lapply(unique.del, deleteGroup) } result <- combineLists(result) fixed.1 <- result$fixed.1 rownames(fixed.1) <- unique.del colnames(fixed.1) <- names(fixed) vc.1 <- result$vc.1 rownames(vc.1) <- unique.del colnames(vc.1) <- names(vc) feval <- as.vector(result$feval) converged <- as.vector(result$converged) vcov.1 <- result$vcov.1 names(vcov.1) <- names(feval) <- names(converged) <- unique.del left <- "[-" right <- "]" if (groups == ".case") { groups <- "case" } nms <- c("fixed.effects", paste0("fixed.effects", left, groups, right), "var.cov.comps", paste0("var.cov.comps", left, groups, right), "vcov", paste0("vcov", left, groups, right), "groups", "deleted", "converged", "function.evals") result <- list(fixed, fixed.1, vc, vc.1, .vcov(model), vcov.1, groups, unique.del, converged, feval) names(result) <- nms class(result) <- "influence.merMod" result } ## lookup table for influence.merMod elements ipos <- c("fixed"=1, "fixed.sub"=2, "var.cov"=3, "var.cov.sub"=4, "vcov"=5, "vcov.sub"=6) dfbeta.influence.merMod <- function(model, which=c("fixed", "var.cov"), ...){ which <- match.arg(which) b <- model[[ipos[sprintf("%s.sub",which)]]] b0 <- model[[ipos[which]]] b - matrix(b0, nrow=nrow(b), ncol=ncol(b), byrow=TRUE) } dfbetas.influence.merMod <- function(model, ...){ vList <- model[[ipos["vcov.sub"]]] n <- nrow(vList[[1]]) vmat <- t(vapply(vList, function(x) sqrt(diag(x)), numeric(n))) dfbeta(model)/vmat } cooks.distance.merMod <- function(model, ...) { p <- Matrix::rankMatrix(getME(model,"X")) hat <- hatvalues(model) dispersion <- sigma(model)^2 res <- residuals(model,type="pearson") res <- (res/(1 - hat))^2 * hat/(dispersion * p) res[is.infinite(res)] <- NaN res } cooks.distance.influence.merMod <- function(model, ...) { db <- dfbeta(model) n <- nrow(db) p <- ncol(db) d <- numeric(n) names(d) <- names(model[["vcov[-case]"]]) vcov.inv <- (n - p)/(n*p)*solve(model$vcov) for (i in 1:n) { d[i] <- db[i, ] %*% vcov.inv %*% db[i, ] } d } ## from ?lm.influence: ## wt.res: a vector of _weighted_ (or for class 'glm' rather _deviance_) ## residuals. ## ## residuals.lm gives r*sqrt(object$weights) (if non-NULL weights) ## for type %in% c("deviance","pearson") ## ## residuals.glm gives (y - mu) * sqrt(wts)/sqrt(object$family$variance(mu)) ## rstudent.merMod <- function (model, ...) { r <- residuals(model, type="deviance") hat <- hatvalues(model) pr <- residuals(model, type="pearson") r <- sign(r) * sqrt(r^2 + (hat * pr^2)/(1 - hat)) r[is.infinite(r)] <- NaN r/sigma(model) } ##' @S3method sigma merMod sigma.merMod <- function(object, ...) { dc <- object@devcomp dd <- dc$dims if(dd[["useSc"]]) dc$cmp[[if(dd[["REML"]]) "sigmaREML" else "sigmaML"]] else 1. } ##' @importFrom stats terms ##' @S3method terms merMod terms.merMod <- function(x, fixed.only=TRUE, random.only=FALSE, ...) { if (missing(fixed.only) && random.only) fixed.only <- FALSE if (fixed.only && random.only) stop("can't specify 'only fixed' and 'only random' terms") tt <- attr(x@frame,"terms") if (fixed.only) { ## ... may contain 'data' (needed when formula contains .) tt <- terms.formula(formula(x,fixed.only=TRUE), ...) attr(tt,"predvars") <- attr(terms(x@frame),"predvars.fixed") } if (random.only) { tt <- terms.formula(reformulas::subbars(formula(x,random.only=TRUE))) ## FIXME: predvars should be random-only attr(tt,"predvars") <- attr(terms(x@frame),"predvars.random") } tt } ##' @importFrom stats update ##' @S3method update merMod update.merMod <- function(object, formula., ..., evaluate = TRUE) { if (is.null(call <- getCall(object))) stop("object should contain a 'call' component") extras <- match.call(expand.dots = FALSE)$... if (!missing(formula.)) call$formula <- update.formula(formula(object), formula.) if (length(extras) > 0) { existing <- !is.na(match(names(extras), names(call))) for (a in names(extras)[existing]) call[[a]] <- extras[[a]] if (any(!existing)) { call <- c(as.list(call), extras[!existing]) call <- as.call(call) } } if (!evaluate) return(call) ## should be able to find model components somewhere in (1) formula env; (2) calling env; ## (3) parent frame [plus its parent frames] ## see discusion at https://stackoverflow.com/questions/64268994/evaluate-call-when-components-may-be-scattered-among-environments ## FIXME: suppressWarnings(update(model)) will give ## Error in as.list.environment(X[[i]], ...) : ## promise already under evaluation: recursive default argument reference or earlier problems? ff <- environment(formula(object)) pf <- parent.frame() sf <- sys.frames()[[1]] tryCatch(eval(call, envir = ff), ## try formula environment error = function(e) { tryCatch(eval(call, envir = sf), ## try stack frame error = function(e) { eval(call, envir=pf) ## try parent frame }) }) ## ## combf <- tryCatch( ## do.call("c", lapply(list(ff, sf), as.list)), ## error=function(e) as.list(ff) ## ) ## eval(call,combf, enclos=pf) } lme4/R/lmerControl.R0000644000176200001440000002063715103764661013760 0ustar liggesusersnamedList <- function(...) { L <- list(...) snm <- sapply(substitute(list(...)), deparse)[-1] if (is.null(nm <- names(L))) nm <- snm if (any(nonames <- nm == "")) nm[nonames] <- snm[nonames] setNames(L,nm) } ##' By extracting "checking options" from \code{nms}, this function ##' implicitly defines what "checking options" are. ##' ##' @title Extract "checking options" or "checking arguments" (-> ../man/lmerControl.Rd) ##' those starting with "check." but *not* the "check.conv.." nor "check.rankX.." ones: ##' @param nms character vector ##' @return those elements of \code{nms} which are "checking options" ##' @author Martin Maechler .get.checkingOpts <- function(nms) nms[grepl("^check\\.(?!conv|rankX|scaleX)", nms, perl=TRUE)] ##' Check check.conv.*() options and produce good error message chk.convOpt <- function(opt) { cnm <- deparse(nm <- substitute(opt))[[1]] if(!is.list(opt)) stop("check.conv* option ", cnm, " must be a list") if(!is.character(opt$action)) stop("check.conv* option ", cnm, " has no 'action' string") if(!is.numeric(tol <- opt$tol)) stop("check.conv* option ", cnm, " must have a numeric 'tol' component") if(length(tol) != 1 || tol < 0) stop("check.conv* option ", cnm, "$tol must be number >= 0") if(!is.null(relTol <- opt$relTol)) stopifnot(is.numeric(relTol), length(relTol) == 1, relTol >= 0) invisible() } ##' Exported constructor for the user calling *lmerControl(): .makeCC <- function(action, tol, relTol, ...) { stopifnot(is.character(action), length(action) == 1) if(!is.numeric(tol)) stop("must have a numeric 'tol' component") if(length(tol) != 1 || tol < 0) stop("'tol' must be number >= 0") mis.rt <- missing(relTol) if(!mis.rt && !is.null(relTol)) stopifnot(is.numeric(relTol), length(relTol) == 1, relTol >= 0) ## and return the list, the "..." just being appended unchecked c(list(action = action, tol = tol), if(!mis.rt) list(relTol = relTol), list(...)) } ##' Internal utility : Allow check.conv.* to be a string chk.cconv <- function(copt, callingFn) { cnm <- deparse(substitute(copt)) if(is.character(copt)) { def <- eval(formals(callingFn)[[cnm]]) def$action <- copt assign(cnm, def, envir=sys.frame(sys.parent())) } else chk.convOpt(copt) } ## work around code check since we adjust formals() later check.response.not.const <- compDev <- nAGQ0initStep <- tolPwrss <- NULL merControl <- function(optimizer="nloptwrap", # originally Nelder_Mead, then bobyqa ... ## glmer: c("bobyqa","Nelder_Mead") restart_edge=TRUE, ## glmer: FALSE ## don't call any of these arguments "check.*" -- will fail ## automatic check-option-checking in ## inst/tests/test-lmer.R boundary.tol=1e-5, calc.derivs=NULL, use.last.params=FALSE, sparseX=FALSE, standardize.X=FALSE, autoscale=NULL, ## input checking options: check.nobs.vs.rankZ="ignore", ## "warningSmall", check.nobs.vs.nlev="stop", check.nlev.gtreq.5="ignore", check.nlev.gtr.1="stop", check.nobs.vs.nRE="stop", check.rankX = c("message+drop.cols", "silent.drop.cols", "warn+drop.cols", "stop.deficient", "ignore"), check.scaleX = c("warning","stop","silent.rescale", "message+rescale","warn+rescale","ignore"), check.formula.LHS = "stop", ## convergence options check.conv.nobsmax = 1e4, check.conv.nparmax = 10, check.conv.grad = .makeCC("warning", tol = 2e-3, relTol = NULL), check.conv.singular = .makeCC(action = "message", tol = getSingTol()), check.conv.hess = .makeCC(action = "warning", tol = 1e-6), optCtrl = list(), mod.type="lmer" ## glmer: "glmer" ## glmer: tolPwrss=1e-7 ## compDev = TRUE ## nAGQ0initStep = TRUE ## check.response.not.const="stop" ) { ## FIXME: is there a better idiom? match.call() ? ## fill in values from options, but **only if not specified explicitly in arguments** ## (ugh ... is there a better way to do this? mapply() is clunky: ## http://stackoverflow.com/questions/16276667/using-apply-with-assign-in-r stopifnot(is.list(optCtrl)) if (mod.type=="glmer" && length(optimizer)==1) { ## replicate() works whether 'optimizer' is a function or a string optimizer <- replicate(2,optimizer) } c.opts <- paste0(mod.type,"Control") merOpts <- getOption(c.opts) if (!is.null(merOpts)) { nn <- names(merOpts) nn.ok <- .get.checkingOpts(names(merOpts)) if (length(nn.ignored <- setdiff(nn,nn.ok))>0) { warning("some options in ",shQuote(sprintf("getOption('%s')",c.opts)), " ignored : ",paste(nn.ignored,collapse=", ")) } for (arg in nn.ok) { if (do.call(missing,list(arg))) ## only if missing from explicit arguments assign(arg,merOpts[[arg]]) } } check.rankX <- match.arg(check.rankX) check.scaleX <- match.arg(check.scaleX) ## compatibility and convenience, caller can specify action string only: me <- sys.function() chk.cconv(check.conv.grad, me) chk.cconv(check.conv.singular, me) chk.cconv(check.conv.hess , me) if (mod.type=="glmer" && use.last.params && calc.derivs) { warning("using ",shQuote("use.last.params"),"=TRUE and ", shQuote("calc.derivs"),"=TRUE with ",shQuote("glmer"), " will not give backward-compatible results") } ret <- namedList(optimizer, restart_edge, boundary.tol, calc.derivs, use.last.params, checkControl = namedList(autoscale, check.nobs.vs.rankZ, check.nobs.vs.nlev, check.nlev.gtreq.5, check.nlev.gtr.1, check.nobs.vs.nRE, check.rankX, check.scaleX, check.formula.LHS), checkConv= namedList(check.conv.nobsmax, check.conv.nparmax, check.conv.grad, check.conv.singular, check.conv.hess), optCtrl=optCtrl) if (mod.type=="glmer") { ret <- c(ret, namedList(tolPwrss, compDev, nAGQ0initStep)) ret$checkControl <- c(ret$checkControl, namedList(check.response.not.const)) } class(ret) <- c(c.opts, "merControl") ret } lmerControl <- merControl glmerControl <- merControl formals(glmerControl)[["check.conv.nparmax"]] <- 20 formals(glmerControl)[["optimizer"]] <- c("bobyqa","Nelder_Mead") formals(glmerControl)[["mod.type"]] <- "glmer" formals(glmerControl)[["restart_edge"]] <- FALSE formals(glmerControl) <- c(formals(glmerControl), list(tolPwrss=1e-7, compDev = TRUE, nAGQ0initStep = TRUE, check.response.not.const="stop") ) ##' @rdname lmerControl ##' @export nlmerControl <- function(optimizer="Nelder_Mead", tolPwrss = 1e-10, optCtrl = list()) { stopifnot(is.list(optCtrl)) if (length(optimizer)==1) { optimizer <- replicate(2,optimizer) } structure(namedList(optimizer, tolPwrss, optCtrl=optCtrl), class = c("nlmerControl", "merControl")) } lme4/R/deriv.R0000644000176200001440000000674315022107260012555 0ustar liggesusers ##' This function computes the 1st and 2nd derivative (gradient and ##' Hessian) of a function ##' with vector-valued input and scalar output using a central finite ##' difference method. ##' ##' The function has to return a single scalar numerical value and take ##' as argument a numeric vector of the same length as \code{x}. The function also ##' has to be evaluable in a neighborhood around \code{x}, i.e. at ##' \code{x - delta} and at \code{x + delta} for all elements in \code{x}. ##' ##' @title Compute 1st and 2nd derivative ##' @param fun function for which to compute the gradient. ##' @param x numeric vector of values at which to compute the ##' gradient. ##' @param delta the amount to subtract and add to \code{x} when computing the ##' central difference. ##' @param fx optional value of \code{fun(x, ...)}. ##' @param ... additional arguments to \code{fun}. ##' ##' @keywords utilities ##' @export ##' @family derivatives ##' ##' @return a list with components ##' \item{gradient}{the first derivative vector} ##' \item{Hessian}{the second derivative matrix} ##' @author Rune Haubo Bojesen Christensen ##' deriv12 <- function(fun, x, delta=1e-4, fx=NULL, lower=rep(NA,length(x)), upper=rep(NA,length(x)), ...) { ### Compute gradient and Hessian simultaneously (to save computing time) nx <- length(x) if(is.null(fx)) fx <- fun(x, ...) stopifnot(length(fx) == 1, nx >= 1) H <- array(NA_real_, dim=c(nx, nx)) g <- numeric(nx) xadd <- x + delta hasUB <- !missing(upper) && any(active <- !is.na(upper)) if(hasUB) { # only then may have non-NA if((hasUB <- any(active <- active & xadd > upper))) { udelta <- ifelse(active, upper-x, delta) xadd[active] <- upper[active] } } xsub <- x - delta hasLB <- !missing(lower) && any(active <- !is.na(lower)) if(hasLB) { # only then may have non-NA if((hasLB <- any(active <- active & xsub < lower))) { ldelta <- ifelse(active, x-lower, delta) xsub[active] <- lower[active] } } ## substitute elements of 'mod' vectors into position(s) 'pos' ## in base spos <- function(base,mod,pos) { if (is.list(mod)) { for (i in seq_along(mod)) { base <- spos(base,mod[[i]],pos[i]) } base } else { base[pos] <- mod[pos] base } } for(j in 1:nx) { ## Diagonal elements: fadd <- fun(spos(x,xadd,j), ...) fsub <- fun(spos(x,xsub,j), ...) udj <- if(hasUB) udelta[j] else delta ldj <- if(hasLB) ldelta[j] else delta H[j, j] <- fadd/udj^2 - 2 * fx/(udj*ldj) + fsub/ldj^2 g[j] <- (fadd - fsub) / (udj+ldj) # "total delta" (udelta+ldelta)[j] ## Off diagonal elements: for(i in seq_len(j - 1L)) { # 1 <= i < j ## Compute upper triangular elements (and mirror to lower tri.): ud.i <- if(hasUB) udelta[i] else delta ld.i <- if(hasLB) ldelta[i] else delta xaa <- spos(x,list(xadd,xadd),c(i,j)) xas <- spos(x,list(xadd,xsub),c(i,j)) xsa <- spos(x,list(xsub,xadd),c(i,j)) xss <- spos(x,list(xsub,xsub),c(i,j)) H[i, j] <- H[j, i] <- fun(xaa, ...)/(ud.i+udj)^2 - fun(xas, ...)/(ud.i+ldj)^2 - fun(xsa, ...)/(ld.i+udj)^2 + fun(xss, ...)/(ld.i+ldj)^2 } } list(gradient = g, Hessian = H) } lme4/R/rePCA.R0000644000176200001440000000167415022107260012374 0ustar liggesusers##' PCA of random-effects variance-covariance estimates ##' ##' Perform a Principal Components Analysis (PCA) of the random-effects ##' variance-covariance estimates from a fitted mixed-effects model ##' @title PCA of random-effects ##' @param x a merMod object ##' @return a \code{prcomplist} object ##' @author Douglas Bates ##' @export rePCA <- function(x) UseMethod('rePCA') #' @export rePCA.merMod <- function(x) { chfs <- getME(x,"Tlist") # list of lower Cholesky factors nms <- names(chfs) unms <- unique(nms) names(unms) <- unms svals <- function(m) { vv <- svd(m,nv=0L) names(vv) <- c("sdev","rotation") vv$center <- FALSE vv$scale <- FALSE class(vv) <- "prcomp" vv } structure(lapply(unms,function(m) svals(Matrix::bdiag(chfs[which(nms == m)]))), class="prcomplist") } #' @export summary.prcomplist <- function(object,...) { lapply(object,summary) } lme4/R/GHrule.R0000644000176200001440000000224015022107260012616 0ustar liggesusers##' Create a univariate Gauss-Hermite quadrature rule ##' ##' This version of Gauss-Hermite quadrature provides the node ##' positions and weights for a scalar integral of a function ##' multiplied by the standard normal density. GHrule <- function (ord, asMatrix=TRUE) { stopifnot(length(ord) == 1, (ord <- as.integer(ord)) >= 0L, ord < 101L) if (ord == 0L) { if (asMatrix) return(matrix(0, nrow=0L, ncol=3L)) stop ("combination of ord==0 and asMatrix==TRUE not implemented") } ## fgq_rules comes from sysdata.rda: ## result of ## library("fastGHQuad") ## rescale <- function(x, scale.weights=TRUE, scale.roots=TRUE) { ## within(x, { ## if (scale.weights) w <- w/sum(w) ## if (scale.roots) x <- x*sqrt(2) ## }) ## } ## fgqRules <- lapply(1:100, function(n) setNames(rescale(gaussHermiteData(n)), c("z", "w"))) ## ## However, this shows small differences !! ## all.equal(lme4:::fgq_rules, fgqRules, tol=0) fr <- as.data.frame(fgq_rules[[ord]]) rownames(fr) <- NULL fr$ldnorm <- dnorm(fr$z, log=TRUE) if (asMatrix) as.matrix(fr) else fr } lme4/R/sparsegrid.R0000644000176200001440000000263715022107260013605 0ustar liggesusers## Generate sparse multidimensional Gaussian quadrature grids ---> ../man/GQdk.Rd ## Unused currently; rather GHrule() --> ./GHrule.R GQdk <- function(d=1L, k=1L) { stopifnot(0L < (d <- as.integer(d)[1]), d <= 20L, 0L < (k <- as.integer(k)[1]), k <= length(GQNd <- GQN[[d]]))## -> GQN, stored in ./sysdata.rda tmat <- t(GQNd[[k]]) ##rperms<- combinat::permn(seq_len(d) + 1L, function(v) c(1L,v)) ## rperms <- lapply(.Call(allPerm_int, seq_len(d) + 1L), function(v) c(1L, v)) perms <- tryCatch ( .Call(allPerm_int, seq_len(d) + 1L, as.integer(factorial(d))), warning = function (w) w, error = function (e) e) if (methods::is(perms, "error") | methods::is(perms, "warning")) stop("Can not allocate a vector that large") rperms <- lapply(perms, function(v) c(1L, v)) dd <- unname(as.matrix(do.call(expand.grid, c(rep.int(list(c(-1,1)), d), KEEP.OUT.ATTRS=FALSE)))) #unname(unique(t(do.call(cbind, # lapply(as.data.frame(t(cbind(1, dd))), # "*", e2=do.call(cbind, lapply(rperms, function(ind) tmat[ind,]))))))) e2 <- do.call(cbind, lapply(rperms, function(ind) tmat[ind,])) ddf <- as.data.frame(t(cbind(1,dd))) res <- NULL for (i in 1:ncol(ddf)) res <- unique(rbind(res, t(ddf[, i] * e2))) return(res) } lme4/R/sysdata.rda0000644000176200001440000162111015022107260013451 0ustar liggesusersý7zXZi"Ţ6!ĎXĚâlďţ])TW"änRĘź’Řâ •ˇá°,ľďÁŐćboż*m§ŕ =îFáżžŢqۡWJ/€«€Ťm˙[ţ>]XIRHśm…#ş´4‚Ce 3ö«ýцݺ#64K‹źAˇ™˘ RtUŐƨ´%YT°˝HĽą4-çPěs‘_Ű4?ŤgŇŇ'×5µ`ĆđwĽ˝¦ôŻJk›8v«ąÉÜpąčČäfôönŔbYť€Ô–-!®,äđĂ©!`Â=ŕĺmŘÄĘ·=$űG‹(#:ĘpťĎ?ř]üöXđ5­3ĆŹ¬Ť1ŻAĽµ4,ź4C¦˙Ç›ÜíŮ®”žłAP‡Ýl+ą-¶®‘űJ‘ă:Öćq«Ëk¸L)>âN t:PË‘ŕNZřńǵ>8řÄÇî´ň (éODţčßh=xNSqđ†­k.RV˙­qPgĽŔćru`h}źŠŻ`l¦g„*t/đ¨ź6šÄąĘ&őŕńJ^DTżąłD™ řę2a€ź# íĄt†ťđ«čÇ4něe'ŹNc[ľF† }żó5L"=Ă*Ë˝ě¦ŰrŇcśť”ádîú@6C”‘>Fč‘ŮZFd]Nć:BÖ O©ÜUĄü€Îl 9Ľ:™TťňŢýr ¬ëµţvŞßMĽ˙h*T|wĽÁĺ÷ŤŮ»”Ę ) xÓ‘*IVB>RŢB×—šżÁŹ ŐçźP™,Ë”±-ŻĂÝ+o=ţr ·K)ÓŽ+ű‡}f2Ř"iRYhy% ć(ŃRórŰü´Đ!őţ&NˇS¸ŠÇ„ënŻi´>öÓýC6 ¦¶u¸@mż‰P¶o=ÔîÖÉM|•.ü‰S !ŕúDßó¬˘ű§ánc=ÉIűş›cÁp8¬Ž"_¤8p’čמÂUŤäĐQĹ©fŇ·§rN“€gw´"vŤQzŮOŰĐe™+.łűaě—ÂÚ­@©ńäŠßĄĹ{´4ÇjĘ#·.Ź ŁzüŠ>•śÎÎŽÜĐÔ<®Ż¬˘HČĺ=h@ßwĎÚJK}›éE|§AËóMŕTĘŻP(m;߉”őír3Ś ?đE%éťT%]:'ę·ĄĄGťúPnD`ÄΉ3ÖímőĎ:Y›ďĹFUEż\“Mihb‡ĐŰŐŇŁŢĎöl‚iQtĐ@m“ %…ăáńläă<'CTć‡Ĺ&’¸J…Ţ,ŻBú<óâ •©™V_%‰wăÁOş\cĐ€ĐĂéLŐŰ@*FcřýD^pwH§˝ú݆ř\ąĚĆc¨Ľ(VzÍEÝZ+Ńu‘óŃ&¤zZE6y§vŰl<ľ+ă›EłDNě;—Ąü"!ě~ś“>?yßsŁöńx2eŃ$)¨ÄOr㼠a•‹HýĄĎëšÁ´ÁŽ2ł¬d®lŁ~(„Öb!­ÎcÝ଎'+WE°5َä¸Y×Înn@DnŇ•h (Ň?Şâ¤Ź“ŚđL k šRďĐÄŰůo2˝ł~n»P4"Ň–çž «6[L13&”^<łSĹîFktG´3ݡ€®¬3 ×řܢĽ ż˘Mť=Ř‹úš6qቦpŽą_hć:/CÂÎŮ©Ďp&Ŕ.¦‚Jčs~ŁM”’\r˙Ô$ěč0őU™68‰9Ýnó DÉTŮľâ® ÎľŁ ŤŰ ýÖrUPçÓź‘¤®]üôEJ©HÁĐŻTX‘Łĺ1ŐÚy@Sí +ő™¨©ëňvźë=\ýäö`¬ÚŔtĄśl±ÖűĎľ.DŻ=DĎ´Âip¤ľ=ŽeoĽö ¨í3CÍŔX~łLŹ›F‰Hř.oÖO›—Ś„÷3Ń‹f)ž– <żüą5×rŔ5Q÷ űzŃW‰ň(Őžâ¤=da•éiJ­É6°NÝÂAIĄ®÷xúÓ(źZ)ěm˛Š Ě­TÔŐĂ´ĺngÁfĂ%‰N˘7}Ui|t/ť„ *‹ďŘ,†ĐźhwÎxŇ“ď'.ŞťśŔ¤ ‰–ľ&dĺű>žB$eż€8)0T[7g~ĆůĎ]Y C„µ@Ľß´ ´ÖlDWłjÇY L!·KŇG3.6ż}4ř7•p`Í€nËË•.z=˙dĄë D(@ ![őÚŘ~ťĚÔ¸bD¦¬×Ř44´fżŽáL…łŰíř2ź­Z›Ć)l+_‰~°–EĆËšbr‰ ÖĚ’ÚĺŐŐ{$`'ŐŤ¸ T§›•‘îýęŹ4Ę)éRĺúg˙"Îä'ÍCďŤĎ h+Á¦·!‚Ú´…Abů˙ŔnŹV"Řt¬5ÜT_>¤†Ş,J2†<Ť;K&(§3őŹÁMF$Řźw›µp BČă,čĐ:·tş!/íŢ;ů WrĎX°IΊB’çďdg+z‚1=gÔ<Ěëd·@5ŰBZˇ8i;t5Űö1AäîbĹď)8ąO&C‰Ŕ6–LĽŚ˝T …äuh®#ř z¤ÉOsT5PăI9C«ÚĎÂ4´ĺJÔPÎƱ wjNöÁUľŔIuůĚźż @Ĺ~×äŐoĽÍÝA÷{!Í5&ŘÓËĆËý!âSŤp5oפ‚t»ÚĚ´µŤX)ĺ$âş­Ű)ĺÖČîźŰÚn§BĘôzŹ˘YĚýI˘ĆČĘ´vŹwöÂ0dń8rÜb{˘Ć"sř™4OŠ>öĽF‰ťHGćJYVń‚C˘·ń§loŮ×˝˛d­·ě8śűiŮN©W$ŕČǧ`ż|ó’pRrŁl0(7wDűkE$}×;2>0ŔĹ ś} úZ:ŠůâąőÂÇT+ŃoŚ(P&Ź«í¤é°µXn§ů™1‘ÚŠíŇ|8Ě'/p%e$¦®Ć'…qż Ú\©őf…ä‘b˛|L$F^Ţ'Iíďz6j˛Fć„čR>źc!X]uŠcŘ<Ůö-F;ş'čáô€¬˘vw•$˝—_ú"Čj!su>J50É©J„ą:u•ËÇd‰lŔhmo‹¸C`ąsm˛*ľŕHj©«ÉÁ?#ËRe=đ“Á+ßzř{?mŰ?¬ěź-ŔÎ9¬ľäµx…î‰ęSɴ䯭tf‚’¤‹ŮĚâ6JŃ|¦${•Sޡţf°ě"‘©n™?plYSfŚÚűgä¨1ĽnHbć?DŁ">ď#©˘ŔÜ­6]s§6ňsň3Ő»ć©0¸‘Śü€<ÖJůT-ü—FS’y·ÁTŹT}©Ď†»Ť’^ěěš…ä¤Ĺ•ŇL.Č–Wű)8Cś$—Ţw?V‚ˇë‚Ďi7ÍN$ ™pÄót^+<™›¬g ’—‹ixÚ¦ż{Mšg•.Ë*^„i% ~/w¡ăEŤ&8ů•ÉÓĄëÄ-W‘Ě#áÇń§^˛8aŔ”u^>Ň…Ą‘~¨ÉÓÔ֤ɼ§âsš 8oąáYĄQmEOĹÄđĺ&ţ.ż$^sôR]ŔwÉ‚‘1ôĆ;{Í$aäŰ0ˇE©5„ňFaF›FáAúSµaőW&ćeÚ‚5…´ŃŻMčńĐÝ w@0ŰĆĘ)˝R/ġ¤Q;ßîđ×g¶-kíń;;?¨_fá_’T&0Śî$řŰŘŐ`Ď˝ 5ţű·Zč _Ëú¶Ć(ĘăűgóDĚ&_ü‡‰ű9–€ŤGŮFHu$Qd»’ăh‹¤Ąwp$&9+´Ýá١Ż@ě/O ŤJ^śŠO#k.#EőÁQJ:©ĘČŁ¦8©ş×D™Łĺ>”}*eű…Ěé#DKŃÎ}Ü•‡Ú´óC4z0ýî,áţ(…•`PoŁâő µŁ,rĐűL(ˇ|ͧ$$F#÷ËtĄ—cDŻśúŘYqж?Cn-c/$FŰÁw2Ü–]˙{« ŇY7†”R3Ě_†đÜE°žÇĆŁüááÚřNLĂ*Ŕ˘„űČÖưÁmţüË&Sů­ťGě-ďĎ×)b{˘D¶ë-EBZh©Şe&ٵ¶iO€q…Ľh…Xšb*]ž¤(m ş"˛Ě] uăź<¦U¬N@gÉ ŇŘ„š0A„5Ľ9Ţ®¨ÔŹTťĂ‘TŽá¦‡>űZ‘SCú6ęšÓĺ(émą:6 5¶"€°™ x”Hák/ÔĆ čZ”!Z’čCv•ý®>§Â2S˘OĘ<+˛ŇOůąwgöÝ’ö'n>ôÂŐ‚z*‹v16©\ěĺló­ČůDý@ ťĽ,RąŮ–bçj±#ĽlFh•TâávAŰNłŠf^ ű<Ł…+˛účżr”+·îL…śrŕŰĽőź×ő#™Cxn##1Ĺ?k8 úú„?˘HĚfúiÝ"0˙ąÄJ5Pö’ɡfľůĹđŠň."uHVó_?@ő7żc¤»nAä—ç/ÖTÚěp·ŮąaWć#Ŕi§W6 :žSľę)žYš-Ő8K$ÁÍŐQPŃ“dÁŻPkí.ŢR–nhÄťšyűVŁ.R.)Ée#¨"4Ey˛mŞ(TjĽäúQ”B¨*Łś.=ř™?B°¤?Ňö\t©']¦né[™.ËĆHň@+A5z”1 (Vđţ›Ó.*Ě.ŞŽ”ĐbÔz•é"[Ź7BšXźÇ!ĄĎ‹SÁuŃ>hýx´ľµo'ľx\ç9ąÁđŢjt±âÍŠŇšq¬5ŃňgŽ8Űą{V~·’É“¸n¶¸ŢýŰfVÖť›×ŹËăÇ–â N1Eiý'‡C‚ăżó„LÍU ĎýµĹË2"Ň)öRF”Žđ¦P— dý}ä*v(Ú3îäďýF1ÝĚ+5˙?$OÉŮ…¦ó—3Aç!(Üě˙Ŕ3dßćŃî'î4¤ş‡f‘ăËÍ@ő2wČĺŹ)Um—HKł„{aŚ,ł˘ů|uŁj IřVD+MÁi(ö±jXkD×ôÁ›-MŽ8‹ gÎbÖšŁ _ĚŐThćC 0…ś‡ŇX't®lÍ8ž­$Á(€CµmB?Ic×âţż 0;óM@öz„YZgMÂLUvs˧śiő)qU}bŤ}» Îjć!ýY#MŃîSuŚó`5óâŢf7ŽÂďVŔlŮ‘:3Ŕ„wźni$•¬ľścś&í«J íYŚbµęąŠŠQÚÄH×îDń E×"ţSo#HîL„ßIn÷ D+ü"-Ś%§O…M¦˙T欯2SwP‹×/3íľ–Ů,* ‡Ęr„T+űŠÎ$zŠTĂŽéWkMü$¤Ş´˛8¸yęG{KZţQIž0jOFĂÖ#^·ďŰ˝ëú´Qü9L#ťw¨¬˙| Ű‚vÓL"»9Ž\‘+L Ý˙­K ă ç&·i=CĽŘDfëC˝×|íj®"eŹöĽ,ř 5=´—óőNkX‡féDTç°XýŐ†±DíČXÍ™•®ťQµ›Ç”ÁĺtŤKp[Vzń‰ýä¸ň8•=QŢéH Ż«ş˛đ9/\\–ĎJŇŞ;Ř›Çy3U– \âćühŰ Qľ&‹©’ZÝjśJŕžl^¤>cłŃ¶äŢ›Ó o‰âĐqłđöp2>ČÜ:XH»’WF9l°lWv†ÖazC‹XŘ­Mí/ĘU8ťióxZÁň–‘ř/č9+aßÝYÁ'Q°ďŔ Ś–Ĺ)U¨ Ö0Xćş%4Ą•ÎőűöŞC§#‚~h>z÷:¨µRňÄ šĂXö56ä¶*K[ˇĐˇ8öŔ„ĽNqáĐ:¸yÚ˙'#_zD-™V qŔXŞHľ.›u¨ô5›˛8’Ä]ářő»dlg­ŚVVÎĺs $Ü…”őËÎďT-ăF´+ÚLçmü¦Ú|B€ŽŘ°pÇ×f=$"_řŐ/Ń' ďAÂiZç®7‘ćk’ť"î+vĽĆ^ŕ_ÝŁ¦>săjúÍQö®Ä{%čŐÚß®ťDmSŹŕž¦Ô[Aţ %8}GĚÍ#®TčVĐă7÷Ź“źÍ¨Ź|Ţ4ŠáNí3/đ§I˝ ř ŇS@ qéµcŠŇbŇáôŔljRŇżFá•sč›S Đ…¨éż–Ě›­(IľűŚcz,©Äą9&D™:fd”; =^ă‘<×ÚČŔġ¤řw…+FŃkčUážn\§eÍeŔ5˝BŻâĄ—'´ĚGżÚu–»qꮆđ© Ŧň eéúŔ˝ %ʆ+öŘąOä}lŚ2éŘÎ7?§"]zwgŤ´Mé}ĘL6W`´ovřiFń'6Ë´…KťDçv_ňúMkŁBšE\”Đ­‰jÓ†™ÝŰÇĆň•˛oŔ#Xđ(G¨1= [ ˝ąö];Ú#°L 7r7+vń)śŰ¸ pFŽßѸŠîź1QĘ"ˇGÄiŮ]­<~ŔqD®¦;ůëe!¶Î3Ňş« ń‡črdµiq(&e@´ä ÄĹŽ›é”Kâ4Ň…ą/ňX ›}]”CMŚĎË !XÄţP«$ľĎ€ĽśnłĄőfľ†őĆ3ř§2>)˙ᕝ WƇm‚ .@ÎđŠpîđćĆłŢ9§&\ţ”^ S—č导Äj{ßŘ4ťÚÂE„Ó¸_˛D{=¶ŕ[iŞĽ€G Ú¬N_`ěF¤˛(ŐQĄˇÇFŰ(ĘËŮN+Ô2¦,Ř{ `mcůP_`iŰ!E˝ Ä6ęě^ňŹ ŠÔŚľ°ú'ż‰w$|a.Üťëę˝}3yÇy‹âUP˔Ͷ֖·Îý^ţ+ćýš¦ĆżŻţ«ń.™HęM-df€…QqŤ[Ý_ňĄ×ĄbKxÜJţ—ú ­ ‡f*‚ą†š®^|hîČ3ËĹ®ľA4Y‰j›ótŘźnŮ|ě®5ĂjußĎ–28µ'¸‚ĺ”řx| pzź–ăeß:×śŚŽ°%™,d׌EĐë Ůű)Ă÷ŞÄ@/_űĄ› [ËŽŰŇ˝ŁCJ¤Ż ą‚ś ą”P˝Śź]ÄŠfűsvŹ(~"tE 927aÉZ?ő'đđAmO’(빀\Ż$®,gĎ”xČ(–ŤH¶Up™=t¸Ťô„„‘ Óúir7!un.}Ś â-ŕ!Č~¬·ę5`?ÎýÖ‰(í®c„MD±ÁČş»Đ~T)qšĄťcvü8EßD-¤&kYµ`űR ]ĹÚŔmŠčKţ÷5ި$Z;Ő)ł‡Úgţç}RWÔHAČk÷]r—°L§¬{H~JiżĽŞjéîÝťÉęźÚî35zt˙TŐ•PnÔzJy_5ş+ ę3ŕű-¶,z¤Ż{§âę`Śş-_¬LLXËÇĺĆK÷tČ):oŘh@ÖĐ'Kn1ľ<$ČR°›Â4ąT!t‰ľ"¸őóÖOÔŚ ĚCĆ©Ĺ9Éeż[ł¨*şÜ‚XBĽx]¶tę]Ş6ٰw„u¤]1ăÝO}5Łq*ÓXhZ#+k.=¤§ šŇßäÜ5Ôű#ş Ô#ÜiT^^{–S§â­7»›á‡Ď|0}CGEÄÚ" µÇ=ÄZ…ľIjŔ›tőŤŽÍŔ›íÁ h‹ătcŻťťÎ¬‹hK*f½U8błÂYAdĂěŇ r˘ŕäčŕżkÓšR›ľiĂQźHěÖz†n0ú¬Ž‘»ÁFTj˘ĎşC® Oú+¨â3Č‘Áţ2– łY_´|wg·ń*†$î/śč<,´Đ›[}ŕ‡qC‡::Îř¶Ôô˛Éąd0~Ś–ÉŔű–ŁičÍѶż/+8ű¶Ź¦ÓďłFŤłPť śÇĘůÇ ˛GĚrmř6ŕWOŹů™˝?š1ĎfýĹĎä ß]T·W;F{X0›Aó„8\ötp—ˇk7ÖÇ ‘ôf€gËą $Xĺ-ŽVą ŇĐ…Çv‰ŚrčľUâČCňsTZ¬LQ˝ÇŠsZQ Wş_¶§ŹŻÔŐüž‡%ërýŃśľe®Y ÷[‘Lň’a2j ­ sT;±F±Ź;Źţ¨× <.hŁĺ^őÉź^&ťţ¤;M·wcGŢy&UŁč#UŤ§a/,4ÖĽĺfë)„Š+•!ř˙egQJůŔv6UFg»Z8†ů™‚,¤~ż ő˛ŔH=S¦ŽÉkĆß z…Ö„‘:QĎ&·ůňÖYđźO3$ŢF‰a"ąz\w·őĆ4D§” KżŇRäGm ˇ.$[n–N?Çö’EőES°x}¦çÉ TŠě.>,ţ˝owdşÇ&”GůX·ŮBzČ=D!.őuo“ ˛ůٵ óm1ËĂ’—ĄîxůłmCQ6hE,˝j śĚ­źË§ęÎP pB5áçrČ@áHrÉQô’ý¶ÉަîËâ˛%*”®ÖItCŇŰW3©®×É_óbŹcY”@0¬EÄĂnťP,ę• ő9ť™Ă-Ů·D\ÖĘ::Ćw¨ÜăäüۤÍ“ÎoWćűÂ( =í”–™żp"Ů`‡~ şÇąí»0űÚ^\ő}b úó]oç|äUď$ČÂÄ˙KxiÔ€0çtϸľ´ug®u÷a6Ňc Ů#ż*[TnV‚P~Ϋew¬sÁ|pă|„75NÄ~áŠGZ’bbSÉ&ÍÖâhXŞlDĽĆçŮ6}¨q?ýp„Ç W©Ş˙đ˝éšésÓ±{Űt ±ĘÓł`‡Y"„z1Ď>· cSwrC%fX*Ëۉ•sÜ‹jĚ “k%ä,c0×ČN9¶šŽu8ŁŘ±[ĺb=ťűSÍ[•!îĆî&ŁÉ1RĄąŃóPÝđ>W´îv\¶d5ĺTš}$‡?)б-”gŘęr"8Ô }ÄND®Îf\‚ÖéüŃŃťhmĹ*üűšĘ¶ji2¬î1śó×™”7ę}ŔY ¬”ý‚TNtËcĚđĺă\Ę.#B2D¶wâŰ6…uĐĐ ĹV0-šôŞ{a±~ĐqÝjB*4$€ĹjÇŤ>†ć:†ëŃ Ťef•o%°—T˙E¸$=Ä=ył°č…Ag|mN7df–ŐJ óń¬fČ5w€Ń4I@/¶*Ě‘G®~_Čľ. }XB9“ěŕ.uĆď ÖĄL ËĘŠ!pOĚIŤXrĺ¤üećpSM˘“¸%ú¤&6~`Ăą÷ÖL˝Ŕɨ»Ĺ Ľlő×Jâä˛*O)ËúˇO1`Ŕýo~¶RÔ7`ŕ–íú’a¸Ěä•-¬C‡3Ýââa{4h)íăŚJďqĽďńđR®–v;˛gvYčm„ ¨ýłĐSĐĽ|·ŰĂnůř*.$ŹÔ qgeđ™· ÜŕsŔÔŘ4; §ä"€Tş`ůU˙1©q MĘÉĺ:*­űç(97y?űi!Tr?j5é?(Ę „ŔŻšń}V`Ô-¦S+Óâ&‚Ťk~XŮ'^D ™XđŇeĘsYú»zů :ĎËş6´5+<^9ŇěóA"m(ß?먙Ď»‡,¨ŘnÓěG!iÝ/ÎëXȩKsŞű÷˙@;ß%č2'´:ÍÚŘ;#]¶| ÓA‹Âk´őÍ Äź]1ĆWáO„–Ń©ĎëX®É­Aá—=ótÍtSTä0lŞl|©X¦±·:# (L3üAaˇQĢ⇠ôElPýh–ĘóŹ,E´n‹úTJćĆE!ôľÝ‡@i¦ţ$śr¸­k88ľ®5ľ¬$VóáŚ~\2ôÓSĎ=ďżđ‰ó']?(gkMĺ­°WŇŐü{’—Q™iđĚŽµ0Ě’5Ůh®?ň‚ÍůťE†şK)‹™€ZŘ)PÍN)¦"Íč‚Ýö™8ŐLŔóĂĹ2ľD˙ß–oÖjN!1žN…XĐZęÉL$LöJ‘űŻXë‘-é®Üq)iä€Hŕ?»ěÂff *xSĄjRq•Ź–(AG¸4.ő¬7MôË“ń FˇŚ÷—OýJ±Í3“©tMhęÖSt›ŕČsYźÁäK7k±<{ć O%˘»ňO/QJ˛1 rfŕ^2Żäž„ĐY˘§oŐŘŻÇaVé¬ëa~˝°›Aą&őeoĽ¤ 4ÂlöK㋢Í÷Cĺ¤?ň‘Ý̨9ŞMÚ…›]×ŇôÔ§aŐ´áa8@€hČŇŮ…¶Óű[BŘ=Đđ 3čyŃ-ńÄÓNďÝŐ˙”´C6š€NŚ×ş˛oÎëö‰áÄAVn“ŕ č°)Ëëťu,Պߪ”#]üHČ™z>âc9›LăŔzĄź†hg)ÔóV¦·±v›ó ĺr€Ë’š­W®-ŠU'Ł:x_ţeË’đÜÁ̤¸"U+Ä0hEý.@÷5ź”˙@ßăÖ9ŢËŤŠ~RŚ*­ČŁP@°„ť`c6„ąŢŤuŠő źwŘA"ő ß]á˘žŽ /âÖgffß;€ó1„Ć©úćuăy„VsĂčéÖ>ŚóZJ€ůµŤVËl°‹Q¶2› žaÄŁŚE­î*«©3UŘĎ}ž`JRŹ‡ČŹcşhSÖfj6,b{CéďíŃŘŞĹ’Ś¦¦(u’ŕEvX)ČÚüLJňkě‘ŃpZ—<˝üŤš‡_ ŕ"–MŮ·¨?ĆkčvŕOTÎ… Á«0{̧}+îˇ;Ž3×QŚß¨§?mrťü©Gź6 ŇÝékUY‹đ[č.ŕ‡śü$PíźtAW?ů€A ^¸°Aw‰ná[5Đşš‚÷ŠÜs|9V«EöرLŢŠ5łkĆ—Ťě¸Ď"o^lúłđ) ąú Źî{‘ý|µýJäoČÜÝw E9¤ü¶ĚÝbćrťK­$˙»ő7Ën„ó3ČLkßvj’‚÷´Ň@ľ‡~ Ó®K!zçáťř$Ú*Ý2ŠîÚó§ÉdvpĚ‘I„ŢRź~#R®O†D&Ä=AxOFÝÜ@ČBmŕv8ä`Y ëM·˛Fm/ç|0™wÔ/,ĐPdłz0oň~#“$ÁEÔĎ®/ű™wÍĄ>—"ţű+ŤŤ ö(ąqwůţ2ďĆQŮ6 ]µ2ˇ–D]cäPĐÓ=DmÝzúÓÜľd˝Í—:€k˝ľwG++BŐ-ozĄĹö\zď ýŠ;źTĐń(ŕBűXÎÝxt5‰ÁĚPY÷}%Rę9Źq«®ĄˇÝ.xí±öâÁĆT­l+LőüńGű›Y&Ä`z2¨ň° ö¶vÄky¨˛vvň+%ńN46z'žfKţ~«eąyˇ×Iń€©€IÓ/=QŕśxĺŇ\iěׄZĄ—ç[ŕoŁŃ(CÍýÎlĽ ŕYŁ}¸Üµ_Fq±Âe‰ń@{ČSĎ'–Ö‚‚ ŤcGw(na(»pÓdýš˙M-IŠŃyčÉ6 ÁW’dtřÍîłŕvđ*]Ç”)jLq¤¸Ç€6ÉÂÓ5ą«IG9>adcO»Ť›VÉď&ÔB>ŐŤťäyóf,ä‚y(|Í ‡bćş%9K4Ü®¸«}ěJŇáĐžîČ÷íjS%2ĺ©Íu"©ĘÄYÍĚ»:źY’öĹ“ôě‡-(Ţn÷¬ ކÚ÷ŃŔŔ,†McWI[x¨6J¦ó Ç“7«‰c«#ÖĽËôŻ y ť }9ŔpţC߬7u+Ü5€§ö…8~ŞŠ>ůžîiU_vˇy+Ńâ"o3}˙îă7ĐţďnćŽ*°„’gL–&čI%¸ŐţE‹jŽÇŹ8<‰ôO@daír…Jlýpb\ť‹d°Î×îh†&u ††N!÷%ł.ąyc»7=1»ú^ă˙Éyx}H9?ë/ńVě¦Ç›Í [.&M H:˝Häv˙â8•>ŢyC^Á]dŰ˝¸逅,…Ţńíy°/°´ŘiË2 aűŕ„N9 ˝Ą>2‘ĘN[©ßVĄFaY™ĹěÖˇŤ“]5'B˙ÎŐŐ·–S»Z‹(ÜČo^ž_±@t°)čźËŚ+y_ÔI '«”)t Ą ýźÓ‰Éľ1ěQÝŃaB0ýPf»vÝł[(ŔN+ü~ě­7¨×žH ‰óşg_7~t+$•ë&uČUn{LO5ű¨ĆI¸äVŮ]ëřžrłCXD´Ü׆­«VCÓ4śŰ>'ˇżĐ,¨Mg±žDŞ^Ž‘ˇ4Âşçig‘’Ä‚ćhČ )ÂŰ?ŻkÝ2¶•™ůV<5wďš­‡xßŐ áí}ŘŕůŮR?LiS·QÚ íă6†Ôń°;üdÔů™FźA Đkë›íFÜłŕWÓeĘ#y®€ygµŠ\ř­AM&Ř ó%‰Ć)­gÉ!‹sÉž‰µżkt{çFËv„ࡷĚíĹҨ! ĎÓĂË…2pśe1ň¸Íň“—íf7{$´Éd+ű„w.Źm×SÍW'5÷;ś* cÓ쬮—RËÝ’9 žˇ‚W÷ş ‹ůvŔÉ:áăMH„ăßČ<Ëm-ś}ĹjŻţ`-)%˘'qý\;ýŠcÁ«…ôW—TćKęł‚Ő)XčüQ†…)ŤyÄ :ʰşRHYľz]×Hźč;­ÄĂ‹ŤQĐ˝†o§k%ą)ö2M&ľfÂŕNź†ĆFŕQ‰V˝dĹLk5=âv­wđŹÓrnü&Ă)Ô@í) "ăßŰőá)hźëlŻ\˛<«Îťd— äS»oĹUÂa® +ůý˛EMa%o†VGܲ;łáşAŰĹ’Č„r7Î ďkpŘGÓVóK‚ŕ-Ëý1EŔÎ…cX%Ts˘îÄ˙ól·:qŔĎţ¤r|CËYüđ 2@L<:żŕŠŢCěÉ‘Ýń·DKLKŞ"<ńß‹—žVvŮMzÓľ†Ţ4§śŬ%ó>îSş›Ô·'­xĂŻ3üƤÓĆÖ‡.éÁéťE® ČŰ;űQd­Ź*™ěů{ď‘ö:x1>AĹ0VĚćw:¶8b—đěĘŘվךěÔ·Ć3Ą¸(ÖÚGÓÓdxC[»¤Ó ú˛‰˛őď¦ę€ÔŘĺĚaEO7Ř÷jĚ35(çŹňÄÄź÷˝ÖŇB^Ç•oűFÖeF®#“´?;µĚG¨PőŠÉYE‹öňĎ,3ĘŢ&ľÔGuVßÄ\ě·!ŔĘW] ZďIĚ.pZLqš/ź‰sčôGpŮnĎ-»1`Ř4k™….ß.«×%eéÜlî,źBegă9ú,Cç­ Uz/Ó×<Ŕ¬´–ŔĽ¶ÉyQ{ć¸7@*ŠçŔ“1môu¶H3'?ˇ;O+‹›:ŤÍ¦ű`÷ßÓ2{ŁŤşR-¶=٨Ýpj»Žé,ä;[úŠtŘW˘Şá IűZ2ㆱĄďŐdi ¶6qݱ.ĂÎU´á›®äţ^ ę+†i<¸ÄÄşý|cÄŔý>â×¶$îÚ…Tąoy{ŁŤQYTÜô—/‘çßhąMVx]2ôÖpk;řß™zÄ*ŞFY¸šYvuÔ,p^»WÜÍ ňĂ<ĘŹÖŞdW=39žh¬\<3EFů›°Z“Řră}·‰…'`wHJ@7đIÖá śIë˝n`·–«6,çÝ 'B¶§2ţá̽Ѝý’rµŐĄj»><3ZŃ-`2Vď÷ĺb4Ů;V»ŞŘrűúüŹđXŮ›}“î*r8Ĺą×]TfY“gż6ľřäG îć•Ôái.Őă÷!şÁfŘś§ Ŕ[ŐíŕĐ ×)6éw’7Ś]Ç  jGş·Ýljĺ&9&©ŤBG~iŃŇ6.ę©éFČ]Żíg-9/Ů^ŠÁ€á7ôŤŚKüUĂ€y%Ôgm[8Ń? ö14!JBĄbÇĆË‚Aą7b…ŔO aަčř*Š[^“Ż.Ćë­¬óť[v1Św\ř{<ç˙{’ĘIů·®ŕ#bSçÝb@3´ČE1ˇ7ÝÍľnMĹItĆ(xiiŞâчb’…îÎżpí˶‘6nA2”w ‘kjQÝ.-Ň-Áž­ůo›őZC@<«‘ň.Ď\ ©"5¸ˇwlĹ©_–Írf˛g„×ĚMéYSn&»Ć‡Nm>;JH3č-˛(`@Š3>έ˛HK^EüogPŕĚVj‡s†!óˇeîgDÉ*.¬‘wÜČżu:Ł…(AÓ´ÖĄĹ`´Ň—kÝŽ ĹÂQâAż‚â’4±w®DPŽťş¬Dž¸3ą®r“>%Soéns}ËEc´Dň(&~Ćši+Üi ¦űäyžîäű Ś9>!`‹hNçpM­Yű`ÓŔ^Qú¨ˇ¤‰–—€Wť˙ćí‘’ő¬VĂQ}˝ďކźîMNˇörś6óŘ”ßý cď˝;ȢßÄ„B%k~6{Čßł/Âś®üž¤şeëž‚ ę ^B±Ž˛1¦]N™lhńϵ,ž†Éś+>Ą%=L4ÇÎęω˝w0=08÷Đ:3Ď3ď¶¶¬Ű^˘ xż‚9ý†KŠBsđG 4+×ŇP"rün@‚q9*fS ÂfË^ ĹgÇěŇUD«¦v¨©ÍJÉăqśü]“ާU™uŮZ"†·b ÔWBŁÜŻšŰEó“ŁE"µ7íg ě=SŁŽHY_ëňhŻTťđ$‹LÔ^pvrS;‚Ť{x~Há ?ĂË0ę<ůVUŽ˝¬rŔ-1,fieęă†ϠJ~+ĺú•ä_bě‡ô¦ŞÄ5¸VĹ@žU3F 7XÎÁ¬€Ě›®Ä`ú%fL›ůß±H'k4+LÔŃ"»ý)Ä:f Š˝‰ď&¸xz¸Ó›Š×R˝sV}qµÂ0Aó\Y+PCŢMÓ<ȇYqF3Đ„)zRQťłÁ ’&ß#éóqŚâěŔv0!«X'Ň=Ś‹yCŞÚy˝@ö“Ţ|Żu˝FËg5v++Ht˝Žc©lô ›=P>,Ópr‚Äí°adÉÂ'!V<ńNMŚl9AV¶/j'äcŁeŠ1 „çCmáĽ7ĚjY%îĚř×M8va?/˙›bť1yëÍm°ËwCóÓâ€@|eľhÇKĘELé6Ô˙¶5ÜxÍ»)×Aö4öaí<xGŐÄ"ÔMHČ{€Ňę‘C*Öţ–&]˙bë‘%4¦ŹAB’÷řĺçŞ0úIĘEťĎÓź60ˇčؤbÄ9®¸Ť.Ëx¤Bw€JćxŃ8˛«<¸ň-Š&˝¬śS9úY=ĽŔ§éÁoŔ†nČŃiiWU˙w XŇÁăÂDµ1 '_ Ĺ)ÇW)iŤŹťÚôŽď8aQ-aLĽçúČ‹ęő¸_bFăÖ% tĺĐ Ç:ĺ`Ě‘M?ňőÇ>ťáR€U…öşRÜ×[%J+„"Űhä—śm°rwĽSm iĚRô»­$řK/%QmúdÚ=,[ËĆĎCá'ŘČÖGÍă. ‡Ž#cĘŃáfŤwXČš‰ŮÚŰ6[ĺůŕĆLKźBřKc×xę3Ëb‡ŁňG><ÜolP¬qK :É·ţqĽîfm,Ď‚÷'ăC”uŽ´öBľý¶ŹąŞ A´ŞQľTěĘĂx¶c5kđSr)ÇŢĽńŰÂkOŚ>±ÁSd±FľmšĘżŽÄąá %ťöZžđ5Č™É[†vĄ-)miAŮďHó\},Ö⥎ŢsÍLÚZ* ÓÄŃ­CT›ěreE:Ŕ$l€0+„¨F*ňŠő¤Ľňqü ô2ďsgwü٧ʀ:Ţx+¨,x5<=MG^â1Ĺ;Ł”óą6ui8ňxŚ=ßľ ţYCË×é€x¶śIŃX.Ä×8–e úüÁŹr’¬E2Šáń#3kžťďWŚO?gDĐÄÇMDI®ľnÓü(«l·%¤˛Ůi#ll&şďé=źß˘jšInŤç­qËVčŐo˘±*5Ý:÷hękóEb ˘¤ SŃ T.ŰB­u\ „O CeD®1]ôńxw‚\*Ç`RÔgHęÚńočëűăuqŔĄr6'ľ~lÁú”`î!•P“đ'˝l #ĄűNWţäÉń—ĺ 5­ĽŔ¦Ôl–˙¨ŁNHB‚vSë¸91ÉÓŘÓ|ó˝ j…sŔIUŢocc‘CÁŻĘxĎŤůR˛GHfw¬Lp¨±4Ăř0? Ů^X\3@AĐ `5vŞkWć5x n€t¤ŘŔŻćiĐ>ć®3ů‡g%1aO,¬¨é/ ye¬ŤŠšŢ_rNr:iRóἩďd¦ú ÷ĎŁDuaRNŤnÉŇVŐâ‚x°«J2*šł÷ń eרҪsÄ ˇ…ě ňdŃ1%ń É-µcÁT¶ŠfFMŕZÜ e{ě‘ËÎĄ*:ö×żŁ„j6–?ę)ďŕ5uĎh¬Ą2Aî |o<äŞrŔ`!¬E™&?ţiîâIŔ*`řî7ă`Ďo@—fHAÓ(zţÓăƬ±]¨°p˘޵äM/@@8u&T…ôęKvaŻ…aăŔ&UÄLÇy%TĂCzĆW‹ ‚TVň`ęÉqR[ů[pD·…·V@noŘ™‡Ď]Č%–ýĎzŤŘ/[I·‹Ôż¬‹-$!«xÎ’ 串ţťĎâ(Ź. †ŐĎęÉ@řëKPŹŮpÜ,ţ†¶{VA_‹Pˇ5¬­FŇ‹üge™Ş®@ˇ§“$|żĆ‹pÉO łMý9§7xA7·=ÍÂu»Ążiű§ćx™ˇ'¬×.”¬ŢĎŔ&Đ~Â%z|Ňka–‘â§·ŠśŮ–iĘĺ"ľIď ×X~‡˙tĚĂĚJŁş­‘…ŹSşa©!Şż@¸1-V1Nš Oą±˙‚űPYk–âqîĺš˙ĂpÔśÔ˛’ýĽ+iĄ-$_ĆÝ,”°zZᦰ˝Á:JXńžô€Ë™p0ˇÚ«ĹĺRřą•?Š 1äxŤ/ě2ýNg2r_{q íŢŮË«N8nKcĎI…Nút§ĽŚ1+RŕľĺÍ~M}ô ‡›Jľ‹GĎéĐ`ş­ŘB  %©ÖA“G MIíźä•Vôđ´VͰᥨĘÔ1á›˝ĐɰqôŁ®†­Q­ŹłŃqżâĺqô6Ó°Bt0bY×+0ö=ßďWGŮp}@†•ˇ`(Č<ÝVl)ő_˛y-h΄‘Dźçú­ŚKĘLâ%˝g‚ř×§ôöĄ®˝¬Ă'P€^é›v…Ëľ®© ľÎWď˛řÇ$µ¤ĚŻYÝ.LVâaˇd9w´„ó#O§vD4G"˙hĎN"C¸’ű·ü`¤·řÉ!h,8â@o;ň©ÍBh€vmů÷$]¤cPĚe­I]ěĐŮľZ)αA†ŤŤívLo÷j]ĘbůyŮ«ůT·eúŤFsŇ®‰ă¸ö.Uk‰[ÎÄťÓ°^!H[ŮŰĄAa„á¬nłçí !ĄóDž"áËÔb"úoleśŞu‚ ŹtArˇÁB°˘uŔ úŚí ˛OK4‹•ęy™â3iĹu®xô1«´IŇÍ9«Q3p$ó7%_*¤Ájď•íĘ  ¬—ţ-6ůčxě÷ŐWgÉş"% rˇp+«†ŚˇkIŔţ™|`Ľ= €Vřř(4¸ c”ŚÇµěA9 *Ü•ă´}J`‡b/®´oNRwA”ëúŁ!éŁmÄü§|Đ  TGá(jTźłGZÎB\5+’ů•çÎTu?^-8ľY uAüÉ ,řÔżŐźËö Ც×íµč8˝W:ó\•“ň¬«şC¨¦+ §(qJ› cŤŠ«ô'Ř­¬–8şaĄŢGĎRKb»=„Ҹ:őgţç đ©w§‡ y†Ô©ŔĂV}¨ŕ‚5ţßŘ‘CNú$+Ä]âG"Î?^ô$ô±*Ëšv…)ŻŁęŻňďÜ-Ľv¤ µ{–††'ţ©Q>ő-Â5Ž&µwß2@­ „ٲ±-?©n±ôř&*Ëâ˛ÂD‡U•ĂPóű“mç°F(ŇÝÉĹźŐ5RTa0śÔť77`ů|¨:ĄR§––öőĹ\ymëĂűtýÔ¦v¨“­,ą•ë*!f&OĂPŚŕ-.ĹbŹÎţÝx'ĺáúź˙ĺ^ěÔkOó |ň~|WOżCŕ×D{ůŽŰUܰ{é3$âÂ5s:;2łPˇt”ľď ­8E>éU‰˝ą3j⌗ŚÓ ž"I:…'7¨Ľ>ű[ YđĂąúIęŞQý™°®ć‘€¨yř,CźH‡ĺť°]„˛aSŐť6]o1© “T€EĆh䕵 m´®q¬}»F\Ň'äGąn;jĚš‘D;€tf«˙ŇŞ•S”Ďąü"ďŕľtČe–Ěő7Ž#XnC ]ć¶0×·*µÄ’ÜÖ\*TqŞ!-ŁĎŰó/"?ţ†Öîq>B‚0÷ şŁv#’Ůśf\{…:Ô‹¸Ń.KMvČHżýőŽ~şLęR‚!JaÎo3NެPŹę×e€-=…dMßÁ-?ȉ[¨#»s€˝Î'‹j¬Ž›Š ×6 {ŢÜ<ĐŘűO]ę·á´U¸†Á­ËŁ É,Î|ă›90t±ę^qä×éóek°Íł8#ČąĹĆ›˝HŐ˝ŢučĚü&›źrőĹ=żë‘€Ą[' ß8_ĺęG$¦sX‹Ó­ĽPŇĚÁc"ł§ďöµdq•UÇ żhţj¬q§}xr0óśŤv뼑ŃřSí1 gŕS«Ż°‰%řJ‡|Ë=§8÷m:¨YŽË ’Ôf˘Á<Ě ô4”, Ž:‰~Đ ś"J‡P ű^V‘Ä `ˇ”)‹żŮÄ?)ůKď™;_/#‹2Žž¦ýš€=._„G_˙žßúO,)rE#šO’Č&Kqŕ¸Ü‡ĽtČ1űó÷ďűŮöiΦʿÜĚ€şÂ}ö9šó8.Ąä‘Łm>ş őŞÁ‰+LJĐĘ·)sl˘ ’JĂôÂŶÝb Řî)1_veiŇL€ŽěĽÂŢ;vëU»˝@6ä‰Č0…,ľI»Ł„Ř_’ڧiǬRżţĽ™p»RIĚtü0PÉ*ÇT؏ިJxkCXIá–ş„–űďqĚ”o®"Şuuő>ă_´}n.ÖţăčdRŰ55üg¶MWç*ád>°o—‚ÇmPžµňťV˙át«™ývËŽ)PĎÂ+eRđŰ#Gu–MÖ~\BQŁŤ„vhOůF`şéëŕŮZěć®8Ý_Öçˇshi‰:Ň˝S_2\şźëěíó„s“§ŃsKą:%8kîҦb7™S¬­ą@8lč µÔ›Ěđá˛Ň%§ÔÝxÉi8vWřô2€fřľIyGÉÚ§,Ć« ´QŐ–ş;(ś8ÉĂ9čZ¬Z…ź`ĐŹ>·~Äř ý~Xú#qű‚ Śů™4}~7z‹í5™:IÉelLúRnZ^6Ń÷ő7ă)(ťŔČüvx qQ§$‡É |˙Ë`‰Ľ÷gY'¤+«ěćeÜY‹1DoUש€MçExĺKš*»Ţd•ŰuL”Jöá:¸•6 Ćţż' ¶ÖZlŇQŔgTnaáŕŐźu@C¨~űŞ”úwHăo¦ß !]ňW'Pëuđ.ěţ™B;Î÷¤GV÷F|Cꊒc¬żÇ !}’ o__s7Ő+OŐ [HĐţ«ß[Ú[k¶Ë śf€˙0•ţS¦(AxĚ]sŞFŽĎgG~ßuÎŘŹ„.ÎFöm)鞆lŕH'“‘ŤCĐŠ|‚ěźS'™{@yÓµ‹©(ޱ•ťĽýµÖˇě]”Y;ذ•«¬sËÇČ_壸KÝ͉ZÖ˝Ő«f·čÂ<‰×‹ĘA‡˘nS#”ča˝>‹s—Ęľ—§+ŻłŔ•¬u€Äë<đ8ŰŁgg/ť’aţ[iěÝŮžkiţ4§?ÉÄHĎŢ źmk–uÚ / ńëǦ«.RkŞč™Qp(r›Ç\‚jŻř/ž“(f-ř/Řľ{Ç»wEdŘDkýo p Ąf,P˘ß¬fJô1Ʃ݆ű2¦ ,BOý5ĘëjcÂşÚĽĽ„öHÁžŞdVßM3'x}M‚—]nxč„ńíc¤+4ţ}YřŹą@»ł@bńÎsš«€E¸ÓćMĽÁ†¬Âţ#”~*íöDš8˙:ŽřBއĐWµMň$fĺícG¦ţ»J#UkďĄ%~Ü卟<d–sţ#°ť˘·Ď3î¨Ýq)yäJZŇŐK’eü–ϿټNŕő]sŢÇzŻŮD»Ž¬u? Iuţ:d7{[¦Ű+íŇÖą+’Ňŕµ§yČjXÎĽ4µź÷“ń&ţ9,đľ[¨ ^ âwÂíżjŔáłĹOeÓĽ)q*DŹ3 VľžBZĐý=©şGłT3(0†‡D[ ő!‹É§·ÓĄż7QřPuŢPTŇĚëŕ€‰ .§Ü8¦ËN”6ďó4űÖA–¬!|Ň3‰q›ąĂz@eß:ÂK¨Jgeŕ<ާŢ…őĚę ˝ţĆI@Á¤>T;‹wŁ·y7 x±´5:çĆZíń­:䎣&°jMŞW-Ł9(ÜJťú/>ë¤xžŰ)ËŃ{¸ü‚[8„µ¬Źľ‹ß‘V3¤ěű§m“`ÇňŠ]2ůg˛;Z:ǵ3uŻňď7\JÖĚ~`^jČ8?•m[|Ó7\Đ5ewĚ—ÄŹHŰú˘ ›€^ŞŐřcëő|?…ďńXtRŞ®ż.{cźŁ˘®˛,+Ő-J›©ňç6:Wűwý ˙#áZ±ĘeöOŔę@LĆ} Eq|`p =ŞyggŇ)q’7ň6$ ęL<¬‰J÷VŔÖţLfd»_IŃ9|YÉá1éŮÉvül Ţ 2$sĹš$Ű˙h#ľíš…ć)>…1{ç,´YOĄB[đŇęf ±q†Ř۱ĺWąlňP[[Ćr6ĚýSÝd©éâw·ůsN_ä{ÖŘ涢†™v^myňÁQ« Y;‘kÎŢ‘ó§¦&ĆžyÖ=Ăb‰=ąc­!Ş=”ěÉSě[ďĘV>Ô<@‰¬žeü[]ŞíĄĎ"cć@ŁŠJÇÔ,Ó^Ű©HĚe4uŮ" «¦ő–úßĐý™ěÎAc&čS‰“E=Ă‹ë×oPjp-ę÷uśÖMÝđĚŞ-˝v“Ćň$h # y"Őh•~WJGňôć€ÖP'Çgd‹=÷ŤËĽ°buÜJ{3r´.–‚ăĹ÷¶ Î_î°ÖG·Ŕmduű«ă×sh‡>.ĐjXĐ2 ¸ăú<^ůS ÎN+Śž–rőÖŚö*e%Ô-ľŻśĚ|řÍ˝qrąŹQp¤3ĄŮţYÓă]ĽÂ„ ¤d†xoÔjş|ˇ}§ZďĎNLřîŰbÖamb—Źľ´·äČGS1A@»ßÍ ŁĂ˝@…<1zcbdB!×+?*…b8b7DŃw]×ßp(T dâ ąÖ1~K; [¸ŽP&Şô®śL×ě$é!ůăĺ’·§˛H DĘŐ‚ŹŤ§é†ókśůYĐ’µ@›NŔ~Ş]/ĹhĄŰ±·ÎÁ¸3ďŘr"é9©ţ˛ Đ$ ů±lĚ+)—¨doô»¨ ^lѶJäµáý"-Lk«[î*ĺí±2ćéłńjpÚ&ăv?Om`ŔÚ,÷LĘÝ<…H稖~<.Î…÷:˘Ť$Žë×ýg6~důfŃŰA/ÔüČĂőO6s ’ŞyĽkČq3ĐŇţ)J¨şšiżhÂVMaę˛ Ě9T9)w‚ ËnÂĹ×°ć~(/ň)€-˝Ś·ółImVńRÎöŐőZżĘS¤}:?>żŢ Ń×?/ĂI Î^ŕ‘›ăŢŻ­°~¬>h/'F'i?GÚ°Ä ?=¨s°°ŽŔđ Ŕiź¸úă ›ŹŃč.Űś4´Ěöš#ssb“á„ygŢÇĆ®ßĹĘA [6őţJßşżF‹©OAC3É Śxzo Í!@‰[ĺţybć'Ëş#ő{át4ť&‰ą%_gpČ0“§€3›şTÉĨ ±ô‹'XÝĐc'·1ďłÜąuM« “pÄ.Ľ|iXp&ĎqKž¤şź˙ŞD™Ń‘†»đ’ˇsÓąVgŮ9…[=Sr+î"QŽ‹ †ŻEňőÖ«ĺ÷ ¶”ůĵŚmmńÓŠJ`v‘px|a–ď-Ľěa Ő@µŔ-IćhiŻ$sź(7c‚”őëŰŰ(µÇř$yó(‚ódP~ŐĽ§˘çůÝŞÍ44&-{ĺ?CČ>µ”âłČ@Ůř°ĺTh–ú‰Á)ŤguöŽ-Ý„Ëf¬`ŽxłPsR¸CäUěźÚ„×íášIĘ©üřý“ÂAŤĺc#:µĽ¬Č:ţ@Ń€eŔŻ#§Ŕ˘ĚJBżŠ~'HyUŮíżÎ(CýĐ8ó(C„†<`Á,1tÔČîK1ý›|w4kuf‰ÖLÔ˙5†äžteUŐ’ŻÓ Ě·,Ş‘<ď ť*·ÜmSVyň JŚîź0ťëřşSľK]U¸ěĘ,#Ť ŰGßcĽűŻűZ‘B^Jˇě’zC8źŘźŘw­Bď¶Y“#I lP|[”®©XZĂ N°HMźÚ]îd;Ć8Äs<ˇ·17bĚ­śÎEؑȤ¬“C»Věç6ž”ć ‘rĺ «Ü5îC™ĘÂŽ/a¦‚Ňľ(éébç±;KTŁ¤á—Ľ'TôßQľ…cŹD¸…ç?2uAÓü_ZpţĹ}a—%~X=˙íÉÁ}3Ź~ŕ(;Ďm]đ1¤ô˵C Qˇ‹/1 ĽjE38ʶ˙ą9Ű]vzAX÷Ź©›M\O>ą–g.ůŹŮk?kFë'Ů•®ÜĽÝĘ!¤wěmŤ^t)„![˘&ŘáťâúCެ” =đő*LˇPš‡8) „ ”ÝQ*vH⽲y‰˝ščŁäŇ1eý0.ž3Ö«„N,®ÂÄG,17úVCOCg†šŻ—<(“­Ň^˝IĽž'‹ü–(×ě!ML˛Â‚ @!ĺk?—Ä솔)ľ ¨·řg7IvÝůgáËP4ă[Y!2€ţűŃ%ś–şđĚ>űşś°A*~m_ &`gńx_,Ő=­FµŠ€u2ÄŘBCśŢţĺ Ţ.!0í¦Ó;6ĎĂmâËőv |??íŮrIhv¬Ł6ω9áĆ„®vt‰éž‰˝|ö×"Ă}xq˝+Ź1ŰĚWÝź?®éRjßłĐ2”Ö‹î•6™ţHéz¤děŞójmÂŕd2Çö ł˝®yźlÚL2–6Ŕ5ړכ÷Ďdô¨ŢäH·­.Í UmÎ ęAťb×Űó8Ń-Ľú’ôÂ:–űÜ˝J@\A©„LŕĐWňKݦ~Ćxa9¶‡¤Ĺw{¶2ţ„ę¶ăÓŇ ź¬ÔĐ@˘hFd;>ăOµŚ/‘°T‚îĚÚפ!W#RXUZ^őAąnáZöwřO‹a /^ćD‰©qśËnYjű·0}a#şµ Wşpň^o¦G7"gYJ=ÚqT_Tö#‰=G0lSÖ€öúu·_ëB§ŻúľÂŰ0öęz¦Y4ů€Ő>Ňó˛’wN X$×륎5Ď·ĚŠÄ •ĺô: nś|„k¸…ëJ¤ŮµD@›’oÍŚląŇŘvĽëłÁđëÖ¸$óđUĐH™ëĄľ«Ď®´ ŇŰ®jű1e.XN’öv 1Aô„ŹËޤŋ¸o]:.˝˙jÝsŇHߌRĘěqŞxťÇćiľÂoC1»Üő‹KR*…żpY𙯑ۯq üwGů35őjNż_ŐˇI;Đ‹¸ĽÄ:ꏙ’÷ŤWL"ĺľźüÖÓ”Qńń%˛ký Ĺ-!& Š•z@ÂqÄőłÓˇGJg?LĄFrPűÖCGăN•™ă¶S‰ńň=ËwHÜPŠü_YŃn˙Ű\žŤé_ĹGb¬™áb„/źĹP`đŁ_Z#›Ř5¶Ó^¦NîG,!KV5Şß/5”PGL(d$iŃ[jú¬Nz†)ĽćË"ŃKÖn´¸HZö¶č´Í¸[ă+ÇňťÎL®ÚY_Pđt;Ř>—˘Çě¨ólÉ»ôµŁťŹÎÜFĺä+ßG0«{–Sďć¨tRE“Ľ0vÍL÷«SŁáänMHzžă‡\ÉXŻWMő{Ô.ő% _\|iVţţŃl š®[iÜ‘-ˇ«bĆŻ÷ 2v•µÓŮéÔ˛óNű˙ÉÚüóc*–nkZôµÖčÁđŇ<}ł?‡Űü´ö3LřF“SíĎÁŤ­ÂÝĎBăB~GÖ EŹc±gç˙•†Í fAL‹­qŠ%+ăF×mŠ÷|îhGĎňöX-˙©ÇńމIö«8¸^’O’ĹŠ(úki^˙×OŰ^±vi·ß5<Ťě¤ěF"&(Đxđ!ô–őŚşľPüÓ”—î€9EŇh5ŕÉ˙€iPjMŃJôZćÜ|%x%Ďśdm]OMjT1éO­ŐĹ&†<uŽç şá7]˘ĆxdD’ÉĘ{KłŹ;q±m‘`đEࡉVűřauîÍ2»…ö–4F"ě8«Ż{ÓI$ýsX‰nö 0Ţ4ü¤hŤą*Źp©sŃ‘ęe⍝ŮÇdÜé)PąÝ%îúéŐY×džň<KŤÜŠŁ śŁ_`‘ŻđăËHśŚľa—Óö8˙/•cLÜş:HĆv5Ć·îHő‹‚-ŕ´Óě'łˇí„QĐ ŕ Î ŐsĚ×{}«ź€”´®“ôJ/é}Ůů”jαZ[Rěbuńd¦ő™çť­xôŚ™Ţý ›RäśÚë·lÉj’ ĹQľÁë4ö"ŃҲčhş­ö–ĚüŃ\‘##×uĽnŽĚđó溏´ó{P(Ú-ýmĚÇ9úÓN®zäÄ#®é¸™YťŢ3ŕ-o‡ !¦¨[bgňٲՖN(śOŁa¬ň|Ąy_Ö‹ă›f-|Ń«ŇBŇOëuFŞżvĹqŠŮdBEšÖ&Ls?˝Hę”ŢěčĺŤ#9B°Ęťš?ĐAČ$´î;?upŻřzjFÚ g˛ŚhYőQKĽÍAVÓÖčLĹ‹\Ň2áćjĐDś¸Ë«Ëp´HŤ9×öôžO2˙&Růě<Ă×sŐnYÚß#ŃéŔ­r…Šü:\Ľ†ęä±Îó…Ďţ©vzxR™˝˛žŠř&E‰¦şgnVě&ĐîÚ´ý€˘Ć±µtňNMwöđ ojÇ%‰â|kî(ŕRF•­¸ľhűţĽ´02ôĆn,Ţß„Ř-ŕ輡\WúÖ]cÖqűÔ_™FĐźűçŔĂQŮ;Î#iěS&Á1YM_ÓOU„oT`¤ ±xrŔx×€aÖ¨îá>XPôłŤÓ•7lpc’V\+RłHäöŹ•’ĺąý“씟içĺrnÄaJ”c™űŠś%Čw·ó-·ż=µ}¸űçŔ2÷PMň±B—óŔ‹tŻĺwAXťŹ˘ł×E_- 7ÍÉ­Ő†KĐ;ů}íˇŚ$ŤepęŞÁxľĺ†TeGk8ín§ĆH6ßü˙~ŢÁŁĽ5ġĎ8?˛ŞňŠô¶ŽGóO® —¨‡=±IîFË>Ďš'#łb7é…‹hĐçőíúÁ"{tëV}ˇE‡xdĺX†•őz‹'şo_m”„Zo€ ěɲ6|&hc}Fܤ{6,l‘ňa_d0¬=bđXŽ—7.švž‘äI zÝAËŮŹ§:^°AŐ† Ăć,OEű^®Řšh—!+P_+ŠHü÷°řĐů«:ČĽ‘hAŃ\ĂG22Ń$ě%˘ă­Ř]ˇZĽ4žd,ś1ĘŁ„|-Š~cÉ7P¦ŮŤ•Eŕ#Ř[Č›WiÇi…ˇxĐny°žşjË-S°ô­©8'5°Cń1)ă ý»Ťtrß–Šl†Ý¤šx( UĆ›OE~­<Éß üÖé8Ż´…ĐüÜę˙`›WŰŕ ĽH¨V;úÁ[^§óTݶ4—˝¬úĂ>ý"‘k',eÖÍ% ”Úą´†Jq=˝ ٦ÎAç˝Â;\suôdD Hq˙jVĂH|ËČČDćđ|í;5ŮGEMEdMĎ!Ѭ®ëżŃmůśláÄ~Rj„KÔdIďNŮxőCT]QĎ=©ëŠIVyK^-Lź\!2-můşŇ¤Nl|…Ľ*|oÜ †»?ä©bkä×N© ó×3ź=9şŐůÔ·DÄWPÁoÍ›y; Ôz-žÓűÖ ľ9&ÚŻë"‘ÓŤRĎ/ŕ–TžpţßJ4TĚŕ‘2QžçŻmĘŤ úţŞâŹĎ<×x4ŁkaľCŽŤŕ౿^ד˘˙Fş!c3:ŇŰn'„TZjÚ@Ůd¸¶#G˝Ů*čRQn‡'S绎Ęrp$Ń=JÚ†XÜ·ˇ /&®R›řŚVâD­|L`qACř €Ě§fʱKńůHtśMöZĚďÓŘ"Ž &»Ł‚ f¸ŠŹłFĐ>‘,ŰkŐňPÂŃo€ls9/Aű #žQ*›M€§X ˘»ZŢç‘© 5­CĎéú„IJJ„„0Ň­ÎůńĂńz&ÉąńXß“q;…ô±Śźş‚´Ýŕń•CŻjDnřśOL§ľCM°0@Łż˘$+Ť_ě»F’5Ó…„}J\hJ9r>H šu›ÉÖĐcoŻĆúk|đ&ËÚ×f?,%˙řŮřşÝ1©™r·şZ¤íł„şš‹%ÚNś8Ő)˝)“¬Ă­ÔÍ:pUŘ@“jRó p§kjÝ:‘×,µż–§ż˛źĎ ^°“¤Çó)IA>çUć=¦ž–M×J”Żx)rîmő™r0nŃP’ńfç|'K-Aći…ě4ę]¬ Í^éÎĆńK.Ď@‹ÓWqöéŢŤq~j)-Ŕ¨6zm–J‚ `TĽżź¸±§‰·)nIů…SÄ ŻńĘ1îKW”Ô5iŔýÜAëŠČ1“OžÎµ˝’{)M p«/ż¬~ő=V4ŔP·Řă”ôí¶ăłm‰ýś:0°Ď»Ăűéńpŕŕť"`Č Ľ1m‰©ä©´#z˘>—Äëdé35ČZXaĚežÉ‚šPK‰Ľ‚•GEtSŽ?6ţ®á?ŚĎłsP­¦ŘĽĎ‹9·†'/¤VŃ`X˘ęŐfa“&ŠIŻ#ĘąÂLł)lü‘¶ŤŞĺ"©ăÂč-˝Żľ‡I]%Ć""Ę6ŐHŠ}X,SZ –Ee´Vň\˝  \Ll*‚ľF(’˝÷b4Z™"Q–Dm°t˛i‰‘÷%riŕŃ ŻůŞÄĹ«Z§·tC“CMĚhÔĹvGťŔk¬+FŹÉW/®Z„nFć÷;znyËŽ¬8ů'Óש«o3äMmEjŹÄr «FĹ˝µ‚2Śş2Ć€qŁN(  {‘>÷–iÄ ­‚"Ĺĺüŕwp ł°p$ú©»â¤OĐ”×Öô2$ľAós‹Ú®A’·lś%¢ńíóô§nß)B=ű$ĆMňF8őamđ&ëľď÷ʧcüŔa9`ś'ß<ţłöâUj’*ŮÉéÇˡ6ú¸y‘ŔËnĐLiPŃ´ĺ9Ř^_J2m»©Řäo×Sźľó’Ą"HoŠsóR„ű)AËMĘf˛ßtnĆtŢk‡‘Ăa8mDâtÍ+đ8·đ˛’3ˇóŇ3€ţҸW¸‚Yš‹\DĘđ}Ĺ‹jĘá Lxľ~hł1´®!ľ}ŁÍ*2MÁ}ŕU.UĚ‘ţ: TÍÄę¤ęësKďďf@NbWDŹÖŰ`Áú{ůIů!sÍ„\ ×|n‡ŘŮC«ŻÝůĹť4¸c§ę}‹7ń<)ďGąŤ:§ űMb(ćóšŁo»ÉĎ3Šô<ó﬎E}«°«‡‰|·M˘şJgF2ĆrΊšD xäĹ0±oÔ—6ć“t'ź·FmSŐÇę=€bډlúČ\ŽűoU6hŚH^ń>jĂÎâME3GĘ=€ŔL#”bzgĹUË—ě]bL ŻňÍë[ëÝl•Vö3Eľ§ä¬Ŕ,’¨…%}qˇ:,ĽĹfĘą˙![XüC Î&jaŐ<őf‡'p‡eÉxú˙Há•y¤Ţ˘¸ńü@ă|&š"ÓŔ'0ťVĺo|ô¤šđDČ(řá4Më_|ÄďY(¦««ńÓ3f¨e6.ľ™˛söu–]ArÁß˝Ţ:tó.…pă+UBŞÜÜo3“ym#·şyÓv ;TŕíßöWÉnř2Â@íZx…ôyTaMăąo=éu*"w’wżŇ8ľľysý–Ďp “Ý2h?ć/eŤQGn;i\‡ ŚŠ‚Ó+Ž&Oí Ëa#­X4Nu·MÜ<,u ťő+É10nŔżxĐB†}žé-ÁV»3ĺt ł±ĘĘ/˨<=¤ÍŐ×ć§ůˇÖN$¦ěÎ66ˇ‹ţ1˛<Đ7˙؆‹ÜçCĽ:8šßŔzĺÖąŚÇ›Ň2ˇÁ±?JoÉ éMłÄuýęC'_E1¬ŇLL ¸)xýFüşfGntŃcj<Ŕ˘‘MÜüą2#"K$;¦Č9q¸C$â¤Şą Ťáѡă˘čÍZ!nC©u'3–§ĆŞĚ˛çř\ߎ(đ’7FĚŕĽřöL$ÎŤÖbj˘ >ežQxwşE DŐľ?Üm~łŤ`¬”VŔ¶ó"ž‡Q걿vÂ4OE|đ2§*#ęKdZKCú´öŤž˘ŔÂűNóĆ“GĎ?–ŤÉ¬/ =űź \KçFF Ł´©¨i/|Ęđ<ŕ1\Ę÷C«żąJaŕ6jY5”ÉCX(ěëŤAŤrĘëî·Vß 4ä‚â™eeubyÜ:Â\–ňäx64'Ť1otWúăCtEčˇĘžîą@žsĆSüôÍËŤo"."§h ¬\}Í;"¦jüuĚxŃ-ŘÚĎoš8<+%Rá*F@gZ%Ë?W­şlů’éS U$V‘E9ČZĎíEL(ń×á „QýdwŞ'< 9Ł­Rb‡rcĽě Ţe#–˘ĘVŰäŤAŃ/žŐąÜĘ`WŮ* ¦şr"üă@­ —í/‚KsfWÚëN˙á‰)čRŚăȤŰ1É©€Zđ\řÄřUw'÷óďş’{Läç°â%ť_fPtřŁęXî­8 7í|ĐRě2ňđňřtr2Iş{OÎŤ§+ŕÖzŘ'#wjŃ­‘´$ől!ÄB¶ą?ŢĎŤ…Vřłz"$HĂŰâhű™™ŤË,:ĆyÓÇ%VËZVR j[Ô¨˙şđ’Śf…áňłmí(ç$Ă*hť¦tŃ»Są„˛^ŠúyO¶} â‹ÇCŃ–ŰţFt čkś´wC ů#<ŕŮJů.őçϨ §6YBĎRŚL~Ăü&ŢşÂ.x÷w.đ»!‘wđ-=ú%+@"0ç#ÁńˇĹ‚w"ű«­G{Ćďŕ·vŔ3ç´IŇţ»ÄmÂąě=qđ<C?ü¸w1¸ žäÎ Ĺi‡ ¦^‡âw´@v/VeµŮwÖ°ŢĘŰăĐT(—lëŇmN ¸T®1ÁŢ˙úý'Ňž´ób ¶Y‚öSy‚Wä*, Ł‘›Rsö|ËcWődÜX—.Ĺá“ XęҦĹMéú¦mZ€;Ĺp±Gřë®Y1—ĆÔöL8~¦ĺ’U)qZ3^ý ¶˛E˛†÷±®˝X@Ig«äÝÖ¬ Â34 ˝›ôč˘däďBÉ'mÍ^íOhťŻ‰s+¤ćSŘ>Ä|Ô‰äëQ›Ľ§–—Â_Jý»˙D¸‘˛JĎ?^·sż˘ůöĚuÓß_¨Şřh€÷úŘřÖ_F4qFJëčD€)0‹ ë˘ůpJހʯ€ťWč9#ÎĺxśéťwĆ~”şÔ¸:@îčď ¶ŞK‘h(ěJ9ú(hę5Ŕ«ŰópőË2«†ňĚP~Vˇ_yĆjŐŤ|8Ĺ•:jʎӬ‰‰/J´7’ d‚˛ŢĆ%•˛4g’q54sŕŠaŞgL5«Í›U‘žćA|YQ´ +!`§ń»ň°)0ŔüHŕ’ąäçdx°ď¨Řť˝¨I$O@EÜfşŤűŃŁĂ…ň¦73[;*ň%Yjpá, ¶:°ä°÷ÚNVÖÓĚTťćAĐ Č.î@fp€$!bPŕ1_yîBľ¬nĘ'( ˇÉŽL ŕńŢÜćÖ&}ú.jĐ…5đĺłéÎ1(c­3€Â˙§ąGřŔ\"óK(ź8m ×îršęÇ{f'Ž7wzs¤Z¨ üp š¸rx´°ţ/v;ZŻćÍşŤr>‚ą†¦Ď74ŕ—Ć˙-[Žs›eRźĽ'ă9t;›Iů”Ҳ@[Żö›ăö#·˛[ń`«ąőrŹ#7»ĄV/Ç3 ádÍĚóşˇĘ‚Ś÷7ă—űĎçkž÷ €Ĺ5ąĆNďš7+şĘ4}I…'€­'‘Ł"kspzÍ#üŹťgŤWÖśş? ,¶Ť†H|Ń'^Ě}¸ë$LBb/)KË·é8łöθfŁSŠ]wDíëÎ8=«)Ďx+ĺëďx"ž+űZxm§(Ăp´—®Ň|Š»žď-f"ˇo]¸†ĘńÝáŐÍQÖĽ§DÇě1oŘx미đ)Üď©´í0<Î+éľs+řuéĐoT=Ą}L’{Ó•óč×éśđç`ő,b!AŰĽWľv#2˘"‡‡zÔRúł˛:E‰%_}MŐő%Ź4ëŰőLŔxá•+¤QůŇşÚ~ĺĂjҧ¶ŃďeÉmžî’îđP1źasü»Ń¬ö{VVsĹňňéěa'a3âZ‹łm üŕ'ršř$ěeĺĐFP5ţ¸©5¦ ‘o±~Xń.Á‹´ąđ[ÄJ(–{w§@Ív÷p%ęa¨©6Şa{ŇEWô„ůÚµ5˙{bůŤŔ»Ni„ ‹'1%©ş[ śQý‰Řš‚UxC‡ĂpĆZ8BôL$Z—9 ŮOâÜ4=,ëFÂĽ–÷ËíËSK‘ťě;¦\,gýÇ©›–Ň­Ó-”f{A#vTĆ7Ü ąö×±2:–Â([‹†E–Żš~Lhěžkąí ”Fbí0T'Ŕ4ľ8·Ď5_ hŰŕ_W–^Ě×Ę6L‚ÓâI™,Ýę nŰBÜŔń­7şaŐnZT˙‰ťWĘA !~˛:áçíF’mŃ}xrŮŠQĎ›Ĺ~†ĘŤ@“V’ş亥‚zX]!kŔ)ĹŔ_y­±źľGB´ÓI…Ä»‚Ѷ±ă=§ČÄŇ4”eŢ*Ňľ‡˛Ë—Ćfň1tťŕk›Ő˘Gyß–łÍbqf6Ç•“ ÓHÁ4|ÍOe3±«Ö;:Ňź‹"2t4°´;+%VÉ˝:Ľ&{UJ@v¬PĆĘ_\Š€ů-Î@.ë6Ćš3ˇáîp$Ô„üF)é^Ăő±Č Ü !,ŚĎ3Âcş„Ž´_2®D°DµŘĽťx©P\÷–´h4¤Âă1žŽ—¦Á„ěËĚJĂvTWÜFÝż“np%ýç•X=p=ę˙ć?±Ś+)ůΫ]Ş…ŁRňÁL= yÍđ_T‘‹8G8WĆřŞř~ćL/i”š^J…zr˛„éŃĄŚEł^©°é¨Q—Ś2Ţ ¬¦ť–ŁW¬÷OÖgÜvçrŘz«b6]ţI}Ł·5¸ŮÇ?§;¶Ż&‹ =Ü#Í:,ňŮA&ĄŠç †Ěř±¦—N§?/Uc×}Töˇ÷_”É] ˇ§µ]qHÍ4‚'LŤşň=űK" Ř»=ŇŰf°Qb™Ë:ÇE ýÝ7·µGŁů˙¸xřqbhdÁnÉxu+z‚ÓT궆z? ¨r­šÂ µ„aęjý,Á@ÍďÉň3ĂôäçÖr S‡°ną+ßoÇWXuű-#aŇ•¸N8DĚ>xé@żj-Ę7ř”bÚkRČŕÉ­K0ÜUL=2=‘S?rCÁÇgűżČŐË—ýí[Óš| ÂÖůrm@#r_ňjľ°vśÁw{ňĘőBM}ä.7k¨ąŻLĄţ%*{82dZ]ÝjTRi(6 ˘‰zúyű›öŻY@cÎ_g¤RW.ú/Ó§}ŰgU/ŚgnK…ČU™Á“+0uęČbi˝,čĽWÓ4ÚŃ8_׮ٖđ{L|řńßusćöÝúź†ŕ¦ďcč!›ę±O1h0r˛ëŐçNĆSśĆ#/®T zú{ÚĘm“7Őžá.}ć)3žĂŚ+Mö="§¬a ť<őQ&8ň^Ônëywµ/ÚHÔÓ0ćVŃ÷äuYZW‹:Ô•ý_Š5×ƨ¤Ľ c"1Ë [ÝÜím€Í®¤nÍm!uÂO8¬@ú”Q´á‰^Yélj˛#qă{íÇ8ßßČż˛·şŠ’˙®Ą7“Ť…Sáq‰Î_áwkią7ŢňöOáE±űÜXd}¦¶¬Ô,WÓÄK‰s€r¶r,Č»<\OŐ§S¤ j%AÂÉ*T¦ęáÖyŻâá~…wa=ďTŮFTŻÖäŮ4‚–‡şe–Š ćřô¶Ŕxď%+Úß°.imÜßăWĹI4üç!ŚHŞS­ir”ĘOlt6-!pt]'OCÍŢ(Âd’T46­ue–đUŰ7śLŢB7|f¸dp÷T®›0ŁŘú˙É•hLĺZďt‰t…­źÔXűG™D·ä‡ĐńΉ˛ń{)>صà ÷ hĎrĂ›ˇÁC‘ťČ°ęFMÚ‘¦±­Jăý-Ťĺ˝]Ó$U¸aäáąŇşQĆťĎó=Ó GäČ~ńâRQ /č™Cx玓¨z5ŠőjÂë^“%E*ő–ƢšÉ“ľ+ž“nQť°4Ţ̱/˛Y±Ýľj0„» ¶eh .ŤÖ0‘ť8«0®@ý^BgÜë™B„Ž}V·|â0śŘ•Eřë@Ăz.ĚFçĂěŻRw^ž˘MňVśĺ3·aRĐ@ˇ‡~żúĺM '•]‘}ż÷}%]@•,ÓÔ÷R)˘Fu@Ăâ}ĂJZösŕy€—őČṙŇ-±5Td—ź†ü@ű¶÷í­20ŁJ`ËT—_ă @Ş a čň«ÚF[|aĎţa)áľłăß@ Yżń®Ź333@ĐŮ­î Ř®Đ`ޱv€'Ďś°ęŰ$T:ŁÚ*8WŮFÎR´ˇmЪѵ”;; ·/ „´é¨…”ŘŤµĎT#. Ŕm± ^žźh :¸ě)C’ŽŚŃë6Gť·ş "C]h€ţŞŚÍE „qĚ uŞćŘç$…B»‚/ĺďč~LźÉ«‹†L¶ Y;;ý‚%–’–+şş„ź’Nâž°Be8)Žş*ĄYr>ß1ÖÚCŻSKögߦŘŇ˝ĺ7 ‹â›‚ę—¶Ľć˛,Ě=őT‡€YľŇ$–?:”›ŔŐ—rŃ{=ýó¬F]0‹ P‘›Š®¤WUĚO®GśÍ€oZv[o¦ř·ó|¦9éŞcŚŤ7ź 8>Ş$ ÉŹbw톤 €{ÜüĽšĎ„2yD@[{Ŕ6ƆG ¦yŞë6MR~Eݦ“8wŐZ“-ĚřĘy+u®ĆČđV?LŢý۲JŢĚúŻŇ><óĺ,‘ĺ@ÎúŻá‡š¸<Ş>|ÔňÔś;žŚůN°‘SˇqTůÉÇEÇ˝w‹Ş}|ów+s•:y´Ů„¦Ž"pרĐČĄ·F/FâŚ:Ů/¬µ`Ŕ­úÎTŠ)΀ť¦[|ĽőĄäqpNfčéFs03ŹĄj‘s5ÚŠ—B˝®ş©+ť—Łź±ŇűBŤśŇŘš ÎrĄK˛ů˝ Oö—qâô?ŚËǫ™ @ŽŚD$Ź“?kîDnڶܨS6 >ĘžÓwŞÜWNŁ<Řq%÷ŹĚöŻ4Ŕ/śž¬Ş~(ëgŢV^sŢ@;řQ7Ťśxf3yë4~©´3°ßᔕµ%JܦňycKR±÷/¨˛"\mk‹­Đô¤Î…ŁŔhÁÉ“S©ĂP b°u”^ůq]Ľ±˘äźçb$"ĘSÜÁö? č27§3ř˙źĂ¤†•ÇÓś//L­„>¬÷ňĺ‘“ÉU®°{Ŕ‹ZdŻÔUNÝĂ™U *Ćŕ^źýHCn,éÄ76%gOBţy˘ę}Tx đéaČ Ů|˛Ýł¦ ňL\•­˛ÄT`ói_”ąÔfŕ¨Ë2ˇµ úŰ=Ľ˙Ų6đŠ@…#óŮ=)ueÁ2]•*ÖŘNŕ w:~ Ĺő b’|Ľ×¤éč lS=Ró:«ř:<ű>DđA‰Ćçť[')”F‹ÓÁ25śyDá‘`%7îC+쀉\Ćóí:'ÖZVbo;ĆĆň^ÂlH1`Ň~tťî|t^ŠqIń8…•p É ¤gďQy9^¤a ˝ěuŁÁ@#Ś%Éú4¨5oůŔ™ä¤ÄçV*UŰîŞËd‘‘~Ů™>šŚAš1kTŔ–Qxâňd‡TňČ­{…@ţýB×ÇĹ€bÍŤÝ»dT‹…ę–‹˙ÍąŢi¬‚şŕÔaM ŤÎ2'ÍÁ µąw!ŞŻçLŦ âôÉľ=P”Še~Ö8Éů™3Ü˝˛‚ü__ç[_ë  c đuŐţŞŚf9‰PlĐź&ŕľU>Ű I îsôŐ"Á˛ĄZ%–ŮŰ4űĆzp‹tč÷ŕ,"ô ϲľÇLnô­Ť:Ýhcíą×ňť;j4¬íÍÉĎpśŐZ(Ď!űRP×iIϤqsĄ/Ă:Ĺ‘k"ĂęşWÇdJ˛DÂÖŤż $—đw”Č BŹóťÍʆJˇźz¦T˙‚T´¸"]Ů`4‰YK0Ó™5<ÎŇ´ĂHCo—a˘ ěatá´ĺđ­2˛[ą&w¬lçÔ ‡đAG{ ^úŮŃÂMŕi$ÔM4kű¤Uډ?h‘j§đ2t<Ý × ł5Ń™&.-Ü$î˝·Éö“ô“A·¤ó x…)náOx˙Ë?#‘ä™o9>î?‰Íël][n.5;…‹ţ‰¦Y,ŢX®ML bJŢç6~†č2Îů+˘—ŐEýL4ţ Mc:öG÷<ÄM| azp÷ݬcH¶i;Dľ‹Sd€đäŔmyŃ׸şM˝˘UąaŹCĽ†ÎČ#ĘÍŠ Kچq$ĘŁÖŔÍT6¶­č›‡ć†łcL# `|Ůב/TčLµĘ–KŠ·ĂÖú   @ŔBňŤo N‡í áŃéůdŠäJź…oöŮx‡±ő~3ŤÔMŚŁÝLyŕIµKśŰ˘b/ÖĆ®&^hČ{ť12ńk-WŔ TňoV.h—–ŇKGňó‹ýS^§ú´ůóŁßŚé yG’+čßđ9DÍíé5Ax1©ęé1T°¤ś†ĺSń4eË‹vOe‘ÖŞnď–i9ĺ±=&#Q;nëĐ× x Nf9°_ŕź$÷ŹěĄ™EĘ*:Ăč+¬ë¨6‚çÝŢĐ÷ě©đSuµŘňŃŁuŔŧna-ńqĺ,™ey5|n$Ŕo&Ü?dż2X¸ŹPĹę{ńćíďîn˙'$IŐ;ďĂ\q©šb­­Q˝'M)~Ď1í´çlě'ŃË”†ßń¬mě;Ś›«őL/üDk*vu1‹/2ÝĹżd¶ůG¤XłAEąg „ž;9=$Ĺľf 0 -5)¬(śAh…żDžZ\ĽYîu*4FĎŃ€†™Ĺô3“ –DáEłń·čŁT/lV.„Ő.J•čđÝ$}dĆí L4Ó)o Â,zb>WÄGâúv”"qŞ÷Š®xkd5ŤČS»©<čbăľH+€ĚČůřleXLď üíűá‡ŔríŽŢ˝üAŞŰcańŃɶŔé§®}ýlwÝĄłJźŐôÔŔ@\•  čó®w¤¨ĂW Í©ˇĆq´BŰU“~ĆěTpKżüłůn¸î«ŕ|Ł şGM:4l…ę:çިÓŔiKĽő %RXPtG77MWŔ‚Éw+Y§\ú8ĹŕĚÂ069žÜď˝ęŐăKöÔbŚaŔÎ[°:ĆĎM¦ll˛M-XĺíŁ€Agŕf¨î©ý¨)bD+Dcô!ۤ3\‹męBÖŞ%;N˛LƧý ĎŘż±/'ůˇhQŰi iĽôúä±ĎżxĆHÓoŢĄÇ>v()||p~o|‡ý “s&łőQĚézďWř‡Ot˝;ĎŁČŻé"«çŐĽÚzézÇśő­ )öµ`ŃJ™“•<óˇý …Ś&Đžu)Ń–śĽĺÄAW–qKRTĂ«V.ŁlŮ.ŕA‰dTtĆ„›YH@ô?äšÍ{úŚBĘRľ4ńŁźP/."÷k eJô\žŁ4`9b§ÔËŚW6L“ĽÓy`Ŕꇔ T;Ć÷ţö¶}ŮýLe>Ň${€ă—3ł» §ź ¶‚â;ĎH+]K2Ü~Úśĺ%,g,…(”˘*i¨ŕNrö.ż¦eĽ˙ĎĘA`î:mđ4ü[g('ÍŐťŹAÔßč4yź ô ´"y,PH rFýĺÂ}A¨źlﱨIźŤ˘8h€ŞćŔăUśFť—Q KńĆ 2Ζ¶|X­Tăµ{ źm”JCaA ÉĽ12âŻÖźąIĺŠZňü ŤÂgl,˝€×«ř_Ź [`ssfiú2V)Ń8ŞWľ»®ĐÍÚäS°kúŽź%ÖÁ“Čt°PÉsYł+[ovŮvř€ë˝ĺÎÔěCĐ“Ľ ÄLOD&i® ˛sX.tíź»WÁz-Ěë#â:»×DßÂÁƬ-ÎçZOĐP~˝ëłY@; dČÜmSÇIýÎö|V˛Í/Ař·›'Ů­˙cďĆ ŻĐě&7ÄU4ĂGH^¬Gťn‰ ÷lí)Žßéś*qˇ•ŮŽ]°F-ţne ¨±“"—ćőTCiŠVR˘ďKĘĎ·-­ţ1x~Îéťś÷š÷¸& Ír“=LŮłNšŠ_ţ©F ;zN?Ź|ńŰ‘đyXk,Ă˝śWľ@1Ľó#éěAŚP÷€»#ÖµŤş"Č&7ýĄ,Nő"ć@¬3ȦâáĄř¶}‹őšÖŕMf~rcěE6S÷$™Ô$XĽŚŹ’ĄcŮăżć j±dµ˝sśE'Ć%ĺA óÖ/Ť ·é¬b–˝K8¬Ç潵yj Óqbý6ňQűކś éşŰ‚dťíěť˝ó©>hőŐîě Sل̱y ÉŚÜ,Ç7eB¸ ćőż5m˝™% E}$–ýÍ(ÎÍqy›N,‰ŰB%ĆÜĚ@¨_Şu’Ţä”Ý4yňńĄÍHŃ;ďa…€obôUqI˛»M׌€ŮGé@?sO2Ü:Ů|e"Ń*Ç'„N¶rˇ%ýŚ`f/$CŻ€9Ń,öľ¸Ĺ‚… ëPá€éEФÄĺ§±¤µ8i\vÇ7ÁŁJQxŽź¬ŽRŻŠ)ľ{Őcž(%>ţřE)ófĐ…Żo˝VđßK´.B LÚ|¦÷/ *ŐűMÁĹózĄÜăR,-r˛żnBŚű&ţgeŰ­_4•ZG´ďőľ‰ťGý%ę0­ő¤ă"úBç"źŰ«˙ áŘÜo…˛ŹVx˘ßÚwˇÄČő°ń$ţ…3F<eHâĚHš+ Ű$}uĹnÓT_¤EëéÎëĄöÚÎgµWŢ|­Ę5;~€źěͱ>†4ÔŽŇRk şnöPKa ÝcťŢ¦ F`ťéGQ]–´Kwkăęë.•»˘ÚőuŘ4]8kŔáş»o™e.‚ V[!éŔ·JśŘd‹ßÖ#fé›Ë"]—Ä0 ŽžÇy~ⳎjXĽ@;s$‚÷Á—÷~O˙ÎL0NÎź)˙ͮق…±?»|ř™ô gĘÖÎ…o‰Ŕ3i7)Ô‘éľ<}¸+}TŢšÖ“ćK”{ŠCë÷w˛¶ĎĚôXßľcŹĆŁ1ŕöę˘>.$Ç…¤]PŐ6‚ůtŠÖÇ/îşcµą {¬^?Ŕ ˙nVĺŠINę HÁć°l#°­‘q~˝HDz-ź ¬^QS™E ‘°`ը捺=“Ý0F°đ©9čé!}ť|żivźŇŹ[§¤$öůLő2tŔ5T%†ţ%đ¬…N×ÝůĚ˙´ü<—+‘˝˙ąó¬f2µ„‹Ž.D@µ‰zâ|ëăÓ.˙ nô­'p1ÁĽkËhÄľtŇ—kŻ3-ües`.–rü‡_ĽÍĐ•‚›ŮÉÇZ:/> “0ś˘­Ç¶!Â5HŤŤ4 ’Ńg X #_+¸¬“ž>,q:H×߀Í4OűQ¸·Ďzʞ)n(;^ Wu%žx$ѶxđčPfÁzÁˇń¶Ţb_?śAĺóĘĄĺPC‚ćf7ŤazĐĽÔĹ…€ÁĄŃ°fÖl88y¤™äm@˛&LĄ÷¸É–‹Ls­»ČX3ću»]gůh&®ţö”ÍĂCâ çĹ"$Ž/}„ 3—ě{ďśbPśSžŕíES2čŐŻ¶Đ’ůO®A×Ăd:ŻVÇ€Fń)2 Ńöň†LĐCö<Ď›¶†śľ—ynfE“¶ĺ”ÉlÉ­¤m±S#e°ąJŰ ż¬sLJůžł4­¸ h&ż*;Ź>IÓ÷Ċ3SŻŚ›Ł]úÁ@ň«]¸AxÁ·mzv—3 ňÚ4°~î¶ňíě woŽ÷ Ý­8e`Ń;úh á04´jFLßU[7IE\2(zbÓčh[ÂO4eçŹ žAÓiG űjTř S-Ă9÷UqjWC<ŕ­~NÎçAąú~4éŠńru;ĆŁc=/1bŇđ•GÍş‰ş_˛ĆĘ ČĎŔB"$YBćŮocŠ7wmçÜňľŤJÜ ] tÉ·źČGć*:¶˘ęďßüXĚëńő ÁŁÄZŇ0{whÉŔŮ<{“ôŻoŠF˘°m˘wŞ«ÄüW==ö÷ů3˝4Tć߼AęńńĺVLóäŠűÍ×řâ`( €ŰŐu˝ #äŢęeCN14Qcç@˝a+P1%ŚÉĎOşsĹVô·=Á!+¬$6uŔ‹ŠdĆţ$Ô—Čö÷ŤŠm{„nV]8xź[)#˝VXčęZáHD R´ĎHcq .ß‚üI/­Ąę’?ÝɲBgŞS»>ÚB ˘ő|l»ô.˙€x ź¨I=ňuĘsQE‡B„4Pźč‘C¸˛7f aX'Í•&ĺş*-~`<ęăC~kéÓŢ šśâ®_9ÖĄźi"'Żď őPÉĆ‘ ©é öođ–Öżń^†:ÓkË[űŘĂÝ–M[ éd˛VlűýV2gm’,媪Ž{ܨ¶–Ôĺ^ÂĐůúÖ–őŐ*Ö6ßÚĽđ¦FĆRx±=ľâžaš:ţ×\őŠl™>PCÇťµ!]ÓŁť3¶rŠu“=7pľP:ąž\?f8ťK±ĄÔLâďOĽ~:U·}3 qʡźżŔ`$¨ü¶ ҉uń$÷ë1öâ¦DuiÜ)đ•ŇŤ4ń&xĆÝ|2ßőłŕ®ţxä1ěż·WĆÔ€Ççś3iŽ÷\÷2~qĂ\|7tE›ąęŹ®ô™=G=·ôX&Sb€9%ŇIDŽ Âş?'{šG¸@„€Á‰]ŁĎGŁ7[ #9딇 ËťŐş9‰Ú+¨«’ŤŤu“H耒˝]2¨|°3u_.§čŔ›˘\+GˇPł™ýOEĘLëÝ!D%ŰąčŔ}ĽŹnjKâ§M7˝÷sőWrQÖĹIz{#¨Ú†CŃĂV°CŐ—ź9ę,†Arü4˙—.˛&Ýl˙8IJáNM~ĘOŮÜmď\¤Óć÷±řśľz§%ż4Đ(fÝşţFĄ ˇ(®}«suµɢc›LŇáâĄ%aŤ*ÍU˛‘2Z ýÍg!ÝBeŞśmé]:VâęB¸…SâzćÄŹ;hŃ Ąă’o8 ý!#(Çy)‘ľ†î:D7Žßô^I¤z˝yWVl5…ňzôĘe°‚ĎÍůzč­69ŰrL~Bm–=±˝Łr®mźĺ 0¤SfOźđ [šýźěO&tWH‹*Â4L˛]ěä3~˘Sů%\3ŕĺ¬ ëág©ďi]?ŕ-8”.eůdľőě.¨g"ÉľŢÉ%•Ě_H“ Ľ“(ÉłëŮîk]Fß–TŁ´ÂRYđśÄO˛…Ĺć±sg!ąt8’§čłś»Âüs—/Y>´h`6~h”vË Jşx?5ěćÄ0Y‚ i—˝š@SOö'¤ů‘ź–L;\÷†DÖî49¶h â"*5¦‚t7çĐŞüą;¸1=:č(v·3›Âjż3íÔ%Ŕf˘iL1T{đ˙‘€† ŤĄ‡™bI0đĆčĽuČđŕ· oďäÖb—ŻđŤ§”P@l˘WQę;Żz,–*šÂ€üŔžŁÄhmÔüąüđ‚Ń)—éą|RZKÄ“]ó)6Ťżd.Ś)fôŘ_^ÜúĂĹŽM!“¶Ň Ë«Äăc4˝—¬H!Ă“yŔ!µńĽ5746 ł űŞ>ć2‡QZŹłôÔŮ)0ÇĐ1d%Ô…fĹGöaŤS$Źî9ŻĎ6I˛NQűl' ľ!!6 çîďůz¸ť@Şgż|¨ŻnI‡ć;ÍšzbáÚ‚6¸üžĄDŰÍWqáxĺŕŽęsl*J–<`ąĄ#DMĎ´ç#JŻSßaµ29P^ uĂEßeE™–řëÔ‘âHxzËH řK%KÉşeĄË +Ç-:ŤčÍő-őť¦,_‚=·Yŕ6éqNöxř–ÍjŁÁŹ.;ÁČHŕ»"éŢŔMÎ)ëJ÷ry™l.Í öCŇ‘%1 1 }'“졧€8śş_&ˇčĎ>6/\‹D2Źĺ˙©q‰:¶Aú^]Ňç- 3Őł8}Đ”e®` řÎ{eî>VE5ü˙%b¨é)'rGn$YyŰo2˘J–>3’rűűÂSÎ ^ ŰĆ]¤" ěăTŘÝ{ŇC; ăĎÍ ĺ‚vÂS…Ţţb€Ôvš/zfPˬKL»Mě<9íĹöCßşsM”\65Âi &{“˘ÁŹňWŮ´ľˇ3ÝżďN·6U†T‘o“b˙°RAsV’ć˘ß’ >jüYĚY·G…AŇs¶Ţ©}K ťĐęßĺ~[=yŚłŢ€ŕYŔ°‘[Ż˘Ő´ëŠő©ĂĹ‚ĂÉ_,*(A9źŰľ›8 ‡ő»Ówş&Úi÷}Ý˝u_ęľruýóĽ˘Ýâ w*x+Ŕ“ű&­c>ŇúE~+ă M­T‹Ë…äwQů×bîáW(«í:ú°v—Ňł¦áSŽ(L:\µÄž]=EĎ zs6úŔ˝Î h'Zݬ<+ť”ȬUZ‚ŚGHB‘Ľ-)Ň?č}ŐäŢŹ&íÄ‹°d'BG˝ß|°”hX¶RŮĎ Ôět€&«Ć"_5’ýŞvt®ŰŘGYŤŞY\ŹĺjŇËćĘĄ©oz¸}ńg˘ěŹĹ ˘_iµPżëNG59édłß7óÚŹAŽÎĽ ›Á]§Pć"`FlFď™Cü6ÖťiSń5¤$uQvÁ‰‚`†ČçŔŃnâôđ` Â$ů›{&qfŁoţU¨Vá~-lč-O-žŮýŮ~ĎOáŠűXůÄ'†%}ľÍŔŠÜEIő [@qÂbmăŕłhö†»ă¤ű N_†ĆŚÓĆ\ď%ťl¸¸R_e—Z±h…J ×§¬ž¨ń ‹L‚)05FµŹâĆ+DA—ÍyE턇»ŇŞĺ;{‘CÄ©M 9`®ŁÍŃ—kqu¸v–äLD‘§–řwEeR.3M?삊żđ-ăAçpŁ sˇgĘ*€ĹWÎ…§ćoT’[füŔ4i6(PÉÂ#óDŤ ixőšnW±ţŹYtšÜ‰e :&Aöďěí dvÝţOjX(NcA˙ڍ] J &v«™Ůyťŕ´íJ.‘uŘ ixs*hZŹ„RĄĂ´<Ç•“1Ťß§śN·Jäí <ÜČs\KxO"Ä€đťł:t𙊸©A«G‰vâplĎđéŤńB’O¬­÷b ů‚ë ‰ä•MËÄlŕĺ8l´4X†0Đ•b<şj?źĘł1§$Ă_›-µ,H?ĺĂÄŽţäŽbáî%ŔäŇ<۲ă Ů˝¨›Ľ ehŢ34>Ú¶î™éc 'ÁÜČźw‰Tĺ⥛‚ćOĂĆe2óóůžěçźoś$ÄĘC0‚|!L ®Pôű‹Y%„3¬yU2íńM\ ý]‹ ťLÖ ¬‰3Ňŕë™ň$mt×Ţđy›Ń…ľPą*Á,ł 0†Ň;čI©¦>őúܬ…¤. ŇbcYĘq»M…BFBvtťÄĆ ď…şQË$>p¬ŽBÎh3ĺxÁő.qNRż‘wźĽ#˘~í—ßǵ?y¸ş\ŔˇďŚ{¨¸ś%őÝ é|Al!'˝Z%ßđ’ëŕ´Žhcyű{ĽeěN 5l×Onţâ/žKŐ:Őev—«ßĆlXđ¸‹˙÷Śîŕ)A]ăFШ5ŤTłSqąF P®Žćý čňÇîZčţî}z[ăą[p˝H5Ă‹{X°Äş°±JQĎvöyˇOôÔbh6v& ?Ŕ +o…ŇĚ7‘`¦·j*»7Ľ¦–ęřőI¤˛z­Ł¸‘ţĐ Ëą$.ó%ˇ”<Ł>ŞGQňď4ćSEĘhÔ˛?Ńf)Űáľ:Mén×"Ľ&JK-ˇçl{r Úý^Â%0 ç›ű •c¬4ÚR)4v•$jŔ4’Ëş(ßű|OˇŤťKEN¬­ď,ľ Źś•¤'C|çŚ óY@‚Y–ř)jĹ…uáIţÝl‚Ůěž6xă"4^ŞoúŢ5š¸¦:’ 39đăoĐ«qĚlrRO5ö(Ę3ë*ŤC˛ŇÄňÜKÁVCWł,ů‹çőNÄI4Mcu+ă¨N’Š\EuÚ§Ě÷\gŃHQŤÉRşIˇętˇĹpBäĹëĹÓ.˙px7źÚHtnźż¸p‰U8ż­Y°ôţ'ůq‰w•©b*'Ź€óU:6äâĘl÷LŘRhČÂĂbŰ=8ˇż'Hí’–&F?ÜO×0_‡$F|G‘Šë\ô;.ś;'şqA–ĹŮU?;˘ŰU˘`\ĺőŐ1RÇî'qi ĂůuŽE x¶ó “H.˙oÄçšSYKÂrá ş”MÇ7h˛!o{°•=şŹáÖlmyHoĹ ąÎ…č¸gÖ˙7Y lęěÍńŤ‘ÔŚ´…łÂfĆľp(ĽyŽEoH·IÄŠAAÉ/Úĺ‹›nŢ"¦Şť›†5o™ŚÇ˝ ŤűŔ˛Ă©#’˙ ¬’řÄše»ccRö §/ŞÚé^HA&dj )qRîTč˙HdŽyÚÂŞÎC1ě2[U+\3şá#wcOɉť>Ë48ö$ćeV¸ô|ç®ĚÜ'6z2•ŤÚî˘#Ĺö°ö%µ‡’D\c*&«µ\±1`;i'ŮťKnÍĄ·Ľ-a˙tă@QVĐ>ŚŞÜ¨g1ęĽS'­ň÷Ň[©ł1©X(`/Vş#â|hH&ĚEčwmş_עÝŔâ^ÖÓ±öVS{ ëěÂ6Îa˙f‚˝R'&RmíÍŚpE|+čÖë* â}ŻŁłłLÇÇ%ÁIFŻŞĽâÜĘâŚ×© €ŕ˝uQ×ţÁëć\ÚÝ^)dM1ÖËăXfqz‡5•v÷A¤`–ŐĆôadbÔ:Ś;üą(cüLV'zÚµżw÷;”żŞY9ĘJ=i%żďçŮDSIŁá´´ăyĚI٬MżFQG"˙qĂ`ů¦]·vGuÖT¸µŹ÷cäÁbÚ6fłŕ¶gGŠÔ/ RCŠÂ(JňEéŇ)÷ťęžÇĄ…„vJ]!ýüŚhę'‰ Óębęţ˝šcęgl‡]ĄŐľ Kč:ś^gzf‡ämÚ4śžä˛ÍS·ÝÁIx|}ůbSúcŃoŻäD´ďrňˇ&±ĺE^$4ëΠŻp)®.—=p˛şý‰ ?/Ş—…\ô7Ł×iµęÜ#ĺs6ื3ĘéÍăN\‘`9ŢV Ů€&Çďx%”§»•OµYś‰«*TĆB;ź‹‘ý5?·¨á<—°ÝGż)f˛ćţĘ"›ŽYŃáâ'ŮjÔŚü–NűUϸăĹ[ >@·y‹ŻÍ—Ý`ÇőŰ™sl:Iíµ+Śşd˘ćÇFÝ f"…Ó`Ťu tž%řŁĐłÝM"đĐ~µ-&ăfý]N˘¦ć>ž{xŚÚČßJĂ! §Ů‡ć«4Ń4}ýżiPX]¤÷\Ďąě`97e/ ßĐn÷ť0"»Ľ„=îµ\)D(’}[ĺČxŐ†®)ńÉ#Çčś”ě5ĆY) )ë6Së“ĆßĂĐö´`úżTlś.ň„ŁíPÍÍ‚Gý˙KçkŹ d`˛áŐ+,ÄGőKC:k-ŕh5¨Í-Ç*oLÇŃťHĎłÔĂ­°ňľÁv±)đ—`Ą°4ôďYľ˙ĆůË)®Í07íɶĐ`/ôf{°_K«lkCΫôä8‡HcŘ^żTőă o OVö"b ‡đŘ@ż‘zé,hî^ßTłŰ´&Zľ¬'řŐPßL.Ďl'fMo=óÁK9|ŹY„Ţ0Řcő$wĚ 1čîPÜ‹ŘmĹľ©Óö6ŢŮđ<*g ΄Űw……|J8 ~DĄŻvŻ­°k[đ7"”Čýąľď™1 ¤ńđâż QI3“6zá©›Qý Šąß«1Ú3 6OÖăÍčCüP±Ť¬fčeł°oŮ mĐD>Ľß[x€.“fĽIuÉ0$ęĆFüÄfY ›m!UŞ•Ł”fŞd§Ł8ŇĄmüܨ”›LÖć—­sÜ&>ÇzĽó8/37ó(:Ú4 ŚMČ91‚ÄCšl‡Y“Kµţ„J0Ż=©÷†^Íů¦5‚5Er™3Đ0ëLÚ ćmó×ŃÁľć…Ř?ë’ >ô,č€ëó˘ón°ů7mšbŤ§K@ç]Ăm"Ě6wŮ‹®Çvv1± ’(/……D7N†@czę6+¦ň1éB1¨,¦{L=źd¶.äɰބsÖô>öŐ,?Pk0<~xçVÉxŤwŰ,č[ËĆ•év˝čBAY`Žź3ą/ÔěH‹.%č¶Ąí}›ňÁÔ’bŚ@±nb^ްŁCMNÖĚěsPńTÇ…#ČpIü&¨s=í2·üÔ†Ôžzšł™Ç‚.úËĎăű×â‚»ÎÓhŤ&«âVx ŽęŇ_u‡íN ěßą<Ü(™ńHą¶kĐ`q\‰ q»Ą <4¤,Ă}ŽÁbĵĘd?6ćÜ9‚¶úí 5 ßYvsĎbﵲ—0ĺ”Eňp x‹‘]»řŤÓçÔžČ)gę÷kőčáöű=`ík _Iśč@6óm»Çşŕ;ĎI§^—M€ě}›ÜIÉ„w†CŢ]äÚĺK^[r 'şŻŮÖç#ľŢąBQžt›VáuŠÔ¦Íĺ!ăő©Ĺ?ٱ‹ ĄfŞ`ż]Ŕ+«RWŞđׇĺXî4ľĽÇÝ~čjoŔZ„Ý>M<(-g®®žš@ĂŚáÎŽ7ţ©ťáDjÄ…Đ«QsŐ íü F’(˛™Ż˛…>G<ď˘^3ă‘1úfŽ1.Ô´ă§a|ó+ţ{¸\˘0XÖ Q鬢ÉšF§H_fďn4Ů5{Ffeô*PvĎĚ{ŕÓŁÉq0,Űö'Sá=«–u(ŤÂš\*ă-¤É8+°ît¶XB…?âŕŕ 0ý8†ćĂWś– kqşýüeöµAŞ-Q$GŞĎmeĆŘY ‚îa×—}ć”H5 ”žkÜyKµMŹ‹śá6Ł„qö<81€Ĺ–îĄŔîůÔ·")LŚN(-„#zF×<'ězů?YŔ:ťeptÖ™RvqsF*°G›Č ;ň;Ě/âďÄČŃßÁ™ÖMcSm”~H( ”äi5§PDZy‰H­Čm&N˝÷ıIö2ťÄ ŤÎ!˙žâŹ$Ƨvŕ^§GĽK\µŇC±‰ŕë:{PHn« ´SFŃŕçËŚŁ!Óů ÚËüô‡T8öŃpÚdjĹydÎáĄ][†$î±\ŚŇßPš)mV%™éaÁ7ă†lëĺžq“µy'Ś{×>šŞŞ"†ß ĐĂ{d‡ą‚+ńz.mVĐb&mZ´H5‹1ÉŹ.ďĄĐŚá ť›Ă_â€&U_‰#cŮ_FŮ ´}‹&X|µAĂS¨źČâz3?ŻŰcŤ–´¨…šŻěB‘} ˙zUOŐş`ĹŚ2!QHISEĹžłýéöAÎ3á‚Ĺ¤ä´śŞ J˛Á¨ëÄ>ú° qZÎÍÝôśtůŰ‚…Xľâ˙¬‡[KSZEC e5¤©ř1=źFä Ĺĺ úhs6ÄÖč“Mř:ćqé™˝‚¶»:jtîFĐ>Đ=â®…Ř%®śój[üĚŕfÁÉ:ˇYőuő”°{ĂQ1‰Ŕ­/ůťy›­OŚúĂď¸â”áµę&ĆW‹ŰŕąnDÇc@ĺř˝ă:ˇ¦ž!—­šT8äB¤vŠa÷Ň"Ó´3­ŘřJ”ŞxbѵÉďXŃܞΙ|Ą€<°$jôšŢü9˛†Có†G‹îźuˇAµ¶‚~w<ŰBß° §ćr—îáóßţďů3.~­óýcűĆĐ®Ó{2h,ţîaÖ) íţNK·ôö§?|źšl3Šb1Ü1ü¨)˙9h7ę5Á˘C‡°ž*!ççŢŰńЦb",Wnüc5/ÜRHMŻ.vYŕ%ŚĂn— JJw]ľZ›^€š>˙‡˛ő TŰö4F¸ÎfýîóćôžW%-›Đó=} >Ótś–ć Ń˘Ş*¤ŕb•5Zz[kvçŃ‘›\¬wb9?ČäQĄż2}ű*6O|ˡçI¸â-÷_žđą[ýlĺ·=fPE;VĘxŽť†c=Z¶˝HÂ;š¶ş«žpßA•ŁhĹŠ‡…Y'Ŕ’Ϋ-ľFˇIS‰”¦5‹·Ă ‘ n)G%ŕĂĆm}TŹGuÇŇ[Ó<¨U.ľ–^0–‚„3‚‘]AǶÂÍZĚN¬˝~Ř;,SŤ‚ž]!Ľ!­żš&b´ÓhýW‚ÓÝëĆrżíŚ•€EńŤ~Ňdę ćnrjJ;±`­mP…Šsf.j¬˘NbłíîšÄ=Ž`yŔS€aŘĐźiöŁf¤ĺ,ť­%ü3rĎxŁo ÖŻ˙R%Ť!ÄÇD´dÔdť’aŁđPs4}K”Ú$ä“ÜčęŰ0łÚt‚ĺH]Â(0<Ů,iXveu@ 5ůsđ(ęI{©G5X­Ďg q=1É =p‰b9ĎKHŃETő‡R­&‹ß?ě8^ăů‰#,†E`č`žeđƵ(çaMh~Ş_Íą»A¸E%ŹY|ßw9? ŕń;~k1F3xĚJ°$ŚÔł„jšŽ%ç‰tÓC4)-Ľ _µ 4:€˘ečfNŮ5WŐźë8Á’kXéY ‡˛ˇîť›Ľ°u+ -—¦dą1ńÉÜlwţ]°ę‰CpM:dećZ<©=ŮónŰcA  ‰ŐG!6©‡íÝŽ§«ŚŤ†EFČ#vrt7·™řZ~.PĂÚÚ~‡Đ7š ˛ů—sďFFVúÔ‚Ý•E´ŁÁÖsŕ!GőßUąűHxŞŃöóRßÚî\ďj łdç'ą˝•Y㯀đĹđÖżj)xe•]c32j9s‚M•‰»ݍ\ÝC­ć+?ŚVCŃÂnjv5ęŢz{B®[böXň)ĚŽ6ĐÍ‚gÂXŔúőĹjýÄ=¤ęÁÎ\ćÂx–ä:éöCX…öëžŮPŤLvXô‡âí¨ĺ<¬%Ô–äŁîŢA“Ĺălq0… ӟݏM{Đţ÷C±Ýľ>RZB~źĽM‰e-Ö%uYOŔ>úČܓɫX ĺ(’°h|[DAn4îU0_&W„Eh0én´k‰»ü/ýĚs‡đµ¶ôpŻú¸ KéL”‡ó–9GĎ˙^!ęNž]‚đ{jNX@X$?BŘSë0ŻÍ}eŘ8%Ţé6ü?•âćn>ä;ôn’±}60Ť NúţąH”˛ 4Ź'e8–ú?i8Ĺ'ÁĐv~EN¦^ŃŰÚ*UCç‘HQ@ŕ Uä&óń2ş‚ćŇ Ć$ŚŢľ>j×@ţ„Cîćz:ş%>óor3đÔäęĆk¦W&ŃŽş#xÍÔúŚJ‡Ń€Đ0ŇJZđ´˛u)éźSY‚{Şş$¬’$j¨2ďÂRňšL´?ŐxŢwÜ?¨Ŕ€Íľ,gw/u™”€Uäćw§Q‹Î:Dalh=˛X˛Ś°¨šk°±źÎř-V{ŕ9—ìX\˝É 6);ųɥw!+HKŤ& Ľ$‰&°Đé›<^ŔP…©ľ[f·’-¤Ł‰gÍëcĺ]_ůâŃ3l‡7\##4xúXs‚Ś´QÓĆŽţěöđyUĽľ›ŁgNJąVÔN(ŞąőDĘě˙e¸^Ź*gOĚé¦E1U\#>B˘Mčkm=ÖĂ•ŻŇĎĐĄÝ`}»lěżx/–ŞăŚć_˝hiôˇN‘çţ ăŰ5č?ĆĚđ»*OĂłÝ!†ńßѲşćşf¬ßuö¸AôęC7eÝN!yPń©no™tôŚ\z«H©,2€_cÜMŐG(lÜńc±L6Ńě.PČ:ęOű(Î}…ďX`C.\,ÓđNiřúŮ21$;1Bl`FŇb'Ä…žö R­éŃőkäkŇFlJ’!Ę˝áíŽYB KđTú&{Ő}Ayô %c·`~ŃT÷&ž2mi´% ©ó…¬ßŤPëU‰óöľ­ŚőÝ•=N3čS¶”¸˘m‡éô9{¸‚ PN-âţT„ëA¸¦÷ľŕMśA©©<7sGę—„WĹ?9pňG$ŤzZ‰rĹy/#bFťóÉ«…\ËEe~ţŘ•Ě^řĘ›'±˝Ć…(KW6Z ŮyG_'wŇâý«f?!Ä„P±ü0cV“~b3˛î(\9hÍiJ0o§Gáçh2[\ÉdĄůkr^a—óśĆä"çDÖó^żkđYßVT–s9ß †TJç¶ůu´§A©YůčDÚŐ¸L©ĹOÁ˙Q@*ą%4”ŐET‘ _˘4ióˇÁćZµÁ~‚˂ڹŔ‡ Žn<×PÔŁ"‹óLÚ8š3aýLţW*›~㹏NMh¨śTá đů[íPĄťş8ă‹NĨZ?Ţp’´óîŘ´]1‰ĽP%›ę·˙şäęémÖým0'ô"˙¬í0bý I,EŁîˇ©€šr*€««‚řS€]ş*ëčçk×·z+Az{;¤jđR€ho]‰[ çrgÎůźzHo9®Ńî™ĎížX'ˇ G¶Ź)qĚv¬3üşŁÜ}›zŁ•¨\”`y¦Ňß”†ÁO°őí˙ĹĂŞYŕď*ďy¨Â©$*ĘCáŘŚbM·”ŻC·˛ÁÚĆ*ze‰J^ ÷F»‡nĎŕM¶á2űéçmŠ•é.W®d(úoÔ1Ý̛ޔ«y÷ŽłÝ¤!j®óŃIôXxQ>'`—+ęç?šç@ëţĐż,6D7žîEzSo(`íÜšrő=Ě6™¦`š+VV"ĺ Qä5űsřâyŮj…~j¦SóubÚÓkń€a… ł·ÖVřéböłô1ˇ$‘Ó±(Î/~÷wšnţynĐgr3Q 7ť†싍ů]Ž[Ě×ű‘ ü—Nľ;źĂ‹ZD»e&"4š‘¸tB? ĺśY“ľ".€#¬$ô-n°pĽ8t,Č(*óבÖ#cD­Ú‚őkQôżÎňč:’ýŚö#SčYÖĎěçˇ]%6 „Y{ö›Î˛îďyž4qëŤGçbTS_ĆŞŃ`Ýá÷&ëř ¨JO–i?ăw٢rlŹśý2Á H“”Jůid ‰„aL„3P3á—ö˛ű{ VšŚŢš …l0}9ĹLHľ÷nVéää_GĹęýĐ2ÂaS,íżŢIŞ ąůF–ŘvĎ+}66D4€tŁťpAL=§“(ú1uJfFq™ŞĄę€5{űž_4BÉÓBhAąttů"ÖzÖHĺ¬20éŤóŻž/=ۆhኽ+Ů‹‰îńN-Nś<@ť*:~‰Ą©˙@l,öRôâß™ăHłźŤ´ž6-6|:Ë…+;&ý “Sśeů˛äwľŐQ‡8"QűDť?/b\$Á3CÚ´ÄLŰ‘–öş&Űĺ@S/* ÇcâäŹŮŔŐí8÷¶ [Îţ€~îýFŔŘÉ”NLŠŚŻňhµ’ŃFĆă’089ŰV#oťří‚kâ%»sHsťÇa˛Ň@”ž«ÄŔ0¶íźT&ľô›ó?ÇK±ć“ÓŁśŹÓ÷(żBAxSS=sžłŮĂĺ·Ľa]HĂâ-‘‡Ýćcí§Ćzňh1š6ýŃ2üQ˙éĺBEo©RťWËüéÝĄbý¸‡‹ÂÚQÇ‹AIЬ§’č§O0ßf•öËŃ,ܢ6副1ŕůýb˙řútťH1ɦRňâéAŽ‘lVß_äpjµ—B{˘W㍞:ž+ú­˘’Ăş6źt)śa4’A[ÚĽ§i‡…ţĂłË6Mňř¶Ť…ěŚXŮ/I#ó©üÍ'k˙čŃ ×•ŕË\& i8Ö1řžh4ϰ”wđ<«2´ŘmĐRIEŕĎŤCňŰŽ3˛KňHţŽh±&Ć%ň–ÚpµI'Ih@ĹE9Q eĹÂ!:î>zjÍ>Ý„JśŢ÷4z+Żxň;­&łŞč~D˘_Ĺ<‹ÍR°ł^ţtÔ$fž§¨’ćŕ´WâÔĎß/ŚĹQÚb_čJŮĆ/Ź¬Ä r䤓LĘ UĐ •y~;Ř sU~r­»ŚNl˝• c*wđ„Çsđ‘(ëŇ#ĘQ‚WŞh®«ăㆠ¦óő*‚ŠOŢőQHmčBMĺu‰s˘ű0‚öuSâ;J~e8ąô¨Ĺ‡†Ň#D#bä¬0r#·RCw‡E™Oż”‰J—voŐR[ýŞś[Qóo8$©*(ay·Ź!" ŹÚ®D¤˛…ĺíšJ}óŤÄÎżmEÂTŠDŔ‰Ohă~ŞDTć cQGb%#JzĐfÚ!ŹËzśŇ*ę•„ŃAjĐwCĂfO”üôzŘH¶Ź†WŚ7ˇŘU¦áě*×!ť4Á}ç4ÄEgR‘}DęCáçÁyľrcFsüOŕŹ„Ě÷đńŽ™Ă‘`HĐIz_.đ‰Tľ˛`,Pá˶U]>8ŤÚÇ‚oŮČâ˛9˝„qŠ”† %YoĹWç/6o‰’X>©ÇpĐű0Ç.şÁáv~^ŞĽţ»RN¨ĆÜCe¦<ă*µSą©,Ŕtö¬ÇŠ™WĹŤą+ÂÚ«K4¶”­ĺ?ß˝źŔV‹‰±Ę‹E"ÂIÚ3áÄ%&iCwš>G͆hŐ-^˘ś”,:kyÎjiZH‰CMý.çP%"HBăźiRHúmÂö{`ź>sôvB·QraQpYč”FĚ#ŠĹ-nTUUŚĚô6,m>|aĄćŹçżáq&Nołµ;ůőFDq†‘O9™‡1ź‹IďŇ»ĹĎ«EĆ;k{-Ń†Ô íő}}şşĄˇď™€§:ą/ŻZŔÁOoZ…îgżĎ­'B„˛ Ź|˘ő÷MŠ— JÖ´nj.ŻĽZ~ěú›7›€Öá‘-›J+>RÝX\;Ř;:ž‚űRYŇfŤ’˝¸Ş˛·ô;^ü—•fL@â6Üo+óĘ’©gXź»ěŘŕŇ9¶ŮQŹFFTdw1űMeţ´ŔlůÇÇđôࣛŇÜQ…žË\t_ 3vž '¶©Eš[PŰ÷§~QáL˘y h^žł^™ >‚xĘ aú°´2bq–Ţ"Ť§ym˙YR·Š©1Ţ~YlAYč¦GS鿌tŃjŕf`źĘdReŔŚ&V•«9Öˇ3”8vîgcDú’ŮłŚCëىv̬<ŻŘm¬yUƵş ˙ż‡f˘ŞµŞ<×őřŘüp€)‰®˝9â+ůR0ox~°k¸”±\Ä´Ď@ŔKY€»*˘I•kß•MśďżPż=©:Uô´ô¶_^~š7»šť!üj8\\Dmj‚Ĺq9ĐľĽLů1, î`U»ŃçlP˘3T©ô˝d~y–ń Ńëď?™î `ZľNéťáśđł¶Ao¬BNoyC i™-.Âťňa±ˇ×ů6­HhĄżµŘé'·|·Đ*ÜM—ßpş/~Bďß(a6î°ŹUŤ…¨9šó]j†ŢuĎâF'ńM`ďě‘Ňň`d¨F`oGQ~:já±#®łĘć×:â-|™jńDj=5¬7śXE„ëţÚ&)T>#â¨Ją[ć±ő'—ŻSjô°Vj)ł ˇŞ'˘”Ö§ý»uS[Ë_ľŢNÄ.fë†ţHÝBüČ7é'&]¬rěŁä®˙/IÜĽ! ÂôÓö Ô ŕ‹<ĚI¬ĆĽ5`j7çŻzK‡´©Eś&t±–ÄŁÄć­ĄĄz ô­kD”ĺ„ČĆ&¦Ü™RŃŔ:Ç?ů ­ ¬%R6‹·óüµ<3U¬gă&6ť»óR>‘_ €´Ć –=‹ř´w×ëm>Ňb‹Ż;ó™‹Ť$«é_WęŤIKGܲ»´>'R Ĺśzć·J_ef\8őÔZd+=‘†čł‡łżŽ„řĂ,jw74ó‹€|ŐăuN°ŰKúŽT%VŇŕaÚŠ›¦ ÜrרŷBëZͤ„,Ł<Ž×JDsÁ’ÓrK&í$'Łt U{?kĐ g jń9™y&JĆ;(Ęxťvˇ|˛`”·=°«l4Q·VŐ¨b& GVĆĆMÚ÷÷—4účĆáäÇÍINIL÷á.©8űkuŰŞëűhF˝ňúôóŢi‹+Ôw"sßPŽlP!ŽDE‘·ÝĽ8‹ęLlĄ”I_¸°Ś »•/0±Q1ŕÁ¨đdŞ©ÂÁ^MÖmRśóĄ_DxĆ_|ś÷mëѢ‹@ #,ü˝µdńzŠwŹ‹ ˛Hŕ˛.BRäĐY8 ăń"F†ŹČjm?9ĘŠŮ@_đ÷ÂďŮ!ĂwĹWIż=ŕÚ»k0,y˙5‘‰M3–Ŕ…”CÄtŃĂjčb„pPGcM?Ţçř”M»ą`Ăî÷­łw†Ű&ÇO”BůeyJú€™ç±,}p—PŮÓáîťhć˝N#ž9 ÄIc{mfÇ|ĘTßÝ×yéĆ—ŁJz+gľĐşź .;ÇĆEx) „ăqî)-SżěH{¶K‡m Ř€ŤąČ9×DäŐĆ4¦”¨MĄö[>ŢÝRVíôľřwn9bL‚Š‘ěnUZSďĆ<~.ÔÁWŢ’Ć& ŁÍ˛ rë-ţőĽ1šłX†0Źç>ř˝÷,ýÍŮŞčO ďEyőí—jüţ®—Q‘UŰę˙úH§.°ö)6żU¬ üÝktśýĎ»&&©Ľ-;†ălů-Ú| p˘;âŕĽÁcÂĹ7¤ürÁÇXIé˝éÍľ»2Ř–—Âfu.Ęk7FŘš·ŚíZ…żŮNtvçůéhěřp1ů`Có$ŤŰI8—hEëÄą§:ÚSŽ9zťÚś0gá•“qíąÔÁuۤosR:Ö€c‡˙ÓŰčP;pCnÁ“ OW–-]çś~żĐTÁá{¨ýçň”˘Ű®e˝|~W°ź,±_][zNß×4+;/8ˇśĚüşVśgEÜu"Řĺ6•Ók_"¦nlY ˛WvżýĘŃ„» ¨ŹWJ9Ü>ÚyŐp„“Wň|čl*¶wôe°^±ĘÍÓăűw>‹ę5Če›‰*“zŘ'\AČÖFńŽŠ źj-­}úýśżŻ:“D-+r{uŠl°;Ôł˙čöi–Ía­D¶d Áas*ú vtÝaď đńóxvjöJ ^ż¨yé[ÜPY÷ŐÄ3‡ésĹ=Â3ĎîĺpÍű‰ ĎÎ1‹0ĚHöŰq8G«6§nWš@Ňń4żďLp aUŽd—Üň(CŰÎŹćU]t((ó˶Q¤Aţňb$čY9Ň=G8›Ü^‡Ź&ü~OT÷±“×gü¸gfĆ’ éęO¸Ô sc.‰ÜÂ'{7`ĺFt< âBl˙NňŔťpÎjĽ˝ÂŢç]‡bȤrÓá3©źjŕ* ˝[—FĚL҆oX%ĆŢ‘łU7€g–©—.N¸Ç“gĘ”h‹}Úĺ\Ă5Iĺa¶i<.„Í˙ýMŕŐĄ®ÜaEۇ†wŘÇĘá­ÖĐ•m2pß!:‹.čsŢ9Ë‘ĺ©Řâ°Ül,\|)”ęů Ëú:cŕ››úäŇť®EȰ7jż9k[eű:1±žšő#ťÇŽĹęGßľ0ŕSçPr$YlK·«!K°U«ÍwnćŘşió[jŰ(wořúđ ‚=ć<.A/ď´ţMąâáłX{¶ąë«\y1ăő·PĂD¦«ŞęÄ4”*ýF-…4Ŕ9Ő˝0ăE×ďQâęO̧ž¸%[ďqWžNSĘŞŕ¨HbÂřźYjă˝Ţ>Zşb=Żä–Ăéčg5{o[1f±Q0É> -ş¶ľ&ĺ7<ŕD¨đ:F$“ˇUŇ6©§°ýÂÜVΓŁÚîS•3µÚCŚÄr(†Őíľ†$mĆ»+Ŕa(ů-ŢÔ­xá6oŢ5°çéëQ8oô°y:iCţZ›tOr{<đ\śÉĽ°źXV©Z’QĺŇr¨w·D°¶Ţc@TxF†p2;§ëdŚ ˛âE‹Ć¦|źŃsKDÂĐ g†“šK*gŻŔÎŞQDPőä[Ě~É 'x*ŔšJ0ěˇ 0!(‹äň“ ™b­ţ¸ćh^…®uřJKÄ{J*j3”žááHśÝÝ(ŘŢ đ}ġ3­SĂŚe7śtLĎ 5‹®vŹ6\ň «ß±o«ŹJI¦ßz?!Ň3Ő"w7‰nW‚w'ŮX`“iĚťpÚÄwî4r” zŻTŇ­XiHxuBaÎ'_ ă§¦śűwŮŘ,EŻćÍQ×nîP'­&X‚°?a™üg©n¸ÝĆ7 €lGČą*ă‚¶X<ą02Ř«Ľĺ븶÷HA+w_đ9\”=OâMö‚= &ÁĂx3É´ŕEqÍěv—†ómކ2¨˙Ża‹ú€ş)†ŕĚčsX0k’ř‡î˝¬Ě §‰®˘MŞŔǶgĘç˝ĹEâ9ÍúMDwŃlľO¸™’´Ć+Zv™¬–t\ #ťb<˙Ž`˝±ÖĚ÷[ +‚ٸ"Ω¦9}–üi(”Ę7Ä—´ ŃÔ^ZĂ%3= k'ŮBü΋ńlw˙{Łîx‰c|”*ťČÝŹŐ ű{‰jŚ ËOČŞî`逕=ÔöĄÍşHż˝0*î¤,w›ňůJ‰™‚Ô[DşŔŐłşm)ăgíÍÂć›q´cn!cx‘B1Ă#ÂB]¨Ŕ9žPşŰ„¬˙]ĎS˛5űfçc0JwÁ§™^MkÚÖíĽ˛^‹ř“uAnŇy CÓsĚÚü¨ąÁRrą9bŞLN©ř,:ź„OŁvcűĂíz$RéLř˘×2dC …ş3`ë謣ç¶4ďVz¶ĚZ ÷Ľ7D  oÉ]E曊dĽÓ ëőŃaĎ{}ŽĂü§Č~÷€qÓ[Ôzmjr8đZa—¤¸e„h¨·/¶N|_­łä1ĺ"őif—pć)®e}ŹŇ˙čŐTäŕ(c CLă(˝Żîô@Jž%EĘ4‹]—FPçĚo§řĽ•6Ăřv :ϕ㠴Ő'kŠ+\ÖVűYú ­°„H«żÝWQ›čš9xǵŁü^Q§‘§önq| t¶9Yć@·Ó®ŢŮŁÂ 98źłąaÝë?S)C˛Z`ĺÓ9j"9T›Âúë ł!´©V—7ť´‘•—GrčLpŕM’•©BĂsÔrËůŁS†”Úńbs ŻB_şŰ#u%ÓŁ˛Ť}NµWŹ'gĄuě˝D:JeiŔ‰“{ţ¸8žçµeâËq1s[›xBߌđ í‘öeKoéäb×ţŠí­+|7lü>Ň3uWť¦Ú%ťß¨IQ«Y˙LI›'»dţ¬ Š­aĄAçďĎŠ% xÓR…{]މ*…9kżômP%_[‘€!ł¶‚o%ě‚z D)e~ă0ü(h!ô8ůAź%—‹Çj†0Š#ĹüńFţŐµDcŞ‘Č™d‰ĂGł%ŠĹŽZ1|Ç[#ŇCĎTNhylČ˙k›ä¨çHßß)ú×ŕŘÂT 4^µŃ_HOÂδé)sdJ‹­G±ضőÔySŻě'‚×SŻ(+°˝ď‹´.J‡$Ňş­ «ţ€f[źÚ¦Ń†ŽQÉűŞ`—XŃËcŽ×:±Ă‹äSđ8w;Ľ]i‰`§gľ Ó‚:5IĽż‡ÝćÁ©Ď÷®] :Ô»úámÍë|Íwßő <Î5˝e##ŔOb‚"V şÇ´­–eĹěP¤f»a1ĄŁĎŘ*1쵕 źu1رŤĂcŤ­Úç˙‘G#O‹ĽĚřĂđłb[ ď«u.ęéëĹ8á‚ĚĐI3€Ç#^ß!„ĽŽýÂđ(>ÄZćPŢP Ó?ü8µ!Â:Ő4݇ăéů_Ň<ŞOůŰŰmkgÜţŕ|"‚v(™8--~B…»żé^Ví.‰xČ®Ŕߌň19Q^ÜdŤŇ·>Â3˛s+őř1L˝A©$iťˇ}b‘€~=‘e›ťËŕyµýßMKüg1•JIđY s~ÍĄa'?2ĎIÄx ß:Ç5Z¶Y/fŻŚ@Ţż:3E$sŐ¸ łŻ C ň$1'=9GWč@\7¶^‡Aş¸Ë2ëyĆş˘_"pý›sŕîo«("rvM6&0<]\üďAűąQ•č˝AtPƨĆ=š±ĄŠŚF–ű3QWŚ!pűí Ĺ8h§R°”Ľ±rz1BiÉŃ”Ě˙ęŚý#AĹăß®¸Ă¶ôjk‘:¨ę{4íT'kJ‰ť?X8YŻłŇ{rPSj¨,±ż„4ňfú aŮ»Q‚^_@ľo:)ifY{ÖÇŕ8üéýÜJ&2”yč¬cČ7Éë2wŔ`bÎĺ­4ľvéR™F­}Î1y¤VŘŢP_4ßĆ{Z‹TfŚľNu~%H6ď·°1;UČÖľŕŕjyŔŔµňů¦ü(-ňë÷1Wň‚Ć ňNě ?üÔ ô¨ćˇ  .OŇ<ŢX^ęËŕRTh±űďµ aPăŢĘŠ7‹[ńÇ/ö«˝žŞZR[đŔŞîµÔÖfFgÂŕ?·RľĆ)Bzň€çöŇ…Ł(đG„‰Ű6täá¨đš˛¨!ý’•°Ĺ2ň!FŃt5ďÄNN¶ŠdT˙+Ýđ¶.Ónŕ‹¨ô®ĐŹĚÉ.“”Ććěn™ĹéÂD}‚딼˙jĚ×0cŽ™¦ß“b¦ę˙ŁÚ®‡hToMá:Ř’5réáöÔ5|íĺĆϻյuc±©™ĂęÎE4ô ă±2ţądŁ–4eýÁLÖSny3ľ°“˝ËÂŞ˘&÷üä{ćé†#şÜó^w¦v˛ÔÜůä+§ž˙ľp&ůÇÔř§× Öpf`˘÷őě˘ůLů—Kťř'I»á›.Yłońëú9%î® ů·<Ó}Š TăŰ®˛Ë _–v-Uöż ŐberAßŃ膧żą¤cy ŽěH‘Ő›ËĘŽ·TÓŔ!9:gú˘Ďeˇ˘öó˙ă%„Z™:A’Ć!®â^„dŇ…?`᎔ąK=eĐ€ŮeěÜ=\`ĄqËŮ…„Ö ÔmńRÚÝJâ´@ńěwEţŃbLLéH@’s âIśj˛UătOw9ĆřŽ<»âŃě˛F–Â-Ůąń‘WJ‘E™SâßťšsťŹů0ŽT}ęSŔVÉwj®%Ô02˛RÜ ° ł¨ÓŽć !Č;S§‚ZŇŠ€'ťŔâI“5^oÚŹz—°rŞŢśw[—ĘZéZ˘{ĆĐżăĂÍřR Š ňSĎЬ»…´ĎĹÔĆNCółÖZS"2Sźí}‰śşŃłŕÍ…łž˘çSd{€^VźÄ»S]Ŕ$ţ™đćü”ŃfĚ8.O-jd†Äg4e´’ép–ś"”.ÁbsdĂ[rŞ·v’&Śl‰I(ó<îúÂ75E Dč±´˘ĚuÉ9u%żďÇíQ  ¦^ü&;0ĺܬˇzµz/J·ňŻěX$w:;ipÔĘšĽŕŰvŽ=6hąŃ(f %$T#÷BŠm˛tNé°'‰hţÁK“¦¬DFĐś'])<đ_ÝŇ4|tŇh†~0ý9ůÜ RAä=¶€ľ¤¦™ĺuĄ~˝\Č•đŚ'R—ŞP@J‚ş…+9H]CSÁzMŚşÁ_Ź‹ľO\Íăuˇ{éIúű=@†7°R1t\ĂÖaţőó.N«ÄjÁĎW<ţF:Ě©áaămʢŚŮJ„®…ÂĘ7ăڛ۰hJľHó;*ţˇ}m41CÓ}ý/żÂWŚO¦$jč®1:ń@G.P?Ż[j¬wWh®tÜ—.\¶u¬wŕr®* |Ň-Ô^Ł@·#ŘţçĐkˇ Č|ŕ¦q21¶Ŕźólž uŁŽęSĹńnđÔ»ó ~Ëos›ôpĚç„üČí˘żĽâUR’áĺF!1ú±€ăĽWr%ů€Ršt,&łI‹Üwń†ŠŔ({‚ś‹ngᓉC¶D…sşmâŚUWU4tś:wq5‡ąî4Dě{((3L{’ő¸Ő;ĎŃ(±ËH 6sÍÝp;ô l ˝¦+ŤU4PČŃý8đŇ+f…Vŕ”–UE(ő?O˝[DŢ>a„ž¨WĚüÎ9(šč—EôťrV“'¦l»4٤jć#CI¤Ščhą°’Ę™ë-ß3(ŁŻD†ź)ó5bl"¸ˇďmqZš}]śľ ĺÂĂš!¸jQ?¤ĽžÓcµˇh9¤bÇŹ+ÚYsGűIęgŚéýűwËZ¬Á Ř jĆ \N˛b'yžvô2%‹ö Ŕpź KĄűČ•E•žÂ¦l’ť1Ę0le-rtWš ˘?#˝ŽßĆ•Ä<ظÜđ,@ŽIb‰Ł©¶đţÖoş˙ŐćxÄťÖ:ţőĂÜ˝x9`C„9#“brl€ü“EË>äXÎfâ(E¶B3uPwÖ¸ŕcă#˘ddCÁ]ÜÍu€nBT1×:¶žs“ť‡Ľ¸KÖ‚‹í…˛5ď-AQşŞ$¸)BlI-|:oIŰ;29ŻCňVäĹŚëoHá8nEů+¨şíQ ý.ˇN›0ĚĘ……"Í9JT%=ćse‡ÉűF$ĺ‘üŠ©.Ň.9ąÖÖ7‡7¦žÝ˛w7ëçőE×ęJ5âHŃ…ąšą¸ÁŁreôٶKÚ„76ąNú¸3!ĚRyüQăňZâĂkóžÝ-©Ł¶b(%}Z~q;™}\rő!ceeÄřoĄfŰhëŽněü;RTËÄĹ,T?®8øýĂč/˙´ŻD&ěJKÂVoÄřŹM«ä¤Ň0ďź­gť›0SÇ3wZ‚č‰ŕ6ĂS2ŇtâBäŕJćő‚€*”}q:Vö˙#6Y‡*ß{˝·˘4¸Ěx×ÓÄ5×á÷ʇ·.(kbęféČaź§˙‘îý3°Aö3ńÜ\ Dŕ+gÓă śűmüą’oĆÔ`]ÍäT¸ ˛¬ź˘ŹŁ3Á_ XĘpn?Ł”;ł&ńů]7JŁv"ě·„˛ŕV&ÉZţşŚŔ‹:uĎóeď–¨2™ÜMŢŮőq˘DE;+öΆ=˘Ľ†Źűgqł®őö5TЩڷšľdéŮ$5~»R[ Áf˛2€yz…±ÍW†Ś{ťgÚÄ7Őxž“ŽÁ×Çą"SubËŃץŰB´j#÷Q’ÁICD6ą:o±!bŃ'‘÷Jn 4Ă;h?˛ľÓyůrúíXwtaöďH ™tŤ+ q•i÷E•|‡+©=cž’l:iŽĐëT6äÎŮHĆÝÍ›oZL™/:n¤dkB@áޱŽuČ‹‡ĽJË÷`ľíý5şbîśő[űŹóf˘dNm"źžň^GŔWÝÝ1ŹŔľwŢn‹łÚ«.Ş_ćRüŰ…ÔŇ–Ąí÷ !Îs°Ĺ7ŐuPžBą5 \°dgŁ ‘ŕëׄάa·KY:F–l÷qÓ¬`á˝î{ÇDYR·›âId%ń;·¶@"ڱ`z©vĂjŰ ¬Ü‹$D­\qapKç´ç ;-c7ÚCq5ű·¤łĺ0˝µ˘•NňŢěp©÷Ž~*eůĆŹK*YŔäG×n`ĺp]¨đ˛(ňˇđüĘ ŔšT€ĽÇúË FWčK%ĺżążą®­O&¦FtéČ’ŐŠž˛÷|[{Rű¤°1„ß#ŐvߣěcZŰ(Ž=ÎxRŽ)'~:J{9Đ˙+‚ýU‚'RPŰ)T‚¶‘†ĐÁ…é@„‚YOVšuŰRżaĘÔ­#ţxâşŮŚ*Đ«X‹źPśvă*žâv0I ?,iMŹđm•ăógbî·i ĽgĎÉű¸-t=›Ó:´ŚZE˙1%"×#†®±(_˘YÜĺŮ÷±ëô|<™-)řh†sŽHťłď3łÖť‹@ŕ 3¬®ëÓřž•‚qa.KµrčµTu!)!śżGmáKÉħ䑄ëüR·ŰăKTv; ±w2‹ĺy˙J3ň× GäĎ\G–‰ď1iN0Â`]7us¬/«¤ůK1‡±@“ľ© =LCV+őŰiI€‘ţB­n|˙™ďČŞ)Ć|2˛{Î\>,3ĽŚwůýµ˛86sQ%ú›Áđ5™X·(näń;[f¨:¨=ŔC’{ezíBFŽŞW×WĄ"Mj ~uW›©Ňü¸ŻŤáŹBÔ7#yµâîâó˘LČ‘ ×:$iČĐ+†ůŔĄ_rWZSL`lĹ3pi Ý–śgGaĆś0YPéóÂ&ׂr©fĺojŞGáPhŁŐ˘K«ńâf-e@;Yj¤Oý͇%îăp45ÁňŽyB6Aş¶›Ą«€†ł<#čždA#yyŚ3„˛ä"ľ+KĐů»Gcäóp±ĐÁmv’Ŕ..RrWŔČ?(ˇá^´nyŠ0ýŞcÝÁeÎŕŃYôŹlqró9%NZ…zVîńrŁx× {Oekżžĺ&čĹŢEvSţz>RţŐôyŔs8~)ěĂY^v+‡H,ˇ-žfŘaoa6<^]¦c9]2iĎłé|rÎ×+Vç°Ř5ÉîŘŹn­Ź ÓDGlä©< ¦»Ť ­y*ţaĽ~©JlĐAó/ܬĆ1äűąî»BI_ĄĹQlj€mdććżA8ŚžLČYő¶Ľy‡[`W`•CˇŹďQŐĺ,Ú1źY`aDiŔ·GTxČĚś4¸ŞĐSűW¤ §˘QŇĎŠŐ70„€ W—¦Ús@ Îă›8Ş1(ćáCëOúŘ|_™Mą Ct0x]±Ŕ’MŐ:ףokíş/Awg'qŻÔóÉŁŚńč iřş$ i|Ę]©dĚ)Y!·-âČś“¬ă Äî:şEÔŇpµf*ía=ç µÚÂl:VúćvµŚtýŢŃ.užđýΫ§)@LÓ}ÖŞ.Á«L7őăňĹĽ¸–ę~Ďd‚oĚMdĂŞEi¸+łZP¸l™ů ޢ¦˛ďěř„aÜtn0ŕsĆŠWÁĽřÜ•yoű«˙˙cÁŔĺYs×is˙ââ1ţ—1íŘŁ8= Ľô ¨˝ě¶›5«Č—m ž`ŻÉuç‹A“ĺEi©1â`qÉdaцöűOłĂk€Ľ đ.`é5eé&©ě+–v,JCŕáE0SůäŕŃ“O&«_ŠźŠYŕ+¶`­&ťXŇ)Ńue{lˇ»Ä÷´q|ęîň ű ”aTĹU<Ôś%ąxĐ„÷´˘€/ň-$ů»›5Ćá2Tů §Y.sô{BĽĄ/–Dô׬·{É• { 0čÎIŻ)Ŕm»çŢŘýTš)Ž•\Ub“ŰěÖ++ť±éuGŤd‡Ů€>Ą°ď0® ţŠ#¤×µ9ŕ:Şý@Ć6Me řJĄł™<ŐŇň°ŕj¸ťa·ď$vë.ˇRökÍ d…® &¸ ;× @ü 0ő±PL<­® Lë_™aÇÔaľa»~ÉK¸Ń„GÔíä—¦č gJGżI}ŃoX¤˙GHí6•düĐ;tő™0:-ÝćW:Žźź‚UĺM“®H+éq©„«‰Z†’5öW»Ń…ZI‘ĽěŮr[JŐŔŚŮZĚ×üŠ×˘§Î†Ňő »‰ZNů„Ý.Ój¨‚^·Ż"‚xąÇ·zÁ\««PÓX±Y~«űň˛i¤čjO—Ąýä— “ JmÉ%.CĘż4śČ'ćYfŔcn+WB|sîüýĹIĄ÷]˛ŘĂĽ‚ú*ąOťÍ)Ů!űŚ6ţ3Óiůů¦Cy˘J ‹“ep$Ĺ9şqި~ęDĆę°Íh»jüĆŤ2Ěš:őĎĂ•2S¨Gé2KN•V ¦ŃľŐtĂęlç„0Ú°@ÍŮ +šf§­Á‚G‘‰Ö©ZrVÂ,f€{ů%íqÂX—{RŃß™ä<Ň ý”–wůZÇĚünôľ;˛:ŮTî°¨·n%ߊę5Dnm 9Żď9áf„ ž˙5 ţa‘(†}ćX ş7¤4µőĐÚ¸oúq1_şq•íëżtžă,N¶–ÔjLÚ$đ‚†4ß»O™™·ÄC !±ÇíÁ/đ[Ľ›á÷N’é™üüΤ áY¸AĺĘ.:·2{©°ę›G¤uŠg8ŰOä‚őë»{$Ç–·±(ßBî<;tX-‘…ŐŚ’%媰KÉ2FČř—eľ›9•w=¤"śí_7Yž<ť -Ý_´Aż2=łÁÁjjt‡VÖńj&yDŹâmjŔ‰LcI*ŠąJ©—Dę§ĽőŻ÷.'ü C‰čÉFé؇MŠxT(ę Áă+ ś µ­»T± ţ‡‰ő7ľ|jשŃVĚŻGÂűO ®­lŠßľÝ7!H0ŰPłý)ˇP?˛ť%NtĘ"ňe°Cďóńˇ Ýčđ>ůńm ¬ł1Őř´ü^ e# =ű+gzGp%WRwŇ~O7Ô1U¶ËżyŰťµş9­¦CÓ’ó©†= űľ«°FnO/ʧ‘—MŃ[%gŢŔš×Ó .izć{0ĄiµŃĎíz r•‡÷ş§]*: Ę ÚŹRőÖÓ-Ů,KÚŞÇĎ… …7gŤ[ą<­ś_3aÁíş“Zďău-¤¸ę;E¤’hý/~=qî$Ď 2Ô»E ]ß<Ů[÷FČP?zÝ~rýĘAŮ‘őĂV:Ę|x_„Éěţ„'ŃŕoPauجbéjóg¤· ˙ŽÇ•J‘VŃD0yĚ˙c™_ęŻp3‘x­pM@—i(ň<0¸%§­O°Ž(2.)tÇş…ŤöŔ±ČCUÓ|˝Ě˘Rlăb',ĚzAÂi•ŃôÖcřC'kÔ”Ͳ9)Żč˘éű=O{§ÇŮŤxblŕĽO 15¬A9ýó ‰«*žőő€Ů,ňZbçahÎc†X˘č¶ťNńEťX€/«RF°h1P„ú8ëWS©ł´Ú‚=˙f˙r]Q¶ÍÄ6]ĹU†Ř4á·K;hBxĎUĘż*m%°ÉŃFô˝eúÓ)Niú˛üá«Âó‡*\•™ö8oŠ<ÖťńŐÜ<  ˇLÓ#§0v˘ńw­‡Í ‚WÚl‡Ą8`EXI |E]QwTźUg*¤ÂŇÉ^N&üŢÇvZ ‰ 9—gĹË.ŕń@`BвDş‘5¶ĎÚ+hС…XóěXgů€’<â! *rmőŻłS°™= oN™Ľ‰vűŹxČŕ˘Zo˝őŔÂ]{¨$NçyJuř¶ç—ç'­o»ő|c4Bv Io!”ćěźeLĄIQWć1?­m(żźŠt·lEŠ*XmbűĺpÂéëŻxçěf[Z[ěě žď¸=‚MŔ}¶/D_$Ř÷(濉ŰÚ.ĎIĂΑµ¦cxĂA>SX.ÍČmĚ*3Ę{IŔ[”ÜE ěÜçl<ą|2ţ'ŘqZŢŘ“¬Ä\IhÁ×2ˇgýKFß±í^gdŐMľóË´ŢQé#kŃ@HáiI›+nDNş˛–š#ÄT„ŁGp •×wă™DY­śµg*˘§ťŠͦ+lť0ťśÝčg‹,ÇÍę˘Ň‹™U€ÔŃ”R-]5ä?~¤«3ÍĺÖg>?ďĂb6řŇ1ţçjŁ»˛ŢϤőyQJš ŞägčŁęuž˛śč„ŔZŮĆI§CbWâŔYež2Éu$¸ÉMFšŽx‘ô°PţĂ@Y0%@CZ6?ŔM(9gž»ZA!7šĎÔ:Ú%[Ĺä1EĂNžt2këa/ť>kE_Đ ZĂMýwřFS]Ŕî÷áT—Ř’xś2—k§ Mm~Č=őśyw:os”ŕß–X+%&ŢŕŃrů|ą“‹˝4fí'YýÔ uŻ“q™'‘ÉLwµ„Ű“‰ĘŐ6“_đFň9Ćé;´‚†¦‚ZÓ«€A—·0U]jć4L+7ęć8ŻČ็j‰=°±K°=–hhČkŰŔgNĆlk°7X/ËxKfcÖ›˘šÇRˇ‘ąAV¶řÍbüBItůĆpyĆľľtÍiČď(/§ÓĘ%' Î <ÝÓôy—&M¶#:´×¸ ŚŮÜŞÄgümo©ßhá]a ¸cŔd‘@›ćy¸T•`Ë6Ľ.±‚3FNk˝ Ĺ]˛b\Íş1żÉůî/Š]†ťŕn.Zäřě¸Äö0cÝc}EuƸ›i=Ż×2X&CúßUÂŤ·\0+Á¸äphŃ*˝¬j•‰š?w·HŃ Bmčř ĄôŹ%SŽÍĹ5>~¨;í~zŮMřH˝#/Ó6čZş‡śĂÁńˇń‘Ż »Ěp@-  ëodŕşs)Hś†·§® /‡čyŁťJťŻ•Ú÷ożľEźüV_Í‘ŇŢHsh~fô5ç|Đý”“˝Š_ĆËĂËFxŘŹ¬ő( ­K çKŐ*‡×N.ůÉŕ÷c¸ ± ”…}b)wß4|CGM8v5č~ơÚkËq`–Ňř2L}~_ŮR¬(Űe’U蚣—Çžvđj– G†­33Ý-g†ćgËE2÷6‹¶ö ś{M¦â¶¦ü# Ńž’Ƶp÷Uv”ĎĐÖÖ?źüŻÔŔ&] ZSů‰Ű2ßł®€‰rř%}ZÔ ź‰-tšÍ˘8=Hý3L™ćµś˘©ŃáůÔ1‘ěŕd8䓍ć*ÄS‹Yw˛‰°űŞ”â—(U4ä}-ô2É^C˛¦ć·š6†šř,Óĺ\Wt?Jeö˛ |@{řAÔçGHI’č IÇí“!^ÖťĹbúŽCńúJĆ˝°ŔÇJ5°•ćg˛aĽ…í/µ_®ţśĆŠJň<Ć\4űťľ{_ljä}Ň,=75HötÝ!ÉŻ.ůH˛öđµüN]W.?ĺ ŹR°Ě¦ŕ,i|›CëE‹véŰë¬ćńśfü®#vSőÉ % 0ÝŘŚ‹®˘ťwÓ°gĆPŃčű¶mo&Dt•Ëd)ħQÉIôj^ú8¸ÚNČSaědú ˇbÓ,¸rőß…Y¦±ż%~`ĺ@yČZŠÍ;?;“Ýň'ÓĹó}[´¶ËN)¤%żqł¬*ŇŹÔ¶î÷­žZ°řöřěÓ<š~)fôZy`X¬f±űĚN{kCŐ$o˙T¨PÚ¤\?!˝ĺUľ[py٧·ťx[mŤ´ď-b#´ŘpTXĆxf[ŞÁß9ąË‹ŮzĂún„źkďţůN?ë˘ÓTĂŠ2ś?÷/ÍQ4úýĚ2€:Eź´ĺčF;§™î»r=Ëĺn&!ÎüĄ|Ř{>8‰źó¨=Ë·fëR袻Čĺď¶ł‚9P˛ŢÖĹ ±ďAĺĆ­—mý^YP†§ k¤ń'.BŘ@ź[#>yéčŃkä7Ł]îÖw¨p†O¦fÖ"}&b$N"tb†ő•±·×–Ŕ˙á¦ęMyŰ[’ŞĆ6*fďQ9 ‘@t4ä[ŃźŕU2Ľ÷ľ…±ĄÁŹý Ţ‹D9úCPrĺťą¸n];©Ç4P4üBYMčHł?¤u)JOlaČšŚ©˘ jFE`ä#ż—ćŠÁXĘł=ŕ٨q L† ”e-S(˛ďnÝ*Ë&w--p~´ÂÍyŠú*ߣöúvä5 ˘së4Vkô˝ýÝô§€eŞ~u80uO!łú‰Î%Ę‘őŔË<ľcJ"~(‹> ×ĘÖ.'¬´uĚě@±·82”w¤ZL! k&ŹčOĹE©=Ű +Â/¤Ĺ*d'çčFď+ż?¨Ňšť|]µĽA5}vż÷;Mßâ©äSk1MŚ˘ ´xd§§&µr§K¦VŐŹtŢš5K7aáľ*öÜvźOÓĶyŚM˝ť®ţ®ÉŢ“˙-_,_÷7 6N?:(ąA52^¬t˙c#߳Р^l}Ö%ôgűžDš¸ŰsäĽ=%x`ÁDl–”ˡLĹ(ţýÎŤˇP_”Z[ ý„ŐźwâV2‡ňRqo„ů©dǫռ˛§%9Ë|ˇ¤ö¸Bzwm¶˘˘wőů ÖĆ™C–Ź˙íăú®WѤh ů“,"–Úv‚€ÂsĂ­}M̢Ŕ)„ Ľu| n6–I‘°öü”‡RőľHD2*ŤeĆ•ä:ćrU_7ďČҔӬőçjk]|,§ÍÝGű:Ž>XM»»Gć‚Qšęęe[łDÉkŐ;„¨ma™ťţÄWc?Â%P3ë E0«ý]ť@[ &~PŮ< ał;ls8ŇV›ŔÂî:ŢČ@ĆđĄłd‰µţ·Â«BJ¸ćXí_˛Ç(S%Í*9®qKŹÝëäd¸ ×—f¶lů^ÇÍ­ĂŰĂô:˝"ťěM¶‰]Ä;ČrŚu?.;X5í$Ŕ‰ ”ńťŻĆ´TBe…aײă‰ä­ ź†Ű=»řřL‰rinnC@Áq^Ç€bž[KrŘ…¸¶Kű->$ĚUúůĆ&ŮĽéyćGq{Xio‹)Íř­[őm*w”·ô8SŠţ|}7´Vľ…(‰3n‚9±DŰę >ąEšý˙[„«q˙Ĺ:Nr9lKŕÍ3ňŔ¤t ńc82}Gôؤ¨ŞÜpSŁ”bS†ťÇYšpö"Ä(©™xqzĂznšSLÇŔć‚i× ďFŮtJ9ë°w2:–=ąé’RŠŹ6H ¦Ń+ć…Q¤MMů;É‹ąI(ófp!P˝× 5@á’Ř |¸B{1.‚pđpTř×Č{„wAĄMrµ‡V…h%ńŔ Ęć0uE­^Ťy €¤¶ńvIˇGU‡=ű÷KŃjGâoé4,»¤‘H*‰_nŐ™¶Č‰6kA›s‹áľm×Ig\"ř±!Ç)‰>fŽ]»Ç©/§9§‚ءL <«$~»GŠzDű‹wťíŠ €;ý˘ĎťL(%ĎŕżMV±ů~éö­ů)uŞpéILkbă㡒đnO"ŁzŃRÉłşA9iÉU‡Łpmżfy‘×’Oß‹§éÎkĚcŞEŮ_°@ŢaGÍpI3YU¬ůĄ`{ í”ýs©?…QN«^äÜŢż~„ýť:˛KŁ;Ů,J“—%Ř ˙Ěת¸ýQäoô‡ńˇŕĺ >oô]á‰ÎŮCC¨LăşĽŚ®!\~ľę .<Č—OĘĘšË}ÜACşŢ4qJ’OŕOdź˝źĂÚ{1Ďč3m*š·ŞŃÄŢšĺd„—/´•*ë)FĘÍ_hŃZíě$š—ßG°ĆŮ{˛éŤ=fń{ Ť«Ž™GöP…ŰT`­Ž¶ý €˝l—:Ű©…őĂEźwŻNĐ ąCÇn¤ˇęLŞZŞđy›ü[ô¨×šăĹx,oŕXU7~šĂý–+E+ K‰vW Gp ű"äŇѻșó–±?"‹v÷ Ď>eĹK.O(~‹ˇâU]Äůć¶1Uĺö•áí¬śË›Řó¶ú—ý5¨Íu‘YÜč×ÂĄTłĘ˝Ăr{Ró=d.1¬r=XÖĐ`*ť‰+弣QTűŤfWw‹÷ŘkGwü¦]—¬¦¤í‹eŢ·{ů o…XeÄŹµˇUÂEę,_ź "(w{ťĚ‚)„W˛&™±ŤNí€+ű¸ I !;[x7żĚLç ÜĄí7řHp7S˙>h@R˛©séC¦‡ťSÂqÖiÓ{˝őâpĄgˇ–o^"|@·÷\<Ď©ôîŔŔXŠnÔ#ăďrâ¦Ţd´Ó•ô§Çg,o¸8ů„žť@†’jâť’EZ Ůăľ”v ŮWp,…޵î5urˇj̉›áĹŃmíö"LŤĚőÖ"Bo;6˝_vmşő˙óWmôJ¤qÜą;Ňﱿ^ö„j–é‚…Ť…NQĐßđg^–6~ ř†>lióßcTV 37Âůă¬ŕżR “řÉA–Fđ¬9Ä©ś=»´ě„˛Â2íŤÔ H§¤"¶ů˙„nźűĘŹČđ%^—ŇěK|Źz7ęĽýÁ.%KĚ[ÔĆÚmC„Ső2?xÚJç;N#Ë^7šĺÍü:«â¬)ľĄˇ†”‚#¬§JŽžźwö·—Şuśµ9.EúY¨‹úm˘Ś –”PĽĎ芙ęĎfRź8;˙S €ŹKéąňdĽpqĆçÇN]‘áŕN…÷`Ž{źé«ˇD‹mz‚Éré[î8Ýĺ™mŤ]“żFH2·g(6†Y=ŹíČő÷WÚаCxš Á«,>üŻíhˇë2ůůŃŕb­łľő8ÝőĽ‹ Á(]á‹—-sę…¶µ±TbŮ*(PV¨ý#÷ĺ<÷s,o2Uź’=fn»pŇ©6¤1€\ŹË/ËśĽĹŃ×7űu', 3¶SódJI‘lŚ Ş/˝_ŮźÔżE€MtâT~‚"- †6Â[źjJĘ€,ů‹¤Çr˙<ő ×U,7‰9mˇ=ž§ ÷ş@n‡J¶>|*™_%•żÍ$.gNÉÍŻÓ~ďcÄiJŰYlq‹—ĺ>^#»ćSP LůÄęŃS§ď/ę­K¦˙ťeę0!?(0ą́TU‘]ƶĽ– ţ1ÚŠi§¤1ʨň{Żđ¤(š9ňn^˝÷€6Cŕ{—w A«»´$ÖUL<É=ÝÉO¤™Ź©tţÇŚQ}p6>SLmâç pÁMuó´TǬ)»ţ»ĆŔĚň`ŁFOj  Ĭ2 ^u,0u-ĽOv@ÚJ콎1D‡©N2©8}Ż˝ĺʇ§„śUŐŘO(˙Z•[ź@8†|Şö•stąń,Ňpf$pT¸á iEKÁ=Źaż$W6'ă“q˛ žçÚ˙)] /×Äż—ˇź~B[ą–oJD;{ożLą@@±ÉčˇĺÄ=›MIjpĽâ™Á»3Îł7™ß±«ÖR˛˝‚®ö"lôÁ9«óëÄEŔ‚l®oŞv› &˛^Í(Ö«ÁŁů‡)Ť’ÄěÖ?řßôzg(ą„ Ň/ŕSb?»˙tŕîmôŞ™ô†#¦ţ¬Y}'ä:”P‘’U^WsĹ"ĆăüMJíśů¶˛şü®VúćsÎrpS<ź#TúˇB’5އ@ëfŰC°|Ż×Y°I礹Q¨Gę6ĺbŻJ+^ń•†$çWfěąS¨Ćź?ŮbšľˇŕţIÉ&»VďÄÁĐyĘ‚ŹĄź…&Ƶvţ‘™Cä §Ż{hGź;˛Ö[ęóŠŕS u70Ă16šK§°ĚXN×Ă×ůK«*^°Á‹dbÜ^Il¦>HüM'ĆÖ߯C<Ţţ,ůíÔĂîÍóĐ î’űĆ}ç*¶9!J'N6J~uăł–vJ•m°ŞyÂîP#© Bęm?ma©’ÍűľMę]#WW˙Půz8ݏ‘ß1âź÷U’~µ‰g(38ŐË˝ň°"ë^ BIłl%=3NŽűWł Ž$4±p ×*»VćşęvjçOv^Ŕ‡´ďč h¨`úI¤CŃͱ~r~wKͶÍs{s™ßűĘkˇ/6rb–™C ö’®ť_cNůÎő4ÎÔ< YÜPѤ[Ű?-bÁÔ™„ˇů§ěžlçÉŹgčƙǖpP*9ęR‘ –đŹMź±pĚťuĂ/`Ý»źá[ę3W*üń™Q`ŚDŃ4őż°Ç&ě˝ţ^cPʞ°üčŠTäače䡝şîK…ckříö¸™ěűľ…M˙ŁF˙ŠjöČs¶5 y>@‚ ŠúeVŤ*yóˇAŮFÇ)ŚĆ=q-?\ŐE€ńy@Y]|\Ó˝tO%Ż“ĂLJîË0?·_ÔęhŞ($J.¸îڞľé‘Cv ÚľÉ|›‘Á—ĹÎÚí®„$Ô._ç>ĄAIɱ­E$*vřyß–ŠńF¤˙Ö¤« Őť&Ź›1é\”§KŮaűÁVĹ‚ó'ŚŰßłĚďĆ·ş„@bŃ"6‘Ť”–,ť˙U^7[ă`mL­Ą_ ňoúE%~Ö_‰îU]Ź&Ş+­QîÔ®ß*IúŇ[?^Ő'«ôLC›1H€ťÇܵ±YÎkÝ@é뢴˝%rMRTȨ–®+`ZŤĆâŃ čA`|SnWŻwţ›őÜĂÄ÷óLŕZTg—ö(ČŽŘbhw26&4׼ü©7·™†)PU2D‹íMîéÔ¦Ýó¬Śi–úVŚfm§Ž¬čigĽBĺJĹ]XÄţŮ9…tK™7K•ĺĽIß‘iA¨í €›cŕZx¦KS5™­úŮó>0ať:~ÁDŁWŽLÔń÷ĂOŽIˇANÖNHG™ě¦Ógť¨‹Ž˝±n-( ďą˝Áp0ŠĚ¨ý]yá?ÓŮuzBb'€-5·t¤Ŕţ‹¶ «‘‰q .çQ 06óĚáP5.X™ŇŔ‰‡(‚6@<ś`Ľ‡Ž˘­:­źĎi˛gÖŰ<÷S«ŤĹ"β¶nŃgţPłl@¸ ş|˝ô ĽŻ`(‰$f Ťřż{‚,ťD†`B…Ę _Ŕx°Óáq,Ňi,nćŹzśJ°“ş„Ŕ‰S9]´â€JĐź(˘42Ô°Ľ9ÉfJc×µ~Ó^H€ŃCäŇč©©ŕBÔzüéCá-ś^]D–d(иc|xŮ×C#ÝľZ#‡UHS=ÍÚČEÜ\oŠC°9FđĽĚ në9ŇöL…PŔß(Ę‚đŻŔV`ÖŤbał ”ő źÖk´ń€çq¶¸ňë6vďŮbYŇŐeçKŢŕ®4.NHSŚQk_Ť6`0}ČŁWČ?Łę8O_ÓPÇ_}ČäţoÖŔ¸8FF’e={6)rŮ7ńU÷î/;XN*Č÷q¨©*˝6Ő…`}ëźţ÷2޶ۦúú d~ťhŤÚ+â>l›ĘűŻâĘ}†˛34'\ŽĚćtR®ă´Ö"ÉŻŞ†Dď=¶s x» ŃƜ뿯EęmhńöWÁŚCD9Ő3ńL}ţOł{gsh%éN_Ťś&†cه®7žJS9Ŕ¬ šőY\»úş”9,}‡Ć ľE“…5Ç-o«ś®v}o§O…Ý×,ѬBP}/1G*?ŮŃ’ˇCa©C̸š$±_z¸VĐ0g‚j˝LŐň1q ët?şb@ó¬ö,(V}™Čş'T܆ôď ż/ óPpŤYß\J `‰l˝Âl'¦ŇőŔM–%=ď:nŽżWJlß`8¤‚¶ů—ľâ‹P7KŮ^±OŔP°?cčZß xeWÝ…Ú?LM(.ĄĄJjĺţ‡whČŽ©î)Ý9ŢJźÜ.–I".vg±%]mĺĽŔ{!ŘčqęŰů]&DĐ"'Zöů`Ţ…ëÄXíżőmGLh„;ņřîoµµúśqÖQ¶ĚUxB°†Ę0¤NiBËmĆPóßNÔŔ7Mť_˘ń÷úđ'ˇ]7ÎőąĐĽnÝ\nîFFh*;ÂŢ«ý8s›°T(]q®8R MŤĺnüýYń|ŹęňB(čÉRŞŰýŢ2ŹČȬĄÍ«9x˛šhZŕK˘ÝÄ3¤†ŤŠo±rfKĚĚ·Ęáą;RL…EŘvO äą!b6â©¶ŕ ěů[Žá|Ę骅u’>ńÇúMŚt„ĂL¸—-úCzí,ţ­VŽ}éś[mŃő˝Ç¤Ž,‘H÷oňűŁá^üH¤­]Éîb‹wz‚Źâfi]*˘ť†ňÖ _Ε…6ęÓ‚iN]ŞÉI1©ĺzBHéŢĺpÉjÂoŔ; }©¨3ĂąÜz©~ĐóŮzWpą&¬iŔ'­pĹ™ggý_zŃÖw‡6…h TN×™ tÎ&Ôőńv°ľ‰zäŻÖ×U v˘Ďţç~'łfŻČ¦@qYÂĚ7’¦°śôsǧ[HÇgOŤĄŇ;žŃO˛âGę. Bă–^lyj˙%ňO|ďŁŮä,*lę·KpŚđ0x’ODBj‘Â9Ű«Vîl˛‹¦2éŔ?+â Ć=ŕ2f7űUĄ;d˛·öŢÚT0ĐoQŽEóP¨ęKŘ­Ů=M«I˛Ň‡şâ©ś’ĚîµŃÝ~éNÍ·ËjN*§›5Q(-Ů4î‡_îC_ßDť™2ű˝‚P2Á)PiŘnĚ[pÝŢĆŤ;*–öďŕG_ţ CfttÚ¦|Â3"×ĘG'ÁpÚ]óWć[)1:óËž©dK¶!ç\ €‰'”6”1ÚO·ťŰj´§˙9ŇŠ[wgÄŁJě$ă× ¦_ŠŚ…°Ł={XFsü왼ԉ˝ß‹ Í5ާľŃqöKĹPsÚ2ň:GEa«ăóď RyQÂ.đPą2ütŚ%ěK0GʤŞ6w đ#řő—…đ€ŠeíQĽ/p©},ő1±Öşžˇ)s 9Ü=j‰Ţä=ps†ús¶x@pđ2˙4ÝýĹÎnËč®nެ)Čĺčm}ő<¨˘ĚrצncŰ˝ů¬WpU–źoüřcb;čJ #ˇöAľUäĂc(yËE1÷‰úŚo©°Ŕş€{ĆŠąc˛oLQ’"ěţˇđ°ŃřŽÝýMćż)†T:m\ÖúYK–r=5V-vłňÍÁ„©©{.âłëçgJđUĆ˙R]jCĚZóőAĆ”aZWe„«ź@î#É•ćUk1üŻßš©ľ3ÂÍSd{2$B€±mÔó Ěć§Ť^ÎkżA€ť>’fŤ¸ie$ŃVZ‡©Ýq¨“ôąě?ˇM;!ŞHmĂrĆřCxeĆ%Mo›)Ś1U,Ś»0±Ü)Ý‘—ŞPbÚ#Ýň›ţ˝FJĘ켨 n…|PĐW›x†kiźZRĽĽj.‰Šm0:˙mR)ŕ:$ Ţő˛C_o^ĹŚŽÝŕQF•¤űé‰y¨Á-·–‡®™´Ăą|"·l…ÓÎŇ‚UP_ ˙ĆÝ g’ĺi-‰ą2äw´Ątţk…ßFFoŇ®ćÄááźŢ™—]$ ĄtŤ>Ď–ľO.…ZUÝßHŰo]Ů;8ZŃç›™ż@:>%őËXs@ę.oµY“ëd-xŃ4kÍLćČ?ňęă`Ź#$»pŮ-P-`‚Ĺ˝ź$ŹE¦ÚĎ5Â9—ŤŘsţ:•J‚H‹ĚžčęŔiDÚŻńF—úťP„9ŕţŻ˘áőňŞ˘DďŻKY×›}‰a‹fEm…ä†4:;ţI.ů‹ÄPČNák›SŔ$üu4¸g‚ÝŚĆćPŢb’ć µ­Ţ”=ĺŞÄ‡Ű6äku#‹Ť„MWńž˝<÷hΦr˛źůÜGÚí¶L¦hu$Ĺ™&ŃŐG´ŠŁA ś áŻ4$Ąf‹l3Ŕůe;!úaű.µ“\á"]+ŮłŔ: (suNľŮ5‰–ÍEŽ—H‚u[ňö čî~ßmO+L ˝đsčÄQ0|żc<¤sđƬţëŇîúüRĺŰíÖ?óÎWéŮU¶öÝ\îP “He†Ţ8żWÁő’×ýrţşŚ_î ·&Ňë««%,Ú&8Ó$¬Cžółň(CË:Ö1ޤ’ř°Ü´Ŕűş·„bRÂňŘKČś,´VŇχ;<Ź>ĺÔTš —Č(Ć ·˙dŐv`¶F¦Ľ eŢWdµLíĺE]sü6ZÄ Ł#5CÄ­-¨líĐ÷·ś<€¤QńusEeQÔ!L×€é9˙‹7™ŐoSĐËçBŮç_úGL^7Ó”.† <:Nî‚„˝ľÉGˇĽXT9“Đ݇ТIŕş6ŐíUęv?áţëĚsuwlpPMŕ;›[Y€BŔ`^R‘­ńĆ Ë 懸QÍÎiţ”Ň…b­´bS’E‹H™˘Ţď|iR=Ń~âĺ7/W¦ :{ÍŁÁ/őľ’:ť· Ř=™mąŞĂD-cnXŤÝ Ŕ¨ěx=ß|•zŇaŕk>ŘŠ8-§¨‘@ÚÔ0Ç&ײX»&ĆŢß»1Ť—}›áeO*9ÇËkŢí…ě0űŠ˝ Ěó §ĚHz™=ůŁĎĐ'Jă~1©oâ«R·É24©_çx–)Pđ}OĘÍCvQ ‘ď.Ó`ű čm•ť‘„·ëäâo¦ŮŹ”őÓ+RÍüŻä+_PŰýqimzJ_üc ůrQÁ˛E6ç´Ę¨sÝdQH ×\*)CSĆű*Kń+O#)2T©ÉłńşŤß>ź·RŇŤRDý¤„Ů—‰ą& 2j~€ˇ;öfîŘLdĚĹe#!(‡W¬ńĹÖŻh[tEbň—·L4j ±b?¨ţ¨~Ö ŐŮ_,‡q8á!µůPÖwŃý,Čž/'yő}?ŘźXĚÄÜHÚb#¶6ĘŕĘá(ĆëŐŚ´BSµCĹçŕü¨V ¸RÝĄÓQĐ`ň ÷‹=2®ś+™—ĐúŮ ¦:őŘ\T>»µ2ďšz­1Đűí¨#HUďýűňęĄSŰşUüÓ~ł¨ť ¬Ď*Vµ3/©Oú^•T±üB7ĘřżŽ«iúGL‘Sć R]&G ö(ŽŔ8ËJ.ÇäU(Hîľé«É{Ĺ HřáV‚Ô0*Nľ^ţĹźřßpŇ źÓK“{qÍžca˛đ”~8ŕřÚŻ•(*:ŤĐż‡P ŕ€Hű°ĎGO5N­ŽÓŢĚó&i.ä@~ … źĽľŁ<·Ąe¬*¨Ď(ř ­$Ń´‰|Có&Ęó9é„t.5ŁŇ©7€ŤňĎßySËđ%=Áž‚Ďq°€Ŕ‹żN޵4éKŤ÷‰ŁŘÎ>ĎS+MLHµĎŻ™Éß’vŃ{š6ůBfç!üëĄe@“¤ňű3Á)ĽáL+TsľĐă›~ň}śl[ hç#ŃD¨0{řąË}Ő‘—G@†‚Ł)ěř‚3+b…Ĺ6h&ťî=Ţ(ďŕgšÁž™p~wŢ.ňµçM©»;Cm–­‘ŻÝ)^÷<čoŰ.C$ŕ(Ęmúö Ţ0ţg]fwĐ訋Páăŕw—^h4H©Ew#Cyć»5MÔ ÚüqČŤAşÄĆ,¨µ§ĺÍž{Ž€Ů©rVsß]1 Ă›‹4†—;Š#‡§t¸FĎÜŮ”Sß Q«gÝî¨kř8<ĺD–3A5(žaHŁD$›âÓźyŐ+­ď;ťf}›ô(˛AsiąÍŤöYźs¶×Ń‚uĹUV K4ĚÂôĂѰnN^\Kí‹Ę1=|'jVÂj@#ë·¶u˝?©tNéĺ±™Ő)á˛VPź3ňJw?ę‡Đíł;C_“°Í4>éAűąaşČOĽ…÷“Ř9&VÔu®Ö¦{ôŃí™ä{0Đýľ=9Wu;Ücn§Ő‚ˇŐ„_ia{<™UąHŞO‘ţOQ EsÄ—cmP¸šT ěOÖ1Âźn×ĂŮ<ťtIŠeŻÓMą ŻĹeWĘ’äčŇ&aŞ$}ÝÝ‹˙ZĎŚte'! Łťe0Ż‚S&°ŐM1/:(łI ·µř[—)2_ ç\Săr÷F©Č{W©1–•áŹă';oj>Š×ľCń,x[Ă2˝A ­}–…mŻLMĚ݆*Ő]Q˙O'ŹúďÍ}ŽÉ1vÀׯŕűŽ}Ŕ/ü °ÂáU­lWĂŽ(¦N}”W"~¬Â樅ý„z®/$TűÎÄΔ#ŻDđD’CĽ§ŕ^r}ŽŃËŰjw~X*߆Jößzr“FšQH3˙(Ůö%çö9ąm—oZ´>\°Xđ*ź1křz”m)Ş•‹ĆŢ Ć8ĘÔŤĆ2ź>ó%ŇV¨źX9š¬^v§ř1±ö0šDĘŚ—óÚ/¬ëX˛ŇśÁŤ˛ÝĂTcX‡!IËߎ¬µ´ SDyXKď§µx …mI_4µ9$ €ˇ“L,Şš± ĺ7xsż‡TN áĂ3HW2uł”;µ˘}ޡbFŮĺ}a smFZěPÝt§”¸#nu$öť@]śfĐŽ Řä…ÔDÖMä3 ĺ»x¦ďât~[,¦ÜeLä-Ň˝Ś=-?ĎôlŔôÂ~śđUŻŹ–Ţ x±ÚÚPčóAÔađ׏đCé]‘çK8ż%~Q4ńzß5Ö{íçvnť’)“OáE\ŐiaLS—7˘ŇAP3M üĂZgŢž´ÝAßôÎ:‹]ľ):űĄäPI7˘{—šĆŃíC’™mPŠ$Ńí4’×ôŽmN@Q2NĘ'(ňIËTiŻřÖľ:ň…š˝îm)CxµÁ÷#¬¬] ‹`±‚‰éßQᎎ«JÂ÷U¶ QeĄÇ¸3}ń—ŕŞÓ¶î ůvÝů–÷ĂźÁpĄĎqŹĂçŤbðj W—¤Ěőß=Źm_j©ÁhQ±V†"Ő´Ĺ>“A„×b©A9ĚĐLů Ő=!áÜ’Kł¸ă">u‹¦ Úsěá÷! j·uÂţWÍ…4ôkrĆ {#v¬ř#·Ě%ĚÔÜe.qůÍ €!Ç´‰r§¨äsŁío6A^ ŻO%9á*Źl!/ĹxAk¤Ş4°şäî°$$ŢIa‰Jn?ł^TĚĆHűçÚ ^©Z!“Úý×î]%qć¨k•şCíŽČݰu6î-˛Ic3$^›w žđ'Ďi*hݦř›- €ŔB™súâLĘŃFŮG¨0ŁĂć)ŕk6(ŽčSPěA dîçăšZ? Ż_±r^6ókwc˝מ–é¬ęŞNO|-/…µW74›Ú1x¨†ÉńT˘§¦l4UX‰í(K˛|ŢyJŰj5ůî#&Ď­˙ďĘnwčb$ĐqŢřµ7ý×Ć|Äcó*řPY”+Ś¬Đ¸Ť9e62=|3ăYƬ÷D_UĂ’˙rť)Ä2®ŇńřDir¨ęĺ†wä=‰żĂuŔ !éKFuM2—ż“‰ŽŇë —;„ľçţU…ľĆ·˛EúS›ÇéKtm8]ˇ÷ďŰłú/rŐ42Şż8°?$»§ÁôżĹż´|UkŞÇřHÖíŠ8ţł±3?ĂçnÉőL}3*«™íaŞÄÂđÜö®µô-Ebđú1}J2©M®¤ c¶ÄâđŚnżKOöíPţł. ×( Qą»iäd°%oóÔŕ#n…Đ-ُ‹˛°Ç-#Ë]ţüáąj6##úeÍFy[Ĺ?Żţyődô^"…ŇďjĘNŐ¸uńś ghR †óLŁ1T îŘŻĐ2]‚č ÁłŰÁIŻŢްĽ9ň$ă¬P_ę˙=Ą€ż†n§D9Yjd%hş{Ţx‚IţLńĹřbâ8j5`0CtćHźHŁŚŽÖuö›§q„WÎGX Ďě(CŞRź·•sę ĘX×ÜhŢţßoşŞš]ÜX&~X‹!ýÓî¦ęěîBY{ĆŤ± C}+€Ei˙żÇ ˙0ľe$-â‘÷oŞySŞ"Ŕ/F2xć@˶VáöRÂ-wőF«}#ż]şż€S4gŢŞ„č3n Ö›ş9Ŕ Ż XK±ŤD6Í„±IO‡_9Ě®N]+%um¨Lű8-x6˛÷ Ó߬ŤjT–LŻŚšâGéójŃ8/Ć5=çíőP ĹŠőxţ-—ëë;ţŤźwô*ßÁł˘ s´éĐî$.8űkÎŢłŤhĂÝ=ďl#´I‘Óź´>ޡ­'fjX1šýępĂ31`lŇ(SÎě=ż«XbúĺÝKŢ|XőLľL)ň`YiüśőŘ#W8¶č#jír9AŻ~řť~h€ÂĽ´‹»”G•ŠŤźYÍô ď~űM—Öv߉GÔŁIöˇ Çś[Bdm TÓ\LŘš*ž Ň&99uă jdC”¨ŤÜPsrâ݆ůň•‹e'GWŮí!xŰÁlłŃ÷v̇şPá~©ŽĹö",îȦŻě„™b-DkGÎíUŮ`üAó± ó]»Ćĺůo:d owĆ18 Wt@›¶ ĚĄó‹ĺAęV‘ĄgXĹ—;ĚA•“>ĺ?T`L~űv·čÂp+ż:n­‡bĽ QĚóČ ­xžţ\[ÍŽ– T)ż«±ç±č‡źh$nŠĚ‰L•$čˇg—'¸hsůń>BĄ>Źë®\ŻVAßßBź‹-ÍRčŘe$W•<ÉnńzdJX]–'!Ř~P˝Xý*f9dŰ%; $2KMt?ĚfÖŘRŠxsĂ~gÄlL7µ·Űă(?ÎdÇ欌-[íő–¶ ç(:Ë´—9ô ĺńţD KvĂCßm—´}»ëĎžŃęÍ÷ďcv®RŃéů÷Ľ®żKv¦ŽmŔu[Kąůr÷,‡ĽwAžŇówV’ W—§˙WŰň1)»E!}MiÉŕiÂXŠúŤ·Í˛qřâĺëÚ8źłKwŃŢŢAó4ĺPŔU)ś šćĐ {[›Ě}ǧ]žD3O(˙hĄhOÍÓMŞĐÔĚ<ŇH×@Ţyq¬ †ł­u@(;ŻşĺŽTˡݏ֣§ş=Hh¬”ŚŚÄ׿ł%çëf™€fĽ±ńmĄÝ:‹$ń95Ř€ëJD€Qb‘Fô ď–ĺçş> «ňY‹˙! ©ŕą‘ÓĽčÁ\łYčµ šŠ\ę?µŞčO×Rs^#GžŠŢßQ½ű*Ş4šLßÔŻhŁ®T#¦đßf_¦Ę°ŠmţPëú‚ Ů­=:µž >‘Ţ",<šň1Ó>VÚ3mĆŕ Ś¨ÔÓzĹľ$qţ§ –°z̦ˇŔip@‹mëjG݉«WĽ ,ŕUg¶í)xřHVËŰĹŔZ×e^v‹(ŠîĘî…šű€ězˇě"†]=z©·{-Ă× ‰ ˝âV¤ďŚ…źŮ^ž=ÄëŢ‹ňXC 1Eú˝Żů˙k«w٬#OÇ#a#ć>Ę/®Qňçą×Ó0} QXą´bŠÎŘ„ŕ1»1&oVë°D:+%E#suą l`e«˘ÂwČX쾪žltlŢËĂÇĂ„°-¸K†‰¸ń9Ft’§ ‹îĎŹSgç5ÖęjĚŃ™}Š1lÝýďśĂĽČ”21fEúřzş€n¦j+˙ă’ţ2ˇQk{­´‹I¦­Ě íÉ ¬#Ńn~ćŕňµž<µ×µÂH8şŇ´ŇlÁ–¸9™l5 ňß/$c¸ÁsŹNĄö×ě‹çO÷?đ–Ýś(UfÂBŹ*ĆWŠŇe}ź›ýBr;Î5Qö=?Ćt$yňűÉ`ĽÍY7 g)Ő%3yĚ" ęÍp)&Ę®O¬«Y#Âł b rÄđVŃÜ _ĹžYűBßl‹…®-—T˙ĎĂů7z/'69š$»°qŞR70Ď@Šă‹eőţ‡öďáŇŮ: l˝MiÂ$=¤ž\ˇŮ¸® ę™¶ˇMPÔÍŘő˝$ZŢÓ Ëťs«äă/·Ő–ŕ÷pŠ«%aü0Ő’VdŚ‚Ę|ҧRx2FóĚ2żĘ¤SÂÄ‹"ÜMÇ1Ž}§ţď˝e˝ÉŻŞ$‹\Á¶ ŘÉ“˙K •„ZŚ®nЦű¨ţ4m[~P.˛Ď«‹1j4µj¤Uä‹;űđ›Óq"§`YšgúFĎRötÔćYŇ‹TŐŕ?F‚ťąş7D%D˙Eך¨ę°( 0”H aĘĘÜşę”FtLŁF–U8ł@¦JN>á4T-džB’•[:+´®L pĽ¸±9nc[®‚ŚĂ·żó‰ö_M3Ę~JńË}fĂí#âPo«ßOë™ßčF>ďĹW•‰@úü«ľc±éŘtďWݬ74yŐ…đo$cň2‰(q=XH÷@SŁ ÉO¨ Y÷¶ź]…ŰÝ~p{}éÖzRSéHüľR ¶!çÖ[&+/JđíL`˝»|ťnP¤U)h¦÷É iĽŚo6´lÁm»‹L€Ú8źč ü,VJ¦FUjÖa˘Á°T<öłŰšĐ?.~ݧ»Zx´šµ‰ÁH2yKžÄJF$ŞÖ# $˘\_í+—He]łg!>‹öÔ00w–ę)üPŤ[a02ĽĽíĄI‡%<×ń`%Ć‹ţ{’˝Ź?ńÉŽ{¶¦¬™A+u}=Bä—/#rŰĹÖ]0wřjÚ•Bd“rŠşTů5Qŕ2 {C·Íŕĺešp›Y®Ä7¶ť”ڎőg•ߪI…ńÎiʸM'Ęâ’Ýá®öűĆ©ČUcáh‹˘†°ZfCÁŔ…w©ý #ĆYYG"UNŠÁgeŔín4ĽĘ^ÓĐpI#GäY×B6oŁęů$ż37ćźP>NsžD%{+ţę[TŢ”Ű>ŚXôčHe°űľ¤†ëIrůŮL<-ň)źŹ(ݱh3içK)(×ěĚ ńőYty环»’Ąľg‚úÚĄj'YőRŰhŤŚ!M›)É­+ÍRĘ.‰V«ćŢ­[Üq„{ąÓ…ę-¦*%" { ŃcĹë áyâk8zđF“mĺž{ô¸rŹ^Pꉻ÷Řż÷EËQK/Udm%G[]ćA-ÖóIĹízňzż :=ŐxŤś BUpÁ{T|8HWĄ«ź“Ţ–kÂŰ űO\ä§”mŮF`±ś»âj;nx:Šňżź ‚ĘăhíM˝çqL˛EzÎżÉ(„\ĆZłŢó[$ŁÎÍÖWuwÜö®7î5„qúîWw,ł5‘ ĚzÍný? °˛zÁc:Uµ7Dă¸YV”¶žĐáFc¨ÍM ‘E#K¬°Ń Ţú”·3ŽIw:«eýZ°Ř¦{XI¤»P©~XŹ‹qTŃ„—ë*ü3©PĂ!ɢ’ŞÔćLy©Y ®ćYP•EÚĘË˝rńáţ/Wĺ?uĺĽćřh/6}‰ßř4ĺŰCíą5’ă=íđÎL&.ß"óů¨rç–‚MŘní=QÚ˙ţ›Ńćdˇ€Î“ůމ®AhÇGC]–yvg3 ť{J°G)9ZEì~Šp—ŹeUů)ŇiÄŐTĐî\bȉ˝ć§»=0mŠ——źEA)öô27G|Ţ›o;VľU€„I˘°Élĺnä+’O+ [‹ UęvWmľpíňnvZ(řµżP3Ë,žáeĚmńÂ\ýBĹľ’śK•®¸PźLŘ ËNĄ)č9!)lÜOWÄ)–MJ$dŕËĂŤEŘ%/’KFşń YÁOł˝Ö©.Ú-ɸç 'Ö®‡ʎ˙9›1´*N é¶×Ýô|NČUŔš“{čZŚżĹ÷H:‡Š©­.LÓá…n*1ĆÔY•öĽtwŞ7Ő˛2ř…şF¦}Ұdäl:ŘĐĄqą,Yúe~«űŐŽ} gĐ sôr^š’ –W´“ @©s°ć~Ą%‡jęö™'“Č#6 g™±)ÚaŹtÔK Ł‡Ř §“ČŁ&Čw;ۧ‚»|Ţ ¶Ygmŕ[– EwČůÓ[Ż…ź8jÓ#~ĺśř‚ËĽQyÂěĐ&'?ěőÖG9çnřXxFâ ę-äĎW±ëođ„<ę á"ű >]%ʶĄ­§®-ŚŻŁ¸đkiN(ARJŤţťÝFIwA×/—Ý{ pÔErżXŻĎp×xůzç”"śçi¸W)9ű9/ŁÝ[tË÷đđ !ŇNOôäB×@–ň–ÂËĽ v:řŤä ^“^5–qöÉ˙ ĚN6o’˙QK<_ŔM<\Łíh]:‰¤ő3żkÇŘ €PÉ=ű¬±»ÚĽĹ«ő4vN2Ń×(€G˙5’MůĚ xN'Ńć*±ąŠŻŕYKewŢ­3cnŇŞö=ߨd¤ťŮ=‚j€Ć.«ńűb/ö0ôŚ}ę (ĐfčM˛…ŢŇŘö‘éEaŁŚb˘Ŕ‹Ř.ţ¸ˇ ł@\ţ—»ÓźM0SýU/ëĚDpe-ěŤČV˙ń3Ńt-Öć\'ĺ»z\©µO\ą[ŔŮÉ\ ĽÎ}©Ę‡Źî—˙łÜż±|ÚfnŰP±|#đbK›ç`kS°çPéaný;¶ĄăcďÄĺSĽ&+TÚăćs1c<ŢÁ¦á¬ŔLéĺĐ/A"xňxµÓ†”&ü5°% _{ýÁČ’—ą˛ĆĎÜŃfÂĄ¤Ĺ6eOÁ°ÔR1FB· ŢHyçuý<á|;H…+čÄž›ßNÜb×F¨˘Ţ[{˝Ź’Óxá¶ę“ĎńSˇbIóŰ?đq#?î1­Ź‚`™7©Óű‡0Q÷q`.©Ž!UOPDŮŘ×`a€Č(†»F(.+/Z‹+î‚7_!wśÚ<ł¶ űˇX¨…ÁůŰÎ…Šä×Ęç>ç´öXźÜ~éŔSç±z.CÚ3N“AwÓ:Wń’jÄ™ô86?ŚäSľŤöóŢšfş‚ö7XĎÎÓÉô‘»ŘíäŠúΑT}ĐÎC…¦Ľm=çîéÍĎţđT^ňxIwcZF#Ö?&JŘżWAŘmĄkŕ#ĹŕÖž:o¬Bź• P>ŚŚń§ˇ\°8o.@ď§$Ë!Ę d«‚đl†"|\ß&°@–W!ĄĽµŁ ęě-âů® Z°´'KçąjĄJá7•Ń7­™†CŮ‘NeOÔ’ gEsĆńEOŔ$ů'Ęö˝"“éÜXţ.I) Ś<ĆŇ»ążLőH5ࣷUwĐ[ć{•śď2b^ҨU¶x-ÍĹhq Kfr08=ĽhçD¨%ĐŰm Ĺ•€#q±F×eśď¶\­4ĘP„ĘÉ&…lý‚éŘgőŠmŻÔâţZpěďť˙¦§Á±Â¶'™‡łĂ‰ąQń ön樜 Ź {<XŠ0ž˙ž-ëşS0oşj79˘đË«•ň·ŇQ2{€l¬Ýˇ"öţߨ'Q3:Ť µ[y[ Ňz$Wg•˘XIzt&ł¸>ţ/ý<}•[Ëžˇ÷íŠÄÓD{jŇşą‚¶ gÍ"ŕ0ş„>ˉll "Úě|\ŰŮM1Og°ÔlÄoŇCüp#*}ýĽ·ôaŤÓĄRci1Č®Ţő@Bá¦ÉÍbÎŐšŠ)K:Ŕa1jŤ´‹MşEî@ť¤źVqbŐŚüYJ¬ôł8zŞéß$¸ů4eW2€ÚiOôA°÷qţç{0Çú|čő7»KFnŠŰJ˘¬víIýŐ˙´m ŮáţŃfŞi۬cŔXý±ĂýuÔőŤĎUۤ}ŻţV°Ę&3ňE¤Fi XŚOަyÄżGÇ.9YäŇß’)S˝?L®‘É‚>‡‘Ľ4÷ůAh—Z÷¤ÄşEĂĐĘÇŻx-)FĄŕëwNóÝöZ9 ť ssŘGŰv0ޤW‚„Y›ßś=jěĐż^Ńň1•fşŔć^5Â/žě»}^ž~{I)Ěî:ŘM©\üÚ¤´qŠîuŤ°“úŤh:ÖKvÖUeN#Řě(Ĺ8˛ţPí˝ˇd7˙cű&îdi1Ë{kĐ(í:q-ŐßYÚ„~cŤ¨°T]·u;Ě •*ŹŹsZĆ‘66ó¶ś"ÔÍ”ŐeÉ`eô)ĆY˛0Y…Tmú~'*żĂAűŻ#´GU}—#Îţc3ʤQü¤¨úIĽŔWDaN%f·Ĺľ¦XecW°Źž?ĚZ‡JމDĂ‘§/UúHş1bZbs¦ćzäď?{«ôά…J­î‡#|ó(`{P‹©€ńBŞÂO”üBŤâä{ IĘßU‰Š|öyëkňŐ3h+ µ‹YłQyŹóÄÝ‘¤J+OŢ …» tĺ×Cć`ëE“_pö‡ Q^ů?DőNGظ eP-¤ËŰ´G ńÚŢą*˝“Tb;ET‡vGPüş:·SťđŠq´ ĺW zĆÔ©Ł…xv)çÚG÷}Á”ç"Ü%%­˘ŚÁďd"cÁîÖîŰBP7$t®ŽS«ˇZĽf@•ęĹ“GEĂĎ G“đLĘźVýëĂ˙˝[5%m…ĐÍh% d(ÁŢ”Nä`)‹>Ť”("Ţ3¸čň V`ç0óo2GrőqîđŚ@Ó”˛ĺ$‘¤ŠRŁ7E6lnë|küJááĆ3Ýf?ůéř7„“ĂʲĽRn@|z·@„‘ 9‘úăoţßŰ{ÇüĚFBD·šm2fŻĐç-şĐęzţŔROšµ.rRľ­\L>Âź‚@ůމľ=é©/ÝMŽbP0LkpÉŠ1ś™îw#ínĐŮŘŚB.×ř¨…¤<ľ`ÍeŤŕ­iż ¶ö˘˙·uČYjĚ ;ĐtÚ1đ”qÍ€Áú€Űoe•{o˙üŹş>ç-Ó<ę()43ÉĽĺŐú˝B¬čôŤůu±°ÁŁĂ÷\íO.ţ$ÜrÁ*g•Żtş„śˇbÚ)ÓŹÔby‘-äl5sŐźăŕJ“‡5´x{ÍÍşť‹˝bľ¶ĆŁ–śÂę»×V–Žwq€]ÜŮŃ F«{ź˝é_'1÷¤§`Üş…ꊙ2ŁAA5s/nů3őř1u<­ˇ•ďCLBľ@3‹¸LäosA›ĆA{S ČáÄUOÖ R6ę¬s+Ľ×„Érî¸wšĚBRâ>ŐI axš ëôtź\,jž>d“Őßo öaÇZĘź$Oă‚¶žWćĆôŮ Ź×kCη%$Űővl†%ÖÓÍżÖżmč‡`:ű8zčÇ3á˙­9m`;ĎC üAůÂՀދîäϱÂą6ĄWwĺ+”Ş/Ő—ú˛ęk»ŻŤ»a5:]ř¨Y&P7¦‘»Ś¤'bA¦Č[žŮ&Đ*­řŃőxj#Î=Ű©­–“klϖ̵íX Ľ¤^<éŢÜDiĚܰÝ$Ż\ß~_ľţ‹‘Y›ĎśŰGÎŃŐĚ’öżiů·×·~ü°j±81¦NľÉ§Ç ÝŁ©ěŘ˝Ł…d¸ÁR<·…Ůżřąłř¨#őžű7;iŚŃfeŽ”©=Ş˙Ł,× ¦Ô-…tvÉň@8ˇ]ě"¸”Dť;˛4ÚµuHÔž¶˘4±äóˇC_I_Ńó V<‘ł8Bn:Ńż$ŻMDł/Ŕ€¨iżčďB{s˘ÄC)¬J'Éť{%°¤żćo’8źöol÷UĽ#f^éÄaĄŤůJI«…Ĺăą ‡i%­]÷ 9@”Eŕ&¶ú`n ­×HÔhKaóT@ÓS 2K‡Z4µ˛ĹëÖ,Z÷:•ˇă6Q¦iŕ€rŻËĽÂä.¸<{)ńr!1)±Ű"¦YKP{śf[ˇôkP x±÷|c!n—  ŠqH ?v7Ł{z"ÜĽőÓI’äLFS€ô·ŢKő*?đűĺ_¶ŽÁtj•F}ĎrµÂ tBeue"  ŤP1´žŠđ»TŻ)ó™ŃÇđü¶nä•ĐTŚš°%Ş=Çäű«l}đb­ďďPó¦¨ ‘"‚ D°€ô.¶av•ľźŞ„»kđěµţf2čLęÝtŻsĎÓÚřk§9ŢQŚ÷¦ĎÜ>Č{ Ěyi9k„5ŔD'i—üĽ®‚NĆc‚*–""±čÝÎEtî°ě@WÎÝM ěďăÄdś)7iźzSŽ6Ü)6S:fŁĺk×ő_9٦S,sá(ţ”ł>¤ú)u¨őč˝Gő,@6lu"0?|ĹňlYĆ«|T‹`;Ży§hţgŔ Ő0*ź˘«÷˛ľ«NWôńµWš§Ô¤-’Ł{ßč˛:q „·Ű87Neg=LU™{ţIŹç˙ĽëH@Šśö jŁĹ¨öď Ąo™PHär`o Ś–M.Đæ‘ÍAĹÇzkĺ”›řĚ#<,Ŕö ŞWG;Îz!Ó3……•źl¤ÁŐłŽ[–ďŘ %Z·V€azĚS˘°.Bg×nľQďęšCsŹď>Ȩ5xÝ:‚_{č#<`GĄŠ·ś ›ôż›ąĄAŘ.ąW9q×d]—žÇ‹«\ś”OţT°’Č ńŕ_äZBîćkĘ dňŮ!vx¤Ę9ń7ŚÁë;îŤďC~|x·IÍů«Ô›ŞÉxf"EÚ¦4%Ç©,ŚĽĽžđ A·l *"|8~Ü6Ŕ÷Ζn;öĺŽ*ÍUyŤŕ!ÎL,ú ’5YŞř) >ĘäëçüĎX·“z˛¨hçúQɤ‚ž[tI\ÖC©´Ű<ń>ćřď’-pivDࡀ߿5{ÄZ…e‰›ö1ŢĐ)\ŐÖŢ’Ô›Däó¦‹Ţç3÷ÇuÜ:žČx4Ë‚Bt±™%jcSřŢ[Iřů îPŕ^V“a{ęrh@ńKăOEQTăyÎôUqWV±Čł˝«ĽâřŘÄ÷&¸9a¦"’űľŐ•fĽ’0ëŁHÖeđżĂ˝®ňÄ:ąŹÉ\§ůÔÝ˙ýĹýşŰ\çľiOťżŻŤv&,űĐĂkµÍŤĘCé~ÉOÔÎç:c]ÍUŔ1!ž6\ŚĘŚ˝hj})Ć&"ÖX;´űGvšę|>4rj9• hDŐ‰Xi?P$‹ü/@ś©Ş]‰đć˝3nţ9 |ŘݵäĐĆň?y1ş&I†Đn%Cz˛iR53莝ţűŞ›Zm“RđĹűq™ă𲺷n7 eŞÖŞ4Iňg‚µú%5XîĄ˙MŽ„tŢ€é@”¶y|ú*Ź0ÁęÝOm=0.ŽâăY€3Ý+Ĺ26/ętj} NôuǤîhĐä–îB‹`$ Ę•’č…řŘŞëü&áě…É"WŹ0=’ĘČ#&­ű¨sUóŞÔ<,6ďHäńňWş=ö}ççK)+Â8ĄÁ_P!ČjúLleĎŇVwŇŚĽSŮĆváŚÝB>a|Či?HÖ»‡űM±8çV% ‹1•ářz,<©ü-`˛őšîjˇÄ#Ó|<ŹçXD3±&¸ °â?üć–H®,ˇHř஄/«BťÝ§ #ŢĄîŐBâůń\4˛Á7ĺ~Ü€·şe>ŚĘ]/Ź8Ţ“oĺ2ˇľëpČëK҉7uz®lń ÄŞ±KÔ°ČSíUáfx—‡>”z\¬µ\/ÜýݎšuVęHÍ](ŕxX¨’łcŠsAÝƱÇĹŘďzzuäÚCExf0ÂŐęĺˇ&ĎĂ™NâűŚ@v®p4˙R-BámŽí×Ű´•ökŠÇž…ʰűÖRÖ-1µÁ›ď‚ŠÜlµŘE_Ć?$ ůMă«ë{ć*ĺęŢŢĽuĐĎÇěhLşÄËOü»Ä]š(ćdF‚ź­vSÄW.Mi!ŰBńǸ}ZuŕŁgiäéwŕĹᩱ:75őâcYW@ŤMc#Ő&ŚnŔj€ps‰Â)u„l#Ě•ó©ŕ:?Y*鯔äAnŹ@Ť“˙ť{ Q43 W%Űk$§/´±Ź‹Űi ŮOü«ŔpĘáŽ7ëÂ}Ăź8ĎÓ¬¨z7·Hüz57Ŕ˛nzH+ ¸ „T›áеDÄżsÉk.Í€šj®ôQÉ˙öQp­AKב›¶b·ŰŞá±Ů}JIłłŚjěŘwŐăĘájL!Oďőď˙ĂćG0…zyDŃ3mŰđxšuËî»’•4ŚüîKQ ‰8ę“•ţ•ęq‚-Řî1 Ţ§_tI¨-PF „™U\|*čÉĄ'·«kln~1………V|ZÁô[˛•ýśťlýiâ(P/°(Ě(ë”čƨ*şN1+9=» 2ݬ…PĽ|u%.Xotőă (7\LŽâˇˇŤmn†0ey@bĸ‡‘ő7 ;Ąd‹j˘`‹!–¨çÇkniŰtxą[đW'0 Ü8H‡` ~»€ěÝ­őMFćć2QšÉT¦ż ÇŮóĘ*ĄDk2®‡4®ZFß^QM)eJX×ČPn›ęIîN-7Ś*íěç:˛«­ŞAśMő9őăľĎn&<:Á¤X‘ÓJ§ú© YBnnS+z:˛i˙n-śTWri}@X9č,ŮOÁź(ŞŰŤŁ ÷P:Á—Đ ™€|Fââő¨–E±sZ·ć6ˇäŮť]ę• ŮűŚzq±u-µśű.Lm´ëÉoí~–őż ®čIűjľ>)›Ąâ‘üšŤKűž$•lN/b„z×X×Ő‚ĺDWď”k°…(+‚ü* ĄAÂŘÔX¶Í¸Ö{ˇż`Ş(\NÝĄµŃíǶçÇ÷$*ňĺ -—_âF>1ä–r`.÷–˛©ľÜ° ­Aß; vÍ0˘B¤]•Ń„ U&y(Řë©Y¦Ŕ¦aWMU?×/4É÷jDź”@żŇé„+ź©öiŁO+AŠĚ7ăËŰ=\çF/@hŁÇ5Óäj9Ö|3:@kî4i/¤›~I°Łg_˝—W·U<źľxĆösOµgei͉Ŕ䣰?őż;N‡ß+9ŽÁč÷ë‘Q%=µÂycrJób-%!Ŕ.Órď·˘řQý“ tçâîďw.ćÁ`é]ŮĆŇ4r“ăSsŔq07`·˛Ó.’™ÇÂlx$í¨^+EÍĹ”P D†fżč‡5Äiq1?Mx§ˇŤÚÖ˝?' »cĹĎ?I(ĚHöu8ŔŕÇ Ţę˙čsgý‚ż”)îÍU ŽĎş·k«ęíĂ2ËŹi«­s'šAĎ_bęţ[\kőĹTÔ/Ôvü†/ř—nČľúüű)śtľ[čćy„P´=ĄŰ‰ŮtÜnş@…úćc÷íź4*j@ˇjů’śŚFň“”ŢěÉ»Vnń¶ …Î řužŢIKJ°6Ú‰<»ąaÔNŻčĎ2M–ŞŁ± Đţ†WgŃX·ö‹ż}ľ:‡g` Ě\ĺlµŽŃrý¸ü‡ŤŁČXja`qČoáí gšě<ŕB"÷‚Čŕ¬CÜî€ú—ł?5Ě•ť–~ĺNU»‡Î)cä°čé-¦ŔťĘÎćéŹ7aI4t"„5–h !–ĺ°,9˘Ň9¤—fÎLxMÄ8B°¦`¸š3ni¦÷ąĽÜ®ÎŰ×.XQ­ZńEéëµbč&ąůL†Ă9a§îÁeďkë~Çů˘  •! ďuĹ›SĎ‚)ZLJŽCô<4»J˛S´[ ŠXď[&Ů’Ôç×[ő`RŽńÚ?‹wcwAÔůöUzBÄ÷Sĺ3ůT›0ţmŕ­B\łí^}ĽGŢ˙j]-Ń«\jŃÂóÍOWü˛H}žCD«d•×ŇŽ*űňW—óÄŻL{0®ł„{ɳɯę>ČöŁÉ`=2ŁQfćÓŕ>2‚–ţ[`8˛‡HHÍ˰p%×îŞŃw•Ž$Ýi‘:ŢF׳߮pżÖLE‡Ü ĘŤ^­1§F®ăezGë*«Ąč¤ę5>Ŕ"H}5ś¸kż!چËÓš©»ą¨bÖŃňć5Ńáó…ŃHP0ü†S:X·´Đôn…;_(挱iáč`Ś6č9ç‘÷® r Ňۆô?WřŘ€o™°mqË> .x¤t ĺpjQoRĹČX‰‹µ_Ţvń¸Hńü% ót\ ÓMŔ×–|W€¨BlPa°ŞÇ3—dřlp>3+˝ž‚Ńs«fčí&Ăe ü6’zÔŔjŠëĄQ-<ťv«ěnëń¤<¤Ó[Ťk{2« T F4ĽkČŞ`S ؆yxłü×…Ś ‘GÔ áŤ§pÉÂ2ÚP™I:.ŽQ4ţÚDe‹ź˘• °1H¨Ë)z9tĹáěöÍĂŘ0j2HźQ.d'Ń+LăbúÁ¦ëťş4ś‹ZA73Ż˝0(đüY?®ÔěßBÝo† ÜP1´üăŮŧ&S.¨ UżÓ{`Q$ÔEv˛UPoŰýřUtE3GŁîjäˇ=¤]6ż§§¬‰_‘uň*Xő:!‚Ěj‘˙ÖDě_ńźÖ0tŻ}ˇqńK>y 6ćź:ÝÇ’dôĹŁuČ,Á<¦çÄ‘÷H9ÉáĘ,¸v?Qµf’jź1íe·N˘Wůű¨jÓvÔôOűÁÝý_ôčJ&żHEó;–µ.đ©+o?˛äŔmö}TS¸ĄŘĄ8ťI3Ü÷ăđÎgĎć«>ą+Ňą$·€pkÜż‡ńOňµFnXĺ׾/—7kHdOš‚ĚUŢOµ&wʸ€Ď{ ™'·ž•¬\i;1ÜG'ĺ€Ţ‚‘61N5vŚőá‹­S5˙-U,?KĎ>y ď±MŃqoňo(ś§çYbŻ‘űö«±=.B†˙™\¦|Ł·CĄ…бg ŔgIş "1Ś †Ĺ¤ť­g‡Ëd}¸m~Ő]Ă˝ß20•ľ8Ó€€˛ĆĂqs’d^%ççeŽŐŔôCOę1#>Űô©ňś;f{++±syVć‹'¦¨›™Żç‡tú[‚IĆ­Ć^x0,8ŮzŐ>JLÁüŮĹ´pZÂ_č/ČÎUÍł˝ţ9q Óś7É©}Ѹ?ůćDďĽŃVoaž.<¤şµéňB·Ë]QąH+ĚţÁćÓFń4Ő±6Çyl>ذ źv Ĺř…ŤÚG3ăSď—h5‹Ť ž…SCĺLQĽę6H~S‚!ă%‚ź˙i$˝r}E„Wő WL ü0ŞR­Ľ ÚŻE”÷:‚ř™Ç‹V¸XńI/`Ä€ž“ŁËŇzc˝d¦Éeö_ôĚĽëaşĆüËoń řGS˝ÜčµPÇ4•­~N!˛Ě.*ßƶü"šc®ľóRwiŰĘ?MĄŚQĺ>°*hŚmĆfŽô“ ŁGśĎ1ű]t„şn~N÷u™ń'N» W©06—˘W ß6Ś4˝4i}8’fF¨°¸)Đ?…šZB¶!Ň"ôU¨Ú [Ý tU5áŮÍö!„8• ű·¬śŘŻ˝ëęH1gŔŽO”hĹOŽbłŢlUúh;Üs-˙ÂoŮBg ź™í5˙‰ řëą›Ź5Uň ¸ąáÓMľĘËÎ%‡ pvńÚKr¦Ň[ND6ŰYÔ}ü7-Űż¨%>ÁČ“RŮo…űY¬\ÖÔÓjÇ(#m0:ÎsÖyčÓ!¬ç ą§ŞÖČ$bćúaÖßX8LlcÔôCÖş;·ńŠÖűjů«NÄŚĄ:4if´âK<<„­Ä§YÂű“GŁâŔćWşrJâ¨á\sb“ÜWILF]jűt~ů߲„ď°lśj”Ł$v(=% ˘L^_ł|ŁĐËŢاk“´SJr zć{š÷^oÍű`ćp'ĄśMĹnËŕ鹍YeĐîQź…hM&t¬ŐĄęńN~¸•ňîZí Çž‰¤Ź–ߦľýÓHüN®,·‚îbšwxzŠ NŮ ÍâÉb˘Çk]_÷ĽPčÄ6"k‹‚rgQĎX:—Ľ XäĄô Ţ3W5d·?h;ĘÎtäÍ6a*‚iB Ôd9[ÝŢşîń€ŚaMŽŃó v7Źi´Ť÷čČ–lSNđńąo8Ô×DĄT3!ŇË ŹČ䦽qŚ ™O@XŕKatpÜŞ"(h©H°|jŚžĂľK?ždý–Ňys™őú†}óćG´č׸y˝j¤ă3ŔžŞË™"٧Vµ˝…ÚŐ‚Ę?6†§2É5ŐtM„şUüÄđŰ“5JѧjýW´ŤÝ.Šë‚ÖöĄĽ@«bă Ľ´ ~PĘc`ŁŁŻ«*¨u>@uࣦCň™8ů Ť±ĎCţ#KUyVb‰n¶<˙ŠŁ“ąáU!3›*-aSéYŕ·?›uŻ7ć7°HŁÝŤTÔ™Xń)±Ö}ÖŘăgÝ •‰cÍާxÚź!>˛]ŇÎÇłü1Â8>“m4$|¬Şbărô|oź€Ń*­Xqó0c˛˙sěč0ŽÖE§·‡Y’éĐŰ6~q«[­%|DłŻĺ‚›DŚŹ˙QŇU°ąVĚJ/0Čő;GŻŃ1=aČŘ·Tfő]ť9˙Đ×ňv>6–M·ß{:¶ H‡CäĐ"}Tů,él©VÓü‹5r*"î]¶cG§HŚQA•’^żv… Zźé±őđăµ`Ô»uHňuJ©dţ´o×#§ű^"“btÂo1[o“§ËF¤ -ÍňEţŐo×ٸ÷dN§z±Š09†8ˇ¸ZFX^ó×hŁĚkĐ6w?DNQn6?Ĺâ_1\"ÉôĎč¤gűR„IP?|!Çů ‹žđ·Ą´zňÓt—ĹîôÁźÔ-‰eýý $íȧÔ!g»»—Ź5 m@bDAVţ9Ý|¶ý@µ0×A |1Ť3Ű gŃËçoTµĽpWl?¨DĄ© á^ťv’]UńŘ)fvwš, ôĎňî Ť;h~ n {¨ˇtÔű˙_ŔĂ~iĎyAk&$ŠS"­”ćŞ Řu’˛\ˇ(›¦ÇµéŔ’{˙ăáČđÉŇ⌠&ćŢFĎ_Š­ľ`Ye® <Ľ%¨ŤD EfŢO87¨ş•·Ű÷~¤ó;Řë}USů óŤXˇ­Áqű«öDOęrŞýŮĘp{ ’ćY\< F`Ç™QiSJ¸«~d'ĐŹŹó“™R¤÷óOfÖ›SĺxCA‡Éy˘¶ŤľOG®Ńŕăřôr7Ň|‹+Ž쏰§Ś$ąUĄ-)jXX¸Ţ~óĆÁcßd·ňÔ¬ Ć(MhČáüN6-K0SABłMąź6EO®űš PĎßŃ›‘řpç Š–‘3r1UłšˇC¸ŕľˇ1G¸öC»}ëđ{ ¸=#‘Xá69Ţ»'’J¶mĽôŹ2äJľăÚ ˇĽeó<ŕôŐÝŢÖđľ]4D 9ýAô«Ň˙Ŕ…Ô%¤ŤÎ·6ťVZ{]Rž“$Š…m-.—ěľ{ >učС%hą¸ÉD(řé— S¤WµäŃ„4|Ôj’ŐKu¦s™3u™ľŰu[¦Ě˝°§*}IZf^’NsľUČöĐkŚɬǟx”§+îIµ°I)Ţe ¸Uű%2Xđý‰Ć0Ą ™}šĄňÖ­€«^˘űI*AřIÉSB*bçRŃr`«7޸ł·ŤÜmQQ…µϬݬÓIµĚ"†‡"ㆎ—†”ĎiT<¨ÍřfNlŇEJrk ”âpţů/*Ň#Čđ€ô^ṸŁ^(…?ś±tˇúŽ›ËUYć»pzö˙Ş{P0mťÜ»ý‡ńľëÍ Ü«<ÜF$Ü&€'¸hńť.ą)A˘Vś¸WWVŔyş-ł"čť=hEÎ5 –öŞnŘF †Ó„ËĺÂďÍ?>|Ś\~őňâ§ľ·IK]ĐU €?ýĂ(CřFŇß‘$َ_ňžH(pYtéÂ3Çf§Ćź/o‰ ‹"ËoO?ĎÜSŕ(Č#aߏÁüwřó+ ş4Ů÷Íráî—Ü^i˛Ş`tałiŰhöŹ\×6Ć ŻEsŕ;wg¤Z^Łçö—u*+ţ_Űʵ^Cő„ÝgŠÝ„8 “Ć7ú(-±ílű5Đ u§ťü ˝;jîÎO … /Ć@[yn?mŢŘËe–ě犓ŚşÇwßYŤ.Ą9«^#źÍv€ŃË9JâDňłţiÎŔOĚf;&Ih'ßbZ'–ŤvF˛ŽŤ.áe˘ş‰Áü>—ÝtLSĘ {R¤Ś1× ­‹mî‘\Š-›`.»„ÁëŢ ¸ř±ý^‡­ aň×ţŹçاG™Č>íŚĹ8–†2*Öm‘wX-@÷H Q(˝ˇ¸ĽÝüřB&˘źYśCbrh˘Ă0>{Séjx`J _,«^87@O&ŞÓ€+/ćGĐŕuÇÓ%ÓýĹîţĚ—bĐjÍŐmž*=Łhݞh¶rËšfť¦cj­üëšůďCI\÷}8·kV“.mń)>FGFňĎç\ęAбTýäJĂ FE’–/˙A2üHÉCC[y)Ź sÉ$Jb^´ľXRX®JšşZí3I%}×}¨Ő2©y]!tŹ"x˛X„Ö: ëáźHá Ľ[DĂŇdB e@nôôÔAČ•Úę-XšB‚NűćEE.ä€ŕË7Ń„{ś żńň7/¬6%>+駸CŁ: éČ׿vD T®6+ěnÁN…/Jŕâ}!rü÷|¦Í}őá» y2;}Ü÷N?p+E]±ĚÇ~a}Č ąŚ37źÓťcČřÚˇ=Ţ<®0ŔJ\ë{}‚ůŞ«˙pébBr,Ľé¤®Ů#ĚB.}ďwy;VúBę˦Ą;D/…ý7G€Ěôě‹_űŻgĘţÎ »·w8ů,Ä:˘#śX~ôFq–uM4jtV˘šeŢŁá˝j„÷qěŞ˳<˛ŐĆĄ Ô'Ëç4@ő¸áR@ą=pŽśvŢĽ^}Š} (…¬‡ÜzÝ»<Ćľ´|ëäý–c, lÚ›"˙ ”ÄŽ´W¶˘„·4ŔPEeăoŮ-§L–YĆ,čpn z˘3É5€ ůˇĄ}ě»íłŕ{ÖźçTt %mIlřčDđÖ[Y“BIđńŕu…ňę9‡—Ŕ‚}}ô—ă}LđÚ[¨tQ,ÄËčÄŮË{p‰xoOś$őÓŤÄyĄÚ€śę%°ÄČz~¨Ěd9¬Y÷»‘˛đ"=‹Š ¤B…˘ď Gśfa Ä—ä\)×ŢžšŔŤ; ‰uáŠ2ŘöGô’X1ę§é©Ďś4łU¸˙X6*đ$G9¤aŠůóáś` ѸfčŞóŢ"˝{ęmpŔ†_Ç( gȨł×<Č‘‰˘ŕĎă: łrŐL^L<'ŹĚÜôŹąM«…©ŻÚ¬”¨Đâ#ň-}G÷ŰŚJ*ş˛ěF:eoüÉÎkţÝ˙Ţë~–Ň -c×Cm( hĄX aĘ˙ńöQâ đ.źK˙ă,qÜ2&…ôÇ3$뇙»Ď l•0‘Ú\’Lľ©żsT>~!×Y—Nřbaˇ·-xÁĐH~€dT¦H\[  Ç˛ ¬vŠ­ţŤy|2O R9y}ZĽ˝„¤Y߉)¸$ 8¦L4Ü9ü˝Ţ<5vQťËÎ č‡jRťtűanÍ úśźćA‘©€Wżi¨ě>-~ÓŹ/ťC»HóľCéqŤ´*8Ă}6űź¬ŔŻ‚SVn$-úÁífźř‚Ő®%TĚWĽ®]¦2ĘéÔ,ă”/©ˇTjN"ľkyS§uC hŚokZ‚ÉčÜ\µă-ÇëxnFŕßC Lň‹ĚîO{&ŘŰt_łßjIPźgsĎVwhŃCOČ“ŚŽoŽ`ÖéÚéDŹŮƉďĆňŮó’Ľxčú“Şc˝ŕţ¶n˙Đ~Ň|‡tÔ ŁŞÎşĹ¬zş.uP oöÂSjbů›¤uĚRĎ-±Đ 6Ô˘¶ř¶ńĆšt°¶b–ZŔ÷B”•bř.üŕ1jÎJ¬k\î#’çNO­SŘ®°hË_"o˝ąŐđčś?pN±ß-„!ß°˝ô…„6#¸Öâ"Ši1:×_ň±,ňşĄę˝żiÄČÜ\îŻfËľÍ-KÄ•Qe@źž ćĎŐK•űE]vşůŘÖ(™©r‰®y†ňă\HđaŁ‚ŕlwś5,Ă!ď_ąq7:/c\ŽŻŕ€Ę0mýiš{şź}„¶.}«ýf_§b﮲TĹĚEJ Xž…'‚AĆď•k9o÷*Mřś»ŕĎFŕ©nO…3r ]8uDKcşŐŠIÂťś­‘G@MĘ…mśACv¸Ź›B‘6˝4ăOťś.ˇ4¶FÇąB˙fŐÝŻÖĆŘĚÇdĚO6R˘XôµĂËŁAĚ+ęěÄUŞH˙Öęëî _ŢĘ\ v\.?ÖëdĘ·™ŕWkN¤3¸c‚Ž7"8« ŠčÜbž 8ćâŠ9|ňLBóďär'Đľ×uKőç1’üĚD$¶Qgď6 kłťšâč{°ťď;lËZĄ~‰opÎ˙C59ŚŽî«áfg‘Ňíž©Ë~™Rą>“ăŤ(Ţňh = ’<+bĽ!E¬J ÓĐł¤ÔµôĄř1•",¤—ş (ňFŕ¤#1z'Ë©­nć_""źőSî®;ĆČŐm¨4t ńßćy#ađŕlLVXČ‚­ŻrF3%ŘU(SúŰ›yäÚţĹZłg<ôŐJ©użwËHĚ÷gÎĂśÎÓŢŻ`…i˛Mf®ňťĺK„t˛nŮĂ*=OXŮ‹mžŚů"* k#p›«ň3hJ˘¦ Ű2B.}túΨ@TΨ‹ůf¤ňś±RâÂÖň4ý(B#}h \ަ#Ü"¤ ľĹmt=”G˙&×Ç­źy3;~ůMë¦x»;Ě2rä8n$ÚNF&Ř”Źg!Zś"“`ű‡ ďxVF2‡S»Ż´){aĆE…Dň‡Ţy|đq¨sȨhcßÔŚhţ{ńőR»±é¶‹qaE őż:ł ň]’ihO5r.®8kľČ‹’ńŕéŕČâK2xI4śxEŁ Ď©%‚ H¬˝’IÓ$jr—WÁşC§Î‰0ÁÁÚ_7oÜrßwÖüˇy匉Úži¬y ąéi¤6Lý$0ĐE ŹPŻÎŁ ńg§“™QŢMéhiS6ě”1ÔépWVżł TvŢHş)\ř¦ĂJčąXAóÝÔú$d?‘q)ho÷ö ý+âR’8gމő“So1Ę =ŻZ˙­7ÚźŐÓVŽĎSßmu Ŧ|+ض¦G#”Še$µcOő|oŞÎÂ0ôú¨)cŔ]Ąg"~ľóRżÔ-NĐÖů ßŕ!™Nő^ óVä̶ –ĂüěNâdr7BčOqý-ÝÜ uVdדß““'çJÖś[/ đTćYyž=hA…÷Ĺ„—dzhĆ2¤XqśjkđĹ´‰ę»J¤}OÜÖ{«iF<Řąş®˝YéÁ¬p2¸‡bü™nňłŔ,Çb Ŕ+‡ä™}ďÖ“‡ ŚĂż]ŽX·„pDH/č=lĎzUž×ß;ĐáůŰĐKwL;ĎVăî+"6E“uÓvl?uvĚĚ‹†—vůăťF—r\¬»´yláŃ/Qúż h‰ŕ;x`cp«b—\–cN´]ĺěň:¸}XşáW[´Ľ|Ű'˛ú€Ŕ~Gkp8ÂhŕÇ,My3öy‰~~°Ĺü|č#%ęaăuÜÔH÷C`ˇĹ/&Đ.–gťëĆ*Ľ‡sG-„Ü\›!HT?FžőwÂjO̦gáB(”f˘xŐŽp'© Ż]5‡*˛ `qa-%ŃĂź“öx)ÓI\^8 ;וr®«ÂÉMÁ€<7Ü"vAŤŽ:ţŢ~mď]Ď'Ď^)úG#čጲĘnđ•+\Gî{J%« ČPRuj™µôXŐĹŤňSĚ˙Ţ×5“‚08'Ký”0ʱÔ0ó=zÍA;Š“×ÝnyQó@“Ń-$e¨Q)©<Çł×Ëî9`q˘™˛B‚~@rë†ŃĂ îŹÓ=ČŁ±vbă (ĹłŇQ˝hl*v÷1?Z?č˘÷ˇěť3ˇŻu·:[ŘŔ8bF=ň¶î\§ŕĹqĚD~Ľz“Ő©Ż‰A$ᜲSÝfŤĽü“:¬~ȧ7-Tąk7Ů9ËŁDôeËgvłËř0+95ꋸ–˙©VLEIĚţ5Ł€ÝĹ8ÎáĽ)Ă€±ÚŠŻN3¶ÄT˘4`ÂwňÜ™łůśú[w i ĽĂO­á5ůÖ7úrŚ7VżéĐÍ~†Őý r}±á-ĹM‰Bp'·Zv’Qę¶WŤčŤóŐ‚®ęŠWÉoOXŰC¶ ©%eőEY ÇPÜ’üK±`ŕî%>:Đk„łâißMŹŠ¤•ůEȤjĹéQS×€~÷t÷í‹rU(wFĹbˇ÷Lżłž5 ďeś ĽűTťF©čČŠĐz3A"2JénŇý ˇMמ`Ż™}ďŁŕ÷dmĺµ(żÁ;Y˙ą–ĺĘ ±×ÜŃN®lé¶)Ż×Ţ‹€) ˘Oúťµ0t–Ź“{J AM ÚIC×Ţ%>¶‹.)«ąĂűäş/Ć ńĘřĂjpLë¬ÄXăů-îä:·Đ䓯ô$”‚+’‘}§}˙śŇ´Ţ^f,ErTĎ[X^&Ą‹ěÓž>9 ĂRŢś ĐšĘGäMU‡{Ĺ[™ÄŃz–±‰Ëű™l'd1ßÚ%â¶ŇKßq#f¸p׫ůAI\ ě"bm>'´ ×Bnă+B?dŻ›•ĂÍ7ó¤G±:yüÎ%«S˙đˇüd?uű—Eyu,Ä˙““ŮUăŐďŰxRżîűÉdąj‰2FĐLn+áŽ#˙]ĎÔ!ŕŻwEýěČŰ‹‘ĘXďŘVďB7ř¬fˇç^ë |EŃ9°–ż9µ\çvźBđŮ:UŰçľ_rĚŔS=ÝPŚU/żń?R†ńÔŰaää•őĆâäĂ·†?$Â"t›Ň«:ó‚%Î0,Śd.Ź‹nn®OżřÖN+«aú"p% h€¤ýoŁßÄ `Ęö xFxN #8S‘]_’ ˘żĘvˇ™úŁńC¸d—ł\şĐ*¤wjj7ë _Žęţ(é§ťo´(ý·-ZOšo‘/n <¶' Yd|ě1k\3VqŃâśÂzMžP”Ţ˝Ť€<Ćç(ŕ«ëQt!§­xř˙ÝtyŁjߛך‚‡ă‡Ć†IčYÖ5ŃQŮ||đ<Ř*›źUí[V¤*ąĆäŞůöJˇ_Ť(‘ň†Â1÷ܤąćˇLÁ ăѨ–¤ĽĆ¸ŚÔɢřaŘŮy‡ňxj¸˙gö’—mż±c›Ţő0…,IKu8˛• †l»u‚šřŤď}©ĺ¨B•뢫Ť_pfť}ź›Vş˛˘âiľ?Y FrSs§4ŮO.dŔO)MgéŮiN{łJŇ3ńÉ˙ŢjIşyĽŢđ”6PőiýşŔµTŻ7#´^bž‰”~× –lׂ CánsËžĽâBY‹ÍĂ;›M).qUŽĹk_.úţöÇTÁÇ_~?gżp^^ĎČsLšÔ5´-DčŹ%Ži±9 qtůNüČí?F±€;Úţ»`Ôb_ý3 ™]ŕ[phéޱ>;ĹűéŽďŮRb4féOŔó¸7¤[¤M^wö÷xd—OŚUěW&fžĆEOfu’uNQ§j%˛Xî>‡­A1¨‚úŐ—´ËŇŽ´•i€;ŮŰíź!k7‚źxą4$×¶ÎS°JĹU>DÖ»Ł(Še4–5X˘ę 5Yg<ˇUĘÎiľVo9p=ż–Dˇ0sů}ŢĆů¬ŢhJÁ”ő`sdýZÔďŐp+#)>*ţQ• ż¨µA®ă\@›nl{{ď/ÖGj™‘ĘG<ŕůbR)6d-Ú» ŻJZk÷j2™y!ś]ѶĺA :Ö‹`”Ús0ú˙Í*¤ T_ťWÓBŘ©ąwńEk'2Ë;މăŚßşdűŘg‚ËÇ1â_üGśhÝgŠ˙üşhľ4¤'5)‘µ«Č!Ú…C ŹŰ`¦ŮExË7«áđH‡}_'řO5ç>c´’ä:éżäéµĆâË výQfŇĐĐ|<ĚQ__É^J×8˙ű†“oyÚ1ÚE uĄ’{4ÖY I€W,67;v…ÓýÓ,[YsďP:[L–II6´ę‚L! b16ÉǵZO˘" §@ő‰#MU5’}UđaĎ´ŕ2~Ň:}ř¬"Gý2I÷]ęŽÖ7Ô¨…{EŚŔ’˝Rw7 ˘ť8| p9L AwÓ\ÓuŃâtwEĺ´in›Áɇ ‘üÁúń…ëSK—Ţźů´‡ß6ęŘĂéä5ÝFç)‡» #áąÍôç&ú(Ë÷Ë6’Űt¤ęc7ťsš×Ëc+–Ş„8Ŕ…Ń@Skż&EŢ÷ĽűŠĄgz<öO¦'¶ó/Pť^§ö5ůlÇäG˘řkg´!ŚúpF¤ üĽ<řKD*öĄ?—ͬ‹Ź±Ř±›ą#Sőđ ¨:ÍŮsF—~ś¦-wŤb9šŹDlő22~Z8öÓjŰ”/c‰ň¬aCÖ`Îdr­ÝÂmvżLńĎĆóăLvŃtt”PĽe÷«ţĐO„äÜśhýŮě3Ę?ü6&ózŘŇŢ@ű%BcC¨ ¦„ˇ±•JSśŠtŰeKěÓ¸Ô Uż†Đ•°Ö˙T’­Ń[’äŤmż"í:•şbp,Xßiť ή‚´ |’^eSłN?»÷nDřĄ…=@Äâí7˘^*{W·źŕş{Žah†}¬ Č X–F[ź*ÓlWaJ|ľpZďr¸Ľ†{]S×¶âl ŃŚeŁOváź°f×GĽˇýňŹýQBlz”Éś‰ŃŁîűŃA&çř~]ţLµb?ľ˙±uťçX¨AßßäFĎ5ó7šáűŠQ>#›p\ˬ)Ů\Źźz1Ŕ«żÇŤwĹĂ SÄÁŞ Ě+ľ Đ·>91)Ţ‘ Í–,%±ť%ţŰ ›í¸dZĚ*¶Źş.˘Ćyr÷Ú°ě.)Ç4ţj·ŃýÚĽ¶d=tÂáôĽú%g `ô‡®‡&ł–PĂćy †ř+óMUŮâŞŇ߾ëJúyä/Ćó,6ňą öň%®ö¤Ú´ĹĎ"Ę8ą'>ěŹŮ-NfA ÚŃ).ŮeÉh ›čëc<Ík`ž%eŽ\Y¸ßD‚W΄î.é>e×ě´ŻďÉĆT M”T‡So°q¨U›˛ôrajńµ¤¸_—˛…ŘhĚ7łĆâÓ]C˝\Öômďłqŕîăĺ“ÓÁf÷żi»Ź“©őö”¬ů°ëWaŚđAf4fĐűî˛ÁŘĎíá|Vś€Ńżî¬O­Äs[‰ŘÁź K%Ĺ Ů‘=Ż”ÍŇł =ns˛&€VÁÚ>ó¸fłçÔ:ŽŐ„|·fä*„⪇qµFzM[ ŚP{4˰mS膸낂ÜŃW̵Ż5…J+7Ô#:łďżš‰ű"@‚Ş|ĺ´őM@0ţfěv,tó.ř)Ó~y‡×ęŕ«,̧Á{®FŁ4'>ię!`ĺ<(ćÎ rYę¶4°ďĐ×hw§“í̧Í,ŰkY?•—śŃÇ9źć¨b‡Y'›«íg§-öYVţ ¦ú¸*—+[ýU˛ąEŠę]˙ôRaőN˝ěúyç+ř Á6}lĹÂqçeŇŰňŽÚ¤ŔŃĐpű3mzÎźKdžĘSpŔY~pŐi†Q ënŔĚF` SÄubĺcF÷btG2¸{Ľ&^Ȭ:g„˘P:c˨„e…z¦ >ÂÁÂrěj*ă%Ôa ”q"čŤËŮŮyUŮč'|*7¤LÓ¸E·ßłĂä Ź>ú»€|îˡHhťC|ţpĐúŐík›‹0ămĺţňkgc „iÉT]řŕţy}«˘ń•4ÍvË%ŔI6Őťń’ZrtťCLć–f˙O“ĎcÎÉ WŻHŽR0âţ-_IagŻnÔ\ź,ŃŤŇó‡jÜĄ}ÔĂ-s§©h©ŮĘůË5÷îs+hkźN«&@ÁäË3łř*•Lsľ`s*V5çˇÍŻŢnč0tÚ¸Žh$1"äxö͵W×AŐëĐFnÍn¨Đű*5Ź?8źPwąN ŐU•3ë—ĂĹá@ă5ĎouńA®)ŢyĎ7‹–&µ«˛Ö„[«Ćüëî{ofL«ß»#)řńV&`l,DłŻRs?ěąA Ľí9Bi|·pHűg§Ř=/©#ś[4ČC ÷µřěg˘ŽRëäé3ŇŹ‹ô9© 5űtb˙J‡´.Źp} Tl*'„®j:ŽúýËŘăţŘŽ{}ć=*É7?Ű·05ŤÚ°%GnĂ‹€'B©o¤#-ň°¤`¬0ŁmĆ?'čdnŤ[˛ÍWóSîÖcĆŃ×Ó1̆Ňţ óD|Ś~´™c›íÝVś“Şá‰ÓëÎ>ł’íźyżhęe}µľB‹Od=Ň1®iZ ”ŮlĆÎE0±rČm qż!¸ŻVą ż wd‚çw-w§€‰bŘüVvř {öűi ±vŹeT>ŤBA~ççܦ„k;“ařç&9újˇ ń–§Ć˘ÝŹÇrjµź›ĚgG&Ő¤'o- :. ×Xµr‰Xm¬€@{7¤%ddĄŹER´š&̆zÚ Y>é®Âş’d5 €ŕďÄ5Oń0:~f©ž– ąđH±űď+ĘO˝ĚaYď[*^Ö¤Z Iš7ç ;Y“B¸±»YŹGXt—ŢE>{Ö|–ÇŞWKšA±Wü-EŞmđ”ę€{×6*Í9©×'}OŘ{2bĘ‘Ąđ÷˝gň…ÜkZb{*š@7 ř•ź`SŔ·>)o P˙aÄ—í6&!ü»•aXÜtP ś3őŁĂŽX;Ăŕ ĆŮs ââČ­ĄnŔ"Ń1§˙ľ$Đ2+˘˙ái+°¨ĚR9DőzˇŻÚł—F޶ˇČ–!Řů»K9âľŚÔłŠ°QŹĆi§™ď·•…9:X3}ÝĂó:yÔ»€ąÁ‰Ć=ť©îć‹5†,™ĎŹÓĐ:RN‘Ćéĺ@Ĺ˙fŁř§ę°ů‰čŃçĄčÖWCpţzî)Nť7M%Đjüú‹©*€Aä.Č{5vrlŚ”$šsBeĽôĘ:Í3‘sęžĘlŽ`68]C\©aAžâúćśĆŽ€¶ć1mŚ—ÄŮ,Ĺ+®Aäâ‘n|'ňÝz«x.9˛>)§ÇóµĘu%I`db{sżˇSČŕâ=˘áâ8U·?“¬ăP‘˘´›2 ďś:OuvĂŔZ«śf©¶ŁFŤżç ˝¶LB1ť+‰Đ Đ)ŘUÚ) Pă†Ď´$„ÁÁš*ś”.{˙őÜTđ/ĺUť>{ťĽĹ2’̡cĚ[R™ž»l%“Dí)Oš– CşBîT"Źy€H·ŃKŃ›l!Ě(eŘ€ŇwÉ>ˇ$G§áçá>}çłň˝ůbq˝@c¦ss=ň"ân·Ĺ›Ý^d÷A…Ă“©Xî¬XL[UP~1ÓČĄ8î˙2ţj­‚\:Ć\˘µ%%4¨ĆMđČ~ž•5<Ě€Đ4Wß!ĐĂéu ‰5e ‡®fî0 «öĚy »”©Kţ\‰vňŐB2+wUöC‚Ă_2—Ô*©l›:°®QŹ'hŕŘÓbPŮŃ‚ľIŐ;qüŹĺŞěYC†Çóá4×őôt!Ä?KNJm]#¨đřýmŹoŻ%mçV%Čń§ě‡ŕťzRÚR˘@ëʇŔŞrmb÷+&_Z˘°U6úě Â6đZ˝W˛ŮčfVÔđ{¸n˛#—®ĽĆŇ—ôěţěŐDĽÇOÚ”ťY>ő«?HXݱ€Ż’3gzÜń˙Ř# ú¤ü'2X#öúĄůhJŞďě ÇÂşĆ$·/ux9Ę€Č2ĎŃ›ż;¤+Ü6×íPńŽi+täZ‹Lś»!ÉBÝĽŞt%ćé—MN˘eüLžĽ7L…,Ôk.˛i ÓîËI– Ŕvu&*~uÚ?¶\F‰yňŽĺ¨¦ěX ăM¬ L|+f¬­ bXä(p{Ş\m› ®‘Ď i‹<ěuůúŢ:ëšla]ÚřŻĚű“ś™G´i[÷´4ż~p磗ˇÄcć 0Ń´ř(ÂX)4HEâ{÷rrźÉťKv+ů¨ů}÷ó:,ąÍuEďöAµ 3X—\=›:&_w¶•»Ŕí$iZo¨©„!ćŚH<ě‹rŔPâß@"dOËŹ%ˇĂŤU?Áẉ5‡aôr&>‘ŞŇB[<ýő€š-NřĺŢcCt”{i"2ú4)ł Z«\äFŞß¸˘-!_łđ§ÝRw ľŃĂą‰XZ" Ľ˝@“ö p˙,ˇ>Çć.ÉSő˝ŐŇńúř5s_ş-ćé)EŞ]+¤čł!©˘V3ĎâAfÔ23úD ÜÄB4ÚďňU˙!ýh»5`ŮW°žJYzĘů¦~a vwŃ& ăŢf° Őx“O.˘†§ůµ®ËČÝ‹ó\ý„jlŇ™˛BÄKá)b‘‚ćÔT§;®Ě‹Đyć9™Ŕ$~™ů)^Nęg7ź:„ĄXR>>áĎä˝^CŘŇő­ö ”Tąg Lńµ ܱíŘíPŁ…Ţ6&ÓІŇD ŕ-¶řřŇĚU0:“{u¦±tsośFvfSPn’·&CúBaĽĚĘQiiâcü ÉĺâŕŠoAľuś~¸_Ď .u@H0Ćŧ“h•ڎpÎőŹßuşAôĄy˘đsŢ€Ŕ ˘#?âŔŰć?ÎKn¤wŢN^ ˘°Lß=ˇţçŢYÂť3„¤ {cSĺ5Ö˝őfŹ˝WÍD¦´k,¬pť“ź !·L…ČS B˙ĐĆ6FË‹ š ĹZ\0s3Łubú…řEÝ•łžĎ ż@y5}Jvo]n6Ĺ*‰z×­‰‚E˘öß$^ixŘvĹ]ÚLçę·Ç[ΖIb%1ź­s+qtťÍihâŠĺňö8çÍ»É˙µPWřt łoíEůśůÜ™O ěî&°4ěĚÍöłjOŔ¸¶TucöŹé˘B¤:“$Jí§őěűZ.ĽŤnÔňXÍk AmŻg†E;qôŹĽEë—ů†#vxŞĄÉ‘€ćפżCçČ<›íüđ—™.­öĽş<§|‡Ă:¦Š× Ą\/zűpÚđjZÁ×™ç:EĺyZŹwbÓXˇ­Pú˘ňf6+Ľ4Ą_ůuđ#Đ•ëRËG »Xʰرk*Zcż‘çćŹL ř!Íp‰ŰoÖxô_HiŘ%)KíżôŃÍńöý‰ůuR°Śřě‡!¬ĘÎfX(ś2ŘďŤéącĘ„J"xÉ^j]Sŕűő±t”Eź­Ů§§«›‡Ľ®L(†ˇ*‹@žNí ¶‡:_¬á2†˝ˇhW´úÂÎđŇš—&CšH”« f§”dśTbĆÝŚElJ5;\žr˝¸’t7`î4ЧGę·±í`?ŰâfşvpąŤMEÂ‘Łť(,YpP}:§ŚÉ˙>™o GÜĘ÷řm8?ý°K<<)ňP)˘hŔłýq‘ ČlŻ? îëtžŢ)ěZôĽi‹{<–] ى»a·N?AIMs•b¤ôź°“Š˘Á]E1d(*Ó`önˇ?gşe•$N^v”Ekű#¨žĽŮqzŽs€qčçKô‡××D˘ń˙Ź˙cĎ_µb¸`µÉ9ëłDK°Éf^«Ăt2°â”QQçJđQˇlvßśť%©ęGJsµřţËHť/gÚül˝I$xú˛Äq6äč˙„g§Z=ĹDtŽâws†ęŚĘa°Ný˘™ńčŘöČîâUŤëo™đ9dO"šE ŠA Zv¶ľöG„ź‚<´4Ü(÷°©éÄC~Ç&"iî/˘‰?´0Ĥő®l`w‚cŻ$Vt}n\Z ĽĐ5§Z¦ăŽ\gće–ˇí¤čś®OHus×Đď^¨‰ŕ˝~–ŞXÉq˛Ą›Ň·É×h˲UB< ˘Ú‹îűąyk4~…dOĄ1%D+9ŢLčÂË.ż_}7N쉶°+x \ń<ßf/Š‘XáwęB‰ ÁíŁŘb8mPá»ĺ$Šu\ŐźĘ{Ä•§^úw€ś±9Ţ2–ÄҸ >2Ł×˙#3‘{ůę͆—ÎăeśYCjC.F©´ćą+¶˝÷xBŇGĂăöý¦¸KqĘéM“ţúXÉ! ˇuDĚ‚K—boPÉX;ĘokZţŢ{Şúh…‚j›ŠŠN‰t®„) ŕű&ÝäŠó§“ȵQ"~Şi8z˝‹6;?]_Ő„(¨Áä˛ď͢î §Ł=/Ą~« ;­{H5é‡9p"¤řWöőŔ˝şΕ3ŁĐ€ŐC±ä2%¸?u`9Ž2‰ą/%'±z&|´]8çXj«˘^ťµeőFIă ;ł@ĽX;wÉţ´Cň7«+¨ ŮnľY˙R^‚±ţâCxëpá¦Íâü“ý•śľBHę?ýgsśčĐ+ßP¸X+nŰňň†Ţ„|ä‹čGŰéâ‡]I.&줴?ˇ,żśĘ_zuĹFˇ†z§căvwLöű ó?mÇ^EŘP8C~ăMĐgşŔ©ÎD‹č?=§gk#¬ŕP{…&ň>ů­źG/ĤŽX"¶ű"lĐÁ"Ş»W.’ŚJ’z9Ž)ˇkDŚŮ–“RŐXëŁF˘*lěžÂ2†§µ?ĂĽśĺ4í˝¦Ę|Đ“µ¸ďÉ˙źTž’"$áK”Ô>E äC[řb—Z‹hŤŹÜµ˘dř¨ Ů6îI“'ś5´‘Á^î$ĹÔ×Ý aŔÄŰ$#ëśvŐNüÁoďGEfd`e/łňżEjsŘŘăXi÷{Â,ń[Zj|?X’Ę(;ËÇÇśĂB»R3€Ĺq Ő-wă6}ŐKíßÝxľŃµÇTn8ën‚7VëŹćĘžqf®rÇŃÉ´Wü6’g˘¸:݉oWh˛ĺ㌰Ĺl\řXśyňZúőzgÖŘçëľôKŰ›Í:.‡ÎŰĆ’'ü±ËG>YTLBDZ޶U(†łĂ!ŕ˘Ôľ$7”[$gÚŻ:e#ľ'É{FŁ“ĐĄr*Úî=BÉp+ŤĹ›íه†˘:\WhăkJG§ŃAgMŽIĎ2§ćłÍ-Ěď!Íŕh&Úś0T$Ż×9âÜŢNjن÷W`ţŠĎ6/ŽTś9’–>qő”żłčm˛G$Ťâ_äÁ7¬ďč<7ď_ÔyešĆx&ă_™LšĐvóžřQ\Wk:·FŠźÜîPůšąuńůŰäolĚCQÖéyN"«–<ßKŘ3Ű’Dë‚ĂÚ#ŁÉµ8D `0Ň0RŻzüEPŤĺ±xT:24ô–ů4ńhÉ]ŠliĎë.OV{’Nů ‰Ü´Ń™ďíŘ<ÎŁ©íŻ|"ŐŮJ’ç.U”ĺµ%řö¶LČBED“h1nIX>¶Ć]@͇9 ׋ÓߎF í–ßĹÉ8_Ü@ť/ôVDŚ%YÚ•‘$%o ÜůÖ,ˇâ썤Íú2:‡u¦ľ©‰ćřµŤďe Y•ŮčPÇ“”{‘Í,ßrłÎ\s¸ĄzÜ/"›vBĹY´ĚŢŔçs9ăC°ďBĚZç}żY~đý,`\î2ŐkŻ,ÔŐ‚ń‘6RPEČ ěx«*Čçé¶Ö†Č€ŃclÚčôS¦*AČ­w~€6 `f]©rÜ”d ć*úŹËć:ź!ŘĺC¸áĽůYü‡1\éťh›Y"öČ’.d=Ž˙3?°:¨ŕA ÷€ši.Ů4 PśóĽuM«H 43A˙[ŃLČh ®^Ő-eý§ĄMöGT™ź°:{­6×,BtĘó´ Ťi-K•{d ś0rsrú-$‡¤|<ŇDL'’xšďĽ—éţ(uŐ)ă,>Ö‹öőě74éÎś€”)dÓÍ;Ąn¤źč”„WiVM,ć[…%h,Ýđ˘H`ÇJ·ĂwűqÝsAD˝ąJ9Ç˙Ťľ0…Hy”•®Pńmş˛ä™*ŇŘă«Ĺ %ĺ‹ňVšč2$\ľż0˘*t@ľđRłYĎMşk%źm9ďřs†•kç¶™b›·ŤČçťÍ ^G«ÚwOĄ}ŚĄ'ጅče¬u´9•B"Ř-։ĦëúzÂ<˘$§Ł ĺé±n˝´ůvŠÎF~íš˝č*6&mĽÁ#*Î_ł˝¶ń”Ý‚ť“ťÍ9¤c°˝ČN-ŠŔÍä:bűVŢâłę҇3Rsi‡`\’ç;”;—)Ío¤¨’ĺ3Ţ9ëŕŢăE=4RßĆaů^k<6V2éě¦$ß{!Ř˙ůŹ3ŤšˇŘňŻ\ nb·ŁO€Çs‹:’%m˛ŰÔ1Huď&v{>ă·<ǨËůŢ=®É˝‰ŚÇ´@ ÷Mlü™D_đ,őő—7âp´0őčeUĂöl’Cřäá,‡ĺZüŇM$&dXíuuRjá`ę±:1©1_2oq‹ĂŚÝdIÍţŤvÄ×Îń¦ŕsĹbĐưĽVbXÝ,rőą÷ă'đ-yA¶QŤWAé|‹y¤‡)ňÖp*’ĽŃëíY{ó_ %\ăű‚+›ec©^Ҩ^wŻeF0P±G şŞ¨ďĂ ţČF"Ý×Cęr¶ Ť¸3 śtu*­±L¤¨Ö Ě/@ˇ*ÝUÔöd¶ŮVttnÇhŻëÄ)/~Úŕ˘1ŕ&ť盇-!n=$°-›‘źHľFČgĂ ś˙Ô™ähŔŤ™"´ě(ą[Ţ‚$…óMµ¶CŠŞ}{szo,·>:xI—á©tĽř €s$ZJ:Kq@ioĂ)\čŐQÔsĚ´±®ŘÇË-~ŽţšKÓܱ3ĐďäX•w`ńĆxŤ%—Ă-•äą:cĽ.QĆmSÝŁâžnÄ]j˘çűˇÄŁťę­Y2 8ĘI滇ÄFkť#ž&ĐܱдߍjîŚ?y×(†ž¶'nŃÚ'č( ¨qö1ĚVs+łoóÓQ)W€ělîţKŽ-ü„9áŘÔąű,d„$’ČKîőÓľ*XBeŁ€Eu3kĄ¨°éóݦ0öB(ř€A cŔÍŚ°ę ĄÜ¬ůăô„,Wôň“´Ůvâ­ň_ ·gšJěç1µ#yL‹Żőĺf$YÇPäu„–Ú]©;›ýţM2!Ł]ź}ٸYé“ć zŐËÓÖ—‹»$ĜȀ}Ď/[UŁ5.…®39Ş<'–Ób˙Rx±ËJsĚ"Ł Ź^mť6WŇ4HuÓE‰3ŁěM(1?ú-ú”Üë¬ć· ôS—ś‡Ă¸•3˘źżň´ř~¤}}űSsÍ'ZÄiq8ΉžĆŠUq˛‰Tëń=⸥ĚěwFcĚ‘ݵśň‹nŻc®ůS„ď®ýrÇź]OH •ˇo§Af˝~8Eů…‡¸i|Fź˘Ň÷ćçî÷Ć˙~Ą\ń%ˇp…¬÷`¨w˝óŘÝ”9ŚH>\c—ŕ3Ífö„čťÇ¨ú w˘/¤Űb-dp4&đ¤Ęđy5ăpc•ľâoÓłUlŘ8çJGŔĂĹşâgF5rň,ĐM:: ĽěĐw áwß–éyL„×S*ć,強ž=k®ÍŻŞĆ2Ł !Ëâ„.×§;Ωˇ®1Ú•@WÔDr‡mąSâ*ăĎvW‡W™™‚d$»ňwŤ FĄFĹÁx0ÍcŹ5v)ŽxĘIçĘľE|R:Š˙`t6Ó ýśIĚp%ŤĂ2R—x™:ĆIÄťÁtX%3ÍůđÄÍÍ#b… “Üń… By ǨëŢŕ°ş§7Zî˙Ń Ű©'Qţ_d8>y- úţćśýŔ-Ô‚l„+›Us’?E3ÍúPĆ J˘-šńßÂŐ«tA9äÁ·¦ů‹wÝŢp–DMřĄ"ŕŕkŞNpăĎR6BÖ®?U:Úŕ­­`ŕ¸6 «ÚG€GéĚUp]Ç˝^˙ÇFBy…̸Nݤs d=SqŤ ěŹů,«,ŢBMZ`© Uh}x6ćúHtň%Áżá×Çw6<źUZ…oŹ®ş›˛Ľ'g„‘R`\Gr±žýJDŠČRËęžĐáˇgʵÚ úzŇřź(ń\(~7㑼e’Fíˇ,·J^«Ő¦IIc‘¬uŞă ™XÜŤc©°)^ťđn«ăĎóCě×Ő 7ä¦üHyCÍĘ••¶^´ÎöŔ‚aĎ_‡čéťý˝şŁ©6˘Ľ2˛Ż“i±ŐgĐ'4ë]cońL¸RDłęî8" ČĎL/RöĂStSĂź!FŤ ě2'Ô*aď/(ŕżü',nJ)_„wŕčl?¦ÎrfV`_7±(&cd|KSnŰNŮĄ;O®ŁŇúóśb$ěßĺCű*žh˙v‚Ě©úŐ8A'¸W0Î2¤ëĘĹH5;JźŘőż;EĆěÄťđ‡»ú;x°""ř»ńJű•w¬ßŐ*08O˘ß˙ ÄČ盯ăˇ5şŘ‰§ĽOkncŃ‚®ľe6˝ĚţjĐ>„9⇰U’†ŃÇđ]·!q ş3˛˝ĺűžßsܰhÓ|ZĂîRîtЦAzkT„ô î ß~ńĄKô š„ę˘ďëíR×{;“ îĹŻÇĘHň·`=Ţ#ł‡‡µ+VŰLŔ÷"ţ”1˝xunÓ;@N«9¬ĂňĚą3¸Ó×–¤šÚş˝ %€÷÷hőF2×¶îQ¸‚g»ŢĆ©Dí·0îÜjfbIâ&sYś,šd†č@Eaď˝Ň‰[˝˝b~AÁB·0×$2e˛­¦=ě 9Ý#5CLb7đyµj”a ż˘1l ‰Á¶ŕe 1ö­­­ôz9LřŃí’6đ ¬Yo#_›ľ@ÝJ@}ęo¤äY^)ɲŘkŢ/Fńʦ¸×Ą<†S}¤Ť ±şĄź’?řZ´žŹŹÚŁŚäżoWÖ†Cć4Ä‚'S¬±ţ?¦ČÉ éŚ+ť2†!( bŔ¨C®ť›Ş(2!Ňřµ¬ §?żá'EWăĂ"µ¬I.ŕźř:BMgęl˛2›BŽ5¤lR0Î=Íq«% šŘăQ;ŞĚ|ʇdz©łs‚Ţ RŘ6^ t’G䔋 žKóśÖłw[J[k}W,¶ QsR9˝K{wx™5ÝT/śRđčC•ÂJ!…[-÷"fˇÄ›Ćp˙jÎÁDĹ&8â-ľ-Í 3<_JŤqdân´ÉŤ—+@ąŹ­e{ r?­pŃ"5\«×„ÖäçUşűŁ<{ÁďXj»ňăöÄż˘-ś&CE˙qé ˙UÓ‚·Gͱpk éŽô|1•»iű_YCtĐŘĹ­˙;ĎEn¦Č=Íađ·Qfô2ËE”«%łlĆ3`ť÷ąÁ8M4síŐş3xÔ’śo–Ć}Ř•,—¤:/ ‘ŘdČˬíńŐz‘%tëŕ˙Ť5MęĽŔt5o+Á·1Ë›^¦0·p©űR±őßš’Gľ°Ó,¤@•Ötlhü{QDs ˝±e.'+şĄAj•F6Hšź6|8Ď=Hă[đřsĄ„)+§dK&菺tsţ†‰ń‡_—úP–ŃM‡ľ§3š_MXĘ˙ŠÁ¤Š`âbţަ…D3äa>›růP†eő€ýÖb,čŞ`3Upqťe`Vz×Ĺë‘_ਖ|Bą‹ÎP´şUPÇ:«!@ĎÇ>łÖD˛žŽäL~3 ·“-ŞJ}l…CŻÉ˝;ęŐQJ4‡Î|™ęÝUđłžÎ?ś±KDÚ ŕaŹâ˛ý˝÷VáłőÜČŐ-$ŃOé7…–Ü»Iy ¶ż§Çř 墨l0Bôóeż„đKľ™m–Á'AüĺjőŽoóáŘ®%NţIŕkŐ}°1tŠ9–ăüŞíe­Kľł.ätŁ(â%â4R#żQ•|$÷dŹ6Ňś_„&O1KĎ5[?¦ ůż‚Ý|&Ĺö†16śkŞjÎ’üw¬©xŔÓi»)ѲŞćÁĐ˝G±•ć>#űŃ0á—zî'.‚¦ÎÄ›ëPŃи” ݰnIzĘkśŕç(ęřžÍ¶„ĺH~zcCřîüănąz±Mű‡¬<lĂË“í®úřĄćä4ieGŕŐ˝Á—źO8:<ř“Áä4~őŐ¶şőUŇů6Ăß@ú±Fá_rĽ§¸W|FÍ{ÁZhü˝Kî,0!¨ěnµ| ţ'ĐxĹÎŽč3ßÁLö2%¸Íţ[bÜÔiDPj§Fâfr" o)ď`K„hâ`" 5Bç˘÷®7 ĺHĄTśűĚ1Ęy8jo_™H¶âř‘–ÁYĎ<4Ĺâë’č”ql•Ň6I5-˙Ęt&FGúd(†;Ňî›ă×1źJf‰Ň°ů8aVŞJřÖŞ0A¤°]q™»9+Đi¶®ˇ«ŔZË…ţźíEJGšĽ»Ş [RG  ˘ëaAy˝ű÷ĚmzÔh2Özč’ĆĹܡˇT[p‡xÓľě!ŔšHH’D5b0}ËÓŔÁywÓ …Ľë±ŮůI¬îË ú¬kÚĹ@ÎVĚ#I›g3/óŰSaĚ–%ÜŽJ$)Ők$¬·Ýżą901~@$Wn{ÎČľ÷‘P=m+4wä $q +p¤NÂý‹(SZÂĚ4ÎynĄsÚjókv0ł[’äëÎihkK°Ę \¦Źű°ČŇjK㨾R8Úé”#éUZ—fFM“®])¶4őd÷cľĆ‡Żš°Éť-33¨GËö$@Ä{ľp|ZXŕy˙5–@4áTSýŽ'{Z†"üoVˇ±ĺüŕ ŕIüh—Ź[`¦ó-˛ Đa–"ä±G6`ZoMĄäŹĆŠUÖaęK OťnńćŇA"“ÂçF!¸€MoCţ3)¶CJëěB›ó–WC*BŚs;ĽÁ;Ěź7Îü©ŰĺUÄĚ˝<µł‰’M/b;HĆ˝ó ‰‘‘ A'U©×*ćÁyŽgk°"ĂVŘ-Ý2çűVרB@c“äóŠîT"©8»|¶€ŔÖą•^ĘpÇtx»=ćĄŐ“{Áh}%ÄK,_j.1„7_ů´[!îk´ ş˘v«Aú3P´ňém¦íô‰5µľ9ŇuGëXÇň…ç¨Vˇ°± wä?]kş¤m,˝{ąq«jŠůĺĺë’sýo~T‡oóMÎ+h}°7¦fŔ`ŤCÍŞąŘłŘxcçĚĄµO>ĎÂĄŔ•ŮŘäOiă¨3Şˇ2YÔSý›‹ŇË«ä-»-c{P$@5‡ńľ%ŃY3ŽT>`9{(Ą“(˘ăw \ľÉő%NŰIěgúčиŚ_ľ+.°u—¨ň<¶˘ÂĘím`JK‚[nÚy{n8r“–ôGű·vÖ5‰đ ‚tČPp[… Ĺk~h˘6+#»“xA¤JAĘÖJxą7Ôx{ÍKćYć?ľyť­•'é*r äZśÉÔ|l›C›RA©ß{çľ V•Ýě1đUVF’!Eöi·ś7ŕC/`łvŰĐ#9<^gŃńw7€YmŤ=H¨(V `őŠą—*?;ý#ýnŚÜ[«Ă|ů‡˙Öĺ†˙X©¸í(‰şšB03„·,˝%*‹(ŢÜvĚQȵj„ Íĺ‹ÁÚ}eŕÁ2ŹŢó‰ţ…Îďąr˛˘2űą< LLŇiŤĆé;ĄiOÂsW­î>*F){P‰HEĆEűł'KĆúµ‡zoĽÖp 3ȱąTż`×ĂČPqĆ`~'xyb]“ŮČôÎ#[ĘMbĺ}Šťh·r»ę­ńôžżÁÖĐŇeuCî\áčRV*¤ŠŢĺÚlˇ«÷wç¶ük°s6Bś¸gĘG?'÷ֲ‘K‚„dQéăÇáR×@ÚǸ›­ŚĹ…Mçń ©«z ?PcÇ™˘? ř586©> ‘ëŻţB0ŁK¤ľ‹ŻqńB՛ҝ4ćw,ěPř“]Ů‚sW¶Xň}·břŚaĘą÷'ö¸†ţA,e®#äM~÷Ujó |yçő”ź ¬ÖźĺnDö7Ąš÷˛·Äťś_"Ažň6řFŹ P]1âÔPNd„ż’@«Ď13˝“K2;S ĄMIŘűżĄŞČÂLS÷Ö&ďSgÖ~'Yn‚óKä×/=|ć˝á ścĺŰzŐQŐk =ÎźéÜçöhmXRp΀@®Ď\ŘşĚĹnţzÓ§eň"¤Ze‰$˘ˇcĐŰ‚gKZORh„.'Hăőűˇ5µ”ţĐu®ňÝźlŰŢÚŇ×ăV-4·v›Ä#čĺ”F¶W`y‘+7šîšF}ý9rC#ˬP»8öÉAČHqłśrxö "+µ1O÷”(ź9 Ď`U/;űwx uËâ”]ăúbě›ČĆóôů´+_*¶¬ ŇN ËŹĄiƆë‚ńR‚5ł‡‡·ăb“–ţmĐ+ćě{×ömB0Ą)˙ˇŕí h/:’żCŃŰ“)püŚ‘ňńĘŚ^)bŽ™Ś ™çŔ†'ş„—˙űoÓů¬yś8ľžČÜSëéo*4…|¸ÚŐGH=XLVŢmđú‰†…&^ĺ=(ů˝rJ<Ř÷Ż«ěn/NúŃE8üł-_˙ĎUdĐ«ÍY gŢ–iďîţ)¦wíăéÚJŞK˝\–E“ME ÚĆŽEvb骀C`¤TŬő~MKÜᜱĴ-žČsâá×ývÎ}Sjęˇg˙ĐÍśP¤ĄŽíWŻáVĂůFbĂ?h·âtR~kT>n=6‰µFýĽÜޞVń+ďhĚ7ąŽOľC󥤟i.pŻ˝¸öÓĹ @«ö›çŹłŻđ´Ś|tÉš§Ń¦ľ\««Oa98ĂÉŠéc¦MŤř•“™ 2IĐÇűŰęŘ‹ ŚDYi$Ľ†€Ą=[?cÎőuŮ:‘4 ˙?–ßdÖÁ?Ď!.ÍÍ˝[NNíŃËžłţ“ľpšO;/i“´i_AęŔ}‰ż ®ŢľÍĽWMĘ,‘ŇA'ßźí‰fihŞ™v˘]Ĺ?Ń °Đ›„tĆĎă)%×?Ů|Äbśö2…RÉŢĂi Óa„Ŕ &;;˛±w<ýŐjl2Ô!ŰGHč$‰GÚůčÝ$‘$Jý%Ŕ\v©±h1?\'?eÄ2W:ą}lŤŚť„Ä}Ň+“î~ś ÎŁO°ŘŹźi0•Ç+? ‹ `çV:<˛xüŃÄČqgŢîmłÄÎ0×÷]‡„Şîäe‰ÝĚy{ăüĆ+»™öbł} ‘-±™„g𠴧概ĆUíK=SťŘµĽ$I}:§9°›tŞŁĹcÚô,ŤÄ*mpµęŕB]ÔňV>śU›ĐwWćjÁť,¦OĄ’ŕ™ť©ćM›LO2Ť˛ ™‡†ĘeÚ”] dW"‰ö˝W´™ Řcš ™µvrý§şŠŹa çújNşAßÁŤűF3Ç7›µ4C‡ŃT¦¤}{‡räm1䤵»0>‰^Ť~zM|ßPµĺď˘*ă5ă<Čgµqm!gO|Ű€°Č•ěj™ZŮ*·Ń$K f›DŮę°çj‰·AŻ0ˇ6pÁůqóľµ{ âŽ:Ëázŕ-˝=ĆÚ.ńűRO3éxôšŚ›čłHŕj„RQb|Ř{ÚÎy’;ć*•5.ŹÔÜĐ‘őCE‡ ‰ýsţ4[vxź«» üCěĺ“ůG’cµYj÷ř_njĐŽís9ˇ'†“[–1ŽŐPÓ““ R[ “ŰVó·LKK¤ÄtYžG|OŮoô‘TXň[¤?łx–2Á»ržíѶ4$Ę6řFërůýřʆ㲴ÂÚ®P¸ü–Řah9€Ř=íÁěěď˙OOY ŰÖ2Ńľ^Z˝ ĚbOP6`¶YËćq¸tşáťŢÇĐ›®®Züd.ĐëÄ+ŁH¨ŐµrT ý•€‹ÓÇMÉžőTGíé"DHż,aT˝?ęśP×ĺĐdĂÉ<±ŢóOj,Câ÷Ö*ÔóŰŠ$ ™(Ä:·ĽÍę¦o@XĎ&{íĺ0řmĽšĹÎJeˇ­NĆyńXÜ[%ÔÎ_€âŘ`ßŐë•ů0OĄ¨ś~lC"ÚÇoű,¨,+Cş˙Šk'źŻ1¦™Í˙Čç­ýO™ĺ×ož$Ü"©m ŮÚ†©{ŮĘhSж7X™¬Ž Ö!«™ŃˇţÁ–H®E3XŤ9AµËôľş‚•VeLRT6śŃdb«ţj čş'Ô‘Żâ×.?<.¸iúço|bŹ;żČµYf—윢; ą4÷í%{ţ6)z|…a YČQ˝Ďo8ąpăÚ˛ßÖE˛,éĄrĂ[ˇ]١–'“,ÄÔN×YŤôkŃ]$×c©oQň~#Ďî9„é|á±cís;ST_ŰxŘŹ~†Ź˝fČť{¦®ŻW‚¬}ű˛Ű#҆Y$šS­˙%˛>4˙d&OđGLŻAsiŻ™6&ŤęM’†Ű¶ę±jwě!¦ËJ\ŠČPű{5uVÁř:ä@ŤlˇýX ŃLZŚ"t*˘ ÚT»•Ő錷@d^ĹRżX.ď°çy­Ąó„Ńţłoačß4Ň"łäŽëľĎľh9]!AD¦ ˘”Vr6Ö.ŇađXO’qňĘ^âŰA€Qf'"čPOw…˝äł , ąöĆúÔ×ü €ăDŁ0’Ą89 šľŃ7j&\—e|ÎLJ_ۤ^ËŘg~/ms„Ţâe ŢŽź3ý$Ö­Ë{bCR˝_÷±áŮ Óf Ǥ.>ݧ; RÔY:ŇvLów­‰}o+ĎÖe=±€Őá“Ó±WĚřŕµţzż˝Ľ§­»Ü2MLLš@“a=Ą˙ÓDR‚©Ähö˘o“xAĂĚł§`‚x4ŰŐ,·Ăľ)Öń–™€ŃŁś‰ÓfëLšâ&Xó€vŮo3ĐţŃŰFň2caŁššg}=V‘˛ŢăoŚéĄPŻ·í W_ –ŔiSăP_4ł®  9UôC‘MĐq‡ľTwşô5ß^•„WÖl‹%­)[ÇDé|úÜ­l†Ş/;”UŰÂ5+:ľ±F‹*Đ#ŔlŁó3lŞÂÄJŚ&v'ÂN,J¨|´=H\ŃNÎN )W1QŻ)=;'Ţ–ů®°pakńÖ3 i쌝üťŐ&ýQV·ťh’li¤‚¬×ż ßňüÂ'ÎünÍ^ŹLUţ‡Ýv}ţ8Ă$(†gI& ÔĽ‰ŇĂ˙5uŮ?@•Ka—Ić*ŁË ŃíćČŤ“Ĺ6€çSCPŚ=KöéÚc)Ć ř|±B˘›µÎŤ"‚oß@¬ňă‹-˝2-ĎaMF3‹D´đk%ŽyŽKâw­©""í´/bö u‹đxÁBŞ‘E»‚ÜJ|][~›Ä…M\Pž|evĘŽ× Ľěő,šTl Úv Q ZŃĹ‚±w@™GĎ)Ő›żAď·Śůjł!Ë怉ôŤ°Ö"ZxS4vękab H3Î˙|‘jz&fô±ô)e(W:ŢwL4{Xl2ńŞ=q±řq lŁ!ďs»Éw|p˝†Z8ů(á`VëöÔHĐřs ±+Ç^ٞý\¸@@bŤš ZtFx]Pűתĺ{©)x`şsr“GňÚű‹žÖ﬉ISď©˝ąŢµ«ŘÝĽGÎđ ·gřŰ 7ó ˛Ł3bßéz:SŻ9l'ahÄiĺdăc4:bÍűX]°÷ť0ŕŚßË_@{u-Ö¬UĎĐNuI©)ÄrË—ŞiöµÓ=@Bü &Bç‘áIń()~–,¤FŤt'Xnä+¸Ş¤7;TÝ 2h_¸\ńŤŁž#)ÎČ%ÍŚbf4ě˙űú ·!kÁ=ëMC¨ś#ŁŇBń­S\Ç|ŕĆbK%ź[n‡;‰–îX‘‚JFĂŤ1¨ď€ţŐ2WDÍ»Úů^5tš¬|¶Í<Šě\ö(¦÷ů‚ŽçiOíuŇĺ>,ĎnSZ§¶VW„úĚŐĹŃ­îx7cL˛I‘~· ®ĽÍî)Î=xGÄ-V8Ĺ©ĘIĚÓ< ňX/1A+!I\ÜňŇoMJ±sĘ÷ĹńzVhŰţ‘ą—ţ»@ĽŤ"ŢTślŤËC=ŚkŚ÷UÚ[›K@DVůkrXŕňę.Ü䵑RRČ7)Hx H…Be)'2ĘŐ”h߯ľvóŁoúŐî…jWşźÚăy1-–”đ*¨té(č~RÁZh€'5kAśh=ěW$9Ň›4á‡7[XŔĎß_Éz¶űË:Ţ!®}tŐ+FÉ^žgA$QéCF€Kg,ŹË—ÜB@µ"1ö!5ĚśäŐt†sĄ÷Ó~»ż#â”±ÜÍﹸ\¸z~ ď&^ŕ>ž(Ŕ×<0îjpűIШ @—ě’šŞX ŮcXłčšrjôĂ D¸ˇ˝aő¤ ©Ý\Ů·5ŻŁ“_ÔX6­¸¤"Ynf_úçqtî×Ę0RšI‹®¦;ŃN`ˇőLń%TI˘Me8'‰kN:$n_4ypÓz+uü˙Ânî°»yŻDĄ0'˘h9ŤďeČÍÂx–ykčŇŕńŔ÷8+%J‹vçĘ䆢tŕäv)üTÚŻČ÷á:3oS‡ Ę˘™ç¤Ä­Côd=e~Qä [íŁ—J)©f5°¦M’¶Ó˝(^´2ŮíVÜľ¬!ż$ÜtĐŤ§«&ăÚ˙l$rŢU%őô>ťf‚‚-×hN’Äs;Î^Ú~©žř÷ßę.ň}np1G÷דl>T‡0_Őx9’;î2\ż€I\ű" lzôě)’I §dGĂÇFEÚŞÝžčÁ#¬¸ü9&gÄü“‰PSžQĽŇab,·Z­.K´4¤ÉlŞĽŻ®x†`?ÉĎ"Oĺ?=]śż—Éů_!®ŃŹ}ć&Ł:v…Dçť.DĐţt«!;*ôäF(ŚĹTU6 #Ĺ·¸ţÖWîůÄFé©Úć'®{řřźŰ„ú…Ě>LČxßJ™ŞżńĄł~Z§ž¸ *k ¸‹e7o}¬$;ZSŃH0VŇ!&ů@µĺ¤D@\Lí]Ö7Í8š÷óh-ÔĐΠč‘®ţ„ÚŮř5ć @Ś“L Ú—:(“ó”Ř:“¦š°´­ áđ·í+Ô…ăô dľcĐť™*bfŇ©ç&(ÁB=LŘo˛4 žx4Űč­Íţ…[ ł´_>*4,IŰ`_”«5[żÔ&ä84U¶n޵€@ý ˛˝ ÜŃńjł¬çx’ßľ1*‡rÝ˙ŞÉ˝*€ďĐRĎo÷ D‰Ř 2ćuZ®DČ™gć—®|ëÂ)÷uuWŚ×3‡ÉđýЉxË)¦0řćĚř¶<ŽÓ3Ĺ˝/ćň›Ť•*·Î­ăđÖµ{ĹţEBxÇ«µfCĘ=ő®bJ~O,{5_śVf-w™)®˛Š,—ű:·ëźč`#ŕL™•yWäŘCşt)oxq±űšÓS@ië°ÁCÂ6‘0ą“ôŰń±ë­Şáçý‡!ęĐsŕąśˇC š˙§÷€Ó*˝}ŤŞćp8ĹŰCt·ZV˘±¬lBçyoŮŕfČĂH%• ˛&Ň)ř:*ÔŐyŇ#p♍ٸ?8aĹG–,ęě¨kGmÔ´«ŘC×…{…4gJ…#Č€i˘Žż.ôE [ýč´\&;néMRoŮă«pô6˘ú¤Ś¦ňÓŻ\)˛‡féźŢ¸tC'ĆŰ–§Vâ3šŠŮŮÎ`uŻŻęeůt>`4Š8üŔ€PݵM.Y˛…2Ť‡ťť|ŘąP‹ńËhD@Űj1‡AKźăNęé~­$-¬=\čŘSW•D#l4ť!(ĐÜ»6YĽ řYPšúÔŇÉmĆ7Rá{•»>Gâ4e_ZřZW&Şžä/.r°9ö‹%‰gZ ybDFźbQ˘ř…¶"j˘|·jbÁaÍ/XRŚĽ:~WÖH§ĺ 2˘ľEq$íĎ…­FĄ•uŚX^łtŔ{—ĽúpWĂńR ܦçJ0ž'hëłúÂ۵žÂ¸špŞą…˛ŐÄR3=ÝŇC'ˇ ľ*źUŮ\Ĺ+ öĆ9LńŔ¬)ŤTdÉáÎŢŹÔ ň Ž‚“1‡§é˛úÉ̬u9RďéÍá<}Ź’ŰŞÖ5ü“D’ŃƤf®×źJÂőÚkNőŻ^µ€ ĺč>ÄŻ*ާuTc‹c8ó•A&śÇÎ>Ĺsś‹0U®”3Q¤0=EŕűĄÜłĚ°†T¬DŤmÂÓ]q®+Ű[ĽDΰfXßIAGâ±$ňčnŁě%jH BÇŮÇŚł"N®Eř_˘üTţhy”h{›x±¨Ž eX`ŔRń`:2逌ż#ŞśÉäČßWźc;‹^“šˇůK˘hcY=âĐXâ·[Oˇéx*ëbiwΡ¬Ř%%„ż9“Ť~$Ůś®>{bŠ˘9qmů‚&HGégQŚ˙é˝»¨ô.=O´b rN…ĎŮ×0ŻiŞu˘_ĐDm‘™W‰¬•Š»(:<ąT6 +ÇFóżłżlĹ?)™u¸±śʉt TVž™ô7ówę|÷µĹ7¨%ŔÁňQ iP÷x±$ µüűť‹2ËĚdĽCX˝bŁ:öŠ` -@˝zĚ)_Ë8‰°¬qVnGŔí±pC¸!.ţÜŇ)ŞWŤ™Z5ĚŁN,…–ć‡>?0…łq܇[7ą8¸"ťÝŽĆX¶N ’ˇv˛FĽm(růlŕ9úě+đDŽ-#ÄNoŃŠ.Ł´ŹĆCgŠĂ滣ť*FNf%ĆÎCxŐ·a_J°9ó/qQ&SÖZŤ_|¦k•Ţ1ލ˛ň¬`VV˘´şź}A†AĹ$cf‹ô»ë}·z<Ä'çb»ZŇŇmj8 {ŤĚVźdŘę&w=Fv‚‡Ř˝ţÓ{źopš˝“mäŢĘ‘†ń‘ŕ;ř+\®8q›Ă\µĽÇĆ:EÚF÷ŕłSC‹…šÁM§‚ďÜ+57€ĺl•f÷n—ĆT‚ěĂa…ŔPKs缾y"ÚĂ“öů7=ĂW+(,őńŔ$ŘŘŔ·U0ŘÉ˝·ňcx?ĎÍĺvńÍ%I†ůľŽ¶ŞQŽş0÷’9ú&[ú˝±ů*~-4<óĂÄşú‘NuÜ€a2Drdş’Őóv)Ć ¶Ffő”f¬•+Š &‰ťf™}5'D݆eű÷FˇŹ‘küů1„ ŞW6°H‹Đ‚«/kF¨Z‘UŠů™aFŤmrÎg'é+=ňlŇŻ°™Ařč]^m‹[Cč’™đ'XPúďĚžpHăp3y±Ř%QV/˝Çkh«4Ëe‹1M¨Á-Ƕ=#C[®&QôŹÓŹFâ‘·ľŮÜ#Ă3M¬˛ĂHeIąodvĐ–tľvĘš\Ä“~ŰĄÚV¬­Ę˛íoŮA„aAPÉĽ2¨bqAÍ{şAÍ௛ěŘnźĚ}ąG S0ÖÜIśśÁ·rĐ(3˝‚ \6ľ®rűá( $y"gz§Y.B!š%Ş­–<‹B—U>0~ć±Âę±5$ľ” Ŕ3!_ Ę'n00Ż{ÁC*PUËËŞ{»YĽ¸¦5 .ĂŃýc•~źRŘzżĹŻ}_o*5ßärËé™ěčŤQ HÁʤT¸DèţČŰ0¸–:ć÷ž9öapřă(~x™¨h»$=X·w¤đ©:ťÖ™˝Ăn%cȇ݀ylď¬$´ĎG€ Wćů‰‡@heŞŔ,X†]Łh‘i—AÂQ™ě‹¬¨âU5>T’ŹÇőĺ%”9kLbO˝Y› P˘4˛ČîŽm@‡†´ űă6©]wřÖ}h9Ć“*ż»í*6˙1Ř”ćłfWc‡`iŮčđxčbp«ŕ]čŃĐ Ôż&¨ŁĆű´u°•vđ!gyđNÚ§Ú^€pA„ &ŐűĹ5ô1VŻĺitŽyş‚H'9ďí‹b!*™;Jńă 2ü>úر Đ;g)űLĂŐ´iAčkšÇrŚ=Śś»9?­Nz t¬8úI:o-ä:YAŁ”˘}ń—b{S xCWĽĐśĆ} 2[”¤»G‘ËFr†ńţ"ýČ`zýâă=ÔräĺLa3%0ç™bś’€Ł=KSő÷ŰáńŁĘ€µ4“ěI¬i^!Ó0›çĆŇ2q‰W­GbŚĆkt•’?V±3:äx{ bÔ㥷 “^ZĐm€Â•[Žôzü-«O«ĄĂäŘ5c• W c@‚ÂaBOCăS”În~u™Ĺ kZiáś÷$út:Ł&˝z ŢŞ;+˙ČŔ T^üÍë™ß Üws¤Ĺ[k˝¸c_Şěx»w ą•—ŁűIçQe«Ě+xĎČ–şgę Á$Jh¬8×XéńłŻűX˘Đ-"ŹÎ}ąŞ5§~,«ő4Ţ7ŠH"RőA»“wPŔŃڔ˝0-uZ“öŞăďa… ů¸úŮ´î×eÝ]Á(¸đ8{ăĄú”bĘüĐßŐÂK‡[ĹdjR­˝¬~l?YČ҆gyśJU/őé]¸kş ó:ÍŘ…ÍŃ VůŐĽ˘x‰·śÁ+Čü Rz'ĎjÍĐ fă…zÜ1›»ÖäřjE’W|V6uť—!zŇď6FW č°bäĚšşň}··ŔS˙oőéBçÄ.…ńŕol†qJ‡ľţ<‡âÄHúpŰ ]U‚‹pÖć9ˇLÓ•’CűđôJę<áZu·.wFqk¤”·hĘ'ć?&Çęę%Źżel¨Ęd—i—?ĆÚ tż.§žv¦ß`¶Z´’ăl©ťŕ0wwŰ÷5pĂÁ]6xÜg4ťpb>"˘˝}ŠŃË2×ĆJq6Ďî ßW,źËľ ]!ůîdť®5ü~'kwIş kńZ‘Ąs§ÇsFÄNŔľů‰Ŕ@Et3t Ęž:×€úř-1ŤÄ(ź[YŇĘąĎJňˇw’Db¸ę¨{˛ŠąĄŚIJנˇŞ\N…G>üĚjW‘ÇÄ;KÁŻČ^zýáÖÍÁ\áó<śc °‘ţ`şÎ@ÍCn5ÜxP‹ăeś)á5S@'ayŹYŤMÇL~Ůôá*ň_ÝčńËz1{c5{ĘgĘÄ/ËCµ_W{!ŰâD3PöĄOÝTŠď‚Huµ|©ÔôGk—7„ą©!Ĺ0ůLBv©Aá·…t'PŶuˇQÖˇíVëŻö@qôD*†˙ h4Ë›S0lIŤU–zÁxČ6_ÁW;6˘AŐ řx\9dŢTçĎ>ţ¬/—™F2É_+“0¦g4­TůĄť/ÂЉBwvś g}Ó ä.<Ý5@Â\gdb˙ĺšQMkČ.M‡o”gEë˛ĐĚ/§¶ó[­dýńsóB%ŠđU„ŘŰ fY°NÎń/q/F5'چfŻěŹ„JđŻi*ńšJeF‚dŐ×Í;Ú€-ăŹ]á2Zá X6„‹ËĎą÷SµA-¸śş÷·Üçăź57Ú\BĹąhLCîu6Ł~éËŽŔ­:8Ł–­Ř!ĽˇKq3ěÜ)_ö˛Ť·U8Şx:»`«;@ÎRb· Ót¤:·v%luú&”ëi#§˛2Vv\*-˛÷9đÜúD82ÇűĽE˘fo čĘ'%™ "]+3lŚs=)-ňF®ěŢEN=}ÍđŢxŽ…ÔĚž»aŞ[ÁĺˇqĆ ^Ţưh~Ţx&ň˛3éÖ÷h÷qMč˘Đ'‹öÍÓ?M Z˝ ąYj«!ůßŢ z¸ ¬ “+”ÍXrRRŞţÓ=ď ş€‹†­•–«8`C×mŃKČĎ{ŰEËrT5îŐléĂ’aąö‚˝kŠíń1¸‹±Ěľ´ťąťŠrĽ:öělvŮ3P^^vFL@=4Ź•ňő…8MúPE™Eh^Âó üQł`űŚ×ŻŽ„¦Íě6őP[~­~€|… Úćz•k­,‘ěxȆ+}é˘UťĂâ}bz.íiČD>Ž’\ę"-6ÉF€eąĘ»Îę†fá oŻúµ=ľáKVMb.eŃ6özuźč%‘7¸BŃÓ˛•Ń˙Xo\ĆímJÔ.ÇjË …ăÁŇ]ŠäĂüŠbÔ1@‰ä Ç< ‚ű‹A‘}G^„j˝RTÔč,őőč˛÷¤w.ţÖ”,Ő"žSę|Ń)|9câ.őě;ŐNTo M˙ŕĽ]ÚÄ#ĐíĽ1"ÂQĺF!Y·&tÓŮÖ ·_ÄB«_¸Ţ1׽˫OR;¦x‡{K–~ĹqnM-đ•îŤíçe·ŐIńGŹÚžT/!ß)Ůfo(ÍśŞ„ă ĎĎäÎtZŹ'ŚfCl锼W $ŁSŤ‰C˛ż«€Ůť€Ô ⬓4Ű;:ěöŻpŽ ™ŔPíě¬RŰyًӄŁM™m:Ţ~ŚXăuÂŃäéČŐńÜ«¦6Oî«6Ő;• 0*ČĹŔš”čŔ3ŁW=˝5'Ě5ő ÖÔń÷xNî|? ôřuD^2‚:;Sa`qÁtÁ ¨÷XÎ ťďŇĎĎ˙Ířř—Ęź{Lň¬fÖÁ‚8sPiűŢ7ľ8ÔeÜx„›‚Ŕ±çÉŇš™ÇBm‡©SÎ2Ô&ő0LF˝Ű żśL ”Ç&ú\ ŔĘ„Ď;4óŽ•Ä]h›6á6(vZ7yéăuĚʰČę.$DŽ͌×' –¶¬śkř’łŰȲˇ‚u~ˇ őßÔL"rTýůÉwđÔ=¦öyůýú©J­đÓÝë˘r%oďBĂă;F˘ŚĆ€ĆYĎŚ«&Yţ„-|đx°Éh`JJZł/0ÉR@aÖ>}ĽFđâpĆřꪖĆr˙yi•VEŻü4W媥dîâ“ZSÎ_đ¤ Ôá®lÄßĎ Vóqîđ˘)E(Ňľ”BLőÚąďĽá Î%Šđˇőnń4űI«“ ÇEŁa «yň×ňgÎ]f˘š ŇŚ%ö ~¨BpŇ‚‡ ‰çđ¤µÂ˛2/áb™ť™+8s‰ěžD¨Şż„ntD‹!ť6‹ąÁO…ßÎőXĽŰ—jÎÁ ŢÄŤR¨(XŃŻ˙GľůŮđąp)÷ô%q&˛3hćÄF×lőswŇ;y ć˝?oۡ%}„Śčő®.=Źş4s@ ­ous„ĹSšG:™™Ď>÷ 6ťŘ˘:Ä„«§<ŽÓ¶´,śď–Ľ‚­ă«ÉşĎăŕ/6nJć„ČHqĄŇő]…3ľÍ1ÄŢ?í,sŘ~„Ď7ýKěéŮŠŻŹ˙óÂŞE¶oJ¤‘ć’'÷Už·aEżeť‡ŕiöY0vźrzĂĄ¬îął(Ç×řčMs9V5¦UÚđń1˙‚\pÚ@˛]ň_Ü ˛<ŞĘąko˘ăš>˛ ˙ Úń$_n/·żĘ!Gőíľđćq’ŇQ1ďJĎÜYb8'·†Ţę?ND®z®,]ĘWŽbčşu˝gäré‰<ŔÉQě=ŕs2ľRňçČđD-ŽrE2÷fą<ľ?đŁ`Ů·ŮÔŔq©ľŠűq¤â´ˇâO-lżç¤Dq~¶Âq Śşď6"ćíjbąÂ~ËáŐÍŔyö±>¤Ę -BŃbW3R­®˘ĎU÷ TÂ%K‡Š8Ĺ—ćSŃ(]Đ6H Ţ pKš÷^–SţÖŐ–)$ O†¨'‰ŠeÓřRžŻŠĽ`·8đűŤŰ1)wŔ´żĎ‡ŕҰ( Đň&#bŚLĚč1®ÓŔ¶ś_ 48Řhł§âUüŢäĄ[Eˇá ÔQĹ_ý¸)¶ő e˛X_E‹Ně±ÂĺĐlÍ“ŕ/7ŐjĆOŔ1°ŞĆŚt&ź.]Rb ­MĐLúŮ'EĎH '`×mJn6Ç4¸hH×HáR źF!•*éźĹKŤ–iY&'Uë„F1šN¸"8b {áý Qńţt/†SÚű©űŞw’VÎÁźĆň=Ü^ßBţčHtÁW˝8—{l©lk›sč G¶? -÷<Ě3ř*#'~“\Ô˝Ś+śŞÂRgĹ×ĘŰŁ łf×dk,'u˝ţNď&±Óu“đ żĺ?;Éřl‘ęćŔíOšší_E?“ŻpóâR@ ŃŤAô)µRiz×vQý‡©îëó uvšŔOR:ŢĘ{%śĽýMł ?OŢQ€®±IËÎM/?bQ|öMÝń­XżşW®)©ŽźŐ¸oĆÂýµ!V®Äá'ő"vˇÚi9z ô(ś4ţ:Rt‘˙XIŤ”´ě‚bţË ]ňô†,ĄÉęÇć/zČ„?°ÝOMĺ=Lb\S slmÁ”ĹNF„¶yIM%ŇX>H@KĄú»ÔŰş‚ľÎĹso-ŻŰëŇ€Źi ë ś9ýt…R]Ř“gŞ*X2šs™Ľ[PĚHł/b5vPa×ôöďĂ«Űg¸iŢ'’>§ö*íđ űMŃP:BIVNMĆţČ4†’Ď>¨ĺ‡‘ˇŚł\ÄŠ¬0óîZ©6Çž™‹úr÷Üă 8† ™˛'ůŰ ô”qÉ·/)÷Ä%8=|a=Ő_RZúSµÝGçŁ5Í®U·i'.ŇĐMvá,mrş+] Ů…—‹MČQL J¸c23©›vţ ťe&F1ĆĄ|¤ŔW_ˇKΡ Ö=6f)f÷4ßÔQ3šMč(ăkŻ)IÜ6n5e |ý^4yT©µ™ů«…¤m{ßú-I*ËžĐv7 ĺ!8éDüĘĹ#łĽSÝďÁ=5‚őç)ŻŢEílíÉz1¸řmŔ_:ësŐŕN`îŐŘëł9Ĺ5 ů tĽ÷¸%gjŰ:kű‘ĎľQKôÜá+Heâ*žŕ¨Ëőľ*Řů–úŘT#˙Şť~!@(Yš43%iŔP^– ŁßLzť ČfÇ7ËýS5a¦*âÎ=s—\˛JR˙ďŁ]ëí :źK^ÉpŢ_‘GCż•ĐţŤcYĘÚĘ:4Ih¤µÂd–…×DÝBęŮă·*Ʀšµď ˘Ę¤_Ľ_/ëgöÉ{ÄŮ„÷pظ´+JXşý”˘®Ny ŞÎvÖ´É[@ň:¸_ýuQs.rc¸°.}&1”'‹ŻĂáĚ šÎŚW  ƆaśĹßďög^¸ćŔ5:Sţ˝RXWőúŽš %ÓŹŐáű‚9ż±a‰Ă~z~‘a0ä„<7SX ŮŐ˙°Í Ăw"Ě|$™‘zddD­«ŞlńCiMŚç,¶Ŕ=e}üž×Ŕ¶“drľuGpvëŇ:ylmƬŢűĆCZŕî1%—f…+×!ž»óxGQ-Qłö>Š|h 1±Đ«yaTϸ?׆µ›łĆYÉaÁŘ˝0Ď‚˙Řżz÷ˇÎÓçYČ/r`SÖŚ˝DE:ĹŁuý¶7CŰśÖx׾IˇXć:5śŤ F 6vRąÔ?}M©T»µŁ>”ęQ^ٚ˟˙]yĘY¨q±|ŹZ ­ăH (V˛üIu+[íĘĽ‹8ş/5ĹŤń~xÇË`8éĂYÚ,Űű!Ř›šëĹs”Rgţxţ™i|o@Qcâ%ŇŠ Dî[Wŕľ?xĐ‹ćńˇÁĐ –†{V/Xâë‚4â/ds5‰tCWg Ű”¦ŃOÂY>÷8đô±ľgŘ«Á©ç˙‡-gbIÇ;eżĐNžś‚cSţJŠFÍÎA~ÚÉZm‹Ńă­ÎÁI@âŇřŁĆ»­¤SşuâL}Ѱ0Ţ„|.Ç€{dě#Ą›Î['QzÄ tv˙¸´Ž®Ë¸Ă*ô˛3ş“}…˝xfŰőyH'1ăvµă[ś|…ęUýh™€„q펣dúr•0†ĎČxóMÁ)xíč†Íä řŐX‘\D ô/˘HrjđRć?0ď.đ©Ô]ç7§ śţ[Ě{Yj‘żF¦ČCÝÔ¨@ńhͰ×Ă\Wšdâq2şŠbcŐIżj™ ŮĎtkŔSÉí˛ÍńŹç˝ĂčŞĆ7f°ĐQîҨ‘/!JFĘTÂWŹzU‚Ú ‚I‰OÚhÇ ęďGťbLŞ‹ô†< ɢ™‘ń ďuü°|uîŞ>d6kÚ" [®ďµ$. EPŰtăö—Mů=Ëş§6ŃCú@dklŤÝć™Z$›9W°FIöÖúÂMŞŹ~łáĚÚôĽÇŤ8¶ sŘÂ˥ŵvĹqË?«ŻÜQÍ»ouTłÍ9g Ú*$•ÄF_¤îmQ|S­šAŃíŘËdňĺC™(ń+$pQę+ů.“Áčü(˙I%p‰ÂjM7 2ˇm@?`Í]ĘËĄ_ËfÎĺ• čzłetĽč§:-Ű”÷Ë-ZIlTËďqE:ε7ŻŘÎŕ?źăZTuŔIa=Á2áßßŢĹ ďĂŢíąą<´Ĺ“j÷)§2‘jšč ě ʤéŹ ž4Qäm7;ÖJůFľĐúÝ ‘-erjţÂ'›]Ő›7ŚC8Ą Z^Şě2Lł^*…C´ö¬A!XŐ&KSp°÷čw­¤Ť~^î)#˙/đ@ńJ4XŐŰG’ŮşĎc!-€­ł¦Űřa—¶¬Ńzbâú˝¬G⊷tĚ'‚ŕö‘šyĽ»’]Qp߯tňňóú?íä<({•{ ŰÁż0ÂÜë&'„÷ؼ̵S 7.{¤Iŕ\E0ß4RŢ•”L‡¤\şÉÉF¸Ö7uÁ…]yMú³;éLVś–°Ţ)ˇXž‹ď(ÉśYŽŁĄ¦Ť^Î(ż}TsĺăâTĂą\jvcŚ…ú®cݸ´rß+Ţ×bśţĽRXĹřX„hoKߌ0š ˛·*ščřmň<’¦6©Ăżf'đ đbGYÖţ ŐAq¦SzÝhעžŁF˛ď3¶¤.x¨×µX´›1Űódčn…W:m.XQ"צ‘í^čď/í,9€|É­ÍyĚÓ«˛ ěe—˙XŘ–ĘüčŔť}¦łâćĐŕ/+|÷ŕ ='U—ŘČ'(z®K ˛„ŃĄîŚë >ţî&hľ0űLbg9î7*ęžŐˇ¸Ź,*ĽŮň±˝Óz\ź<˘Ľ 6*ç WeŞ‚Ů€Ą•çßKáöXýµOÂJß—®ą…„ô*żŰÎŃihÔεŕ(†X§›.ĚÇĚ´&˘˝¦űú7O&kËăUšg+lź¸ý9”f •^MsŘ÷gȲmgőŁâ ĘŢ˙ę8ňć]“ź ÜPőęŘe鵌q-AöľÇg®Y;Ő ňČ…áťş‹úĂcě˝®˙ńJШúm…ŃŹËrxôŢ&Ľ 5 Ö3a•Vt}"Í(8ň.Ą“Yű¦ţŰţ@ls†NÚŤ„!ľS»Ľcˇ'cK™Ł YŔĽ‹@tâEűŢš…oĎż 4UČ!@1ëë–Jalá̤B‡á 9w ŽâA‘ą ]Qŕ0í2ç{„ňc7ë˛đ5nr~ôďF#ć<*Năw±ší#úL ţUxţňű^fŞRÔÎfŹ6%Üw‹ďSŢ~˘ÔîwŮ’ë›v'‡_‹Á«%îN€†˙tJyťtqřÓü%ä_ęRź•5× Ţ<|’†"މ«É4döv¬ôÔQ;…Źůóo„ĆžO éŤč°ś'yVéŮř2•ëąřő â9 G@;ýÂ.Ceč5®$V†Çe~řlăZ±¸NÉ:M °‹YW‹˝u v÷cU§Ö6,żŃ!P;îpYÝ.ˇHw×=«÷îIĎÝĄĎGăé‘EĂ€·[ÖúÓw˛Łźňʇ)á Ń ĺ­fxĎZčd}~äi˝B›Ç{Ů/8+ őŻ/•ś)†Î…Ě[w}xß~¤<‹ć1ÔB pبֿ€Ď ŽM?UÖŃî_´*[ş2»×Ď^yYLIž´š®Ău"n&­‘źđBń.Éͤ*ȬB—m8ŔéE¨]˘áŢhÎ- uĺ8elě%ůśŚš ”3™s"`B,ęe9üĽ8ţ[–> ŐűŠ˙łÇV7ßÎň\Tç™\“ú¨°˛Y^«ŁĎÄ',ÂĽ‰ą)?î”[˘ `ő§3. Őn}4Yî÷. %ť˘ˇş]ÎË`ĺ Ä%Âőýo[ÜŕŮ~!uň„CĽ“ľŤLďŚËµđ¦YŐEhoăôŠ’mSLFí|˘Wš>/×ćŐ{„xÚKbGOň ĺáŤý/O9|ä{ů#Ţ˙~ísŻCýŰő2Xë™Ý6ŘŚűQdˇâ“˘˛ŹaƱ“í‘i…Žęg¶ĎBŕč:ý<©Ű$q?ÖcěđK›aa2vp˝(n|rHCÔvH®-Ý|é mLTq „ ´-˛°xcPŐF+sDÚAá那XHłDXYBî$˙¸\d1F_0:čNÇŕ™ă±PU©|pĽÔ~xĂKšbt @'­ŚĆĺhŐNŰ#Ż(‚ť+ş”NX?Ť€D°ě mŁĐ¦‚ äřŘ4Će1qýŃEŞírbSĹ'čđU~§­I `ěk¨ŃażeKqł–ĺšR‘¦Ç¸ö±ŮĚ‚˛XAҬRyŃăQ%3ĄşA¸©5˝s§Ăěą~9[˙ż0ń`đřĺ< :Ö¦6`ęűćýÍQI©™Z<žy R߀×$†E h©zIą€Źá áóÎ?>şe'®UîžMľËŞV…nŁŐ’$Ąôż§T%ˇçŽ =ş%i9Ě?íWKz´Ę¦±Y¬™9Ăq<đęVF˘Ü9ĄŕöÂ.˝lG]{?®t KďŮ0o`úg%łç˛€Í2´äąqPgĘ€ ü Ó˘4=Ôµ×o,_µ]­múJüVEš-łnüš”ŕ°Ru…• ŔYKŚdΑoú…óřLĂßĆŚoŐŢä™L®JhN3ěâ¬I–)äéŃ‘HK i[4äÂO‰ ‚ë OďËžŘŐáĹ3ňáż—M öFç˙ŁLŇE =s1#*ăXĆŁ€Ż˛/_µbd5¤™¶ŃŔŔ[Í4Ű˝ľ3Dg –3¬‚ÍÎé)Łű3ę×eů7=PÉ ý—´řǰčR˛oîF5Ň^ଡ̴©ązÜ“µOć‰ÄvÖř+¬plĂĆĽ˝áĂÍŠóÉČáç®mEYę8Wµű2|·ŹťŹĆąăĂ÷ĆĄ9ôR¸·Ë¨xŚ\…¦‘Uď–^xžĽśťâ7íj΄ÇWN3ő›Źý®ÖLĺ'§ß$^xąęŕÜŕĐ,b‹¶Óú9şň7m ĺžëŮ„‘NE}* w6j•Úâ‰)»?í!^eîTđá>a±=Ă1yŕÉl! Y 3»Óçż4÷ÉÖŕ&gOë‚ţ…7-ç?5çŰžî"™!gĹ8d-±#i|˛„!»2"¸šŰëË„„×ůO«˛«Ü{~u<ĹřÖĐß´iáCa®ęč5ÍâwľŹ92eĆŹÉťM Ľqa‹7ĄťÇ ËŹ˝9í´‚¸,é†ÇÍ„ŕ}Ľ[4”ĺ:ţ‚śÎÎţwëIî©.¦»w)üނ։±ĐľQ§Úš8QAćj»gm˘ąiť~°î¶°&2ë Ňľ­ˇ~ż7‚2vş s•*[÷bĄâgMĚbŢąć|GÚľXm:Áţ řŰ^GP¸Ů ´-Óě¤ěnâ[«c¤„zz<2˘„j79d9É:Ŕ›.ú©Ż7Łű5O×ĂRÉxőŰË‘[PŽ‹á­rme€®V&ôyRIŃŐ¨őSܰ]Ž]ÂgÚ!Ägëk#Ny’˙ŹŽÜą˛¶żV1ęeV'×Ŕ ő˘ëÓ±kp©őŢ˙ĄQ}ĆŤ tĘÄpŻţ» xÉeś•Í”¶3Lű`¤źµ_»ldÂĹCćĘpvŞ—ěÓ-,~J9_+ČŢ ”QĄďşjť.x»Xů8ć㽬mŃ&sź2üŐxČîx‹]ó#MluĽŕşÓ}$ ‰ËâËƨćí¶ĎDµĘB…¤ď™ŁAwř2DţĘáM]ŕ­ÓjÓ䦩T •żwrˇű´26i=ŻÔ{Äd©)ĂFÉÚś”`ŇĘóRţäąúĄ?†ŻÖ·32®Lß}Żť‹3ú`¦^3oöUYl<ü ­Ď ŇőĺeĂ×zq‹TZUIä†ftVěoëţ}¤_Ba÷â ˛Ĺâď'ţ$Ë›C•aĎübfx"âŔŰÔŽ CÍ 'زغ¬xT°ÔfH‚N •RđÔŽÂ~cĺéSőŠŠţ[AŐś$żˇé®v@ŐÇż¸uţˇŞZ†0UĄ š¶45;ç˙gÁ=KE°ŞĚ˛8mú<ÚĂ>W'wăx)ßóG„J[Ż'5C`U3ŕ,S|±íŤ`ąČŢÝÝ;Ö™e»°üź"‚ś‡\mFv6Î^€>O˛ós…uW'ŕZ‘Q€Ą´z—ˇsYGŕt_MčŮ4yá™­Mf9Ě›BiÜÖ{ŕb.`©čUn[:‚ĆŚÖA‹‡´?Ęá —“˛vLô@§Bă›ý=e;&cŰ9!»Żf™cy“ĎĂ`iŃ÷EÔ¦…„-=ďţP ě{ţí> ŞT$‡® 8ĽĎ†-Xť)Żěb}Ýń2ÔeźâxÔ]ćę~ľ_•!™°é°]u/,¦_•ŢDČJ ˘ąą5D_ŞËçněúĺvZĘ^×ksF^şçđĆ~÷}‰o-Ř«_ÄŁ«•¦5Zäň ŰrÜôé ]řľ‡‰6ĐH©IźPpEÜ$|-° áZJśËőG‡ĘdĹ­¤˝˝ú÷…‚?Ý ä0Á`„†íLço!1ŢF‚Ó„{(rŔ5Ö°°/8%ÚŘľż×x›Ĺ™-Ö±päg›×ů˝RŐňĚě˙Ş0b^tţÖşvÄĘEÚŔN­a@†Üb™ß,É)WÚ*˝9ca'+¨B]ňŐ±óýĹđ© űĹňiő{—WwůĹ3 Ůý(䤑|2ß]¸››\şŃ1s6CCOlěLśĄQ“—.¨A›(Đ^ Çr5ö;C`čujs’Úó_¶łü 耓ŢDăŢčbĐ7UNŻôĐűv<˱¦ş*ÓźČÓ1A)«Č|Zš_j÷ĆÎňÓąĚ*{n¬ŠbW?3 ŮGWä"¨ţ ¨N±´ÄŠ.oˇń˙zÖatÁ˙†˘µ)ą0…ÚŢ[]P#ţžĹ§Ě[—GA{űwˇˇËN±™Ë­šĎ·Îľٞ‹đ”#kt©:4âqĆăvĹ XS´äŚ,ÓPA :°ÝAćŮ|ţ<ß‘7ő lZĐtzăĆ-.Q‡×5fýAă…މwéىnCŇqQL|ËÚú6ĽŁ‰ăÉŐŻ’źĐĺ¦ÎGĂ÷›ŢčĚ0˝MđÇ”dCÖM]ý\ĂĐ÷ÔX«FÖBđ±ÄjÉXĂ—‚P˦´,ń$§©Ĺв ›Á.ľ”Ç%ö”ôÔđ5 9ů18÷–#Ł"ăĂc~­~ÉLÂÇ{E _r°çö¬—`Üíď⿲뵆k[©Îhž©¦Ý¨ŚčÍqÖâ%§Z“ăófLbIM–ŮžĂX¤“SťuE•`ĺ9چVúŐ}ó !NPë4҇Ľ&–#*Á4y»Ň¤ó˘2ÝUŽ>Ş7iwŕ§[ż•†yîpóŁh.ůÝ™ŠĹ:–T Ók…xŠĺ‚ţÉ\Đ űR•Q‰Ç„Y°IMGŹťŰˇËěfťł˛~[$ئđ4eđöŰÔSű˛€ jŤ•C7;ÓŽ|4ĹWаF哤r>'évI¶h"Ŕ‹Ľç•1»htŃa¬ĺ­˛3ş­Ťo{V^|>IőmµŘQÓm¬rďłMŔkŰoL{Ô%™1ŕ—•KőQł-!.Ę€ŇŇńśŁŁłÔAHŁ?­€¶Đč&ävO®âOń$k/mIĆo)č5 ŇwF±;ZÄGV?¬Ëůăş1Wv©%íůé—~[y-őöqKŁÖ¤ŻúÄG&Kl—ÁĹ_˝ ű…~­Ĺ÷˝PQúmí·qäŔüťłÂ9·Q×ÔI ĹÝ |­[E¶}^>‡{OŃryÄÄ2űcń°ÔÄ´6iťa‚‰Y)ÍG‹ÜĚoź!ĄĘ\’U/^wńU yüpăǸ ŇzŰrÁšoL ×…Lx؆1!ěÂ)C…lĽý¶€®ˇf­s•PŁÔm.âTćëĂP‹}ň`u ·^tBG®mË#ŃçMµ?íĽ.!17íqj Ë#őBEü‹ĚT©${ž1›Á ŕÄ pöĘ™˝§‡1{xťę?üi"„˛SŔá=«U#Ż˘:±€hpľŰ¬ТĠގŽ3-×Cť‰!şą¤[\Ą»˛ÂąŃâÚőұĘVv˝Ë(Ú;D7’(wĺö0UŔˇýGô5Ď·ýČăP!ĽőT °ĂO:]IZBŃ©î•ţ*5ăXşĚ•%xÝ­řl­č*Ů$´hřĎĐn­qŢʢv(îěevú_ ăâč\·łçZÓ®Ĺ^E:GL'BĹEń“G-—Ĺ'Ę>Â;aüP5Á·TěÝh<Ś'•N=µa'ŠÖ‰á™h`=ťbAYŞLějűŠ»‰lŹb€Âaü˘"żą)Ĭ %t?°I ňšgŚź]Bđ»Ćż÷™xEŹ;ɲ8›76/˙ŁZ^kÓ˘P[5šsä¨7d¤ĄďşEkűĽ{đ;K,żĘ‰lÓ4=ä’D¶fltFV§ _¸d=näsŔ—BÂĚa-8g%Ô‚ż\ŰÇ»QÝ‚ę˛0Çüßó@Ë5°Őő÷x1äFőľ]ĺáŕ‚É$XxKXßDöč„_ĂG'.g« öŕ„T%ě~NtÉ1·D!ZěKÂ>˙˘(eÝŠęśÓ0'<őŽ8é¶FÁTúĂĐyž óNH ¤´aXRX&¨•BâI¶ÄMŕMQšĹ©ŕłŠ€dśă&&`/F#x˝šż"|îéEńäý%°ŮµÂj[ «Îrű€{˝Ö¦Żu’gkKʶO Á7ľ¬HݵčłÖA€ \ľ!rę¨*’ôµÇ®ş·„%±®}“Żĺ^Ű~$QŘ&3&$슇C•óä[ŃZůžVžyŁč{¤  Â)µ™„SĂ]ËŠŠŐŻĹ3ĘąŹŃŚ{jqzÔ{ć+řwQ‘ é2ý:? rÖµ,âÚµG(0©˘Č©ˇd76ŘÇDÄâaź÷SĎťt “ył;P Ýmënłä ůŁE|[7˘ŕŹqëqŽF±|i ŕ=˝ű%¦šµáů\uADtśU´§›Oc?>ş˘aCí2ąŘץZh•Ü$ťiw#7őĆJ…%űG«+Bż‚pR”Ł3=u~ˇŽ™„aŕĄ_ÍŮ|ÇŰç:ŚŐ!÷búBÎĹÚÓĺ‹JSRóüŰ,Hs‚­ď©Ź¨liß%ĚđfMuĆ?JŮ#=Ęhęʆ!ăĎWčđ ř‡/Xʢ*0}ŞÄşŤ{ űI…µS¬î>)IůÖ–ś1†s¦]X2ć© ‡÷ěá»ÓöS˝(÷[ĄW`™ŤŇęŞţc$4 ńU)Ô«xy3ŐâÓ¶JrÖŮ µÄ‚ţ„AÔ‘đhîáŻz…Üáşf˛!áÍ G úî“­î›ôo·_Ł;R´UŮÂaól)lj¦ágßFj95"Äî塗Ǵ”.ů:üúMő0o[ľŢ#]™ßĆp̰pXˇ¶"0*+3ü!qý^‹«6BFá€R5 4ß9,@„›âíůIIô ‰á›ä"‚Đ­•Aęčľ,_q'`X˙®] «š•G8ŞEŹ8O–v*7•RuWTĆž×/:ŞReĐ;‘ĆBžÉYŮŃł!V6śA„ţghZ솬ůî$+J Cd˛†ŘŹŇ4u’î,$oŁ™¸}O«˘dYÜEň¦ŕeµ6o`ďŐĆvZ:śv+ááŢ6cQÓ«`ŕľÔ˙—ٵ;+Łp+Íłqc(?%+_ěŚfđ‚`yĺ çfä0“ŁewBĐĚ{řL+CNJ·`'ž–š6ˇ¸¦Z :aě(ęv˘^Ł"›Ż yˇŔĄIÇű€?su"ǭжąuB;xîwšäUcćJ9ĎăĚŇĄgŕţkIÔçDű%µüŮúÄNáCÇSô5\Ţ–’GŰçšĎrâó¤ÄŘEęŃZ"! € +ź»_»bň‡’ôć⨒ú[’ĺŮFIśÂ¬,;+‡0ÁfeN(ŚřĐXÜť#]zSmsŤŢwBżi‡“ßť‚Ö€lđA0üîHwŃ9ď—Ľ\ÎG6Nű\!ú Ůuă -ub…űx$PJĽőňr"Ď»áĘÝPw%iţ^G­Or8g;yq"Ó` JĘc ŻÁTŹK¦]×_"4đ<†8€‚p™)âIź?đw óÉ’ĹŤńC4ő±ÝŔ•î“B¨kĹôÄ» GKčŇ \™p |]ö;µő~ÁńˇźU‘ŽÖ68M[Á ĎÉÍ®/% _†w=ÎYbÍŢr®Éu=¬y:pᑢΦŽJ«’ů5á+VťSđ˛šĘcˉHQŻMMśkâR·B@lĺPâĺľR˛Wĺ· /§IAE9 ”ş‚ń5ć]uăp¶ÓŰĂ(5#Víýµ·>9 óľŁZÉ6 ”:A%7¶"Ń…m¶(¬|ÂSçv¶ÄşźQ˝ëËö\Ú„-çÇ,k5qqí”TŔ8,dΊHŞÄľwO>TşR[TĐŘŇ·ÔéA#y62`Ľv•B+ăÚúŽI×0đ!, ůńZgĚŽ4±'¸®ŚÎ´ ˛ď„Q3;!µŘÚÍřgU ]č­t¦śvĺÇ>Ź s{âÉ”óŔŘPyYŁ°Ň‘ę$GśĺQ.  3‰žqŞÉČjţ¨J€r#‘aÝWyZ¬—~ŁŹâs€ ”TćŠ-YˇĄ |]ĺ@TęÁŢWܦąćĬgË Z˛ÄN6BG*ť PU8—ŁžüĘn,ž—Ą´°YÓŐÁ/ËxáT]çźGiäú¨Ń­R¶¨]ŹĐwäpĽ’t ŇŚ˘Ź<ž8ßŕH‚¦‡v‡é ˘±)®Q «Ď)cLQ6 đč˘rřË/u$ŕ |¦\mŚťËŠ y3ŤŞ\¨$ď&%f­»32W)RşÂąĺ/×á…·ó6źâŠÇ\Ińd&_wÉ-éŰtü|nQ¨5ť–bxĄ"ł!|5^ĐŰ·.d.˛ÂL×ßY 1}ÉĹ7/\iT Ň·«ôt5·f]‚§Óf NPÂÖĚ"’÷€ý“llú xł*UΓŚţ“{ŁoLuơ›€+źm>ú%YÔ>^|‡‹¶ĺÇU˝fq#rśZ"€÷ U%ŕAl%VĐ0ôŁXŞ++)=ĘÓĽ˝‘SvĆâ.źzRŘ2őTß§oŞuű–_öN#}QŐ|Ą™]ž$T?ęśK\ń™ž×¬W˛9ôŐ«˙<คü,1§=ćSM&¸tZýűř>}Ť˛Á8ßPľr©Żx‰ĺŃń1ł·H łZ‘XŰÓţďĹŁd4{ËŢ'ł§Ş>¤U: ŕEÓôâä†ć;Ue ¨(XÓ’Ôźpx>ŚĚ÷‡@ěÔH‘c˘Ş:g…-éqťY‰ŕŹl®höúG8°č¤AŁ6źU mj“TćĆy~€¤Ú2°&EËI®ZËöĘ,Íxs˘l@ŮeŔ A*[Çaĺ{*Ŕ×€üf.sĄ$ŮOäĎ„K!}ęŘŔŚZ#?ąO†L©°P|Z‚'ž9´yń2 ŕ„ęśźę)ä+ úěG:ž:Şô`Gâ9ť,óţ=`ŇQQ`Xü#gŰyëC+$3’?őě‘Ó25Ü|’y÷µ ·6ô!¶l¦j×N|Ď]FOĚY jëź’ -fßy%š2íöoȲ4sÂÍŮxTŚŞmű„Ł-Ł—nw Ů!÷Í]â‚+±čŰ-”¬ďőWDu>Ô`7DÔz¤ ’đXáĆn×±_0äy>+§z‰cđ€˛Ďt^w@zSËŹŽ•ňëgu Č&čżĎn0'ł­śuQŻťbň˘Ş(b6ăřćbzÄżSŹéKÉăÖ*Nś»ďsq"ΛE©Ýť.X~ęĘS ś“1”ky]˝ŮÇ k5@1”}m“•ßuřDëÍ^qŻ´8.ËŚă}e«÷«”Ę\_7î»]^bîšÍŘmĺj(ă_‘Ă~P~Ú5R]IZPräXÇÓ%víg«+@ůđGwü ăÝ­+n^܆ŔĘăÚ­¸ĘSK°r›Ô Y řŠ÷ńGIżĐpĆvĺXęÍËN2$˛<˙#ÝÜbăcvcá´[î öŽĐ›š˛íMűĐąľÎBŹĘé×H2Ü5BĘv?Ćş žîTÔÄ´ř;¤¤řłsřĆp[©ÝQ ôk§ˇ”e¬'<¸3Ń˙6-”˛ęt Ćä‰H]Ü1\!Đv2Afşre¨;5”Ă]§›C ŰÝŢŧ­•gňlą~±Ú¤é˝'˝äˇ‰Ĺ„;ýŹáˇ„9n¬üw,ź^Ýý±1ű.uţś`]ŕ¤_Šú8uśôäâÍsŞÍŠ´ňë\fʦČU1źú™?’äĆx · mÖ˘ą3Ču4Ęóa_4 ůÁ:_GľĚqĹÉ“»ł ˛ÄžFŮń. p÷‹óä)G§®J ÷v“›üŤę éíĄ`ˇbdđś4 ĘŞsY%:‚Ú Kć{ Č÷×:eŤAJŤMÄĘlao?ř€¶Rşç5RżaiQ$ ˸ˇtŔćTąžÎęZp.}˙µŔ±dĚmR%ÔxSÎčn™ÇŃ~ě·Só• C’ĎG:žÇJq÷_Š\6Ýî4cjý@LlYcăÖDŔŹRô×âW‰‘Y[ň¨Śö懏ú÷î=}ÁNŐ!sŽc=ŚŇů/|:ŇRďýOĄęĂeU{4ćŰ&ŞÜ ±pó‡‘Ç„ňG#T§ěµyżŤ{Z‘śÍ $.^"”˘ĺÉéÔŽÎe˙ť´Ô¨Ń뜸úX°Î.·gW81T ˘gK‡Dôˇ˙D ö9Ýć|Ųµˇ+€X0éרÔ">¶×_ý=c˝?xćÖĄ ý˘Ł„*ťLŇ›÷0ž_Çßú>s GoÖďęĄç Ć¶ŹŻCVÜ·ă`vi÷ŘЉHĄyŘG٬v Ö—>Łeáî-[¨Řk:‚yĐľ\ę›fÄŤĎÉüÉ⽎Brw „0 ĘüüS—PČÖ5Žě·$(dîÄÜÝéŠâĽ r43~0džˇĚß ›_*Ę 0ĘÁVŇä 8b­×±îĘt\p[ĆŁ ą7`,˝ĘđÍY”út¤X“8ď>¸WˇPmT±Y#(˙_`ěâź÷®P \±84 }®ŘŮ #•hlł˙yî#ÚTšÓˇ}vNO3´26ŕ’`ُÄoµÓ WČZ“báqôĎéŢŹáŔ› re,‰ÎYQ×’™N1[zZx˝ÝjAZş˛ÎÔy8cyć˝÷tEí@ăLł°UőUXIßK´˛âNĺŘixA¤A;ŕ†·á›…fĎKt,ŽQü±°DźîĘŃ™şvŕ¸ĘÄăýWl‡%i»"ŠIuLYţÓÔŁ×úÇf-«GJoŮŐŹ˘Ă Vc&QFĽ®Ś±§ÁĎ×yTŘé(&;>Ś©ćŤ¸•茓đ®ň¬Łq±ą1ô¬X‰ÇýłçŹŽř€Ťí—¶ ~8đ‹{ßËőö/¨qł:ÂÁ?’kc‚>LÇ·»Ö1?ˇ÷#8:Ĺô®|?(gyĘ©b”Ř`S&aO°jxMŠÖ8¬-Z˙ŢC] AëN@ś˘!v0ż~IďhnE6ö4*б!-5Yâŕ´Š3ű./śr‰y™ ěÇć\m?ăÉ’‘V–ť`ď\ś‹=ÜÍ f'nUx4[µ‘L(ަ×&{Tă,ä_1 ł÷Żĺ–B÷˙+@ăúŹĐAúN?ă{nŚËŐ$;;žz©×Uő@Ăd‰öGźÍTwŔ'6'ÎĂ4yŐAݵ{«'۶÷^™%Ĺaůžu;ׂ©XĆadšP  EuŤ=ö°« ’ÉZš"‡™wż×q»P§!l˝ŃĘśţô9fé r "l>ˇăž˛{r ˙BŰP—kŔ '?+yW[Ű" †ŚÂK$ţaöł˝Ć-Ďxžć° ›µä6ż.źbô/ąQ9ú9¨ä´ éȲęňAç¦!›qőÎTíI+zs†ql—¬P8Ç÷˛–ßµz¦PóG¸Őž“Ň gą]ÓŠ_+Đ®ůŚćĎËÇ_<…·®ŔkŃs[ÚVÂé"ŔT(źŰÖô7}6ůąh†î§Hĺ„:óÔG±}<¸•y‰kű źň\Űţ/xŕj˙?c×qw±ď®wó[u,CčfŇWď®˝ą!Ů”·ŹPeű¬ĚDü¬zc^őŠŤ]¸i8…útßµÖÍ Ig[}÷ń«Ź ćŮź‰Z&˙[ˇŰ˘ťWtbµçĐ„âć á—ţ(ŞĺBS↠wń2l‡0ü»q°_1ˇ@ ¤:»]ŚÍG]ëáqëľcĺ¸veÄrqî˘5¶E¶‚S×H#jJgú‚}p);–k Ĺ©ń¤!Ź{đŻ8X1üg`H ČţM„âN[ßľrL\âďÂŇYm^’să}Őű[ýc#Ź˙áôquÍ Ę@f—™ô”ÂáăL§ÝÁp˙䞣îĎ/];·÷Şľť¨ř–~xJFěFńO‘Q—6§=BĄ!ŮR(EkŽŰÜ0ŃEZoź“›2Ru Ńöô âuúö»To®Z`6Y‘śŽQsżŻé÷3Ś& ăĂÚL2{Ň^ČzSGWžYT»ş †ţ:/Ů݇I ~?{­1ú¤-)‚Ă58˙eż!VnŠTć-<¬uź˘›{î˙Ĺ3Ú˙Ż ţš.:ëďg^ÚÖSŃ䍷•‡ĚCÉ™&8p5I+,•µ)ĺľ…}GÔišŞZ/”Qľ€®±ÓÁZŁ>ę{:_Gę𦱍;ĺÔĆ8áfă„óť-ľô…\Ĺg)­XÔ¨i+Ő/Ë/ĚwÎxţaůĽÂȨ2EjćŞ÷Çv1Iťż®:Ł?ĺî5ß!Ú%ÁČÄąCô2,rďüĎá|J— ¤e\ćŚčÍĹŞ2š…G§îč>âTQşĘšgŹ ¨q8éÎî8AęrUH°čÉ-űSšż¨˙?ÉvË©ľU»/„†Ł7 »Řcű ¤îE¸§.ŚŤëpĹËTŢO|ŁŚÚ”E%“˙ÚÖwh.I ’Ďbęó.´lˇRJ_­ŮD—»GŢ×?QTÎ×ül/Śő 'LĎ»ţË›¨›†iiČŞ(ë÷‡mr*đ™€űŃ(.|Ž”őŚ÷’Ô­8ŮSŹĄ—Iń^XÂ\ńzě řĚ;Š‹Ă:ă<&K8»4zÓQ Źţ9*R#‘ަ0Ë‹#418§˘Re–Lľ'Łż4. } uÓkYL’šËhŽâ‘Ę"q{eŽ w1#© fËjČ];âG(4…-˛PśTȡUź9:PX§€ňťýűžż2‰Wďg”79MÔy:5şŠęćĽrňë•鉢T#ű \gŐSŚzčŤ7ň±i!üYň>Éľžč¦f}>¶ÜnˇWoyů…ÂTö<1É}Ę‚p”ô č Ő]ŚV¤Ë~ŃžŔö)ŘŹ%AĐ6“E[ŮÄ—LÇ#čL/‰©iĆ×^ŕzť•/x^îżJ$8|Ćs×őF›0}4řŤ˝·>w$}Zbt“›ç«›VÚX­8]ôŢLtŞm,ăNŇťa÷Ożi,'îMŔ'ű3ń˝é•‹AĹUßÁřLĹ›¨=1®lĽ:^ý5T\ď&Ç(,×۸ś‰p˝>Y*ŹĄąěc4ć<Ľ0U_Ú nüG•GC‰UÖkOŇyâ6kĺKĽőr->Kl»¶0u´U»ÜđśČť@_.SŠ;ůćŮOZţ őLÝď\ çí ™|O»8ĄĆDK˝Ű| †Íâ;Oo®mĺi4ÖV’Ud"Ć#eź'÷RÖňH~邇ŰA\¸ŹĚŽÍSÜMŘ&&׉ČřP÷E©|ŤX„ë#Éž×2 ¨ň@öC™ăeő&}Őe¦.ŢZŐ-Ž-9%Jâ·ěĐâĚÍĽ–˛éŚCA<č…“ĐĎjmťľá;IÍĘíwt-…{‚Ĺ],îr'0¬ťk™¤űń!°öşńѢÂő' áP´čp`É ő°·[е;ďn­ˇYR||©Ρ†äN4˘ţŚ'ÚěöéSÍËř‘­|„űŚç×Ú?.K>B8SkÂ~7Ď E3~1<¨5Â,´ÔčrĘćbů‘ÚĹŤw7ŠiŢU“´nä\ţűPłR׋O Ŕ€Ë^˛ ćüÜčŰß, Âĺ®˙Ý0^7Óů¤ čUrÚőń­É­pČËzč°·#yyř9#vč~JO˛Ŕ_ń0ë&T/§żđ⼎kŁ)( €¤Őڍ}ľao€ľáßa(?Ű?şüŔĺ¸Ůp(,Ďgy¶®«ňżżc˘ůl<­ä©'űż`lI.ą8NSÚč±xGN5#±ÜéŃ9¶qÚF5=´Ć`4d|=(€MݰÓá?úšp¨äÎżÁX˛&ZÓ°Ţ›Ŕ×±:AěJ–Ą «BžŁdĎ:’ŞyŽäG^OźĐ{p§ŹßÖŢ%)h‘ů‘"O¨ëž‰lÜ7ĎfĽCÖ­ęËŰŞ6=u¸–VšaL0ń+ŠĽ} v&dŔ mş Ý…ČÝJů9{®+ž˝;ÁPÎc¶ Ýú…˙+Č'ëU:D7ZVF÷fýŽßá,ôIýRĆ3%†*ŤŇś×Tř¬ďÇŚ"»´AËmPtí’·–ébM»Z+ś™ôæ¨f‘‚Wşu]"zq÷T—íW :ľÉŠń]źR[¤˘…zÔĆ^ ĽÎ{‚âÎ[Űjî'Ż´Ťs8ŞŇ¤ĘŢďüŁ[śąÍ,†ôît…bč#ĆŚŘ‘0Č]Ńj ĄEŃ+św"^ČWwwWQźX´c řłď‚f…6OŢ™öT>˘ĺV®pÜ ë=šM<ą•â9ÂŽ:‹Č yĆDçU©8>ł™“@Ţ|PÍ!\Ý”a9čIZ†gB \‰B :^t~űnMßěđŹÎo«Ńě”ÉZ8Ě ‰Uấ*!#ŽŮAČ$g‹‚0ßO˘YyI´9şîFoŻ ş!{ʸoMďŕë°ů±óOą4>R%1Ő HţÜ1ĺöłëT,0e5q6Řľ¨±xáÚNłµV$1Q Ň57 Üůô!1ěÓ.â”6ţkş80Š>üyĚŇő=˘đĎUĎÉ+ŽŇľ¨Ö˙GKŞ~ţÝ‚'IÉ)úŔ„•‚ö8üÔŰ‚JéǦqđÎg\A HŰťdzŐź»¤|ţ¸čŃëą]¦ý»¬×Ü)¶QŃ™¦|TŔ Ŕ˝A` ł?ä5}ü"óhäkľř•ë¬E3z­Ă`#ť ŃÎޱłĆz:|U4 ˛FLťUW7ł×¤ňĘ<˘™]aG‡r CImk9R~LDšĺSUúPq[QµpÖ3Ř©Ş5öˇfÉŠÖݒѸ@UŕZ±=eĆfIRĄ˛Ů[M-“GU3Ůuöß3¤§hÉtşä=ÓŢp˛”I~8¤UDť¤$’ ´1¦ö‰U%OÝ:ťüm”Â=đŢ!MVě6†K˘ËŤ+„L÷‰Ě/đ ͬAÚIr´ ü•ş1ą×řądXٸ狚J–`¸ąjˇTmČŚú@hŚ4Ľb˛eý’×…]ĺ5Ŕ/U­y*ł€,7·Ýw*jĚ·Gžb6żŇ˝Áw‚çĐŘ3_'M±m@7FąđM{^›Á_m ö1îČŤˇsµçŁţí×ÁäS2µĽ*vĄmŇůň7Á†h‚.‘şę÷' ´…X'[˛I[ogÔZ„…9ÓV2|,ç)Č:T $SgµJ)7đuÚ˛ŁRŹ˙S]Ý–!ٍK^7&Ňđ`„žěO$.päZŃU°»Í“ĺs'Ź•!Ƭ[0Ghż!Ĺn”Ģ!QdřĹń[pŠťëś–Éś§—ßŘÖwPnmK<ŢZ.l M§®!Ĺ*Júr÷Ũջ՝hú><đ“L™Ô.µ eĆer”3' EަNÍšli›ń@k1NČ/±µ˛Mµß´{K4 ˛ëo@č—Ĺß š÷÷ł8˝íëŽOeěv5Ôńx;ó©ŔŢăSZżŠRR¶=Đ/Es%bÉ)Y˘Ş­Y¶v†ţ¤éYĄE#Y{3nÍĽaZ˘"‘µ-ŕ0WbŽ›ŰęQśŇÇ1˙®ŇÉÇoíŃ@Á&Ť“Ă#žk/Ŕg„>1óvźuIűřCţ¨şN ń¬˛Ĺ¬€ţXyŘf«ć­)řń„;ÉÓpM{çF†9iŻčx{ĆLÚěT)ŘĆĄđFĎO Ű—XĆ-§»¶ !!6—n•Ą ‹}Ôęnd>„ý¤ň…ŢP4Ef,6|tB†ž6Ś_z 8¤oQ®]p.¨ Ąčj™pż4#uś'=-!wňI‚·ËlĆ`ý=gC[˛E…nQ…â X ‹÷ şS™§0ڡ׷)”_—Í’aWęFŻ Ó¤m[é$ ˙C8ć1Üî(>™źxáČa0{pÚőE¸›ÁC‚÷Ćô­ŔŤsŇËî[|eU¦,+š8.„đ(’Č ¬î§~¶Ś9źą^Bř”O¶ĄĽ‹ö eČÇ*´[*„˝±2hťźäXĆ×ey:p˛I¦Ą÷Xż|Ţ —1 ‡ ŔU) ||šm®«˝ľ+™–­ć§LkĐĹŐ|G߉Ţű—D±Űg޶ôĽϡ´űř{€s©s_TuŃżí©·(n?Ý XÜf`Cl-îúµ-PXCsď˙4 $7Wł29);ľ§SĹîń­?±<¶K¤ňiÄt±yĽ>VlEĎ€Á3;Ť+C§î›X f«Éžűđ<Š©u®ďňjé&ĂćjqT,ˇN‹¶Ľş‹—VyeNŰ 'í}~ě pÇgÇŚĂóJbĐĘ'łő˝˝B,RŃĄ16ä—Ęţ˘űpź’Éa8^hż?›«|Y4Çţă`Ę?ĺďŁËĄügÝł†2ö‚ ŁŚćl W„“\Iś šë~ ? äyŽŕôTč[˙ż§ÖuůŢ˝ľBÂÜUOw`°»Š<Ď))[ßXńěZNď~ÜT+y<Şí>+Źi[_lžć›¶»ös9•q·ˇyT° ¨4ű%„şzŁgđ]ö\uG śf! Ę{Ş"ШCť€ÁWTŤ§Řq‹ĄLç†8OTW «čÂůí4pǨWśŞćBÚżÖČCîÖQĎuI–oŹTL$ęVI u4ą ŃŁĚÂÓĐľůűŘŞ‚ĽĂ¬±äˇ‚ř‰äţ˛”¦vʍgCXÚ% ň$ CDˇě$ě‘ѤÇPŚfĺ…01‰5¶ čCŰ\“ă&ý 7Ĺß,Ł™ŐŔ‹Z)˘o9bţá{JŻ5ˇ"”‚˛¸Eąľ™vIŚĐ®ĄOCÔ Ë2 ŤÎ)Jy/ě'ńAőµÁźěÔ Ź/·ň9ŁFęL«Ŕ©¦‘Ax•2|\olűˇć¦xopY}ô*.I?Esľß7~ß5/ÇŐ»˙á% ţűŤ_§şSFОé w{âYÖżŔ;XXB& čŤC–ůL@µuŽ­$oŽÜšv GT[uěׯŹÎ“+ó» Ç4,C7Ç mZÖ¶‚áX-[2ł»z,ŔťżĽĄ;56¸›’ŕ.b÷UĐź¶aż¦śĎĚĂí1WŠőť^ĂY4!}± ľ5/¦żn]”¨V0Ü·g5§0cÁŐµ‡¨éźäX™Ú(“°îŃĄ“D°ďö(S˘á¦z…‘÷Ć>ĐX%Óą‚PcżđKüŐavÜůá6ďö#@H©Ń=03N¨J[ _´ÄéRb,ŰŰŘĆu4âWsÎë ĹB–\U [»:~Xňx†IĚ ŤĂúŐ ˙m”rc€°{Ą‡^Qí‘]Πr’¤ú±vvô~RT0K6Ô…zYÄBvd‚+eţćŰü¬ ř2ë®zÎź„őő$Ą@Z©Py4}Ůqöë1¨i š#&{(™—ĂĹ—« Ú8vhś{ěpőü҇†ř¶° ZćÓeÇ`ţÖ 6o˝”—´x¨î &<é9ŽÁ‹ý±'Kg€xŠľ‚ůĂ>%1}„ĄVe|öYO –®†¦–QĎđ^IëcÜtĽ5l–śuŕľÖŃßť~§¦~‰ýłh¤ KŔʦ™Q9(mYŤm‡}‰%‰šą@¦—ˇvíϨÜzŁ.ü#6Ť~ÍŤlôi Č·µź:śwşBůÓľV­¦”Ă  Ç»ť#‹Ż÷ęĐőyU˛Ż&G`寪Ź2ĐLns&ýăĺIĄ‰úůŰ9űłp=I”~”!·%ňËÇ!:µý\ˇ†ß¬j» Dx9*7uÜYĄ›kKŃGQ‹Žz­ęF¨†Ň)śDń Ŕ'Űöç{>•ÔřöČů¬ä‰͢–ćg÷U«ĹwEk.Ö‰áNtËźŁĺ–yfÎď•Ĺ@é  „čŘĄŞú&ĐĎM¸¨ŔjĆŁ Ű>Ő~·,GnłË’-ck§uÝĘՍ΋€W&Ŕ¦!CÂó8ׂäd¤vD›ť /U¨k+űb–ă‹ý·÷ ĐsŞôJ"#ž˘cS?•¬ę şV˛„¶‡óˇ>v ^'Ié㾌ł2°yŠäłić\]c”˛č(-ěqíß">¬d~ňXQó#ô6ŕ+¸¸=Ä/{Żçov–JDλŰué@”˛,Űâ©.aTrŢßŃj,±–zě’ĽŽYóŤ<(ç˘i¨ŔO»î®{‡{t$Gˇě˛3 ˛ľ»ĽÁ8łőëÓ·`ÝÇŤŁ|,NRűnµűŐ EŰ>SűĹň€Č-@ŰűpĘ"RŘ…©ŞwH6ű˙x?ńÂ=°BŻÔ`ńž—‰ÝqW@úňĘžĘÂ3ÁîMµA­čFß[{Ül_@ďź>čw€ÉŁÇcGĺ8ĘźtXÉR˙P»ž!EBKă%GPj‹HiĽěŻ*J*:Çžľ6m‚lüe/ŘđÇŢl¨a¬†´Ŕ7‰Łßńá$¤ry3/b˛č<-µ—pÁě=ZÉDtřk«Eá©ÉÍÉî±ß|ӖˆfNˇh“t´U"6“(Ż1hYIK(®FÔ’8¸ĐţŔgn€ŞYČ‚ćëü€â€ Ů`RďNVč/!GĽr,ŽGűżř ÍbĂq3ëתţ»EŰő×@ H­˨öŠ{äő íB±Ńj˙Můž°ôx—íâ3çB†Ôć5ěř'JďËđ9śąbˇM«ŐÜ;bHŁu“Ůщc{`Ű]öx›©5sĹŁ–9~Đă+ôĐ+X˙Ő¤Li“QŔěj“ńť„ĺ!­ćn•ŤÜĚŁűîčYCGęő ß×ŕŚF±$×ẊRŽA.zŰüÜľ¬Â´ŇJůřpUŤ3¤Îs†Ç»$lxvý—…o%=(űoÜ^ű® ‰Ŕń}ô ý,†Ĺ‡^ŘŤTŹ’ě÷Ě“äXp"Ď<'PĂŚ[ŚgZcřó.=ŁťZYđµ¤I{>Dš.5űîEE9ăŤ÷Aj‰Ŕť3}˛ç@í­î- SUĘG6tş´ÍPË? »ön ëBĎŤ_ĂĄ&ąŹ«ňP‹Ó$+ăiÔźÁÚMw›»hŠÎۤ;ś—K÷™vctͶ÷ŰĐÇżµŤŔ†ĂľÂY b•bŮý!ŃO'•ôGŁR(ąĂR„|UˇŹN\#ŚŃL˛+|é.`+›°Ľ‚·¸XMé˙˝j*ŔQ±Ű\•Ř{]H˛‚c"H3-FçyĽ_Çb#¬u+T†lď4zćBUqđäKGgÉżń®)tĂ{&ô¬`…Cp-ĘcĚă"<ô ĘĆ' /:‹?¦ú-„âáK­ëö±¶‡0#*ßT}ß" ˝˙^úíVQĘ´¬§BĆ)Ú`çpç  ›1 QÚě[މ#„ óă°›6ôÍhbęMHł$·ŃëĹőęĐQhus߼pÓŁŐëać,sŚuv¬1«jßAđýýĽ¨ztp­*°3  Ž3i‘Bâż“äp † arjŻf3«ś!|’D">jFy~·XÎĺ™űČ‘.‹ Š^Gzrw§łîMŽ)®;ŠAł5’§/l3u®›žŞŠ˛ˇËuýĂH{ő˛Dë?@îą[x`›t~Ɇ:ĽtQäsµárŰ 2#–Ŕ˝Ě Ęćáż¶üť„·»ň”/Až;žČźő†";ďHb57 č·Č‚CŰQ[S%%Ň ŮO(Ďč=Ćz0cŃ«!´•ᇄ$ę8î:‘d§ř­éšňą´St~f*wüqgέl•l­Ĺ*Ře“$«á”x…ÖűF›‡:ŹŰ+í».FüŰÔö=JÁ¨Bź0)'뽺ż¤úúC>ËL ÓŚ»,źăđţ]HŤÖ÷„,}1”~,8*wf.ź’oÝ1z÷%ç$ľ(őoă؋ږ‘B,(bŹ>8LW:ó§Ií ·Ę‹—Rsń $,a-ﯳ=ëP6’kB?yJ$]Ď5hŘfµ¶źî{ípyŁ%%·Q7Łbä~ŞGTą"ŐC0)eÜŕ˙tjäI"čMXĹĽ†N÷+S>úB~lţH0F'JZŰĚBŤ€3"l<^Mäč3¬GŐŰ|®Ŕf‡Ëç+¬@–%ţnľ:6ŢĘ[;žü") šőicQ‘lË<źÔźßőŮ×W÷â¤Ř)q€vç‘č‰ĘNîĹQŚ­jóýŻa®!ŽĄÄC‡¶/Ň"ąÚ˛ĽudÉążuŞuNTÁ`Öt|p§˛Â%äéôaJŃ®$t¸xÎŚ–ăČ„EŕmÝ@/ŻËÔÓľŹŘĐĄÜŮťŕô)‹BJl‰]Ź)¬¬!¦„;.XaMĘŃľ÷SË`“‹mçÍ^2‚T°čÄ ˝d3$™¶yëĹ.?üÖ1ŁlŹŐm `6Â)­Q……i—b ˘?'r¨H-4¨Űţď#Ę2`ŻL+f0źeńpˇ«t×> ă/§ŚŃ ›«Č$ű°Gu~Pň9`/•lŃ(¶i3ţ+ąŻĂeAaEÓş,ÚF?U™É.+PX’óĆ–ŕŮÁ–M2(DI(ĄřmH ¦›BÓŚ-?ďÄę;ßcśNôRćOîw!ÚF”Ź«ż'ŹĘZř‡‰ţ3Ż°Ç‘ë`žaß 2 ŚnhžŹűůżôđŐ˝@ĂîĎůŘď^Cj˙”âĺžϖyŇźˇŇÇ^ÝVtęř,4/Ď‘¨°/=HůýQčY@Ř®<šđę]Sĺ;ĺ·/u-v ş¨!;7U›9Ő-ٲÜúevł7IŇpЉ‹í4#:5ö$®´$}ö†K>Ůě@MBÜZÇ@CX°¦Y‰HW@ÂT^â,ań‚´y’śí&ßzěÎüÍéźéűţΖ†%BlÜóžŤáLZ6;ąËÔëbd÷Ôaü±cÝŃ:7:؇Ɔľj%‹#”šşůżÂ—"łąąĽ°]Gb>˝aýF­çضźiéÖ)ş[©Ă“×i Ž«pĄŃŕÔ’†r‚×.DĹCNS·c:¸y»–)\đ_¨ěłý­iOŹŰÔóßRëaßŇ…d_űÇPěŔ˛üÔAž×ʇj;vëŕBËÂ`kžű"ůŔ°·ÔŠIń((·j9ţ/Á ĚÉŠh“Ü'†ť™Ć*Î:ĂĄ îžDɶ*Ń Ĺ=ĐCbچř>`#‚%'FŹP§nEô_uxĄţp‘z 4ý¤ö•`ä÷dă-13† ‰Ś˛qćö}!ÓÎ}¸7ô‘˛b|CѬđ" <}Ú—UXl¤Łs”źý>ăý6ç÷Š7W$/’ú± ™Ę1—iGĘëđń@ZFW{‹¤«urťŃZşˇtSml%9Ŕ­ěďŹ?ĺ×N‚`gŐ$ÂľŞ×N‰óé#OËŇĆěŇ[éć˘WŻs‹Ö°NꓞGV7€Üpo3ŞvÝHçěW°[ëěÖL”Ŕ 2~®&şŽ6B~|Ś[9Ŕwł@ë.ÝđŰ4 "đR‡Š2ÂH°ĽŞ+L’c‚çĎßQkÚ­÷ůuV’ :ä -p¨É)WfÉF”,ÂâOĹÍßË7IŃ8Łó:Ţ ňQ´áÜÂěů,ĂďŐ_/:Żâc~rfońQÇWWËśĎď2 Ł2‡3Ş3FmZ…{GCWźÓ<ď$ǧ\Ň^PcäČ@vH°Řę~U‚dšŢó›-Jő_áĺ(đK\ ˛'vPmD8аď)‹`xCTuuő8ż‚żmÜň¤ŤŚä•Ł 1]ĐÖ[ş>Ťj‡Ö–%$Bŕ„Ź Iş’ä4ᥒÎXŰ“ n[&¨/$PwčSŰ %cz°®8\ř ŚŇ:”j`>Ľ¸rőaě`'°„yUoŔ˛ ľí[Ďŕ}Ý[ IJĚqnd·¨Ë‘ś/j /ôv(…ŤTłu0´q|8`p ěŐ†©@ONÓÍŢŕeŹ˘)‘ Őž;ĄÉŔnx„DÄ jyHÖ~:qÓb{¬N%>q3ßśŞĐ')6$Ťż˛xiنĹŕťUĽöqWφ˝ 5°č…iÔpćšĘís¦ čÚź ¦6qN  §tuZ˛ńC`ÜAO0"˙Ckú&H‡·űÎĚK"-Kđ’J ä~LšćBWO’Üěn]ÖD éEöČę¶G^¤ýgżiú>s#ČSrDŞó:syÜßÖć…Q }?ÁdÚŮŠÓaiŞ/@Ť:0I‚§Ř‚®nQükw¨łĺ‘ăkîÁó·Î´Öb›-Eą­~<ť:AŹčŮ!¨łăÚĆ©-5Á~m9úEyŞŰń)“–E˛´ní>™ Č"Ů´—#ŚĐtu5XG…Ĺ»lGÚU:J˛N‰§Ŕ%žť.†TBŤ<¶ZÍD súÄKSOKę’7D»·öe~2˙nB}Äě Űa<{’Çę»k/„©ůńČ~JQŹť_ˇĆŁzÖpöŠŁzOÓ(ŚŮ*Ë90Ł‚Ö@ÜůtܕРooCË•—˘+č Ěí+ť•@Ţ1˘ąüÎWüXî‡QŇěφîć¨âŢW‚g‘ˇŰLµcYsyŮýł2ĐăčTąâVp/Ü…Ś“iŢ˝;¨÷řÝ‹ć±1UÄŻ/ľ®ĎÓe$ÉB§‹KU–ˇ@¤öő—d@Ç&ž·Ť[6J`ÓĂ]-ĘëÇz'ęŚ}®.ůr#´Ŕ%š$sî3÷KHäćĚ˝oq7Ł×o=î‹Y*¶EăýÖ0ŁÄ›VÇŽĘŁxćË^FâaŹŰV !öBXoLt¬c°….]…ŁrĚ|€÷Ó,ŕ*Űci/¦JL)!ČyT¬h.Dđ_ąpAg&ҡµ††=;ˇËţţŤóś2ĐFµ¬ÚF575tě6Ńů¤ óÜ –I–Im÷.ŁĄXt«¨hm Wdô´Ż~—áËĽP™ťŚ>]2Ě,uň« Ęó÷–HěüÓ˝-p Řkcj¤˝]źĄČřůPXtN\_b tYăůóúŚćúĎoGq†hŰůgŻPŁ׿ťPµ,{nĚĎiĚíř··UżRF’ÓęcvăJFĐeN:e ŕVEô–Ć9/ŹcC?C&«kŐY¸'˙ń0{ŁÁˇ™př¤ŽßúĄľµ‘ś ÖŚĂR$e á+­ŞĺĂ­ě0]m(‘çú˝2‘…±8ëŹ|CˇĐjf˘žq…Žz‰mýŞçp ‹Ęć6ýŚS/h¬ţ÷.DçiÉ5¬ĆoŮqęv…wß$Öśý©7f˙@ă~äŃË'żČĹnĚ4ĄÓůkDíj Ăđޤ*‚>­%żĘEŢë*•’{ň릅¤©  ™ĂŁ‹Ôańj´ş7PM˙\ĽPĎ+ĄĽ đ6R#DjqŹZ©~;„~ľ]Ĺúuoßű6Ů~]űRŃľ1*‹ţłĘ7ĺţâ >ˇý¨ŔžĂ§[QÔnąÖd0>€ű“ăńľx­Z™rb°Pi‘V)©K,«úŢ[_…›HTßZń˛'cw§ż„Y\eQ”w/ĂçĽ»Ś´gJ°Ĺ¬{® N`Ďč¦>ů)-<­gčˉI8ë-w™ÁCXý™~r_&:ťCpťBqǦD„ö?™“”o-Ś%35u>G_şZ[cTżąäµzQXţqŇźżŚŚx×AŞą7Źť™=ŹV'–UÚĆľ‘ÎýŤî}™\0j¤&AĐg«,/mTKj˘sÝűÂ]ÁôÓ’ůÇ!Ă{ •­S\±‰É'îKQ₆\0+Ťüžebd jd>pŹ2tëšćJ=‡#dÝfŻ9ş*·šE…m'ľTÜuňĘ´"<9~SpUęRn)Zb@S’d4đ ±› •M 2`+"­žxžµ1^޵Ma«,×ÄŘš3¶CËÄş¸×î´·Lr‡ăYŮ$ąŠý6˘­Ńü‡Ą!Ľź+m®'š2śGŞĚ>ßQś¦jTäsŮ}%Kv·D© žĚóË‹ť¬îĹŔxDůŇ”= KA+S-?wÉţĐü uuĚŻBC _«xG;Á&"XíŚR:¶č ¦·Áć8Ź#-X„ëďýŃ/^u¦Yăă™LŠ2ÂBIť`ą»Í™seô;í • üěő}N+˘1¤@ĺÍ´áröQx‰nžTa¶ű­u…oSNS¤ ´4Ëť-2Šůŕ/@s@Ó‚łľbő,ČU=ĘI{FZS’ĽµŠcäćY)?A…ŐŰNú ĹL(FŻü˙ÍőĤwiJŤZ)Š—^ŤŮ˙"_2čd!IYŁŰ'ż ľËÖ-ŹÖĚ(ÂáŇ ‘]+Çn/üwWúů0>?ľ‡Ç âśŰµńLEÚ bެ2•\ŰVx,ĺŔ‰á-%`zɲú óQ\|>‡Uh˛XśQCńڎ~¬o‘ě<›ÉGC5j· N”XŽ·ŹvÎE5cďR'ꟇŮ~qV·pő+^­Ňo4Îx.Đ©¬5Î2mvJŞđ>˝Ź}Ó¨Ŕű_Ţ^éş (ühÖ¤żfż–yďĄeÜ{&˘El&z—Š_K= Hn¬˘‹©µ´¬˙['Ő ÎN™\AN¶ˇÇŘŮ9ˇŻ@„ Űâ鏗ĐÚɬAÉ]°ońK{j¶›ŕQ<±Ńîí€éŘPč6-|ńtł‚îłům­(¤ČOĆ"†ą 7m÷¸Ž~zxĎďCľĹĺďI˛čÎţ q”É_ţÍÎÚvRőMµÉÍ|˘•¢đG=Ƹ}LLKG¨’6ÍVϬdm™żÝ8š2°ĎUnŘ޵íÔ(żť\†~GoXo…jj!\w˙l=és»tż±˙kş:VBś™°ŁĘĚmŚîÁ‘ů>Ž˝u¶ía÷ťźeB ,0Á4RîU‰Ĺ›Ő]ź˙Áż>˙·=kyŽm±ý TÄo“'ŚpűÔ6\_˛ś@Ů?a`>Ęä4Ňo|Ď%úhÉx‹^­˘Č/2XS2¦$v©TÝű¸ë¶ľÁ[˝Ú¤“MA-±·wOM‹¦´’ŕë+Ťńäšß«Â¦ß‰ëMŻ‚v%BIŘ Ďd?ä«„G‘­Ó‹…›ýŻ~¤2çŕä°‘{;ç%Ńcc/S™KH–‹úŐ ukÉ xí¨‰ź>ě•kç©LUąĹÎ4kĆ×ę*»0CĹxÓ“/áꥴ̊Úż jˇÂ§˙Ć‚{0°1ţš9C_/ ů~#⠱怱µ €#”dú„9áăâ®XÂT4°đ RŠÎ—űŃňPÖy‰bş­¬aśTL;@Ŕx úŔŹH_¨áŞFWĺj·srx+o©őÇŕÜ—ęôłh‰, ?Áąüű=Ďręř7ů9e8;áµýxj“pšµ÷hć´ę7P»Ú۬ź6ÚĐň(żŚßd·ĚH“M#–€ĹčŮżt9.úňrđ÷ĎňĹÂäŻX/5Ëxé7Ú«xĆűw¶ ć .-98˝óöθüč7# ‚Ă-ŘĘ–·1L_Ëą‘qBRŚüĹE ˝˙FŚ–Yőş4ĺUDrťÇL]+%ĚÖ &&ă´ayćíUO4ěéžĺ¶ŕŻÇĺcsŕT€-aÍv"D3avšň·%Y;ŠŇĂKd4ŃÖż¸jÂă÷˘7 „ ¸¨Éçą´Éőßžĺhĺ뢳rk[¤€–l뾀Ć$ŮŢL|b“eNŃßoŹý;µ,€âĚ‚ţ–QŰąÄ2×Ńņ„oď‡ŘŞŞŇí€yÁÔŁ^…(¸ô-ölG`˛Ť˛M‡Róř:´ŃŹ] HŔľ‚:ä¸8vúýhµDźú:tóŐx°Ę’Ţ!•ńsxv^'OIrZ[MMaZ\`N<5 žĚáć‘w4YDl(”ŰHö÷Ű"×ę âńuô—źŮĽ©o’ ‡¸`ŠôŔk鲷ŇČ.»Ő‘»0Ü®möV(Ęę»3Í݆’Ç[ui*Ŕz{L"ňú¬Ŕ%’Đ—Še5y>ɶ|MÍQ(¶őIkQr ×#\P»ŕ}ě*ą÷4ĘčHśGŢ“Vu—J#|ŇVĐ<Ô‚ÎĐvbs§iÓŔ’âä©^GŠ'Ů8̉»m!wu‚\Xëź™Ŕ™uq¬§:Î ţł’gFš˙޸*„Č­ĘĂăĘeúâĽňsR”s˝ŚP¬ć2[v©|ÔĄn/•ć|!}¦·wˇ82bşpą1NbŰAo(zFü#PŔuM4É 8,Ęv- ÖN;1 âó[FI«|qztă ŃR‹>ë)Jě$đ ©ú%"ŠX(BPř.U{oCZ˛ľ~¶“Í‚H[Ęq–ŔÔčT¤xÍŃ–? x,žµŐâü\aë q0¤]Č™©"ń™Á|óąÂ\«Yż6SŁÓjÓHN#fwÍ8Ŕ˛Jt¸Äń}/eřĹćlŐŠíÓO¨'ř2®&CD“1آ™}ĽÖMŚóbkTG˝ä"•ŻÖeľLFí‹9ă˝ p—?fĽíÓčň١ Î@v ŠČšúsĎ˝Âíܢ;ń2¶)ÜÉ Ű/¶ 9霪SS‰% ˛—Ä÷GcÖ–OW@đ6šF'(Ú•ę¦0řŞČ~o6źzöÖ Óµ(Ň$y2…‘CVBŔµűĐ-î Ŕ'łKVQ¤`©'G‡ Ł9ÚZĄÎF›W›VRÇÇČ>vöăKÍMj–=ęÝWńÇ-»˘č|ĎyŐ8·…ű…ĺc2+“BbTşoOAů°Ty­ÖůŰÚRăÁŽ9–zź_aKNQKË´$ť§8aA#Uc;§€&¸ÝÚ(ŚT¨á)©'¸B_B×řÍMŢţŢ}iýY!j1ÂaE'QĹš0ĘÚîUâ °ţr4Ä ”ě°)kç…áôT6±ĆQ)ż†›7Ó.%§1—çĹŽúě´MłŘM”UsřmÝťŢ0n#oů˛ÉŔŃjTÉ€śđ·D­[lÍB$<[>G‹FzDď|˘D3¨¨OeY2Ľí‡Y5ĚbŚŠ‰EĆź1¶(?ŕL¤-&ZĹQ 4·ŽŔ¶ «$mŮÝml‰‘ŰĹgőĂ[úŢăńc„¨\ěYĚh"©î› g(‚:…†©R–°´ä$ý?g 3Ýĺy]!Ŕ‘&†˝ŔuiZî§(?zźOťř˙¬ńmě‹u<ÎónÝCŽI?<@»_4&ţWÝßĘ";”ĺ9…Ü\;}×;k§®LŔw¶›Ź ŰíîyÄöB ýě%YĚ\Cţ¦Ć ŔŽ&Z|˘Cj(gEäńĄëţˇ)ŤFŚŽµ>‰e;zĽ”$k%€¸f–…Őţ‰aŢ%öŻŔ‰UˇzšI Ę¬ĂLŁéÄň¬.潊÷/&hj­żÖđÉ]Đź?r$P»]ۇËiú|)8&CWľ;‚?®RŠeE˝ď÷­ŹžŰĚXWŚëdłÓÖł\+ůúކöŰ 7Fńąťs:Č®[ťPDxžmđŁÝ"Ä*%[ŽýF"š^7ćvú¶ú9ô ŤˇŇg|7I§Ň‘µFÇ@Bţµ{H:ʆŘ'ȡ˛äAëĘl/f»vz÷á78#¤Ę¦ó±ĐAZňů}ĶTŠwjâp—×Aâşµ7#(ľÝVpS¨hç­L4*Z¸Żsvm9÷Wčp řë©ß=ę· —ĂÓţ…DVQ8Ń@ůęyaćÍű·ŠJD ŔQďĹß44Ěw ^éKü/%µŠâl„”C± Ä…˘>‘‰… ~0BiŠ×°Ü]ĆJĺĚ%×âŚQwšÝë´ŠaÂpńN"r9ŻăŤŢR pŮ­É·‹˛˙ĐK›VXB…Ő8Ö¤!JlŐŃ— ·^÷ďh9 Ä\Źý^ćľöČŕ§‹`śV<̉¤‹?vL.”Űü*őÍÉsa“š {W´¶Rj˛î¶u‚Ôn>˘cÉhÄŚCFÚžĆGŰ›üŚz´ŰŔyW¸§%ňÂ! “Ě%4rUC—ˇ6ĆăŻPÝÉ (zrÍâł’ĘÄŻˇ‹Vwë"0Żă·"ź)q†™0<"4-á°Ą${±îYŠPíŰňá©×†;QŮ U>5¦R ĚĹë#-ś´R:ł»»…»C˙¦<¬â‘tň9Yţ ĺůÖš·µôL±Önůĺa ±YÚĺňfŘCůUr'"Ő&Ďŕën3W]‹é —•ľÓŔ̵yA<Ż9ćAë¤!ĽKÝÖ(´pţRŠzÎeŠQź-‚ |X;Es˛@GćąZ ѵ׭ä#blAh€‚ěϨÝS˘ć¶µ'Ú%0Oč÷iŹi×'Sô/‚‹ĎYJ—C¶?°;ź"ŔFŽ Íä|Ćo(ŞÍN'Śgŕ*‘1q{ˇŃŤ©(E;˙òřĽÔí€ălŻtéÎá8$ań䯬óo¨P"ڤ›-î‘ÎNĆVc˛Q*yŇ gćiF–änďJCő<çš°˝îá3C\ ţ­Ś˝€Ťű:1ß!RąPI÷K‡čCŚ/şÄ˙Ëů× 8kes8śźzbŽ/ťőu^.şF䊒†îÖdäÍ’™rŤ9GDYď5a˙ĺ¦ÍGK6ä˘xvš%ÍÉ}´çŮ&Ë;8jÇ7ÉBÓ9DNÔ$Ô?şŃ¬Ŕ>W\µ1ôoąřń’Ŕů, ¤4ÁŇ,\jçKÎF¬ óNNúÜTú–ćOX††­; R×Ëôă‰Ţ”ą“ł,Bf’Q_äŘÇA®EK%Ú(5eŘŮ‚Ň 7Ý‹v±«éjĄZ”%"Ţ}ĺĺÎH‹úOť1•PiĄĄé•ä QřQY(˝˘řŻW€>GđýF¸JÝL€v»|)?[CnTţ&ňµqD L`Ll;*ßRd¸@Ěň’†Ç$frAM¶'j1Ż©ľ´Gďä9xH ,ŰđňäÓÄÚ#á‰+ת…ë©+~Ĺ!’ŇMV Ĺ ëŕ\{Ëđ·¶ü6źź|>ř2Ú”H†Á=ň`¨ů’̡ E?BŢr°ŁÄŁrmşŹ0LÇď 8ü T° ”-ąiůtHY“1›%]DśŮśî ĎÎÓF‡Ú¸˛˝Ĺ>HďçFlIÂ^uó9›ĘĂ6Źü’‹Ő†ÓEG;6b‹á´+ô´|sD4€ůhţď(NăŐsfpĐZžř‡&¬«šKÉŘ Y›»Ńx˸Ĺݧ˝q„»m¨Jŕ¨SÄAą$ ®i{é~‚ĎŞ…[u —FŰg>Š'0B}ŇŠż°OQOPŚä=ŃŚ»˘ŤŽAG4ę\ˇ]ä¦F€ŕş‚hů˙x#Úř‘<Šb300{e?»f›ÎgčhKŠ"ľí’Ě-Q4ŰĚÖ× RÍŔyGl‚˙[¶Éđ¬<4­žÝńH×X§źľ `î¨8¶»˙"Ĺ‘µq©OˇŔ ÇL[•n†®źŞ‹ęy@áG5·í^ ˙ ŕ¸(W× mu‹>lBŔ±¦ý ÷źÁÔęýlŹ‹ßF !˘łµ;ča]ô!±rŔ–đĄ·$>™(ç[ąĘůLĄÄv˛Wúax9D7’ig„k‘Ahř€ŘČÉ.tłâ÷ >Ž ó”vÖ™ŤůČmęJ­8®ŹôŚ~·óŤlµRĆ~ŇÔV%ˇÜţ\Ç—<^ŕDQSí÷Bśz•-Ř°Š…żző™i9L§ÇÄ4ÁUŤ´©O´€'Eé“S­*@¦°žŹf ófTOôH™/Ťˇ_vÝ Ýď𙓢ÜŰ—˝ś «AĘĐďh„Ó?\!J™/ę6—šéËŽ]˝[KĐąšŃOÝŃŮxŻmô^:T5˙ç ĆŤnäŕ_çĂ-M¦C´Š.ťŤăUőgÚ<ŁĎ ičú„NŔ˙n5¬‹=ÖKiĎM‚ëŘÚRlFŕ©k&g 7®\źMzŮČ÷DGÖßéŁäňĽOëě÷rŁĄzŇ&Y縢˛|HÓÇÝ`ĺĐňW—×HëEkřd|öâÓŢ9CČgş•±N•úRć8>{K,•â_üĺ’ť˛'md†Ś‘řÖÔ |óäT"\ř\‘ĺRź›Đň#%ĺV-ď” ‚tž° ‘ćVŔ2Ęç«9ş1ůod8ÚňîéŢÎŚµtŁđGöĹ„ÝőăPg#·¦ÝШěú™ĎBý'çĎw} ® @Ww'śŰŮäÁÁ¤E±i¨ýĹŮpËĽ»–Ď ´`ůÓęrpÁ|ÁŘZÚańwěLYQ ľ9@ !¶mˇvF[&:b‹T*:wuŇG«ł dÝ‡Ł–(@úôş÷9Ů«f9GŰÄ{©ĺŤ¸—sŔ(čŔ\Ş×ô]é„Pë¤đy“^`€~—8ÁdÉ"!kâ)%0‰í‹qz9«Ňd–ç&Ź#6Ę™ë)±ÄGw੡KX%+<,d‡ü˧ÁJ–~Ëx-[„7ÍŚŢŤj80ťčŹaŃőe}"ű~QhsřëýźÇśŢ¦h yvoŔQNÖÁP¸Ą\­ÓXN×éęS‚4> ô=RŻ=»3ÔEÖ*dřz`¸‰QßôíCEcXŕ&čŇÁyzz˝'­Ť|ů•VÇß±fA˝ÝJw ‹ŞůxT̬›îÝÍ%đgË)ĹŮ_`[‘äd7q’ Ú?ü÷ş[c´ě7áS[IOŢsܱ§"üU9°a¶x&ÍäłĚJÚeYŘiË`Č"źĺ°O ůAP˝‘­Ĺ«‚\ŢÍ“rö›QN'c'ó¬?—® IÄŻÁ@$Öj\í(ÉG.…َÝŚ< üý0¬éAť@´}|őVáČż†™đ:ß—ô;sk˝ăńeBČ;‡™H59cDćl~‡˙.ç%ă|ÁĽ¤ŕb¶tĐfZ gYÔžA]˙YŹŢ:éu_×č+zAfI1¨–0eëňŰwÁ)y˛ śx¶ż[ÁŃPmm sëĂvó±&ÚL™Î>क'‚‡óĹ~Öš±n„Ë(Ŕ”ís—šmöĆä‡;‰ÜbJâHyJ ŞV…ą;WËQihM]Ń”ç`Ł}%O\}Űŕ˝6ąVs+ŢŇ{ĐňĄ8Ž×š†,0¬ŘĺxŮ wZ§źĚUßÄí<§Ôkü+Mó d˝·Ý\ ĄŢ­ŢíĄÓ¬ŞUŹŹł–Az’úˇöˇđžYQ.ĐU ‹Ń§Ţnežc6pó]}~Ę úŹXľ¸ ©TŔR¦đŚćĹ7¸ÓÖö@Ě-źÄ¦«'ĆŐĂ ~Ü']ťĚCĂKcJ)ÎxŃk%|í°0B~LTvÔ©÷_Ówĺ<ă¤JŹaéů—Żŕs}ŻGÎdů¶´Ş Ď×Ë«}ČVŤČ׋9.^ ˇŮŹXń–Ö3@Ô'tÓRĽTml¬ů ŮcôŔ#‰dđç=řSĄ xµĂĽü+Zë”čp'çŰg^aJ1t‚™b¶šôŞ&i{„3©¬S´%•Ś‚I7D¤ş™p§Çžű‚«G©é]L™Öí|›ŠąN }INNŰĆHÁMţTďwxÜ’ ž‚‹xOŻɦ ä[‘Xţ©!ß(řą ÉÔOČpY–ĹÂéÇ’Ą¦ÍʱÓ(őţÓO±éĆ OşŁJ˘©iŔ?…AzP€T“ZjP­u+V¶Ń»ýĘÎÂ8O–_QŰVlŰ x¬ :kçţ»Aŕ«Ă|Fšms ]Ç×1‘.ĽF´G†°—Ç”$¸„`?í´,Ř˝ńvÔaşaÖîWóąůąę:űăľäŹĐ’ŚjIޏąE·ââ‡m č{˝čĆ®XľHÄÄxço ň}Q"Ýżŕ ÷<É˝8ű\÷Zăů´©¨‡L1ŞÍ¤A`'8»ůc Ůĺź©eŤ3Đ–" ,öN±f§äíŮăM]›K§xżZŇŹŇ%ź‘őT¦Hčo`[ر6 A ečx8˙y…ź¸VćŽ `«ó%‚Ęr?IP÷°]üšZŹPű諒#bÉkKÚ šZ{×R)ľâOůŠÔ”ö'[ŘÇ“ůcĎĂ{źľ…• ďE8ő’4–…7îTŽęĆ’v˙ҲĺŹÎ‚ÖĄói;ć:*µ»Î#ćbä˝8ďkąSoţź•Ř|Kk»q +•»Q ·xDoT4%´.Č2ÂçăÉsé ąĂ°_—)#‰l´T_Ţ<Ů‘t·îˇE» űĺÁ-‰"ç°đ&<•íĘ•=<ĘҢ©J*ťţ¦ Ü ť]‰o®Ĺ­O[»Ő5eŢńZ@ 3÷‚)ŮjŰ Ęű»t’ÍĹ—Őot0QC˘‹ťäxµ‚śáŽ|Ţ“%¤­#\ňš 6ýŔk»«%9SŞ!şWHŰÔţ'Äçy~sŇČ_\©‹×&hřošŃbg ô­¬[@ë€shKĽ„s|Ç˝„_dăČí7±± m1Ă‹´F§hwťÁ˘‹Î“ĂäéTÖüţSšäßú|äë ¦ń2Ü<‡ĂśÔwi Í}2sí¶Ň˙%6ôôćoŁG¶„×Y¨–MdŻRU eíí23˙°idĹýţ”PfŐ}Ĺ*?‘cMôµú5éZî˙´4çęĆtŽ“÷‹Yed-a“IŠŇ*Řő‡SVüN#űšOxÚy» ě˙Ę™ŽUĘ cşńŢŚĎŐőZşŻNôr- \Éí»Ü:áĂő'ÉĽ—P±ř›ÓĎ"KéńĽĽH€•ľóz¸ĂĽ = ł75l69)c2očĆ.F"łŐ`Ľ_ŁĽŰÖv‚&ĹoÖcG‹xsp+u!ęJľ‰söh–źóę® Ë{Ř U)Ď\ŔĹ‘cÚ‰úeŠ>¬ǡ­eI8©’§†Kţ‹‘*Ĺű¨~©ot"ő˛ąç~ÚyƬ ·…óTGüęˇűŹč§ĎĹgÚń5ÍçW LW;Äz'·‡s˝qĹ\óe&޵ĽŽ¸*żŮ'§úĽ4jhŔ—5Ń®nÔUýťT˝ąďyVd"e>ť6%şńFZmk1Ř,eE,ŚŻţ\YޱÜŔ •µô¨iŽşÜ˛×f-CÔJ|«ŕ-~’1 ŕ¬{¸¨—tm«ź–‹§ŃžňIMů#tőއçîČf‡â4‡aęOľ~Ő¦ÁĆČ[ľW— _˘6Ľˇ˝zy•â·ţęŢ8TŰý¦ľšUěaţĹć÷"©Ý)s2˛”w!;řNŮ“ôË RHY?N^_“;lşýÔX—©§.4Ň VÍ72´¬›Ů‘*ď*ÂUłâ¨ŃuɟР.]ËĽ!3ÔĹ\ôÎmŚĐJ§¤éhŚzĎů˙›–K AÇ[¦Ď]ú˘%??H@Ľ ¬˘¤}ÜXŔi Źc­ĺD%Áz^ŚX÷·Şś>D›1Äëć€@"x‚Ą*&ţ‚%¸ í_2Ô´ŞQ ÁĆ<†»yü€¸Şr•*˝} ę”č.T0«m›DŕĐâEq—X÷Akś…D-žrçÓ4Üv,Ś2ô]Ň,>ĺÁ§#¤şn-¦ÇçíĚZ5™9D7…µ<Š$qčš™óĎ2D¨XžmX˙ŚvĽS÷(p“˘ŕąíj¤GDŻęQ[†TĂËY˛ů^F>¨Ŕ}}ľ‹›Ű†jsŇÝěŮŢ«F/ŤŘň)µ„řB'±dr‹DÇuLt‘’7ŇŮđĄ›Çľv…Î$Ç*t0-h(= RC ĆLß–-!–QîQŽŕ`šgŇ=„-s*Ş2Ő×_á@/¬ •(xk¦dZJ÷n«růĂnȨsĽI0ŰŚĄ@ěľ_`6ęÁ†Ôk˛”k÷IKáđŰ)Ŕ:áĹ-ÂĆ0=/v­iD3‰}żk-j®O«ľäM\@˛'žĚŽR˛eW÷,2ń€•W¤ťÜÓ6‰ł¦>ˇőťĺ®Â\R<Ă%"şütöţšťvč8{6mtG¤’Î+ôÍěHwoKu0×(;¤vĽ•dżç“JÁţé0jvýÉDVWhť»4d0cԇ׬ňĺ6¤7éŮPÇNĄKWńÓCěK9eü!¨bɶ•=ҤÝqäF—\‚ŠąD{\Ô­;UE‚Š7QTĎtˇúŚťç|E;©ˇ@ äqY‹‰ÚDlTÓĐĂÖ7\ďSôł_Dž8…ĹĄ´6U“ÍrOmđ .ÜőúőA€˝»`˝EĂ`űîX¶îŢ“˘4PŕˇX‚@›uwź”ýé]śî, 3{îĚJv~Ă:2ť Ł˝ŹŹqO|;ŔŘŰ ő!ÂÎ#ń«DÍÇźś©âG€?gvKĆL ’·ýéWťuj±ďńrŢ`[Ň>Ł˙>·ý`÷IéŔđËkŇĆV8¶§w÷9s“/4ް-꾦Ą¶Ć ,ľid>¦ăYÜÝĚX;ďµUZ=ń/ř{\_©{Ĺä+éR±ü¤VůYů 3Ňo±^ťÚIŢ fÓ–^>QM¦ą$P;×>ň=‘Sč}<5ˇ#Î5=…­XU! ă1«ÖŔÄ–’ ú¸qHp…Đo¬Ę#j÷çýčÁpÂJAąC%ü …vߟ̍ű’pDŘž¸†\4‹íľ+QeôKMđ~żÎݠѬ՜4`?ŮZt>›@”ÖR0’?Ă=ý§yc OůéżŢÎŃÁ1•üŻL 's„»NÍřcęőKżC2r3Gµq(ZGh8CR[żóú1Y@fĆć¤4p¦ßUYőLťcÓZOă˙ŤčĎ6śĄŁ±O\M8/ •^łnn4˛}úđŚ_Ţ*ŔgĂo5€t›ł1[ץ·†Ě:(Wn/}"Ę&LkM`§ú;±łYÔňń[čłqľŮű˘ţm÷ß 5ÓBܸlöK´L<Pˇ$í#¬ł"{v@o|ŚxDn>ťfN›ç»˙ş‚ €ú.˙ťˇľÖč˘ep4P ŤÍ­aşŢâ#¦ĺrşűO ŮŹ=q.OČe§+¦sťÁ¬ú­0ÔSś7í·Üňlöľßŕdôşß (¶Đ ‚Ć”ŕö zG—iÉąB{—9ľŞW\^Q»Bmv©çUO3SöÓˇh˛c‚¶ŤáŇđĆжÁęyINkŢŞŻÚć‰cwUv:wĽĹ|ßy¦×…TfjĆ7ß+íţ‰{ł„ýúS@±4<bÓďĂwş/ş  ¬zďRŽ ĘG1[B’Ć(ä¬çë‰G2_C„şB>Ż;­Ąź”%nb«sŃtű^(Â8,5ľ~±Iş!śňÇȉjö‰˙ŻĄčś<ĆÖ6ř“Űz1–¨§—ebeŕ‹ëńţUöf˝šDő‡]»ĆTÁfÚĎľ;úSE˙ubZî·’9•¤HcÚ”‘ĘKŮ›©úŕ|ŻwFż‡č“ő˛†ťĺ!$ÎÚ—…c1sÂyŽ#Uy…6Ă@…ÁÂW~Tfµ­$öşŢ&Xţ>=ÎŚµ;• ˘.ď§ŃUČ,Ţuä¨AL­ń¦" KťśÖLfűçÍ”G'_O#ď@Ţó寤”+>‰#µK8L¦ŃđFć†[µě†'¤µČZ Ýúă–“Ú­źô¤u…¸ÓɢłŤH&—¤ (zĽFwř&ÂŤ1  T“ŕË%łŢÝĎŤYů©ęxű™D `‡˘Ôšđ–x®!Šçצâýä˙4zř—ýńÇ&ů¨áżSJ,¤Ĺ“nj0ÍmRÔń0ńqż/ÉeÁ”Ř(‰ČĺĽbTĐăöŕmV˙V'~.'±ľŇ+´;Ź ď9Y*«¬6ój,xMa>u.ڰ§b1Ź©ä@ {VőÂŢ"DV6Ĺ&ş4n^Fř]zíFf 6~»afĹJÄDWŚ„h–ľ-3”ĺčhÖ”Y˘Χ|"YIÁ6Ú.ĽO·AqEh=wűĚţ(•^5®Ë9:†DŤ?SĽdC¸N¶Ő·ó«ĐÍđxžę}!)oŔŇ VŹ:4én˛ rbž+ßŮčM·.—ĆĐÉéťP`—BZg»i‹a8©QődęŢg#–GŞ—Hîě鋚+˙î˝LŠńky»µ. Qgt©@Y˝ůcřĘ„mňŽMűďFú‘L^ôágjścß™Şpđ"CńĄRŰóN…ť?ăgţŰP)‹JGáxÍß kýîĚGë”›žtÔ Óáb’qmÇĂR?˙žUńm\qăě˝}F57# ˙’.;#ç÷ÍhŻa°ďďď±󠱹,ů2aßŃŽ$! {ü;ü¤dÂCx=ő©|o¦¤ ·ľř˝çŻj?އĺőyÁˇŐ”ńˇ=gBčŔS!z/¨ŕc-uqĄ>4¦î’ńşßÄţ–Ń<­€ÓI˙ëD(Ślý»$[Ż^Cí•°¬3ާ7Q’T}ÝíśČöpöţńćěMéZö,ť} Úţ.{m—+|^(I~Í%É·Y&Bj‘Ôű‹Ţ6—„óF=ngÇ~PNŁĄÎ™jr@/Š˘bM^M†Ż/˘^-?ŐxSçţś+îđü8™ řÖ2ĎłţC„7˝Š(‰ç»nÔ(5“Oľd;匫H§`=XĂöÁ,_kŘ/čŔ(řX&ťĄć‡…ÓpjűIđM" Šqĺlpâ‰ö7ĐľĽ>GšJ-…ŚŃ#˝qě};Ĺy†<]·ł`dÔ­Íxl~©ő‘ŤqX/ň©.…ÚŐá˛řjŻ6s´OÁ’‹ÂPě˛ôţľZ‹łTb5ÉbËĚćŕÇĆr†żě1)<ճç.ň ý­/Šö‹łÁŃ'ŮÓ&|BH)»ţů+Ôî‘Ô<sͰß፠Ň,cÄ:Ň?µ}›ä¬dőçąąúŹČüé m×nQą¶t€}‰,čµúVÖĹvÇËđoÉfćď´†˙ű“iq (4*{ î~+¦J‘IvťµĚýjbÇ P GŞŐcI;o'΂˙iŃÔÎ#”@–ž,ˇÔ!¬Â5n­Ô`sǬę{ę˘E€É§÷GWN™ĎŘ™2W<`GT¬ AąĂF™Cij͋dAŞ­˝Ă˛˘ŕŁ^?ź!ĎLfLŹH¸8űLÍę4×l…*Ěz†CÔÖši¬Ý¦´A”ö•F8˛ÇřLĐם[k=)ÇňĆ^‚Ťv3s‰ÚOMٵw~oąË˝–§UA¶a’#ö ËÇóë4{°ŤSąYŞ%śTln‚Úťó­Ň)»Ŕß\6»=BU¸@„ńHTLŃ­˙řW]r<,mS˝1aÍbüě¤!Q‡wTg·ŹýSr€Ö¸Ő™—µśNhA6Vď˛d;ËR­GŞŢ:Ú„RȡäKÝ®’‡űŁvY]©0ĄĂ[°'’HJ üšÚćżwç$í]–BAŤAn†G ô)}]ÚCkâEěŤ ş›ůť ŞĽsw¨a“ťĎO“ó“Ę»‰Ć[Eśő ’M’2~Źh§±űŐďč(VŽąAĂ·§äA3µćłěc˙yÍ/ToTžŰK¨‘bq*M¤ô„2ôŰvĺß˙ŕyćaĎHĹä –G?ˇ zHz,:Ą,$0Ň‚}EíŻ"eKčÓŔ>ÖŠďň*$˙!îhë$©˘I‚D”,«ő!ɓަ’A8ÉŁőČ]©D€ŠŮCÚ»-sňU‘ţ±ÚmÓéT03cŠÔž;ýěA@ż1›ßĺŕ-¸ –„ßîZę˛×ř N’4iˇÜ˘˛#´ŔÉĺęU¶bŐpź p?‘Úée ]oů$­ŕçH#»@°ĎŞ›4©6Ě®nÁC©Ő. W‚Í÷ŽŽyćpŁeiÂxůŮUŚßĚŹßS0\„â2l Úޤę§ßĹéNŚű”-ü۱ńŕ#Ąý“˛»üPď>­"b9ôNĆť¸jO©]hI·y⫲Ə ŹěŞvd§ZÖgŮeS‰űżŚ =“j|J4¶ś3g^'T)2X¦ç_§)łZĄcŮÖ­3ËÍ4Š>~šŞ$…Çř¸0ů ů%mĺ>5˘o0ăüAo«ňss=ČeÝQ[ŁW•Ră™XDidĚţżęC«˝Ă-§3čăOµ§żűá0–•żĐś—qńo6›oĚ—Á nÝ fŇř}DOłTÉßjs` 2ĹÁ¦Ď"ńÉ}.KJŢr^ó=čüIŮ˝4č č´„őžJufTń‡j.Ľ Đá@óGľXČ*ŁŐnL§_úĺ4Ý+ëV>đhŢ?45Äs2ťb č©* Ł0˛’ń3+>Âlźf{í}X51µ™géBă‰|BĐĺRHW!Ť3ÜŢAP¨k€Ö'‰‚tä !ő?řh3řrĎ~ŤçNŹAáÎĽ˙fhřŠ0L¨Ś7Hşź“ śäpó!98ĄA˝G« ´HJO5ýë˘ uňS#cv”â—`.’޵ú¬b‡ůIJͱ‡#$ÎŮţ0ëě¬ň |mĆďĚ›ŮyŃ´‹….%›?ü±ć>şćËÍç =>˝ŰI=ą˘lÚłĄ‘YţRȇ ë·´ĘĽę‡}ĎiÓÄ6ľłŹÁqĺ3ú˘ŹĂ á §ť/ĹĐÁxÁËOĽÍâŇÍ˝F@B)©6D“ %KÉ’gIŃâ–¤yČl8ŇTę‰ofý®ăZŻĽ[źÖâÉJ['¦’˙˙}ˇ©myěĄ,ťóşé#5’]D’ě6ŠŐˇ2-ýnćŻpÄo¦…«ĂźÄ€HCźŚ¬۱'ŐÂT#JÝNNOË›—†FżĆ¸•řCŃÓ,÷júy}¨>›{HuE¸ëűs";A䦴߀ŢN–Äs¨ýrďŰšÎŐ±˝á ŇęOB*Ć ô.î·zÔąé/§r']ĹßńAş¤ŮfF»ˇ+SmSśŮĘ #ôsęת0Śg6hr嬭*š`aőôڦáß Ůc¶Ëćök,"řE!Ľ±`ŘOĎ·ŕ ;í‰˙W:í)¨C¨Čy“ öéÓcI-n«úU7÷ZY×3gŚÇ<1'÷ŵ9V|ŹËŽťk'đQ31Đć TęěóŃQyR@š"Ü0ËájµŽvža÷ &ˇÚ ĄýŠejŻ4­QőHfą…ͤ&@ÉŔ1lc6-j­[ OEěÇ}§~“©‡Ě\C‹iiĚňjö~fź Lť#]kś™˘ă“­ľŇ2'nŘ_őúî¸ű /Ş r*Z÷(dób<„3„'ŽĐ5ڵŠîü±í%°ődć"vÝĂ]ň‚›ęS%˙LN¦ßěfĹGĎG+ARóč="ö÷ĆéľťÉâĚťľŮ`4ÎM•ož51ČBçW…ŘŰ7Ä—›ę™Ń•xÖ˘J}¤˝<ĹĎwKޤYpĺŤ~úőĘĚ<Mf÷)J,*Ő:xĺo›¦0ýzŹŢcˇ‹ÍCˇ!Δ` aÔÍŰÔ•Ë÷F¤ýŃ'vt§ – Ő&Fžôg{ůÝ8ŕܡ\Asp.TĎ<íSÁS·,™%A%ćÄGÍoŐ폄üNCr1qtOČ(°ź, ˝Đ›Đ‡’˛ .puΤ‚qíđl*!Á ź˙ĄđŐšrGOX¶ńz*“©|—=‡ó  VÜG“KĆĄţÇ9ŘńůESąĺ`ŰDÝ ć/Ăą™™Â QµĽâyp†pŽ*m,麊J®tČ śÓŠżßŁ˝ śµż˘'L]k?ĆÜ}a˘IŚM°®°e·2&dph”P ńP3—TTcjÎ2‡ă®É.”vÎ? \Ší.ĺÍ3-Ăą´1My€`ůś;Č·÷¸·j‡©„öş–4î(đąşó*wsŇC^U]˝^D]˛/'+ęűFÎŢ’łÝž’|Ů-ąMĂ:´ŤIĘ*»Oç…Y?`=Iţߤee–0pO”41ъʆ“-Kމäpˇ°6k/~űłĎ]ň™©=÷’ŁóE_;Áqˇ68wTˇqŇçŮ´xaTF`‡'ß˝z7)ń< Db&’ *„ –×f›Y©˘l 6#2Đ>Ńí^­XRŠ5Ëć™íť·‡Í/\@Ş.ăă…Ż ŕ \8IKĐaí^hÔĄ%{á‰+ť˛˛c@ζPŁŔ:Ľ[ť1svßéYĄA±m×%X ü˝óę~U<ÍńŮ’Ť •´LÄŰÇĄ˘Hř ÉëT¶J1}Ý™š…NßĹÁÍń©Đ÷ˇžµ6Ú[näꢢO „† Ńš˛†ůĐkP}ŐJ0:ľ‡pË)agÖ2·“çŞS¶ßRâR\ gĎncjcŕŘ/Ć…¶um†)._8iÔf/]zT0žżŮŕ[ *ĺ¦ý•ĺ`3K\ń`,3‡—FŕŐ,«“i4zš€ct©ůóę$ăÉWÜŻgĽAŢË:ž¬ Wĺ?´T÷÷˝KDő’+a…Ęđ=çr đ nďĺňu ÷,\’Gç¦ĘHŇíR‹§O0—̬0™yă[Ŕ·! F' ™¬ReFŁz^™*Ókżâ=đtKż*¦=nů[xü({ŕZ¨ňoe‡ů…´tÇJůGšD˙šĎ/Ţűd¬>’Žiw‡$Âb?ŶjVxižow…Ć)˛˘±2Să¡Sż2'‘č~ř4wj̰ůˇŢ«*Őo’Sď›óľŞA+rjUövW:(o@UOŃş7›uîi®4~ĂŤC|J6řwřĹvu+‡\×HEQěür»…sńü㱨öMÜş, ëŤm.(ŕęťE”`I.ÜX+R€|ˇMÚHJ—2~\F ,ŻuąĽcďŔú¦_E˙|'~$ .ĺ|UmN»¤Ýś.ŕé`çÜŐmd…yF‚ĹžŔ=ŞĆh÷ŽlG$ĚŮOŘđw˘P…-Gę‘Ů].•pâ%ˇęcôĹŔuâ űźG§MO#0(K«a%ZmKŕ @m8‚EWů˝˙ž>S_˙á0oľ…ř{¬3ÄöČ&42…ŃÎFî\i4€ÝÝ4IŻtv~uÜDz˘.îM'·â{cGŞŚE?Ř ű†Ë×3Š/Ţ>şJî€ÚÚ*gmRĚĚŐľ,íw5ĆBÚ,IäŮ®”ó“Ě*˝űł±Úlîki‚‡rR©ú#J‰®îĽA=)S˛Ş#Í›"Í' “7ňb­ćZŰą żĘuíĎj“ ·€˛>(&`ĎÚágŠ…ŹŽŚť,€ eąršg¶1Ü>g.)áPJ\ŮŇ~Âůá‹®úÝf†AüĹpŔ*ĆĎ {ůř ʤ?vG;·ýŤ2ôŕ"wűg¤: îäśWq-±/ĘűL 'JŰşâö’ÓÂűččÜQ¬Bă?Ú'+;”á: ‘™AŇŚ&Q}AEk§Ä!Ů|xG[ę{řMž˙~†W¸\Iks5áWyëäLČ$©S Î:8ßú*ÉărţU…&řDRµ‚Ü#żg•ĹÎ3TVĐ|sKYjőZw‹ôĂU–Z˦.V?Ů´®· äîľË’IµČ*j]´ăäÎ!¶9ăťč†ÚůmßĎ©p“zŞa}Ź( 9ZBC]ď7»@ˇ˙¸«öĎeŇľb-°8€KZĚżG©^x<@şµź°g‡Pß&1±\ĂodJÎ]G ×P¶´Óuš7bĄi‰L°Vč \e\ߣŮíWěPŔśý5f4ţc€Ł‚öd™Ő5z‡H1BĐAOb)ŐG`iÜ;Ý‰Κ‚1ńr@ŞŕŽ˙‚f8 xJu+ť)Ö?Çw¦Ë'ŚéŤmÉ”J›«ĐÝä)š: f …x\ßŰëć‹Í…=$ˇvŃŽŐÁĐ xk™ťD5DbCľ‰}#wD9uÎů’Qx\7 ‡­g|ľ“äĎZËQk ˛“ONŤëWčc’ŮŽ]ŢK˝Á=Ěo™Ŕ\Ű “Ýëz?Čç{έc°"4ĽĽ†•ż+§6‚:ľ‘ęOĄżÉQBëE~Ś„xd|O0€këď×áćř¦I‘×SbxPo÷µhĂŢçFł·%9 ×H'ž%ąŹxŰ÷jľ:ęŞá 9¸ëq™¨<ďů±Í*¦´ >!— Í^÷˝>Ăqš‘vÔ pOZęa‹:™íIoç)–{tQ N÷wĚ<ŕń%/† ±:fëaJú¸„#7±šžxú{u›ŠQs˘ëOTíA F“Ŕy2tś“uCßŰź9,Ç^]L}vpŃ<ěä g†–„Wy,OgÄ‚"f1=MÁÚçŐö߸/őxqf#’}o+;oaÜ×s©§9Ü Żż#FŮ"\ŃřI¤×Ć­ď°Iđk¤€€I¨GĚ~ŐŠĎ‹[$´'3±Jeź˝Á˛vý.)f~ű}™qó—/âMäd/ů'~eu!ß˝x:ÎPŔúĄĽŠuJ§ă˙OVzůÝŁ¶´™=ż{±CŐ‡Ťě€#¨lĎGů^ˇÚŠŁő(–ŽËŇŮŮ…YěÂuH˘ă!ăyFV Ž"éŘĘůj‡ŞKÔô˛µń4aÇ]łůaÜ÷¦qŞß¨ě(rc‚!PjŔXŮS˛d5$J¤fCuL9p†ô"j'Üëi‘Ú–e+}UbňC¬|&ČĹXĺ3ąŕ5˙=č“úĹW [x©‚çy·FđsC6Ój‚/欑óŐť=‡šô?0ÇŐ’·~És,ŘŠvť˛6ÜŮ• (Ř–ň«O90'łÔ‘ˇjm¤¦;gc‚&ťBÎĐ" ˛÷æÄXdg?(q&â©A„°™KéH¸˘XW!—9;Ä‘Ř 9émĎ:48-Qh÷<•Ő™]O7 xî#ܰKÇ ůßřsVqc:×ÖE‚ˇ¬NN;ôś"0hµ@~SznevJ ˝.Ő”ĺéĐ?HVĎUů{rŁnzTd˘„äŮćýËÓŹ®¬˘ ‰uMM‚đşŘŇMt¦ÔćIeyPsúąŤ€´m'Ů"N1`ÁÚ¨˘-IŰ:óR3ŃXĂJ€éQĺrĚčPS má;łźáo%ďz«PxCá:°#W7źoją˙O®«ET †Ďá{›®ţ&Îúç_„¸ś«VĆĽ~vbKĹ;˘‡Ž¨âŘ0řŔO~*Ź“®öĹ­˘ľs€ůp„ aÁ·˙ îLjÇdť±Dü€˙ç¬kŰč·Ćx÷ŽăâęfĎw{ăTŹ™Ť€\ҶiÜX$˝÷¦öţË@öv)UâPMM'î”ćď6ɉ—HÄ%“WŇ]šű&˙“‚dÄB›JWÉÄh$Bâł,çÝ@7 ©82 ő3á÷ ϦkÉ4Or ĺgö6Ţ–­Ů”(x~`ťű—,‘U\űSü)W˘Ą¬Ü ˙w˘–Éé÷ä:ďĺĆń+jŢDá_’bb9Ü3G’ŻšFt.Jä\Ń´˙ń…˘!ýlŐîĎQż«ë÷fĽ–k㙝ۅż4 žśLŹk5ĂńŤ¶Zk‘E3?·‚ŤC ]»KB™<´AŰÎŁI°ŕâÔ Ú®öţěĐ““żňˇ…uöZ„ýő— =ÉĐ®A+ů4†ňiwî¤zŰź÷#1ÁĐĂŔmrÇĺýđ®ÉU,ćx÷7°aهË# «oe­i·ŞÖ¤Žwz`»y˙<…őăŘÄěkţ“ÁuŮbz÷,kÇ||÷Ö/ĐlÔČ„*Ý/ýăőŹż©TPëŻD©NŐîšpEHl#Kť)ŽKB앦/j3±s(#ĄYšľd_Ľ®#Yçĺ”AfbŘ„2°}âéÉ4BHyL!O苜O€ü<`ŃâäŘ XĐwŻ0 fŮŽ1šöď¬! ÷¶DŤBZ±¬aô€nzP hcćJ˝§¨†çfY+ w"ŕ ݍ鴶ކvŚH3ÇF=aLŔ~¸őź|7@ ău‡q[˝ÇťMó ´VÍüëÎ[Ľí÷âřÂ?Ć×˵…aÎW. j` ©ĺ^Ű˝q­§lĺS¦›śÔŚ<çŕmźStE{>­‹cŽßl/ËŹĽgĄsEżfڔ璜psš˙+˘Ź}/@PŠ˙4NěB!ŁpµI‹V€3ÎäóŻ›.Ĺ]á)YĹŢ˙—™í‘lŐ9k5š÷ĽťlŇ=TÔb1}1WšëČ\)śđok»ő Ú>SÇbî0p2AşsÝ+íí`‹Ăńf ôłWRŐřűRŰé[HÉb,€Z ¸´K†ÜĄ›íbÄíĄĄ'ëCµ™ó#5)4{†Î€ÎyăQ› OŠź…ľvŇVľ¤ÍĄ± {r7Şńć[ś’hűśM§¬.TuĚm—EśĎ÷§9,{řXÎ>]—X=kQŐ¬¤;[Ť2¤7nČEüYLý3YŠXTbX!Ř—=¦l{ěîŕ{¨_,„ńlÍ$KjLčš<Ú2l;‰ĘÇŮWËb&´“ 6ă%Śś$Ş„n +ĎŃ‘p¸ĺę<Űź˘w03˝@] ÖÔj©>O`™°Ú‘-·‰űŃzP2çź-ľXÓ ú`?qjŢ–L‰%Ž çÁúžž%+.R‡\ \OWwüşŚ{ ŚrńĎ­3,xX*Üö;˘# ¸Q# Ůë#Ü"ýµA˙v~ÎH·čOáąÄnč ”÷ĎŮ"3#¨ŻW7'hŘä™=˘BşŘŰKŔŠ2>Ź˙­żíô:í%zż.ŤPă;JöDÄý¬ósŹÔ&,JŻqŐ ‘¦źË ¸u/ ©řÝ€ŕŁl˝˛ lT‘âţVî9[.Ýqőަ†÷ăHę*´h‘ϤŔł *Î{e­ĎȦ„văy:řBű}<ńrÚ«¤ň(öąÚëŻ_˘;;°•ŞJćnďlüÍŁŹxÄĚĺ lŮ śSZř‘3§,{Ť<¨•Xťłujě ‡±AóćŁ1sýKʨIŕLŞ€ˇŐ?cg,I2„Ź´ôVőŵQŐC}ňúľŇz2€6ý¨Á^©Ż†m†#mÔţ3‚íµÂŃĹďpATy˝%˙sźQčú<;±őŮŘ(Š!i“±Łşv2ł_P‚ěňŇ2ňéÇWˇŰÍY;-’ĘU™ s@N–3Ąśŕ’ýë9Ϧ/Ą.—Đ•‚¸…˘ŃSŔv˛ÍC®}lő t쥖‘żJ1+ŞŰÂŐk\ ą_»U_ŘRłg®eŠWĽčv>ßiĎĽľ×ÚďJ0TÚ´€a¸M·‚©ÉęÔ`Ź]HĎN´ śĂZűâ`ÉŮŰÔ%ÖÉqR%B)4ṇ!ú‚ę‹ô=€ FZ}i Ő7N×y†(Ť«°O˙Ť(&A›Ěn ÍüV’Ţ`(S Ż1¬…kŞT"řÓ2Š„îsµNµöř~48tŚ˝Rm›úĂů‡[bë$¶„đ©2Zqď¦3DdZʼnüREĂđ¬«îRŁGĎř…ţź›o» żŰ»ś¤â Çk~ĚďOéT[; Čéy¶\ţ‘OlşŹŮE7†]^#g°p˙‹1EËá¶2\č5Ďm„c#wVŘ›ó>•cˇ„ˇ`ť˙\8 „ÓA64J Ş+Vů†9}~§Mý“[ë~¤EWŻýˇëŕöÉĽxŚ}§bÇ70ŢŐ?Ö§#cŮ}ń´C&úf# H^ŃăţřA ¬)\˛ă! ßÓůŤĎ‹ôŹ]1; `{ óăŔň+ eÝă®XĎŽçšk¬F#^áCš‹°·I˘l8Cw53«ŤPoľtéz†ŇŃ};÷;CKěŽÁ zµÇa瓟Ź2ž[–ĺjĆońšă]J±p6Ę…Üî,>“ĘRŻńÚY?®·śTő^ůÝOHł X€ŰUL kęÂ/1ő§8LP. –ÎŻj¤ –÷2»PÄ8&›r;í§™:…ĹęůPÔËLE§owÔúžKYž\J´őŐow ˝<ÁQęď_:×: Ę:ť–Ŕ3Xţ '1čŐIHSË„Ë.2÷ŇeŢ´ť'9łR_1·›ô`işMčË’"UČ'ác›ü¶ÄNö “NŞ]đűâď垬âQ.ą ä!PőÁ­qîÉá}vŐEŢ„Ku@ą'y{IJe|>@ŽřF;“KŮúŐßQť´ä¶AôÚ^ôÇ••ÇRŠ(”_ęą„çËE]Ȭŕ,#Ľ ň‘ĄŤ” X0AÇÝl(žŚqŘ_‘:ĽÓE;ěcqRÇ4ŮHýuĘÁ”­–2jŠÍj·· se9Ăs]ŤsVH°[d°SÎňÚ4ŇwŕŢ:÷ŠFĂěP޶«A™’Č—ő•ô?c˙0l¸× q&ĄţÚâĹ%Ň«d^Jٸ *“Ăş•7x…uÖź-ÝkŐ~’2Ý•üA1ččćq l˘€ú0´ČWçTż=ŇpRšGâVNŤ6,…§Ŕ >…AÎj“âd3`;‹k$Çe3‹@x)ńÖŐüéÍ?“=ia)‹ĺf%BbgQĹ$™÷yl4§§>hqMÝiĺL>D6OňŤŻx»ĹÉđLü™C¦)ȡ`u^Ťţ´[“ŕ‡ˇ{@d=i´ŻÂg9"ÜSśdV%)¦X!AŤĎHžNŔtj¬e<Âľˇd«ŰęiCUÉ5‚ŇąCâAŃIutÂÓJâQ©3Q=V+Śă˘‰AőÍť Ä™%„`µö1á‚$őČceߡ]^Txnż'çD˘ËÔl¤¸inе;µďĺ'‘rć$6ˤîŹ#…öüĘni»ŘĘo­.Q 4“Ú-ĽúŔ€»÷°ŕú|>Ƭí¸Č»\©o´łi˝nÄPöRR ¨-—Đ–+Â8‡b ™Ł˘Ń˝Śű3b§Č©#ńVçËşöů0:)^‚N˘»]J˝×ﮂŚ;ęĘÁj Ö+­ľ°Ď0#µ„%µĹhĺî4 ËËC§Ą˛&÷\­ş*E¦CĆ{kÚĎâ —ěŐ\-KĽvÂż‰&P™=ąČf˘sŠőŚë˙®–đN«„i`Ůď÷Q Ş&˘°mŐ'ľµÍąäřÝť’ZőBʆ®S[x©šĆO  V2™†‡ĄÍ0™ŻŮÜ•á=~ÂBęáÚ<:$­â•Ńö€˙ó·W]ĐkYżĐŔ§DuľhŻv§Ű`ĽK06 .Ľ#Ďb—=÷m#ŮÓJĺK ™»‚Iw‹âToż…gÚ„x˛"SŮüřé+p$(^6üis÷ҸćßGF˛ÎKś± śĂjŰo$äUÂ\ťGef»[ č-Áąˇ¸Ţ…Ů3‹]í{®`YŃ{6ýü±»_ołĘ±9ĺĐ(–ąO–é ”{±ňđâP ĐŇRd›rĚF~x °]jjÖôCöˇďş·ŻŕČćCVk<ŕE=ňHčŢ?V‡…´ĂďĂőÍpJ?ŕđ.źşÁüMĘż˝żěôtąçł|ÔĐ€WJNK‘+ťmăĺ—źčëVžăľăşę.?­=ćÇŁ¸őôal*DвcEĘp/´ĐU™Ě‹r ÔW‡×ܬś<͢aĚ~mÎÎťÎ[a4ń ÷Ö5‡I‡sĹIĘČe źűđ(wŹťŤu—H_ěŚDzöĄqżsoô¸qKGҤ´NaAÎÜ>NčÁü& H8w1‘‚ŞęeżCg KÖ”F4FŘŻÉB9¤¸­R©˙ů*”Oc^f&ąŞ†@ýSbÝMźe1é¦ÉÚsźÖ < n˘žyÖ§Ů×Ĺo=ăîţZ/ë˝ű[Ř•ŘĚY<(ţ%xR7ĺţM“wÎhď6MçÖÂ2´U} âńĄË?bvPň ýcYÝ˝Bß.,•Séún3ٰhč$,Ié%Ďü=č+ţeFTńźT­…Zaϱęs%ÜŽeŞ•%$ĺK)pł†€.%ÖWŽb,2úÔĄR ”Ž/dz2'5čţ8eZĚAESM)"4Uçt$ň%€uÂľäł+Ř|¨6ĺ"Ť¤ÂsĎ˸m–»¶ő& UW(H/`&‘”KŮÖŇ•Á©j˙ăČęŹdöĂ^p~Č ňó :aí–`ÉżźÂçĎQd?ů SćËE'n1ü(Ă« aŮ6H`áž´ŹŐF”¬K;¶}ą{F©A×Bő¤Řî^Żű1•”“ľm»ᕆ‹ĽQ=¤»ăq•,[=Míjµâű»ŃoűÇg 1t n.Šŕ/ÄÁ)çÄk̨>Ç^5— ĐąőŃ÷żNn§ýŇ;/Ť•nř]űÂ%ŽŠóü޶|¨ć(ÔǰĽČS™´W٬^IÝăí­BŹ>>¦•řTŤ©oe˝í`Ş˝ťěŕ6!)¶×Ó&&- §ďđ^˘¶™;6ÎůoKüv,‰¶8‰ˇ,ÝMľÂś×KÚÜÜU1—ÚNɰ•ĹgPĘ+¤rř쏄l_ję&/e)IĘIp5:H‡±‰xµ^#Tľ‡R´ôÝé»—b|’ÝďR˘ÖîľÁŘD9…dmrOµé‘´ED6řr:T[´ßĆ·ŞŮż-ó[ýÝKČoŰăőŽĚ»ęˇń µqć5Şt0đgÝfFÂŕ/”(9ßńOš_j¨ý3cx4V&ĎŞŮđ•j€ßi»€óŇűžůŇ\ŘmŻŁMpăwwLEßRLXhťÓdÔ 'ŐCą¸89.‡©j…IöKş€-Ő®2Η¬Üń5ň÷$ «ŢÔř|+|hôJ–’CAo,ÝŤźâWµ ú6Ë–%`řŔO{w ÜB'fo—VíuŮ÷ʙӂ4_U!wS[źcĺMA-Hbó/a©«[-†•Łčí|áí7°~¸ć×ÂK:ŹĚÖščnx×`ď@‘Uöî‚Ă-ŤÖ”eďëJÔ”Öôôá’án*HZ'˘t‚Ť$y)ŐrŇ#’˙Őn_±ëěX]ŇY©–—*h k@p ?_©Č…Fôk¸ÎMK ›cź ÔfÂwśž§¬­ y—[‚ČąŰč‹kM«Öŕ Ď—RüKYŽťî}]Bíű€˙ů˘á—, “˛( !· µJ¤—Ö†ý÷řJUżÚ«XŽşv[î“ G™:tQ.2aˇ—0Kĺaůâ )ť VFÓąÎnÉ"B9üVÖ(& 3µ6Ô…Íô3ąR$Ô5«úö©¨ţäP[śŤ=¸rŢQyEţ PřŠýĽ@ĺUyDˇw&fs‘°o¤$aîN€bŻ#D‘ŇĹV·Y4{2ś€¶űP!Şf-ëÖ˘”Ŕ—'1«â[XBVŐ˛ šĹpŚiDç~ xÝžĽŕ9ł67•ť«ŁDUzŤţ`YjMÖ“&_¤;‘4 ń†.śI5ďP–leÚâ+Ż]Ě»ž@Ét÷W!Ëř‚čŕ‰:áU¶Ő;łGĂ‚!Vsö}€O/ŹqZ851Ńů™‘k4"ň4ÝSĘš*ĐxŠ?ůßh|©çʬů/:ë74‹ŮţÔńr‰w{Jkîť{ô”ń˙´§3[§Ůdň¦Â÷dŠĮ̂…iĎî8gňĺ੮8€Ű źÜ"™“Çşˇ€*ó2Óţ_%j ×â§x‹ď^ŔłQćĄ4qĂ—>™mĺa ¤aZq>˛ ‡ÁżĹĘVcëĄZĚD¦qâŠIëëˇáL<'ů°Íc+ql˝ćeĂ^Cncëo`ĂhîĽ:ÉWżđĹ”żp©qsŃJ¦ˇÖtń5ĂÔ¦k5—!ć´‹%vN6Z‡¤ 1şîv×Ę˙Ś'o–ˇÉwpTŚ .Ľ÷řBö9T‚#4f ŽSŮYłôxj ¸V˛í&Ů#„ĘşľOó:ź’źZLäď•Y*5†¶4ÓĄ;2Ř&Ť©ˇ.˙ ‘ČĐ„ÉlÖ šţ$‚Áł´´ÔĆ {ŰaŚĎpŘoPÉu˙· ł.ě¶%h—Ě]˛ Ň'B>*ť‚ME~Bó©ý3ćć 2ćő7ôľP/ÎüŢ©¤vĆÜîΕ‡ďŮŹ”]Ś%PQC°ČoüÁéťť‡ŁOz¦FY7ŤÔľn Ö|5j([Ŕ‰®-!NÖMËę&pEhP20bڧ´´°|“Icoî«ÂŞg Žä¶”Wőýȍ̆I§ŇnŢÍ<·’«íŐżŐÁfç⍛'mqĘ•€ÇŤ‚Ăő`%–o č·µµ‘EÁV˛ńĂNŢÜŽ#Ů»Eßň7ŃG?ę* g¤ęÚ:¨›óŔMęźHj˘ůÁ±j=©ŞsSg±?„ĹhÎýŤhŁE€ŹëŻüťŃѦe˝wëť·]z-Ë\řŐŇŁÁÓő÷?á`†nŢF'ź™®GŹ8 Ą‘§Nřô§ŰŠ5¬V%QźÇű†w+XľĚ{-7,Ë]l:Cóˇ}>2E ßěT„.& ę^®ŘÉľ(Ú)O¶Ç’:Âű$::ŘΞm{,?ďä…ő8%>•ĎćśoňAOÇŘÉvľ•;Ç”f`ĚBqÖ®ĐAxqě`\ë=X-@ŕ)ďbÉL|´Dř*- a˘PfÂüp_­÷3ϤĘëwÓh´Š®ŐŘ}LÖ×tM®m‚(ôaŠ‚őVěÝ©żAń1®ł­/~ÔWąFÄM;/|¸[ůůGeröŘB“R^:@‚pn“ţάáĺAÁśÄłŁŚw˘OBR»€I_/=Ŕtí6µ–lŰ1D[1‘ßTČŽGĎ|^“wóZ0AFš‰2šŰ·˛ŕ”đąÉJJ©ý´vř§P+ĆĄ·Äpl]`Ł?aJ)EĎÍÓpĘőIchçŐLĂ’ŢăߏňĽîC\× 2ÍŮ}ÍÍV—ŰÁ…Ě®G}‰˛@î©ţńá¤'TˇéŁćźÝóËL?~|Î/Ď=żSń5•Eíçŕű7‰Č%íS)E„ŢăŐÝŔ>@äöcůO˝P&’4|ńc–ńjpăĺß-ɦČń‰aäüńY*µqHWż5Z=Ď;ű8’¤0ťîń›á˝V5„Ô»ĺW0´ÖŃÁ˝´ĹtőŁ0 #bŠ@—tË; kÔvŽŽÖó2ĚqY52Ř!Â}$máŢŃ´{-DĐÂvjćň†›Ç~ÓÝ’\DńÚ”HçÝŕěÝ“â)§Jú2ĽsĹŞl‚´(Ťé•3ăTÍOç}çŘ¶ą¸ś˙Lş·†~Řţ”Ăq±‹eůëLY0]c?ćéúWE×ÔĘi/]äŘF†b§ŕ‰văM+ąX7Ď‚5ˇČ©Ł?°áîĽđěZąŮĄŃÔ>ˇT0˘6•¸´ł·RĄŔ†ý'K»-u`C)4‹›­A39¶3FŁől…Ě]ţÝ*˙'ţÝ,j%Ë©’"` 6´Ą˛EĎ»E­®ÓŹÁVŚPďś Ľű"źÝŠ«ön,YĂY˘MŕŁúA'Ç„+pXçüm\ďć[µď¨<4čĆŰ/âDńm– ćźKk6ë˙$ů";óAĄ'‚P¸üČCđ'ô(7Ż&áf«ćÎl ąň#j(Čč eŢezqe“Ć1u÷ń×2&¨Çş#WşŤź¶Řc°ÂóÜŠčFčťţF{‘—‘÷!e˘»µ%“€#ęIqAKĄď°đbśÔŤ—e€ źzKtżŐ4§ű10‹˘ě_yŘú6H•LşÉ¬µ*użycb\%úúćľ'Ŕ­}=ńIWưL¸ä—Ž|8âX‚¦h$RBZz33ŘžM'B‚ô=őßĆäĎ®š ~ÉY Ň Žö}m¤ě›:Łş¬Ř·”A…úrŘ+Šđ*o¶ďŕsżĺ&ş[ őÜćTŁ ‘ŇęIř’»á DďĐŠúőä'­ČăMIşs_ň¬m)iBáVżů Héâ3f6<źôř»đ™]ŠşŹč_µU‚„ţ%u›Čâ‰Ĺó úŹVHmđ¤€=µżoQ ;ŕżđ'/W™ýq{ąéĽK@ůŻBpź†á`ćâż'_»pAŁÂř;Rß›!Pç۵®M¬Ň…t ”/t`ż&ĐcPďs$Ě"ŽAźĚ3†ń6sk-·­é^$ÖCIE†•‰űßyTIwťăĺ¤4%$ůLţ¨vCâRÖĄ¸ Wa$‚ř W´1쬸t(Ą 3ZÎ[ňOžĎëąuÚżÉb š?ti©fŤK]A0QmáđŢ÷qŐqD€ iŚó% xT@r[Gyň©‡âă3ýU!č@;Ź7ýżim·–«ć°ĺ-©‘ß°Ń÷Ą č˝YEc ŁC;‚ô śFŘşů_ôŽnź-*ĚüČ9qŰ„4CÝŤ\Š/N0¤z›6RŘ}]ćůPXâŚőK€oî=CÎ>ô†ęÓ. îµt¶ďr%OĹĘúmyë¸~Ś26źËó|ĺ3×±±ľć™¬aš$xSÄŃZĹŢř7Űşg}ąÔľd=ü[9ɉ#G+>e}Í­‘ -PuşúŮÂlUwUĺé }(L¸O(íŽEcl¸Ž˛ÂŠ0$ŹŐ1â{^1±á˙v«J=űw-¨Ał+3ť«ĹŁMČ#Ĺčhm§Y3®Z˝m3ĹaÇp¸¬çöQ\n.3h—mk%Ö'"żíQ\h”żBŐÔkü/ěéöÔ6EKŁ=ąWyäCzĆúFĚ]óď1ň!4ĺłµéŃhÜ”đ1¤ď{Íd˛  Â^ŔňQg)Ö$¤Ą¤âL…g„dhj„ŘňÉ=ű⧦îđ¤gĚÂ8«—–ťś>8ŤN›ŻV˝ˇ„ß—.Jľ•qç(ÇŇą?ϦŹyy©0kĘÓŐ™ł:•:˘ F·m;ű™ZµŢĆč-F‘€7ŁĚć$)čYú×Ăů;ĽŔ%1đ!î* Dd©G¬ĺ¤ĺRĐĺ’g‚´•ŇřuŤcŔŁű?Í×ýrbě{ŇLAžÝv4@IšM ç.lóc÷ĄóÓŮؤ0Z—Ő!cRpŽ=ôť¶=!ŚwŠŢÖşnţlUqá© ±§.´N?ťóőÔ zÉĽ“$ľvJ„{řĘŞý ł”}ŇĎîRśŻNšůç”ʶőËÍU—qGŤ3'†ë|2ŮßK +Źtěš jÜťü«şzčć'{' XáA#zËbYÁ…^ÖžÓałłŚ´´qPĂď ÝŔ8ů7úţÂňţděÎ,%R]lŐÜ&–’ÉnŽR•‰«›)jÓŰZőţîŮż§jd> lľ­>ZvVČ.>¨jZFŃÜB-źľ¬†–‡E![̨çę!( Ôt6ŞĚŢ<\ľOLď«=ŚdmÔ–[®!$oTÜcÍt BŘđdČ}I›Ď:7¬=§.ü!]=ť,«%‹š ř÷fPž+Ç?‚„§§ę»ň/3 é˛šÉpsh0MĘpŠkË“–Á«WwLqAsÜj<âjÝFi-…ÓË ý…eŐs ŻîčÝ}VúPRfż—DhÍWh±=;_¤-|söÜRë b@€h€Â70ÜÓ„A2ľU(” Ł™ i+Ü­ýřOˇw&Ł5ű‡˛č˘üŤđ`rͧ©W‡ű pŰŁ8‰+şáUÇ Ë'Đ–x’űit÷@ńW?>˝Ĺ©× @–ňş/J.ŻÎ­űŢűÓ˘äöhÔ´ň(·q‰B8˙#éŹâŠłÁ:÷ŐS \ ÚÁ-ą±ĘmĽ¸Ú—Ť@Ú%tŃĽŰiá­Ŕ©\˘N`dt~j]#c›Ď3žĂ=˘» ôů4ŮômDĎą%˙ü:ýĘhúŠŁ=ŮąkĚá/#ŻLÎĂűëŘ‹é’"3ŞzáŞŮ^ÇO[qůó7ÄÓ¦]&ü0Äż^†ů‰řwĆ ;sŚpÍşD$îîź‹ć˘A·Siă¶ĺł"kŁŢ÷Sşđ7 ‰ĺöľmó•ĺ¶ü†Hp˙ă;űái:ZÚźwćmę+$ú;f Ďů•-G}ŕ]ź[NÁŰi(Á÷Ş_ěo«o1§qŰ ŁüŢšá*Ř,F ¦IN©x…gá«WDXŁébe&ę5]Őa]ű`ĘE® B”Wćü˛2Éo]?±3ŹU×Ü÷Óźďď[KÁ†#ÎÎ Ő:5Gp!]ÉC:—®ĎkTřÖ"ý{ňC©Ŕ‚ůęĽbś."Č™ž9PHĂX-ĐţS=Q¤X4MńŃxÚ·KÝ଒_–žl·´Éôq2Ýsč;”~Hf=×,Š@-Wďóßvv°ŰW¬;ílhqâ ¬9ő‘‡E…Băejř® Mć€ÓXŚ9ÎŕĂŐU= ‰Ťm§%BÔ“ţS|@ş:íÉ­ĎMĐ“´O™C¸š’šÔĐsŁĹęAÜl¨ůKŕ {ł[íkęăé1śvÄ!Qš.xÎĐ5ÍD!‘tnřĐ“bŞjp´‰9Ó:çč8´eZ5żk0ŃţĘŚF¨K #©ćü»ťŞ4SíŰî†Î(+1­!ŔřEć¤Đ“$BKCţhî4ýčgÎD MŁč(Ť]Ô®™\‹“PYňHoŃ•hËěuSµ#ŕ«sä%bJ}Ĺi5+rŤc«•´ĚFŚěFóQPĽÁޱ.kÇKňŚÖš‰hWÖ¶č Ĺu:ëŔ˙6‚,Ř#‘¸©K·źÄ·…ÄĽ|x),Ź•mŰkW+Ťť)LLWâ©FŇQgD|¬]"Ă4_BGď÷úązVçMWł†!ŤŹâîçX÷©‚č'śR·‚NdéBbŠđB„‹”ňjŠ –o•žóBÓ uĐľ‡lŚ řŻÍoX°~mlŕa…ęľP[+VS†ď¬ QëH˝áSżxń0¤Y¤ýĄs‡śŹ‹ś‰š-ŁeöÚAUĆ@+łD±ľsüo_ţP~¤/Ü l8Í;fđĂUö#LĺŮ®ě/ořDĹçč4Ýúľó„?®5–Á#(ţňOVlz±Ł»^˝Ć-ˇcÎÖž—9mG-*…˙ˆ¦Gę’™,!.Gż!fŔ&ŕ˘U@ÜA®HoUJ~\o……Ă㢖üŮđůš×ok-•Ş$iŁ!ÁäkCwĘ/Ö €ľó§ÍŰĹ!ţ$¬¨zkVpôf_´‘[Š7 0•ľ9ăĚăĐŽSůvěś—ŢÚüľń#Ú˛)cgűľ‡7As±wüBŰy]é7`4Ŕ €ĺţ¤Y™ nSX[ŘÇŐ­QN%íěDÎ×-WTď˛E»ENx_!wżačPč÷ÄÎć§Ć ÍÖéŮ/.n{‰tOô˙ đ›®@šYž #tqµ‡&%ç_šďőh„É­ +7›ŰťČĎ]—e(9{¶!’Ž'Ď!Ż7U’vmN&ÂÚ Ň ¦şó:¨ŽŘ;9 Ő†«TsgËÍżíQ7‹xŐ“BČCśgţk,ÜŻŻüoč(ĨBŰ hť€‰Š &Ätř1~@J-nťÝ.ŕqb6·>V·až‡Şžŕɦ^nEšQČí=Ş-'â ü˛®ąClVU»‘\|óÚžA:;Đ~^ű·ă^Űh˛Xůjź×pşsOĂkš~­›{-°˝*/Ißj›×ŕKĎb„ů˝_zË'7v¦‹XLCu;IU ›őgž\÷Ą)şŠ;ěŰđíËŇüńţ€ˇ9y‚fćzŘ˘Š‚6,_Ý+4‰p˝| ߸Ą˙Âo KŮě&Ů”^V€•hđťP`ŹßËa‘§Ă8OŰí8€Ţ™Uý&93äc?aś`Ç :˛^+čYŘW‡%śŕł 4BĚDKŞöř]xđ(nj_ý}§3Ąťü¶|•ć7ů*ű‘­Ź©Ä^âËΧ|¨öěĚŔá&–ÇMQnŘëä˘(P‡@aůkC ß:ő;môËrp(µbˇ·DÎë˝í±9–]!š Yʞ%óű  é™Ú›%Në‡GŢř”č!!­-_7â÷ăŽĂ÷śÂpH-‹]:4öěŽ'{ľÂćŇż H“ÚüöČÚ&sŁ]dĄ™H9ÍźĚ.Š Ľä6ŕ× Ń›­”â/:őy"` yŕěćL^»PäŹýt8twJ#x§&I&‘ĺŐ=6_HÂT;¶®8–N6h¶+ÆּÇö«ĘöOS6Ęâ± ˘Ş˙íZÍő$ŰÓP8)äO1˙ÇZÚ6ť×T0pÓEłŔóg<ćAĆaźI0 …ö”Ö¶h\ŘŰnŻ´Ű Ë#φńꬌG2´«0j˛ˇ¦›îĄ¸,cn"Ńvm5ŇÔB°kĐ6RůčaĹKŇÂ|6ě8ď™ÉňýfÁťlzn4yRĽ©źżÍŠŻ‡ěض‘™ 5Źd±HűqŰÍ2›—ĽM‘‡"(59MÓ˙ŘünąĘShśAŰË@lâ»ýi#űQ„"ÖHehĆ"…ĎjC‰¶OâpŞÚŚŻhK)ł×j„ÔíŁą†™q2ť=ˇ 6Ą1ľüpS3ełÝ‡lł†-çy†ĘzŠöc5GźýKSu6…Ĺýö€¶˙ÜĂČNŁ[ćBg›& ¦Ö®oäWí÷Ćł/[i1G¦čů/äΙřéößęÝ®“ë&˘Vů8ÍJĽËtüHĄOS6Ś%}˘€ ŐÎáÉČŘvĎ.'e3˙°dt÷ cŇaačŢIĐ&›`>-đQđ¬Bđ5ś ˘’m©mESćD@ę4µ<ĆŢܱ—BŹ ňř $Ű'Z/×5ĎÇ”Ů.ٶ ÖÂŕY¶>QPĎĽšň50pç„z°1fi*ZiäЦ 6ô4n¤-őÓíę‡&>7ń\< …Ǣç˛k”}m5÷iäÁ±ďťD~ ÁöżŐ–rOĺŇóëÖýŐďÔ§Ô(φ8Ém›˘”V}n ¸%a‚éît«8ŹUMĘźôčWC)»ÉiWâL‡/bü>YÔ8kŻëÎ@%5Ž3Ă“2Ď(€•@´žˇTmÝiˇÄ/ú@B¨—Î8Ó”0 şčöp^ůböĄ' ÔĘÍ, •9u‘@9˙żGž±˝ÁŐ#uě?Ş,ËÁgzÂo–ś7 pe ăË&,÷žÝsAŞv˛ !Ă!SbzΉr©ŠóëĹţŢk«ćľŰď ç¤?ůĘőÁŠ´y󽿬”u¨<%kĹ< Ő±L9Í!"ěÇĹÎŞŻ!˙SbŇŔç˙şfďËv©-7Ç(˝˛ŢËwĹd©şS1bKźëKÁV˝Ůě‰w4sáG.L˙!Aż·e§ěô˙ţ@gVRGÚďîHa9ÂjÇ8ľűëQv ôĂi4q™Gq´¬ďTĹ«~aŬĽŽ˘ŕFÔ,{0yĺĘŢC»F&±´Ńřُv‹·űµTŮ7‡ë(7u>ŹgŃJť>ôvéŹcuhfŰ‘pŕŰq·äqE‡Eý<» úŘ`»Ńfř‹ß“šˇM¦%Ń4Ž9í3‘‰Lô@%ri •)ňÇ™š~ĹÔă<›ýˇP 6QÍç3Ůôu“ăg)Đa沯m#;ىüĄŁoŮÚ5ő˘®éż¶=ŇńëĐÍČâZł4ľvxÁ ěĹ'~¦w*[‚üCĐ|ŮţbµkŐĄĂ‚0ľF®>źôŕ` €ÝÄÔF^SČ‚LčŞ˛Ż˘ł‚š?~u”}¤đ‡öňś-Hö7Ü,>ĽE|Yz!v ŞIśÄ68ĂöSŠÜßČťA„·ˇ“DS4źś¬ĺ^Ű]ćTY§v¬Dą ĺŃiĐĺ˛B†·ł9gŃůrcp÷=ň"âZLjwëÄ0ý)—bŁXzý…võěö¦¦â‘L‹n#?“¸©˘kkY#yâö“Źö…˘©‚ńVeáfI1ôCl×Ěž˝ßľOŤÔ$N_!ÖŽć6v¬@¨W§ś˙ţ“ ô)ő\T?VK-ůiiÚoŰ\‚Ď6*’4'Ě)ľu’kďťöçIšťçëoZGąŁę >¸n9QřîŚů‡“p—FdAFŐ %{gżřż`a$@ěËäĽ<ćzčďŞęŠý†2!×x¶Č`ž†şÚN'ŘłŠO.ꔉ‡O”tÇ[UĹŚhԭ˲~Éą„ň"§3vIŰéť¶E‹k›Ă¦5+VýxŁŔ¤ KŹ…ÝŃĄđ †ouHŮĘsrF7˛OťmŞJ‡Ď ünÓÜ+9÷sŇ+…—ŔSčśÉ[><ĚŁßF"bśE±&űŕľö!q’7˛6$ÝâéŮ™cÄkçÄ" l4™ÍebyíýĐ‘f!zÜTuYFČ7a‹ďĂŻIÎÚé G :ŕYKçJÖř˙łĚżP…ĆŮšýťÁÖ1űË^°ßŰ ÇňŞAJ¦Ň1;`Î_ž+âÇŕMô±%’ÖŠ®Pýµx‡çtH„üÄšc ‡±É@ń桋Íí®°Ř6é,Ë{ç”űě_ĺćvĆč ů<č 6áŁô˝(tWŤ ‰żÍICâkśňéŹ~jzÖ‚őě§ŕ4(ćˆś2$ҧž“oÁ±á.łfÇÓ¤'Zň Ąeˇęmo[JĄŢ!ÇŹÚÎnTd{0Ŕ7€ŹU•ďFÜščř4vý¤N;â ăĎÇB—¨d ŕĚňĆ˝ýŐNť„ÚŇ\λŦĘoü„Ň ŻHDŮÜ—Ó´Ž%®@d¬^'hµŮ°şÍĄŁßJv„§ ݧ•Ţ)t*˙x¬7ű‰×f’ ?Ěŕ%tcŁC§!Ë—|Zł&*Ý|­.•Ć3,ńI’1őÂ6Áo<-ą<đ‰ş.î`8oůţ‘[ď3m|Rgäɖ_!¤sÄzÉжÔ^#8k÷7çE+#[4ŁŇŞřODćľ·f°×UJKú‚s©ę¦"cBß)dćŢ/;[şˇwľî…nŽ=ؾŹ }řҧ.:%ń ú¶(ü„©0®‚s¦k¨É[ŘĄëgŤoféö( ?äqďx`yö!Ľ¸†9hľwx÷™Ď-Ú ;M>9ô(e$ »˘ŘÎďfă·EHQÓ…ó#ˇ."łQr$XiĘ€:'ZŠÂ'ši”éý1°Čm“©gřĺWt_\ ócŔgŇ+ßM I2Ë#ŠHÓpq«#¦ÖÜvgkzܧ~<µ mŇ€9´¸ú[ÄW6‡Pu•G5Ę”ĚDđk-cň ·6}Íöp; úÄwÂ]ű¤ö‘µÓrĘE7qTĚ!:<é GP-˙©Ďk †­ß]’/ËůPE řáí‹účk•qEĽÖËnQĘ,ë>!gmůö“AË&$b—n*> ˘m…úá RŠk&…ńŵŤ`›ŔnĽÔu·ÓNi†˘nת<Ö-ť;ÚőĆ–Wä>0ر¶ś€Äa_±Ĺ,gđ˝;‚*Ŕ±Ó+~Fś[’],3čd ´žźĘ¶ţλ\i¸Ą*ů…c,ďň™ösčBk$5ÓúŇŰ)+d¶ÉJĺB_ůÍ"/d<\¨Í#ĆJó ć†×"5¨QłŕÝ™qâ§ű1áÓ]ăťrmEĂQ¶ČŹfP-מ&cČČÁßŘ…]© 媲.Ŕ5`](ŕ΋“4\Űß·ĎČÚÁakgÂmEơđňłŚťŽ—‚•"Ś´~ź ­cB†Î×KcĺV?ħ¶ŻE jjön"5Ýń"™+?ĺ,üXű%;ţd‹Ó(ă“˝M$Uz%aôîµň îĂm}U˛f¤;Kc[?ćpD+NďI}ő§,I™WŹůŹ/’ĺAWwßÄJđOµ6”o Ő©x’-Ľ×Á˛hĐŞx‡"› Cď Ď˛BŚ'|ĺ#,ÓűE%Ť%,Öżđ^Ú¨ }ÍšZU§µ—ô!X$Dč—ľ=V'‹c´˙Ô?é(o|<ş¬ňŔŃ÷˙»–DË…Çc0Ż“âNž¦âEˇHÜĚń «rIW§ Ĺ­6El<ç%¶kEĽMI1ŞŇÍ•‰]3ái˙ iÍŃ řqпIJۡň)Ô.vţ´Ř‰·b4şČ9ôqUđ¬ńPŁz·Č‘L)BôDź +óÓ8}n}±DŐ¬j™ĺŔ:mO…¬ź±,ŚĄIbfµG_VĆď“é/‹·°ÖGĚE4¦ €ĘĎmRH†]&~‹ŔKZöiq~€úŻřů7°—,YŐ>ře”ÚBJę „q" ÖRV.&i™ˇ´®4ÍFÄ4Be]Ňs´‡VYä w şeµ´T˛ŢĄ~{Ą˘,kôěŞÓýĚŽ X8[ŠuumQ,*:/… Ý0eŰۢéă8"rç¸`KŔelÎĹg±wÔM ÄźY*UŹPş÷L:¤áĄ<ëŽk÷ ¶aLŤâ_źo¨„ü;î´ý"|ĺhа Ś”1¨›rYë?÷L †L‚:kÂ@á)äĎdM·ÝöpŕÄ J’;‘ßKF˝Ťi2OdćÔwxŕ<±&„A' lŁô ¡ä˝ß'~ „w˙ä’˙ü†6!ĹH 9ÔFS¸î–~¤ą2UŮÉ“ ЦIfrÎd%üţdCR“â_´bKTLř -şl^ü6„¨m"@tabëNćyÓŚČfSR弦.Kňl0´›ăş‡'’á#U°ŘŮXS줸( îJl†[…oŰ"†#b{±öFŞťŻÇŚ7ý±9Żo‰  Ô‹9]ü@ ,M”żŰ|q°^Łđ(s÷—Ş{ö—ť I VÓR1X0*.€ŃÜPcĆ˙ž­şH¸7‰Ĺ÷ßÄ6srv|ăďŚűآÝŢB•őž¦Çf"K/:´UťŇFé€~1á0+‘ˇ×=˛Ó-\cpZě^č­KŠÂWÎí¤fĄA ýä`»OGbô)9şÉpęPţnměĐ4 ĎvÝNPrß A$v#h™b­đćdzhŃĘw}p{ß·fpW3GśÉlb|`«=Ťěô{Č›=§¶\ áĐá@s”Ůʬ-„‹ţäjť±-ˇ{ĘÝ9ÓŔžUé'Sţë˙uéďéżÂ”!Ńt+-ŠŢ^č±Ë%Űć©ÚdŢôe#Úp˘ń×Ă+:G ň|ő¨ ŹůőŃO˙X "ýałéîšqülY˙Żj¤·ßęmKrŢrýĽŕŮ%…,cŹ‘ĎiĽ¨Ş-śŰ´Č×%Ăj°šD3hđw‘çJöâ=}Šk­řSLÁŞn,f5¸8°N“ÓÜ+\x……-î4Đ/~¤d씯¶2őÄ1\,»Ĺék§)ë6ŐµIkšµůĘ ”ÝYŹH¤řţHšTZň9ŚMp2ôçUěrS4L–8˘)l`-ń1ę]6Yźěą“°=ťRűă}„蟋֚©IOÔ1ŹŹŘ˘îĎĄę":Y6'ľńB}i!·:ń©şb™EîyĐĐÚ:<8ŞF ż€”&¬jőĄĽO”/?qěĚ®ßĎ$ÇVĄ&˛G”ÓőŻú˘Bä 7p…¬ę_čU0HލĘ(˛Ĺé˝Ádďś wWĄUJń©,Nx#ŤîÝ—­2(ŇćV†ú­Ócwf‰×ähâĺe IŁxÂŞH”™‰¤Ţˇ•µóLLhOí†á<±Ý °Ú>ĂfpZÄ‚Ź!ěâ’™¨ŮŮ5ꢢ:A^1^Öž‚’¶Bw\qß/íčËĄ?­'@zÝaH;ЬËҲpϻ'áU—Š–=ú°%•YS‡ÚtĎąéLEűčŮęű Ŕă¸ěř!«ŕc:řł»ó|„Y[]»â°¤rf«°*#ó-DĘ[&ýk0äý8¦ŮFJ(W‹ęý–ıţKIa2”ąÇ5ĹZ”îôC€LřĆt>˛-V`­ˇcĺ$A’ű9jşŠÓ-íuÜŤ‡â7‘>0m tĂŇ«H ĹXQˇŞĐˇ1–ŞÍűů"ÉŃânĎQ#1J™gßép^kY ™ě^4@–¶‹źşž~‚§ úF‰ÇÓ•7ú°3ý˘(´WÍę–‡L…ŕŮ=oZ µ\Hźč˘붆ś§>H7(í%îéś8ă%«´.®C}î›ótH6äzlĹ:K ţ3ĚŘ:çéHřĺH_)ëqŔŢçő‡±Fu(¶‰95A7%ŐąG`ŕý;ýčc47IµŽ× Đ;rhD E‹\bEhϨ‚ŁźIoă¬Â‚}>}öY䱟g!+ť#ś|öoĎWb'y>C"†š.ĹĚx¡ŁÁęÎüˇ*Rąář¦pĽhűË’Řúňöä%ńOLúY‚Ăř¸!Šf<*}x‘M €…ŞÉdęŞĚ[‹p?}cU¤zĄŁz‚Í!ůSĺ6ş–É}řçE^c ;A(Ťć•a’PŤŹ€ź Z~ăŐ˙ndQń\ˇŹÇS™ …ýŮ®’Ą”LšŹr© óu«€0Wu~`™¬jLZÂŘ2Ş}UŁFpž˙ú„'č ßďďÚ3@ă] ¨BAúŠz33FlféO`đ32TtŻî“­ń¶_‚«VO¶Ń—őą‚ö€‹X‰¸ćý†ůŠ<2ǻ׋đy¸ßC™·0bp]XNLv­[¶G_ĂÍÔ  ´÷żĹGż“ŹŽ‡Ěđ“O|FłQ0袇žjÜVa—zĚ)ÂĎBⵓ‚Ă SÍđiěD‡€Ń@‘rëqbů LŁĂߨë“NpµŁĘe=žó ë‘ިč®R2\圤/dşď¸Ť§±ôÄ[q×­B§ę›6¨†®oaËJĚţqĽ^ Uß{dwťÚŚü¬ˇ­›‹qG‰ÂóŃ9źňťŚ\7)GîŚ'óęµLBß%ęÜđp/±áŃçxˇ„éňć!,ř=QĽ•äâ‹ă,ŻěŐ€gbŃŢ™ÎżŽ—lŻ­{Iś+~ p„ď´rm”É}hˇCĚw­­‘ylרžN@UâÇąV€Ň©Ä št˛YÂ9† ¶†¨ěkŞ{ń†}Z/¬d©Ž?1óďŤ,ćôĄÜŇ.  Ű Ő/,‹ÎUż0Ö…şc~lś‰G‹gśZܱď>cŇmüd«ĂF‹«·z÷TÄ…}~IČąňŞ;í3ĚY…¬/Ö<§YjÓú|wö&°–!=m9î;ŻNÎliL_ăˇ6Ż’łŕ·ě¦1R:NŔWŁÜö8 OŔ |ŰŃ˙áÜa4ąć ŻĐ_Ů+w厺‡q™őČ®MPD0*h2F„¸Ě¤1g$=e™… Smš (Ő<ýÜfż›op»P-—čö[®ęć}‰ĽŹ“ĺŁ ®0mÓéµÎśµ»vĺPßőŃ`ÁËsˇ'őxß1.ôĽ¶Ź¬nä¸ŘŰ8ś¶&Vő"ŇB+h$ĚŽ ¶°±Zô˛ZĄěăcôűiM.ÄU˝&Řzń ôňsşňІ¤=}9§AuFŮE—öĽчşcueQGHđ|ëxşĐŤ'Ý` rI} ¨Lkj¶óAÚë¤/Ă˙B¸‹Ľ±čí¦h±ŃWú/2ńÔ—Ă™Ůß5]sú0ôÇ­uf»M%Ň˝!K$t ˝K!îx3Aۨ׋yůŤóQE¨Šď¬­~Wm®ŕU_ńôß’ÖĘqvCq+ /*ń`ĘbNłß]ăŰ1;JEefŻűŽŐ.„źŻ®á‚nSUW¶cC­!]°ń"Ňz~€śµWµŇ1<([ŤhżÓ€řá¤cpë*â `âŇKBĽYÄzXqܲ۸–ČrFĐŰ©#Ńą{řańŹłÔP}_rá®–ŽŽÜÖľĎRQ“;PÉpérĄÍÜA·}Du6^'nÂlÍÓÇă?î-Ń”™ěGˇ“z° ` `‚Şj ř(—©L'¦…$Ď#ů11ňâ ¨Ç˙ö4.^3óUµŕ{űFh÷Ľ‹Ěz Űś7ĎV9€ąÇün;vţĽÂşsźÁĺ¦sä@D6Ž5ÎŮ˝•om`őU.ŔćŔYIęšdďl9•2Ň.€„»BË  "üŽlßeEۉʧbË8ÔŃë¬Ô-j´źßTu™ 7)ÔšoIUÍŮĐ ćđJA"}y–Łq븱!JÎ"püÎ04Q˙߬o\"y¶šcůSj“ řî …&/WiŔ ¨ľ+/;F }ÚŔÉiŹęݸmŇŽî8ÓMť é#ĐŠµÉé#^ 5á°DşŇrĘýü°k‡9™ ł^ŘîúŕÂř3~8’ĎLń~ĚéŰĄKM1™7$Řs lűC] 0Ć-•´)GčˇyÝ(nÍa졾őÝ"Öî‘띡Ş2ćĚ"hÜ™[/ŕőý«× Ěf¦Ń ę!Ďő†Ń0B±°_BÔIÓÔŁ˘iđŽńő™ăf„<,Đ<'©ĺ}b ±vřg:fśÚűŹÚťżo§'¸JëeőuĘ€€ąUą7j8áf#ő‘“hĺˇ;cůGIűt}kÚÝP¶i®ÁHju;*oµÄ1ngĆ ŔŹZ­µoÎúŢ"Ó_ävMܶK3>0Ő,Ń•tˇ“OĂh'P<á¶RE“ ńä2BĹíx úX¶`°°)2ŮšůwŇ:P\ť¦€5ő¤‹Ů˛´ÚŇ·_y=î…4Y´?ˇ‡ő“hR®\!Tׯ¦Éf2 ť¸«Ů~ŽüČŤłŞc¨üľ»âĐ”­żWrCpž=ľ»Ŕ*ŔFŠ–čSĽĎę8C"D§eßyá‹-H˝i¶îčŤŃ|ćšŘtBŇ–đDio¨ű‰qŐćeÖ°÷ä3I䍤Dá^űA}˛î€í¨ŕ@1›rľÇş¤iqwÉÜnĐđuĘ~Ŕ7“·úŠT úŚ«úÖÓKÄ•»xęŕsßÁČwƬyD˛dR• ęôŔbŹ–ÍĐxŹÁËŃŚ—Ń“o©™k*TG?(™í”BgSČśś^¬@E{ »äg„ B ź´äŦ8 su˘H{†Aă#ć?¨˛_€¤„8Őü¦'9ŤX ‚Ďm<"xŔäN=ŃŹ`šő‚ˇ,˘@s/`ôöŻ DĆűĎ•Ţs+]ŹlYY}ýPS’ÍĺOSŇě6ŕhl9ßŰŃÜ^˘ý{‡b”±T~9R˛ŽHĽ?jćé-MP$’]ďQěI˙Źj×»¬ˇłbĽĐÝvŤďüú¶z›fHSS±rtĐ6—vĆ ńýF~íM[LL!ţ0oÄ…Ź?x^ŽĂ…«Žş2tDţ`›+ڍ?¦Ž±ě}6Ζ‡v—4ŹV`O,~x-I!ĺQCɲwËLH‹Kş˙KČ?f±¨9„$‘|TÇ—ĺ!íižÎąĹĄ_du/ŁŠD2ŻÝDó)¨ËSçäyăČľR«I¤Ą|ą¦Űű—˝¨¶Gµ/}Ń·ëF"brE¦"—ľ-…˘Ť§ §Ü¨ZĎH(e‹’Цůą$NZÚxë’ď)]/wüÔ\î~¸Clj‡^…ë‘sşlöX'nvJJ\x˙ú|o=ëşFJ0Îýą>BÎ @7:fş|¬0¸ołç'jI?mJ*ř@ĺ üĹ,űpg ^Vq2˛ĹF@…ź~bŠ…é8âĆ‹ĺT§x«™ 3y69˝M"őÎoˇY»çž±đ&‹í[ŞŞć c‡ôű:É^@ëŔ¶A¬˛TŃ™śĺ%gllą î1´ˇóă0 L3č©5‚C řÝfŘujŞDAÝcóśÍ]ćaĽŁ “ődÝŰ^ž/2bBÓcT˘=.CD &ŻFÁ±X0}ň‡eQĎ4Cá@oŘôZřđ9r&—Ľ»ńú.{‹¬zZ„w)IĘ´Ď×€>·—'š+µÂyXáf 0Ó+¨AŇ&0·ŠŐş¦ę %ñ®49˙Ąu¨čGÖJÂ‡Ž‘&'$¶+Ľ‡ŇŠ=Ve"|ÖßáÚŰžfýë#TÄkÎŢEĄňÁŢÓßąŁáUOfKe˙9ÚŃOĂŇ­čüÍëŞůđĎ5đßóŽV‹ZÔ‡ę’őTŞ$Ńç […ń` Ý…Ő”˙!ÓW ÔKLŮ›ŐŇ˝¤kĚ| úoZ…6ś ŁŔ¨"®©—zTnb‘㥪…ĹĄĂÜPţÝßńc±÷u 6zŃćňśąÉ/\YH]śiÚYď ĂřbĂqî4Ő©*ýuŐÁßŢÎ"ľŢ™= îđ7Ľ×N©&|ËÖ™9ťé îîmŠ>Ł´âÇ(!$Y9Y•¬Ö>P¬…{ţćţŠPÂĂć-W“Ă€i3AM)węXL÷Ä rú¬Třa„ę 0Â<«¨Fť®YŹ”D+BĹONť7áŁĚrs>O0¨šÖŇ‚łč„o˘Ý)ÔŽ\)*F™j+Fâą™ŕ`Ú.rťR3±-‚rŔë­süÉfđn>©äWĆÖ;Ń•zfC=PkŔŮ ý}Dý&BOĐř°•ÖÎDŃÚý—4˙_hŃíTAלWÚźX~žÁ¸ ±rĂ“TÜ ˇ~l‚«V‘jH™śQłŁť¬öÎ1»' ±aTť.˝9ç$đŃmH­—íí¶Ý ź%]I¬lE•Wpő°·ěű¤µćmSµüüşB(ĂRÝ.ffµ/kB¤Í11…1 @+pV"âsÖ_(|C®-Xů˘žI)a†¬F´ä2\ę‡ÉŤď…÷'ć–ě**7‰@0 ]‘ŃâľSĘÂĄ~Š “Âżš'´Ç×Z"WĆÇ "á\ü0–’ 6@d =Ş/S©e®<x~'€` Ţi5Žńp7|‰8#Â4ˇPń˘SI˙íÁl,)?ŰłP“¸~ô4EßZăµ.ÇŮó`{řQ‹ęjőN:Ö j~jĹĎ~Ľ¨›,\OôE7[tEĐŽO¤łP ˘‡ę$ Â%ői3ÜŐHaóŹĚč*NN—óO4űŽ›HdvLM÷ŁŚš©¶©µ“@¦5íS#Ь€9Ü5®ˇdŁXb bľđ¶Ćhő'\Ć٬*0~|v™‰ ĘXµ *y f3r™ß¤‰Ń™ô„đ&íP€±ŮS~ɤŘjg܆‰č*4ł Še–LáúbB9S Ř›đŃL6,5Ť©ÄZ¶JB¶Ń®~ĚZďĺ–C< řűŹŹŕńcéMxÔ÷7L˝{l`"$ pŽzpĐ­_GKjČ%ąüëÁš.`ET"nüQÖBÚG(éךžN>Ż[ŔĘwÂ+ŐČD·(M[Äe×,´‡Ż… ĐňE%‘]ň©`)‡žÓżŇźŢŇ-``kTĆźN ´NáÚä8ş‡7ו—P))¸©6Ź[~%ł´yilë÷đűťS#Š4Č{óílgÎlƻٕ—8GÎä„…îďţ‡Śü?'{ßóDQ¦ľŕąRÔ)é0“ˇtâ«k`tU¶šőĹ®ć¶-üŃU%Áľ•I}0˙±q ĎC,5Śéx–ˇB٭ꯩË[ë¤o„í?‘+s%ĺf)¨yŰ ¦ôÁť÷gÜť M4äŐzÄľ>çö›…- Âr‘ R$í]+ ˛˝ b=ôŃ'lŮżĹúúÉ•+:%>—q6Cĺ5ßQ}=?ɱ»9Ľ¬•ŻúB,±)xźe«°ężĄů¨Ş ˘NP?ěĺܶîiî˛ü8©ÇĚ-$Źf5w%PRŔϱŔ‘Kł+l8ŰÍkyŤ‚ÚëG˛"·2˛¤3y"ĺÝ=˛”µÎq2‰Ćś?†ű‹JáeČR$—&i ®ěUő»‰™?ßL2*vZS˛5„h^(ípó)•b«Ŕe}1 2@Ň[—ç,SdhrHCŰč@ˇľ»ČŘY@…4Ľ¸>¦MF·WŮ‘‡Gy†U/Án;‰<{Ű_k &¦mő.FY łN ­çKţ …_NA=¤żCý8z§ôÇőş  Ť0!ş|ěÄ@ÔŁéűCxvŽCľ $}Ňa~:üÔÉQ»~\î҆źvńŇ3Š_—¶×çđ˘őjšt‡ˇWGXG•ř•Uuü°ŢŐgÔÎ.^–ŹG_VAw[ŕH^*«iVĚÖŚ ´mńsüŇWčŘPBű$˘ncďUďj#bĆvô±Äo$&5uűzL]ęŃĘđ*Ó•ĄôB>˛íŠĎ´µ Ş ‰’U‹LĚĎ˙/¨^˙”kVRĎÚŔˇK_ÍUş7|#˙Wž39˛ů-TçáyÖö»žSB ‘T«qíŞô‘ ‚ÉŚAI„˛9‹„xśŽA‚4Ů/éőţ!é@P5€Źţ}ő"m¦7¤ŔIDÚĄeT?rh–č9‹Ę»Ć‘üř¤J†\3cf\Ő·ąČ~`– Xě5üľ5L ľ­ié‚3$”4„‘¨LŤ}űčSX‚ ůÂűEôÖ#\ ҢTzC>´•}(Ą-*TpĆ'\Äp2 @\ŠKÝtt°=B„Š{ňQkM äh]şź Ý‰`âdšßá~Ôwm’Ćmí™\ÓČŹ“µB٤2ć^G=RĐËU˝`ŕ=iŰ cD< ˝Ë?úoââß另,…›qŢĂB6äqn,ůż§7y1.¸—4ć§)\ﵡm×tĄV˝'ă)±¦) mA×údÔqx÷¶¨ř‡±5ü~aL^ĘĚ9cĐ#[+’SŇ’JKťîiéů/ÇPŇÖ™·/ÎşYő®c  =úůX’qŤ.ˇúW5EŃŃę¸, pAͲn+,ţĐUÜHżĐ$n˝—p±'ťřÄ$p.ZĆĹŁâŐP˙^©Śęţ&Ľ ŢW¶Ef…â˘CAç«:oQ6véµ»^ĄŻĂŕ~!Ü—±(:¬ür÷Y&DD-%|·ł!°˙GX㫪źůÚN!‹ ýE?‡w1č˙ş 0>ŹĂ‚…wç©ÚWe޵p*ęˇ>š‡6ĚsŹ&¸Ž QŰC­TďCNĚi$ô˝?ç$îĐ"©ž!ŁŔáËmĎia—ű=~Ďşžş( öŇq'uTłĐš|ĺ$·©z-Ü{¨1ď…•ď_=Áv”AĂĄÉ]Ż4Řf%űYé·nćÖ€¸/Ă%yˇĂ;I¤ęŠŤ˘}5f˘N6~ŹÁ´,ĎőÂŕ%†ˇe@źD¤$űÎÖyˇřĹ/ĂęýM3ČŔym{ę"¤ň†żK¦Oč Ś-w¶ľ¨{ľšËF~äđEEn¦Ăue×»E—”1Ő´ňVţU´ý:¸ö֧¨eU(S$Q†2ŞYÖi†Ś$†kădęŤQ°SÖ7s¤m„ Ăŕ)5ˇQÄ"˘ĺ’¦g šč× ˙Ń«ÖaU“Ńô˝á š:Ä<«ó ć˝ë ŢE˘Dĺ$î#7Ó@újtŇ—łÇkJlń­Ýň\áó±É~|î^»7>.§ň_F4ÇĘKüE>ŠéHńżbůP"ŠýIź#$¨ś0ľ–®‡Ŕlޤ/ő›|sť7HžÓŤĹóĂŁEĆ!cµ×Ç×-[Ą˘0ľŕäŽÝµ-ŘŚ; `TzQ.4ŔHÓS;‰źµßn§D„ŕ2÷š§V®ď¬¸ŞŃ7o±…Ó|ąű!ý™ďqč5* n6ď+5w`ŠťJčŚáŢAÚX¤€Łz÷Q„ o"5sóÚś ¶„›‘žúęϨ.ĹhZ…đnmkůbÜe"TŠćçÔŤ}ěÝĘiČGů˘¸§_7Ľ÷´Ś‰›E-[`;ˤ‚$©Ë»9wŮ_ÓVˇ¬­á#T]°Ů_‹ž˙ĎKó6Ůřňż>űŇůͱNF!"Ý/­ŕ>r!pĚŠq•X§äűU|ŢG@peDŔÄŇÜU[^Á!M‡\‡Śo×]çüOC_2ŇzńĄ×E×b¤h6RC¤1×5Aý~Á$‰ń'ôű]ŕKrŐ˝U‚±®b˛?3şÝŐbűcŘ"‰ü»ĐgJĄĎb žäeéĂu‡|4ę– ÉTR4}Źa1¸.ŕý6ň"ŘŃ”aëď^/·5:aKc’zéŁĚ©6t·®ÇY{)”ýśľ„€ݧz8\­ź]‹ĹHŚ»úľ:„ź™EWTÓŇś|1ľ˘˙äbOäZIHo‚fYź‘&•oV‹ćŚ™Ţˇ*$UXé0xl\őŃ—P>UŠ•IXĎ*_Šö6ËŰÖNĂ'fŻÍťĘrÇឫ۷rÎN.ůĂŁő-<ů¦_×iěIxKjďdt¬XŽLÔv?ţ‰Ť”‡đ\÷§—aŇ|&vlp"AÍćO/€JU‚Ół –n{ÝăžW5^ŇW$ą~ô@T5TYŽęla@Ä—m;ŻŞ'‰RÂްĹyŮáľw\ň“.ĽĹ˝ŠhŹ'Ě\Pş^íµ\č=äýüUěBÖ×n{kcŰ=›ŽĂŹ5 Â`±Vę,ç¶3­()şęť¬/h`‚k,ŕXŠĺąk#}{w”Zćĺľ]GţŹŘez†)DšâďŇŮhČtkŐŘ+łLĄ ›§ç ćwHüĆ3k|µŐÝŘ®iz`˛ŕB%Lü¶ ôĚŔ¨ďžÄă<äÍ/s†ëÂ6ŕ3}h‘Í#?Ż˝Éó«#'E÷óéî+ĆQŤZWZS–+üňÔâ™nŽ×¶Ň¦!D>›7ŢÜw›=UşěPńŘňę¬á’ÇĘ·Ęk{!‚¬†2ćvů/ť60č»^¸ş´övĚÁw]Ő.ú nw÷?Ł1‘eCŕ™Ô~^4Ęî$1|×ĂúgŔ~ĺS/IJ+Lě9…Ďł€qUCđ`Z:ł5™b#ÜČkß© ^™J7ŹŤâź“ţHš]ń$đ1uĂŮä"9fúĄ^'ź×§SĺG/8ŚŔ¶Mű˛{ĺDUDqĺ |ÄŤ™ňmj…Mšu˘Ęvg—ú“ńOAydń_ü]ŻŤT3XM+‹ÂÍÔOx“Ч4Ř6•@ë”nSNsnDüOPb‹†RŠsi¶Ö"ŻVJő ŻÔ}J®ÍĆ=Â%¤ťxŞĘľ¨góęÜ·, Nk°R„Ŕ-Ó)†ó:/\$EĹúigĘ Á é#Ě#2˝sĂ «\âĐg÷v¶µ»ü9Î.u1$qoŘHzJhc h¶“Í)&h†žÎ 9˛7™ďü|Ő8ŐC”›´ 3+ô˛F<˘˙|R÷:(ônř”gżżU]űIE›(ěăĚPcÎľGhyßoaĹqř[ W^W0ĺyËĽ×/9´čŞIÍ@©8R×›nfŻL0 ü”[/zŇŞpĎ:pV¦jşv7 Ą\÷†©×ÂňđWS/KĽ9đmňˇ›ŐJjáZôkHß)Ü«X¨} rp<—“SîQáÖÁśĂĄđ5On‡? ‹ń€" Źt83·×m¬j“V]aµŞ­lŢŠ(ĹUJgjíËQÖ‰ŻŞÖ"µWÄ•¶Hď'”0(hĂ(ŔGçË–2˝q^#§OQÁľ ¦đ_%l‹=6š˛J®Ĺ&Áép\“˛Ť< UĚ—&Rb·˝ ĺ4­°Ž ő ¨#Łň€ĚfCp´‚Š ‹Ěxrx3µH¸ŹV¬  Ty™?†ĺÉ«Éç•e쌿ĘU:6X/8EÄ2č䋤ĄQĆ^ÝďZžFĂ!:tKúŢíG˝KÔ#`‹1ȤO…Aň#˛Ôv±LĎRŇ ĎăŕĹn3Ç‚e=Äq˙Ý ±Żßg ˇ4H­oî8—ˇÇw‰ÓOĂš,ŹM Ui’řľŹIő˙ÉĂ9uďm5ŕéo…*|3‡cSfÁhpŔŔ-z"§ °đ5Ŕ) Eş0Čz›ńÎ"Őő¨s€PŘT'í!Č;F•ö"SäX Ř6äó0„¬žý-úXC]®'×F óěč­6¬ĐÝ_@oTd¸.ýÓ¶ńmo§ČW– Ůa^ë7B”ŢĺĄúÉ…Föô_ňš5đWuúĎp°ą'ä€J=ĽCżź r86=.˘)úBţŃĄĹ•‘zľŔ\ËůÎtŠ|-@ •xÍľß6{–áŇ‚˛Mś¬c ~¶wyďÖż§ô€ţş Źűčőr!†bśofÎIkŇ—6 Ä Y¶ołS˛€ć…ÂrŁÉď¨ µ4 RA^ę·ÍŇAĐëG!Ç ńÁÝ<·°Sľ˙ý~lŚWC č*$ţ˝ ›ąĆţz1=í.‘ %[_đEš!ÄG4őUy’ÎYâ˙µŹR¸âÎw‚P—ž¸]–ćq}X{.8Fç–yÚͰ6Çd€µs+\š¨vB=ך晨yí¸řË %ÁĘŘ^#Q1†˝Ö^¶ô4áae¤”Źb·Šo…Uź•S»q„Ź "g)†ŠŽ"Ѹtš  $ŕpŹdČ÷ZQŐěÎ6W|ř˝q´E·W$m`(BEŔMđˇřhçĽÍ[BŰç۶˛Zn™\Éa‰ŤČĚąÂőÝJˇţDČ›¸­ż#ˇšĚ {Ôś6ßT/É.,v›§TApŚQN7şż=aťĽŐXxÓĐ,\H˽̫?çĹ·ĘľÓw tvúß…Äď2ĄŻęE\Yc÷3…EOĹÓů»°“ćŐ’ÔnŽ{Üźů”Č ‡Jé™Yń]ő“WÍ\€ĂŽÓş$dće^TáŽQ•LĆ Ůr'+˘ľ8Ř<Ą*ĄŠ:1ćÁŮé hpňŹiyůäö#ză^f¦Ęc™lwXGóaABmaÎ,†L4]oăjG+˙bxާc‚ś».T~ä&xŰr™Á*Ęý¬úpa'׏óg·qż Nh^ąLL—#µËę‘„xŞ˛3s12‰ńĂ©ĆtLÖ ŽŚCĚ7ď4(j{q¦ŐX‚ÇwďŘŹ>®,Í•>©%d3{0Z”'ę×ţV,ŃH×l Ľ€ĽÚ˙5N˝4¶j‘xLGĎGĘĄÎO•xąö ôŇÇť•Q;3dť¤A—~Ą®Óڱy §}ĄÁˇĽň?Cáęś!lAf"ÄÂgŻ!Ť`ôu§~Á÷7 …ŕ}ŞcÍ‚ŕč˘ -´iˇ-ŞÁx÷ulJ „F"”e67"Gö8zČžé ýůš/Ö ;L( t˛ÝČ(ç Kîă§+ńH>#ű¸î\ó×ÓL=čé^k»¬v/äĹŔ¶äd÷‡ĺNpo<ĺ+ŁrM[„ xß…Şşś…Tůµµń©˙…Uś«ţ˘ …Q}•mhäÚŢUýG’ěžqq`ň>¸iÚV‹9ŤˇŐ4бo›|l ® Z”g‰a`c#΋ď¦öÄBđęń#‚ClâlÚŻńŇ3Q2«Ú+Aď­ áňËjJĎRc!h´sďd{§ÄˇB5ä–.Ľ¤5‘@÷ŚPtĐIzf™${Ą1`Ů^˘Áĺ–ŃÎE/tţQ(ľ‰.ń~ÉŽ÷dśaűżb&ĐÂ7‹Öů–=Ó]ת[ˇŹ}Ěz˝ŔŔF2ŕîóö¸AČ Éľ‰Sß–¸=Ő§ékţÚřeÁYpcäGÓ~ł]6Ż+ŞŢ„#np§čÉKü‚°`+[ĘFUý }Ćń|˘žO—í}"äô:ÇV«Ťş1g.öUo#vިŁt«•ßľ“(łZq’hµ,}čeRT S×ĺJݰąIöfłŚsţÄi ße€‘řXXŞ]ÁČĹ­­6Ńc9¤¦š¤ TSë^şUÔś9Î8F¦!>{K*ŕ©k˘]’ amnWOlÁL}ť«7?djäµfß Ę¦ĐCŠ2ľI]:Ü®#ű¶[ű— űb&叅ĂţŢg HáÉ5V ĐPÇöÚŕ“á}*V*ňÓ±ą•ß+HžÝŰúŁ[Ŕ‘.ěV^`)Ř[©hżŇ¦´Y§Ž·{ŚJ\őxÎô–•ŹtQžý3r®ŢG°Śĺî Gńvi΂ăټȸ—Z˝sl—W¶ĆµojŮźYŔئZˇbÔă@=jŢŚkiuHAü˝7ă8đăj•¤»L]AŮ{6ˇ] (WKŽ–P˝ůĽëŕ´,ă~ˇç3QjÁX.0Böĺ­ŻO-eVi˛ŢĽ~†˛E)ý<µÁPľTrµ¶™¤l:Ѥ9 5BŃ“K»7—Ą)9—ÝŁXĄőá]ĺµAÁd,ä­ É<’/3WD˙*‹ %ít QD©[)[bugăAĂ&µIH Ĺîíz°¶źiFç wă„Ö‹kŻ’›Ď(#Í]€ćÂů‹;R­–?W;ÎŤ˙~aJĺőe°«ě€S‹>2DS•¤)Gfďpe19ꀻ‡5"Îâ T˝é«h&Žş¨+2ĘůI/[¶< ÄşěWÔߎ˙ĂoZéţÖ7dŮTöÄĽ4­®K,J3Ör ¦ÜZ‹?"V ¸(ţ6ĂU’%öĹy3Ń ´+Äů°Rí•ëJ"|Dz «Gc ăHbÝqóĆxŃš{>ś9°jĐ(‡ÉźŘűGŻ.uF‰z…¨PĎŮ,‰Ş@Śű;…wهrýŢŞFĘ›:¬ßúPŐŐËÇ‚«=®!ă7ă”ězQ`m­H†<Ŕ0ňÖfW¶—Ż‘śÔEńąeW¶+ůjyýŰô»Q­ďbm]ávă8ÎŃŮŤJ‹:­ĆÇvBć!rH”%š9uľzţ‡JŚ^®fű,ţvęźÜeţ‰¤"۰nY¶DÝŻ?íĹÎz;‹Ţ‘»ö KH39—Łł¸‰˘,¨|ń?îšś§&[×Çň`ţ :ùĔžTÚüŠtmř@â(˘´[dfŰ1= \ź"&K‹Ć/¬kf)ÝßX«óĄŚBN×i™koa˝{4Yćd¶ŁâaŘ:++ÖZ®Ěü7xÁŃ*Hőýš±SEŤ•'¬Žášąé Ťń€Đ|QéŹĎD.˛żf ”˝NPĽ_‹ 0ČgqFSŕSł5+Wôfď‡|ŔĘŻĆá•6Roö…÷}x8¤=í×Đ@„ÁqŻ{ÂVM@߇á$W4-S̡W˙"¦Vâ¶©…㥅őĘóÍL’żäÜĎát&ľCń\üELô˝´¶Ő$řĂU3@ýyÉ0¶•Ë·Ż-i,‘npW’T:ťN/&kA.Ős@xĐf!X’0«ö0…Ml§C´¦uś+˛Ŕµ7˝#É䮄”úöbŞą“ç2=5ő1¶‘]w¨(WxűőŽŐ…çe ąţëżWXÔüQD)™ťŤ_ Ľ@z®G Úźđu+ĺé§ov,öQ!¸Ó>R$«č˘ĎÉ‚ťýzęŁÔčŔ(áŕ$®K¶)±˙=4höUî@ŕ1ňOÝčÄôá»)Ţ#tRŘl*ůű­jÎ.µ ˛eçg‘I umD…R;¦ůŰxŮ4]ý=!Z‹‹cÜ÷+Řâ Á!ě2)íŻ(Řüîü®„—-ĺѤŞâÁÚŘÂvĆ”µdËł9Ô—C[ţs…g‘÷,ˇ y„\'”·K¤§Űuąrˇóü‹87ĐQ#5ÄÝ!ôĺYd”ÎĽ˙Ąý5„äč]˙}|Sµ‡s…S&§»šônKëžĂçŢ1…27zâôűşŤ ¨w˝? ĂáęĂMĽ˙Ą­ĎŚ Ťćč«-˙\Ř»XŞX«wÄŐëÁĄě=żl‰´ÚŠŇ€ý‰Űn ô9űdG–Ô´…Ďőź°×1Y÷H\Ä ˇG)ôm»ŕ71jÜŚ¦•ÄEJ\–H+Gˇç˙‹ Â&äH#‘g 7ĺ|žD M<$ňćŞÖ™bŮBŐo×Ň5xłśşnÚ¸UGl/JÜĂĚ—Ő7‘ă…W8ęCj“&;ÝૌÎŔ$˙»YT÷†÷sÚă_OĂŰIŚť™ż„Źt/|€¦(`¸PôIú€^ $Ţ÷”8ůąŚ#ĎŐk9NgInŠ˘ň-ś-.Ňg›K5÷¶ąsKlű@Ö§ú’î.÷’´Ľ]üŢť!ĚÜg­Pś_♋Ür0:qšęS;@˙ćרîpŽÚrł•?VË\ĎŔc_ck]pö<Ę-1Ay]ú,Č*‹fôWä–=,Á˙AŠ] ›Ă&ş;01ľÎ´ÝŁQ9 ^.NÇ*7Ĺ3ŐÓ· Ů€űůČçČňWqHRŁB°prýOy2®-Ź wd.?ąT(Ł˘`’ż'Ô˘’&q­ćç­2nË ”ĂJÖ‹ůűĺpĆŘvĚ1XiḬŕˇüEDSLbÎ:ňÁI "¬)Ä,«•kż7óYi®¶ŃW›Ő*.ďH&R.ŕ¬ŔĘ«ůÄ®2V¦üN$$¸a>.e÷f†˙vţTűѦÄkŚźťJ gßdp ęW·Éˇď_á±­é#›xL8,Ç śçüöæÇYźř=_â˝m|(óÁ;gÖa Ď`°GěQSţjµĘĎ€)mčÇgP *ű>+•ĺ9Ľ ësP»ó«.ă1íÍ®~Ď„´ţˇdß©X‰Đ+Đ& ^Î0)˛ůZĘ$bMz Ň۶îěđčó3Óiúľ:‘JO—YoŻđě$u­*u*4bqâö0Tďy„>Ë…ĽŮś>:Ů qúłá%ń˛ečÔ¤Ělâ[°ěH‹,ÂMŤä¬hü!xÝLPt)•‚y]~ń ŕϱ9ˇż‘€{†J°=@Ę©![±N ˇ±xĆ_}&FĘă¸˙ÂZĽPňEí¸Ľę Čü|K¶Ď,›†vPUő&ĆWFě3ëwâU@“@jႱlË“Ô"Á`â̵CpŤŠ‚>b=±U—4ŻľQňëJşéS]­R"™]†ŢoôX„ö–U+őuĎ›…%É… i{žÎX[¨IśĚTEtźFĄăËžy\yVI=d—O‡‚®6ňM•ôŕőKă˛đŮ“UńĆx}MóÇ@ŁÚś˛˙ů;÷ój5‹€s[ĽîŽşł/6ŰÂoKaĺ_á˝#iW=}x¨?1=qEď§–‚ ·™îč@×7vĚÔТ@ďĽH†=2Š6M‡âҧonRjôI…xOŕĆ8yP;»ë\ŐU‘ł !3«Ž¤ýĆ„îČÍíZH0 aľć>MjRW‡đE¨ĹMRžVöiÉ/ďq—”đ’öÜĘąž’Ng´?nÚ~`´ÇÝ˝uaýÎ_™“Ł‚wň‹ˇŞf?Er·2{†ľŹđÄék5FĚ!ąFZň+Śc¸ŤPN Q&Ó;‰‹šu˙őΠ­/V"Ëő#N’ńD:!MŮ€ťŃÝPfkö»Š7ë<¤˝1Pü'לÖ<·‘ÚpÔ> ĎśsíA<’×§Z,°3/0J`3ë‘sú jľT(Ó,bţf´÷y3#Ó!6kµć8±g\×ĹXłľĂN°Ŕyšum–úż¤ö¸Ov‹(Ľ>ŞĹŐŹ *ŐCµ ŚĄÚ–éc~ôĐÖ˝ś×îŐ–‡đ0öČUď˛<˛›űD––3ŃqÖ"H´ů殺j˘1ItűL»¦2GäşăÄ÷č´” íěvo©X= Żćv‡ }˘ů\ĚHöo8éňąÄUÚF†÷#}ń™ű¸śťěĆërUUÖ ň\ĚŚ#}{Ňľ{sŁšöĺĂ2–éŽű\~«ëHę?ĚÉKTé7q›Çl÷ąK¨zĺl{’NSÄ@RmçôŐ§ćZ¬ŇeĽ/×[lY mKść˙/zßČ×qŢźrh›Tqäć@9%^(/"{]˘L.ükF·âŐO8۱-6źŽÂNÜoć đ9[ždÖěo05¸ťłÇ•BßŢ [. €0żäů®@1Ö!Ůü°‡›ÂeüĆČźžä±a˝Ľ xq ásŃőbQG( Ţ~‘ÚŹ@"ţÉ^§Ő™ňŁ’ăŘlËĄHř7~ě÷î=öĽô(ŇlBČô›SﮂśďÍŚ›1’ňuÜ1\ď†(ŻrЇłNą-÷˙ n„ŃgýţG©ž`şěšŻ‘ ö®gć¨=9]0ß°9ŹÄćĐŕŘŠXbäD°As€ć4©čżM â|B˛'ˇqި1ńű‰uQ•S8"”Ľ%=(˛¬E«ö#łŃşq‚ôÇň*_ú@}Ż("FŽťfňÖ6«ę˛ Óő*Ö”Č"ĢŐogîŘë6†™AT‰)710˙žćB|°iL,Láz/…FšyĹŠHĽ¨µŽČČhoU ;Ž• c ‚Ů‘˝ř‡a4-Ëk%V¨€• [ľM’«ź*°¤°ňü(”CĄ™ă”88"śÄgŮŐ\‚<ŻŹŰ#_*dB7ňŤC/µ[ůĘëđ@ýüŕ?iVaŻWň‰™çđ’JT&|±®gyĚ(ý{ŞđńĽß‚şˇżpߪ·Â'˘™ˇnßW%Ä\żĘ§˝t*N˙WE Đ˝Őőýőzy šłŃš><üŽ'ŃďťhÍĽ ¶ő#Í_9JpĽÎ˝˝ë#.÷ôč<üÍŞD”DjŻzŁ$–9¬žšÁë‡N» Ó^ŃJ¤ŕůɤOŐ^Š‚©âßXĄé‚ěČş]Őnµ'ż1–±Yž~cú·ßÇFsÔŽŕČĺ7Áő>łśĆp.#ä#ńĽ]íÔ- ĆaŤzQEśźŕ^•«@{†1X ¨Ůl ŐFxKMě/go­§P¦9Ҷ5C|af*čőp|Éôk$ܬ¨,-ŐRńo‡‰ˇŽV±;O!®’EŤ* źx$ë¨v°ŇÖU&°3¸oîz î-zŻ?řÔVVA-Ń€đľtuô]xŮYL˝;ńŮôîýĹaÔćŽ2%•–ˇ1+w™ĐĄzFÁÎ«Ş # ęIZ^ˇ‰âxĎm6 ůéěňšPń¨-o°AlÖm‚Ex»dǿ电ěyML»qiŠŰᬋé¤JßÉoMŽçť‚ý»8¨Ń#„Ü 2ěŹöŞś-÷` G¬ę\ň¦ŁS&?ć—~˛đˇÉ•fţoĐC\ÝžôŚ'<m P+t ŘĐ˝¬&0˝YJżĚ@ĄJHµ J›Đ)ú…ąC €Ű|;¬ť*jî¬+Ś“аV3j ‘ŢÉ›``”»í¨ć1b"Őćta| (ŘW)ńI„Šb.Ő{˛ 6 .Ŕę(śŤqń‘çë˝ŐcŘ”“ö7rŻřMi**F놙ş‡ÜVo‘)đOŞß’×ËďĐzôżşň&Ř3 k"OřŞÁ˘7jµZ™Ż˛!ŃáŐÄK›3ÍďŽ txďţŰMëđz„„ VŃl`şV÷á †Âź7µüů(ěL˛iýlߩ׭/,‰}&d:˛n“*ęIŐźwyz_îeůş÷ăËţ„R ł–t«­fł{VďŞ.ô#ČÍɄ٩4ĄÂTÜi¦nSűußúiZmRc|˘qŚŕ2ń‚Ľ\G~‰WÉ:÷z«čiPMšâCX •˘L¬čąĺ"ó¬nď˝e˝E<98í`$¶ť,Ű%Wuč”ç ¬sW;ľ=§<›wyĄmt[ѸF·+Eu ˝RŹ@ť_ˇ×đ#2źŇj+ç`RHDřyĺPüŇâźÉ4*tťúd;YĺŤ/ëäX¤ÝµŤÎVA(śŽcÓö6ţ"‘'´}ňoግjGzU ¦ń‘6gT™Ż§AÍ„,«I¸6Żö»rčž@‹z˛¸X]źĹ]ĆĆAÎ.éňď`óo2P>bcűdü`îŢ km.={rŻĚM((Y ›1v)Q gE%QżPVŢÓá·›~ I$sˇ†ŚÇ2cîGö§Ś•Ţ|w(ä?„BprsşÝéÔłdĵ°ťÁÝúÚBv=¦đÜDt΋ßÓuŰśŽ ÁçHŚ1ž/5dÜŔzŚŃíT•źžÚ*ůa|§>¨ÔĚ=ÝEk- ×?ć±~ĘÚ´#i‰K4kű¶EgâBK_ÇŚ ¦ń:´µęg-újöÄPk2f\P ’étpÝđ4Tv }Hőěw&Z*×bÇÔ_®ţWůLǬÎbĂ4Ť© ݉j€8ęţň©‘~Ż8ˇük .ůˇI!Ë|ôBe©8ďÓz¦ÚЉŰ'x Ç˙d˛–Ŕɤ{ˇ’dö…_ ´7`vm]{ÜAĆš0ó­šj\WëĹŚiYg]*µ†?źFćQ§´™Mv(΀٠&öŘÉ”ąRb§4r˝2”FZ éYS«ŰR˘7ď ($UŕVj§Ý ĺŽVŢ{MÇDň#G #ZdĎÎ ^‰LDIqý uP’˙4GÉŹt–ÍUżŕMO±ŮßsŞOfe`Ʋü{?ÝŠű/÷Ç˝ń «wóŚ^5aŁ@ô—m–($ śHyD ל§ô!ä0˘íëwÍ:= łűĐ®`{Ţé$É6.Ł">OÖłiÂůU˝¬ń9†ÎŹĚ®8¬ý ÂE’fáHéÄźĽŇ ó˛‹ŘÉ® f/$L  ˘yŔě>pöWęĺ%j©ŠůÎź€Ç‚hVQoă•_~Ü$Ĺ®w•rQ”Ç”˙ ·Ř°P•I;î7!ţč ‰v \(ŽłOq˙˝ŤRŁšŘEá9˛ń'żA 1*—€ éŠěe·áEÇćj.ăő~IćńÔqĺź;…1bK»öąŐ^ŽAnžÂÍ „ÚĎŔő›ä÷Á¦_.‰.čtüZ±ĚeŹ/" P$Äľ•e“Łőć˝ ‘oÁăRöţQĆäÉFČńAçše$2Gd±Ś·‚N{˘s¤Ôżü“óĂľťĺ\Â7Ҷ»çfŠč\’ó,cꥣa_BS•~닚pÜéÇ6;NÔɤ6­'¤;!!ßV1łĄŃĂłOdä—ó"Zî(ÝŔÉňĚĺ#›íŐĐýt'P=]© "xŽZÇ~FG™pŰÁÔY‰+[›ŤÂ» j|4ŇB© ř!¤ w9osTĘę^ÉÍe'Ć#íAŕÓ4$uËĽÉ5–Oq˙ϱyčYEŤ›a§DÚF[K­ZVęX®lJŤÜŃX–+pő"Óa·e2G$'|>˛ˇ-MżŔ;ľučł°|wŐĺQ!xŃŚ+“KJ"ť˛đx/^®Ęw ™ëä!ě„S^w`ĚG˝ľŞô™M®’Ą9o±ÎłźGĺMÚž»Ąďx’“ŢfůM— ™‹xM.?RČąeó¨đ¶€w Ô­Ókyʢó¸´ĚśJz›á[m÷´5JĆ ˘F}DHť«XZĂrq”îMđ1!ąna1Ěhµűí6sIś•„ ş |vVŤä5!útąđsgŕ]P„6»šůÓYm·®Ó —)âR¸‹ĺ”Ĺü¬$Z5Ł´Âť®É…ů3‚Żąe­QKG8| ›k"1@GEó–%×@ :ăh«gd8?±Ôčl‰‹ä;,§`oç}Yvĺtwź…ŢrXö8ŢŰ^¬Éx˙=÷Ű*ŕ´ÝďŘ#XŐcá˛ÜîâB śż5ŹâÍőiFlśUlÝsýÜřIé_¸:ÝČFˇ™,Gđ”8/n͢í(°-7´·ŽŮ.«Ivăâčfo!]×eeÉŢĹ‹Ď,79«$ń „Îîô áŤö?L$X@˛ńŘuZ¸š¤üéO"e1~µ˛Ŕî A wq ÇŽBu_hŇîş,ťdˇr˙ĐJFÖ˘z4Ô;Ă*čŐ·ëşŃ±´wiÓĎXUť¶ŁŽű™iąJ§›5v©Éú’a§^ĽF<\ýp9ý7żŚ,ć9Í"ʲf#»$ŤęˇÜDźŢlLOµ˘Fâ¦U§šlżŹý,^E L?:ÜRSﶆ].šiżáć‹Rj\Z+j¸\WGłO»4ôÓ;›ë!°Ł1qEîÓq!îŢeס<äŘő«É|BČlndúąr.Ů(Jçł.ΰ'ú7ŇúO.¬Fčę]yůŚśö{Áô7iŔf¶qd‡˝6IažF&Ť1Łä!đL‹čřăT_XÚ~{´É ěQŘxÚŘô1°\uIč7ĂŔw攏”ɕݰ‘Bé˙}jŽÁąI¨AĽŔˇëZű»EńĎcV˙§~ĐWÝ,—(^±·"Š×}çŮÚĹMy;lôÖéĽu/ďáeeiĚD´ěť'ľĺ ňŐ`xÝňŹćŹ*đ…E1ë4ŕź$ż"HP~Č™‚—|ŹŮm;©¨wÍf¤älęrF5Ćőo˸ÇŘŇÝŻ`ŘV”bÁDň9jžŔ޶řꮊ0^ŁŕĚŐŢÉ)óŘ#ďŕ×÷_$q«Ę˛•ĄˇăčqhKBÎůf`Ř’’ś iľ€ąŃČ»°4đOŔߣSÝ%0Á8ÚÔ‘ďäYŰuëű­®éśCŻ«y#¸,Źúä˝%OżBŰ/Ó˘ŰĘr­ú¦xä¸űµsů Ţ5xfîtŕÇ!3ííTU›ň©śy#$zYź¨Ä;+U{#,mÉ®ißGÁ#ühę÷âYś’ caŤŤŘÚ·n)źă÷ŻrňöÜA†P8Öl8ÖúBčŢĐŃŐ¬]Îl]LśB Ŕ ‚Ë̱QÝńĎŽB‰E!šPlă^Nq1˛ű¬H´rÂň˛”ŻL8hĂĆb3{ćUŘ šĆ&ޱű'R”Ag¬`™ŇÇóň·‹I[ů±8âNřŁťÁf°FźĺšÂˇĂúÚ\¨R“g'Ąďyy:µI8ý¶¬Ë/ üę+Ô)­k€Ľđ.@I–¬w+*5Áü‡Ť}±ä˘.Î b:: äHz¦o¦¶«ëQ#Á‹\¤vˇ9°ŹKˇVÄƧ8‚$ľ×n¤°%¤^ŹŔżH?ôĽ%( Ętóĺ׿ż+!§{°“ÉJÁ˛l.ńŔŚÉce±JE(QdřŇ‚A«¶TmkV»*9EUČqRäŤzŔ›a}˝QŃË$ O0©óňźZ1W !—ď°Rä‘ŧ”¦ő·NŐqűMř‚§ oM¸ -ŘţŐ$lkFÔᯕHXĺ)‰ŮŠm «b‡á{ZߥZ1¶Qűş[ŰŹ?ŮH_ý …Ä>Ôľ/Ç@őC!PxáxŘę!¨ď<ҲákĎ-­c„<>+ź żńá´˝›<¦—ŕĹG˙Ű‘XrcVđ‰±g´źDŞX¨s]€AíëztîżZFÎŞk‡©çaé&éz>gáűB˘j ^_±Ybź]+ˇˇápxgŔomĽóăČs éÖ_༻ČíW˙Ą˙N\¤ů7őoVýTǬ°e†‰Ďš®đ‡"¨ŁXd5qčźkX*t Şěß&ă•[&Wˇ]qś8 †r/L1÷«˛äÖĽU×uČłśďÍC;¨}r’%f·ŞĎü»î™Ç¤ĺÎřqžxĺТ6zâÇ| iĽ[ă‹ĂĎŢc'ôH“Ţ;°V.PĚš–‘ĎĎ6\L÷/+JĽfYç|é e7\ÖŐÎŮň·iŢ 4Čg¸q™ů«Í)ěĂś¦ű>—eYY¨;ň^A«‹ćßRU”Kxk—%L@Č,Ąßnd !ŤnB©Ruýěl^Ů|´Ó_'¦śÄ‚cóFyPű–M. ±ŤĐ?Ę+ŠÍ*Vżżçuřň±˝NëËŽł¸â“ŮhK CˇŮîŘB6nÚSݬ˝â‹eě·+1]e].ůľy®,WŢ„–Ń‚˙!Őh°Rz>"śű đýşŹ_2ůó5]—ůy¦E4SÄ+YDŤxaÔĚ6µť?çťń0Ś˝Äx(şeEú#“LÔT¤Ôé6;%}ĚŞŔ˘Éż ~ 4‘mŽĐ%đ ëŃEXłfšî‹˙fń`Or—m×ę–'«çŁzśvť~~ŔńN? őąőrÖĎc×zžS˝z'CýB° *Ż+Á^ěś©X˝B˝1ő0řçíL™3R7vŢ<–‡‘óóurC˙i¬‰(ěXĐ0N§ňÜąßŮÝĚLRłŰŚ.ń’$*ĆÔ¤¶|ôĆě3_ětµn˘ş0ŃĎr"ęSýî«ÖéŇ<ârKçRor#9§xÓÓĹękŇ9Ü*¨yŐW 7jü†NjXn}/s±ëˇ5ú±ŤS řÝ÷ KŘr™]tN%NđőĚŃ#€Ë·ęęőo”§AšĽw˘&:OŰŽGEß:B5ŠÚ 2 Eôm?ő[„·lf ݰ®š^Ů«"ňöÂé‹báżĺŞvďtFu*YëüÉ9ߊ-«Ü ĺ=Sďpł^µÍĐdk÷éf‘\Ú“rzý0ĹO¨‚ďçSţ«˝ÄZűІ‡)Ěă´!éőĂM×ďP@źs.cÁqăgVr|f ­3:‚ďî‘Đzo}"`¨ĎŐť|^WtŁ+ić–‚ŞPý˙gL[!˘Oč&ůŻŻ:q2á×îĎs}f¸ĽÉ“&Um%aSP)ň·Í÷NBgŻĹ_Ügą¨ÓßÎűémÄŐž'Â7Iś$š×Ş ‘JĘŐműő¶9'‡¶î‰„Ä!-m—ČbĎ\ëĽÇqpJ¦h!¨Oďß#W\¸› -M˝ťíş„©ç şv@\h –Î 8í<šĚě ßräXr‡b*Őf0`÷Č^‰—ÔŤ-aîO9KŠ:·6lD Oj(¶łvކ|~ŤĽĄé©`ÝË)MJĹ®> Řvěâ#˛¸Ů7q~ KŁ„ŇŞ"°ńŐüŞü̢ŐR2év1JţŚăËú—ôP0€IŽ u›Pv‹…Ľ×äçßõ‹xy{Ł÷ÜľŃĺLZ›g„ŔÂgaf^JĺI1zŐ‹ćŤ>„k ć Ń„śBŇě`$7=üŰE9,ܰŤń•Ë–©/i˛'ß‚ť,Ŕ•Aňż8‘˛Ićđ*wO(>¸däüéٵŹÔřsg™×ľĹ} Bŕ I ś¬?żm>L•§8÷c!8¨ôPV_LÍĐŽ tú.Ĺ’Ţr²գŇ/†ęJÓo0“T^KňŕDyž —ŘôŻ›§éd‰ 3Qß ˘&XxéálÍŤÉLXąuč‹vçŐi…FaYŽEÔX6ŃK‚ kĎ‘‡ým!§jŃFűEď  —î°YÄŢ9Ťv˛üžpĆĆś/ŃSŽĄ×ť”ěóśV6ÔpĎĚ?D—WÎxéłîŕ^é áxă^Ůž:tήť.·^ŮQ&˘©ăVŹŁ/‚oÖMbČëH©‡qĎŞIK|oŻEg XĐĂ—ŻŰňBš©Ô­J÷ďď_6#!t†ZMPăsŽ®#Ě‹ě}‚„»°käÜ)e˘±W;o„Dl ffą3µ©b nq-Ł'çß˙el`bloÉ©EÁUTkůc>Ś”Eu&*0źc÷¤x÷ÁDŕť« ďÝ\$ ‹式Zç@•˘ŇƦüło7cdTqtŹŘ˛”±ÎŽ(ŰóŠh‹*ĽNĘŔ|ŇٸÎ/‡ĐĽâH騗áĂŁ ¬€{Ľ0§Đwn—Ăž`X|ŐĽ|ţ?7féÝ2î§Ű,FdŻFń,ÉźPíEźéŹo˝¨i1J``ÇÍ % Dˇ81‡ÖäěaąDż:ݦ:˙S—p%mĎ˝ Âmgű|ő‚©Ç)˝Ď«ě†wźóXŁz.PĐŁçżG‰Ú°żěwÓܢ„ÔőMűTÂeGŠÉ>怚D†ü&‡č÷«ěţ\ÎĄ9‘‹*´1*kĂ!ŃĹ@Ý+ísĺä đF]ÂĽiÂ?Ăyő‰É#Ś«ÇÇý´šAÎĄ‰ű»Z3ä:Á_zNBË;]ś?łaÖÖŰęĆťJ°lO&áúŽ»ź5 ѵńAn3»l~)4żLŚîľâü[eLr+íˇÓ(!ĽQŠçQQ€R’寀mﻦ¨;ľôʵ É—&[†ňěÁĽz!ĺUę(LhŐŻ0˘ĐöT‘í·Ż—˙HS u!<&ř–!7ĂŢď'Xúw]vŽ’/° „çsd`9Ăzű[Ă×Ķ8«ËĹ鋦Źůé¬v4ąqFş3fQJ€ëî\ópďxé•FĎ@p DňëkÔ<^axąnííhţţaÖ\ô—íżOĆ`gč_W;'řÍxŤ9Á]Ýůŕ  …űzýV,cş÷/†VI$ů×~ŽÓi nţضYo[NVtE*ŕţ?ŰUp{ń. \ßuč…‡ôlěŔ8/ Ż$ŽL©* íďŰŢzĂ6÷ěłjQÍ2Č”¸V‡ťş!ú™¦g9轄řKę#bޱ&áŹZĽ$$ßToö卷Lé€Ó!i{–­Âĺń4i°V+‰Íŕšžt…ľK?fó<*Őŕ8 ÁHĘÉ\mŮ[2®¶xuß}6§í XňöÇ‘r||Â/€qŤO»ŕ8cjVQť>´x1C<čÚvÄő1żŢËŢť k]˘'˝‹~BŻI+ŇŞŢ}É˝» ěséókwűĘ™IHífý3Á·ŠéÎP«żH·7C$ł±śîę]ä˘ă JGŐÄ>:]Ö}/őĘř×4ľ¨^“sßĺ)Sěú›ĆčÝ1h›1ŃB ۉ÷óçć}Ç1äk)'oĄa&%LßFŮu×ëjáJß×ÁăńúˇříË,—żWŐŤűJÎ_.z(`ÍŘ 8—ĺđ’­oôśŽä·ĺĹÍ~Pź8ě_šĄĽ:é1aˇSě~ŔŮţÄ$Tëwb±@â5ůkŕ¦Ô ĂŞ펋Ź`Ę›cmňŔ.„‡iMT›š _m AűqşM7&ąłö¬ÍpF¬ihy]?†5- vŞnW‹]U uĘáÜ‚ČĂaŮ F[ébďü3“ťÇ•Č­_ ١ P‘Ó¦Äy tTm ×âE˝ŮAłýŃ1Ż#6¦é'Ý…ł:’Î/ćĽÚ],啥RZ\B–¬źj4ęXi®#ŇË_ľű`řĐťHźîčňLŔj˝äJĽĄ&ň[sţC8ĂÜ6‰,bWüMŢőžľĎH©”GU9›0·´-bnŽżŃGF<g:m(^Ńi¨ËNG ¨łpńnv!𢹒֨lî‹_ĺ>Ą”+Ý݉\|6«—‰Ő‰rđąLA.¸Ulďg.;ü35¸ "”.ęő0ŔÔ)«˛Ęt8%#0đ°KF/m_Zś-*ÝNçýMÍÍö\€dčÖôúŁŽMĆÄŽeľe¨qŘĚk%•,Ŕűşus©C¶X‘Qę3—~\aHÓé¦T2ŐkP`qIę ޡ§=ö4¬úROô06Ý%°(źşqlÉĄsAĐuU*ˇR•ÁާďęT$pvţř‰ęá+ Q°Y‰NOç÷óµîţCűë‚›°öďď‹=–SÓäÇTş“7«Ą"§·ĆZęg]𛋩éç)]Mř0 лݯWth~5´jb@R´§Hˇóĺi ˛h©ţ™ŽYé›Ý &¤Vu[倾<-ĂyŦ@ËÜĎÉĚ(ÔÍ2YăŇüľ7/î…ˇ¬‘•öŢ\%A7ćAă }ţ޵"G ’AxZ[“ŃÂ]|qWÝť-˝¤%˝t·'˛OXL&E·¨⢯ŃEš`ÍZ>Ő$JżŰWř.ĆIĎSí •zdúÔr »Ŕ0na&X¨3Noă÷.Mô”´° ĘŔ@oÇ×ÓauŇXѵpG4{Ä2U€ĎčyŔĘÖKO_?Ýx†ÇméĺÁZfIRçś2şČÔx¶žŇ¨ż!ełţŕŐ'ËZ:ŘjŔáÔ=-ľfPs m„Y&LĄćw+ lĚx¸NQ —ŢĐpëĎ7Ą‡â-CÄW[z\ç 4‹N_4ď%I߲pB 'Š]ˇ öŐút(śřX^‚;~Pľű¦+u~,ÉDĺ®×uďúšs¶őÉuá=çÝG?Ź•lŽi7ňVK8Ů«*‹bLĹgk±ŃYű?&ATô0°Ä)_7öló­C%Í+H"~"=§1HxL ‘¸ę†HęÜçÚά×ŕGô°F ďňa6<Ü×BçCb_îÉĹ~ťšk6Á?T¤”Aĺ7¤ i»ńv¶9 żŇ…÷ř*pV7*b{* Ď5Z‘ő2*÷«ąPI€dR䕎Iűśż§Ćú®ŕ÷_AżÉč6ü»uąNĎ1UĎÂÄ 4°8ŮX‘^ďěR1“ˇßĘqŁ˝°ŤBőÄ”¦bd03˙ç!Žďäo |8–ćŢń<:ůî9˛ĚüŠîŻ•a‡CŞ•±?µ_Ď šűä˘×áŃ''—¸ýftŁţőôĎuG±Ž0ş…ś”BN+ ĎI .ÍŤúر éX†ţ|±Ô::–{d-_4ýżV4GD5"č/nŕôzď‡ÚL˛hŤĐ¨?âŚń3Ť.ďĂN®óŤÔJ¬żwP|ä&ca÷1'ţ·`ůăbżľţ,ä˘e ×Bé3¦NĘÇ4äđCŤ`\Ń®1@,y%gâܦ Í„mĘjžÎϢőď˘|tčą‚†DW8רľPîéR˘6ZŁĎy+Uň˛ą]­ :L^#‡ wج.“^p$|–“jŚ8­ĽňmŁ<č8ç‘Î;}pzŁ­•ţ¬űťNs'üÁĆb;܇7ĚÂm@Ž>yômIŠŮl§˝ŚëˇÁ¤Ů{@íY<[¤Ě&óý€H ĆŮ};"g 1ŮďiN6nH'¨żäoVr` ®JÚĐÚúśUKżµg3) °S®Ý…|pńś´Ég™€]ZýSkZ‘G S`(Ćø3Ž2ńÁ…dőő`G̲ÓŃP×›ë™ę#DÂśbÝcÉĐ‹ %§N‚1Ň›XzŐ,Ü~míČhŻáAý— -’aëE`ŇÉńý sfĹ'Rśőžj„VRŚÖ7`3_§ ł´Şůa˝Ĺ\M„ľpÇšFĹěĽřćć¶83÷ČXż–ŠĘŹ›#éîŃ2* Ú&Ô×ĺąÓ…'…ŻdÔ7°˝M‰U ’· p·%¸íŔYßAĺčŇ€ŔfÉür¨Đ)ÝŬŘŇyÇd,iúnŤś] o~ÝŃs8˘!Ŕxë‹•[±pšź´#ŁĹ[ť_Ă€c54đC_˝ąEXoŞ#KxÎqS¤¤,úhŁŢ/âŞ2N¸žYf‡źjŐçBi´Ë˝ř™ ±ç•W¤BQ|h÷±Ä" TaK 㡷Áó™„S)€<@\ŞdĐč/‹áT–éż9Jäű( ěb$˘mĆŐŘ+RŘćެ4ź6Tp¤Ĺ®rŇ2Ô‹üI}Uăáď¸Ô˙ĘPbă 2Ą·ŮşˇÖT˛kd‰— D)Č^Ă/4ÁżöNŐIđipIq˙MîÉšĺŕX´íĄH:¶$,!gůĽXfůJ’¸ vˇÄ„2âó_QŮ-$†¸ž/V5ݨ=}şyŮÜábůާxč—1…¦Ä‡-˛µp…“Äč§ą'©˙ĐŹŻJn·§‡:"°!(uűŻŤĐąftěVç•ŕcáLP'*Í›pÉŘsd ʆ›ŰŹ—˛ňč„+˘Xv#ßŰ<·v=¸ÂW4ř'‹úóźëŞŰř—ě9ťĘ;‹ĺx(Ń”ţ5'[_¸V,¦8ŹnĆÂĚýNőMS‡TóÍ ŢFjŘCÄżT]’Šv ĘŕĹĐ’’Błcë ĘQęę>Ę_éžPë`Y¨'šT:S ¸SIÎŕE¸éČ#ęÔńŮ^iŐZCëQŮç°VKŽý%ó¤ŞUî|RşżŰÇ€’Ňr´ěŽř[V,žGŹ«4í9Wv¦¶\ţ q”’j\ńčß%ö±µä$Ĺ %kYĆiifAŔuĐŚXŚ®äĺV]b0fôÉ™ĆAYÖ h¤3†Ł«ô[﵉ĘDЎ÷ÔĚđq§`1źdk*ˇß«ŢÜ­Sëi1˝ZQĺ™ N#`2űµXŽW‘Ö {ěaÝtµp/VZB(kŮ:sn…NQ÷vQýˇű‡>«¨YÚů.ü$Ë;ĚaíĘ vV¬‘ŰpOŰ]>)IµÎ—Ň…+ř¨‹{nˇ0GGTÇíŽČä±É\C}#›”iU•˛žPiř&áK!äÇß šRĚtI»˙ÚĘ,ŢC]€‹áĹq‹bfH,¬ú\M%[+¬lwpŕ­CŻ1!Č©"ÍÜÔÓQńMçĄţŕÍt&şËŞ&‘aE#p€Žue„Ź—jĎo@Cl‚y-§ŔS>ÚÚÂ| |tţ9ńµX¶©“b%iô9ŽţüÄ‚¶™¶«ŚеŔ 让‚]¤©ş"»?©bEźĎžGz’¨áÍ´éŇîôűfX֤РęOC>ŃŚzkßÝw{ť§;{ĽőŁJÖš˙ů3’Ó«ŽŠR9w=vż5u"śk rÇ@UŻAŚ /uظ€ą›˘¤$ɰKg|­vĚč8XË:ŠDÓËGqh¶î ň˙oňxX2‰4‹íú Ť®č¨qż§ž˝zF G¬2 ßL0Ť/*ĆąëŻ{ŕťµ3ľ„FĆ<üt}\‹>4¦Č°9ݰ„ad='P¶ž9…•ĽżÍň=Ś)ä'·zz×$Ľc”Ě&‹,ăáz DłŐs«Ľ“ÝeĎ‹ß|t‚mE,á”-Äű|Ń‰ĺ §()“͢ł şŕ‚jÝŃN:I'Á- Ezđô ffn & í\Č?-Ť6~7Ç&Ř?»‘Pż3z 8ťę̿î7ŰN‹ˇ#+„Zy©ě‰ zŰ(rs™?˘ÝĆ﬋]˙Ąˇi¨ü`W?תÝí`´C~â^­0b…ˇN(Pňh&;ŁŢ`P Ö¶Ż##Ý( K±› ä4ŕCDěęČ)TNHhz@÷ËcQó˘žëO¬ű>ô­i„×Ŕ¶ ťËµ-ěĂEćÁ2Ő“^AÂ[B”ŤpSäBÝé‘ν6lŠQěćŁtđ;óoČô­…µ7@şşŘ/Ź÷)6üÓGť¦Ňtř•EĂŠí´řlŹ$6rĎÍB` Îg¸uń,šťµgtx¸Ö-SnPOoĎ[ÔB0˙IŮN śÚü,(2mŔuAŁĄä‡/«â*P«B·G/ »2+¸ÚňňŘđnL2pśŽfýŰ<kŘyžŢSU7úů‚ŹŁé”2®4˝©’j×ńćŕFTŻ9{¨ńZŹÔ˙/ˇż[]řrŐ i¶˙…ď]Ż'31Ő^OôEa‘OtŁšopŮßFť(č+’7ŤŰ+µŰôuĹýWÓK€2ë¬ú+óS‹˝=Fńškt”\.ökc°ů#ö Ś&DŁ/Qô}Ëç·ąm."qjf˛¶»ĘVŢdě<#’ÁuFmuôµ,/·ň7˙¬ľâ´Ygä[š/ŮŰYíUőîôb·3`†XčE"¸_öőThh†Waž†ď=ę + >äř¦2ŕ,â5$.ů¸«*÷Đąřľ‚H,g­…BMyđ*fEá 3ňÍŐ_ж¸Ăőť &Ď +Š.oOÍ;{ÇłÓËmÁ¤SĹd«ďRL”ŇVĐ“đLĎLźĆF3vtâˇÎNës čgq¨!¬zNËŔ n‹ĺˇXUg•KMߏO©Ěę4Ń· Űd8q:šT ˛lk§GĘŘtxPw>?5ÉŘ? ¶( †ţ…ť6o°ńšÇĂ(`>´ofo”{Ëů÷26?]ĺhźéHľĆJ‚ďÁDahcéýůqŚ^4 X=cÂ˛Şş€őܵÍů eĆă@ă˙ˇvĹWčŞń€ŁJ)îž rłlćA6†š E‚ŃqA¬Ú˛ż'˘jŚCtSŘöéX0ęÚłŤGеNÎŔ™qźVîxäćÜÍV ¶óě0B»éďţ=?Žä Ĭ¬ÖőçM÷DďxłÜ҉h›ş6ăĹ…5óŇĽ]6î˙ ož ĄÉ. ŐU´ßéÜXgŔő´µŮ@¬NŇfbxęqIü«ˇăĺ[ „]¤@Y­rŁŞŹ‹€—23xŕ-ťˇ!wÂĽĄ1Ş—ýú‚\\GH €ŰˇK˛,wbi=¬§Ş-ghF=¶eĘ„ňU´E–QśÔ­ł(LIZMrů{UÂ#Ęľ5Ĺ ĆC|Sާ\Kb-®nsjČ’‰ŁR&Ä8žČ4 k›_†ŁśjoA SEÇ<ą!N÷jóýȇ©)qFĘ%‘-.‹}x Ť´\[ĂĎÔWÝPZęý$`P€-±ľ!‰¦ěĘ&…ł!~˛o ‹oŔľ4a',r­k¤t›|o/ň|Xy,ě&^ŞŚ>óEë&. â‹L‡ó˛ľüŚy=ćh•¬é6ď%&‚•5±v(ęS%cŤŐąŠľ†TDď>Ř1¤«–6zů-iÍŢŰďäç–żć˛Ŕ!ČĂž~°U„osf*J`ëúżÚDYDoĆĎŞ.Đ,…dg6čç$G) ť{ňMş ×bYŤlö4íR“*…‚^ÓÇh0€éˇŹ@IŐĐ/qtBÄ“I.ąö Ű\ş.ŽÜáîg×›0Ô0Óĺ$¶ř'A~ϸÎęÚ67t.oáŠö»¦cť®uŞv·ŠIňş%ń'®ŢĂd-&O”Y÷č‡7Ę6ť•µę1h7ö‚Ć04{ř&U![m€ggO°A•ťě‚ŇăEj5Vü® Ŕâ`üµćzÇÖ|ůeşůĄó\ÇyŽw™!·ş°ösg:Ą·ŢŇŤANţU Ă=´Ě[Ó¬¬áAI˛&E˙_y§>p o ľřŽí`xtľ®hçH·:6śCmŠ˛Ú  MŘůËă.›:l·5 [°¬¶'6‡ «ÎBÎ8ĺÚ=ąyÝ)ź;ń$‰tŮĽ¶bl“'gXŞEráĚ G‚Tíéúg<«Ľ°g§10Ý÷Ô<7!ZT§©–4řVŽ„‹Ż=#óÍÁćäj‘Ë®rô]­#2C>nź@Ť›Xm‚Ń„ÉĚwH‹ĘĚŞ¸˝vëµBűc?çú¶L«Ä7N"šX&ŠC]ě9©/o§‡Ţ‹ł~ń'EĚ}†ö1*ď#ŰÖЏG· |ʋ݂ýś,¦ýIť6ď'â`Ź*G’ ŮFe¤*…ĘM­V’ÂX˙„(ˇ ݆¤]ÇnżîĹ%ĤÎS8Cís]6 ş×Ţ'ćstPâkCYŠiá§HYQźŽ ś–oű( ŇzöP"¸×—#¶ZĎÎŹł˙d>†b˘ŚR"ąŁ¤CÄ1ś,źö…ŕi‘Z C BŮ.ßćÍüÄŞ‘Ň{ś×[ČV˛Ś•ŁăťˇÎxś:˝_"eh¦ĽŐncđ“a%W`§üD9_Q"=[ZŁ…ÔX „„¬ąąíÔű®Ą1vtĐ‹Şš¸´€Ŕj›×ÍJŹ˝ô‹ű& g×:#Ër3»Ç#7Í(„Ą]śä ĐhvxD‘ŽşĄľp6lKčŇFëçúájaë)ź ˇG<Ě Ýq=>Nĺ•’É[Kôëăi¨I“~`ň¦ćNFíţŔŮ:¬wËWţřöę†.I2[błÁk7eů+|kÍXďXNőÎüa :2J™ăúH‚,1{ą®ę;śnj‰űŇjÄ­*ýŤżÉDăßśč·Ůdď„§¦Şu1ŰzűĂ(›ôîľ­´/&ě6IňŘ3ľü3>ŘV%UŕÄř±:ËÔ~ď+ÝwG °ÚŇ3ŮĚ;Ő!.L,©đXtf®¦°¸YmÖ¦ßaP!D/şGŠmjL8Š»YŔÁË1ó­Ń0 č aŞ ˇĺ‚BꙦ$şÁÇ ‚J*Ňţ“ćńč Ó$ŘU_·ň’`ÖoáŃĽwŻÇÔ™Gô„/r›‰ [WŃPä‚ŕxűž#›…ĽÝ]ćŃJňN.@ń ňÍ·ĺ±ÂłŹh®đ]´r›%ń_\śGĆw.SIe÷…XÓ0nîŮ©m Ë'+yľhhŚ{'aW˝qś Jśł„“o, hß7öŇ]K/ĄJz i\İ‹í?…‡mż©Pö‰/Ť—‡ŕpJ¤ŕa’¦ěaĺwĚ]ßĹ-ŘHIŃHV[\yť~5cáĆCK˝2Ýpˇľ.Y„~’ň.w®ëóô šFfŤŮ˘hH”<$z ŕö»ŁyÚÄgAĹKŠń«|Ú6ŇÝjś; ~<´XÓ͉×bR<‡é7‡LÓ[ä“Ő±e…^+-ü`ŁÓţşąfţ˛K˙2u#s :&°NyŁp -daŮŞe«ĺ‘”ťU˘Rl(*É6Qs Őo‚jö1ć!V qe4W¦ĺő¬oe8ĺ »Ă±ë5ą‘Đ}n,Xď]k•±Nh ’Ď mă#ŞşĆŇC,lKň˝ĆĄá‘ĆȡĚ,*Ô2Ąs\üő|r;nÜĎlUBZ…5űĎúDmżc†´¬ŘhىčĆD€~â jH§Cţ׹ ťl˙@»U%ç’ł˘TlYެBjaőŻą“uôsŢ׋¤ŕxbç¬ ßćĎâPŁD~ő—ĹŻPŐqůµĽxPĐö¨†ą‹&tč]ň«Řńž÷xńćĎ'RŰňüÄIń^38ŕ+÷ŐÍ0SĎŐŔXS+‹ó4čý<É 1úÉ:>7MŞ’¸ô ëd|0šéťA©sŞ«Ťď=fA^ćOłµGAy\Ëą}ŞŞ+?ű¶ŽĆG“Ψó6ăçŁŢTzđ¦‡1[˘ą5 TďżęIŤúśeeĘ·“JĽŃ“ř–ľb“PţcÂEĘr·Ź-2ŘÂ@®ŢAÂÍb8µOtý^Hźň\¶vöDбÓÔGDš!ÓJäé'qčâx ‹¨ [w*łieŔ\ď 9§QYĐľSq…ŕĚp‚g`:ÝKńź…ŇQA*ݱˇü‰pűŕÔŞ®CĄC3{ đ"ŘŚ6oŰ?¬_WÂě¦6/ŻôÄyŐż‘ý®Â)ůDf]÷ {$KWé˝ň#~GĺĎü ÁdÜPî äÔŠbĂ_ôZ]®pţ5:jáO9®ËĚâĐ›jţ껣öGĂcjPf#›ôภŽÂš|šLÖ†ązČÁ6̉p[˛˙ĆÜNbšé•WŮL _ŞÉ»¬ô)=řŇ„âAĎ–-Q«1d„č‹S~đ+ˇ’ĆĐęEkŘă×+_śVČLNŠjˇU™N‡VŔ3$ˇ kś9˙con:T—XúJîAÍ@lţ ´¸Ú˘‡u˙KÁ0M â(Čh›Ű9ۋʽQčŔ߲°ě:—ýů{ÉłŤŠpú ¤^ń˛ÖąěÜ’nÔÓ^ZY ţ­0Uë“«ă¦đpë!ëß=«p?îčCŽ&P‹,{ˇD¶ÚĐŐľ¨ýä¤ôV Vע>{_ÄOX#H ýqAť˛8Ţx 8ŁźĘűáŇ ýwÉUČq ěiöé }OtyŻI˛ S CV<ŮjaĄRŞ7ĐTŰ/Ť~ŽeóQ Óö´ĘRcăßy1. é4Šó°ůP”Ýá,Š,Ŕ3&n~ÓŰ1uË/5żââÁKÁ'*ó*^ŔĹÚÂŢ I<Ś€NÔúĆË?LOćÄ” ̇>·EŔ Ű>®ĺ$nÇ —¸·’ĺęxŢBŚÂqýˇŕôL!…<…O×_úFíşj‚€ĺr…ťo ¸yęúŚ˙ęR ô·˘úeŤëPáŽÉ:fe0(‹Ŕ|¨4'Ľú?â“ ÓO[>žoŮĐßĚĂg•Ż Ě3´‘ŕVťp~ŁSűí>Ę8égÉ™9âPJŕa]TP†gĄ_6Ús›Ąă ݇ŰFZťř¨]¨(*5®_“µ|sIőÇT74ÍIŕŻDß~č<‰Ţ? ¶Ş˝›-˘€)Śẋ_©+¸˝9Ą©žmQ˝ÚáY/ŠA±"K“;fġ4Ďfíď±V-řÉ3ŠZÍ) ÁŹÁëH^Kufío‡‡>čř‹7Öe•řşäiOđŽĘ"F$"GŻ›LΡş¨{Ď÷ÖŔŃ‹Ř{€ÉNµS˙`ľ(Üz2®¸Ş“„é|اóý8”mÝÚ&&ăNfYoâ¬\&Â(b PČTĎSşh{®W!€nî»3äˇ]ĽSżs˘tzRkö ”Şí/8ĎS2śóPMo}…jŮţ;ŮW8[AaűY‘ŤîžhËmQźľ!ýX'†qꛪô#Ĺ5ľě/tč2/ ˛Ňs}–E!ß l=st•Y$ź›¬ËťÍ=„“§s,´ŞťÜ3}Qö ĽC…o~Ia„MtVoą\ëďqwűşLä"LÉîwM –Üîů|ň!*·s_ńşŹ¦µgx¨‡¤Z[q©„7Ă„§ŘH´*ÜxĄTďŔ­„˝eK•Ç|,xbýtk3Čć"ď4\4L7ŘrŽn#Ö¶‚fl#瑹R1zţv¤“H`Zf]ÎN&Ę'ĆĘQđ fÚ§ce>®ü =ŽđĽ—Ä W«©-vĆđ¬90'˛Łg ¬b¦Qű‰P-üÄš·*•! ^ŻXŠĘ ®Ć(mĆŮ_Ť °Ĺ&Ťű—đ:óYr3SňSٲ•O„7ÁĂQ6)ĺšk‘ôsx“Žp«Gç]5/¬cBÜV’OŢ‹Ź»PÇÚUuű˘7¸ŘV d"3¨+0)É^I’Äéśx«{üN|7m=imZ®»éŐNZR$“ř‹°1=_şaVż1‘…t`Ôh~?V†śa€ČĂ…¤"M¤$0™ÝGŚ:Yy–Ę**Ľš…ÜcD೥7ÍŢ&”9!Ľ}™G–śľýU´*zrëĽűzŞ1©—uů¦‘JŔ}ďĹÇ~%Čń&¦µĆ;ŃÚTRůĄĹ1f“ŕĘÔ+jŘYëQ™|Ţß|¬wS=IFr}n!™ůS%‘?YVŞLOĚž÷čÝ Ť0›ˇöÔtíĆ/ř%-ÂÎ!+ ĆĹŠÜh*¬ÉĹ–8¸sܤK Č{kĂD;*IhΖqHzťü…éGÔ<ă“>ę^’wAná\j )”ć(†•RşąÁ¦›d­đăl¨ÖlŐQGň¸a•„ek6ءY@ZtÍ ^ć=±"Ŕý,ôP $t ŐfiS‡Ż>ôĹęŘ€IŠh¬—óŠZF¸fß?ĘÍqL•ż{šÍ§gkL@9&sú#w×äÉőˇü,;^ń§ Q šjRőńĎźŕp›Ď͵Ëě•ţ ͰY™{‹WĎ—KŃ|ýŽţ J×dy¬±A^sŘŢzŽťř:ţ[ŃYőćżĆωu†y7Js‹lS03>#M“.•\m:´†ü»ç÷‚Mţµe2jÖ]ZŠ —˘#”*ÔNśÔ~ťufëÓ™-Äăąµy?4śčµaőDçٲęłxĘ7f¦Üi©‡x‹şÓŹ>Ő’őf;„j'ŻÁkţ(<^*ws“G{ p|“—+đću‹e‡Zó˘H‘Ů}ôŻŔc! ű łžëôçjh«C1uw|WIyý{Nt®(_-uÚ˘ś€—dâm Ö‘…üßÎ;X6ĄąŞOâdŠ@ŔÝżoĽNžÁć3üqZ ř˝…Hrč‹â‡;üŁ|Ę|kŢÚ€]®ÎţSgt!Ň´‚˝@Ľ!đX°e–®bDÍÄźp“źđÄ—‘¸·ü:KjîiMĆ÷H÷shŁÝË;9řÂÍζ™ ¬=Öjăm§@f\ÝâF+Ů*bťkÁ §DţSúŰ×Q›ýşşŕ»˝Ź ۤ P’ ł~<ÂdüvJ–-î Ůńó9űF,cą8C–±ZÄꛕď˛eĎ&/eĐ|dçj­p( âI]2ŞjŻßóXqŐ¸˙üŽýË/ E Ţá_Ś˙ŔUěňhć©#‡ qy.˝Čn4r#8đTc:$•^Vâ\úâ1%ćH91>¤™«˝S QÇíb‚–dŮ_ ?HvÄU˙&ŇÉKżÖSţČE¨ÓMúć@IlžGđ˙3<^`ţ•ňÜî˙°–eţ¦®™{XűÝrqT‘$:ŹJÜktáýÚ¦âáFMžśZ,Q:ŻÔŻĂ>×^7 Ćß«łç&ɰ5ő18)ę˙†ĹŰ'éP'}J«ěâ>‹SÔąÉSţ%ża%Ö˘á+ŽżČMălަ+›ÇŔôźňVy` »áŮÜ©—š4ö—ç°ëĂKVٰŹť•Ö|L±lS%Ź ĐK´*w`#ݨ·/ă>ęSšÁÂÚ(»Ü%&Č挱Ŕ2śOmçßřW bă«*ٰńť]z¬÷zJĘŇɇĽá –¨Ł¨ů˙iĽ¦?¦äڵźBw›č0ŮY3{Ć0Ľ¸â—ʦxÓy‚‰ľČz¨¨˛{Ľ&0č»ÚTyv_ľ\úq°óź4´_]ĘuŞ˘F˘»M ߪڪŘô“ąÇ AµĐú»(—Ľę^ĆFź)NW7đŕ +“¨aň Ş:ÖöEiÎOŔÉ×iˇĘ×2ŃË(ÔmbžnŻń-XNŤ1G9?AĘů¶ęd’ť°Ę@PZIĎƽڔ%ő»Ű``oo]¬?ü†BVÓ×× Ţ…"ŤĘ7® ) ˝)ŘĆ őAN¬¨yßMf/ÁîriŞ˝ÎîÉĽ÷› KśÂł^cDZ×¶÷ßęf'a|”DFw|ÜËA‹Uî»ę¦]ä»Ë&őŚ1¦S«aîbZ‡HMô›2Ěđ¤=ÔˇSä&"–Ľ;Ź7öí÷…J7—+ŢMMÔŹŔ÷ˇ¦ń|Č YL‚cZŠťcŻ#›l Gˇ×Ŕ‘ńÍqë‹“mÁ])•dš‘Ô˝ř iwËL”:n,EiIcL/EŔŇiF–Ŕ\˝*k?€chX6rß ÁC ĺ–3H̡÷e jŽ: Đ‘†“–’Ď´ÓŁ+”»ÄfiËŢ&ýµ°Ť`2FČ=u“\•BéÔÚ›‘XçZAĽgĂ!›ţCä†őÎŕšý,¸ílŃ|€ćub6ź‡~¶ó°Ź|0UÇ—[B¦+T“$,6ŮpÓ+]Ńě7ǔ޹5Q<­Ąkł‘r6Á·ËwĂ0±ŢŰC_1żxîzeÚťcRN[gúµIiB,š+‚(˙˙×…|Ą˝ś#uÝ!fźŮŠLÜŘÜž°n?3 ěwᆴ y‰\ożuÔqTj‚©*č’Ä*=ˇč়˘?MV+›)„uiq—F‰ ČŇk§ţÂĂ€öćëÉ ô­xEŐBĐ,Ö+ĽŐÓcÉ Ďăجc&& EM=âD—2Ńľ…{ťż&[ŢEçÚú®ëJáÇÁ?ĆA˛]ľŔLŠŃźĄíN„$Ž–rµ·».ňJ«ˇřD'Ć˙sJµžKlCśŐţ ŰPm÷ę˝ňŻöşžęuů0mY_6xŘż5úŢfüůŞó~1z­vn†„‚|Ní4‚í·&Űi¶Ľů<ďŇŰ_UÚoEźPŽHbcÔBIîŘK’ĆjŠ- Ăcŕó`Č­ď#KÁU¬ÓQuüĆ \“^5GAťĂGą}Üz¶śýqŃ‹idWđ©Ţtüđä/Ąx&ĐüQMÄXĎŃťfxŚm¤§^ëX‡}qěÜư Z±(ŽÔo˙Ä.Ý-“‚˙ÔßĆ·J^ĺ7|ŤQŚőó¨ âş%nxͶů¨@RDôą’ı‚µigKş ň%pÄg ®üť—ˇáă«©Ô%~é•.Z”ňĎ8ҸŞŢďy LHµđÁj©ď‰ĺŰšiB ý® °n vnĐłcnş ę«Kś…žŁ_R]-uÓ˝0a‘ăn˘6íIó‡d$uë+JA8p!,Ş˝ÔÍim·ÁčÝđę'XŰ#Ó°Őjj‡salb‹î×úC_9±˝gů?eR¬Ś˛tC(ĆďR7ĄöÝ<0VVbĽ,z@upl*1ĄE´ÓnDâs1>T¤Śa'†GÉÉöÇ`š3dMŃďq k;Îj¸řŢŠáLś–c}×}˙[ĺVÄäřŚ9 g“ŰŹć‹·eE= SěůTŢă0]l]Ü÷?ŚććjkÓD"+ ÷•Ď2l‘˘YŰě V´ěůx¨ŁŔXvŇč*Ź|19}ËQňŤ3I'ĐwáŤ|e—L5+PG9?ź&ÁďśŘxDś6w#¤_Bąí5:ëüŻÜ”ˇ»tçi=–ôŁćŁ´®YP”>•Wę(Aő”ŃhľAzşńZ-ę:mÚH­6ÎÉÜbB-×g¦ľIj ­ K•ÖŮ©°„¤ąáśűG Kân'=Çm1§>¬`ŔßH<Šdł6mdÓc ëďúJ T%Ň%~UkŤ®Ý]ŃřfđčžE¤Ęl3f0AäŘŤj$ncć4bť BtfÓ éV`âx«Ŕ Η¤tËŮ}÷“jté¨ěúVf_čMWĂűň`ŰČF ­>”Ž TŻ'·„<Ý1vI%”řÝaČdŃ ± y‡WÓďôD{*©źS»3ŮĄŚĆŻ}N%V#lě;\N¦žďĄ·Sij÷çoű„Ü…ĺÇÚĹ{×Uţd‘ziÖKÎĚ¤Ú ›Č„SMB¨Đâ śŽň˝bńvŤzbţPV«ÚńeóY:Á`^d‰Ž´ůLFŻ'\Bfe—µý‹ Ćś%¸{ˇđuŮh,F`ĘŞ”\Á»`„ëá[SÚxŁĂŰ” .ĂôlQ,‡V˙ź„$¸Ôč˘Y̵٭1Ńéë–ť‘8ôn*˙-e©ěX×üL>`{=ü>%ĐF®±‹bUc8 řv,ž;ÍŤó=íĚ?ř‘śíYö0Gľ2`ÉĐE­“ś„58mž[ůŞ~>M_8| ë5žP;ŽĆą®őĹ{"“.Ý|ŢV&‡mNËëŘKDi/÷8łőTće“˝S·‚ńĹţ/]I:SlÄRšQ¬Ë,É_‡wâáa=ÝţjŢěu¸2Îł†`ű ×"łělŮHy F< hq°ÎO·í*s× Ń:EŃb írB=śÖę¨]0SZgŤ9»:Ń <®¸&ijN–D[cŐ¦4/[KcěA†çbÉeőĚîôŔ^„|ÝëA/Ś´îĚă®1 H0OŚm¶đđě=ÉĘ$Říľ¬H2żtúC_ĐŠyđĽ aQ`K†÷čˇęd_ťĎĎj$fą3>¬Ď_fk~[pĎ‘ĂĂÖŢo-`:ci\ť•ŕŃĂ^Ć®ą”聾ëÁ¤Ő7Öf Ĺ>>IĽőčp©h4Hö~Ąba¶Ôđćˇ]˙ŕW®Łcbű\3ÇľT ŞŹ?ťvN:g'Hڏ~1Ë·­©!íÔřµ~¬žgeĐÓĺMż0 „Ä w®żť©@ňc´ź››E4těxwxyX«h5Uµĺ (Âş\bmFgi•y‹żÍgŇÍa•lEQćK$ë}46mö"śGě\ÂM'#„ˇ.·­5&>ßÄyśź(XşĄDňĄ'ÍŁ2MoĘâT"R”ü–t 7Ç%˛3É=~:<ů8ŰľÔŇŇĚxló`ĆâćK[fn_)Ć\䤂©Äé8,ęŚ.é; 1ÖËI ŤMĄ‚8X.·ĺ”ë©U˝‰_ŤG–ٞSqĺŃľ)98^c™Ü„™|ĺťš!R…ó9uŐţ [!1%öŐAÖ)ÝD˛W&*(yKÓ0s$ĺ6ćëů™DQń»{´X‹%ýmůËÚţÄäÎݤ›Ą÷+vŞa»Ě;ćÎTď?U–ŕc`™<ęY“C°ţüú˙xĄ‰…ÁŇ­Ës¸ËPŕ)ÜHx&§b˙j®ë/?izZĚGśOýíLÄ9ŃĹ×ű F@ë g"µÜ«f·r"^˛˘Ň6bVůCŃÉ uxá†Zžű4ąŰĚřź–z†uţ#*ůÄŃŻHt´ěźďzg‰Η.ŠiE˝«>Ć!ÚĆ>´8Č'÷÷I'TŮ{$ç[¶Gy‘ ůÉŻFÍ’tLŃţza†ú>nZćÜ…§m…m¦9ZV¸ ŘżµĂö€sw>p3Ä«9S0 Í +âŤČ=ĹłýM¦Ő ŐŢÁ˙­âň—¶>&›ĹJűL 3-¸ÝŇůĄ97°Nr±Ö*ĹĆm÷ů~o©C™˝<˘#âzňz+X€´ (6-ŕ›Ú”¸HýoŚ~ŕűľ"_¨äę2ö.‰ŰŚkWÖúüA*!”‰ËOBTĽQ Łô˙:ʹݶööUŮńgý‰,+ŹśĽu×r>W|­ľ¨~›+FŠM›8Ëk*P˘o(‰A ş]đ–FF-×Ú%Ŕń§µ×ĵýĹ÷ŮCNŤ'yI/Ű·Vrˇˇ·$ Ëěđ!ŻÖc$Ŕ^ĎÇÍnYbęł.”))`ĽL(U&ŠacŞgá­{hMô+č^ŘÉ´·•9aéŢ+‹îĚÝXj|ďżqT—†/"mVŔ4řŐ#Ră…ŰCbśů<ń`ő? \ i˝ rŚ©Žm—%Ç©‡Ňű )ńśTÁMÍ´vťx2Ř­t»ţ­ŤË °m2?x~Ŕd«ěţ÷öÇ-3!ędŔč,ăC¸S5eת™XËnŘ7|÷čźgb•KßîĄ%ż+Nx¸gĎ »Ýň 5’KŐÔE)Ĺ+}đŇçĂ}¶kQ5Éťş¬¦ žŻŢ쇣ęf˘ŞHÁ0ĂĽ^—)ŚMĹťŚµů–8AŐÓÜ5ł<ßO Úšĺ5‘=v«´á ń­t)4·Oę$sвäŹE`¤żÓHgňÜP8íö , Ęßö˛VđđÉÂ%„-łÄňućá÷—G®t$Ň„’8ÂxO¦áŔ9îŤ"Ś%Ř‹śB§…˘±A›ßa|8®{×ztĄŘÇĎDăŤm™Łô׺„^ˇ˙ R0řizl çéţŔęČžÎÖ̇îKîXîŤEv‹ŁŤcµ>ś,b‹ íîĐ0Ď\2 h7^ä\$ 1ÇT~—_Ł~†öÁ™ú•qzŔEčť5ä8ôMř#•NČ &áhpÝ6AlĎ«đ ş'K¬M(fyŐ ¬A±é…ÍTCë¬ĺŐ‚đž\·U3bˇ=~Ńé0ç? µS”?Ä[„Ł•Ôč™WÎOŹÍ6oŚéx¦ť`łŐ»/ź§đ5*Ďvó)äsn¬ęLŤÝBŢőví}ś›ĽÔqr{#h¸úošÚĐ!ŞDtďm%ň)ó; r•ńŔ±,üFŰTEÚfQie<††‚ËéŤÉ^AÁC˘Ý1E5K ÁkŘu*d€P\>‚Dt,Â+–Ük¸Öp‹$F-e˝á!˛IŮ—Imi[ äQ’¶ăĐ«›,BrwňꧤڝT18c ź*AÉ/6ˇÎqţż5ˇ Ş„JR`’/7ă–‰ź…p±ŤG‘w˘Šöłw”8ń˝ř‡nžŠ@,…íűJgd` ‚TÜŢöĚt ťkřŢVvsđąí0# WŮ=+”h.ҬQIź«Ů÷XěTę•Fúě˘#ŢZ‰gĂX§‰Y'‚dřŻľŇ@˛©äË®Q‰Z8iÜ#ř‘Óô=%őě&v|fËÇĚĐë®g­˝yîéŽCe{_i˛]ÉÜâmŹĚ%Đ0·…řŠŐą”‘q4r|-9íÍ,ńëdíq­×ňHóv÷Z)ĹőŐ-vFîěěhćď×\኏ŐÁwV:íĚü+ ŐQžÜä„óúK®wÇxŁJKčĎeâÚŇ-ʨĽ†›Ĺ‰”ĎPúTÝĺDZh:·°KCŰĎô*ĄşrÎH<ÉçA΋ĚU\s6ˇÁ6ɉ´¤(T‚k“E$HH—óuĽaźĹÁ€=ć”/üë¸Ő4@˛ěIX˘¨Éh×;S#6ő©ŐröđXNił]fŚĹ“/}ĘÔÁ6 [”ôëĎ׹´FS÷cXEáP´wž*ś;Śnqjwµ±‹»<őëNŘ‚Ň “]‰š0>3ů5mŮRŰŰ^čc¶dcÔZďŚm´ŞUá]Pşé˝E˛ÚÓ zůľ Ëtň˘0cR‹Ç2SČl©<Ć-/ń$Ýߨ^ŮÁkąş Żq8÷?Iđ‡µ-P—Í8¨˛kí#ÍR¬#-:§07˙bŚSÝ©áćn«}›ĺÚČŰ"ą•ŠşX“č7)ĎÄ˝˙Î ©î‡öĚĹč"§'˝ `ÁGĹIŤ9đr[¬-\š>ěŻEŻ$‹2š—č­ŕí“Ć•Î=±‚ÉçVH\ŞŻ±ŢFM™‡ŕKNÜ!@G ŘMPšGZ—Ń'€Bëţ§ŕ?”oůvčR+5˝ŻŃ×!řő~cżźš<aĂ˙JoĚ9„ 6gůí‰ryÖ`ŃĘŐŔÓ SýĄĆě˝oŠ[šřF7M„Ôéîo§ŽN3ć˘ÜěÁü«/3¦uˇ†¶pô$Öx@ÎVdźtSڍyŰyË‹XÉŁ,WJ+ˇëÍ'ąyŐâěĐ´<ÉML‡ř*ł§o.Ü‘!ßKÔt©3 näDh­?Ä)&Ó°ř±Ť8áE/rô»îQś~ŔČ›(¶ĂôvMńÜŚŹ dNnčď8˛ĆF…a?•@,ż%öGü˙7WąÂEŔőn‘…>ŹS˙É;ż¦Čç”´ëmL(x"ijťäEÝŰKĽ|cE冉·y÷¬á(LF_Ă»Š 'ťP¸˙«ş˙ůc“ ÉŇt  ŠŻTňÍPĺÖ˛ůI !źÄŢŚď–µšNGRíL˙‹|ë=m"ť–T(m~ U,<żiŽÂ-¦'Ě—s¶^· ÉZną7ĚZqDTˇěŁoiF®mXáNňŚ¦âžŞ’Lżd c,@ Ç^]oÎ5#Á5Áď ôõU$Üíť]Ëf XZ=ěĹg#©‚Ě:đ^SýYţ@ ¦“tÄhśiYOWYćD]§!J­G€ Ť"çµ=őýß|¬Đ×çËëxw„먢Ň#ČÝëA:U«‰í>ë°Đ*ş?WţĽ+(aŢyüĄş´*|.úÉ íĚ'ÁŃJ7ď"… b‘ž˘3S_;#DZOë=ţ‡sEn‰ŞX @Á6ç:Iâ†ŮÁgŔÖý#ýřÇř'×l3čůů¨›ÂÜö–ĎřŠš“ëaBDg dľ˝uďďŢ#ČTpi(•~ě홂sŐżá×\W·Âۧ*xˇj˛ę‘” Vx=ž&ÜŁm›Ö®LF¤w6†:Ź‹k—\^eéVZ8űW’y)]ÄŢż(ŕŇ)ݲöXxÍÁ±Š(l?¨ —ĺ´8ꀫă^«#®m:Ýú…¤y ¶8Żü$ÉČ:ß/|EĽć%|ßľŻV5ă)k:ŰuĽxhŁ&ëŔj@Řţ7Š~1[8ť¦öÓýČ&ćP°Â=TˇTĄř3©B/˛µ€™2w‹c¦şľA[ĐĽ; ­ŚH€}+řf.cć?3ŢYSµí×y¬ąőbU‘ęrb\•ň¤ĚísÖTĄ¸­˙M˛q“-Ç[ÂĄĺ¦[µ4¤<Ĺ·F„G)a˝óš®\OyčPźŤ|'_ĐŠ ĚN] Ţ2&Q®TĽóî·`Oé23é@čMN•*Ŕiî;Ă\ů™ąH#řóGş+/O$›«€ü«Z¸ÁFéEďíć„6Đ)[âi;•• ůĂ#޶ť˛ËÝAŻ”ysŕ'oVő‡NĚcuĺôŇ)¦9KSXŮÓM;¨F ŢÖO–’×_ĐšžßĄ Ń]qhɸŰ_‘¸‰ş\Ąě0 ÔGÜÂQsŕ1ÇBezŐ ¸f›Ô‚tpß 9čć"-"ó+č_0­ép›X0p61óŕuł §t^śŢp›eŰĐ/XĐáĺq±­+­99®Ěť=.w`ýáśXŮ.ʡ?0$úM Ëoöńôňđ6âl| ,MU\Jr@zRß»ÖÇ—űT§Ü‰VŽŞťC™'ćD’V1ÔW—׎€i:eYĐ‚RY&ĂŞŕŘAfŽű!ěű*Kŕ-+™g•©Úą«(zÁŤHi˘2†ŐčŮß×@ÖAŘ~ĽŘÚS»RjŰ*óqĺ ĐŃâĹťö&©MM"4ó$Ł4 főŁÜ7ňÇK9ÉϢç@(,Řf.ă1ú®r7›Iž 9ŕ¬Ęa8ôößŢ(´ hý·@jô=cL?ÚÓÉBú÷N21ްŚOŹďi1î^%˛čŁMq‰ ™Í34#w1Đu—·źaŁ? ď r:߇/M鲴NúH!Şmď’ż˛Ă+íJĎ ů0Ýę é¸ţpĐßBQUvsV\S1ÉĘ'(ĐĐ !Ů‚M¶¤ś>îák4!61× _źŠš$JcO—R†5ž¤Ű}XAřHŁn(ť,zşĐd`rănÝL5CR’4M¶;·îšőJ¬†ŚţN8Ť]űż‘Oň¤dĄ–ľÉą+ĂJ E±ĺ°+*:OCŕÔl°$ŚĽć†ů…ë˝lŕYá¤ÜťÍď)ř™cÚKŤ© 4(Ý˝”2łëö.A϶źĂý) '”ýůeäÉ0SkĂkv„§Ü”NŞr‘GĄ÷Ő[,JDZ‹ů˛YőOdŐř Íwź}65”„±Od9›aĂ3ć'Dtž‹™ÎÇ?"/9¨ţFtÓĹU¬Á6ĺ›ÄT{V,ýĽA ćÉ‚†çÓwE@ŹŞŃłČrą;Üâ MĚpž|řĽhô–@W爵Ű-Ő2ĚŚ3¦ ˇëĺŤ˙ÂŹýŐDÉ(>i #ńaGŚUŰý«s§ć{=:vśvÚ­Rzj˛M÷˙Yź´FÝS±Ť'Ţ™.YąÚ]bhţťŠlßńřč¨ëî¶@ Í&˙LuŞ«SfűQ+”†µŹ‡pš~¶üŤ÷<ş€{ľÔkdzżçDđ7)T4·~Ď,^?[Ŕ'Îł±ţ(Ă{H3íżđR…˙ĺ`ěë©Zr— 3ĽD\»Q+ORhV™ ň»źz¤ cŠB[°Ń䆳‚-†(¬qGÚ‚uѰbü—ßЇÍ4ŕeíáV*żYcu`Âw†/ŚŁędşAť"|›ź”|Ř +ôA· Ź"Ľ^zą·éË„{—Pű‡ý2]4y:ßďî ÖZŠ“+aď\ÄqčRx2d˙žzi…ybh˛´B…Ç‚[JS…Ä»ZsšĚżq˛ëÜǵ“ r#’¶`¬ŽźB@zVž÷Ý4 ‹ő솶±„ިËMČ…üí7›zRŕB !¤ľ™őéţ3łĹ¦î?Č&Á`ÎéXs€Ďă§ČVqÇ š±«d/1dćh˙:°Ż«´¸¤/LËŃ|âB?Býěb}§†ÉAŻ9Äž‹ôżŠđc]ď\MÄŚfNŮ1>öřPrĽ*«¨Ç„A‰If †34uăunb›¬ A”ěE8ňŕ0¢˛/ŁżB -ŰcĄI•ÍjŠC]Ąňĺt Ł„üă·©7Z,čmT~IúęĺŁ{ž©—Yź$3lîTďĄ?DpńHbEéă[+ĺO8Ó€§Î„5)? 'XŢůU)X7úp]ěJ,Ĺ®kŔV­ IHź™.iL–‚>Ę…­§“THIŰą ZĐűDî ÷I—ű§zÁsšˇíľ(Ö ű[Ë.¤Î?ŕµfÁŚĘ;ŤDžÍ±<‘k‘XxK@•Ű]%:<’h‘iłÖ(d‡LŢş§ĽĎŃqá<¤ľš®¦îpGOĚ §ńá›HŁ©$\ÚNąDëČÁÁLN_· ¶ŔzôĚ}Kĺm1ogWÉôąţ ^Řnăě›=nŕĹĚZż$şz´EţCRTůńX×íĺp±oH PňüAŠő®-řŻÂ ~W®›§ šc’¶m&ýsMéČJUĐŕäe0"©tŁo” Đă豣ĎmÔاţ‰YKy…K0.‘#ŤĐöEŞ…ÂĎ/<ěĺ^hĄř™tŢ™ „gč‹™c÷‰‡Äłđ6xµ«ËćnłŽrŘIx(Í9ˇM"Uť0Rýź\\ÁŠ‚;içÁŤb#ÓĽşí: \žaŔŞąŘ{Ę˙vizŠ!'ľç\MóTQnQxOŕ'HŠë‚8mçďŰű€XúĽ„EQĐS°ťyyCxřv%­žž kľ­=$úuĚTNčłôlú–ýśĐs]Eźč^MEyČU¦*@ë=•)€v žy}ÜO™TkúnJç+Ń^Cݤ (űDŠ—0çÉ˨}%DěL©ţIżę롅d(A ý‰ Á8ŤŘ 5"öç±FŁ0p¸ ŢË­ľ™ĽłÚsýN¦X «âzŐŞŮmŇĹ=<ŐÄjř +žáčjëÁëGzj Ž®¦ź&*«(fďaŕ%n9ĚGuj‘®öwł°pC›_^dvě\Ś×Mčg1rű˙˝ţ ‹Â2'l}{xH_@Ľ.»cú©•;Ůe ľá죚‡Lr\D€ÁM×VŇ}Ým¨®˛BÓH+͉®śV—řç·úUY·ĽŮŕ—FĎQyj‰´1IóĆlvâ#câi*Mî¨7řW®Z©•pX“±‡$É»c|űSř–óŃ9Řp ÜH1ŕ—łXRCX¦¤Ěk€Żśó›üŚŃ} ٰóĆŰLh…îÇG'ŁřÁśěKnĘ(Íh–C`·a{· ˇ±S«%€˝é¶­÷Î㵬f!Ďz2đ"†ëq<µ÷, –ɵöÂHšęsqȸ;b)Ç4+ĹŃţymLPŞ“oH oEyzy2ş-Ąo§mĆbőwÂđ+#~ĆÖ%^,żżńjš@”ű|Ř&Ő§ö¦›âÜ÷ ľ;[gŰ ®9©ŞęöC3 ~8Ŕm^ŤFWÍĹ|ěxôýű”˝)ůďĚ.ët®EZ¨y‚–¨ ŰCˇ#ýHKetoŻřxČŻm»J§’ľĹR.ńŞIÓmiä.ŮgIó´Kep•'ŞŮ+ȧ¤Í˝|!°uľśżuĆ+—xĐyW0Âë5 lx»ň;qç^)•é•XěJ43” 2GiňrLÝĄ©u †Ç 5VRk3#T%>Ő¶:uBÉÉéżÜ¨™6v=ˇňőeÇ·ţ«…Ö¶;?ă ¸]ů&‹•í]ďÍ˝Ś1©°q¤şSęŢN{:ýhî§* ŞżűRYňżç1}XÔn$Pň·”ŚŘOľ%1‹Đź‘ţŞü”Lp2včŞI=nKOšâ)IǤ”Öą N™´0ŞÎfv\oT0§Ŕ˛XGĚą~Fó4÷[©Gę¸7~¬žý„Č´`ÖáÔ¦ęĽŔXź!uĐQ獇łqŕśÖÖĽk¶†Ži+qĘWo†HîżQO¬ T3ş«šŤżť9Użĺj.i"cŞQŐB‘ŕ9ŤG’ĆćĂHŁFmô·.× óÁŞ_cRj4Ţ߉cőč“We˝T˝ĺń͉´Č-ˇâ ĐSG TďČóˇ@ˇ., µ_łb¬şÍĂł«M[Ú1P«×䦅ÚňĐźV«ÖO~׹/˝”ŔÖC´±’šE9Ťd|Ş=“ŇG:óđ3¶ńD&ŁÄSp8‡ Ď=¬a߀'›«žHĹŘ˝žXfcÔ­üň`˘Ńű‡¤Í«ęćě†[Ę…3ŇËUäĹý-™GC˛,*h CJ/0yLJS¤á´Qľ±›}‹Áwľu.żČÝŁRÚ‡y&ŘH)Ŕ‰".áJęńú­Á4µ5‡ Q.l©­ ľěČGކ¤Ç2RÍĄřJ‡y˝řZ÷Y˝±ţĂţk-BŇĺaŮś á}*¦ă)@ X×ůUŔXAźYĄX•Ď^q>@N ­”IôpÖwő^p| Ź #v™ÜŢ×äěś<ÖĆĚ8 Ź0Č”sÁ{¦,1`5˝ăa@].âú¨H|,ă˛/—ŰoE@[łŰ`w“Çx•Ě"lţŰDĂkK|Ľü„^z©ýp] Aě›|ŕ-›«Ü5}‚Ą5ą÷ęf˘u€g5°/ąŻ]řÂQł×f;O"Eč çT j)Ţ8ăÁ1<ŚP1Â4@U©ŤČ±Ńz¸ńKźâYđcľş<kŤ-V¬Qá·óaTĐTš$+Jo+˘Ťo“ mßx˝öŕ,űđŘzČ—]ť5ݱYů­Ôo/‹)™WĚ×i+CrL}(śO +`Eą `ýíÎá—yrë¬Y%ď"©‹ŔŽh›ď¤`×Q…Af_Ö~r醦Ƌ—ż!M$dzX˛ů˙ď<`§˙{­śt-顨"ń·<€©2>khcéżÂoó«R¶ ń˛ö%¤s”ŰňÚ)É\Ż ‘EQëpˇT†YĹ€X8ĘÖ4ś:[4bâ:Tqtí[T2¨ŕENÜss§kä.TJëJwîb<žs%<Ŕ”±P˝w!Bú+[ç;sá—jäöR·ŹI ŚÁő>×3ŕÂ{ZĆşÇďFе‘ęIĽicĂDMł|š÷"öŹ…ç˝LŕTPżĘL4ëísAíÁöݬăű›Íů|`Č[KKÇ@$Ä|­AIöHMŠHŞ.Żëź;f†(L&‹–ś0 „6Ô }»«›8Ę żűw÷ŕ+#(T”zQĽsÂđx?ˇ_^;hŠc>ŁŁ€`w÷cN—ĘD¸pś%«i™Ä–ݦ®” ѦĚé*ŞăËŠ’pGjtš şSfÓŠZŢŃĄß8]Ď5ôIÎ×ÔďĐ”žÎK|D)rlł°Ç§e¨©‰Čˇ/xťĐ›`äŽčĚŕÓ\űĘöŮ5er ’`F…yĹ+ŽÓ´*‘zŘĄnţ3Mú\ď%p”ת5·Á3u©*+H{6Ľ€Î…VWU¶[H$’“LÁú§­ËSöçőtÔI¸_ÂŃ+…$őůéĎ#¨F´žůŮTWŘ’†¬‘Őű+ěh¨4ĎŽć‚jkôU';›« ­2nČMŮ´ŔóÜâĚ›3p#ŢÄ,=.‹ÓôˇEŽ‚pWŰ ßüë@BN*“Îé8çâÓűŰţ+ÂA¨âĚn_6=.©řÖÔiÜ)ťkó®“’O÷R€Ě ALH¬]©ER&SâŮűűŤHHźŠ€H9=…ęz9“üł×Ö †Č˝l&I€@îł•/† ©` ˇóšĎ%P`–¨÷ű©ŔeÁ’NGܵŔíŢ_çyc¨Ä/4ł÷âudUk­r˙S/č×s†Ôőá÷|ĂMY‘®‹†‡n&T´ÜśîŇyzżŁúb#ŽľzAx mAqiűÇH:`PÝĂ$4Ζ9µ©ˇĐŚń%‹VÉŕ˝Ăĺ6 Ö݉x·ĺńž€~­Ů,<çP»1ę›/m÷Yĺřüę”8âLëí˘ý‰•.ejoÝŹä˙Ť J8ď¶ Fµčşb/Žá3©ä¦Ő«Ź“šř”xaěT$ k§Ţm°ĄĹt§Ś…‡˘Oiw—řÖGŢË‚Ăý·˙ť… Ű}†ĂśîćéyęĐ™Ł_´s ‚¦m,á`í’Ü8Ix.ĽŽţřDŃů_ňý€ß÷ ÖĚćVh ĺX˝ÎÂúç•ôŠ5F”°^“^>UöŰĘ=–Ę;ĆC\=A×ńŞ®iÁ׿›N8‚Ôüő¤.›á G1¸V5/NőRű#ń‚ }D4˙2 ęr~&¤Ľ]0Ă·\?=3*óÚč믓uc±ęVlż­µ"…ybńKXă±ű@óůËW˘Ł¬ĆRĐ`ľł“P÷Îަ5’O8ľôF°ŁŘx_ß [ϲ)n?ĺ Őâ:z-®ľŔYFŤ-ł@źíçs/ťőˇÍŘŔ¨*Ź/–‘¶ĺ×ÔÓSÖTĆţčŔ‘¤@†Ä=— oO“úr>Zdt2ZŻ+‚TFÚ´´’®Łüń“±b^;t#mş„RŘaĆ(ů‡ĄąęźńĆ:Ó©Y=Ň|§ó/Ü‹§÷Ü)Ň‚=‹« \*B•Y–v/•ÉdĐç颰$gLůsV™ĘČßZ.RŐrń\)¸÷‡U_ÓZ~XX.óm˙îÔéXKŕp&YBÖďr8çpěQĚÉ6´a‘H¦&V9ÂÔ ŔçřĐ»/:çä+Z-Čő‡Gůďĺ™óŰ›lY@ţôđ3*ŞK–袟15Š+sü±Śđ.+‹j\_o9đŠńŰE©qmůąťâúŠWR¨D©řÄ©(˛›rŠ)aířZ./*/ÚJëĺ–y#®µĘ ˘d8X4äŰÇř 1é`‰íĘĚ—R Űj§Í– -~cň¨L;ńŃ’`ȲlČŮL'·uăŔ& É)»őŐðŽżz:FŹm…ś…Cé~,xţ‹›ÍŽËč·°»Ň˛Ĺô97”ĆPK`ÔG‹=8?řEŻWĐ‹„ňűW[Ç‹/ ¶©a(áł´ŕžŕěŮť"ďăň>3 ÚVcôµ=j1R2łŻ;F”"Ŕrź|Yĺ·łžUÝ-![ĺ=Sęyxňş źľ>Űa×uę_Éó;%ČtjéŹjçĎN+1Ě~h-Pe:aĚ]ś+ř™HÜ|jŻ€]›]H8$ĄŤPQŹ=Ť-Dě¤Óɀݔ๥ݭٺ¦ cˇ”hßż/ľQF,ĽŢŇÔ'9“«–ŘÄťťmu‡#hoşNŽ·T¬“Ř‘V%Çěä™{Üd1©á‡ˇDŞhěIżűVT|˙B·GôŇ™xz㊠ŚB:Ť5_ޤU÷aIčć‹TX»¸§[$9ą˘ŘŁeŔ±Éhv @÷>Pa=˝\™_i´,)R‹z·EY´ n_÷ľ Ď_gN6;jM€)ź/[†ř•‡%+sřĹž„ą3d÷—)lí©ÖŮ^qömËčäz`xĄ*SâÖŢçgÍ W±X1ś$‚ÍxĐ•¤ą‚‰řP?b˙~6SŕÎKŽŹ®§/ €iľą(Ţ„†=KÓaó„ŘžŹőł=é%CČ ›wť‡ÄtŻç=/ëH}Ą&ő耖÷*ESÂVV¬ŹýĘńGqÁ—ć7"¦‰ĺ˙Çő­·řâ&M˘“:¶ďÔdą"Ô©8M1oß2ŁlëBŃÝrdžL+±ľ!îőc¬pýŘxŚgńů!L`PÖÚUęąŮ b»Ž‡™tŘӨȍĺ…>vÎg”éć٨Bâ_ɬůúş&7'©Ö•'O–Ę5˙ü}C#ŕŔîŮ—(˘4ˇÍ—úż±„ ©6Ć"®ô˛­HĹ~Ň톳Ĺ!Žî—Ó_^âTˇxŹçs‰j;§Aăö#żgŠĚ$ÎěąČą‚šŢ2Ł %űSňşłŇ„Ă”űoM·8Ż[,{'˘Ćw|X3|hA=¬Ë`ňŹ>yŃiD}ůA™ÔĆ•Ö÷Y]¬“S3»éĽ ¶ ń”üâ;źřčČS! }€`üˇPč.é §l¸©“§Qšż[wŠt°5—j±Ů"7†@ůL ÂďfOt€»[1[‚‡BUGĹŮzŔN)ă7(u Ő<ËĹe"ÄPѲŰŇ‘ÝĚ{ÁúMęâŠÔú;ěčhdz?TDżź™/ßMĹ^V†CĐâ°ŞVčx¤!cP·<ËÍ#‰lŁ2ľ;zuŞ ˙^ÁíEqžcVµźýŘÄ-ŻL4óżmwo^Ǔĉ7îؖgHrľ¸vÁKr˝ĐĆđŕ/ŚŇf Ó`i8zrŔÁľ*¤l–Li®ńŔPŤś×u(ĺĐm ¤—’÷+dá "Ç9f°F m,)ׄžąĺ¬čU yęĐn‚ţšśŮlÔŹ6g'ţéôąěŐA)mŚP§ç…ďüY`_5„ żB˝ůůé_ݶOŻ Âܸz&«ŃJĹČ0Ö˝]$?ßíy¦3®K@Ă>Ť˙yż÷| x=Ţ{qŞĹŁ/Pşç¨Čfżśi uĹű›¶J7Sµp…}&Éy]BÚ*Ľź0ßú‰¸Ě˙ó«u€ S|bp$—?)VݶÓä0JTŇ<'5&ľ$ T¨ąUťÉż» Ö@bŇ­/·NŠż<ćP˝ŞµS|*ôĄ«wyµkĆo˙‡âŢB˛+ńQJ lq*D 2:Ăő„ť©ŮQw‡Wţ~íÔI@Ż(©ĎD /3Öäš0&ęq´ű>˝%=Ę·3 ‚”tž Ů&ĘGÜ1ßcMźmř˝bH -Ý\¸kŹß€4Ń~p1h;`ŤŻâĂŽ—‰5AW´;ŹÄ˝:g˘8—l™÷|·gŽč˘Ó,¬päOyWh ý9}ŰԲߴ_ő.š.†MNŐŁť”âF'ħ‡WDÄúëgKLlëHű!Ź–¦&Xđ«uŃ ¤czT WÖ:^^§eÁ˙ÎÎI@ ńL ,ąúb—#2ÉďÄYŻúíÓč=nľŇtkŮN+>“†Ňú¸€¸3MŚ´Ý}Š„lâžÁřÔHšw<ňSw©·ďP$ŃFP+±|oHFčáł ÓH«‘‚đ@í7[—E4Ü|ő‚ÉŃń=öS$xŤ'öUŤi§â° ·°¦’”‘Ł’ ^ÓŮëlł_Ó8 ő}C¦ÓĚGŃOW‡Uí˛3jJxŃéé˘âL‡ËŁă$§Ś“9W:^D. _1J CĚ,:sd‹*hfâĂ\ ‡äv˘ĚȢTţtÚ(č o+˘F[čźrůŤ¸`&LdWXşęĆrGLPę@ň÷/“5%aâě«18UŁś|pĽ•ĹŁĹBn·>Ž~ô–éâ/‹¦Ăô»of§csšĎŃrxŢör·nydڍNfçH°¨ř{‹Úo)íý\ß–ßľý0–VútěTDô–ĽcĐĘyÇa—šiÄĐßŃbÚWĂ]ŹC˛”eřÝ´ňß&“ćň ŇrŻ`îĐţýľµ9Ů‘ŹI Ám¦0 ě^sq ňĆmGV‹ňx¦Ů-Ť×ŮU5 ŠćÁ@“®´.Ežű1@&µý2˛Sĺ\3Öád ixęQjŢ{đQÔ›őÓň3Ëo|F ˛ŻZGĚŠ¶öăĘýťÜ„ëËŠ ó†–ߤu´ß•n;ôä3 ŐÇ(ŃN®ł®ÂmbĂk1¤ę3›É¬ůţU}MF”7ÓŠs­°ÝžNíŐŹ')Š?Ça:1{˛ýĄîˇŰ”‘tNŁ9¦Vظ"QK>*«íë)3ŕ$ÂľŐˇőڏŕ}0ŻŽJ!×¶WÔOťŐ×NŃ­×îĽűŃË Ů|o šößzŇycJúܱŠÄĚěĄ`)ľ8—ƧňńŤPfŕĺĚ»a»îźf8“ňóKăC€ëř’ű8µ\ݱYY úçËS·ÝţĎź!)w-Ň÷+Ç@îÖ~vÁĐáA?öf˛ş!%ý3ĐŃĘFDDăîź`”`ŤĽŘW‰”ÉĆYÇ×'EŤl@T> Đůó-)µdŁ8ĹϡfîČ"ě˘S5X…Ľ@Nĺa¦V#qßsz·Úm:UI{9‰şKŘgWĎjŽYB‰%ŤBlV±!댺đvVAYë.InD&ÔŻźˇ¨ĺl5¸¨ń--é{ ”_¶«ĎźĆh Wźĺ#ť¦Ęř‡±)J˛Ądb.Î9Ę N×#š(^Ťq…ö(Öáß2´ “‘ď‰Wťš´™Žó1?řţ>ë©n•iÍ@Z;’tÉÖh‰$ÁXě™ęó„xa;ăěHŃ7“$Ń`Őb]#ąóËŚ#á9í˘žswäýˇl?ś0Ś3J1u|*_Ţ>SEöŚ>Ą@=6PT e a˘„™ł˝ôéXI›POٚͳb¤KUçě.Áo“ăŚ,XÁX‡6čYĚMmÄ&ÉčĐa`H$@ř(qqě; °1=Ý1íŹzŕ]Ť}îč ë§÷itŢ^ý[¶¤ű ć-ÝMţ1 9 ť‡`„Ôéz弶ŰnŁţW›6 \Ľ«ŐĘÚ;Eáˇů–“§_#Ů˝ňŔcî}yk«í¨wBČÎçZ`Hy(Zď ˙ćÓÝüÔDýÓ1üťŞľF'f˙î4Ľ‰N$Ş,ő‚`‚M‡Á5ďî2ýÄŹČlŽ€Žíűô–Ił¶•{ËH#Ţ3†Ď±EąK|\Č©x'\cÚ Ž4˛˝g>5iÇŘ8ŕ„Ç{óNśď A”ŮcŃťŤČ<Ă‚%Ś]‹üi†¶ü#ËAžűp†$±[¬ń0uŠČ”˝ý?rPwě$Hć,j|E„@ĽĎů>ߢ\[îÝI?lS @′Ě”ŃĐštŚĄ ŐÖ\ÇČXóĄ#lNÓ†ż2őż)ÚžSđúéú2ˬă­{Q—Ä9ˇ€Ť6+4Ĺ‹Ěg\iÉö¦í:2ăŇ…MF*#킵Ћpnś.?L“<]g?R›WBż¬Ă-hŕPÓ•łnHśaúxJąY]qrżRšJ˘ć¨6-űdsĺL’–`šJ {µ!ßdp(u«,á¦SŐHŇÉ‘ćŃŢŰâłÍE+¤ąß`ŠJĄÂ7ˇ}$čű®ŇoJ|dz’±áA˘tčßbóv–2ű[ť3Nc|?]ăvofŤţ®łˇäŞ7Ö1ĺ ÖGîB˙¶gŢ–as ·ĚP-ĎAWUDsšteťž`}đBkó“ ¨‹z­Iľ×ËŚÄĚ ß·I #ýŹČzqł:ĄůŚlón¨`âg« LëO@µrḲźGsb¦d s,:†.ţeˇú;äońŐęoäz†+Oo7ÉBЇş€ő¶ůF žaµ×ëÂíűI7 ińŘUą7ÓXźtËí~ßQ˘¬jó«MxQý’Ŕ´»EŽÄ'i> ZĄ­ç×Ć»×ču‚b_ĐíŲŠ„ąî}‡wr*˵<+p† .‡Am3ĂŢcý‰x°«.dŐ÷’kşxĽ.Rëĺ{f^v¸•ü=rÔIsżE"­ É⼴9•éaä­ŁÖáYyv_ÉP/N}°gĹҸ=źĺćtk}€äŇŇ ÁÁóÍßŇßśJ٤ćPËdÇ)Đ=˘]ÖŞČx觉šü¶řŤ?AŘm!wGĽź |ŢkăPěđ‹«@řČ€úČŮżę–ńr¬Sq3ć‚ZËgZ~ʉńźj€í¦âP I{Á˝Iü `Bgâ»;#wą[§ řF@ŚS /ŹĄľ;U 'ŐµCH˝ţýAőÂk¸řő„ 6MĹŻjOF¨»ăőĹľ^íđŞňčŽIÓ@j{9%Ď"ÖIȲĐ-A<ń«D>˘šćë {t%Y˘=Bá«ă°e+>vHâba:hţcëv]¦ŃĆéf—ú˙¶J?:ЦĺÜńls`ť3壪ÚQ:(-‡ž—eş9|Öó>„†3(µ[–` ě%(ú ™Zwŕ˛2Í%XšţÓ"6żąą7ťY ­*UvÖŢć´˝ Ě˘AŮťçš"ţp7qo<šĺ9ŁÔ?óţOJ‚ĂŞ¶ť|ŐUőF)cµęş8_…r_ÍÇGžÜ\±:¦s…7í8ěUĐ.éŔşÉ-»Źň}Ľ„ôžďn;şé‚f'Dő  ég.Šj;$PWo÷e6Ł‘¦ë Ą…_C^öđĺ˙Ȧ-˝Î p~ńTK‚ŇIź4ľPű~r `ř4G6¸ôĘĺýůF™bŘ„Â) X«_ż¶vD¬†5 i#šíć[źrşÎVŢuc…„´ËtÁ‚źŤť—ÝTŞjáb0¦Ń"ůŰ‘v@D4/U”N+˙ťo4ő€ů„§_ok š#K‚ĺ[mÖç.~mź¸śۦ© Ú6ÝÚ ŃÔá<Št.›Ř 1Š—8°ç_ÉLěžť¬qrÉý!fĹl-ąĄ!˝üĽ OKFĚíĽĂĂ´ő‡íç[´űuJŹ1\ëţĄŃ»˛b"(>Ű©ŰŃžÓżfůĎŐ‡ňŠ ÔÚÂń`%4ÖŁŕzĺwţCvjßľÎ;[w~ĺ9ž3íŻ"¨Ńú0â.c1Ţ ŰjíS}(‚{0ă J™4Řr˘UďąxXŕďĘ–¬č™='f©‡ Ŧn{N&ľź[Ô¸R# ś!‹4ąűaYÁÁEc; Ł‰ÓÝ?|­U°Ě¤0ä şÍŞ'SDéN¶Â8±ňś3č˝:ćáĎ;}ĺüĎŇČ]ß<šnń؉*óîűŰgů.ďEĽb]v;ö•ČN +Ľ˙ ,IÔË3üţŘĺ :SP˛ăAÔlMGřĺŻHMÂxśÍÄ řţ|Ő'ę!ńzę^=ÍżF=Ř!ĄńhŇ B ſy$ľsj„eNE0áw…O{ZňK˙«ł :DˇY§§#ŹÝ3»RĂ&[Um6©,\O¤‡“@żŢĽŮľáÜĂ‘u7A 4­Đbyµą¦x{xĘÝńÁëú[cĐýOîĹޱíH«ţ.KŐŻ[|ŻćQ™3HđÉ$ąvB9­NđuĚ,3›dTÁ’©í %Ę2y ŠóAŞe˛NŇ~†ÉyPýČ=›'ie ŤAV`=¬¬Ĺ3Íy ąŰéçÚVF/‡bTćőťpëTüާMéYúR!¤ÝéšcqĽUYtĆ:˝i0ÜrÖWą›†Î‚µ\DWn÷ŮŮÂLZë±nÖ}jázîb†pDŔ u·{}Ćđîâš"^›eŕşI!ŰîIžâ1ü%~!ńä ŹU ·•PąwQĚÍ;ß«˝ŇT;Íîz#÷DaÖM]E*`78fŕC6QŰ3ĄáSUIČöX˛a‹9†TťÉpů˝ Č jÁµHŃ/ÂĽf[܉ ÓŔĄ;Â<•¤ ¤Ô` .LěiFÉú–iL\$éŁuS÷/t–˙ESÉŇ ]-§ô°ŃŁp‹çoiDţ˙ˇls÷ 38QkM˘0ś¦\ôÂąâőúňŮż«ďOĹs—MŃ’îňZGF´tC&ś•Ęj'%ł"lJ¸S%öj f:˛‰3ʨß™=BóSżAxç{°ŹP(yí>©řٰ˘QąŞ-¤—“ÓűěŇâ)ň€Aç­4Čő_”ź&ĐoĄ±®ĺ9ŽżvÓ춡9Üäę$ČkÂ5Ô‚¸m mĐ ö§·¸Ub+Ś2`­íCµ$®¤?Ćc Č>Ň%ódŃ[Ăőů™Rą ăg —¸ó˛ż.ůŤĘqô—Î2Ţ÷€ţécetĄBĎľŃ."ŞŮ»¸čîŃöż%Ś5Sµ÷ѢyMÄWęň”oa_;•4ôŇé"5c Ý÷(CY µÝ±!A\ĎuHl$öW‹ŰË5hĆŮBŚm‡o~Ń‹„'†&ŞhŰëű ń‡¤>ikĂŽ@„ÂĎ$˛u¬U: PĚÍ<ů9–Č)xLö_a ´!ŤHbůâ®s­öDç6T ¬ä7v}>"„ŕ“hľ’oi鉎ź÷—Ąä*`ź†&p.č¦.Ś’¶˘ôěµ{ánüŤř5%gť—#µëÂ…ĐÔÎ-ÂR‹áľĽ@ŻŚĘy˙“îć8żwWsąLŹzÜR/T¤ÄŚ=·ŚÉ̦iÄÍć+1¬Źá¬Ŕ–;sFŽ ‰Á)íĺś/ú='¸Öüši¶*>츪ŕjĄ}J2…T:w#˝o¦ćŘÂFĹËĄ°”!•–ř\dkĄ™ŮYҬó>¸Ď*Ş‚Ý/ý“ŕ6łĚjn!Ő»ŻT˝ýĎü‚Pô/nҤýŚ8KřŢ`Óž~ohů4YH'4Ú×>îˇ÷=ĐŘ1ĚŔĂŚŹžjv›+(ĚL®ôi:‡őÓŢ$Ţz˛íúŚRV]•ąĂĂĎQ5V* Ěží­ŔľO÷Š*Ń»űL~śńµw©¤NŢćvXBś&Ĺ…Á"Ëü4ľJ˝]ćâ×Ţa1‚ŁÓ–­fT´NľFçµD±Ť‚]Ë‹hŇ?Čj3^ťR˘ ±Z@ái}¨Ř4ř!şú‰©Ľg›¸hîĺŔ´Ęvďç]ĹʢgYľK—€ÎąŚMp}¸Ł 5lşľ$˙ˇS|ă"Ż7V"ŰĹŔĎZ ęŞB«]w˙n:ĘDzâu/DJDyěr;˝Ç]_MńZşW{WyŁ&ź p±Ł™úkpWÍĂÁýË]3qŞąÖC…çŞđlÝ]ź5µ¶úĚ’VUĹ1Ô˛SéŤ h~ł™GIđŞ8ł˙bÇď(â'˝n¦ń㮏ў»hôW8Ęb"†‘ ö×€$÷mÎë9Ypfń=¶éáEʱ#÷š9D’Uă6ŽmŽĘćŰ"ôůұœľ¦˙=ő9˝§ ŠzJR{¨„{G:ŮÁžüŽ»Zx:ŐŐ¶M­ÚCp¨/ŽĹ<žt…"'Ůp :˝É(}ÇIyâ˛o?ŽejbX(Ń%ÁďAS—ťG˙M6qXYˇjŢ´?×q§±sBج09‹@đ~kĹŮŃ]oÁ-}“¶hܢě˛p¶Ń|ťőX‚éŹäj~ÔŞŐĆqĹarÔÇńŞŽYgä_/ë_âšK¸qÓíšČâOŘ Ă†#LU•°ű»,‡ÂçôGĘű9i\ľŹx,pĂź3¬ěx9‡.hł9ůHĚóŹ#Čd· dâďéY] Ŕ€€Ř[Ó€şuQÁŤGü,Ş”ąşólłŐ5ý-ß)˝ęÜ 4ąÂ=ŰT¬Đć+ľE˘żC_Ć·żävÚ4/bB@ĎŇS‡ţ¨ś4P›…MÉ+±ĆKmŽyŐš ^¸áćÎë„Ň J٦`iPN]±Dţ×ËŽß٦fIzUńćËĚč9O{ "MŃ#vĽb:źÖ…TresÇ\Čüâk:őźCü!iŞĘôđrqËź|Ei’GE’Ť<*=[ĹŠD›cě“^ÉžĘíóΚ“‚0u‹ë%rÍĹ;Sž,|]袅ást°XĐx š$«;âA¤“ć#ÁĚJýčjj:?(˙ú"‡ł Ç“0ć-]2˙ Zd߸ C»)«Ľ‡ĄńiĂZŕۨкăń+ÁĐřęP­Ag}šj1ŕWR¸‡ńß+°şi[H;úÍĺő*ě‡IL.Ä:Ôë Ň>¶ĚĎÓN#ČľÜ2lÎ<˘~E÷Jő9 \ Oűtóú[wçF§j#k´¸Ń»~ ńö·Ž» €6űá€%[uZ{2 KďŞM¬Ň¦RA-wŇ-¬Ć%F–­WűÔĎ| ^ç.»ó)a­×'&Ú*µÝą.ÜgS"Ő ź°cď|B[_ eţRÔŮşnb¦Ýt«ýɉ~|.uú ,Ý`­Ţâ¨ÂŃŚ@w)›ś9°ČüžĘźX‰»řXžůfďčҦáĺ{ÂgÓ-•Ý@ł—íůźťüÔý5?Oggw–a~HŹŢÜ~ĂćÜéĎA$ť—SFţG†˝ĺMcĆ%‚ţY"—u ˛EŢxťJ®Hľ IÔág”¦™#­ÁŇžţkňÇw¦ŞśIö-í„b&Öî—)˛ĹŰö>úę¸<Ý‘ČĚd?«@>ľ˙9CrĐI_ĽXźÍ*Ŕ_Ő§ăŽĂl„L.*Ëě_» JBś{›-˘ĘşŞÓ$[*ÝpIsĘeÔ‘"罸hW–ÓŹLJ5’7É-ęhëôR8EŇŹ^LJ¸\TÖŘ qşhünÜęmä’aí…9Š®PŰpčŔěe+ßŰ?˝¶¸é9Häłu@aKXŰ-˘/ ŃÖЇŕÝLkőގâ+éýú` cĎ®7۬cąŇÄ‘>©]× |k6NOnU]q5Ů+¦Ź ^äQ ˝©ůÇ]ě§„»1—ďŁzŁ” ű]{Ňć­‚ź†Ż´+çćDd~ů¶!RGŢřçő_|“¦ZĐŚ|ÝÖ#stzĬą#Učëťź„ h.ű±ôBź,Ţ̆2ĺţđ m·¸$ü§Ü" S?j*80ʀ۱Ăk­UúG&0¬Ą “ÜŢüV#ŤëLÄxî ‡­‹űŇ©śîĆV}hcjßtŇł„ ¸˘™›>rLŹ-u«ł´jj`q±8‚!ŕ}&w.úAąmĆ[eóí»+Đë±9—Ć‹ @¨)yŕج'ÂÖ>—L Ukl™é¤’ľ)ŤŽŞ˛sß_“ˇéAř»ŁďwŚŇ¨yš7Ď yfa§×ô%%ź‹:,€«=Ů=‡†\„MĘ=ößk¦§žX ¬´†wŞߡq¨ÎÝJlOmnˇĘhIşHúł98·%<ßßV`·ëĂŕęÓ†ŕŕcúQÔďűČę‚ Ë«J5F™“FŘYjíŤĘ ů†éĄú[¶Ë“ż Ě‹üĆĎ×ć$6“uDä÷Ç>ŚFťO«¤Ľm–}ţŞ=çžNŤ ěó®bŢÄĂžGj…UŐfŞEÁKÍEádQąŤf bG¸3S€¶@¤OSĽ'ĘŮ;ŁIću5ÄĂ@Đćíµu^ýćţň•Ďj ZnĂç>KCNNV¶ÍUO$Âő9Ľ‘¤ěÍ»OÄ:µéK#–ż?XH3,±v·ĆEQv˙¬śI͆đ˝óý_ËÖĂľ/"nŘXŃŢLĘ‹L@‚d5ŁKP1ˇ´m—JYΨßc”ďŇł¸»­§+Ů­CîĂäµuł“]IVn81*B©(,ÂŇ™Úcř´IŁŮÄ®ăVĄ’ ĺ%wć ?7^€Äz+š`Ůęçdp­ŞJ s"Ă»‹#xĂŮąÖžďm±kUĎĹÁŔłČ>8fe·ź}ţz&ťąúńćďŻD‚`x|©µ*BĂ÷tÚűŘ~2ˇŐaô"…·-Í›5N"ž9ʉ–Vđo=ž#¦Vďţ4%!d÷oşÔšŞĄ§ŻşÂvŇţµ~Úta' o?„Šçôę}{ ]±ôŘ’˛Oý8š»SsľĎúć¨ĐׂrÝßE4-!Á±…ó~ô?ĹvÎáÓŇ&zmGĄ1ád3őV;+9Sk»4&tâžIM]Pč$Ĺb,)‰×›ş;ţlăpš¨Ą9ÖŃdóí:“‘c‘|ˇÚLŞň–îÝÄ•pËoîHë$śŽ žcf\ÖůÉĄ–¦M{ö9¤“sZ’ĆśđsşCPÇRÎş!ę§ŹÚ…Dţa<,0ĐpYjÁ|E ôŤßáܢuřÓ]FĹż¤Ą\;®× öągxs‚ł~ô´Ń›óDłqDő˘ĂH,0! `­PĎń‘îŻei8†R‰¨NĹ˝“ËŠdî{Úýc˝ŕě˝ę@äQ}(o„łßŤIŔcĄJ‹^«Č,R°{2ÎCř&ůü}­©­F“tçK…nË;Dň’ÄwC®ĺŞňy3íÖS˛&«ÓęÄÄ_Ř©°ČHü·Â ڰƄşţC˘3őô štéŐ—á[÷ĄJŰd-¨’Q®Lě•Ĺbâ%˝áĽ¶ĐĄXĆ /ÁŇĂźĹĎiAÔ·¦§ $mS^+=k~ÍĂKöhđ×N7â*čI^Ř|ZAgEľx1$”2–đ}ÁT;G"zi Ş„Ţq—ÝdSůÖ"™.!¶[Ľí·»Ď ÷ˇĆ(#‰¨ż /=R¸rŰ´z1°pŤ©kę.Dc±u3č÷Ă3đ˛“f·žď3sŔ›Uń˙všP˙2|É„TĎá—`@@OŃAĺRN±}ńfk}Öą8 ÷ÖŘđ[›úŐo$ö|őÓ×ďĹs;8Ő tzv<¬Q幺ĪáÉy@„Úvă[anşP«”SČ y MHĆŃ9|%¤˛5+)ÔOůÝĄÔŚżóEťÓ&­çű$ čŰ˙ŇîKT^ů®ŐŚÄߥڽVpŰŻYýąŐÂóČ€ĺp0ÓÚrÂÓYµŐÉ›@:ú28ĆUł ~Q­c5Aů™ ÚJčÁxN¨ţ˛_ŤěYŹů޵‡@T ľą|mžĹck=zě‰ë“Ô Jd¨Č{pR®väíŽHÜýŐđ /`ĂÉ%iÇMŚ>…xe…î1uŤťćďěţp-Äe·<řSqÍňďDF=!ŐřhQ &ž Ţ&)źńHí’וËS& ¬Xő{ŻšX޲äa`˛1QőµoÝżÎ\ć§>ŹZi#DŚĂńJ!“(X­Ąě”ţ"?ä‚<ťĂ˘¬9Ö{WZ Ë]ż6q !šaUĺ„ű);CoůŰ„śr3ôX9 Ĺv>.Čţ)9‚řk ş`ĆpE.ĆÎ Všô­Ź2y°Tq&H‰ăíÇDzµş|[Ńţ%Ë)‚řĄb…_ÍĽěQA“­č— YŤa\˙殤$”·Ŕć/QQrTŽĎÉ:™Í ĺŰv—MţÂQžď‰:XL8NvÖ®BnÚVfb*˛Ę¬]ĽaŹMk"p_rčYrŚľúÁŤyćÚČ${%¦vpüýŘńřD%‘™ß§żżÓ$źęN´¦ĆŮëN ™ţ”`‡üIĂÄÍ[±pKĚôayu>ş—#׆ŐL>WýýŚ’;ěAN[C9˘–8źşž ŞßőˇOµ6ËĐ#6¸D&`ą˙b1Fjě†qL‹ÉV˙*íŞÂçŕĎT7ď‡-‚/ŇeŤ#Ř2”TV™ L!ň­A.ŠŮ ĂŠ㮪ä.Vç1Sl·~‚GýnĚ[hY: m Ôř7Ö(‹çSć-q:_!ąA=S(aA‘÷4ÄP¨¶3őÉ Çµšh ąÎ´W1‹ ×Qŕ(»ţJÝëEUÂ^îśq.:ú†»ké&fŠŘ µo´(é†ÍFe­ÖĐŞµC(./|ś‡„b+5+°ŠŚţ®!CÍl|ÖĘv1Č@¤eD{Äş-Ó0‘U='±WzXŃwüŐé¬uwčĆ8=Nň—ČÂi0ëv˛Ű[9d°=˛Î NĄáĐlŮM+-ÎéđÜ*#xLeÇ7Xȉ]†)ä&>ř÷´ęĺšô†Ő 61đl…·*#âČ´@˙) ő¦›gĆ_U}d\Ő ěWqá ĽËs}ü6Ę률b0pµź*„˝5Vf´­;Ť)řTˇć©mČq¶*»nňP0J>Á0y{±„˛Ą•ö~µ#ăí9ý€šzá‹‹ř…Ć˝qxWKoóíµTpÁˇ!A¸w¤¶˛¸Ö^{j°Ąc3ěÁ×”dë>;A_ʰ«ŃŢ Ć‘ş{Ť(ęô*Ic¬‰ĄŞ0Da–W#v±čc  śÎ‡¸N-^ ł“1çŠ_)ă–Âş±ôÓ™*٬ŕŻĂ°ëÍcôśgüřî2›‰üçR'VĘâdK7ĺŁ8‚` čßlIo”Ý:xö˝ 5*‰÷ÎBŻc%µ*u¸Ü# đsvł.Ą=;…Řđxł°ćZwéŐą\łľWúĎ ŃŐq6h}šBFŽm@h'G0>¦GqÓĎŐ>%_ʶQ_a.2ě_Ľ~sń=˛©l>´Ç+÷>ÚKjć­ĹłĹ(<§Ős["ú‡ĹšĽő¸AÇɦ’ťŤŃ„‚üĽÜJ,…_;µˇqÚ3ć3ąĂŞ‹¶~ÖkĐ/óJŐ{zę4hNRńĎYľ4¦•Ź1Nˇů[ĎĐLc@WţšRvP+ł=]ç[ŕóU°x‚žŰ‹P‰đzm˙ -Ë«{.{—1©su SV+i„70|¬Î®îň»°_>÷\„We¬¦¸ §›Š,©0übP9·UŠbcĆRx[“ŞNt;Jtpn`ť×¬a`ř=»X:Ĺ(2HdŚM1qQäôË*ˇĽŁčvŐ_g*Χ·č2•ô5ÇŚ¦o7FͶQćÜuu~O‚/Gë>-ęÉńçËHµ §â¸lď·iń\öWÔś5ÜŤoó™Kv 5áČMŰOÔw\‘Ĺp±ýí-Ž{la”R‚˝AŢ™×U4ڍ ŽP/'PEę†>”`H<úáOŞă{PUĺĺ„KřY–đőyýjČM*c$ÚYňł¤MĆÇ˝ K8Ż˝Í/Jů× pIcDxĐ_?ţq’¶&µDa{˛¸…?Báz<+&č5ÉŽrË“‰»‚Ą"°dvććok /„@ţ*ßE"Ď%3IâŚ" ŢmĎÉK,@ Ş^2¤űą›Iź#Ň>×fúĹ»Ápµ{Ćđ¸°Đź°îÇ–3’ˇi;Ź‚2ťŁ3…bŁ—MéŤ'ÝBÁ`ySjEb{Bĺ1Ľb}Ƥb$FŞĚç0żĂxú|ĘŮ/łşG¬.R€aîŻ˙‡+Ťż,ń6µP˝źŚtůŠ.8ňlČ'” zŰň.ÇDî2Gűż©ŕE:&Ť¨ŞńRDYŰňO‹DX±2ă¬(ŔĘ…âR/•ňŃ^©l®6„5sáPnÄEč1 LqCÍČţŁ o·2€ŔM6:ÖŞ_ĎF3µGłY'NqIÍŰÄń=çÁV5Š5eͰńkĂhş‚«ŢíDÇ]µÂ´MňÚ?ËąV®K4´1Ą.÷ąC©Ż‚ś˛%3őŠ”mĘF!řµ¸ń¸öäN7’«Ě ßx5?Í9w¸ćoý’žÁ]w!B¶úŻiYí`]ßJ‰—ŚŻQÄaöŮkvL ˘ZI*fW€űŻű!ĺní‘CBr­¦ŘÁ°2 ůŠ|z¬Äsˇä°”g+¶?ľu8&¨wÄÎnľ1äÓ¬ËáĘ›BK} ĄMS‹Ťťä«ŔŞ3ţVŁ?t·49%ŕťČţŘ|Ć„l¸b,oĆŃTnh™\ě'¸“&­žǪ6BcH}Ú#ź9ä61 b॓ĐđC-čĚŹ ßşĆŰ&QdE€$yÖę4öüť;63M*ŔŘ4PyĽ ŕmtx¤ž¶U˙L(ýUp˛^í_$" Ë&±ü L"(Ö‡ţQhŐ8ôÄn›F ˛ şÎi†ÎŰj÷/«5í*›ÔhUýÝĐŻŃí[H©!Ľ­Y3ÎAř-ߎ1Uĺ‚otôǶ·Ľ+Ň74ŲҋęňT`yßžqŃČNNծӱ˂^ň÷7Mą N‹ĺ3T37?Ŕ›« Çę9©xj9Úşg‚ˇrÉ áő—ö™Ms'ś>ńňL }®ÇĹ„ÂÇ÷iď¦2×íž›ˇ¤×±YŐ(Ť ë9Iv2ŮâŕתSdźuÖČrP„Ď!RňpˇĂ…“L”is°LŤYo¨˛ľlÉĘŤĐf¬’ѶÉPĂ4Ç«Žnó¬f‹Ö˛úÂú˝rć t ‚P¸büL%Bs( ďô†•ľĄŁ>–ăŇq_°Ę…튻ťHtv[„Q¤?­•š‰oź]ÉÄ»+ âK?˝mfěbÖAÚiJóޕݙV\yŚ.’›|JŇßÂi]hđA«śź"‚¬“ĚZeM.Jś°§ĹćBéáä<^ýŹeVÍKRÉ‹á8N@]u[nůĆí_…Ů öeh5̆ĚÄOĚ+Ăâi|dv@QüŻGÁfĚĽČ1Z÷ą»U „WV´;&Ö/ ˙ŐfFÝ?ŐÉ ±:5 äÉż"1{쩲ě—ET ŐŚđöcöOÄ˝˘wpż¤ů2ĚWp*€őÔó=5kţľ¦żÎ}Ť.•µśÍšh|˛¤ ÂĽjó“ݱă7ú#Qű‰ŁK­O}T$ r>Đ:z‚”ÇÓe;`m ĺ±©ł®7–Y,ŻEŕ˛ňŚtYŤ%×ŘŮŃť§ęµňü8”Ö;ę-, JŮổ-D… ·ťyýjfËšYlîw9ë¸C{ ±ČçkąçëĚd Ü©CŐÝVR+Ňp¤âď?ůŐłÄ' W„S8§=câęĚŞ‡v»Y(çŚQg“fŰl N§»‹đgÂň/^ż–˙he¤çÓ·hř1×›É''ąőSP§ţ÷Ń× °ŇO‰[çU‰ÖUôťăŻMN'Ž…< ‰h•ËgŐv·ZpoaO<jÓÁ™iÓĎăĚM(çP°·‰”kë-Oćbąp­ HŮÓ˘RíČKŐîĽýĚ«ë+ÓgčiźĘśĆdň=ô2Älkar$Yo\`§¦F?ŤeMñÍ*ŃżV;$2·nÍü‹%#cL/üzEÂdÖřU·Q€šVöúU"}"7Ex–78ŰĆĆăđUˇĎi=+DŹżż±íżŘÓNÄ#K•cA?ě«Ëři:Şn9¨]ěß •ĺâí|gö†„>u®^¤ ÇŠä° á€Wü8{ńg‚˘Ţ«ĘŇgd’ŕbť7ö6bżA÷&Š(żŁFú[+Aĺě}Rľ żKmKvĹ´˘Ô¸§+„ÉŽ÷#§ *Ţ9e/†O_m¤s 5ż‰V@çlťÇ&4*Ý(ÁY(Ć>ż'kÂ…Ţá ÂPćÚ·>Ў֭¤ĎmŞ<…óĄqm,Z vŻý´‚ýűFu›u^¶"oNhÄŕ4–dŁĐçÉÇuÁ°ś!¬9Î`·“4Š,·ÉBbYC)ZLç›8Á.ߙƄ‚ÄŰÖU¦ô[>›tJ§aŢŞ÷̤bf•—uŞňÔďÓR ­¤°N0ćÁé/–S»}č|ÖĹţ7Ă˝ĹvěąG¤|ŃI:GźĂË•ŐĐß_âtú%łÜ€äȱá´±h—Q¬.sď=HL=Ń‚ĄGă‰Ë’ËąĘEŢ9ů‡„ś±\ŁĚí>_MŹŃ‰. Vú"ĘÂöő …x+®§1˙$ű~‘đ  «˙ßťçßu( Žń‘=:QĆÝzDJF|;{×Í®›4w°6­V Ek˘‹~:ŹđO1`î©ř¬|,Bg% śEd‡~C­7^a|T 0©ÜżX<ŚOm B€+‰ÇP¸Ĺ˛0ÂČ+í€Ôđ2ż÷˙! ®3XĂ]GčŘ¶ŠŻŐ3Ö?ů,B °x˝Ë&ŮPČdSn}óĎżëOF˛ćf ¦wo7őCóľŁm7ډ ®ť+Â9®k)hęéËą> xćSQ’ˇé4ČľäŻď%Cěî_ű}˘qŹGśĎ¦¨’ľ|(¤,"ecŁÝ°Í0i6`˝˙6tČž\ťîŘJ1Ë#ńłÔ’0guéĘeU ¤|};Ô,YEc|uOşť’rś©tŚNú70ýÉ&|ŞŰłöĐ„†é“p ;®«†[ç|®¤.čđI‚JĹ.úŃPf·»ízîrťY„‡™—§ul|'±Šő;ĚâaËä5ˇŤë˛©ŕ˝Ź*u%Śźńj-†î#«d×Éqí…ŘĎVVŮÍ˙úńQŹi- 6J‰5üb6ßŕ°& iu3[ľ•Ű+¸ >cĂË<ŘĄ0ą.'ĘZq{xűĂ2ˇÚBěmţ‡wŕüNIĄo0‡ł)7W„B”vs7á»Ĺu¨€Ü˘]ĚPÔxVŘŻa’‹ö› ýÝśÉ+˙(-a˝hľMQe‰Ć\Sp~šŞAęđęuŘO;ú˛;ŤŤ%‹Ąb#Y ]´ŕ¶Š#߮ѱśG‚lä0“ŢüĚE ťň /ä\jľe¬Őµ€7ĐľąĘédŽ ŁŹĽÖn},ů˛őĆ˝KS›Ż°^żÂ KRMvŘ3>ÁŠ[,šŇ6äĘ5’ŔpűxÓË–ÄeW‘F&Ţ“eâŔiÍy›ć—9 4އEIü"?¸M*ĘúEÉ ô |äy| ¶VĚş™=0˘ĽvDX÷Ü «:ˇ¨2ެptďZ$ P«ÖŚ…lđVÎD0˛7·ź97]5Ń`m"❥ÓáĂť5'ód¨·Mxy4YuuçÇÚ%c çé/*NP’ŁŤ“cŽ…˙€B„€%GG&đ«µń§Ů»GOÔT§ěŃŹ'*°[uT™/śëŁ÷DđO¨^ ´¦G«±F4śá#¬šŘ §Vź¦Âru^ĺZMšĐďĘ‘¤”ł¬‡>­1 uĄu\m$¨JwŘG÷„ČD [őí#š9úoÂh&KVR×[TŠĚĐ”Cq»\í J *%¦$1FO b«TËŰč’¬gĚ–ţş4Ýű^‰Űy°€†RP¨¸Ęa€<–ržÝőÝL )?† 6(ÇÄ÷V9ĂÂ69ń_›Ke`?,WYäq;kŽĘţ•DÜŢ›ŞĘ źĄŘéů˘Zť§FÚěîzÇfWÚ—íşŐ—°ŠĆdečÚ<é€'­„ĽŁs¦2^Ě5H9„@eÚďťQ9ó“v¦ČNľŽÔ˙ÁßiSB>wwŰă§§ŰjJŃ)\ŇAď…OȆĚWç“–˘¬|\’źÂŻ*-yĄĄĎFĹt ‘˛Ő©?1tìęľú·]BUaýßě’ ]ĹĂßý3S9řčsś§b@™¬ˇfzŘ×ýâ~ÔöÁ† #§dĆ ÚŚĹ# 3ţV96VĐd /Â^[\«m`vQ|yaw8Ä[Ő!Ýęë˘o'ŮTGô&Y 킢1ć´5»y¶Í[žéÇ:ŘčɬĎ4Ši-˘0ý’|hŽ’ }¬ŘľxǦ Í®ű+®6FŚ™d;]g}1š{ëKD—0Řä㍖|…lŻMâÖJkDSđVµĘJ*7YšGuLBZ$¦Ű°Źo–ŞĎ¸é€âĆ Ť]‡µO{R°Ĺac7c– łß~ÂJ[ĄşíI‰-.}2ű4,M“fĚWrýÉÝquÖ†>˝ę˝zb[ŻĹŐ˵ “»XßGŹ«ű§E¤k#c čű‡ňÜZ†Ž #/=ú¨—„ú /¦@ ĘAr;Â%RěiĽk >0C»:rLă fjßr €­Q[µáďĚV¶ĺüNÖZHHR:…»qŐµg[ŠGáŮŃpťś…¤–Ź}ć’’…§7şűŔ˙¦Ń.2ËŻnŢŻLS»`WŚÎŇ©×Yb(bÉxýđzŮÍ[+šÖŻ(ţΖ $k Ôz˝ ©dߣź´ÔżDŐŚäů‘ÓBč6tľ¤×Ö±ZéšgµCľ]Ž›v ÇK'Z\Ň@m´ă)T†ÔÁőţ™węcÔ8mŹć˘Iĺ 8SńŔĘźöľ°-946’7bE$5-8ńśą1ú•€Dsů´üUaúő}%ÂŽ•%–t±»&€L0 $ł|ő@^R [p«SČlp·± ő äźđ3ÍVĚî}ę•ĹÁ‹ţď˘ŘÉHĹo¨ŕô‰°Ä*ţ|3UZBŃ-ëz(Ĺ67·¸ůtĘĆěçöµ“Ŕ'j ľoŹţ`<Ú¤T)›ŞÓ3·Ýü g”Tž'7Ţ W±'”JÝ ĘŽgŽ—\Xěb±Y˘TIň9‹]śsw‰÷2N¤Ű˘N¦:•ý™OňˇA †‘j3~D¨0¤ÄĂ’*¤?`kKi¦ŘÚo…óTť=š˘búpQßꊕ\1ˇ@ V;Ň;ţ… Ńr Ĺ?/’(SŤ#˝ź¬Ąá„8î>É÷˛Îó˙˙ üRbA?đ‡Ô˛DţĎGJe(oőÓňŘÝ…S+}éĐ™^™‡ĘĂě1řń4S7Ë^NJyk`ţžĚß` :Ć™·ËdűC˛đ´š y”.öÖĎÝýÇ%q»ďޢ¶Đ˘P2túš<ÝđŤ>>Q,A2!pŕ'źˇÍű^«ôXÔÉD@:Ö|ň‡IµQĘuNÝOJĎĐîîÁ0¬*©0ŇA‘ôtU(snÁ™HÜtć¨EĚÜěĄ8¤OIi‰câ{NұËËúĹ6őz*ä6­'ąŽĘ~Š@RϲuL•höV4{-űý0«ËrúŽřˇ’QFXžgP[Ubý×Ô«ęťvýź–żo,M™^Ň»ńżnđ› ó]űĘŁ'.% ®lŞ–Ł“o o”ę(Č1´[möpÁ†Č:ńß đQ[1żböWśTożĆ†ßW;‘ŹWÜŢQ‘WŇ=ë•­zŞ–`ë3+a7ŘŁLő_!-qeŰý\U lz.ĚĐzJĘůŤ„ľC…Ůym†gnż@ÍĘĆ4ľŚ-2;áT]‘ČĄet×ÚťČ:'÷S7ČČsFäę/Ř8ý7ęAçĺŽCđ%í:’‰d[čeŕűŰýĄrôÁŬ6»}‚DKK řC§—Ҧź»D]ŚŻű2I[|˙eÖi«JôÄĺúm°4MŃŞüđĺ\Ľą,đaşT4ĎgÝ;íş¦7ه"B›SńĚ Ĺç˝qŚÚ0Z wň쎝đ'Źü{đ2ęÉcViE˝cßcý #૦éŽŐb•ů~®äJ˙ľČźČĆ%]76ăG†NŐ®µu-®!Íśa ´Ňâ@=—ÖéZőÍíő+tĂ˙őq&ł|ĹU÷ŻßĚĂřG\űë¦D1h0aÁ<˝…yFöOšŻZ0zÝ-L»(˘1Aš˘­đĚ-Ä5Y¶˙¶8oŢ;ň´y˘lNĂ K.ŠËS kŞäÉęIC:o–ýšÍ‘úÝmšCčĂźş.A˝ľ=@ĘÓöýeŽÎĂ䑊şßÔ řLŰsSš{öT_UýŠ83ňš@ěµŢüUĄĘM‰#–ŮË" ŞŠzî6dîLĹÖc°n’·aŤ†&ú®š! ,»ćěZć/{cĂëßľ­5‰®Ä÷NŃăĹ!Ňg¨ż–Ó§t‡nŠo3gł”ÉD *Qä|NK•Ĺ!™) ÁĐ?ÄĐ"ý˙Ŕč1•N_úźVP(í–Eâ9–$ éü< L¬NRńŤxvÓůJ›H§4×iÚ¸&k%;ŹĐ׫‹×5ćĚ.çS™wĘëžbą,O'„ˇ9Ř&—ľłĽß=îcRŤŞŰ©`”߉/ËTťËaqAÍ{ąˇ(±kŢż^5ër@Đä°˝Yořś7 ÓH64¶“&h5(^,5†Fę˙F_7-änÜ[Ax_ŕ#;Á6&ś+y¨Hnk—z>DTȉ×J˙.]UVˇ/>©ämΉůü™Ę ŢϸG_X)čöŤôpł2}$•q4îčgXp>]ĎŃr¨„8r*RŤ›©¨Dît“Żb¨”Ę)ÖH­„Ć×$ď~ű3}%R¦ĽfŘrÖ{¸Š2”¦ŘÚĚ™­6,µěię/Żk3‘ŕíÚ¶©„óW– ěŢž3]ŮđeCR™“r[ĺů8l4_«tkTčž]¦nđXÖu>\޸麣ęPNëiŔ€˘Ş—–Ţ—ž9ŕwTô—Ăp,K€L„V…Ű1Ý’• Hż‰]îY+}t‡ŕťŔ*@˙şŤ=˘ĐoRĹĂŕݒšůˇÂ‘˛FĐk¨­kP]ËÎaW.iFEWş˛§0Ďĺč;üQ‚ł1?ŻĄMG^2ĎÄJ zźQwfŇč÷׳ôËĂ_Ąę•Jx2ČUPíŢ!Ç1~sńŽ>Cď: đhđ-Ę*©ůç8sĘ~8čőÜĽ‰€÷ď/H:^ Çţäq­đ!n c´ŘN<á®»ëĂĂz9([a»čď%źXRöŤSţ8…Ék‡&d(>çÄ…áŐ ’Ă3c'†]‡ąĺ´°Á>0÷ýÔP'ĘzšS^Ăž«…b§*Ř-Ď&ŃĺŰ”ĽÔ°[—“©Gš§se^6Ş«şŘ$–ÍÂU¨†‹,ërxoÖ(‘.˘ý'áŔµÓÎËlČ^µůíybsŃŔ-S·‹ź-ÎŞ1 "őÄsÜ>z¶ ĄĐźz:?6-™¶í±€Ä±2Câ€e$»’Ň>vňpA„\qŰ&4łô˘rćĂöGsŘ$P…TY üâo÷Ă~!+*ppńńĎftĎWî~_ÁůšáĐNW€”ÖYmđy©˝_ęöź+©°w6«şí‰ČB±Ř›Ëý˘LŞoQ+›J ZÎh‰ĆV|żOňśÔěoňOGĂj_«Ţ[ěoUŠŃMŠ#ÇąHŃ\…)±źŁ»î…e™[ô7KłÍÎŰ›¸gîŁĎ´ş?/„VŢwTŃwżŁ_ôsŕ2`oľWŮo/ż$TÔ'P·¸zp}Ro_Ť.ăz+‰AÖřý‚Ŕ,|<—č®cEW2Sčż)Ógĺ k´©¸ÇÉŐj”‘˝ţË`VĎfsďR‡‘ů.},±ÜbKć=6Éf“1–N "˙ ˇ_ŻęwQĄ™ˇ\¬NŻúň,Ň6ĺZ·ÎËě¶UNéyôŮ©‰Ć[ý>*hžˇ$şb"J¨äl;üH}†3˙ş|KEéáÝ/1]ď_1—ŞÔT{Źď–{»0HwVą'ľIc>Á scŹÁ)I#ôÍOđşě ’Ç "Ę Š`ę“·/JV[ľČ5YYč`§č ŻFŽ(/î®I‚¬|Í.Ů#˙—äxç ŃWĚrŕ)ąó?Ř;  /5â_IŽ-¶uô ™ţéßx—ü-‹ů×ĎvXÚ˝š5:T;ťąÁŕkwK*Ĺű†¦"Ҥ€ á_|"–$o-Ô™&Zj˙‘l2®jJ楛7Ášśđ4ĚúJä?'ÜćľSśíW?ßŮ›ĄP˘ă€ts2äÓÜ Ó*#îh‰´R4łLĺ?­Č® ź kK|Ę.+¨pR6Wř^Ř…áü1MnŰIŹĹóŻÜ[xT Sďe•š=Fe&rśµđQ}EŮ ‹…-ÚäąóË.Uë7ć~´Ś@s<řq};ŃNnť k|DJo´ŕ„•Ř—]®%`s-J`ś˘ü\,°ŽçŐĹě»]'včŽmäd;éŔ÷b­ťť·ÔŇÓűź‡ŕpV”ÇŃY;·Ądz&l9>Żqśö‡ÂđÖá(;_OśEWčB–ŁĽ¨ĺ{Ó<ďĐÝľ”vŃă˙Ş4.óé9‚çŔ'‰LÎY€0*űh6ŞÓ|®âŃ‚şRЏÄÜv‘ăW¸î? ľ"śÁŰ’VË®ôU×\ő#Xjjs™Ň52DŰď1€8H—†Ädö®n4…őCŹUpaZµ3uřrtCÔę×DJˇ¶–Ľ“Óč.Ŕ‰hFžcYĘ!MĽo­Đ¬›Y}öÇwO«Í{5ôĄ¸¬=8·©ÔĚ}˛´5:î.ź-A«Ů@‰ťÖ|áÜą¸ɆůyEŚÓuëYĂnbQř’Ú®†Ŕď…/ĘeśvB/nŚřAO9·Üz.¬'vCź©ţrCŘ$ŞÇŃáŤÄW›ÝÝšęŰšÜŇß)Ůxs I°őkż.Š©@|Ć_lúÓç_  ę'żáTţ*ŐMeĎ<y'WĆqRG„sTZ©óŤę¨´ŐžŞcľüăÉI©ĆÄDŮl;އ2ůrv›ëýĄú Vý”˛ĐŇ!cŤ¦Q “şţ ›_—})Y¦z±ďG„ÍxBÉ´–šPRŔ‡>2xäoř˝Ôµ7CĹwąś"@äEvXjěýnuůË`ą=ĘFSZ’LJ#µŔÍŬł7†O–µ~°_“}öާ@d9m’Ş˝BţM$ŞĆŃÝĚ.€”ö©S&ÜÜ<^\ďěśŇ+¶ń~aŹŐżŠąÜ%“„Čľ šÁ˙Ç62q+ÎhŻŮ4Y´k%–gsp@Ń•ŔńyŘ|¦mfC>5IĹ‚ĘO˙ăő6ËÇ}ŻşľŠíkˇ.¨Ąé¦nmběČ?ĺ'śž´ťÓëĚň9?뢹Ó‡ö©˛´Ô}ÍÇMRs7®uËWľ5R§'ŢĆDoź~KăChe1m°Ż¦NąüťA?‹ěRś®r÷SˇJŔ¤`°łV X䬕2_7d$˝ôT Í@ěĺ˘hîBţÄZÖ.ť»Ŕš Ş#‰ýĂćT·Ţfy—ęýß AŽ)ßéăúB‡˛)çy+üÔ>®‰z)c€•áţÝÂuŮ·Ą!Şh¸O™Y‡€}0 ɇŃůE›öůôĽÉ»ŐŐŰ$@™W9›Y‰pďz®¸;łc®= b­71‰şĐčl%ů—Ö -őĂOB2‡ĎÝň*őBj0*%ŃËt0P׹+đDIvš¦ţ©Ěж†Zrn-ř”f°üĽýz\Şť’_ô×7poLôŰ^YÝ=44C  öá Ż§sĎdú«"qr.{ó+ ŮxKN‹,v¨:ZceĂ-·iĐ×Đ™Ľfď' Ń ë™o­Žˇ˘¨p‹=_z"ˇÉ:sÝX2°ůOőAHJ¦\¶iŘĹ´©Ź˘yĎôČĘ)'ÝYüîŞ)‘ ňyě™U«Ľ¸ůweu~'Đq ZuÓ228˛ş“šÖľť~\R×n©)şm ą­ÇĐSÔ0ćň2 ¤"ö ˇ˝óăfüń^Đ{ŹŕWöiÇ…ţ§Űý˘Ův ąŐşTý‡[Jľ|śFB îŻ" müLŐö&EźăÉ{GÄ-vTž÷ËZL©’5«lîŹÝĆaD[?čΖçłÎ·€ĂMÁČÜąŢy)©Ľ6¬Ç)Ń€ó´őŰ·˝vźöU¬Čq8čǬş¨i5ł––ýN/ÉĘU1ňŘ0]F“JGĂ[ÔOh+đ,H¸Ó nqŘ!şy\ĺń›Žżĺ®6/2§Ě?Y» RĘÇĽ˙• [ďý˛W‚čŹ ifhŁÂČCrŞî˝é\ňuO8·ĺ[M%;çË˝ňüZ}seăI{LÉÖîÍ.P3Ŕ©´¦FËkĄ8 Ďěb=@‘©q ¸WŢ×ĎQmînŔk÷eó/ľĎš9’ÔĄvy-TRG©Í ĺÜŻ›—ĽőźÄuçh] ÖĎ܆Y-Ľl;v€uý4=ZąŚŞ;¶â‰­ň¦š«6cű;ăţnŃ×|\Sś±Ip˝d¦í/»)±¦őˇđťFfbzBiŢ€Ľr[Ľů¨ l»)[ź”š÷ö°-ćŮĽą6âú±C`P”K§őî|Ł©pG^şIňµşEßDúö6p¶‹ eżŐ§-kÄrá.OyüP Ŕ˘‘ĽáWg|Ü4ĂM‡.ř˔֚Ř(vŐúBmXđś]’ĘŢpŞpĎNđw§kęsz\ ‹śő\zÂś>íŽxĘj şsđ5C\‰„5ŰF ëöř¬Ďř›…ß DC”ř[ÝüŰP@vr /ő)•XíaBć= Xufp6ÍÇa+5—iťŻţ˘Yz-ś,äŻ:r8¨é°|Ł ve'×öjÁ}ËÄa%6FQ4×~„u1íÖpůW1 ŕ€ĹâşíµÁ5ÎL–•ť$wÁÓ!Ńđŕö¸şeYë×&b·mT}<źŢ€Ö ,g '÷`ŤŔĆďMô@»<’˘@á±9ŤĆFaŤý88”) zn6ŢB„Üö0ÄĺĎ*gˇÁT.ô[mő´Cˇł!;toFx-Co¨X—>~űŢĺ÷˙#™H@4ŞŤ­4/Sň6ŃżMł‘ß«6OłŻÓĆ?“?řżţ˛nU·6Äs/Rř’FĚRއn=Ý+3©IÓi¸žślÓăµděţ\s¸Đeůlˇ\)‹0­oéîKýü{'#×$,Mˇ ,˛KËđoFSŇdź¨:¨†áŮk«×r}ĐZ3^>iÁŔÍé ěó|J‚ŕBSiHćD´[Ľďwá/D ©ČPljů•ĆŔP}tgŹ'Hy™ľ9ă´"Ţ÷"IµµVÜjąĐ#>$e ˝¬t»>4‘ľßT®ĺ™\˘šRÓRŹD'âţ02jmxW˘'Nť!¬LčĹ~A5ćá¶ç#÷*˝{ă\ŤOAâ‚7—ĺÍ©Ľ úçµě!°)ˇBčŽęŁţDËÍ&§’5Ι~¬ąĄx§ř‰yt­Đ/\cĘĆ[4H\†Ů€ Ź÷áJ>9ŘÍ Ö›Ĺó5PpâABŽď˘u^âҾijSqOШ€HĆťr gcBęŮD ÂƸĐOÓUĚĐßĢą#\ô<`Ä!{JĄČD‹±r–ňńvNŔ vç)éď´7ťńĆÓ‡ţXHľ?aSoť„ňŤ)ÜKhkm÷Ě+Ę+ą€mzj, µ%+Çfáű ĎI ű+ ¶Ń;ß™ëÇ’R~Í·(¸’ÁŔ†đ(č˝Ć‘̱d˝fMőÜfˇ]Ă>_ŕýb°•›s†k§›Q†Żę[Ú‹őíd¤¸Ó34}tŽh,´Ŕ[Ó ť,&.¦¨ĚÁqKZW+[ µ›×Z>PGU/Y”űďS •zEtĚĽűĎÝ’¶.îwKŚuëÝI”a3¤~z䤣H‚łcépů^ËÇű‰fQ$lĚŠFý˛ÇQžavŮŹĚĎż gG¤-"ἪqLĎ~-î–ĹógÎÓ»ÓR:˛hb¨F€Óźň(mL.\zj!m`îÂö¦ť^ŮsóŞ RćyTWE´.ä@#pI ¤ÄEż+tá·íµ°°.ŔTŁ„yb °účôd/Uöý nF–™qÂá=‡í;]s¨*îĆ|%Avśm6‚Ă®ŽĘŞDQRSň˝\y()$xëŁ>4‹8zhÓ,—šßiG Ş‚ďĚ_>ĺ ±JNęČźbËHĺ˙é`W¬ťźŽł-éĽĚ ßź4ĂíÂ""I˝ą&!‡ýp6Ä˝§ÝŮ(r¬?tcÂÇâo5ž@tJ¸F§ť€žď71ĘSÝN~řşüĹËF‘š‚"©Úk|Gń(ŞdÉÖžÉd{ˇiĚřcŮ î łZ‹–±ăź\% čÝhşŚ…ÂŇŤ-t@©c^ô4®B-@ëćże6­“ĹËĚVܢÎgꆊ•ß‘%U¦›Ą€Ú„9“$Ą·í&äŁ[6 yÇŔ¦Đ3ĽĘS¶8üľuÍcýí„n庇.Z˛¬îdf Ť›=^€{pźH:¤’·řĂ…¤găüľq¬>Ĺű2ăbG ‡46*ĐŮÖ>ůěÜĐÖĄŽY{hżź«y{˛¬4ź9é[°“tärÔ¦=%M”‡ ţŢn´©ćV]¦FΛY„vFíÂa…đ–SÍéůÄkÓUT=U÷]4ý1×Ęűď4/É˙ö‚Źš ŻEŠ»Üäiţň7Ž`ÝŚ}łn˛«E˝HgÚ;Ć—(čĘRşj^TFwńÇěFÇôĹÁ’ń^"ÉŽŞ&ŮeľČ–Ŕš2;‹ ˛ŇźŇl!¸bWšă&d±2Öůń«{Ě%~ń 5čnâ ‚9KQjłĆIł}śăc#Ť`KN$.ŽeĐÖŘűA7~}Şw±×­"š–‰Î ŁŇDA=v˙¶ăŕ»ĚČP±†? Ed”bmT±˛Lń˝É(ąníÍ!÷g”›ZO5¤2l5t™H!Ţă۱O~=UÉĺg-ü0 ˝|žŮđ ^RĘéěA\—Ś˘ÖđľúÂĚK6G÷ť-ömcă˰Rv3ŘË<Ě7˘Řˇ ä×dk 2…C˛ŚŘ-ľă9ó…¬ĺ­†•ô¶9ýU4Á@¨Ň|˛W 3˘-@O„î,ŻžaŁ73›ë˙éE/FŇió/ŔI0‚îŮ….©BÖ°ůő·ř –őq[$Ä@ąĹ¶óJ őŢjyL.·Ö|ţ ŃůçhŽLˇÝÎ)qÉÇ[$ wQ=Ôž®KDă4…™¸Đ"}&ź´¬g$H÷ČfÜ·ą0ŐŮ{‡(©ŐU»ă$ěVÓ9,ç~śÖĘéÎ寙Ţ|çĐÇ úúT«žűŘ•>é‘Î?%wU"D6´«·ŕ¤™ćú.§Q[«’?e 9Daˇ0š†cbŁď˛âa ^/śSßĹAG´\v|Ť2[//ýăKź—>~†í’şzŤUĎ8ĺż ™Ű@ěô;Hhž‹\ĹdVÂR¤´ŮüuLy9_Ĺç|‚cućľNŚŕ\‡|F@Oű–5ş^ ®cz’qFqŤµŽÓcéěęÇ ÷5ÎÂbt^ËDP@o’˙i|iQ_Çú®ý‰ŞPŐÍk,~¶:ŐŰ,źŇp¦ FŠĹÇ`Űş:Wż†×’é H×íÓgýĽńŹÎ˛7ŢŔ:ŐţJň•°Wđ¸3ŚYŞL-Ěł€Cţ(ĽçťU&jĸGIcxÎ9LŘŔ‹Ĺ(Ę5(’0Č(3B`…ČÂŹ/Ő>RŽ™–FĆ2‘ožľţĂňšFŮś¤Ŕ¨ÚŻ|ž‡ś"ą‘ ÖŮ3ŚÂI«Ů±‘ż먒ĽŚRŮ&Wűëí ¤U^„ĎŁůTĘďÁ¨Ó\Ô¬-őn §żÚŘĄ­®L8¶ç[?Kq:qđŮđMł^»Şw «fŽZđşń¬ŐÄľ~´€Xy[»ˇÔ8â±?7Ş*| Ťç˝ Ěç~Ç’mŮá6X…ú;Ń6E¦˛ń- .ECO•î€É±U¶źrÝ"¤ËŻ’µL>n ]ä‡Ň–sí´•š~­vć2Ď-퇮Ś*Ä^ÍT^Ż™˘~3şNÇ90fŔ noÖJ§2ŤźißXSç1ëâzoECäz`^®â&u=˝CÍrkűă¬Ţ¤‰Żâ<_˘56˝ FigeYŤD,Wőćj˘-ůs^Łqi§AEF fö{€vš´ńó8Éú9—Ďm C᥍Y©Ć˙»¨řť4fÔeÜ RŁPÎg0‚ćT#q…ď ®›…t…ôD pa.2—Ĺćö ýÔ&ŢŇâcŢžŠŕĽQT˛ŰpÎâăۨ,Ë+:} ;^‹’'(śgo‘‘ľëţ“ú–ÖŮ«G(ŤÚ«*FJłĆŰä†rJú@[Ćş o€ă€SKĘŇś0ňf’Č˙;g_‹§Ý“ĄIyąÎÍ8u5 2KDüćČT W^UĘlř $;_Lh ˘7꾦Ůâm#Öľ]=u*KN¤¤"s’¶†+¤OO˙&/bjČÇq¬Ő†ď+3 aĄ„mďFq A2˝[¬šz›á™äŢilO˘ű–šâ•“?ů¨_׸0ß1Ő)KrŇţÂĐáá60/”ÓĺĐ˝ú±ČĄ…$jZŤĺŞËd»©YΔ4ŞÇ9\ą(oŘ» 8¦Ä›Óů˙ٱ˛çm‹ş&…RěŻ`ŁŻť˝­éŃ·\đę…4jáéÚă]zt¤Ř¦«rÇ@>9`¦x˘7Jqď77@7Ýďa÷­€ç´Ş*ͤ]Ű Ĺމ˝aS î­Ń„yfĄ˘‡Ć«ÝqLŇ×w,p‘ř2öq™ÉE€ŇHŘ–ÝÂ÷‡ŤJg$'‚Vň!4ńĽBµ ¤đ-Đ!٤ߕđ\#Š2 ÷¦(Yż1˝ŢjŁő…ŕgpb˛ţ}?+ąS'rŞOĂ[%‰é—Ý7€­´^°¤É:ö&HĘÓ^ŹH¶ `8nHÓHˇĚ6C1KÄ»…/¦sĎ–K[z)!đ$HC˛·{LÉ{wŚH€390ő˙©ŁŮ4äjČ"1Ap@î3ńŹź4Pç"yAuˇÎ(,í#đÝ®÷”Ćúе¨řx®°0ą+űÁyŞĽU×ű~ av |OUÇ>ŃnHŚ @Ő±-µ;ŰgdGň*Bˇ±K!Űł_Ýź`Zť™×>ŐRŃW·ěÇiLÖçcGáéK#8Ěő1hÍäLĐScFQřů&dÝůÄ-Ś>R¶ĽÄŰ`Lo‘ůĺuÄłu$EĹG‚C÷¬oŕŐ!w•ŮJÖ‹*€żËzhËt Ç'śâ3źŽAěŮ©ŔHc@_›ĹرáŻŘÎUęô`ú0úu˘ľĺQÔSŕđv'”lĽďôśčň)DĄ$uŤŻFŕj$Ŕ—dťšŔ˙]Ć7K^˘ÖÜß8¡Fß/. eŃźÖŢőĆ ř±%ŹËt3uÍiÄú}qÓ— /Y‚ĺ<÷çz;ËÔ_)ťŇđmŔčc<9ąŇŽfo¨Š˘é8* | ›]€¶©°:Óčd˘–Ć@ÚĐHÍŤWVź©Â鬢ŁÖ‡-uHc,5¬GVĘÜôřďN˙5ęyŔŤ›X•[@ÂŇz<ňůş<%ČÇK“›©ý}jčćťp+s€ĚtÁ u¸!y+‡…)°§×7 ¤ŢOD ¶^5B.`Č·Á!$轼‚ć;yŕŹ{¤yÜ•+ňˇjąŤŐ ¤Ź2‚ىe ‰¨ Ć€4Ö˛G¦_aě§szŤÍ4eŰif5]FÚů»·âHň潚>=mæ/dŔßeH˙Hţäçx? 2ţ€®+mĹ˝MőçbÁ±XŃM¦¬Ô׉űşQőJç˝&Ř"á ö,ÜÚ©ÖC$Ăć#0éŔťátٰŇäńW‹ß\Îó…_˝[±°2*ţĆéĄăMÁ=1úŘ)¦ď-ÄQ3wLŘ mő˙ŐâÁ ~˝JMVUJKűÂ^á ÉŚýlďÎ/çČöKzH=–ÄÎ{±› ľQ˘ž-•ŤŤĺ’­¸PYGŰÍ^»C"zř‡käކ¦¶¦˙pë"ZPĄČ´úůŢEź dh>Áľ µC_©#8™@ŹĚă0Ą9y5hmş.˛cÁ2eŢČ iVK/á·÷¶ú¦ó•Ű“µŁŞ4űV"¨˛|4 1§ÚiO(Ň×Owł¦ĹSšë†]°ę˘˝ę“â!Ş á0Đ 3,Ďl§pBÚ™7Ż­Źě•w(DAĂí $Ť—hŘä4ŃÔşµ’«vOązđ2­Ć6:hF[şDČ:-,‚c“v"űš1/˛ŚPrMµqŇO©&¶<1GšĄ?DtI÷v?Ýőlnĺr1¦ýĽ)+·~‡V/:Ýđo鬥 âD 43tŠNŮi‰tY®2ŃđűĘó܉˘_˘–źDi U[ᓄж€Żą±4ß•©Ň` H@€kŰ€5c }ĆŽNí;(Fw3}§'Rť]ń°öŤĺö‰ĄR"} ¤)‘yzüŐ+NʰiĺýQ€$ˇ+ÉĎĄü%t2^ޢ\:şKŕs[ĂΑŇe]ëÂe>°ŔÂÍ<”-u'čűôĚCٱC]zn6›?e–Ţéôęw?z×řiěÎhâb32}+%‘1Îq&Z¦Z!8µ"€>|6ý/ĺ†[Ök5L4‘wo´Š3„ĚŃCH.ńOĺH†§:â_Ő ’nťý>1"ÄřfsđV›Éő[ćŃ Š!5E r3ŠXůćŃötţ\P&v*şTׇĚqýr}*2}Śŕdh€JlÖôó´Q>_Őžű˝ňqw·»X xÍĄü¤Sťcŕ[ ‹¸®jq·ŠRî¸ßm$łţ˛'k­şt‘¶Ĺüó…ľ{ŕŠĆ.üŠ’s¨ÖůĄĽPżŹO6Ž1xÔXá\LTzÉÍňŻżË=9âŐ‚íčŕˇuâ?• i,,ńł‡í­§žĹ…á”u˙„ôŁ©×ä{Čcg;$Ýc‰Ď52>Ţ ^#ôF—¤ ů”Ú`ř)!eŰ­#µfS” kë„ŇZÚ9ľű°¬‰¸‹ĚCž^(ŃÖďÓt]ÖÂ&bO:^Ą$ťůxĚ© dÚôkrŐ…Wb+g?ŽßvŢ*´Ü—"›•i†0+2úűÉ-_ýîö z\µvď‚ç`1hÂŕ|-DHv”IEôZ î WÍ3枆Ś`p)M´N ÝŻˇşňÁëgQöôlYżJU~ô"AéR™±ěnŕá<Ä?ç©|c­)+—^·2‹j¦KŁ™(%ЉB/:Ż_č•~Ů`tIä0|k|+śřŰ{őÍ@">î{l˝9ĺŃžŻé…BnjýAŔ™ ' î%0ß쥂Ab‘Ăşőëĺ„«Ď˙ŰüÜ­ËXóçÍ >Ňʡ›Ýmx¶ďľ‡wdV#¬!¤}ŕ']r07ó4Ď>]dJŰ™’}ÔÍM0ßE »"1ZłŚ$ň¤śé-ţŃsYb‘DĐ×Ă]8–§®ˇW`1Çöőw–WÉ´ 3ěđ¶˛eÎGŰŞe8]hń7ݲ:"ŻĚQ‹˛·şđÇQ4’đ*b,ëv0ĹëŘA7Kć‡_˝#ĆŔhްFŰaŔCÂlďž Yj?ĚhO÷ĚŤ‹ ŐĚ‘^•y~śkHľÓ7§—¸‚ŞJ-¶çjżK]ďbŁ—âP2öëVá›űz‚%B‚¸GӗءäÔą…żt’hŮů8YľĎşű×p1×íEH_+}5[–şźe\Gý•ŞŚ4MeŰfń 9:GzúYń)Ä>¸Ză”T+˙PyőenËÔ+ІĽ ^zh&ÉĆŘě;őq»'[†Ţ‚GąM郞1-ÉľoÍ&Cď~3ŔĐ µ˙ň xL]ě© ąú©Ď0!N©”ŞI©3†ž•Ŕ!”RĆW™ÜŔţ.e]„ÝÓ‹^ úč0óĚ#fµsŤQę÷§ $hÓvhTź:µ+ňŕńΚ°·Ĺ¦t§Şż+rpPůÉÎHŻ›Ü\.áÔvâż!Ý 5 HeĆi ®îvţ1k)[Ż…hŰ~ âZÝr€1áÄŔ» u8›› ‡ďΨ%xÇăţ¦ öřą~XHÁ řQ}juáO˝ @Ă.˘ŕ`P긅‚:c†;^P‹ŹĺdnbĂ–ÉŢŁsĽ1+ ŔÉ‚Ly5płaf˘›xXcl˝dKT˝ëjHUJĹĄşżwŘ ůŘř›Ň:ł*Š× ëÇŢă…~2‘xO–ŕ.ĺĺ{)~·rSűNń,,nGDëŮÓI<ŇĐ7FDĂ\AÄmů©˝\&ôňÜ4›©« ň”ӼΠ/Üľ Čđ™Ú3Anžß ,jHŞB ˇ !¦ą›`I*Ž;tÍB 1 Ýż-Nţ@´ĂłaćyˇěÉ™µťGi¦Ż˙…ĄÝűd{ĐřŁŽÓ×9*8€€ó0Ą/K›K;DfşF«sôă–K©?(ko^Ď «•0ËőŻK™k7˙”TěćăÇáXŚło„m¸ăTďZe«ł ů̇ď:‡ąńŠ ¶°` ŕQß*‰˘·Ţ¦ţ4™Đy­'E ×ô¦lšM¨îÝeYS©ťťpůÉś‹q‡/“ÓäćĎ©§’Ô&żŘ"Χ®îŞěĄĂeMűÚi*Âp¸H׫:&ÓŽ"ő—Ra1™ěô-žęđIŃôE+§Ź}ńđ/áľšÔ8`S˝˘ŤőúÚA~YÁ~,SHťJ‚PD ­6/Řóh´ŕwnN¬ľĘ9=(.mé™ůDµŚ,­ňO¦n[Ę€x'CM™čŮ«őđ)?UçřQ®ŚőšĄíŔŤĘč’fĎ?ad`câçş<ä-Ždˇl˝ŻO&ż4 f¨řiµŇÍ ż¬očFtoŤMmzVŮ…wHăJ¡ĄN$+óDI„U3Ŕ#]yęĐ>Bä9¬AÓj*D+c}&¤ Zżą‰c’k)ą[¨&kö‚´n$ńŹÔľvŚÔ-%Ž_epg—­†ýFfęş36Ş0őUłns”ŮwďG¸7€é â^ÜyžhýkŞ€=˝&Ę9)3lc2‰bvF”>Z˙CµZô!w_Ďki« ÂŚs!Ś{kKj—·ćzÇÇDZ)¶A[ ßDČv”­O u˘„T§=á‚™:÷+µYě’7*9.,*Y¸;¨ä{ŻA.ŠŚaBoŮUdPLMp‰JHüźsçëz±•GßĂhĎé)ÂĚѸ±J wCŐa¬ô÷ îŃűÍFpÔ$©ö_sĆĘÚqht&ögčř˝ťý3Hţů['zß‘’Ů…ł3wLĘţYÍŢčÝ*M· ćJo±(qôV—â8~żDäĚ5 HfŹţP‚W««" €EżO˙yg‚ ® @©Qžs4TĂla;§]ůިŘÝă矀ßăvŃôY¤‡PđE+ó÷a«ű‚ QOúŔŘ‘}j:µ OEB„^5{D:!Ç-ŇÜ ž0μ¬ŤsřŹh(üÍ:™Á’_ŐKÂÔăĐ$Ů—óÚôó[='$- ŮAř1#H|™„fŁÔ×÷wÎ0Ę•§ţ_ukfă…vëôçw Éť/×ű©™¦ň>a»é§|áâ«ČľK0§)0Gů§Mk3ĺT±ý"ćŹă€îńX/ă ŐŽ˛HÜ5$*AŔ® ^á&öwbLÄĐNI4ŐO´’¶g¶äâ’’˝µbš‘ČÄťţ›Gš‡đC¦ďż™¨T |±łxd˛űŃĹóž#ňšTŽs­˝ÎLd"1×,š*™MSpÔE‹Év†«Ź ĽĽđ‚ ­m軫ó?1Ů7ŁýÁôg)Ł^:1"¦łÖď‹UńVzY ™ł»óĂŐ„ôĚ+3Žö‹ńl·]ĚŚjJجན]0[;Çc{ "硦®˝'˝–{‘[=•n‰-îÓűÁgo=ÚÍTBFMŐů4Ô^|Ő€,ů+$źöđr†rňťB–ı(fÇpâů¸ön¤=–‡L.YĽŞźcőt[űwš‹Ůť‰” Şvň/‘<™‡Ż«‹řÁú"ß|Ś[¸´K—2A„`ęˇRÓËŔŹşŰÁôgAžydÄŰčkâD;’¤ŕ‘c'OëY›CŃ®hČ/ŻrcĎV~Í\đPălCt§Ĺ…+O_AIp@¡n]łôç‘ÎGÍžŠ=|ăö€p«Ä­7JTv<Ä(†¨TfýÜŢO¸Łfő®^8ńâµň۱ _ă†_‚R}úRj39( 0ÍŘŽ„–Z?ÂAň]HŹó—ď«`ţ&€?Gʰ¸UáĐř{0ojä‚#Ů8íŹĘ9:Ô1śî'=;÷î㸺ĽĎ?מNŤĺRáuy ŢśéŇĆŻ®PoĐp‹Ĺ,7>Ö_¸ɲ oő2¬©,,c DÝá@ňO°§.×Ć“¬)ˇ[‡k˙Ü’Z4nL Đ9ę^˘OÇGĺĂ ćPMąlŹiZŕ–g.wu…±ŮŃŃi˙řßMŻô«2µ :‹YšÄŮöý;łÂzËÓOµÁ"–˛ÎÓÓ·˙’:× L‚'K=Q/ÜY\ öF™}o­î*÷7^ű*6µăŘö…uS‹WŘ](X˝űćw§ŚĂFNî«’˙},Ť@ŻjBHʬ˘+ Ô¬=+˘iÎ{ř ĂËKúĎ1ÄĽěT< oxЦś˙žLŃşb{Őż$ŚĎËbH-mľčŞÉ<”!gŤpBÜđą)P—ř^m¨ç(©đ±öË=ů’ŞĽł‚Śp­1M1P.W™ŠŔ¸]Ę#ń¤M$§šÎÝžť6Źď]řbJč$E"A”¸(Ä0:Â4Öĺâţc1 CÇ^ťCtnü @ ´^đšü¶ř!˝sĂťU"8Z r(ď =Äjbî”)%űcÝáöř⢎‰}Y»6çy8 ëQ$w,’ľ”ŻE0–˝_µŐ*Őy.ڧŰýÓ§X]÷şě(÷U gCç «ÂťňV.Oż@j~/ăn‘°:z•<řđr˙YâŃű#űD…Ę›˘ůg$óš%ĺÔÎŁSr™{dtvž|ŘpKdŇF+bşÝH“§«)Ţr7żţ2Ë$8SĘĄb‹ŞË6Ţq¸«yµ<żśřÚđ:’± Ăş¶pUŢGégÍyŕKËi^5–LÁ Ô·IÁ¬¦d\|řž@ÍnŐ9čTáťnŻÝ°'@Ď@ T? ~'ľ4\˘2Ů&Ł9P3ôŢs#ľĄÄ„q{BbÔz€•¦˛f„Űsđ–$XŻ–_uzÍĘ\.`» Ć«§p(đxjPˇo«ÝłWđ˛ÓŮÂiWŠO·Ŕ ĺŕřőł0¤”ËUŐp€@ŕÝŞÍĘĐ˝2ekCĆ÷9Ç ç¦B"!7<ţ@M#3řhŻí[ábŃkł ŻĆú±˝¸qŇ·šî˘\¶®ü`—)nşó!Š’śţŔĽŻş»¸( })†`Ť0óŢ„÷ěc÷“ĺTŇ>ĆO;TJ^,…yĽbÔ`.Ą©C÷ÄÉpŕhÄV㇌Ŕ[îbâ5î—U'ă MTáXčsę>bBŔ?ÉŹ? ëKŮŰţřs ˇu)|±üť0ď 2äŁ>Z‘ú]Ů(!¨rvŐĘîśoUe¦]„µĚ-Éł$şÂDDĐŐ¬ZĎ×K‡IfXčş ›𵇭ĺß×oź˝Ż“­†X’˛ĹśoF·Ëpîôh¦ÂĘĎ,B8|úfKi«ÉąźÖP€,ĎÓŰG"wg÷ôłű·.S<]ňáüĂÝ´<MĚc ţúöŃ(sQ•­I4˛ÜŤ Yő0¤Ü xäşĐ.dyYk7Y7=¬úđ ‹I.–ČkCX†‡O°{U™/˙uP˙˛ÎŽ$›…9AÝ™·ívuh~„¶NŔÁ7^„ Dż•M* Śăk•;»´˛F Ą {˙p‚¸qw4,W}4¶:ń;"ě"O^1ËjÔ•ďóa€¸iŤ–›ëÜĚĽ#kýËÉD“„Vş«  yMĚŔ÷® ç«Ó7čk©ŕ =ŽgŹăé.ďQŹ `gJP{=r´Ą®JžmĄ˙Óţš]_ |®‰Ůúč0»Ź»¬V±C/ÖĆ aźźcźSEŕĚxŇő1¸?ůp{ämÝ!Ú ·ŮRŘ{ÖÇŐaoSuÝIn$ľÍw_¦Żćc»Ă[h¦ě˛VP BĂ׾âŠG4ÜC«Kj`3˛Î—ĘĘL ňúŮo82n¸÷„ÎH¸/®+ôˇÄ}~glnĽŃ=NűËMk,̨´|˝LčTőTgS˝$ŔK1Ű}ł˘ŕŕ@$Ę:-¨€™×LŁ„k×Shăé|šÉ ŮşÁŹž¦(é˘ÍZĺ_>tPJNävˇĄô´[+A– P!”ɨó‡/k’&­K Ď«DŕT)5D%«‚’ŞĹK˛‘kt=E ż8©Oúš”Îń ÇćôÇňVĺ'!FgT˘™V8JLó±+yď7ŻŇłIŇć9ňüď9cÄXírňöĽ¬Bă|O¨jöóď}Ăąă9dH *†oęo+ÉĚ~ÓÜaYĄ(Ş ČJx úö˙yŃą†Ôi„´·OsĎ1„-šŢzű~čbŢAäŃ׋Jtŕ±· ¬Š77›’5/ŁąŚn€UVNS¶‡D'ďŘ% sĚŻ·Ă“źÇ€€%<.¶›Áo[ţŠ„źŕŐ8ö"ť†ů°§)Ý†Ż˘h+j{ÄgĄŢÂŃ#%2Ô÷Nę9€CâCť˘Ňő&Ď„/I¬eäéó 2ŤĐ"–!C‡Ťk¶ĚˬZʞd•87¨ýďl2ÉŰjŠ-ű'dčĽyś¦ŽóßčuPw6ŕ ×{=Ô)îÔěžËÎŔ®y‹Îň.Ŕ8|ż·0·ŚĚţ7“¦L`Ҳ¤QĘ0©0äÍöďRbG‡ĚÜJŃ…Ëx˛ţM™“'&>–~«Ęu)ÎÚJ'oC:ż®”gňůNĘłV4„˙âBř­•ăß÷á5I‰'ťŢe–D7\íDuŘf…1Ü‘1ź{IS%€uş|g‹0CąŔGL:¤.R@™Hőž÷WÚ(ŤÁŞő€.ÍęŚŢç{Pߡćx0ÍTb›đ¬¦-†“ż…˛éěNîÔs°+;•čČL49ݸą‹!%žpZăîŁó/b‹Ŕȡid>}/ŽĽş\Čé +ŢSÂ3ŐĂC†Ł_«ß¬^ťBë:÷’nf® ä…ťćX#7Ó!Uť!u~®$ŇKkm]Oçy}) yaÔţ­Ď,íä)ą;Ž×d±kqŹ®N–ŇĹŘÚâni>Śę˘ŔqzfŁčŮ‹‚IÍ#O«>ĺ5Îo†‡cc;(ĎÍśšŽďď\­\üőšg”/4ÔkDl^_iҵDŚQĂ_o2µBôtČ·| ˇ.ô¨Qě’ó˛{÷ý“7%‘ˇz f YK<>é<ŹyĎ*’'|‘ú ÝkF5;óI©ĐüľĽ°öć0ťż4‚MBmý$™ľ`RôjĄis–ó—ź6(żçň?ŽăĹäC€ëI”áŞ<€­&ăÄŻ…¬°Ů›ôĐ\űŹ„Ą’PhAf]q—9ăí6$L‚qʇNUźŇ÷˙ťZŻâ…»Čě–†™ć`ňĎš˝ŕV€¬ÇS˝ĄćIÔ~Ö#Él=ʶÎđpö%•ol˘xxŤĆ"ß‹{ß(_jĆ ËńĂÔŁ\$čČé,ź\QćŰ)›´ Ůt•s'ü0_Ů~żÎsŇóA3ć–¬vťćňG"]T]$ůĂŹ©™¦}3ţÉb†ş$>Ĺ‘ŚÎE5 AaM»oţwăg†ŞŻlő´^Ââ”ŰEBÍ»Ůýáĺx¸âŤŞ7źő"Hßć[áŕŐHä´…Ű{?©RĂŚŰ˝ŠĽ @őçď’+tžaë6ěŚu1Mäµ7á’9xń+xv.Ő*î¤4 ¶Ě*Ź̆–xAMjP©Šđj±?€Dě-#zyď–-uüQ˝Ś Ś j@ĂÔ /m _exlQÁIlʍĐ#ťXNV˘&ŠÄŻ8ţ?tęşlüÂ=jS^&YŔ_hđçŘ´¬Bjjx‡yşĹ@YŠ©|ĆŃŐXV4#sŠ ˇx0×nuˇĘ<1h…Wß pś}®’¸˘ěó†2Z Őż+•#ÝOQ8!˘–f;L+6”ŕÝ7ćë [@ĐTeě;~4ŕ$Qřo€‚r5}ŽE¤˘ř­X~µ&Żď™ĆőL;¤q’BWpuÇvů ƨ)np—ăś)`ÔOÓ# ’Ô Ç3ťë‹¸Ă!@ĐŐ6Ľ``ć‡{]8!Ť 0ë©*Ë©g .đŇs)?¨ÚĂ”˝ťIçL”c_Ńé‰Rż$}mßĆR‚29z•Fxçβ»ÄRÎçü±šúGVŁě·éN=¶:şyä%Ą ±_’Bܸ‰Ű?â {?N˝îqĄtFB™Őw›Y/ćZ;oȢN(ËXäÔ(zůýŞÓ˘–ŮZX‡M1ô^śłôk¨VĎ+|ť“Cżž0y˘ SyŐ0 yçđ* ÎEÍ|lÜiő<=Ú¬ĚüŤvî ¶eĐT9h+ÁŞ“H9ŞÇÔĂŃxč,­†:´ĐH9ů¦Jń–8'öIĺŁ0­j·€nL°ŠĐ<4UŹÁ5— ÚDÍiP÷Ä|ř‰‹îhF/UxRž9ç§Kó¨q‚;_-±«ř¤†K{ářÇĆ~ĄŽŁ^Ntżfâ—%Ţ ÓÇ=ÝŰüxJ)J51%€¨âľ›Y6RYî4"¸¤Şóѧ¨ĽXŞGĺók,l§˝='Wż2±ŐM1ن]Ś }°•ňeźĎG%Ď+™ąŰŃWşU¤‡^ŃDTô%ń¶č×›-Ýü|yßţŞx4éűďŠzGŠ÷Ŕ)ś‚÷˛Ĺs«UŐ%ŰŁHTSDĐĆçąÜîµnČ9F‘p= n§}gŃ3MőfqŘd–ěĂÚ̸2a°S&ďÉhőçˇvjÓ~f5˙­`Ěš¨_8ĆK÷CwŚG—.ň8—­ńkľ›pąµÂőćU)VöŃ]0>ő0>Ć+űÎwňuć2©“éUµÄ®qęďg$dź˝’ť‡Śv&zĂbŕ„¬Çvźw!˘Rţ=Íyô“4P1zT\Rç'*mýXRzâąz=@iphV_ÍŹńF'ÎôÍŽŃşkXŠKâŠĂn´-5’®RĹUĹkyŃŮ:°[ĹćžĚcĹ»‡-ť«L†ŕˇ{ţ°µaäjPlŹv°|ôqQ4#“§ŤCú·Ţ?f\Î| (Ob­3v$Ç>Cep©Ą·v ĽH•¶bjě6‰îĂ(»bÎă:÷Kq{çĺČ­9€ŔٱŤ<±J!qŻ÷śZˇÓ)ç$Eö¬Ô•śB&@ţGŕĽ8f R†áĄzŻ@ž¶ČĆLđš~žÜ@č¦â×}őyűţţ0K?Ą|ç†ěÓâD¦mŹWŠ`–,Ćňgđ˙ 5[Âdž&†¨ó« ôfđnc};q3´Ť(AŻÉ}ŘŃŁ„ßÓ'ÄÁqň™ujtí§l őp 뺲PÍ࿏ŐÂ:Äć§ßw€5AW‚YÍž¸ $PBĹűŮř]ĽĂp=÷J1J4ŐŁ¶'ě¬í¬Ú~ó÷ŚołY›ŔÉs=¸ŰeŹ•QC$ü¨ŐO Ćźöńö{‡;ąôÎ!Tgźr‡7ąŻí«@ťÍ 8]_ěŁvűq]~sËěQĂ0ĆŽ~“ý ÉŕŽ«Ěń¬&%Ô`Ng†Ż k™®hĐŹłYb˙˛˙^<™ĐĚvWŐꀍ«P^ă &ÎI¬§lКǽ†ňíwż™Ű˙©×Ż˘±Ĺ.fĂ(čô©8ë~‰E!Šm|a @ËXaL±ÜxbŹ”|Č!Źlu+¸i#Đ; "M.G+Ö°äO§ď5đ}Ť«ui©c-řČt¬ë,•§É.ĺGUę›c{,ą2âFCöI–d…FÝIT0L.§·+IFŇJ"Z˵ĂxË…#”c Ąhôé¸CČşň=ؤěŐjˇŰ*•Č›wÔÚ$‹s_GÓJŕr)M†& /Ć=uĹ{paůţ̧üĽę—F]čjÖôĘÁtSCR­<Šmúá[F띤|иöđ´†kĄž[ß*‹«§”­•­·ŐŇmcŻĂďKÂÍqŮ)íˇüÎ6ĐŃéŇEK8ŘŇŮzIůÇX"é ×úDź4©ôJ%(BŢ˝ąâ„Ńĺąć賞ƆLçO!Ö"rűu€řHĐo^/3Ęëa•vh!•§­¸[E“‡š#"k7é&Ę«Sk»/ôâXĽIŰ×Fđh`ë’€ąLë¬2]|VŃë=5?Pö@¶—§Ů1uá‰2gf4Ż˙„ľj|ÖiÔ3"b ¸”VIYcZćţt $B HŔx^e~ šîѢé“lĎBťĘFËúkncĂĹ ăQqk­ŕ ź±°nwźČžyýÓ÷±ŹKÎß ůVüŘĺ[Ö!€3ŢÇŘ…Ĺ´­ŕ¤-čň¤Ł‰ş}čIAéŰݧ>gÎüőĎÂ1ŚZz•îe™O]1Eő±»fô–wĐ"PXŻžbVMX*gĚS4ťlşˇęE{AćšůĘnľµC\”g€-ž ‘N Ó͢cS{+ÇŚŁ" NčđŃ*_î8öĚŚ8ă…J§řů+–áŇš4cÄwߏĆÇk6¶ÄŻ'˝Vą}\1Bبŕ T.w`”Q)ő„TűOŚ$~ĘE¨ŐQŘtół"¶ŽG¤‰×;‰ňž,ČĽaµĽŘaě)’žÓß¶bŁt\JBđ1kŻ <®‘nm@ÔgťŘ«€5ô˙q™éľ›Ł·@MBg˘- ˛¤ËîÚsGˇ$ç7uě!Öçťéžůo„oŚ8ĚĐ0I 3r'ĎT}tz®3úî^eІΉ\|i‚őŁę‹˙Ő÷RYUÎ4ΙM,” gZ':´ÎFőB˘6ě¬Ü·?§eĺr- żBçQ).Th!®ŢĽś 1ç÷DµEhŚÁ łe—ˇ". ş×«AňUq< ŇÍPhžp«ýL„ŔŘŕ[XǢF)Ţ^ ­Ytë;,/k/‰©á”ÝsşQ ˘Ć¶EX¦Uľt%^lîńw"Ąfaű»÷˙ y>U3ń ź ÝĚč̶0Ň öę2c;¦˝y«„˘0J"+•Ö=Ůč}\Ö Ę:]äŽ[“ÎŞ-Eóős:%5˘™ç­#íµł¸>"CůŞż×}hÍëÎpL¤ ŁŻT؇h=2ŤŮ÷w”E'ĽÄűî Ú=(†ú˛›¸o}‚’Ę–u°!¬Źtß‚0÷lé>ł:•gűä-Q6Źţ{.heQgä+řľŻÖ˝rZIďŮÁBT˝T˘Zn&¦[EĎNiÍbńlä×˝î˝Z…ž¨tצ[‡Éź,y^2őh¸Ő~|¬Ň6Ć®-ZČůQÍđ~é±ëbű»†pJ™ÔŚřcą d!źŹ™z}ńęý‚ŽhÉqX¬ŇÉÄ"çß|$`.ł_>r`EQ}ľR¦v%‚k­‚ő8ś+ @{ÄŁ†Ŕ»{taŔcPÔćŰ<»Fx*+IJ?˙d –ëß6Őë…}«@5›-˘)Cň~4›\Á%ĆŢ·ĺ¶m=µ§Ö>¤ţVҖα•}/Ďxî­Ł)J^sCIkĄČty7 ÂňIki­Y9Ŕ9›€?Ný rŇD"f*>#3xŁŐH|˘ źéś¦źLÄŔ`M<‹Á¶đîm´;­EU(WwË"iĺ ÉńĂ{uçöĆ€ Ěů§ˇ3Ń9Öž˘Ş˙•ş@Ź6rl6hIŃ1—¨^:kLËoŻäEě·LąčÝ‘Ďĺ¦xI:4 -d/ĐŰz‘wťF®&łaËó]d Ĺ]M¶mnĂHđ2›ú`/…Ą`Ýz~‰Nd ř€ĄđŻU›?8‚.2IěÝCe€,ř ©hëĺgˇDě3‹äđ¬I×Zöp LQŁ˘ÜÂfĐäß÷.=^d?Íęž-˛lüSWPĹąw n¶ß<•,žsň, úĺ_a¤¦ú“Í4®…Ë¦Ł‚ąŃÇbUůôô&ŽŘőOh\C±B±ŕ—•u"kîĂjwXęĆ´źĚ×Ó¤ťĚ Ęâ{ţžř-Ż™[€´j/C}Ä®Ôck{Š8„c@×y/néľ“[Ű“ťx,Ó‡‚ĐWἾ’‡Ť|HÄ„v·QŢżCËYµń˙K|çŞ%x×gBx¬X'¶dď[ľíßh6p”Ö¸Á©Ě`ŕätDŕ[‡Ű~˝îóÎ10‡ńü’4/ĘÁçÔ䛬Šmä]Ś“ÜóĘěłÎű"[:N P Ô›îÇ?ŞceJŽĹ8’ćŐĽŮ_«¬őz·ä„ů4?žHzę™°/«Ťşń{Ë )dĎÔđѸˇ™Cv@+.6çxç˙DĹ"ĆĘDc)ÁkG{G˝ ;JµřC‡ p5Ä\Éú5”Áʎ*ěXŚÎ˙ďqSl]<Ćç™PęŹ>ѡĽţâÓ OçÂlOR×wďju]r‚V©6ąosL’"O±/´/ĎŤˇx†ýW ­đ©sXŘ<3…ţĹ’V7µ€î3čĘdń_jŽrÝpG›Îý"ńÜŃi9¤KCŕ Ş _cőš j¨˝Ăń9Z?Ýgň‡珦㌝7F[UJŃ•ę^š‘:Ť7ţfl™#ätŐ€(ôÄăśŕ;Qĺg‚Sa h€kň…-ŠÖdÄbaSdë7~!hLö-ŔtDúTI 0őĂ(MÁŢß=ŇJnĽÄ?dÓnQĽ‹A˛ a|oň˝nËěF¸Ô7ަ˝Lyű¬*CŞń· ”TeüŚ8Sĺ ‘ejdT°2 ‘ĎF±ˇ¬0ŃPk˙#ń8{Ţn?“¨(şT_N˙ôří7±}"s¤« v”űD»KVÎýuו€Źd¶ŇŰ‘‹ő‰}zĘn?˝P3aÉ˙˙l'˘­ČřÝę\űđ%jF®M^ü¤=ˇ|DŁkÉwŕ%6{ŤÝ.íč‡Ń9ň5Ď)ŃK*>)[Áć6Éq äŰHeÉ™—‹čSÄ»[ĸŘZ“ŻÔ:ŻPŠů@đCSřĆhhˇŕÖĺDť«Z™IĎľąĚň-pśë ٢>Xč/ŕ)ö ¨č8Ч䍛€Ń¸_¨a†Ŕžp“ńËí2đťNĶgw·!–tŤc2±‚{&ŢoBÔ‚2–ý'ČĚJK6g=–ź¤Ä « FݧávcáúIS$©7'~ČmSŤjĚ7ĚTd%ůŁůÍČ7l<Ďf;‚†&xŰSóú$Ţ:Φ—«Ô7>4PšÝG‚Q>µfńúzÔˇÍZ nyŻŹĎl ýí,c%vNĘb3{$>źâ’îţ¤aH¦ňc˝Wśî—I¤ ˛»łëJN,ńę¶uSĄ,.tţşT槲¸ČłŔ®5\ŹÚ®»ş6ke®.<> ™W‡Ňĺ)ó>$ý}çs;)q-*zSčő—4Ś ©ŢĚ‚$ fÄ_(Ęt?”Ô‰4¨KR‹üŘ—m·­€ă7M¦ś7§$8ĽŕŚű8÷T*ÖOâÜ‚Z»×Aó€Ěŕ$TŻŁČ­51ĂŔ‹1 &ŻçŹőĽA¶KÖ ô ™2ĺ"–âáŤĎŘĄŘ»|Ž~!xdZa†ô’ţ$µ™*ŞşN˛ňLbĺ@Ć;0Äť5Ę?Ľ-.•ćQ‰×:$u©Ź]Řü¨˘Tăí0r=8:@IC—şZ^ˇŠ©q§9QojçĽŰďČYzŽząŽ¬^€3R÷ńý÷cOćđ\Bďś­Ŕőîş Eţtt—LÜMĺňß‹řÓô[é¸í&ČŁúX( 3SLĂqö'‰hO˛µLŃ~·h«Ę¬®Pę’ QăČj{A¨yřuz'VŮ˙$RôÜ Đc˙¸âĆGË’Šeźęđ˘čśü~ÁEm%®áug;K{uóřuŃYťĐLŽŇĎׄƌ—m4q%“Ü:$Ěďď8Â_)áĎíÄGw°ŘÉ…rÓ']4—Č 0ž$jeÔ uś&{ADäË«z×0@ŁŻâ 8ăr˝ßŰ®¶×.U[)Ç»aŻwS|m@üĆĽ.cÜ@»¸±&Âv!zT`0jťů×3äżÄŕXp´x܇IC j«:ÔĄaÝy4‘ĺŰĎé”…°Â—ŕŻY‹ ~S–il„n¶÷ťŹáŇk±˘€ çx/÷ŁM'ăg k ¤‰ŁüŔo=f©-îş|M\rĺ~˙­ÄčmäŞŐ0âWćę{âĂ’ÝP#ŚReVÓ㡇I’%ŞŚÝH ĹŇ[˛×Ͷ´ ,„3v@­ýďY­–\†SŁ-¸†,ý:óŹ‹/Ť‘˝[ Ľoň±žnÂú=ŢëgXmg©ű łuGń˛ĐîÁţ(cĄ<wW$ő‡ÜAȆ>žăřŰ˙ÓňłËŞŁćĺ’Ůł3Ě΢_Đ|Kvô^„†Ęjťűí+úÝ%GőúÁĚ‘÷ąÉ\ýr–Dö‰í„äBĎŔµ5,…3}‚Eć=pĚĎ MÁ¦ä®öq_‹¬V 3˛×ĺSŕŤţ};M ź.ŤF%>óBG«Â fpDú!i«Ë2çőÝpţ˘ÜŐ%žZ{–]zsńoßÁŁc3Rô•âźmôčţeć#Ä&$ĺ,vĂ3ą}-»Âs‘$ ňicp–b÷÷HĹ=đŕ©ÂČşRó?űq öSSř†©cÍC6Řľßîד'$*Äz©bľµSŃ88€|¶ŠžSq6Nާw ŕK±Á”CÉOÜĄŔS’ţ»hÄ´%a˙p`“×™Ív†ŹŞ˝ú0śŹ"B@“ CË-^™bg;ń%†°yȤ­Îý ‚hűţĽ¶X?š¸hŮ<©?±é{ cKU‹'h&G`ŻH¤ţ÷»ĂŰ`?B˝^!"Es:-ăE˛Ě^łŰzRѧ(»o_Ri‡tńúŠÎ¨ř!ĹÇ‹ĎŢĆŤĄ\"Źnů#Ő× Ný ;PźśmÇú×âÖLN=ßőkź˛móP pP»·–î{âůőˇm\úîô€ş°*jLéX'=´¤ń#ľnhGűV˛sě2jÄçÂcxPĄ+"f5ů”&OŘ@îˇR3Ž)¤¦2|V8ÄŹsU_¸˝ń¸ÁČ´óéxµPGŽťócB掉Ä3“†Me ʡ¬“„Wžc˙˙¶î g¶l—´Ű›Ť¤Č˝ď*¬ĽöŰ!D€ ţw\ĆĘ«NÜĺ±ínfżs9#ÉQlčě8#´ü=‚|Ž‚ĺĹiĎŹDeµ‹űĚ\\fšŔ\Ă9.‘úŽľĹTl˝öŚą¤@·ń5D®f ÄúěGŤüNŰkÝهůř(ŢÂ.Má‚-´WýĎÇŢ|‚Ď)nď§ÝŇđ™Qý‘Í=ä¶:b ›ş7÷Ů\ě“ú¤FC¬aźÚIś3,wÍ÷2Z±¬ߊ#Lý±Ňľę°ÂBľôG â yŃđ>Oúh:ŚÍklwb÷[ńôDrş čşŽfął¸Ž*Sl!)/GO1 •i&k…~5MŢŹs'v{iŃ áwžÚ%«YNH•ŠUĎ>O†˙ĺčK´ódĄ~z_aNO€o›‘ Kă>°%rtł÷a(™ĘŐ¨F}{ đČ­pX’ü׬ŹV™ą@`űM_ŮJ•9gťUďk@ů TD^v†ú¦íeH®´i™bâTuÓ) #N޶'˙řŚ ¨c˘Ţş—Ç33Ž0đ‹ŞUŻĎĺI:‘ë;ㆶ’ÉĆA ő(*»W˙!Ťχ3ĆÓ[¬p˛6„ m›đ;Äpb»Ččd$Łxv3uŽ•um1ń˝®ô$ÂTG¸Ý“§˝śoo™>Ô±tšŠ~h©Í;‹Ź± ,Ĺ—Řj…‹+gD+ČCňđw! C\“|߯Ł(ÖřĎ˙ÝKX]{#Ŕě‹ô˛*U– {A(J,ĹWäV\X‰2®@ÖÓ˘,Ń+ďUŽe×ÂúÍȧaŐďČ!r:ÄÜZÁşľôŠ˘_}Fíł¨Ą{L”ăqf›ľĄ‡uŠ’$Í]ůŹX|?ף/~ýQD#WxůB±UŤ6ęÉ/% G Ń•&Ä•Ĺ9×gť&ĺYĂ“»śĆÓn[|¦\ß8%!ˡR˝Ăeke4AŠ|ćGty‡pN‚î˝—™ZůĂ#5Cż€KóÝť˛ČtyčôŁäéA ]qŽ·óDעżp''ç›ÉVç W‘W‹Ýă°OĎÁ2ą(HW’B8¦˘Ęŕ{l8ťÚŞS•m4yýrKCZRŠŹH#2K(ČÔ\Ë«ią‡‘°IDеüş‚RęÜ®ŞąT–ť7ż ¬z`sCKÂÔ-ůŮWjbŐKŇ–xM‹‚µČ#î îöĽGž_ţá_ŕÝ3EX°znśř€vşĐs«ˇ=ln_Ył.{‡äŔ[óĺ“OóäÖŚYÂvaĹţ|Ö4č&e¸Gž âR‘š@ŔSfĎ!3ˇ.M điĐtĐ ¦D“DGŮă˙Ś  ¸­˝ĹĘłĐč/ż77ÎŤ·%_%ů¦Ú®¬Y6)¬’Ôr_އ…´R“ţ"Ž»űädŁ>C‘‰cçî?G˝h ×°Ć‚mbż€t>Ă5[Ůvh32{'PěQR óá°éŹZw€ggX@ĽnT•E›Ž>:_xăžťž¨ÎŞĎÁ1ř0úĚ)šú`ľ)*ÓťÚ3ôŁJź¶‘kŚĚń+˛Ńˇ»˛éíu¸a»GDŕ€ Ë»÷n– čÄ„˘m‰wÎÝÔŢá¬5MŘô]}G#ťWJ+Łuŕ~$Thî %)jF‰o˛xű_@•ţ [bô:HźQ× ĆÁŢ*kIz&| E6f$°<wş(ĺ ©¶ ćÇ«ˇm™pµŐjrfßeyŮ y&Ňĺ .Ţč*ŽŞ-ů×čßťGn@Ŕşbő\Ăó'™c—aWţxńó¶ż Eĺ¤Dđf6}-ĹžW/Ű+˙ź I˝r2k Mm=9u¤č>Ţ(đT­¸Ő8VI*ľź4ďÍsşŞ*céžV’žXÚVö¶Ŕmű_ú)h¬Ń5g‹G7ěąý÷z‘Őę©JŰŘ1a’1dů—{VćA:éčŢ85„‡a`hŮqÉ@qZž÷rŇŞÉ{©ć€Ť(ż·Ç .ßds#č¨>š '‡ďZ¨¬A¦ÔLhýĺyŘ0^A2ż‰M ˙[®N'¶&?Ů p€K.04#H@ByóôżË䨚Ü4ß·.ź=`L­tr«_Ş4ÉÍN Hi ´ő´ĐM¸{#GšĆ5Ćçúüđ1¸$źnč`dÝÇČ ?ňw°Í›˝X^L\Šó6>~â±FM~ĆZ§ókYâeËłç÷6ů}pŢmĽž ÇŤßIJ´ňěwp…cěă(–9RĺóyáŐ ®´şá >ôŔRăM§Ë&ĚÍ$ ´Ö;g7ĺJů›×ť$U˝űO˘ĐtܙܼQ)›¦ą-:FłI\n݇čĄE K_ąČ>‡ćÓ,2ë„/řjâSŹř+†ţę©>Bűj Ę%˙Ç—wś3Ü·2 ૉ2ĘtĚâA«Bęz®zÎ N7‰îŢšé3<5+YÍcĹ^r*oćS0H{jJä7AÂÖbŮżLü:$\J•Zŕ)‡Ëş·%Ę~SPôź[č#§8+Ű‹ßČ{§—XÂC{»˛m“fÔw˘Ů~ݱ+Kʏh;ĆͲ:đ”QIZ]ičř /$´*˘Űp¦-‘0·?ś!(·jE´o –Źí>‰ŮÝ˙ ś"z+»Ë‘  lçzW›:ź‚sĹ˝ĄA¬ÔoŮm˙˝}ŃĹ}›;EDzšK Ţsť>é.6L(î'ktôŠËx ’mN?rŇ˰ő Í—pV48?Ó†ůU_Ľéí=˙Yý1ľłĚ •ß ¸·+ç1ďđ>±dMZ_ĐJ'ň2ŹuO·QSnw±“‚wHĺŮ·*şVĎQę¸]4]ËÔŕ]ŕPOR”uăűßÂL†Í« :`_3Ä«&nŰ fnPÍ™ś~CžÇ`Mż×¬Łrlöú_aPĚA¨ĘĺwÜćĂ&¸%ť×ăŁĎ7WŠ­Ö˝ÎXFÇíN.|ŘŤě@Ćß|}tŘf>ëŰżÉ{.ÍŞÜkŔ)~đ žň´^§úŮŽwŞ«9a.i@ŮËh…Űă:YÂŮř=Da~ĆDÔ^ †„I6Ô„W®×ĚŠy˙K)e_䡙–O2!·łíóŻiÖË‹!R‡©×µ ŚĹ #2qžä4úÄXamĚžapIŠđbϡc*§ öÂh ®üĹ´îJś–˙č“ëVD€|µ”Í$Lm]vJi.ž0ÝU>oňřuŽ›u[dn"Uč9%ú zTź[4¸Q§îú­ŕŘŠ€L§OŁĐeéÉyýr’Ô‘ŔşV)FFČm 5;ŐQŽSlL¦yj»¤µ´š—ĺ×VżÄ®đN›8z2‹@‡.čH¦{í:í˙›LjŔc;ö#r’;\/ #rÎXläÜ-ÜÝ+[FK‚i#âAűłŐ•^aAgňćÖîaőç0Ç‘‹ÎbT­%Lź V€‚Žëí_Ĺëđip“ăk˘÷XĘŚ·Č>Ą >šxŚ3á9Úš§R´~šóýuá»GÖŐ.Wó'§ę›eŇjśV‹·»‡˝Ě"üĹ=Ńă:8Ë ”ź>§±qŕWvq*z Ť<ţÍ^‘«÷T‰LČ'÷Ţęőü9ŕ†nA¦Dnů‹ô&Ň|J‚2úy&SÔ‘řŃĚtÔpî8ĺłIJmBŃ”=ŤXig>­ÄŻÉú¨EVÍnšşłĹ{éŽŇddݨ,nzsŔ®¤€?iĄ,[hU Řŕ@ńd_Ú^ÇçžÄŽ*^îŢe‡­úşôhçÉÇRŔY”ă3{ë’`á”NęoZ %Ŕ\—â /vL´WÂëŃ€őEMëz%IôÎýĆş´÷śÍ MUxWCiË ŕbĄµ$ű/ ×9„}­XőĚ`:*}ŮďĎ/Ôúăľ_/u]Ó=kÚpá>ka ő Š<’,ž+~~p2?ÄuĐI_žŁ—řó(5%óX\čZV{9–Ť(!ďyG’ëÔřzŐ·ąj`\X3ë[$[жíöBĆŇëQďB^?Äk! 2ĺřLćÇwΑwL€]XYÄűôőăŘŘ l09¦G¬Ô>EřӴᲫëţBO#xµŠ­QĹSUSYŢTf”¬QÂ_ěöOe‡ÚňX¬•řŠ ­SLŇ8z—Ë”°,˛z[ZÖh<2CÍÔ|±"î™/«$‡;żF•a]H ű“p'°±•xoo…wă;PíA5bŽÔŠÉkÉnĆŃhD3!ŤÔĹ`K¦jĺ4ŞAżfNZŠý" śaF宑Í.T‡" gV¸#$%bą¶­S0Ę<ŹĹQf˘"ţM%ňş Ұ_öopßíÖRŘĹÎ:­ýîś6ą0‘ë{.T#xNźzۨ:uWcţ'Ľ»JMPäpSĐ pâWŐC†9ěVx´‘+H=Ż 0×ŘţşŞFŤŻ~\Č.Ľ;ĺůŢ#$[H­u^@bŁÚbuL»Ú2‹`@j±ŁČś!ŹŤśÔáVTb۰kŔ­±  ‹äH°ÁâŹ>#›÷ÇOfűć:ÔOHޡµ˝öŃeNŻ„Q˛ŃMĽ±ľăßĘČŘĎ?€>:ËŹ|et' 1‰ďP]ÄřćŃ?u‘É$ľĂç^É«5ݸęőş­$„3űUú)pJXtpŇE+ě!ż‰;ĚEÂůń;Eú€Ł› H€1ů1y§{Î> Ű>úĹ}´!:ˇÍjÁFóĽ«+ó‡›ďżµ/Gă:ÜPÉC\·Ö"Ä:tLRs‹n˛"B2ěa썂4Đ'Tž ¬´Ck(7*TÓŇ ‰ŇM đĆčąLpˇWß,Ż=ˇk†×_ěC ďyNßšŽçl&9@ѡ™ř1ĐęŤ!˘-úřHWí,Çu xDQźu$ۇ"ő¬üŘDüŃ{Q1śŐăü4"őAÔ^§‰ćĺŇĺ/’Ć)Ś*ńş'ýŢ.5…ăPĄŃ*Ą&°.žĽ›ü ­l|ßPčŻ{ŹcÝĂT(Ţîš ‘ÁsҖȦކż!ÁK¸ÖŁń¨ÂLVeâ­ŢŢÔ¦4UÜWú9đÉGsÍ™đ7Ľ‡ ˇSłbÖę´áCĺÁRű˙qýÄŠAŘ"GňQÁ.ď7ąťzr‰>ˇ^ráAś©›‹Ťż’% ŻÖÜ˙Rz ÇÄŁ*–VńVzÜ´k±:%ľqXů-Ô¨e§ť(¶x1#1Úúä™ ×ŃžőF™–~áęÝßż©B¦GZ ˙#ţŢc‚ýĽ»ôE÷–;8ěVY—ĐóŻŘ^.Ěm[sö Ę'Í&ŔjŕmĄaÜžČ$ĄpŐ0őő–©š“V‘c)„‚چVr_"Łř2ţČź]‡`ąt:ÜÂeʰAG˝®y)Mř9ŕšÖšX Ä `´dőKĘÓH‹«—PtóÆ<ý\!0Ť* JΔ.;AÖ…© ĄI E=/ĚL˙F‚Gś®„d ąłPŠkle¤©~iŞâMđáť âŰ9š‰Î/šŐ# -ȦAµěôď*é>)|0Ö«ÜëóŢÁJŤźŃ€ŮYë\ľëžSöřÔD˵YŔ`?Y|;׸ěY·Ü\hµC74ąiş¦®5{aâA0Ľ¬eŹDŃnŤŔ9©>•Ôá·b 4—]ÁżWŘ©đLČö„(¶v=%y1ţů˝áC R,Ü€°iúžćO÷GQÔslîń\Ő>ż,Č_Č[Nł@V–z¨żć32Ő,ÉL &®€†™ů6ł¸˘ç÷7äÓ!Űđ†ś»°Żę„Ѥ5lŐĎž·ôöęéëź0<ÄŹ‹ â’ÄňÇÚCß]Ăb x"5u,ěD6Ę@´ $ŤLy‹ěĐ4S6A0슭ę絇‰p?$,|LX7|4Ľ;±'îp1ŻK'ůZgôו´čˇ Ö'˛Ę°>źżčVGáL˝ŠoéFN ţ-mn°©”Ď ŕ†ČMhäesÂ4ź)Şëśă©7ÖSşa† ˙Ł_ ,“Čď^Ô+žND,đríđ=V˛Ń§N+Údľ8¶űiˇdŢ-3[#Ě ýĆşYu`ŕËH$pĽ(rž˙0@0UݶTË>e"_¶¸î±Jńű uEqŐđÔLÇI…K^ę›zT€ć“ěq /4ěŹ4öţÁKě — N SŔŘ(k_B4|<ľ)FĎëbmö`;ďÎĎű?[Ő»üS.bńq|H¬5ßw }“zÉźŃpóuPĎŐµh@ ;w†ŕ“$ŕŃY űËŰĚďvšŚ„`ŞH¨ÎŘŮc™8ꥫ2`úD~ę¸w‚Ó3şîŹoôĐ䚏nkNďJJŇIiăŰlăËYj1@KÖÉ\ƇđHŹč@Ăňř“vX_Sźń:[ţ)C9Ęq}é_ßËăßě$L¶BgŇ>MѬ'HKOÔŁˇjĐšňdýü™†Ž}·¸í¬xm.fý“ßš±Ôt´Ą_Ô~ĺcŤĺfGŮ•Fůď·±Řţ!¸­¤Îú®ÁUřłpř$.öp¶|ëÂéh˘·Ť[aŇ ć0ĎĐ‹żďh¶q)Š–ůđ·˝í_ĄĂ'ăKľŤłPON^ŚÄ©ŽľÝßlü3!Űď‡f¸m Ë{ť©ő.'b‰…+I9˝ áľ•)čĐŚŹwĄ%©9SVOž9‰ĺ\¨Ěgez{v]Ęg§ŘóíĄ ôäHIqb‰ž0RĘÍĘńář8ľ§‹âžq­4͢FwhCbÂúŔŃ+ĺZqł9ëBüMĺĂ ¨/w·Śý9CN»-Ý.6gŢîM¬X˙v,ŁŢC<ŽßŃŢ”Ďőč˘ćÝő]¶őŕĚwą·ôý(ÍĐFUá˛â’ÄJŻ3]YeĹqf¶jîy©ĺÖc VłU>«ë†çŞ“ ·E ˛˝|ă挙Ö7L˘%ÄľNó“Ő|3üŮśŽLŁBQ@Őĺ°áÔ[‚%̶:/F'gk ˙‡ŘéÔiĹf ýtɱzçĂK 5h|VóäĂŐ™é[8.`—e{ śÉ…Š7Juú˛ŻÁ´®XĘBz›˛¬N«ĘÝ!LŁF«\4 NĽ+vM.±Rn=úZ®”tyŹDI˙Ë~¨,äCM•oRśJ4˙´—Ř—E!ŕw~ ÷?Lj5ßfcM‹¤žę/\ä@9UĆsDUÄ4u/őäŕdZ „|y.!)3aäŇ6whËÝJtQŹ~h˝.eG˛¶ŹMt ţ$F©_ůéÔe‚™d^y5©¦!Ť iŁ î¶fâÝ >463Ś%ä>JËëîžmnČä•Íňôďü›-OZ‰ĺ?+ bA˛F6­NµżŞGd ®ÍÔh'o'®ÄÇd&{ŰĄľ/ S7ŻĎR‚@ČÄNRűę —Lji]ŮHú^Ň—ÄřŔśí]oĂUU«âx5Ĺ:WÇ·ôĹ&¸”-ź‰#–:N˙ÜĂ‚.ôŕŮš×NňůőP"9—ŤŠ­—bňQ,Î;ŕÎ **>§ľý»¨†©úc:Ëź ´Ö'{ľnżLËĆ!8)§4Ěý[ć¨g˙sŠ•čľéhbjB8]”d† °r/ Î¤Ž‰"îÇUKŠ ćčaĆ­=§Ĺľdßßçí|w.˝V!´í+HżŞ°›SÚĎH6§ĚÄ`˙‰7áńJ3”odh®K1'zĄ6:č ĽŰŠ?XĺňvŤb,ßvr‰Ś8Ětő›Đ?*ÄTभyŃĺ:hçM­íűo°ÇO7áN+Í×c˙ŘëŢH2˙sf‡ÔźDĐE;B±áv^C]qŚż#ąĚQÎża.ĂaU׉p1 üZçuqrÉĐ~_ĺ†1HŐϰ‡§-!/wśoL!čîh ÝŇ‹8‰kĐMÜ~۶0ÖđRkĽXŐ­,‡:Ĺž¦«đ7 S˙+\űNwRg=ŕ–vTőţ97¦˘{őgŮôs9ʦ˙%÷%§˙÷„ű&ô-úW„ąT+ł’{Č 2HÁł€Żb+Gčfń"š­đÁYžN)ő(ľ~P`„5Ś–/-˙(âҺí…ăˇA*ň}Lű~;ŻČ¨çŢËčpS‘#cÜ-ŻśŽŢţěöŤ’eśR›KŤA-ăźŕ1­13eňŔę±Yö¸S¶Ęś)ĆŮE¨VĆP)Ó1‡ą’mćg'Ň`¸‰]T!ţ„M–Š6U­¶Ťq]ăĆJżĐ´'Fĺó…ĆYűâz FÍ#tCĄ˝"–!˘_şaŁ·_¤úŃßs#°ńˇ.±an`ü˛ŮÚÉ9­dd-ŰđYÇ)ůC,Špě¤|˝.S4 ĘΙé !jŐę‘rŻď9BKŐ-Ú=ěZčy$Úqî‡ö/ǡNÚK{ŘŮőß6‚ŔĎn(lĹ਼n*Q9ŻÎ KSźÓ!±°ťÎ:ëiÖ4ůĐ2TÁLÓó!ls—‰iÜTŤÂDDî˙ełŇfAMV,Yźů2ćÇŮěX–7^Ź(ł¶çµ‡ĚµŘĂ™OîĎîŞ;™ĘÂ}Ž$óe=M]­\€ÇŃŃĺ $®>SŽ¤×ťeš|Ť®QŁdîzwKÁ„¦€—F•}ó•Ěé«Č&ë@ě×»Őűü÷?+ň´oĹ›‡ˇ†·•‹˘|:kŇ©ž ‚GÍé%qśN,xŦ­k6m«y@ĺÖ:ě=01JĂÄ+vápLĄ°yÝDŮ{xLô«^©LhÖÍ»WĂť{hÂĚB“W)vڍÔŔN“‚®ŢéIP˛Ťúďé;A¨đ–ZiÓ˘Ť Ç*cLMíŮ–Ž}ř¤U›zjßW"ăŽů1kóľđěDUA‰ŕ÷mz#Ě÷QÇ_ýÔ^uáţŘŘż$vwébĽôŕˇqJ;Ä—›3š†Đ ö«źty-¦śč”3‹6‘«ç‰Šş% d{Ă€(ś_©|=ěŮ!é\Ŕ‘»>§<ŹĹ zk%ŞÍZřIKÔ†¸Ł‡ ĘŔ?i 7é)ň®ŐCĆL:+©tę±D‘ł_°Ť6L"‘ŕhUÂ\Ţ7o2ňUÂGMÜĽλ®*{MĐÚ3x[N-~‡*Bm]8«’4›:AłU¨ż2ÍDËţFáEĘRHţŕm6;#aŞČÇ(‰eĐâž´ őeý'vFNŘ$iĐVŘ[-¸—Frt}Éjł{Ó^z\@Ľ/“¬ot86qJśÖt˝ŰČ—ŹŇlČíÝ•¸p¦OH#KŚPóśL8żc°{¸0Ŕ{łµAÁĘůtňM.–iČ}iÉĽRü§ł–2v Żť„›éŘL=ůÍÝnZŞÝ–,ůPKFéC+A(,•ěţ5€­‡lń7?+‹¬ăîNĘś€Žęb¸M?ďĹĘŹ…^†kWü%e@4B3ŐÇZčąNČ9űżD1kěa>­.;n˘ÂˇDÄ‹˘lý{I~u;m”łT ëé (,aZ0YQµ‚Ĺ%ŤgJ °c\Ôşţż3?ĘüÂëy'wű*™ăx´®éÜ­ásŐpýşTv® ţ~™YxńhńÖ ŤOĂ Ş†ĎńÓź+ÖŚšłÂô«†Ő×·ÖˇR§©v`|Τ¶ŽĄĄĘ¸ڰ·]öH¸d'¨ílpj$"gępb;:‰˙ń ?Ů2¶ŻQÚ Ć—)˛a¦E9ĺÉů˛a©ÇRaů ‡ymřĐ‹ZďöÜ™ćmö;gY ;ó µ°Tž/®ÎEmßđ Ř:ąöT! 8˘Š˛>ĹŤŻpę`#„šňw™&Ăq´?_0 öæż'źWy]XÚýˇBßQ}8ÔĚfŠŰMęčhTWíäŞŇ!ßÜ4ˇŚ4*ŁŃ¸>,SËHo·Ěu_ôŃ)H™qľZĘôŹ?ÚŞŐń5Ś5ß›˛j_Ź•“¬"źíőŁřS.P!犸†4ڬýI‘U"$‹š%HČ McgÍr«_WdŇfcÂFF?@Âx!ú: ÚČČŕţ Ú6w&×zr3|»ő»¤/˛7WŽ'ÁzQx<äqnqŤ1âŕČ%˱@ü®„N”Źüţ-Ş[$VźâÚŇTAöv'BČ­®ĚŤDřhb V -Ż­dHOIĹ ”ŞYčú'íóÍý2Ü7SĽpzşĎFŤŹŘiĚ.ŚÓRpŞö4żCâÓJ~· ŢŁłÔÚ'UŹÉ|čî:Č~ĆR±lÉĄ#]]Ż$™ŁDčdD*4$Ăuqă ř¶rŽ ˛ ú€µ+Ř›uŘ6 ůrBŔ4h' Ö˘¦9y^‚ÍIóŞ´"WX#řzřGWEčŁÖ€®|·ÔbÇ‚sd>ĎĚŠ*z¨‡Í—ÉnTÇVř)bj^{ÔvÔýđŔDŚo,/SëŐ„_ZЧëÍ­{ĐćN!bŮŃőŽXý*HQ‚ °^¶I !¶"ĚfŰúČďDÂ~˛qhĘ4FÜH DüEěj:r.¬ÁÂĆâřy]nú˙Ol˛Ř,U H’ÎĂ #a:»-Ô¸Ž°^g ˝J—ÖŞ'Âu 'ö|Žw­łtŃőüb(öŠ‚ fą¨÷C`ŇşFHN˛na-Ô4É5ĆeÓ\—%awqÉsŐKm?RŮ&ś~(ŞĎt¸ŚWĆEN†Ćě‹…×)čoAl”í6©Jěyčc›]»S}VMf'űŇŔłpf]qÓhYçş­ <íb}™o°'¨ňŰá»'?żÄ>wÖ6Epw­˙á 9ÓulĄ+xľ`V}˝ţ2ŇߨÁacÜEłQ-%?îăiŹŐ°VĄM¸‘üŮŔ)bz0—ç#ÝÉĺ…ĘUýěĎ‘Ďü@ĺ5€tÂ}ĆCöÎŮW1wo€^íaăšµ´LîF|ësµšrRUŕšţJë±<Éç`ÔŽx“čtÎj˝6’,Ć[&ąu EČ€LMhČÖW—¶ ±ČT 6 7Âz­˝ůÄ. ŐaxďÉ(hšďëú ó§K‰Żó¦J(+9¬č9¦ĺgď!źŢšĂîB!7D‹ČŠçëĽ*fřÄ@ń*Xög¸Hf©[ź.Ň{¸óťú#j’/ é3řäQkx!HMRaČâöžző ~)¶QOo:ž»-Uă-"ήĆWčŇ˝b˘Č\JX§Kq4hÓ?/·4ŮpŐě<<'6OŇ›€POl…N) řŐŮęJvćŇO‹Bd jňďDj;m@›hkUcu­Ę9H†¤v¤t¶ž¶sîGJ=/«x žm$2YĐW÷:´™d€zrC“ňo%¦«l Ď óˇÂz±c¶Ł!g4\ÔŤ >‘뻂Đ^¤ÎŮĚŹ ¦B¸ż‡±ă‘j8Ä«^ÁÔ¬0ĂăżgĎue1Ű'ž«Í}Dŕ°1¨¦šĂĹ!ÝÍf…`şs4Ü65]űW;2‡jżÍÎ é¶W21Ě[1?Ož9¦pk!Ęîí&Č"MRŰUxůz7i\ť6ýŚFn:qܲo7QsşjVńŰqd\t&‚–U±&j~jj,YüŰ7K§ŃiIÎkç/p`jé6ß+äT9ë{` }µ±ľ›„Č›¶k¦oŇîh’ÇN×˝Ťd¤"‚˝ŤyU§PúÇ Ő?‰ł%‹§¶%OÁPuŔaçKԢί˙Ş[¬2ý¦†"ďh7&¬ÂěÎ0$Ķ~ĽÜqˇúUިQ¨ô˝ć îž9hGÔ¨8`ٶ–[5*cGnĐőâ…2ŽŞ9ÉByůÄ€,—ę|ŻI3űŞÇ>TІPöu2 žbÚkźŢ÷™Yč]B;_z‘©¶cެ~3e«Ž‚áÔŰnë’Ţ;ńMHʱT/AĺŞĐ.O÷,żĘş5|Qdc¬+!37ř2 ×Üş ;٤ű$dđ*w¬éc´ëîLzřNPĐŹ>ŚĎÇ ó#9nŕÍ@¨fŰá°W1łëľń6ńIí3ŕöÖ«Ć‘ŤHr}TXĘj,Ô>ŢQ€šĂúű-\cźSd8›·Ý*ĚŔ!´­Ď1E±Şś^„yÇ5ű„ŮY=şńłĚäuüíľg€śr)3;뾸 íRu…ŘĹ˙O°Ü}ą^ u•/ZěH;#äůń4ß+ĘüŔwy}!Y:Ű‹ľ¦R^xĄČöi&28ć–ôN­1ŚŘ—‹éO,m¦kß ý‰ç™ĂpÓW%…ĘČŤUnJЇb1DIŞé ÷ßĺű‹!2ekÄřjż9\ KŮţî=ÄÔ‘n#6\WńUńcý‰_%»ç*yOŻŇBaüůä5Ódt0ctŠd€g|ŕXmÖg4-¤—Ś4xcéY…ŤkÖ<±lĚ’zˇř(3 µ`4ꕇö đň·ÇÉż„Z9«óĚq©†ÜČ÷ÁÁŻŁÍ)×NŮÍ>ěÍ€´qfu;ý°“ÇÍaźËő¬Wh>ôĽUŰ5&/8_ˇ”©Đ^Ę”™ŤŽÂE› ¬VłĹś1RBN˙„ †ş™Č°ÎÇ0rľS1*[ÁQČk´y´(~‡/Ď}čŮ•'ŽSĺ Fš Ń&–Ý*ÂůzáÜH1 žÉ'(žXĆnßG×`5{íüůaśł¬#ĆŮöiq;[ęö!‹"žNčEkEK÷VhĆŰţ»äë#Z¦ŰHŐiřü™öÖ[áů¨1ZaŹ´AVĽŞá̧ć" Ůo:٦F:ńń/Ńě?ŞOÇxYuÝ-‡Sżţđ#á*H?¶ş۱ü˘łg¦/΀nÝÇřď:ĽŞ†žˇ–]HďeŇ)ĺŻ3ч+ĚB¸?Mś*FÝ„`ä­(ý¬š±ŇHĂGQź…K–©öB —‘b'¦·ĽdŻŁŔǺݥÎ"“N‚YâŢŽ(ÄEčoÎŰ–\¬ľîpŃj“ě‘;| zâo‰ńĹÄ'‘Ä: SŻ8öŕj˙~XY®źŘď66D9¬@y.Ë€öłŚ/ÉÓ”ë}Š0Đě´÷Fyf ásOT˝qĘĐűb2°źĚ_ű#ľÓBlXlőđŁ÷Ú5T‹……'€÷Št˘Pďn§%îĎnF.&I$ßH$ţ¸öşśO¶N3|âW˘A˝öX ŚÂ ä …q§'Ł”9˝ş‰łzHÎ8ćśqÓPí6~i¦+ăˇřŠ"lŕa_Í!‰˝4ľş8Ăm\:Ňx“”áçc0žŐŮż®čň“´é©qŮň ¬/Ş{v7ęFŐđ~őÓź÷oôĹâ¦\ńaŠ -<^¦Vy™b˙·Ăá-I°ÂĹú»'lýČň<˝RňZ…›u7z˛ŰŕŰhdĆŹáH4ýŚAmvę dUůaňEJ‰ńÇYdh;űĺcîŔ>¬e2ˇ, ©ŔG·O¸ľX&˘vą=Ű†Ä Ę)[|‰śŢnÂ}âLD#mÓĹđČfüD~gŘDý@~‡úőř…'® ;š·«"IŤŞ ŠÁßZ˛łŢr9QP’ďą ;ćýrŤ/îg0žhą—M0€M 2"ЍÚ2Ý®Ź4§‹«ąęln|ŽÓâ~ď> 9D•@TAű“8őě\ře/H¶â”jŠ1Ř9÷ÓÓV‰Éy“a1Á©Ň ŮE¸b ÝމşŃë†ŔďĚ=ťln5ĂáÇFżpD2đ7dˇ·ď‹«Žň ~­KĘíÝřNvĄ Ťbť§&M˛!ŽOŞ÷±ř¬źâŘęD˙óă5Oq6ľ—9Óö ꛬU0 RóY÷/”|آj"OPn)y2 ćBD®:yf ›|Ţ ÄBÍ °4řüęŮuIZé‰A˝Íîź;t-ź:üŽĐ¸Ż¬‹řĘa=–­Ô˛¨ŤŐŚŤ4‡v|ßÂyDš—¶łćÝŘÁ(OgÔpF©Ŕk‰4=EtGl/ »w |“aeň‡ďî®t!ęS7ż gpżĹ«›Ó3ÓPi,E Ń·zB$8Ńm~•ě†Ó$y87ÍsŐ_ü ±îáޫ㊽ ÷7e7óŃé¶n@nľ¶Ŕ©'‰‡Ő]—ÝĂ2i\\‡ŰpN4M™ÝŮýŚ2Ş^?!8aU*p¬ńőżľ0Äž^)8yŃ}E°Š>čX1u‰WT…ÚƸđ{Ŕy»&źŔď‰S•^"“prśvů;µ“žŤ™Ů2”[¸Ą~ŇO«’Ź ucÖ+­ ŹqčÓ!˛AƤŚß“Eł<'®Míć °—űc‚µđ,¬őµf¸ŮĚ–Öa(?sżĽüů=‘%ę÷9ą¦ß{řřďűdÍlŽÎ2nŕ|`›ă\‡Il˛=˘ÔţęäÁc6Ö$±G¶i ÎE4ź3~<Šoŕ[XGZ—y'qŻš‡ ë&zÄžChč j®dĚU–Éş†ŚWBµ„|˘l ;]›k8—+ż†–ĐÔ"0Ş+m]Wř‹ T :®ĂĆŃíP´AôŹLşĎ•Ë?š§8Ů 'S "źD?Ţŕú¦z(ÝMÝÁ˙őYTˇűąˇ/ަ´UÂ~Ú@>h@źÂŹ–†ŐzĘT&버{>Î0®ź5}-<5×@O±h9ętk‘ÄCß¶6ĚÂé!ô¤ëŹOXµŞ c5*ŕ““á·S®Ŕ·”¤»Y…ßçbÖ3D*ÝüěCĄďŕľą/(—’üSj6×t6›Ń]`J“7ÇEćŚďµ2TŽ TrJeŽTmĹĚ÷˛–6JţuĺôLłÔaşÎÉÁtď#kĎ»;ô‰“ÄWçXÎŕ[‚^•¸{on;ĺĎ_á'ąŐ[r•ź8ăWÁżŇ$ÇI}ĺZ8ߨÎÉ-[ĺĹ«Mš+vŔrÇ@ ;8Ö”¬Ĺ=«úá4 ÖRD wF"G®[Ť?™ëdv8dMZ˝ÓBA‘žNďýťzĆžŕüc®”ß`Ô|Öź¨l[6ĺܱőXÓ}Đ* ťEßę ułcš„}U]󙟫{›“ô. ?Ć9»:·ŔěŤ(äAł6& @›s*_eŢĐ´j#&[ĎóÁ+1–a9;EúYźiae5ݤBăŢođ5Ë×ńQ-UŐóévj﬷/EźÜ1ĎÍ^ŃizZ¶˘KłĘÁű?ęKř ÷Ä팺 HţmeŔ$ĄW€tŢ1¬ůhŃdžűˇú›ÄÎ7|88“/'S·)R1çĄ"lćś?A™JÓŠLŁráyGî`B^¨,ĂŁűw)< e=oz °;Ö;ú+\OĄ° R™¬ăż¦öÚöĘEWŮ]12ä"ç'GÎZ Im©¬¦Ü&j‰ŕ łhYOý´Jĺ´M}łY{ž¤OTÚŕNś]ďÍ[˙ąŤ^}ĂđFVdó:ű´›ń Ťn‰á¬ťRVžÉłk’…ŇŤŐ‰~´yZä<Ő'ö~Ůz)p„f<CĐ2wtáZŔyP,ős¸X{ßĘÚ?ĹúŠ”Í4-MĂD\#ďXյѪ›ŚyGâÍ#|Ů}Ë•ĎD2Ĺ_%0~ß05Öő>–ą»%ű5Ýü"BR}ř¶?‡ b×Ç`îN2|ç 'żAĆ<…^.ťó!}wd$ę—’ĺň•˘ľ»ß‚Ö=xgG)m­hŢë á—¶úŐ@1ďŇ“žfzŻuG×-í¦ŇK ŚP4ŘűXËĄo‹hF¬C’ßňΫT ¨ŹęcZyŰIÇe™7-˙PkDí‹NK¸ROsgyôDž»ŻÝÎÎdZ€—/Tl˝ńn¨"Ą1zWë[Á-zn ]mGŚąĽ°ntN"RXÄ#UËd<§'B)TćÖ2™Tűň§ŐOźé* ű±hŐĦąëń›á‹d0IĚŻ˝ŽĺËsRvďks4qj©úßXžrŘÜ5ĽfĆ5Ö¤M›&«Şąë0+ÇĂř¨zÇ|äâĂ™”. aKşÖ¬¶ťăŘüwËp,Rz…®Ag{ą§"·¸łťkÉt ä‡w5ťV´7?·!.2ţGű2°Ľý]±Ňú¬xâ ൹čŇń)­ź%0iŞćó>­ú9Ś&Í×J—Â"E»[ĹÉPZ°UD…±Ŕ+ă3†‰BŕĺA/›·•ŐĎĺP ÂşäLěÓŔE®4ź05~0bH·”sŐ&`bÇ ×io^/®÷Đč}hgp ĂÉ•40/í˙&¦@Ť bĺMšß$Aô'“rűí» ŮŚ÷´ŘkOäęÇĎž`qC-e°k^Öćߍý\ČKdŰVŕB»ź±gN"ScsNü@îç;K-:ťŢ >C§‘Úí¬*‹ô|DXRĚHřu[VaŘ L%AĘ­ş^‡WëC]Ő,ÚÄGd«µU™ŻĘ˝—Eńť’¸¬0¬@~.—ňs1oZű]˘ÝQ«BXAŹŤpă_$î´ŮcÚsA6˛°‹÷0mďsř)±Ćy%”=ÎY"`‚‰ź2p‰ś÷ë×^ŃćănH|‚`N\őâNT&‚;(‡óZžNć„ňx„Ě~-ŔĺL©ăşDř7‹´ß ďóaŘTŠ­Ŕ6d)Ç©¦c Ł+jŐĚ0Ég,ł ÷ţ ěx4Ą°QÍßPżżţsvŠÝz_~TČ|Ňu€Ł4ĚOHŤ‹>P»˝ŇS?Ńâgč-ŁŢ7ßâÝ˝ –Ö€¶rÖ`łëřÍ}ĽK{x \¸…PÍy"i…l#qg$ćď0yź›źË2O8D°Ěy»ô±Š8fw>ÇĘáĎ•ë”Ô&ţÚX–‘Ö}ťľzk­F†‰@€©,‰,×/ŔkĚd4&¬ T žÎKBe;ő™ÖÓp˘wt+ôäy©çěę•*ÎÄŤívŢ}^Ă=Η”iwaĄ­ĹÁ§ţ1µRiM< †ŠÔd˘ö”Şř` ~yŚsO/Ů(ěx8f}ýojb„„˛čMcŚ6!"Q_c.¶-"ł}×úRÄ"Ő“WĹéĹ|µZň»ikn¤Ť =Ő ÎÎTh•]«R· –é•ÉÔj[ĽD!˛čĚćKÁó×­ź§ÁxŤíćr3TąŽĄ}ň·K„ _ęńEäVŮŕůůk'čŘ.$nĺj»ššBö›ß'…~eŘdRžĘ)/nR˝QQUtş‹-’¸ňn˛šžůômĚŇfJe™öaµ¦AŤžzÚ/šĘł­lčańĘÁćŘ ŹĎ+Ąsř‹mŃhÝi-.Q8Ö±^-vŐ/C”¶řťiřĽěß< Ń'ŚĹ0‡qĄýSž˝ý”ú…Śt?žWKo o=šA茻¨â2Nµ%ĺ?tΫf†Ŕ¶ťţ*´ ćrĆE?rÝ?qáćXł2ş7Ž»ždb‰ő¶v? ţ}DEâń2JŚ—I̦ňÎV)“ßÄ꽜íu5®ßš;bé…‡ź \»Z+´Ť<¸Öz2q›]eVö‰CÍŐ`—FŮýGÜ™=Ń'ä8vŽVÎäBČÓĚł?G+aăşĘ3ňŢ›¦ŤGaóĎ‚ d="ifNÇh1xČ6}5^ôŕMU0ÝľRâ˙6^đn(ĄnÁ4j¬űrж%C(S§lÎ6ç[*}Ş`@[Y_T%2 Í…3Ă7­Ć[¸úÓ˛ęUhëK«ě5ś‚Ůpgź˘|j6ü ™˛:ĺů6Ńöú«‰¦Ł0„– ˛„ń ç8śŞ˛Ô)\<=hšTPZ€.Ę›w„!+ÁÁ‡öçµÇíBä¦*[EC ¸$,J,4[źZ$jP V-érÄĚ…ßj@pX¨}ĺíęÇđ0ţjI–ť`]SšQÖÁwT»ˇBٸ„aű"rfuúÎ …ÚCőřňŰTäpSţ*¤¦Šů6÷w"ô¸Ósń§·Ő€$™Ł°ĽĆ(xy%;BłvĄ;Čł±íę ˙¬Ő‡ç‹>‰ęqĺ‘ÎŐoę’$ râǰDg,‚‡ë3FÁŻU’VČö˙š0Ď7-őş‚—5zďžYż6Ő®wA§šb Äů/ĎčÎČ!Úňűćš‹Hv=őĂ:yŘsT€ĺÓV̡őHvG)"eŚ0Č-:Ú„Ys[Ű aËšLĹ :elĆ$›@g,‡âßĂjÖqň»Ç*y2Ęśů ü†Č7â1¶¦dlĺlF@5Ík3Ě˙:vöżYű źS¬¸‡ť,%óż#đ¤I ŔďzĎ×öAáXĽV÷¶LŞPދѠ ŚŤý6eçëÄĘę‰îs™=á,Ť>ďilńÎVŕFOqh\™Â©41őĽ‚Ůťi°^tfű–?ńë‡ăŇ“#–ŃXN?uiľ~ĆQ¬™í{Mö Ú:ÂLbßçîĹ8L6,HüŞKź‹yÂţj nqĆ‘O%Ą˛#2u…Ä?žô¤At(\{­ĐśÜÎýŞYŕşÔ}*bć§–FaDŃÚZŃÁF9Üö˝MQŠţĘ…B­řqj+JŠNä'~rV“™)}Iě\·C!nśéđřAPڤvÓť«›Ě¶ö0ĘĄmÜLÝű>Ú«@Ţe· &ç\Yčšüu\–#ËĚ_cđz®—J¨(vIŞ6ť3‰D€ŢSÁĹ çĂÚ´ÉU¤PžçĺˇäĎMŃ$nJÖ?¦Äxś×¨ę¬6I‹ëĘwWKÉťEŚź(Ö´ńťńŽŇŁ˘…%©żíł.ap…+DÍaĄç.rϨúŮ©źŐd=ÓVǢŤdî9z/ę™WÁę `óńđ7Ć—yW ŕ,SĂh Îbş…[ ĚT„;‹iî*E8Ö>Fg3]Ä1Ó›|n–ă›Óx˛Ë†uěF2W'¸ŽPç˛gUŘjDÁĎ˝ÚC˘t‘\¶úŃy€“Ă5¶HČň G•˘ËäĄXţ uCź%ŁXË/8Őĺ·Ř•ŢY?÷(|Ęí\}Sę¨ţČN·ń&˝n®d®ń¤]žęěh‚áçśËݨĆ5řD ‰ŚKŹ?Xfźţ¶Ď‘nQTSঞü<ŽŇÉÎCŁwP‰K ŇVĄÓěłű¶ń¸Ř÷^ßE‘{38ńťé2’M fjýş &‹”ę=’-ľzĘ»ôno‚`ĄŘŹXź=čĚ`§ű˛č/EńymĐUg|âS IüRŚŤŠY!=ÉU@ř~ŘëýRT3zéĽn­ťÔłŤj˙yJŞš/NU* ,4ÉČĎ«í•Ky ÚŃ7Ő{yýú»Ţ3ČČ])EíyÖćdÂBůĚĺŃ0@É墬 Y±FFI?ÝΗv^ř*`ěůDĄE¸¶×őO[Ž694ŢHß4ŐQZúE­{ˇv´"5'r®•Gą™\r‰Ŕkw5>”]7S<o°ŽA0&5ý ŹŤíۧM•MjËx‹!p\é<© ů«Vç;~:,}śöâ€đMĽŻtJ—,×Ţü!Q’';¸Ě ghŤçá8·ń€e˘ř°Âç D#Hxýşh­ôŮ]ú• 8éĚ>J”@b Ża’Ę !oągŢ×vń¸Ě’ggŠýP U\ŞL”Ű+ÁÔ‚Ů—M’÷ćt…±g3e•ŔÓn-Ŕ\0~ࡧ»ü°±éŕ‘ôŘ|ŇžëbĽürcQŚ *íkč}Vf÷7}ś«<ďSŕůÚ¶ízfÄěOÜÓW6ŃšŮÉ™a>ÚŚ+ä‰ăřóK‹ţÚ|9űeĹ{h`™÷¨&Ňľ{ŇŇ»6C퀰âb¤ÄK´eĆm`ŹĄ·}đ÷ŘϢDK,U•Gډ8xř»RÉDd„;k‡>ˇsŁU;t˘éx˙ˇżKÝ„śÄ7TeösWäK5yńjĆ)}*ř< ŞÓ‘¬×ŘŔ¨“č]Ú¶U¨O…t¤®fw’˘ĎÚŠ“i ŽÇdf\ŤÁ“ŘEäĹ&Ľă6Žű‹-uHbxM•oÂ`É=UÄyÎ4Iż„7‹Z˘,r„ÂŘÖűű+ů»3a7Ůć…Ü ŽE&‚ŻĹúĄ&X&ÍĹ,¦ď-YąŚÜ…’»ř‰°BJs/lÝ»•[Ą*îř]†Q…*Ľh‡kńHMBmçţÔĐŮKô ¸×ľ°)ŚçńŞźéTŠj3R͸ź»ö¶i!ú‘vgM+uź›nwŐ©Ô…¸”ýçŽăĎv’<ä*´°ë ¨äľ¬ë+›‘}’íl/p†đ2Řŕ 6 ¨˙ť ‡3©8y8Uź+¨@›'TŽ !ľ| pâ”mĄ$Ë gćŇÖ ˙0úxפ'ŠÎŚ]š›á<Ç~ćr»xą7Aô§ É‹€Tě@€OË|ű+k—yßMm}śržµP)͡—u ˘ön‘ş ˛um5ô!1±‡!c Ň®-mÝ@›d •϶Ů@<ť}č©ýM~îÉĘ@3]™ŇĺîűÜŹíĹîđ0Ëî×eZʱIe¦ýlČ[¬¶·-ŚÁ;%‡Ă‚ŚĐÝ„o$l>¨¨Đ©+µ¨™ć-ÉŃŘ2Ĺ ’Úo¸+1;Ýž†Ó˝R?LZ4ĎD¬ĎŻ•(•łc·ęëö¦Öä<(`@WPÖŢw[_#ÎŃĎĘO5”=«ýyŠÎˇ©EňCÁ±#‚ţ˛§O ‚*†>Óqeęy*<ŐcWŇţGSa’&5â±Y@© ŹŘ=•+ ôŁ[t%¤Źpß4y úŤşÂśĚ‰âc+9Yo_8—$­vĐüĽÔe7;·Ş NĐ‹”él%°ś«± µÚKřČż˙ÓĽDľnżHŘ^ĺŰĂ—eůdY•‹ö}ékqÓś;Hů÷=)Ľ‚Ň@ô‰ ލ†X{˘i',˛ÖŠ\ř™}hŽsŘG“@!Ă4ĚFąjÉ"ž†!zrgVá=)j˛¬mĹ0l°0j¦ĺEN|Ó…ŕšć¤ MšŹ‚ÜoyÍÖŹôxYďrWCîqš],jě»ěŃ5‘žíŐř»:–/’BM(}6q …˛&š.˘™L/ŁCfÚ‹jF*™§ćźň=Ńť;ýlúUÂŻ”ü7XĘŠ“îQ hzRü’HN”Nt˛|]ú«˛ŢÍ}¬ĂŕM?Í?Ô ÚĄC‘ xĚűd-ćóž™ÓÄFm4ăôcÚ6í‹áĂ› íIĂě%ýůQÜ‚Ů-ËDlůkßŢśáŮÓî0ŹNą ~b4ˇńĚľ!‘†‡D‚‡v°ÍhźĎ^‡8b2¸8=NXá1GłľČ[¬!Ź—˙Q¸MŹşň7NîľJ‰/vŐâhmNüb†Ę?WľRYČ«ŕ%)f4p„ŹÓčJó=HŢďŔk .vő¦Ůz˙ĹpWí;×bę,M_őÉ˝ĄźŐőřţ‰fX!ĐRĽß‚ŕ‡O~vŢ öbY“şL…­¦uPXČ˙ëXşJM|źÁą@„ KXĂ{eŰP 9Ö’]1X™·ĺŔ;Âąűžac@âͤ­!Ż´w猟ťBţÉ02lĂŞSě’ŐčSVą]Ŕ-NÜćĐ\^fÂŐŕDš’UµJ>Ąo :8(‘'˛ĘŚłŃ¸/Ľ2áßzäK˛»ŕ9Â#®7ŻQ­ßtî{†(Ú.üő]b|_çíM,íF±d‘ůq-±I{µy)LV‡† ÁĂŕöĆó.…ŃŢx±içĐ ˝BŢ´Đţ%¶:ó‘NóĽ6šebiŔtąfĆlöm›áH,¤MK-¬¤ąŰ M•éRątë`D ‡¸—f? ĎsP3ç4 ˙EoC¸T˝QĽuŹBKřĽ|›;; bŐ>Wł[ĐŻ]ˇŁá{ßYÍýf4Žš/EíťńmĹĹŮŤlˇÝ8ü?azč›=â“S,~Őú‚üDđ…4?ç4˛-Mpťčެčq’˘%ĄŢ!JNSęhͬbąt­dŃ:Ó–!Y«yŐĂśÖq_ć“°uľô±Ší Z$ŇĆϱ1€‹%Ëvűŕ9BÁp&çp‚˝_0ĂŤ 3ş)OńŮčĐî"xJ`Ó6Ƹ¨d(j¨šă{îŐeŐňh-ľA8Wč!Zů!8GťŻ¬'e”KÂŇe>ôÖ(őđ<Ů·ŕ.mi#± YKu7.]X ¶?/™@ń#MIqĎ-ŕž(Âo Ěk$ý8Vm»6vsîŘw©7Ȇk'Ň)˘ůŚ iŠ*žcL )糢•%äÇ/ß ĆÍDKJíĂBq¬Ňs^§rú›Á?‹śł‘§â‡BšŃąô)%¬CvĄQ”†šózŢ`ýk ,Ěď· †ŐÁź>/:ާťţúą7ZKl™Ő1fU`Ý–ńYÄu†;aťÜćל"|ő&3:{!÷ř »ń)‰~DAVnŔ^2d,ŁBĚş4xÜÁ`ŢÂčDü83lżţ'ËĐšÖhäÔ9c‘]NúIű¶®“b&ůÝţ«:ń5ewý—Řocş”}'M×Á_Ng<ńn@›fyrn[Ŕ[ÚűłpâqŁóŃY«!ŮŢ*čšăŔ¸ ăŕX­ťß\)hÓcÄŢÓH.{TÁvŘžč]–•ű`HÇUÔUó~2UÜ$”Ôü‹öBŹw˛ueQGŠHT!UR |/ť!ŃíbǨ´âŹŽ§]’žAüI®>ăRXŤř§ł@V\¶ŕşwc÷WÖ›]Wܦ•ČŻÍq>§řůg,hwőie]ŻgÖעĽßηYAţ¨0ŕŕ»:ĚŞsÓCäȆ5L^d—8´#«ĺŚÚâˇĂ ÷'ź™T­!l÷`·©§Đ”[ Tö®rM|6yc9o‹C'X©–¦XU˛nĘs+pś$ećżkyvąŻÂŹë”_En |›Çĺ‹ń+¸7/¦ű$Ř ś¤ť‚ăP0Á‡gú,śýr7R>fŠťzěşR˙„ĂévŁliP_cß{śi75Ž%nś§ö”!ęŮĐöB`tąy˝Î®k¸0EI`toC€ÉS¦‚ŕűňĂ’šćÎă\„|˛°´cîrŘf|ű[¦”Lč ę4Í“źLŕźç­ń8fdZĆě0ř 2¶\P•5…«5´WŽ…GŔĆičvšâ¨ňožrîüu”¤ď$?“ň5”HróxŽŠ•"‡g°Á‚łß[Í ” Ť—‹”8Q^‡kś¤˛翎óҧHP“ýŔ›Ń;Ö~]ŕ‰?NWöĂX">땤ş+ )DÍ÷`ęË`.Ouâ uŮo$Gű9ł uG8őÍ0—ĎFŘÄ®+ˇw;]Ön¤"Ć˙' ®ë8‰E4ĺšµâpśť‹g„sť±„zč•S$¨ĺ é´>Ĺͱ Ů'ôt“teK&5şíYCŢ+H·ŹŚ…Y/>’Ęă·ĚçdÚĆOŕV=í CŐZŽř(1Sbvě—J°ĺÄ Í͉$¬“`Ä y¨˝Q Fpě Ľo­,ftÉ5Â’ŮKĹ$ó‡0Čz"ŠÚŠ—yË•Ľć­löNSŤGhC'=3(;6Ëä7ÝślŔÔ˧ ŁM}ĽMąoE´>”…_Ëgâ˘ĐE(·ŤÓÎo*ęß‹ŕçvf0€śt·˙\dW yŤJřŔĆÓrľşľî+¨ “ĹÜěŔG·-ŔËšyË%ĺąă™Rđ`üLبíů5kŘ7€|đ€VS>â/Ń*O!MÉ0Z<âEśUŁéÖ.–Ě»‡łî‚c4E Ľ‰·§C•á¸Ă!đŤ’ÎÖŹ´ŤRą;5Ż-l™EŹúąZá° ś p.ë#!~兒Ԭʍ+[Äj ÍlüI îąťęY€%€DJŤ0â|ş‚o‡¦\Ýš(źňY‘ŢůS˙yd©§¸ 8KFZĺŢč˘íĆb_cü˙żë6·ł_Ô˙§p´yDcJŚK2Kň]¤’Gf=(J v×äôeT,‘Ť)'(Ź‹ęÁY\Ýń°ĆĚŻ\;jłŮ )_-¤—ě?3Ě‹C™`ˇ<ŤQo7ŻňŠç%ëÓĘOćÂWâ´$Îćlt~Tç Ő6Zß:ÄőŐnőuťÂŃa}ÁŹ,ˇ­†KĐÚß 2– ę¤ ›†ZŔ†üÜÓ˝ň3=vyŽmâű%{ÖTä—äXĚĆ®˛Â‹”±›)°lĄěŁ ś9éňßy\mŵŠ? ëv‘ú„äčOËSvâw×”aĄ +>w.tfĂB¤ »’ßŃa: 8¨*ł)hý°«ţú™˘1Ңg6Y}Ŕ¶UšžOÜϢÖ?­ˇ*TG4î˝Ő§qPbNĽĆâgÂ2o‘…µG—5Ůű·c3H‹qÜŻëę}ä!ťŞ3ü{h–®ŞZ¤đřŹ$QĆ_ŔEŐ+äH&¸é·ůČ2eSěi2kEńL{1ţJ) ŹÍŘÓfŘe<ŃÎć—‚pk7ěŚ$¶­ęe€^Ęd¤‰Šr¨7a¨Ľ»?ĽýťVşŔĹň¦+â^Pp϶,¦€©vĹ‘ńĽńÁ~¨˝®·ËNóF<řk»ĎŮĚ(b âvÄŢ2*őűĐöq®©w^kŇšMčŠ9¸qq$’&ë޵ň†ÇÎîŔ˛Éý[î×_P&-"ů5đ…Í/Ŕőŕ|ě‘6Ş3çUčeâćâŠ/^ů†N°âWčlB÷ =ĺŇü (´yÜľ€ň&FÉÜŽLŇţc·ÍďXtAűc×QË€çŘmöU‰Ž„ĎQ©Ę ]÷V]9î0ŃdtC…˘….˙L ´%{Q˝€ÚĄqëö=uKYŹćYűľ˛rŐ€´I/5đăĽEÎç "¶5×#žÜ9RnÉŻ€¨ë­O±ąôÁ°NhĘžÚű¨ŔbéßTóĂüŢË„‚IřĚP–Ůł Bă|Žg¦řč·<Úđ ç'di|S6´D{O‡¶7%j·Ö®`(~tö?Gß_|ŞÎÁ¤źŠŔk˘ôŢ ź”0sDVÍÔ«F‘·Ało™ŮĆşĄTŇĆ wög"jWŘą\¦µžnŠfý+ôÝ6.ú˝$o÷üŘĘ8BÔŞ4sEŠ8»űD˝$łĘ|ĚsYÍť´ę @śswżĺQS č’ş—EdU·ţěL“ť^Ć0ŃPľ/śőÎ&uŻŘ˘ŔhŠ= Ě f‚íákŞ@ŐS$V|ňŞź”sTŔáÁÉc9FŐ«ä÷e$ŕ5ť˝â`‰4C}Ó.‚z$ţĹiJŇĹ›—KőQü˘§r\¬ =Yll[ëÓĆ=BFt˝ş;î ĐŞÁ/Ś´€nŰI•ôGÚ¤óvQ~rY&’´tŢEť'|=‰Snމ+ůśë«öŁ–ˇČyřšíŐŹ*ŞĐ‡C˛Wu=~ŘQ wĽäjďˇěnÔU8˙?WC±/AČý§ÝŻ&Â˙Ŕ/D¨OĎ]|S~ R}ßm9şRŔW9Łěç$ť¦fŻ®Üś+"¶~’rąVţtîyµ×–Ć®łb‚˛¨€q=¤dřOúMÎíĚn<ʡąy|µ˝čŔşMŇ|µÓŁYsC 4ÚšŹşâuUÍ{7ýň ďşIŕlP{b ŮëGry/EÖĄ¸Ŕř‡˙ó= ;"K9~=…-”¬Ý˝ oa–§ű¸‹ ~€X`c¨$X- "UěKĚB¨5P4ŇĘ ú á36—ŞxÁ1®h×ÔůŮĐÖ†#“Ę7ŇOďź0·˛D3‡‘:Ń_ŮÓÉl9;÷q ŮďĐŰf¦Ó^öbk{÷Ćţž pŃš‹U¸Cß÷FáOĚ×f+vZĽ©HvLž÷—y? :Í\ďóv^'ÇbÁtô>ľűőAÓńîIë!†]üěökBÁ{ żĂ6Ë粲 Îň9ÝźgG ń‘ĆîsDű¸¦l§XěnŢć`T)`›LBRabŇý¶×ă€JÎĺŐßŰŠ-}śRšüů— MĺćçiŽÇ† "š–jeN í3^Óc_›Ă»eÔ5Ţn— e äýŽR3Ś$»q˛Yą4»ŕŽfg¨÷›ĽfńdśźôxŢslČőĘ1ň wŹsŞmrČ@°+Ó5sMUŃ´U´Ąęř1Ô-OíÂŘĹN˘€ř먓ŞÝŢ<ęą–ľf– JđÍ{0ŽĚéw-’űŚŃ/¦Ş0z‡Ů/¬¤Ťó§űuÎŕ ‘úH>ČŠ±mďBYDnäĆ#ř¸ĹGłĺL4ők¸®-=¶˝ű‹ ÍÎwŤ‹Ü3>sŢŚl#תŞE¬Ĺq޵â•Ř®F _kÚâT­ârŹżŚťĹ Ą-9…‚)/—xč+ &~ żT±«A^öXxWH{Ë–wĂ=f¨ŕ,|/’°Újݞu\Ń–ižH>@ «5rZĄ°ňůG±xB2ŃÝ©ĚWYAD €7ÎëzťŔ-©Ćv9ÔPĘT&s‹_łÜĹ4˛#ŕ+`¸tиčă4< SsĹß:÷VŃÁíŞĎ¬ä†w˛lŇlłÂI_°› Ý A’—Ů'Ýe[,ŮK/QřÚŤ€B˘ęŻ`ź@›§kĂŚ±\ŁlłŢJ]|‚~Ťë\byt°śÎČÖLÓĺć>şąŻ42–yź I$•q͸ýx„čÍÉFčźvJ`ćPW†Ś±Y˛×SYzÎ4 ®đl2 AYľ˝ty9D]Í–‰ÜOď@ř`µž„ă_^(’ňÉÜײ7ü»ŚžÂ19ü#ÓnĘW‡:ÍĆ].IŚ.éajźÄ欙&™K&Śu§é—«†‘OČ·gÔł©_0Ź!WŞÖ D÷ ĐŢ6~ ‹ň É%ś˝Fě¶qA?$ŢÓ¬ĘEJuö`IâĎ–´pjĘďŁBíŘţxKoűsT(Ń󮝟‚ý˘ę~ó c1™Ša‚ ĆŠ™•@ĚCşŠ 'ÍÂ:wý· ě^őKôĎ{áżhw›ÁôóoλŮR­)…l B$Źíř’&#ęţ'Łyij͡ŰS®ł r€j†»č_‚$Šu0´Đ-µ2 đǬ¸f™l÷˙>ď˘uíŢúTÚGđ9§ĺôa™ăµ¤řDRÔëÍ[źZŕ8:y^T÷8ó¸*˝’ăö'"ޱËű™Ąé­›x,ýđęeE9XčÁáסVŐkÚ˲ĺ0š9-u7†"Ř.‘,'źäaŞ 6"§ÓËţÍČE4¦9“¦ $ö”űm;wAMšQă%`ŮQ1†XtÔb­ĺp…ý>›ťDM 8PGĂö§Ă™ÓňĄöţMçDďşşTy¤ě9>řĎŻ¦‹XHuÎף±§[.ť SmŃ1µ$t2÷łş@˝…˘S 7|wŽ ÜĘSQD4“{ŁőJçw†TłńMĂL7űÍąJgʰ8ňŘ2f{Đu zËŢ––8¬¬ůůÓ°F°¸ĽęŤb*ŐbcCFTžm1YÉV»`ňTRâ°*3>¸LŢúľĄCxú Wőv^”3™ ‰ŁŻťba­YS ř#YňŁ‚đ_ ’R‡÷mˇÁř$üY¨nąźíĄčˇĄqĽŢ=´C3vWłý¸&)­µM’¤T$Ž·65/a"îh–®;‚0‡ş5|KQ­¬xTÄÂŇX6µ¬dÝŠ"lŹ[°ů3´…p0ú]Łä ź^2ůDčÎ2‚<.«n«”}gµ¨ý ßR˙ʰ˙8ŞçŃŽEµźČm{¸ĐŐ/ż‹óîiüŁňŽ…r{™zť!ëbXŠĄ0mGçč˛'·^Ű\ ÷ˇ0ţDŢS)ĺŠPĆ“žěý®Í‹ŮąÓśˇd1®µ5$lâ ţŢ\@Î'îr!PxćşTÂ\)}xĎ ČăТëͨśŮwiőPEîááĘŐŐä !éUÄŃ۲–ďIľsŐIÉăQ„&€b+{ëŚ0]· "`‘jľ?ć¦FË+żjsUŤ.Ň á rť@"8ÂŔćÚ,J_ĂK18łÂ´ü磿xá‹'ţő†‘7Ńí4 Y”tا݂6m_C;ÂíXopőeˇ7‚ÓTRĆYĄÜmE©m*#ĺ !M…žĚďäăwJëźë üŚ3=éBĽn:#{ÚCF " ě33Đ¤ź ž “u~lß™{_ŔŕÁůŹ1L‡}AżsMúöE0…Rp:ž×±ř<Éć^Ńń Ű ®!±yě#$p™€®ŐÄť[ś˘śĚ©iÂFÁ÷g\ć >ŠËrů'}¬Q¤ŠOŃÔ_MQł÷x÷ĂŁâ°-ą<’®Ő7š5Oo믚YnýĚŻ-rs™}9’Ý˙‰6yEÁ Ů,)ű¬?±Ą8- ť¦ě}®%©8ü¶á¬ŕ”ßŕ–u#cŃjJ)èuň= ż <,şüVzä« üx=âŢeĐ‚@§^µn‹lx¤\ŐďR`Á[R| MŇ|-Ä#üęČ\ wß@z 1Yw€Č)¶ЉÄúÉáÝ9ČrçÄ–6ńâ°ŮĘ'mĽ÷…¨f‚zá·Žš}<Ö«ŕ”sš Ő¨"#­ł8Lxľp}ˇh"CŤxDř~mx﨩ˤ˛_Á‚Îĺ*vöG’Śé™c¬¤†>á­óoK°ˇ›>ž{n‡rł·şą»›Í+ %kŽ* Ů˝‹Tâ “?V¸Żw¸“.ĆE{>Ń Ű°&|°6„5Ţţť|q¬&ŕ&ťňč72"ő6”U‹JN;qÚł÷±‘Á!ÖŻM÷Q]pń‰‚Âł•t.śµwö~çQÄşyĂ]Şú[úŘń=„9bzĄ•[ŃÜBDCń#ěرuŞőűßrA¦?):źëşË˘E#‡ÜÓ©YŠRm˝ĄAü›ľ„źI~J)ľXz˙˘„ąUK…Ś—ôčOIöę‘ęvîě ­Ö• őęMŇm9@fpĹŐJřq'¤Çż˝müTŐßëáWîÜŠ§űĹžwsč›č•LËÖÖÍńfšIy&×ŔĂ®úŮ<˝ľßř˛÷Tđűů™“ś±Đt¸îîMÝZłhŁÄ–®ffťĐ B©®ľ1$:SQ!N^Ë·cŽ…UŕĘc.,Ť Oé*l3Ń~xżďíŹńÖţ8Ěî|)›tPbÎKíX#€ŻăaTuFâ~x@Mnîr ™‹ĺL©{ÁS^wĐ@†gËeŁCk E-Xçžȶ|Çďuë9ýçc{6Éěß[ź’Q¬Xzní3÷çnZÖĽ»ŃRą Ł?ÄěĐdÉŚĄËf îŘđffˇăąvRňęěhP!Ô*ńźIŁĂÓb wVń>ŕ4M4WŃ4‚gĺoß—L*çÉz8ż#uš›L ŁŕÚť3M©4‘Ř·ď!©ş˛MÜ©OCNÎúG›ëŮ˙kX ĺcNöěŁňcüµá7žÚŘhëŮ皢Ž}„€Š>Ťă>í s±Ęɵ’đř sue!IT6[h['ţ 8Gš>L_¤„ť±®!DZ4pSÉ—sřń©źËţŮ褡ŰŢŘócye'¸ťŰ/Îë›ď(1ăQNő5z‘ĺž—b¤ W ŘokĹץĚ(;hŐwĘůRĚ ÁŞťí8ć›ę„Ü%ů§!g˛bUëŇ÷ `7ĄÄÓĂ&č‚s7ńŁű‡ÉßĂv(Ä΢Ę%Č/č\lđ”ç=śpÓóvT–×ţé‚É`úţľ˛3+áĽTVţ­öä ĺR~:meÍNÎt 2Ęű,މÓ•oÂý!×hĆâuËĎŐč…vÁ"‰˛ľrŔßC<¤Ŕvłx6Ű9Sř óá oÓR%đűôpPŻ™R Î_3V‰ż™gŮ»n˝őá„âîĘÁ í(ęĹ_ćX$!†J,°źŠ“†/z!Ť#ôŰwÁMoÍŰJołn‰ÖşŽúM4‡iĄŔŹ$^ôŞ˝µ ˇSÔŠIŠ6ŐJ_cRn(Ţ6^¨… rFʉh]dűÜ&%Î;íăŢ/ý~Ŕvś«-ĄÔ š.Y±—Ăś5_g§_g‚d\ÚńĘžb¦jśűt ű‘da-V~ˇÜq4âű,:sdrA€~w˙ pśD%R®|ě¤+-řËëH­;€“ű¦Ď€Ç[…R„Ě>™ęňłnJeŚ>Ôé©F;ĆşS?Îg×}s|”4+ż-űʸĺżČ˙Ű żPUú+8JäNŔ.á‚XQč®ôŻFü€ů0‰€űQÔN}3ß?w![‰yŃ‹íXŞ%QCÝ´ŰvNyŘWT›˘8q:îsÎó'“°ě\_ˇüň8„:(vQÂNĽłJľá]ÚÝ™6ö˙ĺJ”%Z Íy‰H7ÝăOÍ·HÜoŮĐއłă#/"Ő :oU׺5ÍĆŸ-“ĘĚ]x)ą!»´Őńą?3 µ®áż¤ňwˇ,$YË+Ó_´żKď—ëé “»śé¬XDA@C×5”}Y0zĄ7ŮÎŹnŚáűčŮ,ôŠ`…îťąÁZŹ=™Ń`ŚĘqŹrÖ˝÷3ë•&5¶ćË„ě`YD°l<Á”†}şj«e,Lţž¨÷˝AĺĚľ:CĚ©înx± w›ŔŚFŃęü’`Ýô2îB_ÉţH$çzúmÚ—(ç:ÎCôô˝‡Q ÝKÉříţĂV•m•çźËNx¸c ń5bÖj8ç°pçďí^^{oă±’Źűú8aTńU|‚żí‚ýMÁµľ÷ŹN|–şo"?Č Ş}.{îRÉR=ü—Aš>|dóĚn—›AqÁüśëfYă‹Z›Äz »Ű»ďř.ĂAŚ[Ń ¨žmőŕvýž-qú™çÎő´EmۉîvĹ~_ ťćZ1F "+¦Śg{MÎ Ű”|Čë*63x` ÇÁëVv>ąŐĺ&[©=z¨ş.ă>¶RĘż7NíŮŹĎíŘY3(YŐM CJ[r.k„—En©)˙*ŁÖ‹’™°(.iä& 9[ŕôQźB˝ęÜĹ|9ŃiJ ­ťíĘ|`9)ľ2ĂńĽö||Ý6=őž˛ľW•‰ĽŮ‚u€]'Š%  5k‘"ŇDżŐℨ˘ńü7n%wýd`úŐ-ĂÁGďY¬Ííţ«*»+›|ósµvÄŐđŞ>JÔ' [”äđá¨ŰfůČ"JL.ŤM·eßVŹ$ĽDÎë;5;zĐôn»÷ůµ* ”đ€v©áéÖ寗µŔ3¶?^×Ţľţ X„»rŽXc¦µ¤Ťű¸“ ”Ľ[ĺĽWĄL\':tAĄ!$-ěęň4°nŘxńj^”.er!űôŔ-B ×»Ď=;÷$#nµVi>Ć“ĂVFvŤkŹÖď|+źS×6ďá`ÄZ[±S«*tU§~ˇ(`2sW‡µv’·žłęX±Y­Ókz.™DPĂł–<|˛VČwu·•Ĺ"Đ}C»jŚô[‹sŰş˝@É•QkXĂPÉŰŤ{RX”×$qظ7»y6ŘýD‰Ś&%ĹVÜfś_•hCřC'˛Çžőçä}ÖčÔ±Á¤ŹTô–¶˛Ćłlţ„Đ^ŚÁyó2>`&Ä˙5Ĺ Dŕ7ÓfÝ·U%ď‘g¤"Ĺo#=·b”Ç>ÖĎ‘8ĘY ŚŘů=öŔÎJ2đF3fRsťxßLgj¦_ŬQî źz‹ű´Ź·šÇFSsŻĆˇ…®DzVP?VĘoá)"›Źqę§o;ů±´ĺ®¶·_ë–@w çÔŻ <®Â(“eÖ1Ę› báß|ĺ; J3cłbÖäŘĽ ©qx+â€/ú{ŞőÜ.Ó÷Ą¨ĘÎC!>7;Ýo^zô^9¸W¸B„0JőrÁ—iÜĺj®«@đóGAlŻu‰ĽŠ —ß—ť2̤ܰιB 5‘ŚŮ‹LÖ]Đ RÂůń”Ή;\ěu¦1çâÄ©Ç@BĄ÷vH`áśöŤëĺz"·˙EöÚuţFšnP]˛N Ëă9÷ĺźőŕ#8$—±q{y“ř‡Döâ|úę…’Ö‘Ę!pŇ `sULt'*NĂź{‡ořôŇă[O6úçő•Plĺčw/ Í®ĺčw’µ“.ë/„؉`řŽaK7śR}ö˝ŞŰ^ł%lűęOţčđW÷Ą$j˙7ʶŠë»MS+d“E;Ćľ–™ÓË–§%»ÄîźáÇZ×Ó>l¶fÂ)jFT€śÄ„Cy‡¨=5۵¬|#lďʢč%)ĄÉšBŮc§/i×®M A•l¤šÔř®ýcÁƇ?eđÖI>•ît˙OÜYý\ř„8ç›ÎlÎZhmŢ®`|€——ŹZKŃ•`€U7Ě[çą&ŠO ¸Ŕ¦#|ÎIé«Î>{†‚L¸ś ¨Ţ ¶řH ÄL†¤Č±RÂÉ2˘©ŐŃVÉřçiY†żt.ĆŕUţŐ`5’?ľ<犰OŁNB"),ŃŘÉţ9GxýÚ†›¸J3©ląG>NűáJÄMČ–nęqĹ[ úÁňäĎDwśÂ†5Ëç.bMµđ9rîlŚ"ŽžűĹţ¶-…w´5@ŕ{~âýTőO"ysĂUĐ?6qÚŃj¨Ö¤–Y­â0mšwÂaAĽHó4ű#ŃÜí†×!ďŠdČň Ó-Q=ř­»ç/Kŕ\ĽR…›hkçž:€$9Ů fsôu‡X[ë˘˙t\ŕM¬W× ˘”YHÇŔLK%•Yt+‚]7ˇZEfl$.ă±%vľ]íäŢş‹Ě÷ô$ ăO_•33ćŔg¸®tËEŽö3Kžg]N!aŘîj_[eP‚rÔĘÝĘŹwš‘,»\y3~_1‚ľ#Łi~‹-X†ľŻék ˘şďú-·€–)YĘ@qX¤®®‚¤‰š›ě„"çy·5®ż,~_´âĐ _jL#Şb{CňÂ40Î"‘“†hŞý‚ aŚYEŠ—:şóéLś!éI䦝8WŞĄ…&P­ÇŁ€ŹšŮ˝ŞĘŞ$(sOŇŹť<”‡tłźU @ëv”–QB>[¶wÎB•©ëü.°>j¸ü%‰ĽÉ–·cqˇÂMLŐwfŃŐůŤş\âj±RŽ× "˙Ą>ŠősP€µ—úšŰ¤tNěI )w úĆüEEŹ6 ôk¶v%Fg@ąa…2Ú˙¤ÂsxÇľgĺwłâ2h¬Wëő“c÷8Lw=01,0&†Ä®:ť‘áżî+#.\Cęň®y> oIx’`~Žě»] arµťôz‰ß®3W˙ë„]ŃîžJZŇcµ-|ďšž’»ĺŤáëçńßŢ\)‰»Bc2ˇ·eú‘ZĎljř#ťő°ĄňÔĄůBEI¨ýwS8‡ŐUâ˝őîÝá|at~řűÜłZw&‘GgŤg(Ź_p$”§×ŰbĆ(ÓWË`®u6Ľ&€G“>•A"ö˛‰e1B5•13·>+źuü“0™Óvëúëuíĺ59Ń‹ E„űy‡ăŚălőÄ„SŔ „ťVW˙Co™‰˝. ×ńŘýĽ.ňv? úe)>ť~ţťîźÎ±-;o™0c˘ekĺ4HÄʼnݢ7K ZŃ<śdĂ|  RM p*X¶ŰßôKžHl(›'3D.ßş§v$4·YłF­s|JÉm (#čąýöńtČŤFUÜ-ŔßcŮĆĄĄ…ůÉŮHťí~ŕńÄĎ‚TTKc¦ëw ě˝6Óçv ˇ˘•^A‹™µS2usS-‹bËQCÂHîđ®K– /éBn§zV/C§• Đş±°…Ç'áßç˘Ćűî{AßŰ8“‘ 4 `ŘŐĄäŞ.¤Z~!ÚD2ěÝř0<^,fňw:p18ië>N­çcl~^±8¤ ^EíťBˇÎéqŚ™Ő8Ó2ĺţ]ý4"0Y¦kA~<—gUÖÔ„ĂjńđŚ$5ČŻg>)°:Ť PZ ° äv@čîŽ$§Ëőüę{]"IŢMÁ¸aqÓŢéP_ër¸Ă€,ČIC…2Z_Źéĺf˘ŮŸč«Ĺ}žľ;*Ő:®ń/<é2'rŃ`÷ŽNOŤĚËtűĺ(ůËÄőO^öăÂyEôIžCěMż*P#q/˘mřelFgőśĽăn8–I±ĽĎQw2ˇĹůĘ{¸ˇŘĽěE˘âĘÉłž÷0WŇĽŕ’pűî8ŕ.ţŻ‚Äé7ť0Ĺĺ0ü‚[ęć˛ÇšAp™‚YąEÖŮďťH04Îhq mŢËC(¨Ęv_'}YW~e÷“đÉŠ‡e‹_ę†Ŕ"&4żŢ©T űr¬‚z‹90ýcew­´GlÖ}gsŰ[H¶üá±5%KKţyPk‘Éý(ŔŽâav 5ő°,iW±+öf÷^#Â˙ůVz«ČÓŇŔ>*Í>°j sFMÖ«&ôlX«ŤI;ňCÖž‚ŹwuůxW÷ ^ĘQ§üJÜsý‘nR7»Ţ% Ť{~îî5-NuˇŐěH,?;_Nä!؉nřKiĹZşá‘¬÷™D{ŘhúýůĆţfľuěe×~6°•3CţW:ĎÉ×E”„ű4{ěł)~ť¸ľ#´rvt~: RqëfěíW†CłóE˙9ÉH-Ôz¬j§_é<ŇĘŰmŚçŚ.gjج$č |–¬ë°´Ąj«-cßŕ¶•č_—’u 3Ązäľ|zDÖüíI¤ş'F)lßŔILßş˛ůťW:^˛X–Óä1ćî/ëtźV´dWţ©ÝÁ ÷žG¨bĄ}…_˙íÉ+)RySiÉH"DÍâLćĆ’ĚZđߪ7R-·€Y<Ú§yl[FŁÚZË0§SřÄŚ0ý@ ťąruZËşWŢŽß4ˇJś®%R$Xk0ôÓÍű°–`‰Ă"ČŮ'˘˝Eä%X٨˝fHYžĹR (˙§ó[Yv> ą »!čVžg)9nˇ“a™–’ł`˛N2>cĽ}yšÔÝ@Ź™"×V,pgዾŃŕvâ4Ř×0 1Ž>áršüVř‹ŃŽ— ¸ÚSd M Kľ†ű!‹ŢfY°ĂhôčSlŃőĹŹ}üć+«ű[äĂH(·«ú™†7 %vĄÍţi‚tžJĘ…#§6¤4±Ă•őcĆ4·xŤ#ŐŇ‹G•U%ň 8đĐ»+Ă<ßJ‰:»Lw Ńů1c2Ńz/‡ĚâŐ[ľ`ĎZC%ĐEBŢ;m"29ű“+nGEżVž˙‚ęq©®oô$5M6Ť—dđšJń2ÎOtq[o!Ű#łşýčcĺíuő-5‘fXÓŕŤ/r¦Şt‚0´»±S§°Ü±ĺ$ďŔ8Ú¤ŔůŽÓş÷¬ä™@śzĹ87‘¬ÜQŕěöüęľÓřĆ/*)żă®áĐYlćŻqšű˛J,”7m6—LeĎŻ·Žf˛h˙Dü@n.§Z›U˛…Šö.‹ńOy/•Č›îáíN‘9©ÚZ¶!ČaÝ˙_­=ľ†ľ …Ť=˙Őj$ŞËŔďAWĆv@_&<{,©‰´g0N%Ńą‚±žyRč•Ôđ'ńoY”–·6ÝUĘeűxar$;·|,"‹Ć=˘.ű™• ĚB˘<«EŔQÎ/U\rl­ôłW|Nc«¤ QxB˝Y “ ŃŻŃŞŁâ‚“úÁÔŽ§iÍ+M§ť—"R%éý h kę¦Mđč—šhĂÚľő OÔϱšĄĽoő—Řîű;UŠi‡ą@–L}Ś`ść+»®C‘8ţ„o^j&–ĺ jh3lóřě–÷żÇYÝľĄłv1:kHTâ™?$@~lËVăzĚxŞR˙S$Pi‰ďת(Â÷ŘŁ1cgŃ ×µáÜÔÄČĹcŹlŇApvŹßďRŢ×Ű0ލ9€}–Ë@¤CŮŁ™PĆCcČë`’XĄűŘYŇĎçeD™#\öĘ@§§ţĺfy'†nő7(<16\ńDĂ´ p«oiuHË­­ eZ…D±@Ü‹ŕfKgnb7ŘŚgé¦ű{Ž_ÁĂĚ%üuN-2ç PöÔ2F8(v<#‚€ azĐ,Oˇ>#Q9Yb%:ö9Ó8 °d˝.Üş€Łď>‚˛uÖWÁ™‡mŻ2îV[Â>ćF>ällľsä×™ W} m÷zĆ×ĎlĂ}™]sZ lDť~Ž˝ŔľÜŁô,+6ö1ş†K|băDÓą|˘[öŔŰH(!úgŤç {źűÇĺČÖ ů §ôŞyA¶ĚĐ×ć|é˙˛OOÔh]łXŞß»ďϸNČđĐ8Ëe+ĽĽg¦ –fîëč|1,çáz#®^Éţ¤(‚Mg¦’cĎŁÓ×Ĺ.5«ąĄ đ2!â€Ďůř÷^ZăŚĎC?4XXP†T_ďţŤ5÷tËOšÎ%˘˛˛d9Im>•<éSşCYGµ˛RßDc_ĂßÂüQ€ß#ľŇH…ĘpUXwT˝ Ĺ]—Đłűč €#|Hqstµ}áoĐÜ€-âöşúŔŔém4ÇżÓMÓĽnëoöľŤ{iŞi†Ö´‡Ů!Ň©Höv‰nTÖĚĹÜŞŹ «9jPÎÍů~o呏‘ä]@¦Ű´IÖ0©b)¬€€Ś®ą5?¨Ó |ĚQŢÎ5Ą"¬"Tř>e” A+«ďú Ň`Obu ĚTńž†Ĺ˘)>:Ť†´ŘmŻż^%ăś,ľ†šĽzb¸ëyFČĆŠZśC —‡š°]vťBxÉ-’k"{30ŤŚG1˝úÍűjŞŢ;Gi"§EoË#D­MŇÚÍ•d*6j€ÝĎuEÝ<]XFĄLÖ"jwŮ žĂ=—bę0«)‘/Q ˇ€Xđa–ŽPÁźxlBëŚÜqí“ÜO‹Ç»bj>ŞU©m » ĽdmIášç0‡›9ÇěÝń!ű‚çŤ IÁk& ˛Ű&ćç‡=T)O ¶ŕ6ŕGěGOM§‹žÁĐă~Î=µÇĐ&đ’9M9WARŢćŤÉSVu4‚ăb(“o„ŃůrÄYô"`Ż|vźż¦X¶‡Ë"čŰűDťş||…LM3˛rŠ®ţbV;=J ?őčIk{ýµ@‰At!”÷eüĽK†…uJ5ˇâ–ŠćI;”Ź;‹jŇ ąxSÓ–@ŃĽĆ·¬zčâWY*T O$΢oż±‹ŔlŤsŰKä‚ĂÍJ†T»łŁkD‘"ÂŢÍ ţ9ůň4ŽÍme5$°™>7¬ŕśÎy¬ż˙ă0) [PűĂ6†ĹżŘ@}×e<˛Ťî’éálµD EŞáĘűI®Cş8ĎŕĆŔru¨Ů0S~Ôę‚áÚż@VEQ§¶éĄčmB†łÂľ”{–b&ĽIÚâ„ńfí‚‹ăĹđĆd,»8jĚ÷ĽÓŻ;©ąűńn‡ÓďŘu„ÇďöŰ'dŠŠĚÜl±ëYťŽQĚâŘzŢۤ~sn…żYîŰÝžČ ŢQ§x Q§€e)ó;nč#ô—/Yt^™]0tAA°fń»…Ęć ÁI–D×'ŚŤíŤŤdđčPÉ@ŮNFŔđC ÁĚÔbH­sĚţŐBly-Źq_ęó:Ş7şXč©ăůäâëXźVĹýa~‚ő«§z"1ćÓm[ε?€ÖŹQÔ ĐijĆ%ÚŰ×oŽ€aj é?Îę_ś­É©ť¬¦ňZ,Lv{•A Ó·9sʉú߈ŔüË%Âů.ŽÓu×;śÇCŹĹw”—ň—ńoucЦ2üdŰôgNÚĘ“•ájŠ™úéń?8Ckšé„lńE#Ű`ŕE‚ÚĆM[;¶ íFĺ‚·D­NˇęxžG±7î Ö•`n‰€»?­ÓnRËç]oäÔâz:Ť€¨e¨$jVdařčńŹńĎ$—ĹĽ´˙ÂČv|ű¸%`0rrěňî™py$Ü&oGěz¬wĚ»Q¸SľšľŁę8‹A0&ÜІhť°±(öCkµWë‡ФĺŐzǰ—)çI,Gó™B&8v¤N%iE"5@ś1…=Ě ŽÖÜŔ´‡łPÔ ÂĚţʬ#QQŻšoĺ€o?QVČě jď äő}LhŁŁ›RÚ WŮlµ’§ů!Ęšśfg=ĚŹot´¦LHXSöŤ77˙řë8Ž伙p7|čÜj§€ÝüJŘ:˙D‡ű¶"Ée´ a#‹†Ą÷‡ÓçjŹ{›lµ^ăcáÝÉţ]8y%çňaˇđů+~m5Ü ™4rŹ×OüÝ´Ő‡ ś%řącŕhĚ7Kd±DÚ%–Ľďňµä¬Ü×/g °·řĚNĐßGD•w7ŞRH»(Ü•0ůÍ_jŇť…˝^Bä7×Ď+ôReD°ě´ =$[i‹ç’@»śěË–“:‰Ú)[UĂÖ83WʍšÚšľą=ó Ŕ˘U™ĹĆa\<•ó±cóLÁúł,¬»÷šyë+_VštĘČ’ xF/PĄ\Z§© NUř¨™Şwş˝(O¦8‡[ăyb»:{DKş$PôęÔŞ‡xBBa9RHű0âĆ÷‚3e–.Řqf˝V/ůD·á]Ś˝ď#>śN° ő ){’˝| fO"‹(«-;`‰8aH¨M[|{Trę/Ň ŰŃqÉ'˝ď'ČI–ąć™´qĆiÁĆá;k˙˛ÖwśQ 1ňҰ7ü+şźq¶ ‰$ÎL_E­¬˙iÉvęÄazŹ2¦÷ć7Ďű6$ ôα€?›ň_ýz06Z<ąĺő€/^Úsx{ѬĆ26¶îǙµ‹dyĚ«­ybąQ».®âřŞĘUŁHM߯,‰[‰_ďkńĹţ|Tíu í·cęöşp´,PłĚ2tµ±¸§e­ăd¦Ĺ¡mŇśÔßłú'I3Â&ŞËga4µň·I3‹ˇ$}šuĹ'tĎÚm†¤zo˛8ŰyfWľ9řHݦÉuqIzÇß­[ üšŠŽŕľbľPߥş•ź %öĺF\٨sGzoé×aZüěÍ‘üľš_|Łň2?ăúhz{yń„×ôIŤ°‚ú˝ řËĹő e+öz(Ĺ`Ţ#dÁÝĎű^Ü+Ż«ö7"Ćq \ĂŕNk·ŚÉĐ˙ä?¶ÔAőća&,Ď/2°‘˝¤ĽśŰÇR°_4´~í7˛ ?‰ÓjŚzE_Ś=~y_ŘhŮ!’íŹ,_ˇ_P3*ÜY3ő­ÂôľR}٢Uu»*?‡Có?ĺGÖ8¨Ĺýň3âxľ ŔŮ%ĹłˇíÍf¨¬ą–ę´˙Ü\^ÝAŰÔ‘ŇÉ[ ?}ĘOKŁő^ŃĘZsGçë "ĂmŁłQě'¸ GÄ?ˇYz]ä|őŹô~b)ż ą9‘©–’GɆTš%§%eí=5 Mb4_Lěs§lL¤VÖQTŞ IŮšć÷0¨Rˇ9ˇt«ńGm ÜYá Aľqt&żíp{ńkrµ†rôhąž‰´·÷6Ř®„`DđŰ…žÁ7Íb¸ŽNśjîXÓCŁb·Čhő3>Ë9A.č/QĹaNS5G™`ë´cxVuĆŠŢÓŻí몮¤="?ĂěCÂ0ŕ ă—bĂ ßc|­81µzŮŠŤ:ż¨}·î4ÚI 5~»É¦: ˛éT<4Ý‘…S0¶m;˝vî¦mYŐů[ÄěI©ŻW#8Ič#ˇ«âŘwÜÇXÔy üzwV:Žv|oq±?ů×´ú[&Ű“áqűžŻéĄ^&ĘŻú„•ůĎ|Ó-żâ%\QtôRzŢ›4Pb#8€RIŠÄůšŁhé¦îg›Ł=X;VO?<\iśb7Ő_ô’¬^Ň?ĺ+&_”ŰÇyąIśŢ°dÎ06,÷aŤ%ž8Ş^U=ÂťŕŃGĐNc[ź˝ij¬¬¬~¨®}DCqőytÉĆ’ݤ‰[|pEY“ŽM˙Ř‚ůן‹&÷{Á"¸ŢŻŃ„6±ď=ŢnŘËǧgŘH†WŽMůpşĄÝŽ7´ôC/PB ÇCitäDęĐů_3iËľŤ˙©—˛ió0g…€( ¶§Śţ­ ‚€ í§U­‰-°•'uňŇNdŔńbËśm›±t{ű]ňµH‹ö/”:G!úĂ7ĺ~|s4sł[âĹOŻ9¬0Żâ~Ëo4ţ ˙M°ő4rĂţů˝Kď ŹE)~řŇ©O¤hk|>'ťű –Ţ@¦Uh Ěu§+Ą†‡gň<Ľ˝‹©–±#łmwÖôIoˇNG!ě—¬2iŻRŁ `Bţxz+i„Ç}łžśiUm#ActÂfĄbŕDY'fÔŤô~rp"Š8÷!ĺÚ şq%h±„d”ó‡@ÓÄ|Ľ÷”ŃŢşČѦ'I2Ó¨„]§Ú>9•”R$ T˙ţy|?¨-ś×‚ˇîŠKŢÍúăáů·7渍#ţY]Z )™V˝ xvD[_¬¬ĎË!ź›+ěę M̧C4=Š?čŮ^łj˝â[?’Ң1C¬lXŢMů€ÔŹ~â,ŰŇ`Nx|ůqSŠŹš4{5Ůí4qŚ}ÓÇâľX Fö/>aşw7€""QÉďŢţ¬+¸Š¶»Đ3Ął0t) …~Z¤—ôođůoRŠ–ę­cEíŢIťÂ<čUÄ]Ś˝q—r~±Kp»ýQI„ŕj·ER¦75OˇRmNm/™ČíŇűYă˝ŰÓFZ§š‹FçrnE´`9k¨Áš„Ćf˙k*«13ré2”á±Ę´Ş•[dWâ™*üPČpÜE>j¬Ć7{é«#Ľř‚4ŹT2ÔýP±§–&ú¤+©ţ«š[(ŽŔÜľ,™űĽ ďţîÉ;ţbt ¶ÎuiĽű űRD"¤mB_µNűˇdő˝Ąôxj6ú{~xH<Ďîű>B ±ľ WÚŘâ>—~çŔw\že$‹ôtlת̴B“[â2¸Ň)ź*5sjřĆÉl‹ëô•:řĽMJ˛s˘ĄĆTśżŻˇ‘ötbEŰÝ$ő^X!Mëž){ČîxĆ…Ő IfˇŐI9ikß»oáÔz’µ[ŐÓąę9l®Č%0ĄH˝â ĄE؆NłĆ‰GrT.PÍţN¦3ůµašK O@8Y7ň›ě¶ÔŮNwY2éh˛%§Ď8˝ŻPýÄÉ«z˛Q`şü1ę#U­|€[ŔďłŰŞ ‹!ĚáŤé¨(©đŃU©ńŞáŹ©}dđ•÷&Ęů©wťgnhç\jI¦’@˙0=?Ś!ë-tť˘™ÉyŇőG9Îç?hÚ_Yn!T¬-r–ţAâ‰Ýčtc’äĆÚ¦ő$,Uú×ĹŰ`Áç?üřs ‘h'ô#s—d6Uäë/ˇů­Ďť—Ł^#Ŕ¬ÎĄBřh»ůîTŻéç`i†ÝcA‡Iá;L¦hZ*ÖŰź”?)ńx7 Xč­ËsĂąÂö»ŢÚĄ«›;¨oBI-š’©ŐÉrI^Qň°ť€§é„ôŰS^·ľ´ţ.‚Á‘€z×uôŽOČ~ >ƢVô)t”šçöµDĹU•|§*öA–yéęTÔĚĚÖś–°ěőrEăžź2M6]T»;Ě6äŮ@~m_D‘&¸¶â§A# 0v[‰ë@Đ5 ˛’ďĹ»GŮ‚ X/ăę'üYă•—(RÁŇĚHsť1ćú(zNďí°ÚäA"¸vÁŁ…ËŠć ¬'/›¬„wbKÍúşĹřrꇠříuµŹ>˛ ¤ţÂS°»•»ąkqZ_žM‚_wř4ž_ţ‚  –č‚"­÷°mB_ząt}.˙žPíBzÇWű“ÍŢ•é[ç~Ż‘Đ"Áĺ«-ńráÇ<źŔ`ŰŚťżôxWÄO ô¨,eÝćWŻÁ„ôü‹U{ópm„ŢĎ5;żĂ€‚ZO5cýćńˇáJ Ą2ďÄô^ş} µnrU ŞrŐWÎČăÍ8ŕér8®´(íĘ„w)9 oęůđ' ©\ĹĘŰ7©H»—“^=L QRťOŕĹĎí2J[őž[ŐüąĚgy0řŮźNz_ű)¦0Ő 1šHécüë<öH19UÚšNެĄ@ ‚ˇüć^nÖiÓąQT?ŚÂ »CšÇrzLźĽz/©Rşo˘_‰€Ńý :R_Đx‡wÉ»^wôŤ°nĂî!<‘6ččŻdOx|řĚöylÜ•_\°ě6´®x§çŠG޵ŻŇK„= F?ÔŻÖcv˛WbĎ9nBőö».oXFč}ô.řj-Ş /> gĆőŠ,7:Ú0S©uňL‘8ž»&ť4)§‚?Ţ?eÁÎ-!ćĘ;Žöśj^&ák;FřdŮşx7uM ¸ -}ŐÓńÉ{pM ć(NqBMĚ•Ś)l[”íBĹ{Ţ÷ ‰­ńĄ«NP×ńXj»5ůFK÷Óëíid¦M>„©ÎŁ1‚dÜm%XŘBĂ…ě‘ôÂ3´LĹĹý27Ř[ďęIt•»štă=\ćĹóęčG+¸9^ËŔä‰-#Ę)ą,Ëîç÷6mţ™]ş—ľ· «§ nŠô!ËuO_ţÓ[}!¨{q˘Ëś@•Ôĺq­`‚íšLx"Í;µ÷n+ ŇmĹ’=¸ťŹ’ë#LČ’€|lŻĐÓX!¦(4˙Áq´\(Nxů›ußmá*v đę؆c¨4§Čđö˙R4ž™2MÍQ.·ĚaÓÇ’®Ĺ)ş8·ęDČcedăf2>é!lţ×ǽúšuBi8Ť„ĄĐ …9ĐŁ9H÷ű Űm;H O2ÓéńÍJűq5ÓZ:_űŢqĎ·Y»ĐśŞĹ€}®i9ňÁŞeď®|3˙ĆŹz[–x ‘&_ q ýK—ńrî§í"÷Ś-lá0kŇ–  ´]Ę%A­,jÉfä3†E!Żd^ĎG„‘ŔĐ»ľmľžf0I´đ•[)—ŐnG˘äčWWö-1S–}áç\—¶?-ŐŤŚjç*ö„ŔҸç˙Üuuó‹)°5¤¶cb)uĄÇÍqÍ0Öy Bę<ÎłÇŔvŢŤ[7s˛LSÄ”Áَš´Hä ě!ʍH¸mˇq×ëôuo2cpëôô ŢKńšXJu)7OŹV Ľ!“+ôQٶ«®őTĎäŽ\A׾m }‚Ůč8)¦›‰@2ťR ůč,ćđZÂťKż¤§Ě9xá7f÷FL—´S*.ř;˛=t'‹3㡄by} zŇîţk[vH&]ż‰NiŚ8DvYŕ?ŞC7 ·Ň@ËĹ/ź“îa˙ˇę4 +OZ˙­€X/Dő¶@F¨Ľ¤Nr¦<.B ÎPŹW~y– Î*ŽŁ¨Ć\q¸úDC?lźîČ vĄC=Y‚¦9ÍgmÉEźß€jŇNPJ[ş•ȡ[ań#ľč‘…fZwé šM·Đ"‰_Oý枤A‹ ĺ ü“÷äĹ˝ť"YŞEş}w¬ÍĹĉňeŰŰ3ťEp/eÎâŞb,Dá+µ' 0TŔ¨c9ý=öŘ =Ĺ4†°î˛ $ żîÉZĘôd±|ę2CɰŹ{PŞ-őŻč]ÄđŔúgĘeŠ€¶¸ö­2ş ëŘs_°7Áń`$ëŃĺśżTŻKż´ÉĎŞ©űu>NŻ #Zy)>‚ –ęí±­ŇůÉů‘;'Ëś€2}i CÎö«µI†3uÝc®xgľs÷®4t«Äb‚ą‘y iŃ#+Ř.áb3ˇĆÂdź˘>ăŁ,0‚5†YIж ?d2ć/Ű<Čh öż ;ę0ÎŽúqĂđ[°cFµMŘďb€Ň<%´OŽĺşż„I&¸8Ť»­E±źëĚ3 V]«ă\żeą5»‘®j'ëĘ´äذÎňăߓ疣’ąî–µŰĺŘš.%vşbóĘeą€í+'_~ŽçE•ëś?K‘Ź>ň(“<Ę/ś!ýßź41“Ë4÷2dÝ/PPĚ˙ ň0Ą![Q°ąo ž…WşÂÉ9D«˛•O4Ćţaf¬6y0 µëͲĽżnp÷ŃážZŘćŤę.Şiś0qE¸€xBH]>”>cĂZjăŹeÍ›:}Ń; ř™đÍ •¦Wę`*±i“ů-­Pě$8i“^žAZß~Ípç>ŢEfć‹Ýź‹r{ďűźNÂŘő}ˇŚĂ›>P>ą~$ íńz™^ÉR"ţtÚys……ötÜ("ÚěËŞ5’€8ŞiWýř{‚Ć`Ł)˙#ď1÷?Ü˙˝€0Ó:÷ÄĎťĹJÚżÉóm.¬$O”°*Ä€Ô–B^¨Ś¤Úź—0îë@üÖ sň#6ź_óP%:ęD›…ĺÂE‰Ĺ—¤˛TÜ˝řgĹY:kYPţűčÔ3áoŢăÓ˘÷ÜŁyIśMi•p€üĽf–V•Ö5zăĹ,ľŹM˘DpHµŮcFřÄĺŽK‘ě¶P|I¬Ö©®Ŕ2Ne9´h%–č Ćűf>Ĺ*lSXętäG‹P¨Iëv9ĘŁ,}JCŽąů4%ű :3|u„ËÄ:“ĚçiעL‹—Öéý(ˇSŘô—ÜVŽ ҇¬w¸/ěAôŔ4ŃęMkÁá!jÖ SʇҹďXEÄA˝Ĺ¬Ť*…[ďFâD60úK q­\a|«çSUŠ_]5źťÚSŐ„_Cł[ ęÎׂˇ?µLôhÂ8ňI’˙q˛%Ľ»?Zí˙úE­±a‚pKÄśúva”‰¨zŇÔ®>Ž.řďç†_=m|qHţËčmB47ňú Ü.âś2 Ů,Ľ%txŻĽfőÜĺîŢRÚ ýńs'Gc»ôV˘âźą{@ȸ”şAŮ0Í!)~Ż­ŹŽzŠőô—śg+˝4p ™26ńÍöF0Wń‹;Ęßóv÷é6Âş1Lâ`§cůob'd§g(t‹y$N„Á`ë,J)ygJÉxLLÝ V7í žâz1[Tť‰xú¬„Ćr Ě› YcÓčk÷7`ĎsZ6.MŽÓ/ľśÖu8Ř(Ő¸é~ËfžB‰‘–WÁ ,C˙6ٲLěn˛yű×ŢH›żćÜg× H¦Bĺ?wdz·ţÇ;j$Ő›)Ę`;ęÓYs#ş†ĎóĂĺţŤ™Ţ\j-Őö±ŐŤ{÷¸Ö¸ç?[T†ŔMJŰČ4ŐRÉvńĺLGJGQ†GäbŰŰd »Ó7_° 1•]ëŠ-:·_BŔŕ:wć´ Ô\uW!¬FŕËuëçčžď®n,ytßYăĐŠĂÖŔ”ŰČm8CÔy4Gs˝vÉtÓ~‘wćĂqüx€^.˘ Ă€[ž^äÁV•qańÍ˝ŹÚmśş2Ôµ°čhÜ­XW:ŕIf}KD ýÇN‹zdśŞŰ!ăď´áŘźý–höíKÔŽ'&ă PäýrQWđl‹-Óm$nÂŕúĎOŞTNqĺRŁhśałDŘĺ•ńNbÔ3نůSTöŐjÓ¤°K8}uEÔňA(ě1@r=‚­*„ŕŘń@VâhŰpđ[‰9Ü_€`á^ţŔýwÎ÷‚öÓI9qGĚÇ6ĐĚQ I­Élš"?‘“´ăa@Ë„XAĐd0ÖTŰçˇO0ťYďÉşÓ6ŰČNĘ[X7ű_Ö{dé\.ó_ĐŠą¶l‚w·}ŃRY@ŢP”߸j=7«+]c‰U[-ÖS´ ă9#F¬LďZńř… í3šp'č7zŠŇŽ[a–ČĚ“asKę㉊˙ĺĹ›çÓg ’ AZĐą^Źź†ĺ |şćnÓĆÔ' ň@«šo >©Móéa©ZŢđ*küýtĄ.2 ĐŢŰĆJk‰^>ű;oüîkŃ`®}ÄL‘…ôvzX¶^ uKť±¶ß?Pł~Úh•%đWĚE9ÔĎ,Ü4QfΧéîÚś¸jĺ čőďäfçtxs4´71ú+2! NM~Z=¶F–čć4NlŽ{č)©Fa=ę'üĺ­ť'Ă”>ÄU]őă¨ČVwZI‘^6{É&s˝gŹ”™–â’ř©5?Ź–®l» dP#=Ě/Őąiމ©–ĺÚ˝v(Űň‚ßy¬aeDÖyŰúďĐč˙Ě'.ÁiŘb÷Ž‘– ňăžńla´ă˛ú–Ń{–żÂ±ť†AÝĺ¸7—l5#zşůÉLĹ0GlÓÚQ/>I ¨ö¶Ş óűî°ô‘”ęSerŠĐf»ÓŃ·ZŐC]ő­Ř ¸şťo†w)G"ÎĂZˇżJ~s̡Fµé\ę&řąâtěĘČ®»G·ö2Ő€Ç,$Řb>/í8Ćľ~±čĘVĂ˙.ŘŇŃ)]n\–Ö •8\”éĹ© ż¨›o5»ňFĚr۶=Żń)Ě\jjÁ%KĆ QL{°űQŘ?:×B/ B2‡»ă“ĽŻ2˛>Ws!ĚÜb”eó\hp»U±p Ő@lwîDŮN:Ő,¨ő\ŕáńMÔG‹w1®}đ®ĺCž¬ł_h¸Ľ–×sIm /ůÚ¸Y$‘)4M§3{»RůgěWŻÖßÔť~Uî¤%ź¶)ďD-kyĚ pcÚ~ŚŇşŮ¨ Żm6Ȧ)GJ„  öuZ©(żĐëܧŐp ˝ŰˇFůĄă[¶jąŁ.13ťČR-’ ›…PĂ&T˛1řŐżJ‘ő;†zŢq’ěŁÁČá¸Řbha0ý‘čĽ(ËČ_ €JE„mžŻzş1µ ýă)˘G ˛ÓŐp(ßŘ:!€•ö}˘–)ú˛Iš&vEAeľ˛Ő,B2R•'RŘăG`"żŐ6śM+ŚV/ÉQ‘ 궉ú˘Z±űýhગs9{¬ét8¦_ƶČ&| F-Ž,â×`¨áĄťů=KK”@/KüAă#ŇY•p@ĆĆčŃ^(ńŕ··ŢV˝ţś¶4Ćéyí€H„~ÂÉ7™–^vn‡ Ăş G±*Ăěö˝Ć{޵7žµE§ŹÜĺŽĐ×ô· HóWt¨]Šqöf®Ě¶EÚĽ0ç>x„*˙v?SNˇťÔłrD®…¨©qóôD(t‘MYţ®íť@‘Ń3nbĆăĹ,żŚšŰśź.Ťgżý7Â6i ľ) |Éz6Şjdü^ąOÄíDpŽň“uą3ě.MyiáŁŔçiPi¶Aâ–0†45žĽ ىÎO\Ëâüé¸ŢiŃćń7t}UżżqIä~FŤŐżsH8„8燉ł ĄŠeşeűţ$á˙U0N…şAś”YŁŐčÎŃĺj© kâ‘m<٬\ű”c·Ç ¶9şµ-eŚ’śŻ ,ŇYű &"Ó-¶Z,Q_ÚŰ—Ĺ| PH4 šřćň‹ fŇĂD5,[‡|®„×0SĽ”Żt´Emw…Z¨©Üu皕ůFŕŹxß”ŔH^s„©đ8s^ćű21PK4AA®bĺZo€‡|¤€Ôź‰Ńt§E8 ŐcC‚ŢĽÁgȱř©nZŰë+„7:-ÔKp¤h€ŻŇrθţąK©UŽPž|b1ŻaMdtŽ.Ű“sĘŢť!>mLe|‡hRű’ď3ó#˛ď”㍆rŃ?”($ăLu+X•ăjô]“J«ČŰúÍëQTXËíÓ®˝FcBačá=~ß~Ž0Z×®k=n*ÖÇÄř˙!ó䕲ě=Ű2.ĐĹ}ŻÝe•I‘¬µ¬*7'ě7Đ@fí<ô­LµŕżžDđw´včS3ŮCńË}Éźů&ĘŽD¶UŃ4cްey§űý=óĎĘÁ“Řü>™đŇOҦŮXßžx…3aaőqĎťqŠ˘$1ÝATCŰŃŠ?—®Ď ĺĹૉsí–ä´c××4Ě…;¸!vq›úšžš %-WëŰÇ‹\(.4ÇĆŞbš=ČĽFH /ťJ d„2ęć݄⣿ŃG˙š†\Šy……č5qyJH)ˇ~ň^ůC#Ń4ĚŽóĹş€Ő`˛¬–ô@Ů^®KŠ–âőEc$±ŢaĄîČşg'ĘíŃvM·†ţż›0űOŇÖ`{R©Šs ꎭ QNÁŮ›\ Î'ţ8-éux™ŽŚ‘‘”ÉGiḠ֢\ŔČ»‹f)éÖŇ*V}ëx~4áK-\čV!ń9„ÚzŁ0axç6Éb‘§ ,(ôäpi —‹Ż B¶’_ęĐ#h"ź$ŃÂŢ ±łÍŞ$1 ˝ş ś˘6ĆGŹFD[PĎť«EúqG˙:zb»&˝ĄĽp¸ůC9Ć_ńެŹtĎAJ<ŮFUʨ+zżÇ2gÁbÝdEĚ r7–Ę|ʍ ?{đŔ—řč-«wŁ‰Í‹l>óJbôkÚüý¬OCA› ŘT'T…÷1.§˘ýš'ś%ŹAŔ•‚Ó-"IŤŽ ÍŢ‘Á—…†iŮŚ Ŕ(]Éîi9ŕ9–DĎb¬ó»ŐY>`oĚąú%6< ł6ô;̇7c­»ŕgqŚH7öĄ5Śs!đ§T·&h )6ö°Ţ¨;rBętđŤ4çMĹ©ŘĎé쾢Š+a\F®2mr¡E˘ĆÎÍ^í䆜h»Ć;:¤ägk.nĂ2ŻJW˝nRÇŽ/7˙_Ę‹ôv´×ÚŠî—Px]şéËaĂË ŕ`` ¸ŽŚB'…ÝG•9T-Ż˙>\­›ÓjĎJ±'ٍ䦼4Ó»üp% ůŇ3=śÔ¶C]ľë îőÂŚnŹ €j¦˙ŔŤĚŰ»LFl{o˝Ź±%yÇqݤWHĽáý*_ęş/^ZQäđ)ëËí1 mţK&@ó ¶ĺ›óDçSů UaęÁ}ݞÁÔ.ŇŚŰľˇč€-ťҞ±8‹RÔp¶zăä«FŞ‘rř¸D¬ ăĎ;:¤UzWÓʍZ9ř˙—ť„góÂűĎľh¤•VÍjnżăHU‡#^-6‡D*—7 6µ¤…‰ÍV˝ČŹ„&yŇön3f-‹¸űuIČ$KAF_)ę?ć XÂţĐ ·¸Q/¨0cÔE~Ě?ťdLm1ş|ÂúG'Ť’ŽG^N\I wYĺ€éÄUŚ™[)•Aŕw×sřL &ő¦WĚNĎô f‘Ý w­RŠŇJr]I˝l·€ßŔú"gĆ<ż'Xc tŠXř’ühENI b†‰ÜŢŻ:5ÜŢĆEÔY,ČE(ÄŇ˝”~ąpč[ţDÝÚ|éÖ€űłŁf–?RşŇOi¸Ő™A˛®;ý+b2ľ—?;żz-‰L â¦BčţEÝ“ÝßP@#ü<\BjQ÷ᢲu‰™]ű0šŐ4#˘·IQăWŞ^e»mÉRĹß]NP‘É1’;ť¸»Q®˙ňkGyňűrĘÜ­Ŕ?3ňrý;VˇÜ6WĘ$7_©4‘ · Ĺ®śµW1Gfj¤Ë r,ĹĘťI0đkć ¤qň„¦RĺwćÎŻ§ łÉk™‡Âë:‚˘„L˘ô(Ĺýo›=Ą€J‡ °›ĘgPĄ$}1ťů[ŞuôŤ¬*VÂÚÇ|!Á…śËˇ'ý?Í[2Űk[ÓýČ)BeQ•ýĐ+BĆśŁ|ÓÉüqĉ«›Ď*uŠ»zSJľ†*‡™×U¦ĽÚ¶°şđ(‰ôâíQ]ÍŹĄ.e «Ţŕ7ÂŤűĆ|Ügü{훥ӕQĆůíCA׍ëfíϲžKdÝ0-&=Ý&ttč7ÉŕÓ:TŚ`j{žÇ¶[ŐŔ{+›X?ůwÍ$Q’©Ą(ů†yŇÄ‘f֦Ϫ^T˝bAď?  MůQ-1üžîn«ţç<˝ő ksĽŮ}2źG ËaF˘ŠĄ®D ĄP4\× Ţy$5ř·_aŃq7ŃSĐhj[řS@µű^c“Ôf–˝Yř~:ąĄgÁdQ}A*™ôú!ňiĆĄÓj}ĹP'Q§n-‹)©|ź2Çﳌ–‹¸*HŻČ8/ łż5»é@ ÍXuşńTňÍöhđ·éÄeŻH&1Nmł»ţGí×!ه"/ľ Ćí+‹ąŕÝţq€<ąăˇxÎIYz$xV¬} őÚ$•,±zż»kŘq0~&5śĺřŔXźâwâôó'iŚ»ąŃ˝îŃϨZt:ΡşaĚ8 ßGJeé+ĹŻ›´ËŘű Ö‡›»¦€Y¬ä%2óćřĎBÖD‰v<¤ł"Ł 56÷MŐ3KůL“®Żm‹RÇśF?bnlş‰s·D]đ˙!Ľ•íŰł$J·śr=^i%ĄÚë0•Ä™<ĐçÉ`%·»őńłŮçnÁSńLZźŔo‘¬”ŽyďxŢ>“g°8A$—ŇČ…‹¨Ĺ}ł=ĐyiČ\bŁći]ĹwPjKôüÚ ˙.‘‹zeĂçc^—~‚ŻŻFX ‘;0â+G/7ÝY®ˇ‘äß'/­Ţi@›¦‚:”`žµ±¤Ő€Ç4¸kzÔ «čéĘKŹJz%Ľâ•ßfx…¨:b[xÇ&éw+"ËăgČđú@ţ ĺîÁV6˛"ę,oé¬váÍ/[ůrçoߪ#}0ťŁ&źł-­ ŠŹ öŢćĐ-ɡ–+P„QĆĚĹ&aJcßćí®Śĺ><öóÁ»íNmňÍü*2BRwJŮÉáí$qpG‘RWĺŇQGk9řŸ@i·oöŞaew§*iˇ„ÝTÖßR`@ă› ÚKăÓíkŐ·5„*d>a9ß–í§âˇi]9zď«’–´dKâí[‡LćČÉ!0ag H Qq*°ďł42RZĐńŚá¨Ät†°ř•˛ĽkŘ%ŇĄq5˙=“}ą</- $’%üRzNŹőß“çC}ĽY˙QŹş>5˛`,¶'—â_Rz)\¦G[y¤ĆŚÍ|”Tč§ś ˛ę82´ňŕó3Jé¦Ú]Çô­iăµ%3lKo¬ťÚëIZOĎ5Ż%Ţ/(żŹÉaÚ÷Ń»%÷=-DÓ´TM¦ŔĺE2k${°;LĂr ?‚jA>wy9°s~čufpwU+\i ‘«üMTÜď/&Ů:ŕËZXH›uí ŘSň%MP`í*ŕ˙čA5¶X´Xž(˙ô\ŕ”fě#zAľ’ŞŕNž[őPĐŽcăÇł÷hŽšźÄşH?E»=cŠEAÉg‚‘G-·cj~ťg8ˇ­yŻru90ŽB:S”ŚÁú4î'•\EL$וë/ŮŻK­;jFUcc·Önj#,Ę‹Ĺ5UŠţŽ mÝ@-©#b»|Čî÷KßeČ´J-F®˘Šđđ+zqÍ }iÉq禣đ¦”%–/jš¤ç 0 ŕŰó´ůĚŘ}ŽoI¦Ę ‹hÁK­Ěň<4¬GâÎŇŇa!żŇ} 4 óŇ Ęč”aÔD¬%*ńOż‰ÚÓSÄŔ—Ćđ2RzS,Ý•M ŞG§×lŔZ¨E?Ái– ­2+…ú,*tË»i‡ oíFsđrť«ű“˛ÍéîlŁëoÇ‘F1Lŕ©®?ŞŃťşý-¤ ĺf-Jě ‹7DăܢdםČră·-.$ĺKş–6|>d-ČC–„i;čmSźkăŞčÍ˝śTq§5"ÖB4ÄF;q=„Ó€ËÝA&1’%& ŚNg"ŻÂspvAľR:ĆW[věÚE› HgŠń‹R’ś_)3Ąó*¦rgE#V§Ź1 ŻqÎ!(° €€k“Ä?•Y¶Ĺ“)vč<9čüý×đ@¤<`ŐľmĺÎČö1ĆÎAü†G>xjY ´* Üúçę?-ÂĹƶĺă®s+hNýâ2Ő ©A´–„«–“‰ĺűi ˝/>P‚„Go*Lę‘ßĐ3ˇŠ9â÷űě3倇¶5QŁŽÁA!wóL>ĂĎ€< ô»™đS!ś5čÎ5‹ßú> ÎYĂZÝ4b†kOŠ”7ý4ö†Ç“ITŮOUč ˛m™îj·?d]wvé ;S­„őÝ›ÄĆzöĽ ę!ß~á´˘^ăYĆe€˝ŻÔľÓĆ&µź~µeŇ4†^Ë űĺlĺ$ËHC6ü+sxä.űő}ś?ÎK HŰřˇ3ăÝŘ:é?.ąa€4b*8ÝWÖ<‚#0Ǭ0vŃËň„Řýę„×nŠç ‘¬ëśŹ. qšAôŁ8¸řÉ"·ż‘3ÄŠ*ĐÜŮn÷yDNw¤ÝâEňjĄD(qö]č»V LÎTOV*ŕ¨Âf±Á8•(ťš1 ě:Ř­“9¬™­bĹéö>óúá/]%źR°#G<ĐkłwRđţ)´Ó­`€L~šÔĘX3ó­ËÎĚ=ŻÜνĐâĘŁ]ü˙% r}Ěχ=ŐŻ˘—o¬őwŐrćţ`ĂycČ–>o+3–ť:ßL¦@ r/ ˘JHc±4±ľ4ů” ďK7wŽí'›Ú© j HôĄ‚‡P⏣Íl2 <ćß<Ć—Jß;OY*sdŕ÷Ţ–8ńr:l˝Ęę˝ZČg·‰bˇ(駢W=Ň 1„Ţ‹řĺío[V"ér3 Č?ˇ4iśHľP­±jŤ-?FŔá9řĂSßĺ!şHćţđM˝ÎQGŞť BŘ87ł ĽŐ‰Ó<@9JÂĆÓÔ5î#ăD*ĎÜâ[¨.]‹4yűŃČ[ß%·=LڵRÂżqŇ+Đ•‡úv]“–ŞĺÝ.źŔq×cÎеó sGD;€®˝řçž_E$&Őü˘ŽÖ’އ ´RłŠpTPktî¨2‘Ţ"2>ÖňÇ–j¤RĚĄę ń CM75ęİĂóRĺFń·CM|·+B[ݵŽ×r(W ;9ŻVGPč«&Éř·†TfgŤ5ţŰž™Ć}¨8†~ĽŁaęTř‰˝’Hkđń˛ţý"•Č1ĘTŤŃßÖŢpËďÓ HŤ›… ďł“AĆ ĽžZňańݬÍŸśřz€@”nş:•úËS?·×c9ú Q(kWn˝*ÜyŁDG_kšHÇi¤©ŃĆ^]"ŻýÉŐjŻRŕľ×4Ű—ďĚ3~Ď›>—yŹG"ÂM°ŻúčÜ.މőë)Ę1e ]@ĽüŘíO‘Ľ9yenńܧýHęöšüŻBÄ!Yž€›‡®bFJÄ46Ý…Ş22J\°\oúßáČăk‘´ ۵?ě§*WSrxKŽÄ»%č…Ńx˝¬0¤A˝„\•J–&ÇpR‹ĄŰăď#[‚˛„!őĺ_`»&zŽÔĐdEŮ3ôݰ"6j‡Uą‡—G ěžÂ)7sÄâě(HŰĺ÷ąN‘§IP§|k Ąa ~oşbt·v·ëÍ7ńżŢŻćYZÚ`ż‘ŹXÝî‡üŃuÚť€S×ôŃáéŁ÷&źň«ŰLúűN‘2ĺ MEW‡©Ť U¸ĐŞ©4۬! ÄBŠ…żR;ťµĂĽ§4ĹŠ4â(ČÎ-ťÜŠ `ăkÇŐ‰QŕVĘľKµ`0ĚP&”kC­°°®śÚ÷©©2˛qŢ]% g[ÝQąčşÇěź}z|$8én÷›âĚnpq°¨ëęǡLEkťác›eź$;>Đ$1ř¨w‡úOU˛Ś VÜyŘPţá÷ ĹßŮ]‡Ľ,ÍćÉ®lm× Úł€(1U‡±v„8Tşí&Iç­ S¤ÄďŇŠ-â_Zk‡+@’lBu(B;/Áa¤Đ’©ńĎ â§W'F˛7nn‘©ô¸$NE Dş]Č;ż¦EŁž*Č%TpÄQ›uŁhÂĐ—ëűC JËó¶;´Nv(&ŢÇă=˛ŕ…Ń7¸hřWHc‰-¬çk† ťhˇ«şfVdnł`2zŃžáäÍŹ|ű”a‡=$Sç¤ăv<ăîÓäOít$ű½ę"´*¨2Äuś)Ĺzěň±4™ˇđąş«’˘ą=‘ö 0ΰńł9>Ż[<ŕ­G¨TN¬\6BG©E[o`SÚ®ô_ć˛ănő$AÎĆgBŤfÝ'R…k±Đť.e" IŁxâ¶BPŹKk*\÷ő‹D€‡ Ý)Öx¸Ů$Ť‘Q»şK9%6Á݆'Ş ť‹+ezö]řď÷0Ě[şĄľl‘_„ 7ć©ZĚ#aý›‘šsŻ˝jöh9®űŹă”Ná 6ăëny۳䞲“Ösň)¨‡ČýŹ>]†4‹Ă^\îkî9bçôą·ęšq-Âkő¶5ÄłÖ üîŢJíúFa´„ë!Č`MÔ×,ĺ})uŇ#=ĹÁęĚWÍx~·6· č·ę.'Áo×yş©«Aě€Z¤Ş­JÔuUAńAĄĎ÷§ë Ęůź¸pW'›—Ö:č< }0ßj\ëyŔ»[NŹZĘŢ‘~J€j–ŤŢĆřŁć„âZđWOHxzťâEíE,™pâzîd›w±—·Y‡cm´î¤Ěĺ:őkŚł;p‘{ë–ŽpâAŢâ9„+ö‡ <€ůşóÓ1 Ó%A=źďct‡„QvŕńlsÁrtXxÇ'!—ł]öŠČű56X:I^Š4xĘnőßË!Â6ßÇJ6k<ą‰Şv„.&­+Ó>Î 7N=Ĺ.|gYŔ@©›üRťřr '6éżÔľq9q…ţŘ9Éý±z—«©#@Ęd@(ÚQ‚gŁÝěŽÁőÉIF»8ČăMÔŁČ ü4·ŤZˇ©µ„iBYüL~) ¨Ë}GPÝ~°Km¨8FA{±F9 ůđ6 ·őÔ đFş®¬ä31,.EcĆuÝÇrĹ=Řa,¨JćKĂČ©OŘ‘â2çXú«‚>űŞ‚l3˙ęužŇ:1źýŞB8±™¦)HşjOxňΨĽÖpm¬*Qüiýý=f˛"±xW×»C( ŤŢ i.lŘ—/˘ ľu@Čm`î sůz©gc#(›RĐ\u<ĚdżQ'9Çľ“†RFŞ”W­‹8(ö{óÓ#˙(\g‘ĚŻö"ř«‡űŘc]!ň’[ŰwşÉ0eęjF/¶Ť1iżßšEJł(l2Kň5aa•OËŢi­'č|cXÂŻ #$Y=[Â* 8ľĄ€;ĐoĂV*ďľIŘ78óYi`i ˛UtĄ˛ÍJ?Źë×B=Nɉe;ń@.A˙a" rÝ´ — ąďĺ6‰Ż«ĚFnŠ%YćżßđTĄůY)üëĚ÷lyŚF¬­ť’âŹ>'(룙jâ áÚ…hĎák €<,„žM±B C±®ßµKk)Ąlř§ČĄŚÔ6EŻ zţŞŞĎ¶9`•¨ú=sµţ±D ďŽAg‡Đ>N ÖwÚµO9Zůîč[˝Ťi«]Ťţ7´'Ä-Ă$đúë©9Th5IR~!ZđŁŽÇáĹĺc#Chť «2šŻüÍN79çřM„YÍ_N—ÇÎRÓá~¨$.k…Ě|ęÔ˹Ѩ|žéŤ!®B)Ś##»‘+UęŮ5ÉÉ]·ÎŢLş]foÔ—®÷"!ß'5l(Č8çW=V éí1—µĂWa}ŰOש= šD(8r¶ź%}H—©†ź"ănŞďŹrÓ=sRxöś<÷µ—đŔ‘¨Ź´řⲴ,S“ÓÁlЉ]xđŘ~Ae”ÇMqnI(&wý%t€ą¸“Ő^>ÎŚÔŠąí:đÂá] vü›¤şEÓ…2Ůú†L¤yhq•T{WµQ1ŇrS;±Q¨ń%µâ+ömŮĄ¨ĺä´YBs7 --őŻĆŐ}‹u…˘¶§ĎË w¨÷Ą:˝ŃéřIC»}Ôe÷•‰‚nwľŠv@ ‘ébży—đX Ź7ŕ˙ą>Óő«|rw=0ł|‚ŇÚ‡4Č?3^VE­÷,ćę‡])ĹÔu—N2î´ýĐ‹ĄęřŁľÂc·eúňńE tŁ2ü´ŕ K ŤĚĺY&dş)ĎI@ľ@«áO/e;Âú´ (Í)‚_}öł–Üű ţěĹń+fĆ[l *Č8‡‹M“´»¶‚FŹĚČ*c3J~lŢŠ“ÎŻŞÜ˘{J(X˝a;âÄţt)eĐZ,hiM7…đ‘kd\ŹČâŕtŮu¸$aM‹O> v‰lĂđ€8ó`çŚoÁd'$'á9ݰţŽťŔ^r„ ź  ĄŠPy] CH;1Цî÷ú‘Z’Ç3Áλ…_ů¬Ů˝«µŮŃűqřěU!g±…„€*ŰDmM^`YĆrZ`LËüFs’¸Ł3QŽy:+·b¤˝űzâ ü#ĐŇyőŚxŹQ“żŤU'ʤömÎOPúZa"đş©đ۬Ah?EµŤř×Ńé*×8L´rÔňYĆƤËO¤HśS•Ťĺ7Ř‹Ť Ç’µúutSÇ€Ć÷c7†u¤c ŢŻ!•1âćË|ĐŹŽ´@­9Ox …J Č÷u Óϡ4ůwÍU}˙I (ŃýÉ_ĺVÇj n-†Úd¤˘ń‘nŢ^Ic|§¬TiŞDPâě!M$đ[źvvŽ Ú/CKµçßµr\#iĘÝp¸îF Ľvćçî[H•ŕáş›ľÝÍtbţŤ˙_#j‡Ő[uH9#´ˇlśÉB”–čš,ąt©LŰVÁ”˛“üď?Š»`Ů`˘¶łGpD ¤…˙ü1Ů‹†qßźp@ĽyČ|ăÇ&WZ‘4’wCIŇ8«ĘóěčeUŤ§ú”,^}h‡2ë#ŁE'¬Ţ¬NÎ3×sĎeřj[áďZ7íô ¬RD~ś¤1ýX‡¸=ĹľĆé„×dźŮě‡Í©žŁzT&/ţ‚ŕ˙‰ćă­ňv%Ńľ|:pY´mëß„y† ľŹśgtŁĹ&·^ł wĺÔ¬ŤC 5Ŕµnň,­=ĂcĘţÍçÁřz¤„=XEŘm+ľ«9’; qt¨ëäřUĂXü­!8†<Č|ŃŞŠşwËCvăęŔ¬ŞĺF·Ľ FíęÇčďΚ2QŞúž°ÖRUbrŇ˝…şjŚç®v‚íăŤwRXűő4şhÔ팂‡â ŐŐź‡~WŐG”“Ľd}T}čjłDžHPYéĎQ[g4¤ů¸Ŕ8]Ó§PÂVĺv&Ž7eO§Q%0PGÇ%łܧ–î…ĄNjky‡sě ű‚&ýîy~S@ă´‡»ĄżşňçŠüŽrXÎß/>ŠŠTcŽ&„ `ýńĐËĽ™V“ŇG±óR3d°FFŁ ¨RßĹöł?˘ĘäU§{Š”ç{ bâXŇC*<‘š^ó†ř=iľ,W¬ĺHĺ“ućÇ‹>0÷iB\.áIšČ„èţ˛ťdýá{¸ícn“î p ¦·ŘÁŹV4t~´±–jĎöŠ.{3°80ťţľĘlYîŹűÇ"w˝3ńčŃdíđ ˙ülý‘ľ‹Ĺy±· ä ~ 玦酹éÁ÷qĺu ˝”tgš¶Ük¬_˘QÜĚŰË÷H¨Ą­°‘x˙‚Y|µ›_YDÂń¶°g-ëËRż‚j„ćĚ„¸QÎ~źĆl™`áîĺ“Ő΄űÄýěąÁV—t9ŕşĹ‚®öÂä;@eŽ'uˇDEN,VhąĽc ą‚Äü×˝‚˛uIÔj ˙«ötçŃĂoÉŚ‹ô}ĘŇgůgJŃҡu˙,Ú>ó.g`ť¤bn5IúkĂ?Ô@[Ô{Ńk= égËíxŰĐăn˛#FĆé#z˝Ä%ËÉżÄ8ÓůҨJOkbŕc•~Éź˛ÚAţč^ň7"M·ź¨U†VúX>(YhŘčí™ßű­3zďm-ą¦ę‚~Řćą­Nzŕ6$A j^l Éą d˙9~ÂŢY¨[ˇÖ•ŕ>șڨ«Ń¨&#˘¶Ťµ ś†™Ş;Uî —Ă>ü=ĎĐü{_O&:ŠxłôjS071ĂĹ×s(áÜłŔ„ń2Ü<…Šź©V\o—VžÇď*ŚłÚÎŢęvcř‹cÍ=dF…$ęµU÷ł8kü…†Ü‡µńĄa|ĄK7äßÖÉSĐzŕĺi}«ĚŰi-„qęĄo¬ř!ŤĂŃ?té Šv˙Ź„gbôŽHÖĘcĂE5%[!Yüa&ş€ËjĆbXíIŮeF=ďkőS Jo›Ě9®¶§s˙T@ŠÉ7ĽĐ(„|€ęý&@âÚ¬'Ă«„TË^Ţ6o`đG&ţʉڇ„„ńč@'J/Ë™±iÔ®%E0»sWśyÇ /]ŢäŇwFęi§nâÍDî˝÷Ű‘ą…q8qŔ\®ú‘cE”Vp#k58Ę×!Ε\."˘HS-Îó™+Â<ýAźŁÔHí öÔżvΕÂě3dŇúëň™˙<~Í)Đ9ި…ë€pvY+ëMKąÍ\rL̤¶©ąpŽ˝;c—<Đ™5·Jé§DÁ5U{Á‘tb6Ţd0݆îJµU(>Ďśúnj?î`EřcfôeűÝÓ[ő†IÔ3)„P/ÔÁu¨ĺmj–™ąť1?$ĎŞĺíŘ x6ů<µĎ¬k Z-ô+îp V‚=Ҩú ˛¤KŇŞ3dđýI9Ţ•˛ÂBŘĐnqŢp«˘hĐĚJĐL–Ŕ~}—El¬«‹đ8 :Ő‚·ŞďČř7ő?ßé”˝H¤ÍÚşBĄÍĎěá¤6¸ –O<<ŞPŹ^”ď”Í?Ô14är­Żś–îŻxp-"çŃB8úf PĐ >éÍ1-*´ă{Ôôpc@Ú¨č®@,Źš7Żi¶‘—=Uß˙ć2BˇÝďĆ5¨˛_žLT‰,kÁ™ĚúşőW™m}żŁJÖBť}/ZßűĐűÇç ăŇŚqÓć–Ł´PÍçµಛÇVaP3X•çŔm­÷'ĄBHI”ËOH`4Mč#âĚUšńnĘc3źs±ÔťµůvÔśĽy)¬:z’Mˇű0™öJm%n7q~zŤvęýăj?ýMŹHKę§čxÇN¬ ÝyęuÄAş ‰%_ľîv¦˘ŠňşÉŇÝ·Rp„űËܤ}űí¦ł–ł–Pů§Ń@B#“ëřÚŚűîëî* `*Ŕ™ĹŔĚEZݧ‘ÇŠP^~Ěä‡fËC,©âüŽ/´Á-ž·|SÓŹ8ö}2©ŞuŽqÝJv“óú^ îüŔ¶qXQ„Lš‡4"łoµŻD)­ďńiČűĽf¶űTÔ˝%°ÉÄ•±šÇŃ,ˇřg#e…ć.-ˇ·Í}6'ő=ľn$ܧ€V©kŔ±c?× ,ě^Łň§ WĎć˛IŢ {)M7‚ßѨ Ń/ÚęźřĄ¬Ňs|´`8ÝgęE¸ϲëŢ2’ŤĐůŔĚ ´@wăPőÁŃmS] Ć Čr ‚Ćő2„'~^ôýčłľ«Ôńâ¶ş˙hŇ_Îś*eŚ/Á†ĂS»tx0´ůńč)÷!O[nb<ÂiĐ0<Ă^t 5·‹“FŰ|’:eUµ0 MśOŃn€UAnUľ3#ω«a}‚´Ĺ™ ž¤‰^UŐżfÂËČ Jó1Ů4č(eąŞ0í±ü?r™ý’u*¸ř<‰ô@Á‰§ꢠť!8v®Ęm#ŢTżcySńÄ[K8ÉP«HÚ44ŻŚ3°Í·%ó@<ÍějccZ],Áę+Â_LEŞd”lb«Ůř+ÓĘáłř[öĆ@¶îś^0a_©řö¦ńk3)Šç§(NŚ%ŻjĂł·÷°B"Şžvą‚KuNŮRµöGť4ŻÓ#‹Z2ŁÁŚ~|ŕz¤B#i*Ĺ?R0gŚ'Aľˇ{™ÔýčőöČfłŁőíð'îč¸Ň!—ŹjIbŮäCé[?°ę©öÓ„ÔD—vjPXC¤Đô ”w«•µq]|Ńť^×&MĄ\ď3eXť śmČKęȰwŰÍď´zKM›óRš§*;^-‡Z 9ĂţŁô=—X§Á$DzΩßĹ*Öň%ąŮ*ßix*ÝÇä¤ýᆎů«"ĺ™Lń—ą{K‘)Jm"ŕ=) ĂKţ©ďŽśŤÔwáÔ‰sjÇńM.ÄáÚ˛wńý`ó8™u+kŁd˛˝ĎYN~hĆ5.hÔâ€ÚjŠ®“;Vɶŕ˛Ě´X—t€¨¨±#ś±W‰ŚŤ ůńĄq+JÖ\C:är°íh>—äqŃ idiéźGš“D¦Č9+iđćL]@lČ÷rĘ›°<ďa(ŮAđ#nŮ9¸ýľĄ_/oŮĹşµĹŽJśS_,ÁUĆ$ËŃíŁY®š× mD,:Ú*Ţ#ÍoiMľ.KřUĎ™O”0Ę`Fť« í YÄ á±ŞsŇ9]ń‚E"¶ĘĎrĘąô5ďY¶ęS¸ ÄŃGľ’É`A±‡¨Ě’ĺ#ŐÂçĚ?P`‘©˛o1nŮ€ŢßÍŁ}!ľ(ď¸r·Š QmqvŚv)~uMÔ›íKěNťćH8¤ 42o9| ×řu‘RMÉ•ĄťYÔČ/f‡`Vˇ‰ iőŃfWĂFJŻăŘ-VlçôűÖ¶«* M˝suß #Ň·Ěż™?Eľş!Ý«Ĺßp/Gc%;ć:ŹĹˇÓńO1¦.ŇO…gŽő żU*ĚńęşÖĘY»\vj‘<‚pŞü Á]]óˇ{=nŇ…Ř~?űq|ę˛@Zˇwş’čěäulű}–ýďü™]¨ßŞŤ]|<H_7…/5©ĹpôD"{.¦Üč*ŕëśę ‰/*ső˝.€cN¤˙ĹAčĂâĚ… • D_˛¤Ę@Fń͵Uô¶ŹŚ/ĺö0ě^¤‚ŕ]j ٱ”ßΧéÍűŐo1Š<Źý™P»n¬ â«EHtâ0ß9ěŰ}­5_IË Š^G‚!wŻžauĄż;ďź·ĎN‰’v'* ă(ćÚp÷g°™ť' %¦&ľ4ó8ńgkE˝Ô_(žFÜĐLN2…ßĐ­J*Bgp´bßQ%Ă©´ŠjÚW;á×3ýČŘđP7ÚţĂžŠ}•7Ꜳ˝•ź qń¶ W}_› 'n‚wŽ[Jf˙¦%ĐŁ“(®o59™=ńY đq„as;cBÚű˙{Rß…°ŽîxíÄ1‹’‰®(1ŞíDUĚו ö…ťd?ŇzĎá=äŐ:ŘŤ1†OĄýÄ),‚Ň·Ęŵ˛JŢę’m7CR9<ˇDÚ ÚTśNĚŔËŻ.C׬´?®ż„o řű9ł5fúŢ÷ˇ-Úím¤f úËĘBľÜąćÖ¸ţ QÁ¦žšÖŕą™ąÁpř?ŇšîđőĎź˝^>íćn˘ç<\ ÖÄoôc:eG@ť;wŞf}§IôOVZęY'ň$}ş`@ťŹjłG3=‹‹n¦•đ­ö÷ÓÄÎţEެě#îŠÇŹ4–šT°P·ÉQÔˇµ»dVąż˝Og-nVßśú…óµ¤X¸śĆwŻ0â ¨?Óí©…Łł«ÍŐ<˙8HÓÁ’)/­‡h«ďČ™ĎV~>»#°#:pK摉eó“ŻôŐ­{Z«z)"ÜU“…ç ËŠÎXU®}fŇ©ß3Ѝš˛,{űdZ‘~}#§6/żKtĽ°Ű¸jEf7/NrÂfţܬtX„“ţ^(N» KdÓˆgąŁÍcĽjD—…¸%[ŕî0ľ˝ď?{)„µíag©cR¦ßh}áw8®wŁš‘/JŔ]1u  6 ˝†lĐk4¦ Đ^ąc»DaşNÖIÎśg“k¦\`Ăśš@ĆŻpqN ć߼ęTŐg˝ÍmŘ…ćËŐli,LTçőꤿ‚Ň[2ĂŠGŚ‹čw˛ßk5íź’y%™Ę廢 wÔŃ®»¦µĚ‡.—_žŕ,ä)°Y=Ő×Ü8‘ĽşÇ€f˝CCľ6ď ¦łďĆľĹů×bÍ4lýŻnMę˙"k´«±‡ëüUuI‘ťjmľ.±+łű‘Ň0ä](ŔMĐEnş×Ťµ%2j÷ć‹|{HýhK=ĂÍc‰ÉŁpÁEJl´ĺö¦‚ńŘuŚĎeÚš5±Č­{ÍظrŇ ç¦ň%C}Ú=5µ›˘Ż˘…«ętZZ2Ě&n+·Â˝Â·±oËP=ĆRŞV^ÜŚ]<¶v°đOőKAŻó"Ű@1c0pÇ ’ F.MS„ŚÍ'µÇě˰iĘ.–žh3/›ˇĘ ą+á€yUÂô'ě1d˛ś7A¨ňVŐžáżKÂőĐX^Qł5F ,Ń*jV€uíR«ű›i uĺóJ46¸ Ý3—˛Oă(DT¶bÉľőů»´Ć)}§µÝ2Ř0’žL…u<ô‡Y”ôlpOe X“{ňBře…¤{=F5›Őí˝ć„]Inź1ĐV‡#…ësF3‰č†8€]é:ůońf…ö`Ć“C]PՎنÜ©T˙ř~­‚ m’ŤŚü("6›*e2Ţ>ţä‡ßĘŢ׸$•¦ą„éBśäż Kč!Ś ¤^Ą„zđ đÝqtď‘ćˇd´Ąá§Č!<Ŕ†^Ǭ·×HyLŰ˙ŁyZĺŢG„wrů_¦ŠyŽ­#{ŢL˙‡—¨‘˘űÁöI¬ň}(÷\ř0ě‡5% ŢP4 XăŐŮ nŇ‹z?ĚďÓxbZm÷[¬‘ÔřĐ€pnâ”ŰŹŞž^ŤH&”ÁÚn…şłďŁVqŽ§ŕ¸•ŇÂě]÷;ľ—ZAúÎ׌ę&€ťv»í‡`Ú-1XOkŮjěżň䣦čGU4żâ†0öÄ&ň€ âl<–Çë¤?ăĂ8§LĽ8Ę3-sř‚¬^8Ţhz±•_zOĚĺő ´Za?ŰÔÚ áBq”­ťhőb@ăŐadﵨđhé¨Kćvج™†Ĺ.2ťQ,•ÍÇňJĎŚ4[×ó¸čü Ü2x~9Ą˙»Ń $mţHZfÝ…níł–ú^y1 \Ń&?*MklJ•+­ š Đđi‰®2 r"®ĺSô]ĆÂÎ3hRrV9ĐĘ”דîb€ľgRÝU‰Łň€î¬QĄ |Úví(«°,ÄVHíĺ!Ý÷7äOöçŮîŇ…ń÷ś¸G3ăfęE"VN đâĆ8 X˛ŔC˘ö\k…ÎyŔAHŇÁs!Ŕ z´Ę§đw}AWŇîLĄ4‘›ŇBRP°AĚDxçqH¤‰rˉvĺµ+ŇŁŰźÂMŃűfćŐę“\Ѹçî•ŃŔčdb'W˝5Ŕćyâ|= •Y„ 5«•@_˘Ťă¬ÎruB  ű—Š ¨kľŽŁFí-waXwą4v] Iˇ<<ę'0fFŁSµŕ0d ĐÚÇ{§"áţ‚÷µîf€ü¸… C_Ó±‰KŽ ›3Îoî™"‰ňC¤=9©)P<—„N{pU@–ŘžŁŁ ŘEpě%ŚŘ íjş7FęÝ|vgm…OnYZŻ™í"Ş ˇĄôűwßÖÁ-©ˇę…ąUĐ‚Č]’˘č#Gë‹Wl×5ëqÂľÉ-t™Ln6 Ź;¶ćťť^ˇë_Ľ˘»Eř(ůvhÖëĐ‚—¤s• EŃ˝{ţk/Ęr»Ë#˘ßW?ÍfĆ9TóĽ®}?:G/ś±?$.Š”ŕHuŚ{řÉ3yę?K°[)śőÝŠŚąŰČjAOa(šQ˙RšśŰ×T$<ŔđCď6k˛&Çś˙ĎÍ·Ôëó©q1ß’:GÓ'Ôě’XŻu¸2‡ÉÄ?Â%­`Ýůá¬/Ň[‚ç˛ĎŘ™ÖÍNăŕk WľŤ®şŁşĚđŻĽVő–=ô¤-ÇŁqĚ‚;SÚ”J„SŁČď·]_*Ö8!‡[Xséśő:]ü[ČeUL¤Rc#ŇĄĄÂačö,Śýö6'úĆď¦ůwëpČ=hđr˘űł®içă’ű!#—ÖĎĚA[#ě*AT;ö-„˛r•ŢR•mś ­şă )3€3ŚH»üÄTi¶(ţ5ÖV×X÷Gë![‘™˝ěÁć,{ł‰“ňfΞ¸KlŚo»Í8ö„KÍĘǤWBş—€ôXďņźtňÜLŁŻIŽW Ž^“ůŰeĘc ĽDě¬U«¸Orúěé%X"ȬçŻç-?Őy]8şŕ—, NB ą(!±â§Ä¤žr.o%¤yr‰ľ®Ĺ…<ß4űHÇ'ŠU"|ß”",+UŮ®Íܨ—ÓC)›µ^‘ź9ö›¬kkŔÄŕМą[jdâ`=řFă˙ÄÍĐĘŹv= ¸Q‰ä…7żxS…§“gW sď󨚲ÎĂŃŢvëIhtÎ5Ń—­VI«Ďě+žůM.&kô"ë×#YgČu«sHĄ–Ť[j†ô/Â’±ßwËmş:ďÖĺ¨ë«ßŹŕ7šó^˝÷ýO‘!­,iÔ…ö>™4Ž('ĆŘ½>źÔ¦ęA]űµ¶mšr'Çl=ýN÷S’”ä<»T~łžÍ"ěŮ8ĺśnm2ţĐ#ŕšFý†ŕ‡4¤ĂPú¨.ĎŤ#¨śšňd OŽÖ—×ÜV%[möŰž—±L»đVş}`šŔÇVĂóűFimE˝sĄ;˝s…Bź ן…‡_-ş$5TÔ6E¶űµ4®D$Ô/4EÖ=ţ’­‡ cÖ łŐCH•·\:#Č|PgĹ…OâĂ:5îr]^ÎOÁeşnGOÄ»o®J—Á0qůjzVüTç >é'iĎp qţ#@ˇ-!Ę8ăOź˛ŠĺŹµEË(ß=íĄîÍCfIŚk^ĽÉľ”r7˛˝É,ĐăU¤L¶"XďĽđkt*ś‘Aqőqćç˝UŻ_y|đA ĂĚ‘ľÍ«foFI|‡xł”_ľ fIűöÍý4óůÉYŤĘżoÜ˙罩˙.ěIß ť§™h*ło´Ó¦ćAÇČĎďŚWĘŁ‰¤#&źômsVQ–ąÁN?ËK±ç\ßvf!Q‰'î|Kdă“dZeŚkßgP˙Űâţ°©¸ţEÇ.{äzâňcďüGNOQ9o}­zc; 6«•®+7đŁ©đpqV1˘„Ű ĐóĂńjîąZÇuć”0Ež|S[‰~⏂~ö+›ażnťBßRťsŘŹO0qU›0K×Ag\âËD9Ŕ•˝ĚbĚ@ďĹSŘ<[ †mÓ&¤äjN“ń.IörDŹq¤!’Ćťtî¶;¬Ţ„ţ“ű9ŤXťĆ!ô ·]ßJµ…/÷ dä§0ń0iŃbPÇY˝­ĺcY®Ú‘wa&9ŹRm‡ľíwjĽ×‡c[ÉĚIĺŹF#?íŇCP] âŠů¬+î ěyéÖU¬đâžrĐěSTµ™Î8Ľ`)Š]‚ ď .3Uó»ęŢď:ăü?śÚŰŚłĐ&4źĄF†_Ej8 ”Ń´B9®„j5ěű|«űŐ]/gMŽ ‰…­·fřDVÇßŃ0@˝ăquąbđ }UgS°-Ř@eG…ղǺd r7–P._^~"fëWŮű—«,Ě80׎6d˝Y¤¶TŃ/Ór_"Yö_˘ľ}B„/a~جѤVąÚ´ßIˇ±î †ĆçŻ;oĎs ídsÚ[iĚßbŇĹűź˘?Ć€vBo_¸ľl‹ň§ęm|D_$ţ9<Ő‚hęۆî3O$ăpLé5śÖ­)űµd ŃŮAŽńŞây‹PĎyä^±ĘĐRYčelE•;‹‰‘Ńjšä¶f)+Pđ!puşŽÝę{&§}fÄš|Ś•ťÝÁaŇ„I‡ÎĺŘçX˛”Q>ŁÇňřj”‰1ü]ţ»Ś¬Ęąd42ŤVYzď•”âÜ}—ĎšŚsdď’ý+ ý·@ĽJréőEŘ}YĺzďߢPč–‚»“b`ą !z ĂžľH1[ëÍĘ ĺĘDA÷ňţÚĎěVF”öŇő#FÓśŠÖkŘÉ讇–ŕ̰' _wY#ČŰ,]ž×UÚŰxQŁšă3­ţ!hęŔUÓM7ö”n–¬äH̱O|‰'’7w@[b¨łummž]Ňvű8…=•v‘a+ĐĆÎ 5€ŻëďsÇŤ÷äôŞâݬ¤X…¸ľÖ©«;xPIš*˝âŇ_%Pń)š°‰Ű%Äü>”kYţźŃtj!D” ä łÝî Ü`WÔ\e†ľ%)¨Ć…¸Ľuŕٲß(•»ŠűÍ€ńËO…Ć ë{}[[źô«“c˝ľ+*“b75 čuxąZP™îÝÍžĚűgýüÇÚXĂ‹×|¶péžâÝRj‹B+Ł)¶~ Đ­rPíVeĂbŞ–¦DŢh¦/Mrǫ歧^Ü»/Zł ź§ňX/#M°—ëĘLJ‡ě«UDžޤ`î^ŃĽä¬0 t}q‹UM{¤H“É<'găţ×Ó¤î੼¦bs.ÇĹŃgxvzËÚA„Ż]!IéŰ+‹q55’ +‡ˇ|ç˛Ď*Ż@ŔeH|/ăéB&fă›P$Đßú‚ĄŻBĂ·(1•§ý?î©c…{Íކ Â<ť2l/Ľ}š[Xš"رv0Ó+—㍠™ ˘9ÖrEůŻý‹ )Ź{ß ńeDKDí=7Ž đä_~ÔŁňn菝¤ƨRÎ9ńYÎőG~ôš“®[Ä/‚4·»Bń@k3UóąĐôáz =bBŃФľ…̲žˇmáJXŮÇ |ç…™±«.Ę.úÔÉîɤn¸|Î*žioN¨˝ë\8Q®+ĽÔäCý†’ÝčŔÖoŽ$šßkbr\NNű"-ŚŹ˘JĹú>âGZ%h+Ć0™–Ř폞Ďm·>˙@¸=@1âµ Ż‘»ß:ÄÓ|lH­ľuY ˘é`Łý„Ĺż¨Á|.§K:/Ś.T“˘M˙ô®ń7…ŢjH2Š· Ł,düSež2†ěXŁ7-~JqF5Ć—VżôÜPÂDb`ŞXĂ}w8äš0oǤVC˝<ů+RŐ˲ťRÚóÁ;t«µ~®‘Ŕ}ł˘§Ę;óqyÉâé{bšŕß2ĺÔPJK„Ś‘âJ\EŞĆâ/R(¦˛1™ň7ŠŤ»áÍqżsĐëćĎź{ź\ú%ËyŰk4/ířFDíăě™Ć™Y9PŹN ş"łáż ŇZ'ňýđOCćűąJVÄ˝1Wć•Ë}Đă"6µŇ(6뵜—Loo ›MLf˘ĂYn•„`ökő 0ômmr„8ćő‹:®JŐqĂ+XI:®ŤnŹ›ŃyăE(—ÇLŁÚÓńô…!büŃüîűĎA Z‡Ë–S¶7Í‘ťłŢa+·¬íV€K¨5}ká[۶ú° śů) Š6D üÔR§>n, x bŚF‡Í-t7ÎI}ÔĂĹ÷Ť¤ÍőCŚôĂ®ŘÚY„и!·wô“!Č˝§uŃ{łąRv<Ł ĂUe:®úF;ç¤ýÎ\ö ůëń}­kVj¨wüú@ ;Ŕ/Ó„űŽŇÁúŃR­Ŕ"dSM˘¸„í rBYľÁ05#3‘. X˘„SaRüeúgQfËÂ%dÎÇ|*óIhóg˘9Uf2^ľrŰ—7 ćZ“~ǡÉü#nĽ<©s¤–9uÇöÝDĂ$Ĺ<¦F1u´ęç´DG2nďűý™śč÷Oňâ4Ç?cŽ2:]ÔĄ[čý9ĐËFKćËnĆ¨Ă­Š„4 6‡/ŇĚş29Y‹µ$Uł„W=DL×Ĺ *«Ż ő!ľiËm;ÚŹéUŁřÜ?FÂ?>T{±—ó‚˝.uËŇ@ę€âB3=6é†i)şS–$µŤ «bjđÎĺžHôÖ…b"TećíťIM XLc^x°©|„™:Ţ.@ćT2ö$Ż–*q\„Î |ćî{…ŹÝM~ČهFľMDOhbpu›@Ű8ą@6‘HŽEŁ ¤Ą~Î-­NU?‡tµ#Čs¬±%„KS0. ü#©` ,Gű¦{Ě4ĺd†sd[¶1)›ŞSŤV(5bÓh0‡ť®I9­4ŔŚ:Oc!Řňß2_ ®ópž b¶‹ÍCwŢ夵 &ˇ™–ÖŇW@­@”.86%­xC¶f˙>wéÍŇłÎ×ÎîěŃřŽ0Š_Ńĺ}m_§¤)ĘOÔ±{$x4íű\篬uPţ|GŽÁĚPô?f÷–eđ-ń˛; ‚~¤…jmťÖ? 142Ęť«Ä®»¬9¨@ëmËĘ(Dý{8h„!ěýQÔ©Đ ŕD­†PbßośĽŠ~íľ/˘±b ™@Ǧ‰U {őű…)Pw]µi`Ť°\e˝äw[+ĽN»9ĐďZ¨řµ‡đÓ“{ŇĄkţÔ3ŽP2ÉtíxâoEh, Łw ÄE‹@va"ZĹXËž­BłIçá´Đ!ŻńN·2ŰŮ&´;ĘÉ٨ =ÔĹ5µ÷Ă)ÝŚ,ŮÚýâ—ŞňłťČ{m2pa\tśjćB(\\žFÝĄçî˛)@eŘZÉĘe㸫96ľĂR¸źý^'Ľ]±Z˛…”}Ť«¨ô˸H‡XË"CkYü›čĂ­¸bnú Ĺ$ÜO¦úvčěš «f‡Đě,5€ú‘Âźp´‘™ÓĂşń8›×gMŁíÝň$źźÄUI~%ĐDđ»Ŕ÷Ą˛%ž€*Z~x3'źľýČĹ— Y®=Áă˘(î@M„•˙Ş]úłô-cđvż¦Ń†B‘ţ2”ŇĎ].`:7QÇŞ"s~äINěţ÷‹f¬…wqČçHšo¦‘ť?/hG’Ë<±ĽGRî¬ŇD\ăﲼBEKÇrX­ r^G†Ś]۸aĆ’{ńˇÖúĚ7ßř9˛ô⦵˙DŁ#OěĽŰ˝YĽWjDx&UuťŘß”{ÝK(+S/deňAŤĹMRą¨Š-"áO5śZ˘xśă?ý^Ţ!“ 1B¦H¦–eŔł­âťT4Půćö+QoĐȇŕBŚżž ˙›zhţlĆYŚ÷ÁH(„+•ëĆĘéC‰Ái]Çčd»}k8’™;:'Â-?.Ě{bŮHWß)ŃĆ‚¨ ëŮiűˇAĽö»'2ůŞ$ą—žnv!}¤2›\C1ţL‡­Îä$y2éx§ĹzQoyŻ–ă‰Ů#SĽK<×ŃŤŃß—Qřń‹8ĺÇG áĎú eŮźf&tňń „Ĺ‘Ć÷ZĐ;\ŕĚ}.Ĺ`çŃ ÂÂčôgĹłDŇŽŢ3Ó€ň`Ézrč=@7€ TŚ‚’+Ą”ߎ¤!NM™•jýĎŃ8Íɱ ŐÖÇŻĐž¤¨¦ľBúÎáĎĺ?sč¶IŁż™ţ¶,ŘNí\L Iw¤&VĂ›‡“1úäG*ú{_ľĚH+ŽI¸ĐÉG>˛Đ·@IŮĺói·›ąhžĺk„ŠÚR¦VŚfMśż€XÎqĽć(Ë7‚%S Żk ÄÔ?$°ě„ĚÁ·iüáhOŐ7Š'¬hEKâ îá‹ŕ‡ďc/©M۬ź˛ĺfVó— Ť <ĽĆD&c˛ť2u*Ł4Ĺ*7á¸8tĘś¤\~™†^%ó¨Ľb¤/‰Źcéş~ Źç>Ú+ůuPĹť( ŘB'żJ@ăěĄN=*"pëbý”«4(ěË„§)…ÖrGÔPGŚ×—[Ŕ4ł$Säzů¬J}S/ä‘A/AâKĽ˘Y;ëŐ9ůlú&É~očµ?sC_7;Î[bpŹäM¦Ťâ@RŁj5š¦ SÚî ]÷ˇNÁÁa|Âp¸eú›%háXŃ•›(ר·„»8µÎÎţ%Óż˛_$ʤw2– †m_sۇĹOď30Ľf‹€şŐ5 ę@tŇüg|‘ř¸;ś—XxŽýRŐ1ĺ©>±áËUľ„ÜvaJŰ ÝiŐDZ.@ÔbĽ™D ȶ¦zŽ(;d™*ŻÇđě?ĺ@¦ŮóE¦˝Ă˝%1ŠĹÎtjŢž4/’{Tů;ˇ:łĹ[Z ű0µ643BÎşn’L¬ŕx[ľ(«nO#ýÔ%‚}ŘXôĺlÖ^űâź…Đx!ůUľÖ‰R÷"şm¶đ"ٰ˙ĺŢkj=ÍYŰ Ĺž±Y#qž\k)čśÇA…Ç­,ÖäfOS_Ç˙µÇÄjő`t‰“óŞŽ@C9A€Č˙Ę&W Dűů32N6NąŔŁ×ÚÇϵŘ5Qϩدlň@Ą‚Oeă«í¸G]<ň¨Ý˘K aBBK÷ýnŔQXăłŢ’hh@9"gĐ+'µ{·h:ĘŘ/>M+\řŔ'ń¬OŁ–¤—ő"S‹2%P2ÄCaŔ© MgĎŚ¦ŘѸđîĐ^Ž‹ĘqţI¶ôu!;đß‹¤Hɶ­ü<\ëtQI•›:‹öó51ŽBó7µi‘Ö„?w@ Ý™ˇÚ/`AńĹŐ}lé´ÍŹ<óě=%™e·UŤF­hµďM&+ä z™Z`dµkv˘¬•ťóKÖšlF9 D^y&¸Ćă:ĎmDáWfQďM’)而á>Ď÷ýjF#ă÷˙2ÖŕĄ(!ż I'~łt}b¦ß &ę!…ĚcÜ Ü5©ěŞÄÉK˝b¤"řč@ď(VµÇťG6dÂeʧËţŠ ;›‡ýŕÂ14fⵢ @ö«µ^e˘ QŘ:[}>ÁÜ:@ŮrĹ‚$¸wŮÄgLYÜŠ´?ĂëdĂDb_HyѧęhÄ,$ČE‚<Źb¸ń§5÷{á(ÚT`‹î"ôZ9ÎŚX×ÜŐfŤĐ!Ç;±( ĘźkŞ':ŽűDµ{éŰ÷ČŮ‚¦/=5gŞD4„‘˘ăMíŕ/‘sŞëhy÷™wC™Űěuvâ­ÉÜţ“!w8ěî]8Ó%1.§kDôů¦ô±Í-Y}Đă@aá,őŰdk)“`KŘ8H‹Ž .Ä]ÂH‘YqđÄ´¸Z›čŢźńCÇ·`Ë'xe!jhHp!—i¬>ň¦Mý¨s•R§«FL×`Ét|51ž®ßĂŁfÔČâ>=câŰ\;ĂĄz­źÂŔ“–´ĆÍ—Č~Ů<8Ą¬l Ţ Ä¤·– }?ZĂ‚c©ŰĄo’'ů[Ëm¸4¶x`ŹÇő±¬‘ď0%tľřz ľ‰@ŹgĐăQ íICŻÍĺĺG -Ó[…ĐŻf8ü.&Ě®zOsq!Glŕuap„µi:: T#­të6J ĆXí”:!ë°fn€zRVßÎLµ j˝ě—±Ń»đŘ<÷ˇ&gÍ0”˘§ňЇ ź qˇÄN@˛ĎŞŁ`ľo‹uăsŹ ź2Íuűč·ääż L5Ą«ôÜ$v›€gôGns‚ĐËţ»D- ç#ŮŚ…ÓSťĘÝőĆ,x@?vVWŃ`˘'5^NýMőćCM­\»Źií8šµqBď_ Ë|ߊŤADÉ;_Ă˝Ą¨L†:é'3ĄŤJKşdĆC NJś/Ş˙ŰąTXůz ű ™´âŽÁҶ[]űşť¬ýî¶ŰéiŔŃ,Ňż:řôöüQ=căśRȉ›ďp?ȵ}Ľ7rł"#ĎîźĚg1EŔr’ç¬Z˛Űą´‰8ăňC=°’ű†Âáël\"ĺAđé+¬źنł©62ˇ—Äý ­¦B}–8ޤ,éß9ĹŞEE Ł˙ą–}qźŤP›đŐZyá‘Qí“~äĐĆ> ÷ť—rkLV! ŔYŠýcçÓŁ”qŁ[čőZROé'˘yÓ…Ż>ĘąâńĽ¸*rmĽÇľW ă#ÎĎ]¶´yŠz9Ô=rD!ÓĘŮéżYzϵĘcOÁ˛Ę_śęYéwÔË€ŹpÁŘü$e9}©nˇÎ*F° ËŽĘ:5{FÜęD‘ŘÓ°Z¶€jŽV–§Í̦;ᤝ‹H gö#ÓŐ' ß&YłÍjăő.«ÖčóŁ^ŞťćÄVÁáY~4ČĎ0ľ(>8›OFô:/NŚD9ŕ± !ËxŰ‚ů«/˘ř”ÉD.T+3*éěT«T~‡žÍç­~yšŞQj§PÉŮB3Ň›q›§Ó4Tj"!bO›v^{îXčË,#ST ëM”4¶“Ů€Ősa łďdÍN‘Š^ź­uť0`%`€ýq¤ët3Ďr˝ˇ —Hlh·G›TŽ °Ü˛ÜhÖît¸Ä4Qç벓ËÇđ—×»·¸buĎüźUhP’źyö?o–§’^Řć‘˝ç„u‘Sţř=żD?Ž‚Šk)Iצ9űwČ>÷Ľ`NA)^9âúZ•Żł8jE}lOč/fhś‹‡ I‘ şˇčţ»”Jk¬PĂÄ2kÄPĚ9íRĂL«Ě vňt7’ŹdFş:Y[ţ˝0q88Á]2“Ě]Ńyű±%ŕٵ§h`\˝Úč‘ńâă$8˙Sđčv–žéz®^ăuxČůíwŹ9á¤j¤F>Y GŚk>Ć[äSpYľUJe…8EÇżT"{†hv1ł^v›ÜŐŐl¦µ~7ͬw™Ť#˘v¸dRN—‘ź…N;ą>µą3/ě`Ö¦m3b9QM@ůZ^ΑކŔ%Ü,ô#†›ĆiÁŇ!˙‘đŚuw)ËŔ‹Ŕ  ĺ6Ďt ć äÄw8‡ëT0“;.Ł -Wtži˘Ż3âVńtŠ*^)&yI&ÜřúHpLsH­ěěŇ•q—¨ZÁľ´Ň´{ҬÁ×yE*Żňm+]ë¸$w‚*˙ÇťţŞ?ťüGw@Ĺ÷‹ů§/]ŕZ ]Î፮ęU 8©ŞR»ĆôŽÜýĽëšÖű¨Ţ˙Ú€ŘŇ D×аîlEĄ?=,\AZٱmrAŰU^ÜO0íl5ŇxBŠó˛Šé2V)3㹣$M¬ ®=\U5éŹdę@ë0řŕ)PŁ +µFéĎŐ× «ňčUp(]ůŤMíúYoś± .ćĎE~ « -FŐÓ7÷NSŮ$¦IFŁąŇt0L7Ŕ €ţřeŚúĄř"•ĚŹS,j‚­'Ć«üB•zd769P@ůţ.…­‘ĺţĆŮÇŹ°1RÚíŘBŹű|EĺvĺÜd÷éPh39Jd´ł4ęˇkČÔ™~‚nAŤň\í/>áŕáĎŐ4; ťÝ'ŞŠCŮpt2÷~$ ł(ü€¦ĺÎÜ”Zť®†TĘ»µX¬Q^h?ZŰÚ˝’Ű W[—B|ăERö…ęR\fqäë~ôôŘ®řh.%ÍQOEťpvĚ5@ß©%PO^I1E5<úŔŐČÉ®ĹB~ŚŤ$N]&§ńŔX†ę‡>†—ä`y©´p(śżX-޶3Y…MB#č+D6jŃ29Üד‰±­TŰ@ĺ$;ëőĹ©íś'>Ť\ËA/)*XĚäč´H©- ]ł– ťr{äBé„ÔÂ!ÜţOČ5i=^ă­<÷‰‘OĘ‹! Ś.?řJîqs™Ö¨Ć׎śgD CŘ9~MA‹E”e˝úÖ·ˇîoG´˝®˙ä ĂŢ®NÇjló‚ă­ąsíň…ń8E}6Teéš2-ŁČsڱýG[ď'A¬SÎť–‡Ş‡¸$.î»?ŔŇř?XöM˛W$ýđť;|­ Ví¤ő´)Ŕ’Ť¦ă—ş żW®  /ŕ­J‹ĹŕąPő'năĎÖtă9{ěň{‘Vm]¶nx3ÄK©<J8ůBY..±ůÎý˘AŘlN©…Ł7ŘËůşOÁŢc±_Q¨tâÇa9i}:ź Bˇ·¸µf ćĄj*&ü´Âvšvbmś$hŕS™——ßK‹ŇŞ]ަśÓĘ=¬,ŹöDžÎˇŻ±Ř6©fĎë_GW xĺ(°†tźb nvŐ@?Ţ-!‰Đٵořnýť¨ŠÔOĽţ挦AĂĺ3űôhôŠAiÚ$í[ŤiľYP¤_Ź)ó3cöAÖ§;ű':î:w1§ű”Ý“BĄÜ—řý7ÂąR$»ţş>@m™GŹţ6ެ3[É1„ˇčĆXśU¤†OʉrYřýv9PgòíŠ":¦ôţu’Ü“ŕŢ60¤şŘď9 ߥ…®Ë‹ąPŞýő[kÂkčd[rž!˘‡™…÷‹eŢ©:şÍ$Aß®ďxl¸2ĘeŽ F0N9^0ö“Iµö ‚]8Ç2"‰i–'ťéÁ^"ËXď—P%źß)„Űęż ćŤjo Ĺ­4©±yřą5§äđ €jśęz¬Ř{?…˝BŁ0{ůĎ2uć§jg…iXížs"ßéËR HQŰ59Vv‹ŮPŘ ±Ű]ÓĂÎóó÷ Ô%üť<˛Â ]6Łg-µ3 ©KÚôwÉí ęLú󾀵ĘqŃ(˝(ÔÍ P\Ú„J«a!Ăó8)[q˘9¶fD+QČüt‚ŽŔ¬:›µEÝÇ“(ů™*ŃAň,Ŕ©ŤË´ĆSµě@ÚĽÖSô‹ÍF{†łŐ$‰`€=f’Š#ł1ěŽ^VC0^%ą'ăK8zÎűd_CŠě«ćŘ4›)ĺĆ5Ü«áIWŹź,÷C'C™é7µegYĐ\U.*Ú _ň1‘W@¶ÚůÖ[ăR_|4ž.Ř·čăA0…’[¶rĽ;¦ĂEŘÎú#Ś$˘‡đČU !:_—ěĄÓĘ řüIß…čĹű)ytřđdóy,”ź2Ýf¶k9+Ío|RĆv:\R§ך,ęÖ§d˘NŰEšÁçîĺ ÇTîůAFW”q‡ŻÓ,üŇť1U@±F‰UŔ„j‹‰´t&$wČâG"+L€z`w‰,ÉUÚt¸Ý! @ ~ÔYř\ڬe_ Ţe×OËÚŢI÷cŕ©R÷Úřbgĺ÷´Ţúr†RSĄŰÍ5#ŽČţ¤›9uŽŘ!#lD©I¦űӨҋ' ±˝3V€¨ô7r軥i©TĹš®ż8Řęťő*ph„ę¦C±śŕ˙Ú ř `®b…kn©0¨T® řö±-î÷rĂŻĺ¶#ŚKq[“ď®Ęcđ¨9i˝ÚChS,îăQ©]kĺ&%X)7+;ť»µ&]4únó=QŔ“Ł—CaOTűßľ{Úçí'—['ÎŁvD¶'1ľ'ybx„ľŠś±[·2ˇ)Ąn*‘+™©Ň· ńźBŞĂë+„5ü™ť˙~Ä(úăuźgś_łąPLő{i(]ľ€:;µ¦ÓíńűЏ=nň <„ÜÓ1*ú2±˙[1R,!I,V÷…Ţ«xÇG—>ýdq bFë0ŤSçĽ?¦@äA¤żL8oÝ_`‰îQ]•&27ä NjŤ<Ë…“Íü…őź,HÓŮţÔůچWΕ\ćqźYľ[!á?čiCäÜń&Ä’™5ď@:ż8¨¦ŮżçdˇŠŕt­í-„ď(yk‹Q¸đBtć4Ż zá4h•ÚýVJ_¦†Sn %Ü,»yŕ0Qö2Z°v[UçĎĆHzć 1űĆE6Í˙ŕř s‚Đţ«#đ([„ąľ ö\x$®˝ËIŞí™č/Rł-UŢžLE=…ç#@ ëg!·±žÜ¶s˙e$1’•=—±qP¬:0 …ŃľŐó«ů&ň(˘w‡Ďt­ř_4>wd<%–ŚcĐöiăjľDÉšrU{}]É6¤i-EôoQŽFm»ô´[­śĂA˙âZŠMÜ2[BÁ+”ĐN7ęhŠţ"aE쑯aŠ˝á ¸•¨´ětA4ř?"ŕ|™­ŢőóX4be&ž_Ě˙NkЉ—1Á p-źd0Ĺú —¤Xɨ˝" )sšTyV{Ů©é[Ę– ď Ă4ĐöÁăŁ2<\ňݱ‹xÚJg[ŻĎ*/>Ájön]責č$ zňßÝD9\űŽżAňěB9M-&ť^Ĺřw.Tn·_mžzLĽ›.C×7 ęTŠŁŇťťžÖÄ•×ÁgĂě{¨ęČ59 Áĺy-ł#î€K¦ë`¨¶Hᬕc ›ľj,ukPÄÖ=Zť»ĂŕLý2b&Ĺ©§ŕ'—<äsťsËúŻĆou?ĚŘÝ˝mÇ%Śîú†í „’úň€ŮUŢ–JëNü– YŰ’ćŤu[™$Y/|CqN*ÉqFň)ľ™=-3V!ńl>A"Í.˘(çĎF^6ĚCŚlźŐ u¸†Č—“ąĺŔ‰µR"E3dč]Ąě2ĄccmĂ,áI90}Îç\9‘XÓéÁ˘„§ćĆ ̵×qĹzNŠ—cA‹HoŞŁ”KŻ>Wf+wJŠâíkróS‡z~ôß,›ůZ¶ŮÇkh4+9ó™™ĺ;ŽÚ“b[Ŕ(•Ýl0ä ‘//ş‰b7šëR2x6¤›Ň VĎÝ Uhőj©>‘t ⯄¨qŔ‡ě«€‹OQ’ę–LWÜe€‚ßÚŹÄś-$@Ż”ZŞˇô}ů7bąÔ†™8¨çúęc ąŞâúŇÝşňĚĐl;ÝřŞ^3K]Éţ2¬‰5şuÓéV˛ßqyK–wY-OsräB›frĚ{ws˙M"WvÓŁĎz«÷ÓčĎľ%ş˘3Ł\Čn“̬ŕ¬.mđnÄŕÚ‹˛ßÎS$,{Ltë7ÎKMFÝß•ľĐ—éi ˙Ç™GÝ_0ťĹ:˛j2ĆAíHĚöJ .#ęPôD#Y`DtĺŐÎ<ŽţX’˝»_ĺ϶›D†üj— (TÁŽĹÍ+Ż1)FěÚĐłL%T:Áy·±^öž¨¬2,Ě6OťŁ\»ţϽґ±×u%âHjł11ż ¤ô6Wą®__Z‘‘(1f–^řÓů »Í úÂýˇ¤_ÝŘ­9~[7öžť‰c {jđŚ •ÎŇVăMŠŽđŞ3ŕ>Ţ/V>8e‰¸¶6¸tcËdˇuµŇţáĐ€Ś{˘±ľáMáŘhNŢŠ Fą K…ü[“Ş.gmĆéC~ćďż‚ô.ˇî[ĹsĂ3Źl‘ŁÁçú•—ąjÉqŹŘĆ˝v}V0OBŔ jIĐŚá7)Ç DŔQV <îą÷ ŘFŇF0Äuä$ Ü¬ß.X/ęiĚ@}Ť$‚ÂĘáU9ńÍ=W îËžŠLtÂyć‰RU›Á':Á—Ţ0’w Ínc˛Ä¨? ĺ[÷ÝŇÁěŚÜ糥;Äc¤ň¬®·ÜÂĹ5Ău"żI‰=”ÔŠ2WÝŮ#ŤL…Ö?^č;@"TřJBäu—ýŮ4­)µy'šBHńzµŃ%Ť‡vWĐVť–9vfĐ•^zn2şoß?ćN_¬˛"@Ç®†7í˛™z ;•¸{W„ý;ÂFťKgÉ+cřÄĽ G/aşÖ<—‹4‹ÝAI^vÍé™^kp4Ż~PxUĽÜ)čYVzŽő†čxßz-w§ÝfÍž•’ňŁw"٤m±.Ç·SŞm“Pf…l‹’UU*1ĺph[”Ó­ÚV+Ń#B"‚íď›ů=Nŕ­‘óĆĎŘ OŮ 'ËŞŠÁw $| #«Ô˛ ]'ŘYxJL^Ç\Ľ[´˛Z:†óňÚr±5ňóZÖ[ăăßŇŕĚńÝ·Áýđޏ*~"7[ É Fň{f+d$čĚAD“ –x2ĂĆ@*W;\t ‹Q2ćśÖöjČüŮ…/ŕ3­•9˙Ľ±Ř¦âÿȥu¤ÚWŹŽp©]ßĚO4nÚ§´€čł L´hVmé·©#´ÇęvaMő¨Ýn˘Ąt?»ľž˝ÁUFţ>=:űťÓ—ˇŽ6źńľáÂÜ-ş°dvśŞŕˇ˝đç`żZ›Ó4hoµŠKZ÷šśĺő¬ŢAÍ–ţ3Y`RĽâÇZ¨ őÁ1›ćŞ"­s¤„)k.Ć«Îg„oyěK:Lɧ4Ő>a¬+(Ž‚†ě˘ĘÜ S…C˙zÄĆgDŔoŹX+H)VYÇ‹ű#üŻ˘Çhîˇ7Ĺ ÝÜ?ĚR˛"Ł-ł*íxÎf'^$°¬Ç=,rĹ.f4Ş´żőĹAJI‘†gNÚ‹e5Š™źŠuá‚*S‰Ęô–XŠ’&Ô5R~¨|^N‘K!fçxKW‡<WbrµI%:ŻLőbe@f—Ľ3Ń*÷–G¬VŢ•ó`ŕ¸ĹđR’XY3ĚRá!íĽ{;ŠŁĚ_¬ŻUB1ö±Ű9oŠ3k{‚aćëü.vëq˘hÎV{ßź$¨±šó3Î÷P§ÜehUؤn+YEQ&îdĎvZ™V$@±-Ň't§'‹-źŃ‘˝c®ŘyŰžG~ž7ľÎTĎ«űďcýi,ëęíWŠyřL4é8ILÔĄz! &°‹ůíö–¬©p_Gw|ŚnI±háÔâC<Żvămc°§ŘX»‰hńšďŤµťaqň…p¨B0"|™Ŕ.×Âßům%Ż"·šĽ-@·)3WW ĹóĄűW|˛śˇQMë fŇăĄÜj8ľ‘YÓĆ˙ »(WWČ ¦©»őň¦ŻZĄôçĂÎÓTÎůN9%1Mî,Ă·™ŠĺJĹv¸QsÍ,\¤Ü×ńg"Í‚ĽäMբўĆüťp干cú‚ŇĎTÎ@w—Ťż¤üUBF»ŃI@`W$ú «f@ţËÔř[Š^w ‹84ĆČęŕ+˙đܓǟAÇ:4ń ös4‰ÂCµ sÚx\Ś,â¦bł-—. ĹLÂý© !Ľ]ĐÓŔD|krş4áůÜă×ÝóÂQÜä$źńŕŘňBxÔ-…ż˙c¶ NžĆŐ_«ŇšŤ7T] ŢZ–żSÄ „Ĺń× Q—]ĚÜ6 #ˇDăăá¨i?ŕ÷ ľ¦‰ZÚ*Îjńcąwş÷SJĐ$üĽŠr<śľN=jŕÓNÎúĆť”-H>SÎ&ęJÉ© Uř`{[ŕ\óCe"2ŕ›Ş/żejS!ĚůERĎcdŘF¶d›ŮŇńĄ{ĐôäȰü˝V—żÚś5ĚSžŻŚP´lĎŇú-ňćŽ7Ż+ÓőĂ'&ÚŐŰĐÓ]>HJéd>D­u"’kPüVĎa“łőúSčŁ~yóĆcęż©cŃ8®FhČÇ© µ¶')¤*GŰKá®ČĂéhŢzűÓĐUQ×+(áĘN2P·8©ż!őüĄţs»Đyf PYÝB‘ńriű~±wY>Šwˇ”Ż)ÁÄŹGžßŇĽ\˙«"Ó˘s›¸$1ŐUxčcW~µŘyĽ4UÜÁuĂń \ét)_VXv^ßU×k^ČŤ6N=-ń9 żgŮĽÚsů÷eŽ”ŞGIźŮzOî…żt_&f(†ňĂĺxű‹ ô6oĘŻ§Ť†Oˇś¤–Á}i™H¤c0 ą˝¬’ÎEHđKťŻ«‘_!°GŽô“Hq•Ý—Š&ţń 'đô6ŁÍ&ů̆ŰK^íŻ¶‡Ú@—΢˙žUŹĎşLýEů“Âě({kż‡<Ye5Řsđ9qç}Ěo„ť‹ŽŐéo,Q“-7|¬łôţúäGËŽ[źOHd ˛ĐŽÄř‡pqy”§Ű>ÖËőńĹľŔ:ë¦5Ąe ¶Ýó:t«î(Ú®©„žŠŐřd˙śn!:™FđfŰŰę„ôXqďÍCäďę¨ŰłŹĽf_`ňČ^¸yO­ľĎÚ«Đsł˘ýň‘sUľ„Ŷc.xP’ąc2{,%-¶yÝ7YđoţŕçĽý˝ÇöY#f,FÂľjo˸é/-Ö ršˇ$jtĹÝNŽě0ˇĆ[ţ§–ü¶yš5äţ‚ů ‰˙GŐѨMë*·ŃZĹBü‹á†•ôý·ąbr(Ix+ŁÉˇâ< !"ĽĄ´ˇÓ›Á,(Đ"urČX†d%B!G/ö~Ć4ęc–$ą50˙ž%Ł·xÇÉ/¬[Ő5ĽxUCEÉŽţA—NŐ`TB0h?ŤF$ŰůçÝ`xĆ2ăvÇ®-ŢĘdV„ĺ>]K!ĚAµ öJ°Á‰ ąk"Ĺ»ÚĐ_yŞ+=‚‰ś3ęqśD]ŐÁEŔâÁ&Á±›z=Ž‘ĎRżé˘Ńń)˛Č ¨\Ý«űňE@…ě‹qlô”ş†9éő|çtíĎ­¤ĹKý|ÄJĘŻLŚýL )ô®ÎÍŞ°Ý™áüĹb VĘ)Oô\Ă·č<ó‹iËX}sŃŢPOt—¨Ď~–µűs®eX‘Ş ëSɸlľ˙NŹŮßLJđLňăvßF]_5˛p‘ âÓQv:Ö-qĽa'ůA`,[ŕn«·úp†ĺmâ©XŚĽ4_ ń\á!ÄÂ2đőLQčrŔ(›ŕä®F󻡠üa[AoĹĂ{.¬Ť0`e—·ů(oű;¶}ĘgĎđňĄ‚Í3QG×ÍAĂeŠ Śi>Óő´i3tj>Čľţ®r¤Żxĺ˘Ö [Ë •ĐťZřś˝’¸ćŇhƆŔž+ťwyĂ)JW úŽ űß’,öŇđT&§_±ôt°¦éD˘ŔQa9ŢXd šŢW†rąš— ν[†ÓŞ& ®ŕ|vV¶ #¬ó>ş8’,fĘĹŃ^(HuŔîKs§•Ř·š Éx-Ăľ o>ĆhnËÁ7ëbŰŇĎ–6÷#١,PDÍf~ĺ;×âLW㍕%W‚˝=gg#c©Ąş[í×Ç“óܬ „eU«6šśä1ăGÁO$4h‡śGüi°QěŻéŁR¦6ęĘz3űř:‘‰%%„Kíú5h¦ź)˛Ů«çĽě#q2s,Ť5şŤ÷®wĎüüÜt»‹l»8Ł á˘%ńź1në˙¸oŐ|~ÍOŘěüŽŧsb=»ý–—`Ýy¦|N wĚfµ‡)‹ ٧'ouý?Vm(ČŃŁ]KDX?Öb(˙Ż®µÉĺ+Ý?Ś#Ć}¸7ĺ€ŘWŕ÷Ţ%¤ćZbŠ—b 5˝ŞšÔDx ŽŃ9ö§ÁĆąč˝izש #€ţ%\÷ßu–}śůňËř ÷á×fĄ7íć& ¤çEŚ8źżîe SÍĆZöwmťČľh—QSM“ÁŮŚÎ Ţ„¸˛&îľÎa“K‚5¶jb¶€ó m{ři×DŁW„[$ĐâR =9%˙“H)TTĂęug+ó菦WEĂŤ~S«Ě´Śž®‡w‘[äµńć Ň~†˛J%l˘« ’KőąÎËQˇ ŞXa©~¸o}®­µţO– ”mçA«ľ÷ň’'©‡?É×óbíÖWGš–N“áíí„jź‡$ëlWăd܇ŁŕŮ=˝Ţxł8xŐ;{€8nô^=5Ś?‚yĄ  :ő Ť:1çˇÓ­kî<Ňé]7„ę§Vn„Ě 9e+ä'Âżü_ĚZÝőËÜŚ\ŐćÇ­lbxÎÖńĺ(ácö#2s´Lk×Ó^ů­ÝlÎiaÂ3Š–tľŽé ŤéWâÇA›v÷¤âÉ»?Ő;-ílÄŻPÇęň§ńhsçţ˛[ŤwĽy‡>%áqŃ_ᨩů_"ëh“(mL N©Yú+‡˘5Eë§&Ztuöçdô›¨(tĆxf"CMÉčŁď¦<.:—“„Ő8!“$q´Ţ6Ź@„żŃďňč®ű•¦7ÔůľÁčfŠÁµĆU=Ąn«ßo%XÉͰ49-ősÔµ'K˘NĄcĐN&‘h~¤g—F“Hhźľh›ÉW4NŽNAńŕŮWĽ‹»ńä 1 Ů"JÍ=ĺ&2ŃćĺˇŇŃ'z­m‡—ĘJ´‡ČôřN @á/ě8·¬čvgt˝¬«H,"ÉŢ-'NĹś„^ĄHĄßŇoŹ˘ä)H[ĺvÖí—˝3ÁŠd^máDů$ÜbN–ÖÖ…B¸lßC{?ŤŢPyŁEeněĺâu Zç´|3®ŢŢ0ŃS‚}â,ýOWçUzh­9Řc_‹ó<ÚBžSxl/­Źaý­ü5š`XĂ-:5q @]>8íŇĂZ5úvĎ^OJbµÎ¨ţvyc˝t0•ÉÎQK0˛’ňIrj?KŤŻ1ŰK­3Úőł>±6ď INüČOCô‘ţ¶gW÷öŹ!•V(ɧA5’0ľ|6ŔÓCďqË6˘ŚĐ”ČAţ&bŠOgjвí?ĹŁ#KćŰčÓ! MX őÜZxµČME¨0GmPXś¶íŮďâň“S^‡ ˝µ/ľ"đţhř5b&G1cLµrŇŽ…¶†KśŘWÍ)·ŘKÖ‰k“•7 ¶ěv¶ŤKńKřTÝw^}uSáÝÖa†Pé­aď4Űeý]—~zçŮě A'ccâ*«C›¦_Î÷ÁOX2/ăhCn¬=ćďűe‚ŞÝŻŤşĽ L=č%čÓŚJšľ+ń!IŽ9¬ŰŃž˙Š­;VěČë­v—Z@X3Ü׎ű IM” Ă!A°łÂ/ő´dÇ%˛z-”–îľßX€iC™Ą‰ żd1zűĂ!ŃloË|’· őWÇX˛b±żš¬OˇŚ}ďÁŇz]‹rf‚ÚęBFĽ±00¸Ö´ŢÚĂŐŔiŮux\keĎP^ý`Źň–˙ëÂGDG\Łîľß{„ąŻ8¶ě— Ą#:CaYžŤ 1›: Z2‰r Ë>'{·Ń„$Owˇ¸GtŢUĂ—ţ“JÔ•I!ôŢ ˝Jéš¶µt†Ă™ăšiä!ź\}/]O=¨Ź–ÍÎ.\°’Fö?Ňł"¦čú¬â¬~8…zđÄşˇQ¤Źź ä—qŢL¶o+'FT¬6:wUĐźűŞč(őÇ[Łďdµ u>„EGĐ%űmny—ݲŞLýŹ^â”OCÓqÍ~ ,‚1Č—´¤<śÇ4”lýŃ´ ÍĄŕĂĹ®ů˝}Š‹ŕĚgZ™S1[±¦üJţoá±ŃVi‰6űÓHňDř>uˇ7jŃ^5\ş9 3)Ł3ń{ĎÖ'ł—]ńe†:+ąöz–iNóYąÍĹź¨Ĺf’"mőŢ[ÂŢř Á?lE_‚>’ÂǦŽrnöbë&µß°ź6żý<0ö6µcg—ł7ŔsyÉű<€&l5üQb Ě©3.š…Ómýąłuc˙Qy ËZäŽD˝‡ŰJÔtľ~op-ŢĚń“\’ jŰ2ŞęĄ6ýÖ.‡iű%°íT©¶ÜÜ4ąą®×ćVůy¤ŁÖČđ~)qŤ¨4‰0âč9qŕK@ź%­ IoĆ›0貣^ev_¸{-+ŞNň¸O¬"?Đ‚¶C?5Ąă\čK6sxH"=ÄEţŚd¦ăk,¦\‹éŃcĽÂC&ň *qU ”3EK'č&*m ŃÜцćrĚ6m·ú{­ő>Ǹ€¶ŞR˙é5qĘ:ěe€ŐżÍ[]ÇqÔ[XD ¨ÁwŐĂÁě*tiůě’™ »¦/WئB )MľďQ ´ä1-ę­ÉT[ý˛ V®×·e Ł–UŹ@’>rńřtĽl«Zľâ,ľŃŘş'@óšQ\@ŹQ‚Ţ)ÁÖN:7:Łď8LIě8Á=ézóyŔ ű$Z“šŘjËżç©Rš;ańŐN,{É‘9p‰ří 3=óöŢ%łbŮ]Ëśśj)îăk\-žŞńÎĄŐ Uß;ÍU¦]bő4éM‘¬5hWK˙8 Â·q'Í÷KMĂ¾n©°U,Łńşł4·ŰŕîSÜáÜ ńí °dCe"f“«a ´j;D9la ‰düa“«ńoú”ýݧ÷¸ňűěKüRfČ Ňî*ň 4ŻóFQŠ<ć9ąŔß1şď*Ő űŚ+KÖčO/R÷™#IXĽ*n¸¬Hmz›_­H®kĆ÷ß;†ónÝ”é’SŘď‚Qh{ţŁ­–ö’^éö1Z!’ó%4ńíZv— «Ţ8F˛ŞĽ§FexDűEg_ŤŢD5ĄÉŘëśvqi"~çl­{e’R ý-%37ŇůĄó‘xĂh 7Ůýî"ĘdfŠ%.Áĺeˇ?ën…PVżßëi»ś‰)rQă@4ń}üw¤É˙ ę6·-ĐÄ"ö"~:ůéúS«tÉ1ÂoŇöa¶¶`ή~âÂŽ6áöąćs|đ€ĄMďŔśüDżj§‰t ÇôX—׏uó{yĄ¬ „>¬ŹÍ® ŚSh_`QĘţđ»qĂń\˝¦‹=¸$ŔéwçÜĺj±ŹEŢě®rQĹ´gąó[Ěgý “"ĂE:] đ¶ŻĂp^ŕ0ૻ-Md(ť` Ú8‚oÄ\ĺj)Dɱ3őĘÇŐÝč¨Q’Bîf綦˛5ÝÍ—Ęf3yxŹ~|–źW#B!Iyůš ŁËhLB^N¦ËÂäŕŇ\ďŁfgó>ßĚÉ•0÷x‚őcX[ÁyÇÎXÍäp—6ăpő2pu?‰ĹQu´fÔËň«‚['-\'Íxĺ•ČĐÄüM €_¨Őźë 5đ´…$K¶ž\‚/ô/'Ëv9éžĺ6EăYľBČ@pÖ°«1–ütK&`â$Čđ6¨‰J¨ÄdňřvąŘźÇ/×YSŞŕ^eŽewŹxŰ*űIÄ?'Ö_źčöńlEĽ! ¨ň.T~ç?E§(eÎ$3…KÉPĺ÷6ßÂ>ş3Ę!omŐ§ä;@ý\˝%Ů‘ŁT‘ó_ĂÖb@kŁKPőa¬şąyu^’’·R_díIyň–@\†Šw¦/1Y¸¶z‹ X‹Ě@gsď¶SíčŞTk?éą—{Şě›@ó^™FoRg\DÓVâK‘Ki-ÖžEŽľ¬ßąźÝ+kÁĺ|†r´W(¬Ů4tăO˛,×!EřslĚ@qĚ%ŻÄµ0=› ˛ËĘkpút„ŕ:P¤4úٰ"8htg!‰%¦L4ŐefşŃ`ę)5†ľ”ç§w­wgQÓ¨o;ę+Os˙2¦äÉĹÍ´YgɤM«ßs#µü„65Ϭđ3ţŇB| gś? 멸łÄöjŽţuúX æ3śP¶•Gý!O˙ňąo=m|fĚôzŹîˇ»–hđčŘű ¸iŘ4¦ă¸„żKۡŢÍü{ůąőěçt¦a§±}ť óm,B§_Ĺ˙źCßJç•ÍźB°|őĄúż4ę ábä¶OŃ"׆ ])jďáđ-őx´D*&č]©çĚŢ%)‡égEröhsn§ă(yF›ůtŮÇÍ<&¤vFźŃŁKŐ-]X+«ŕźG•ډ°Ó6Ďä,,ůÁŁgďň”hXĆÄ…93B7ôo ţ¤8K.Ź!&´¶ě¤0±"‹ĄÖx{¶Kłb!MYĹ7ěüᚆb"˱í_X®¦†oßŔ€Ţť¸:¨í Dí ŰMh,čk‚ËhíJđČkĘżaHŁÁďWćQ—ý¶”ş§ů5ÍĐ{ü iŐE‡rz űKÇ/VŃâ ?j‰&–ë]edj"ŢčőŁőgů ĐSŮMd«ĐsľU˙𤔋«zsŃťă…b8BN6ĹÂ˙t4úźňÂľÎ(÷Ä…WL}؝¥[Öˇűw{ÁüeV°WfÚH‡ŘŮíă^w± Z]ű Ë„bߢňÓę¸k»ëŐµ!”ľwIzXĚ sŮWމyµ]zç—÷\%łÂâ}ç7Ż'ţ¨`2ĹRśő„>®?P(^©ŽĘ'ÂvÁ~˙˘I© ®ťŁ•ý¨/ Ąmî{Ż+– ?Ľ*JOT†ž­ŽTg˛R!ţ»r«RŘ„P°DXŘ_žĺŢ,Ŕ¸Č¸qöŘÝEĚ%DIĄ?`ôşf>-JňÁ¦R'eO©Uż›M ý> ‹ŞcĘJ¬LťÄB˛ ~«ÝxŽś¬ĐđR`[y¬r§őˇĐb¬‹•®’ĺqLmNÖćc 'ÇţJAĺX„Ă·"âŘí»0äËÚţh¨?}}lĚávă4h„¶¸•|·É‚˙ç(Ňłáú5~ýĽ]Ąă5ď*ęP8'DBj]z ¨Wˇ‚˘T.÷¨<ß4űŽé·Ý›€ţ~Aűą6ÜŢ!g-ßÄĚÖîĺd®'ÁŤPâń†ë–ľůxIŃ$kVJşă˛ć:kŃoJŕăDŞ1¸â7ˇ°Č˘ă —ă]ń——ď;?w1ôĂă$=ďă`ď˘7{¬r1Ń[i‚1Ť>ÄÔA÷Rť»fF%Ju *75€Łž˝’ÚťˇÜýĐ|Y.RéĚtWqOíř8ů7I\dş‰^M™ËiË%ţ›§•Ľ€·Źßŕ¬ag) 1ţj™Dâ­ůsĚu˝¤ŐŮ(śBŘŽ†C ÇĆwtpEŹÓ2(—ޤa>®—Ź4öBʎ˘†áÁËçŔDµť#Čäŕ•Őşę ”7X€YJx÷FYČŁÄ7clŔ{ęd@Éa)âŹ{×Đ0\Ł=_O‚Ľb•FŻsőŚ„iŞg´rŤú»łÉ9ţOµÇ®}Ö €]xSÜcO$łt¦Y‘ !,çż¶L@óUWtâ´BG‡©StťeýľY%AgëÜż™X%ň“áĘgş»ůő/˙­˙»ŃF†’Â9b®¶âĂ·Ç—í˙i‡`őkťkC8ĆŐMg/_dóńâî1úÍłK[µýŕ%ľˇf¶alTĎůĺŢ,ŚݱoBC!ë¤nOx§ żśŐ==–µH'śnňęĎ^ĎőE OoÄ-‡źkO; Q""rOÓ…Ŕ.á9 g|ć’¨ăRóť,ˇim:Âłýwuu Ý!ł‰EăyڍsRÓÝđSJ©îóbg3QŘë­n—#¦Đă“ýĘ/±i´é—­r3zS@I+˛Ä§LŞg¦üF¸Ý÷Y˝çˇoŰď]‘)™úęN.-ÂQw{ BÝ;ę¨J‰vôJ2r¦·ŕ#Bžť$Łť®ćŚCS%‘Ě\Y/[Éçî2ÍŞ^@ďČRo˛ňvĽ×äŰ·ö34oŰę˙Qâzvä¸Űxrü¬{´Ĺ„• śˇśľČ`áçîř>ÇÁ‹ęíÂdOÍ\‚ @“MĐ+– Q?u¬ŮWČŮş÷DŢ37 á$ÇNş,ü뮡 O.7M,-ËŔŮüc â‘xäőCmB§ąS÷¬fţĹ[Ôsж˙Wż`Ť#_6®¬^ť¦mý~¬ŁGiŘ͇|yg¤n/MÚÝOüL~rŢL~ń° 2Ą¬Á3^®.J«áŮ á]«ĂÇţE˛ú;ŰdÚ®ďo XwF;Ś[䋍Č>8¦ĎESŮ÷PĽ•lnťĘ@=X±ŔÁcÍŤ”ĹŮtů`)ĐÉňą;©ÔÁŞLlš0™WOQĹ›„íz R1®§â/sPĎ§Ł¦˛ÄČ@D™!-ůŐ´ZJňö¸Óń&*˝Â« 3Ă­ă#š e4—Yt$ł›.9¶€â[řĄŢ9W-‘ p° _vńË4ďŻ4,1Ťcď;Ům˛5[f¶Çh.›ŘiWđI1őűí‹Ţ|ŹĚŤ9I}f.\™tň_„îŽÂł…B6‚4ăíëqFČţi0Ľ(ŤK9®UýFł…J6éÔ­_“jüÚ°Xś§ś:«Ą&zńőöý7î‹Bž˙<ďu˝ډŚ:ź5‰Iäʵ@}§÷ŽqeśÁýTCߢŁ|­Č.-×:ú iČňłšAŕdÜż|ȉ ‹Ňecjŕ‚gÝŰg×%ȡë&µ·É˝Řîć' ůÜŢ ˇD©ŕËϦŻzoŮń‰lÁn¸ĂvČ9ôźŃŁö%»ígw .Nj©Ý§čY˛ç LĂË5Ps‰ÇÓĂB2čś\$+ż˙ Ž ů5ź©đ4ĐŞ±0|†‡_ÝÓ߇}±\m8C®+‡oöŐYM]Ŕ,Ä8‡Ř‰śyE˝‰é{{U.E[v[mŐ[‡ş±Äń{G›»tP.o°B6[Á°ľFń¬·r±R°Ţ†Jyőý”^äň·đŽŤ>TaűčGÉëInĆysĽzFtŻÁ«Ř§÷ Ďë5g˛c1ŚżŁ¸8ZńŘć.Ău[™ Y ˘OŰ–I´â?°8xKĂp/Ĺç€1WęĚ•ďĄ3µňdâ\_Ô¬VŢ~QĽi—Z]®?„ŠŹfF±ŁwË{_íë›ĺyhKš‹JȤtĆK¬'‡ňTZ®žÇuŞ:P'pŃrŇZ–ěnľőÔ& €6 due®‰ź[úŮ®Ë]ۤÇńG… 䎌ôb>ꦞE}ôźómÔ_“sľç°F¬í©Ç–âŤđŇU$©Ă}»fµô*»PŰ\u˘SHÂŤ)J@3ćqú­ââŔ€Řńązt— lýjYŞýî¤yöÍ'Ük2vŇ`č˙_‹Îd.9ůÖŚ~×a1”?¦%ĂĐr×4Ź»x¤mU _kÇ\nh] ™vĚ„€Ë>ş¸EňŠ„4óÉT1ŮJ˝ …řÔňh¬úb ĹĂëîz‹j±­Ô ćŃŞ8Ën/Á+(P®b¨lŘ)'öť~k­ďÂeµEsĽc3‡+˘ż®ÉalwW ÔjX&Îz4rě!âŕ…ÝŹ»¬ô–ńXŤRĚÉĎđ{-­z!''\ŽôĚźôĹ©‰6•t ďÓ §]â/Ľ2×,ÜU®Ş¶Î;++<ŰŢhŚ{hŁü¤0¬s‘PđĂmgţe9ĽÓ=ż ¦TLyżć%ôšgŻĚ˛É?1gÜŘ$Č-ÍPPuńŤÇ0ŕ;d‘{k@„KG¨ŽÖŠnnČ łĽ7 JaÖ˙ż8čI”?3`Uhaš~{ĘksQ®:í|M˘ä˘źÇýÚ‹ęŢ Ezş°˛nď­ę*dbQ¬RŰ=¸ÉíjOšÝjŽÖ¸ÔJkí9ĐFúBa{'MTľŞO¨&@™Ŕ¨GÖ äK|Ą'LRߢwčf“ĚAŠhvć ŁŤ¶+@Ôn&`őÝM­ ĎşäëZó_Jéf4®vł{T6ń1żľvéŇ#LŞ˘íOĘkSŠoŚě«Ď8Ć‚ą˘ł U… ¤đ”Á'މPr‹ÚK‚éîÚcZľĘĐI+ĘĽ˘™OČŔł ă=ÇHíKRíŘküěÁ™Ç*5®¬éݨĽç%wŔŞě&eÚzSč|Pc$<5˘n‹Íĺ;©ÉÚÉś®Ďóí?TD±sˇĐŠ]•,äLű+ýíÂt‡+Ü7Úѡ9 ¸l‡ €řďT+1śeí§ĽÇOłzżVÚr{6a»“÷†ĚňŘyÉ,xŰv0ÂYňÔe™`‡ ýŁ‹&Ą$0Âç@r˝ÝŚŇ"Ł)±żS1Żřü ;íućűËßňîĽo‰6źč&úôÓ_P[&^Č=C3މI j}C›T¸ř 9•‰ ⪶MĚJ]ČíÚĎ(u¨µŕúţâ5]Ŕr<úĎÖ“őĐEŃ ůT¶ç!‘p7x'k"?¶Ľ ˘WKä}ţîfߪęxéo®4'l’BĄó!AM‡/žĎ˙ž őąŮŮ&ÇçlŁ—ö‚­*}MYîňË„ŞĽ’…Ćź·#ü§řib*ź÷‡¤%aŮÝެ€J?ë%o»ë2á¤{µ‘…-toLňŰa‰ňE"„q'¨`cÜň {€«‚˘JsÇ5ńÚ‘Ŕ±Ł,/t#[Ą6fupdq·ÚąÄ~OčI‚·ĐtFÍSqÝGAă‘xË&í]Ťĺ[č‚ÖÖ2—Ž…"ÇőłżĚ|QśĆJČÝîő1{%şőéĚ%Ě W"ĎŽâ2X^O¤¬K˛eĄhĺ,9ŮL‹H‡M™ŻÎ¤e*7Pe-0őéź<ÉDŔĚĄŢHăŹQ(Ţq2MË3C–pH¶ĺď¬óCÍy!ĐPPoy0?“ŚęŰŚă5BŔÂÜŻ+„5›(˝<'ą‘Âôɶë ÚMť.ů L6éâV$ô7‚Ń\eĐÓémŰý"s˙á ČŤJΠ{{óŢ–bŻaZŰwß‹ —BŇé óÔó7(ĚLĹí)ÔŚ"lg1†¨‡¨=KtšťŹňîmë:`®´áVŮâw%;:ĺ2Eě¶cÎJu ÇČóY0 &D&·ąĎf´SIg&'xaëÝ\˛±ÓŐśoV’5*sPL+Ýšđ5{ÚŃĚÜ'ň72–s›=§ŁG1)Rż!w=˙XRx ieâss&×{+ČTDűä‚îB˝{Mqx–HupčŻqv±[i‚›S­iÚ=üŤ¤VŘĐyµNTďŁ5Ú_F´É;´¶Ĺąií±±űóTŞ˛¤’ë@ź‚AP6†÷ąC›„ÜÂ˙úňKđ`cň—0©jt ­o´H„< xÝšŤş'†ňĹĆ €ĄĹĄk1Ô_2ŚŽďWŢŰIęĚâ~žĚ‰ípˡŠ/t"ťˇ ÚUp™GŽíűB^6ů×Ĺ RB‚ Ćş˘ÔÝE«X=¦ÎŐC–›™ÝFűň7XrŁ5pˇ" wŻ˘öţü1ąřÓŤÚ3ßř µ]Š+Ťĺü­D­öÔ¦‹ţf†§v$hx6µŠ şŹEł#®żÇ_©y¶±Ý·ÍNĐ´ö ÄĚ*ďąŃ’¦Őăý˝uĺÉZ‚x÷Bë„Ü{~úLdZĆx6€BgćJÍëťěp·66’°®†Z˘ŰY2±ŕZţŇYLűě ¤6âË Ä\±;|Y5fş!ťć˝ŕŕöěÂuw«Ń•ëĚ53‚í)~šüŇĆ(ćÉ=¶wXá8m˝?{gDý5ÂH5®7cşĄ›*Őśń­dÖ5 Á=3ߢ¬'­ÉFGí“"UTRÓ{L-ĂäEAţł t„G ö73رľ“@÷+rÔf·ěďăd¤µČmr.ŻË./öŃŤ‘¦ď."©Bđhř“r˛äŠJ®{lb9#c×3Ęc˛qˉ”ŔŠGÜěÉ—ôqżÖ$ü<]âĺ–4GŇX0W1đsú, źU Ť˙[[r,7¬ŠćQŐ¦QŃŢ#{ý ¦AÖ:¨ŕĚ…{Pjĺ"2;QăŁÔÚ8?ŚÔ‚Ýy”_[– űI -í0ŤÝh€v =H+ć(j6ŠMţöét˛§ĚÓĹžpK®]ţ!KÜÁŹË ‹zč”Jb€#ŞY%/«ŠîŞPđ€ö{¨¬GŻ–ÇÔOâ¸Ă_^/ąŘyĄ7…„’Ô*u°–˘úŹD]G”ˇ‡Ć>ŽžˇAźôŘŞmkáżű°ú«‹š5âľmj_RDV—C.bŚ4W˛L žÜ!¨ E¬tâpăßďă°ô¬yA<ƵwĘČě˝ç%1Áóži’ń1U÷mZ|&őĽî˝Űs†J]SH‡Ďä¦đĐÔM\‚ďG]Á´®+ŻqDd_EđÎüüˇFŚ{Šęš,žBń2 1ERÂĹ7˛‘mĎ–«ľmŁč:Őę IČßĂ[n©ą°%EÇôńg}šÄăĂ·¶ÉČ˝3HuĺB—ĆďCFAúO=!d\˝h‹“§žc>µžI۲{bŁöÎW˘,o×Ń'Ň$xÖ>^ ĺ$C,§¤Uťq$ÖćQĘI78Ŕ7=ßĘxŞä˘c}Ž’L4UŕŰ7%—jŹ5¶·)ÓŽŇdC‹nT|Íd¸rˇÁ7.ŃćaxOb7±sę…Î`­ţĐKŽĘE’´ŕ/j2#ăuUX] µS Ť6Š÷řµI*đÎ Âüfuáo>PE0<äÇŚ>ÓÔőb‡Ň´ţkP1+§ZADI•Ă«’iç 7Fe¦ü\bmŇ ÔŇWż÷Ő˛¨"CzP…Ş<|Ř-.ÁD«©WC0TaĂ”źü6đĄ.µiĐ,žĘg x7&C`ąöކB>g1JłŰýç)¨ťP/ŘDĹIżi/ż]Ě«9Ś=„ý†í‰\cß%ކ_«÷÷ŐŇâjÁ[‹a(»ýxEő}u4­}”żhQˇä˘ď¸R¦x›TĚPâ>Ďž`ŘqËÎ0\»ĂÂëüĎŁą~D…`{gtŚëH_3cźa,…Iěľ?‚QÉÓÄifF|ËÉşŮGÂ9LĺŃ„uQx*Ć §E“UŠ ż€>)&áăËO8CíXţâEĚ7ĽČ 03c6ż2?¸J1xłŹ[‘|•ßŕédOPh2h^°­ťmvřąL,-ň‰@Ď»‚%m˙ôŨ˘¨°4u{î<Á0jî°Ŕ®%Gą×z hmËŇ$qZE_TÜŘŽ÷uÎĆ»§:†Xý»‘ŰVÝí+Ă9™ŔÚZÝ.ZËuď¸6ůżĐ%Đlěýĺ6wő‰+[˵é)¨ńż–cnB‚XÇî& ÖĹźűŹhý€®\ů î*8ö0CşŚT;ëjŤ4|([Ŕě­˘QËx¸¶řÁő$Y"IAmŽi'–ŢóąÍ ÷IAVâúT‹2%€¨*&-29W“˝1űę1Býě-ÍűĆ’ŐUú®y¦đJ—±»ň&ĚşiŠ@—X[Ňü)¤ mŹ]H9hë›J îV 3V˙¸Şť¸Ĺ`6Á oąm\*Ě`ęZ%Ďň0ßxi—4ČiöŽąËg"„乼=I) ه€É‚qF˘DnVa–‰-ë…˙ßĐʬŔ,†¶Xh3 gé>0ş»Q °SźMéÍż˛sÂ.-Ą/ZoHÎp;Guňş÷7Î,0…^–ŃĚ 0۱‡$Wa-$Úšĺü†üj]Ô®;ŻT°bÔ–^°…¶{=Şm^¶˝.3 JĂĂ—h٬,ohłĺ:˛»4¤’@9ŇĂ1¤ĄdţˇĽÇIoÉ •”Ý0‹(Z k>âZşáŽĂňŇŘÇ đ»;ÜÁŹđš¨¬ĎÍ—nvŤę­şÓózřŚń–üŘčyŐků¦s ĎŰ^SiďUłNEd´ U*XŻ2äJŮT´A#{ç”pÔ2Ž]Eâ™âËGgdq Ş&¸y„Sµ[Ż9 ěd.N.+őeŁŽ?ţ«”ďÄŘÎ~#dk(ĽÉݲş9°X{Ě•i¨ ęq•E/ÇĚUÝ=•tDM.c dWż|,ěłńŹ8”ľüÉň1’:seň†řwŮâ,Ť)¨‘»Ť†@Q…Ůî|+yTú´%f„Xáá#ÂxŰ6˘9Ŕ÷¬jh8G*íŰ“ŻŰě‰/…Ž?×R˙ßtŔ9…3ĆÝeÄ–‰Şóy´čŐ6ĄŢ§óÓ¦‡+a#RÚm˘đÇgĐn üöÄPF…Y[¶×Ĺ٨´›ŔÇA fťË¨:łp´@EýŐ,];űQýH¨dH'p>Đ2mčd–EEűšďšáB.ŚşŮjclµ÷Ú©żóîK!˙Ľ:(ç·&ŐzÍ}5˛ŐŻk0Żź$rí(páĂČĺ˙»¸?2ąlśŢžĎ-3oá÷â,d’śťTŞŠGĹ—Íç—MŐ‡©Żaa şÁ°üjüµ:v®âěŚě˝2äÇpË{rđůpŢ`w%ce¨˝igń'~ţ¸ŠŞ(…°˝ş ʰĽ•@V›x=Ňĺ„…Ëčb4’wĎ 4±Ň†ş_ěFę%÷‹XŁË'9 ö9:ďđńŁÍĎO÷Üş’iá/Ń+‘D{4Ť‡fn}Kˇř _ŢŘQ:9O¤ţG®hŔúÉŚ ™1$ÝďýíŞ cŠ#ŕë§d KHŃŐ/µ˝ŰŠĂ‘˝q/Ö;ÖČX€ŁŞ ;î ,ÄíE$iÝ€>$‡›§Sg,z'¤~{Mđ­VńŤ«ÎÇÝ ŘÖ{·Ź_Úů·µž8 š<<ĎőI%çG[LŞQZn9†dże· %…ůC eu&ÚőŰe‰F•βĘ0eŐŵSpƱÖčB) I諸7úĽ„W:±Ž,`ý"«Őß§PÜrâ…ě›¶'Űôj,|+CŻŠ;ąîd¬BSÔvřhÔ`güÇFČ4ůň-Ő%aCrbfĄ·˘ăˇóýÇ’ë°¬=KîYMuôoɦܗx¤3ŁÎsý¦Ż·ónáłőĐéŔćľ' 5lľJ#'ŤZ¤ á2É*ďĹCę€TyŔ”ő˘Ő‰lF:Ü‘1D)…7Ł$G©Z}Uש<ąé.ydh<ľ%'ĺń8ň%řK¨¬®÷m/#í5|:ŰŐç['·ŰŢ|ćÂöv´™WP»*Ęú4őŮd >aŢ}Ë_ÜEü›g”Î8Ź |PÝ8Á‰ĎQ…OŻK}ÜŁt>‡+Ź”ŻIŻň»ţěęYðË|˙4® ‡čĐĚú™·XN äăź]ëĘYQP0?¶ťłQoĆ,0‘k$R||'Ěż•6É]”B:ÎŘxFé±ü‘XŐ- ™oę[†;ĄaĹůtEfs¨ĄšüělA2?Ěřm%Ľ‹r\÷ír0igä1Őű9x=¬<ú˛EÝŚ'<ŞĺNŹ c‘ŐŘ‚ľ‚YoČh(É×ĂŕÔ^UČĆa†Kĺׄ·]ČŠĐ[gˇ™¨gř.ˇ2”UMźÍ(bE Őh٦¸‹UŚGˇ‹bśr˛ěčöڵ 2ÍűÔń¤xŃŃC8*A YŐP śf[ę˘Î™2Ť¨cmD)ěÇLÖ‘ŘbŢř˙ČD÷1˙ŰÄzíc®ˇäîkQ$§j`‚Ś ý}—JAŁv0¶9»MÂůČ_ł\^Ý#$”Aí‰ćVÜw: ´ŘŁP˝†+o’Ö'+TF‚¶]ŇP¤dϬX™¦RôXb!iy¨&FoŮHuŚ3® ,ěX¦°Ľí‘t'}®üÔŇČ×Çćőş1‹Uą">¤lţ°^÷űŔ˙űwľŽ<çI• Ş}AMoę:–{ůÇŰTČ‚hŰŞťĺÎâ[Úó‚ żR<ň잦"ýíkíî¶zzľ#5SŢĄŹYĚÚzťyĦ*Ť°‘¨QiZÁĐTŚ~űŞ˝˙Bđ&=Eôű¤ 8ýŻĎĺ'2áQ˝ÚF´Ł[nlş+dţ©µ:Qű[BFŃSŽ8>Öˇ Ů7WÓľü®q•žFކçźęťfŇ„鄆÷ 3ž¤‘©aĺŠüŁš“x9spgĽ'Ô×}&öĺHię_ ˙JT}6ô­ÜÄ=OŰű„ś6Ó ëW±\–}Á Ä‹‘Ă…h)˛K5ň>i+ă1m1; ]Řб‡~jŁç n1‚ŐVd›Á˘0ű®3'Űű…ĽPŐĄÎđs« ÉuIHž’°L‰âS~¶qEíX_M‚Ćö~.o˘ ˝G"‰˙!ęßI–|Ąţ´«éĂ[%2µâ˝¨ĐáX"+KáéuĆ%fşx6źX%pWJŔ ATĆj?#]Ćú2¶lZôţ¬ňâ?&”oÁµutLŹ Í ťĽ»ę´ŻkÇ;uKCC¦¶˝vĺę\5®Rç¶GĆduC„`ś=˛űĄ bzÜäťdĎ6týęőqlď B¬\z™ŰŤŽÄ•€Ü=ř˝l—3>®ŕô˘ĂÂÝ ‡Ĺ*ëŁ79 úŇ%ηņۍÜ0nF [˙Ż5ŕëŰ\= ¤ĚŽrűeŠěT3â+¦ur¦j·ü„ŠČ:|O.)Ü:R›rÉ­Ĺav«L{k˛g˛˛Y“nyWËö Ď• ĚG›}ę¶Gmô>Žb óňŁ^‰űʇ?’¶rŰ­ˇ äm~úĄu9'ÍAzŃB%ÍÇp(Y•ĄĺD˛%˛Űď‰Úw đ¦Ta,đz ä8ąripíW_ůyŐ öţM˘4(1>f­ţîí0ĚlÁM®šď1U ‚qł~“ĄĂ1Č –)äS™ăŞ[ŚŻue>ť™KĽ_ąÔ©0Ç´ŃDô şŠŁHˇť|@ÖUHí• ÇůË VÉűž˝i|7“Ýd3çęÇĚ]Ľ9~U¤´ônß<UŮ?dĄ† ł´B¸á˙ýy60d .ţÜĆߢ¨YŹË6çę<4ÔË}%í §«í,*'ZđŰ˝G€XŐ!­Şr”űí¬]ŔĆđ•;aŕ˛KJ†e/lW•V˘ćłŚp~ůŁÝěÓ^źŕ­Ű»…]ü(>3Sa»+ĐŁ’ҦIZ2Ƕ ĄÁó}/ęBĺ°Č¬:SťâěZ˛†'‡6Żš ǰǟë14Q©ĺŔăĆĽS®"oô˘_Ůčˇ_s_I=‡§Ë†Łą‚¸žă{FĐbÂKÓGd›š˛ŠBěů·˝ÖWŁ1$bËD®RZµë€«%”ĽăEVX\ČŐ&w" i˙ćź„k ´ŕULÉ2ś‘¬îy/ľ4NŤ”ŻĹÍĆ ¸¬Lîą˝D’bgáĄig P¬Ä9Ü–dzd°ń†ě°ŐZ6čJ.ŽAÎ9ŽŐÔƬ#ŃŚ“}Ęk“ëýřě€ÎĂ>l nűâŤXpŮĂÉ…THAAł;L‘\•kĂŃ•ÜŇ79Ä‹żń °™ŮÇ,şF_–1ŁîNʶú¨ű ˙§*9pé­\|ß4Ŕ ěMĄRöŠľe=MäĎ–Z„· Ăťđ:ĽĂ Ź`…žŞdvĘ„™ä·%ÖlŠŇôČszöŕšĂµ¬XŠ ťŁ¸ÇÉ€Ký” 2U˛% <į塇,"Ęý˛ŔÂm0pl4@`B ¦Ç»lĎůsjNŠMăeU9xpÂÂŤĺ\<Đ"ţĺvŁóť đ94µń´j&ńYJď("żşbĆxŃ‹Y>#0e±™÷ętÔúăÎő·@ŁfĹ®+ţeÔeE'32 é»&k™oh2¶}©Úq™hhëŤĐ•,#Ť]I달ŕÔ’ ôßëâŤ6Ä:-ů§Ł)!V­ÍW$»ăč[qx Ě$/5JMŃK.86›´Ćť©ąl™éŚ„¶bEh’䛩ş 5´Ć;;Vá •MFHˇXo$Ě8ó6µDg’»Ô–ËnľőeÔ)34ľł‡ć©ä ú(·a›sŤBŰ' Rť†Źöő#˘ÇşĄAV‰÷ćÁ×(ŤŞW—4;–9ib<DtÜĺ„Ięíy/'Ĺ–6ŻX–¨čsĎ|źˇqč'ň5ŠqSĹ<®“oţ@U¶<,ĐŠ±×‚Ů˙ruZufBŔĚĐçѦľŤŘ~ř q°l.Gö:âc^n—ű€> <ŁŻ8©í 5rî4 Ç·bëy=]ÁlĎéš!&ŽÔä–pÇ»uđ,®ă.í"‡xWŐ«FG—.‚ËŐůéKzî˝(+™Ť}óňľ9yS–łĽVŔâ‘qśĹCa+­ <GĘn›żot†Ď™ł_ ˝FxŔŇą¨•‘Î~äüČOú ź 9áC`™®a­(Qdž•mY˛ćZ8_QˇDHĽl+ŕ2ŻĎŮ+uÇÉ`—Jđ*!žnÂ6őcĹäH ˇ%ZĆDőČ{˛ Ú<Ť o´ăµs‹©¦ůÍĹŻŕ0ŃIäˇmTôBxÍÉ  Ż6Bă.ŻÖŁ&Vöŕahś–±ď[·Š¶°ĺ¨ßc˘wyÚ”EnµŤÍ˛Ż2‘ ś¬!í©ď|k ú|á\ßĎTAR¨ĘGą'PźFöŢwąŚoóއdN’yË mP& őóßIe÷ ŘĚHÄlżR=Ť.EHc8ĹZ©CEŽYUą3 s€’5a}ÂLa±F¬mŕĘöŁŇˇpş*)Í]¬<8€AçńS¶ýgÜ{–3‹xŮ\˙Ý`;Sa/’t´·‰Ç–ăpd݉ȭ#‰ŕ®Ň§ĹJ.꣩!“`Ó’ľ{ůEQä·˘µä#—zm*Ą{Ă' ú¨s«gÓ}r8| >”˙HĄ­óŢŘĽ¬.}š=yë@Ľ¦ßČýMőnĄv&”tçäcĐvd¨ úuÚŐ[~ĘůU8 1Ů8*”łčM70ë;ףTăÁ°p/2n¬¤ ­ôîxÓ ŕÔh)>çv_mű`‚µ治ťnBNxś×¦0Ť4ˇţ^Ž' Ýčç×ăÜăSáÍÁ‹QX=x ĺö%řλ˛Ë\Ě34%‚öţ~jCOB2ą­ć(U!ĎŮjŁaĐaš#çú ¦WiRq‡ v/hW¦ŽšQxĄř·˙iĹKâ˙2`ęűMoBf‰Ýzuhęřŕü^.ÓĐwçĐúéQxĽuÜ [+$J=ëą›Ś×öţ$ĺÁI|Ď}łăKŔÇxňşę-dqÓâĂĺěÜ}ť.@FSωj3‰˛~´53žxŰĽݧ¨I»Ô§Lľ0”ťq;i9’Ęś’#POëD#ř¦ç´ý^FłS" |qßĚ-ŃĚXůů¸c¬Ő©ő™;FG˙zpşŘ5=p™®äĘă.ÔP.1˙ ČC ůH2ü3I'Ă ŠťóřP†>~x" ’~:9yUŤ/1Ě+n3­î íqäöčŇj"ÉŔY–›ńÝ ’p^Ă4Vţç(Č×Ym!Y)o«ôßÝIÄa ç'—”Ŕ—_0¨’ÓŇ©)ŇZ@53q6JŇ´ćÓIľś:›Ćż÷ ‹Ť>W_‰®dĺ E.í%x`¤ěU?ßĂ3áŠ!.»XŃ´ÓąĽe©ŹZ § 9ď—‘ "…TR€fŢeĹjEş—üPrŕó÷$Th/›‰#Ě/„n]cNk4‡ P‰Jb~íŢ $í؆łT!żOXúuvő%!űŽRŚÄüłK”ťĽTŚ“N‹*aË ¸.1ëSfÉůŐçćŔĽUě_Żó$ŮŚo±p?Î ˇ(oÔĺ렅 íh˘oz˘Ó!ýj±Ť"1yvIFeN†=ĄGň-řÎ}<NŽŃ‰µ![äp˘Ü‡z˝VűÄ´ĺ¬Ät÷żKÝ'zŐ–€–öŽJ]ETĆŔ«á|Ŕ)2VHhj]˛ĘHtůî &· rH€AőîťűRdĚ´ë¶1aăţÚ<öŇ Cf¬ČÚ)s”í„AL.1Ź“LrvŘ™%›ső5HdÍ<S‰áBűë°R …r%ŞŁ N|NuµÚĐł4©›Ż`ZÁ3Á˛’]·?cćZňäWÍPk“)ÁáŁŕ>Ź6ś©Ě´ßS§€CO“žż"Ĺ~ŐKťq†UßÝü”ĂDhuůł•ôĹ=ůĽúËÇĘlG(`"˙‡ß…9PÝňĚT-oŇ *:áßLçăţMP7ńDi S9$=~¸‡’*锫jU-`SűPbÔ<ÔÍ“p×6ĘvöšČúĄ÷0pçSęWŐŻążwxŁ×Á&úŃ ×+•ö)ć5ú¦C7fű©®z/,÷˛÷úů˝“Ęl›%UÖ˝~Eež¶O°üĆ^şŻ{ńË•[t\Âţi´Uę ¬—‹oiM.SŔľ,ç˛äŔ®•ý[R”‘ńÓčâG†$R©č&F¨ŤTXť¦L-ĐćkG±ąbÁ-ÄBrKőé B¨ä—8(7§~…K4[?¬ˇS欷;§ĂźĆöEĄ˙2ăĵŞń[ˇô’µŻ v;Đăr7śWâß•§{_iÇÜ9Í­%îâc_vŕuwŇ-ĚđMp§‰»9e\Ź]ŘeülFK¸čŮźrňËżÜ×ű‚YËwÉAt‡m“éČŮb;ŕ Z/YŁt˙! ˇgć‹F٨T§’•’˙oJx4ÖöŇŹĚ™Ŕ¸´V5üłÖ•d8ᬛŢĘ`#{"o WĹŞUË×gP{Š«>|0¦ű?A5¸ZSŐS%GCs˛ć×lyWüz[¨Ž™ëńßúІ†{ˇ`esľ ¨;¤nńlöăżŇĺw Ţ;ŠL=› ±ŽŐ”kRŚßz<”\ţřĚrłwů 6®Č+¨ő•¸‹gŐi˘»čç{±Ů÷tAľZŔă»ĺżVŰ·»Y0'}úOž}ýPÖ!” ÷»ţ<$RxîÜcľ3g¸ŕ*‹ńhÁŮ^áX¦ëĂcOŚ/oë$?ą)UVĎíc˛A§xČĎRof0ŽôNň8ź úú]Ľîš(›â7ŔňŠŕA0‘­ŰwîMü9äÚľą­}˙źďąĂ_z)RvŘfrFÓËCŕ}]ë|!ă†çyü¸ł đô_,°mâZ@;JZ~ 9V3_ĽCIő;Ę„ú l™ŁkY€6ś6&ŚqP†·Đ®™źěĹHŕŚ"¸8+,ĄÚŔuEň.ʇŘ(W¬oĐ™y®¨wüřż‰!d’6Źl%ţ.˙gŢ:TL"rqX©č¬+‘Ćléş˙¶śŰΙŤˇË°ő^ŚŻŠëwjôUŕ“}ZĆeŁ‚ëČ—ź%ŕŐ˛ü[ßĺď†Ýˇˇ¶ Űx«ÖŚo}|ĄđÔüŔ҉Ńü©˘ŞµLßQRdqšu­tđP¶Ô,Ńs§źřfÔăc•ś®—€nŘE1\c ŮŤźF]Š|"ZĐŞk­Ő Ű‚č•%b)c Ř䱾š‡Ň çă«MÂĚíbQ‘şŻŔ‰čďJ)AŻRvB)•m]G`jEŤďY¤˝*6Ť®®Šé|w®QäŐ´?.G˝ŤZ`vđL…D/Cžˇ¤iş0l”Źş4Şî `ÚĹdd°ß«čĐHĎ4{ “‰ţ…ËyüA…Ý”q6¶Ľ ›)Ý©})%mU öŠąŢĆâń϶fQ§d=~ű ńĎŞéUY1řA0/KŁĂéKÖ–ůŠŞ‰µůńéśŢĂŕ2wߑ͡çt›»>–íśmm$rLÔŮŤ:Ę*˝řX6›ę3°V”ö«ˇeĘTj^ßjuUÚĄ<VľÇἻŃĚĽŕÎ^mçw·»g™î‰ESJőÇH›¤ĆXÔlÝ?®ćk>ąďŁ[\á÷ím¤.@ő#D2I71›<![™•JĐB{:ť•ľh˝Éi·jňM䆓kńoŕ@n_•1Dý0®KhÝĐ8ÚŘ ä©[ý#ÁL7Ä|_4Üi­üĂ™ ‚/Ě’k~y&Pűú¤“ÖĽ ‹ů†g ˛“AR ‚#Â÷SćfÍÝf0ô|.°tZo›NÔ!Žz%ŞĹÝęźIw»­[phU÷ĎJĘXYô¨¤şˇPoD 0s,0ÍąŰ9Ą0j‹%f_śy+¤}Ćü/e=GÉlő¦¶t?Ŕ™Z6"Ű”žNćÝV\e=Kľ‹Y˛‹Xnš×˝h\â«®Řâ:K8¶MžűcÇ༧éë„;š"”:÷Ö¸Ŕ¦Óc_mMŹq‰VÎĎɤv›7Ąša˛¶±vâf)Ć›o5Ρ z!,ľ± l«(Ý?´°ă,“qđÔë<É1ź™ŻD(¦ťů«“âµŮłu;G|<?V÷eGs†q­. .gÜ„…Âq’ߔٗHC-ënZmÓ˝ßĂ%‰ –śÝT†\)¬›ŰťĆĐ{c¸”ĂÜW×YfĚ'Ü懭qµOŔBÄ@Ţ+rőĂ ¦gď1ÓXJm9Äę7Äx&ë¶P1Ń“ăęřG?ů´Ŕ^ô¨÷BónäŔlS[`ľ˝±f‰úg"×;Uâ»c‰˛‚2iU,ŐĘTŽąŔ”ŇxóŘűµ†ŁĂWŁ)ôWĄĽ [˘‹‹*đF5 ďT/M¨™#őeTé×Ě#–lÚ÷«Úqgłúǡꔽ"ś¶;ŃíRŕ]$ŹxüK-ŞĐUO‰o—©<ěáÖŤýţź$ždĹr\m÷tö•›N°%zł›ú -2ŐÖÝNÓŃL×,Tăeb5öXĘÝGť'gDDXËÔ<Ç9cüζąX:ćâ2­Ş‹ą6Ţ«á—+q[¦VŔšĚ†G1ŮOÔ^‚ UfTź>ąsüĚN’â7O›°ŕíau éŇ÷čźé/íN‰\®*™¬*© ÔOtes¨ *z‚˝U1›Éť ­Řd0-˛Ú~ ÂrüPf,“âŚî©Ş±I¨ĽĐŮZęt­=ă ßcíLD‹Đ”-<ţúţĽŰBO‡=¦CĐ@”áéŔcľ{Öv’ęYrG"ń_5úË řŠŽ·1ô8zÖ±eFë “˘%'…—gN•ЧłlY`”É$…™ĽçańIžRw©Ä n ]ĘÔ”” Íí®ct t[ĎĐÍ3‘FSČčq.ä3p‹“R¸HÄĐč :ˇq É©«ăQ9ă°p~é˝2«›âžá{ x˝i$šqs¨ŁF—^iXtčR1ĺ×Ô b¨Tý ĹXä‚ě´ó­’µ)ˇŃܦ4$ső©˙şĆmň_J1”BT8†3; Çńb% V~×1¦Ĺłô1F_ĘďÍŃ}E»9Â;#¦ő*”î%?‹±Ű…ůä´y™KC˙ÖťwV6x:-ŐĽ%±,ď@íTOr36Đ›;®LžÄ«´µ'KËÚvöŇA…ôTZĐŢI±lFČĂŐÍQ˛mľŤaLłŔ¤ ömk‹ŢË’7» FC‰R Q1Jm±µw— 2ôś—±aâ_JżQ5ö˘âďgnĂCQOŔaŇ*„đďB”)ĎĐ­ui˙Ö¶ĄÇ@Zg ęć«qöaÎFH  Ŕť®đúŕ÷˛V,ę“j[Ąü—łĆŔËLó7Ć®‘GŁógč×ń´ RnĘéŃ0Űô^čŁ.(Í|4çĐÖăă 䣼”ůIÔŐv”Ťă3‹ćăČhq×936ą sa\ĽRc›á|z'ąŐ~F?|‘”çz ĺ ţ†Ń] !4xX˙Í•QŽ{—Ýk^'Ą§ú9€Ö/_“D1ŚŐ] ™GK$Iíx¨úČßSbxe-F4űígXĺ‹>Ęd°B¬Kv*f«Ŕ]ĹŲ^žĐŃ0šEqSN$Ô Í:9űż w»ÔvvP ţTNƆAx÷ůBX˙ßV|Md“pÄ'YtT9ŮÇ|ŻnčĄĐqB'Ń‚=ń¤6}äĹ"Q|˛^É÷-ÓöľH¨kvűžRď-R;ç"ą—LÝ.Ś1ćó ú&µ|ťÖÓKž ¶ – ţbi›„Ob`¬…·§GPÁ/,\«8Íőş©c9Ć6e“18ŁŃ!ŃU®ő}v)T–z2Ó;pq© *Ş$6#ĺřhŮ×iâńČÉţ!˙ďÜxĘ{Ň _©xŽü›ńÎĹZuöďŃVĘüť ŃfPżhIÉSiM”ęéoW=čĚĺÂŁ¶ÉnaKIş2žAËŽs-˘ýUr3•ńm1|‡Á«uó>iźŚ+ ǢW‰ŽSĚ^őó «ń˝í8ő'Y´ËP“… š[¦›­źë(I%YĐťÇüRË —î¦)¶đfĂׇł•«?Ó±Ndç#ąHQâ\g§[K„Ç˙×ysšÜ¬żŁŐ“H‚ĐBMęXť>Ëi/i(RöšZ{Oă„ *é€/·‰RŁr‹{t63ŐĐMÖÂJĘCĎŹĆĐ$¬i)^˝^ś`¨QFä|zs’ĐŕÜŹ!Ďí żł&đçNç§žťqU¬?ő¬ÓˇDXŠqTbIč/ßo¶DҶôvdŁdpXčí˝q~śŠ\ÎŢt*’\ ţJÚŞwÖ^¸DEL4 Ńřłc,ˇ0sň\Ü-ľŹ6% ß·:VkÚeđ°Ěü]ęI l5ś{T瀆ĐüŐ©¸Ęş¬@4ת0[XUNr#ţ‰4iµ2€íYş·Â™äjś°·J…P¬ŹˇÄÝíEw®ľµÄϰԖź†"ć˙ůMŁt¦Ł]ř҆ ‡$K(Q›¬h} żľ‹Q%tˇÎÉś ͤ˘Â¤ĘDóĆ‹”`ăęĹj‚>Š6j©ÓŰťfXĎFVlçYŮÖiA×;­,|uEbó¦Hž«K$o@9ŽőšÉ73îh™Ë×-ÜXňÍ­íçÝé ¤ ­  @Â,9ľAúú čĆ”KĚíQě4J8"˛o¸Ď•¸2mV(#ߪ9jv ÝÍs†"‡ëş j’'Cz#·”Ă<ňťçŹş°y·Ů3ö_żYrŁ)zF:É~¸ĚŹĐřňżő”ăÓ!Ć«ÖIaô]çG¦ŇÎ/”b2ĺ3ăÁśë1«0*ąójŔ$B‹ő#Ý;÷ TŃ˝1eWY÷PŤ¨“#¸Ó&®Ď§Ŕă8ľĘÉ.hC>ţB‰Ş2â׌ŕ9—l+F=ëÔšÇ?Î:™ŔĚ {ńíjBFĆH Űś——R"ťĹ†ÜŘZF?–áěˇ\_>˘¨¤đN%ôňýŚĐˇ4‚î{!ý[”cŠlĽřźHF4DËq'kˇ•ş!­o4ˆJľˇ\aµďé¬ö‹fłqµum’t ^­č"«,0!y †iNűŽ ÚďšjOťGÂB9)†§¸µeŘiyŻÍÇÂŤź ü± ř„7JОýˇĚř+jř˙«íx4k™şVß'z[[vąýč|ÇŰŤc‘%;„hM÷QŻ-ďţSA2Ź6`v*j ŰqÜáĚ i§Ľ­2Ç đŞĹ€•ŇU}źH©Ü*@),‚+(ś łá±Ô?pĂ|F\Ż ‚K™Îk) {VŁĹgu_ŢwpŘ‚Ôj Ś6ĆFr4=bŤ íP;AőP7HĐW:ë˙x"`-\~¸ĺ¤Ač4˝éŠK•qyUďѬr,¬Oj“ĂËG!“kë¶ËĄÓ>ď’ÝUĆXzÓ–D¦ăBÉ7ŤîČ‹”$y˝ô){.ď˛:ž?§o~Pn` sÉ˙YµýűQ=CDX¶7¨G'FÁÚ_{f˝'đνňŻpwTlČÉ 63ěą@-yŢŇa¤„YRüç@y›Ž4ńĄMx) Úk»?-Š)ĄĎfÉňŐĽ›,ţ0k•–´ůÎĐ?Up´•Ätž‡Éý˝ĺn‹ŁŢńż\ĺ4Ż•ěźő9có˙ÚgÍ<ö ˝nŐ´KŔ&+µ)Âa±q>ůR:ćZö_±ŔvĎ× :žâ›Úď":pĹ]Ř ,4‰Ăi˝ đezüţß‚±ŠťŹ± [ cü56|ľ[đţű4ňHüö×çŔ#•"\ý}Ýĺ“Ü_äúőŹýQ":‹ćm|kĺČUż)“,ĺ,©al:†µ$ľ`=T6ńHĚßÔůˇ}eŢUµ3Đ  îA-|^Ç8ĺt¸ˇ°ÎS±)q:`"1ŇľWź?«•a*‚ńÍ)Ú|\ĆmVfŇ ÓŚÖF3a®áßůĺú^Ű7s„âhő|4V8“ľřNlEŞŞ5!h‘I% }7ň8:?Aăżî%—aÍî‘kH’zŇ M¶î’úz&ç—÷CSTývqđÓŁç{Ř<¸dˇ,zťá©•6KÚ“Ę\ĐN˙uÔz ŕ’qóŃĽ~f—ł«^ZK­eăęŰëżzÉŤ™¦Âvg‚´VT_o2ŮĽˇ„‰©ôCu†˘kfPĽ×˛\?oěé r¬%ńĆTň< ~˘~·íŞ2§“í^äAża=Gcé‰~’kŚ/’÷±Ęَ’hUjúô6ωÓ.YÔha@5ş–1 ]Č1—V5'ńdJ5ÝŮĺ/gěŞ9˙Š˙ůŘ;ĢEsJ§,¸¦Ż"€Ú~ŕ—?°ŕý!~ÂWI÷ÇŚ:ž{A»yr7W_ČÍľ<4µD§řvčt@D„ˇy¨ąň„`«ĄŹ¸JKőSô.ĺzĄâ­S„Ú9¸tËV즗ĹĂçßşşo^  ş¸i@ ÄKz9˝lŰžűŚöµ¶‘Q«8éhźâ¸M iLlĹÇ•Sş°??ĄíČ C<Ŕ…@żuˇéî—Ňśô§3NzQ;¬u7UY>đą›H×ŐŇâ~eqČTL$J‰•%ŠçqzÓż‘óâęJo-[Ť áĎąťşyĘŐy¬TqĚŹj[ČYa5p„ß0A  ÔÔN.ę…ć JŁM5źúX—ć_JČ5 C4†IňKq®Çâŕ ÓOJ€G\HŮży’©H [„÷gתšĂ/‡™1ś˘aË܆Gąđó&š6|Aę©5ĺŻMuř4h•Ý™KHÍU5ź˝‡|Űß_DM«ăŃŹwm®&ĹX€®ůfóë\ HĘ»÷@‘ÓłnÂť]M¨»VËqă’ţÁÖ7«Šüúö˝­÷׸ç˛`.@â•V)Ü_”ĆWx¦ÜČ0(ń‚+&öOwsLaăȦňŕćtŞB9Č÷K$úÝ+,%w|˘,@fuŠ#ŹÓŢDzĎúQ??NeץĐ'+еěDnT‚{˘4““ŤB<˘UED}fťx#ĚśEcZ©·$č­Ŕz V) K÷8řógO9v@ńAc ËL×·5LLćř®ä>úvîźÍěłXVÜo©¸¬fy–)J,óŃőč÷č~ä ó—[ý­‘z5D®ýŐ»µßÔe+ŻôžŮÚGťA‰UŕWŤ¬=ůPńÔrČfŽ­;BéřIA‹`hUkŘ2›Ç¶3ťŻß’Z NĆ úfYaą)®ÔůÇ…P”^kÄŚB¸oć/çs‡źˇGRę¦` Ě‚´,.B*"qZŢĘÜm/X©Ćş‚/LVËÓĄĚ]Łł«zś÷‡FĽŤŁĆĐNw;Ű.~Ě’]”¶UQŻŠżőţW É•xüîR9"úč˘ä?ĺa“07‘ŰäÝĐi°&™Ĺ12¨ŐjĚ ˙ˇ…T@µŻÇ…cřę‰ei{˘)üř¤dëmANË:D¨ĘłéŇŔŁČŕÁ5§Ęf@:›w‡ş^{—Ę“§× Z˘Űlń:ç“őěťZĺˇg?ČEűFŢtßVFňÜ;üß§G´PĘ{cͤ•Á=!΋ýű„ÔâäÁ4ň¨™G/^jkWŰźV>"ý§­/= ůćÂă©,V®)Yl„¸ÍŃ•)î¨ŰĚ’.bhą@E;č~t CgN?Q6ŃšŹ¬ŚtV2·ëjłxë‚Ŕť˘ß.äĘÇ:ËérGĐU‹ÝQ1¤w«Ŕľ{ E‘z¦ŘžCĘj<ú°Ä 1›^nBµMéײĎďŇîW[ź-–ˇ§)^«“ůµ;8m¤§hĂ“ŞY.ô–ůФáę?oJJ`z€m„Š1\h´=śh¨ßş7Ľ¦Š¸±żö QčąĂ=ď»M' Ţ“».^9Ç/Ô;ň^ŕů•ż!6âÎÂsV=Ą:j/îx¦Ú]±íąĘ HÍ5.0;ôLćYôy*™·y<­µ‰{r Wµˇm˲ľy‹ ÜŞ.ŞňđGć!‚ę!$ŻaR!;ÄÍé( Í˝ňskZŰjÎiĺJ;vţ˛‡X µjůvéđó‘ąIqş ŔIU-**uK¤çž®0F‰ăŘRwô˛î~Hßyú†‹¦w]Ť, I&Ö{—rŚ:…!G„ęĄ0S±űťfOëNŰ’ű ŃŘĺf®JžGÇţrKÍĹMČ/ż .eöÜ “Š„Rßłe‰JB—OuK†ÉĽPŻóAŰEŕU››Ă5¡őO!Ů„94ÚASČmĹ•Ě%ˇg$c×ě#ąŕŮGÖ˝ńÝŁBŞ8C{Ďĺ(Ld”§]ÎĽĐ&z¦óP{ĂęÔítŐÚ¨ÓŚdĂ/ řë/®Q®8s*‹Î‚śNJ5Rn/†‹y¨ëŚľyőË_Őď3%âŢqç§]yBĘâhr cĎ‘eu™Ó;˘pĹr{”,Ů¨ŚżŹë$ŁmđäńŹÝ<®đJŔY¸‰QۆšÇ Ń‹Aý4[ˇ ČłA6;Ő“cl¦„KÚ•Ş$ŢH ^ë<Md®áyv‰/l„Ö•|‘°µ*ó«Ĺ"ůí;ƌ̵ŰÚĺŽëPďk<;—ú+é†ě˙áCR ăK˝űů§í¤n¨#<<µşöŰ„8§łČdĐцG~ącŘ)\¬(ÔpBĹŮďĚi¶…9éPLĄą}°ˇ@% mlţh™ëť»2ďl˙8ŽŔHµą&€ĎÝöĐ Î=˝L¦Âhô^D,S¶0h0đtě „nǵRŁRóś7Čň˝ ĹkšúďRă+·|Q·ÇX¶˘=ć·Súń5ś‡ÎbsCľ|’«ýzÖ-ďÚžôÎ3|Tm•ÁŘĽxA$`//N—ck&ÓZAĘ4„FČůu&ëĎ )ćVk>{çş7#ڱfîŠĐżÄĎô{ł÷fŽśkPý¬í„xz±cvöTžŔp*uú ë%‹€;µ!PşâĆ}( 󱹷{ŰVŔż±Ô.ńž~r˝?ŇťOp°řÝÄ©Ô` OÚŽ„Ą…´háş0Hë˙ĺŚaő„ śa_źú™+opégćŤ,“+ÍĂŰpO÷ě•đKBš2˛m€—ĆĐü–`Z˛TÎ7Ńco¸Ńýż4Ď$Ĺ"ÖĎy˛¤iÔAs\¬Âč‰6±ąh.3KĹ®1háQˇČŻąb[Ŕ›ĎCŠę“S™Z=q´âŰŃ­ËdFe*-ýŚ|ŇŘŰËŰK§ĺH«tőŇşcłRć2s Ąő?žµ=ÖµĹMôÓDŚ@©éRžËŇÜíeyN¤[Që(ŚĽßŰo’«!ö(51[“Aäj›_ś] `^j_ýî<`ËůîĄd(˘-ŻNĽ+‰+#čçîĺP%Ţősşĺf;®ËD‘6G×9y¤f˛ŞĂ#±†IÁ ŘnkB˘öşĄ‹ăвüć.±Ú­áük1żŐš”áFŁFWKTť‹k>ôA)ë+k6Ľ6Ç[Q0ľ‰ľHĚwŢŮĚă)FŇ/řÎTĹŠ…,¸s(!ŃQ vq°Ę)ÝńĂş>]l€sĄ ęZ­ś…¶´ĚB]|§ßý,'úK^ll°kű Wc–9¨­ż‰ńîńL6Ň‚6ő˙„ę2Xťs4E)mYđîäĹĆfxe,j^Śšć{ę‚§›Ş€jaŚülVĆ;hýĐk[4¸9s4Š ľ§HÁ==A$RKm’IÄŔŐÄݵîŕn‡ 7ÝAg!ŠěŢ÷-áşL%Ę2‰®ÖBBWú›ž­ćĂžÖČŃbĽŹ|…íoxq•É`řrŚ%´Ç§Ë<4ÄAĽ+ذ?B01btî6Ą^zśd©¨ËĄ¨¬>¶¨ŠÓîČO1Ą kÍ+ój=ĆÂ@8ERł{yČLZ÷+:b>$8ĺ¦ď^čąvŔŻÔź ­ÔÁđ:,şŹX¸–xUȉAĄr]˙¸MáHÎł6N:(—飻÷:Ot–:iP_"¤ůŻĘ~ďqG„J:Üő~ý´ř GBĎî^öÜí˘ŃńQ{7xmöiŰ5 ďqâ äś±\1Ł –_KO®3°íČó¦ÔŮ-G]†Rţ¦0rą…•!}P?°4¸‚%CĘ’t‘Ĺmp‘PëvšÁm•°S;¨‚3°[ĺc§öŠ| ô¬lN±ś-n2°Sꮨ?ÓZRέZ{†“]ŻšĄz+0@vW‰W¤OŚ_Gš·Â¦uNwAŠŘş,ţ9ÁŹÜtyjJ–’ÂhÚ×n<ˇÍG·V?ಓëä”r;{t™éSŕ»ôp˛„ćřĹm¨˙Éź%쮀Ňf'(˛©ß¶ýËĆÖ}.¨ ”ÉŃů»¨şůŇrt:Ô$cÂH´q5ËT— -˝DťK^»”c?ş.;ąŰí’­ű›w ‰ć~ü—í"ă] sryÓ´UF@c–žG€ˇÍµŽ#cÝ–ŁŰ#"ŹĆžýˇřéËţ®ôi$_ H‚í}§gtűQťąłbóĹDŠ»›ëň©¦!vĂ‚w‹‡Dµ5ŕűDłď@P+Z7§ťQT8ĹƢńe1¸H>Ű:Y2k„×’ÔĆČOâîmŕşső·lŕĂÄńĚę?8ե뛪PNáM-ŤD}Gíl|Žs1ĚŤXétücMůüRBťvW1ÂA~tId "Ťű@,ż’łüSQŘB˛Á1h?%.gÚ™żĹzö0ô”ŮÔ­™·6yk7¦BK(ťq•XŇËÁŘâ¨S‘¨·©Űbčş™ĹŘźňölćŃ ^| ĄÁ_ígË·ů\`=žę:.Ť"YĚ…–đ[6qv„.˙ĺ ŽĆšÉAđŻ/˙”‡Ĺ®’fV ţW†7•ÎŔF˘\&¸7kYYccĄVŢ©nGŤ6˛ČÍÓ™€Ď˝7‹2K^Ţ$çŮlă‚¶5ÄFv_ •ŞW6Î…Ť]°ÍzĄXż“çś˙ âü¸H)ه°‚Ć0łöýOé§$$ü¬Áž2ę8Ě+ÎE)·—VěÎ1$yę'árâ›J©‰ÖE¶*&ÄöŚ'<řE2“ "?Óv“/]×ÍGŞ™?ÜSرŮYţĘ 6,ěĄIń~gä\Š_9:ÎëBZcZöŚŻżQżŔ<˝¤¨íGθÇţÔŐŢN‰†*&®ĄaB•UXNH›Â€©7y¶¶JKŹlâ%ôŠh8µ—E±)Ń">|NćGďâYˇ7#ÁˇŕőĆ‘ ~9S ˇŻpH ÖüKH&AęËJěBC‘UŃ@B‰áĘÚádCSÄvöđd†Í‘u ĂďŔfśÓÖŁk«±KňĄčăŢ ‹ N .ôßxí ¶ ěĆâÜe°€ŚéAFwxčĎ)Î9r™9I8§˙€é|oÚť—Sńył1ÁřĄďČ;¨«× 3ľÔZ lŢ´ z´¤ą\g)ŁL~&ßđË0z‡ˇ uŘCăMAE `IezęçĽĎ$ö˝ zĚđÓńŃ„1ěnR(ŤŮ“÷˛Ô }3ŰZţU¬h÷F<"Vbü™– ŤÇmżłŐXBF‹ZÎIâe…Aćtů\Ł,80kJńܤ¬9őh (%lő,ëŞkx9‹wLľě˙°7˙ł–š,ě«8¬nJ˛‹ó ®#ËÚ%ął Ż}”içŻÄŞ’Ľß|µ\žąjäEXnĘí?Öçż×1zu´gŽ»’qG4±˘Ŕ–f‡ŮG*cíYsYóŞÜť4L‡Z0¤wĐáşŇG÷KŐ\Ů?MN[5מ‰©p?UżĎ”şŤJ”˛-85CČę ßlaĐb°÷Ľô;źŻô]‹|ěýTŃYKĄ¤P†cÓŮNĂ#Eű”Ť&OAŽW‘Mő­·}«íIyC¤Tň }άz”@• ^¸†íöx°Ô7rŹ”ě¦˘¸Ď^x ĆŚ4LJ&Â1 ‹˘@ű“śĹĽL›ÎëĐ(0N2´v0âÎ3©2­Čyš­ţŹ­6YEĄ}ö›–]t':!N‡Ţآ:jŃĘ)ŐżŠ9~Ů^ …Ď(ŠL)v'Ě^é)Úę°MĘpĂİ #:vP–Â+űµ—Ä-ľ ¶'mč•›¸,1cřuCůJ,×49'"HéBÖîíî|ŹŻ<ŮgU¨ôDňĚiąÉOű¬CP7äbĂ˝#Z^Ć'Î'čÜáÖîú†]žGTŔËżÚ“Ns†×Dµ_jc&ěĚŞMbčśPa}n®öW_ë2„yˇ]ףI_‚}mO ’¶t¤úľĆV TŰďc ˘®>˘Ą’¶[Ü[ďj.:DE"é›LjϲoڍOÜ`®e‚·ščmáWŢ„ńťëN;bo±oĽED^+”S\RĘ.ő‚.*Óµ]—ŠöRr!aÝşŐ2ÉfŰ”ëT{ŁÚű}ł'ż×‰w2N—.ş9¬VTđ2y|®á8YśX FDďý¨Ş!'Ź˙kľ‘i¦Č’ŕR•HŢ`] źÎBś•pḫ7 ˝˘Ń#QĐXŇBž«0‚4Ćč ¨ťX$;pńA€|"Š´žŠď"t9NuĐ™ŔRt4BýŐ’2†_ €G®§čQ›Ţ…‡ŁwIn[‡Lţ^/Ë"=ĐÖhŔÂď 9´Ą«Ű7&ęCá›™‡ůośŻĹBQÉńˇ«ś^OY©ýŃ-ąHcĹZĂ%.ŇŽáŤé˘«ŕ«CZÜۇV;NhŽya6”Iă$7S(â94\2RĆÄ>ˇQ óĚÔô ŇôŻ'[v[;ŞÍDÇÓyÔvl貴éçYG(˝łt”µź¨]Bŕô’3ś¸±&) ŚB®żI\15^\Ťĺ ľţ®łĐqĽ‰wŻ’@/­L DWT7÷|RnüËĘwKRlŢ»´LŹşú†‘M•×ü^«©®MÍ–Ő¸[y .U/Ó·Ŕ'ĺ۵˝L-· ”kđ+Ĺ“Ńg@*K°M÷ýxFŞĽH{CĄD2[cŞ2ZÂ`S9@„Č•wYąi ń—®ćCnI:=›Ě¨X¬űó—T")ŁŔśĘ ŞZcđo5@”Öd¦TľCČ!öřT}[0ÂkBäĎűËÎoG-tÄ«Šs3DŕŚ¬ţĘH«t¶IţF"Ü`Ł*ŢĘ™­§•Ą¬ŕ&‹ť˝Ĺ%şr;ÁÜNK*TţŞďoI6¤ÂßśHÂ0X6Ę}Žwía”Ý)‰{D‹·ý«°¬Oř{´¨usŃŕĘ[Ł•Ĺ7<ćDMů+3­QéŔQ‹ żŤO_ü®[ŕuŤA;¤”‰ÄE˝ŕwź÷,Aő¶mű-,ĄžHbŞ aA1ălô?JgÄf;aí ­€g#ĽŰN[š6Ľ¬rFÇwÍO4Á)Ŭ©ůHC™öć±ZÝ`Sš;­¨[é'3Ëš" nf›]§I˛Wóët„ŹÎUĐy‡Ö7*ŰťÝ`öK`%.©6\¦ĺŤZk›R;];u¦űŁŘĘ´»Fg…Ô<ÖźÄW§H·f™•!” 2ůžĽ›e˛Ho ĺ"˘qŔęÔSâKŠGŕëY¶3Ů1p¬ˇ10ŤMK$ÁV‚•}˙Ľ Lß[E˘HÚŚŇX ĆăĎČŽ}ęWÂ…]uŽĂrî^ŮD/ő^3\ů°bŘź ę輠¦qE÷)»¦‰Î•yŠ÷¬ÂlhGé<çčdtÁůmQ sŽ`&öŐţ?\dgÁź`5éNęÖ@íŐ°\ TŠbFcíŽ5öŮۆ°?§?wJžhq<†ČGG†“E„Ěu™«ńoµZm5Ó şµfş\Ţ´íE–p¶ f2Ć&‹őGîf¸ \­áĹ–ÔNhÓ6;±‹ -ńLôË‹áD¨rPľó>?”ĘÄEĂ›)u‰–bO–Éłc§Í}]çp°s¶ś­-Úh…{Pü˙Ş1“ÄPţÉě}(Ă6~&é şśLĺąî002şk™â\ ~0QÓٸáâ*psiׇ•®VSdWś,›Ę· *A&9ԥ›=AńäČ&Ż­öŤŰ5Ő"`@9čńćŹDŮv“O•ű^Ąuôrţ$ĆŢý.†I<’ăňWĎ”ţžîŘÎQ ĺ ^=˛“˛wt‰Ô˘ňÜB.÷Y”t Më=Ű/ňń=qłË$Ł+)Ż<˙Úś­‰~y˙—€$júĹŚ[9Ôi¶v”““łťĂUŮkţř7ư7Q\”s Q˘ŕ˛“Óş˝)š—ĺ®íÇNĆŮ‘ myB®H·PóMčď{D7X…§X…ŤJ\¤ ‚!ÓÇÇĐ6¸$ł˙śÂÝ1 łČj(÷ÖhóH⥟¬_ĂĄ [BÎyá?a-Ž€äB—Xl^ľ)`nOu ŕ¬ű.-kGřÓv8gÁb7őŢŁťťěά3ë~Qą-<ď’á˙ęŢI’'ď2rß@0sc˝ éf-K,9pî®˙Ä?"µ=âIÓÖu5Ů /őűŁşĆŃü(sT˘x©m™°FJ&iÜ»§µç/ťž÷äĆ”ll†(íÍ&@SŚÉËSB46Př‚ŠBŚ`çĹÓbk“¬ {pV1'čuĂ2łKŚëęČžnz^€ęDkŢ.¸sĚj»¤ăo«şvwńĐ+QÁ‹â]WÎăs ‰"ĽxqD·EĘóöx,9,H k«–öńíó΄Ě,µEż}÷ iä/ˇc-Mő3żŠÇŠî-Ľ–ĽžŢtË ¤O±Ro”Ęśé—ä5¶›č4Ĺ_đ7^‡‰ţďÔ˝ë/l!-CY®ŰHšd©‡LĚ[ő˙ĽÚHaŁ…ŮťÎHŤ UőÎŐI‘ˢÔÍcÚń†C{AéS şű^ΆȂ4fgňŘÚ PĚ`†ÎÜß›rÎ&,ĺeF1 Ś-Ëž Šp:oĎÓˇ¬¸ŐRy Xö1…ąNí¶VmëÝEš <„WM„śPČ5^Í‚Ş_@RM[bŹT©+ÖTâˇňčĚ…âG†r&tC8,włˇ%錰,˘LŻÝľn®ĘoĐČ=…š$ˇÖ7]ăÂÄłÔčÇíŘ ćžWmKc? P·PNźĽË«tjBľ·su˙ç)1Dyr iÜ23š ě»qŮ Ô<ŽŰ‹x‚m= Č™”QL”Ö?óŚÓ1âů,†)¨¶! 9ĚĹ?ĘZř˘XC'PL¬ŚĎ0ÉqQŔ6č“VĽĚĺśÔ"ĎŢČn‘„q Ar+hĐşZ§ngo¤ŻřŘaľŢ«MiJóŞŘ8uCŤ=KňsgEF[&˙Ţt*§wÁmRol±%d¨H~É7}Hńđ"-zUMµsÎNuqĄ€7ŠůÍ!dŽ:7ĺÉ´őΑGO3?iŤ‰5e$ıkęĐ1<Ű Ťť,Ş>˧÷á—y S›÷UAŹĘű^L>í,9–Z6Đm”Íčö‘řy±#,•ʰhĄß}bĺ”ԭE_‚’ŔŃOÓ©}ťĹŞU2çŰd5?:p<›ËS˙,˛ÉáŮśml×Ç}SĄĹ±6T©ôĹÝ«ŞŚB4Ź4äŕ†Ć¦'bôőĆÝ…qćtŐ%6B¶]ŠŞ2i;A<Ň’şŕ A`ţëm€qϵĽ¦ů0†–ŕŢÝ“äŞ ÷™#ÄóÖ ©ědOś[–Oś3}NUÇ‘…b×m¨ŽóLŰŁ‚µĄĄŹI‚™–·Ű)ĺ+yˇQľŕq3Ź—ç{a–â,_F Őb N·štŕĚ Q®&[! ĚŰźç;rSˇ¸byŇÔČ۶'Vů¤‚ë¬nu`ݞ÷NüMű~µÔzęZŰŻś8&b-ô*¨*ýE?™•>­•”۵ zé™jMŚŻ˛‹,÷Ý[Ż~ř¦÷§TQ<^o2j¦SZo˛ ôŽ)Uť«Ż”sśÖeý˛ë$&}gb’ÔůÂĄ3‡é|_§j ĄçD¬G¤±X5Ç ^tôŕ;yO`ő-!cho8^L[ţçlĄž”—1ĐTZěčžý“]¦Ô[Â߬»‚¬×>LH˘ŇŤnÍlüJa,Ud™g´Ás Ç…ąTY#/´Ík<ş;ăm;RËë_|ü°^ßaâP©Şyýň\ě 3Żě„Ź^ˇ:amĘd&Żeo\%˘=cý“=Lő}5 „ ‹‘jŹwuLP6»(śĹütYCôÁeÄ. ‘BÎ\D"‚ł+Ą#sĆg•>îüjÚičqěeµéKYĺ7čm]ô  Úűg'Ü1Ôf„ą˛ëcă\`ů(Íoţá[&EyŰŘÓ:˝ §z›ö«¬"ÄżSDňŽ · NĐ+˝ŢÓŽíQ$‰čŻrĚ/ŐÜtdÉdôÁůŇAEĆ9ň•Ř â‡ÓJ®ov>¨‰>_Ŕ’OÚěĂz˘)XɵĹĚű*ś’Ě÷<­ÓHEđ#ç,Çe˛ň'1ÄźbtpńÜPO€ëݍzÔ,ŕqł§+pí[HžÝ×Ä´Uůlz\°;­fůµČjCďO‰¤QʑᶉľSĆ(˙ÎôN&´Lüű}ű´ÚĽćv’3ÜÓőŞ ÓČ˝¨*ö`÷™Föq??pp}ý*IJ#ŠNײ…“ňą»YĄÝĚéDPA—+ü· >€ů5?őí—;ýqś‹S`RFţGľÝšß:˝od$Č[ҧŃčůĘ•ŘÎŘÎ)4Ź ŰéCÔÓĐXC$*Ăť¶FŽ4đ.Ó­ŚşÜ[Ű(]ţ{é§MŃgzc(±Ź˝)·Żq†k·a3ŢŠ|­”Á¸Ţ_ĺ㽟S…47>iˇ•fę¤hO(äk]´[\µÍŰ-@KĂ đÄ6h—łľh«ěöQÚxÔZÄŔĺưĄł¦ŮÍĄbŹfP!Ëű#®Ý#ąîâ©a2*ÂKS/ź9:ÜîDe·ń ?%<{ý"łĹ«@­jQĂ7ŮT†âi?úSK×(şmUe†ÖuˇőĄŇÓ•¶Tç©—\† ręž‘Çměh ©Ż)·g«GYµD?d`Îë“vAńî‘vĚS›ękĺ˘%X‘ ±óňLÎď<:ű¨zţ‘OT”ýĂ۵ȋ\_K¬WJ­ÄŮÁ^ĎxĐŻˇžĄ:č?`m»ôĽIţ"j6‚as˘×Ç×YEč“ůĂśízÔ$ă M™í× Óp‡×„=¬†Ó:MXpŇŕ%L`ülęC±mĐvW®·ăóŇ#žLë»ŰN=Ę{Ă")¨ßžq˘!1yíÜ ",OxFR<.g57Š —mďVŇ)ŢUčÍS‰ktŹtÜšä›QZ6•^ĐQđĎI+Ö{2·üÇl°Q/ŽSŮPîĹuj± Ô]Äš·đJ1zĐ®í_újlÍ4} ¶|Äâď*ý˛ä}8Áy +JłzÔ•ŁŰ[W%nŐôśY(d0čL,…§ĄmŁl÷*Űߢţ»’ĽŘˇÓ âáÝ€zOúfVILG€f4ťö "LČcŚ. ypŐZyB‹J‡ą;ßä&ýxH9©™<Ł«+é’OIw㆜ĪÉĄĂŰ©Kw.íBµDˀ˷<˝“ŽKFS ů¦E€Ńś˙YŮ}Ł˝ěM–Z7 Üô 9VĚĺÁďbO±ŔĺéČ˝µS°‰ŕ]VÖ’‹lŞÄdkÖ $Ú®ÚÜmśą@^!EC,ů’Čot¤g¦Ţ!9fÄ(ş'µď{Pđď9ŻąÉ˙ĐLä pˇ+ óX5wIŰ=ŞŚČ{bÖÔcţRŘűçŘŃ,iő:ÁˇÎĹóF:óă#$ä•użI3™LCë—Ňő(%%›ď>ČS›żŮĆihdvö§7Öęqżmł“nŁţąI{űoV'uěßí‚ýĽ­›ÜŚ}EMĘ_7†,u:|k˙Ľo*LňË‘Avě‡Ţ•ż+ŃŔ[ę”ńŕŔ<®ëÉW@tÝ+®Ŕ-˘äŘôŕľn† 3z·U ÖK)´W–mSĂ/(äÁĘJWą… …¦ N¤Ź”r™g^9ňSŃ ˘GíCĆ#‚  ™`DúěŠäcĂ´ě?I}Ö«®V)ĆĚ'ßHÔ<ŇjCš˙‘ŕyudŞĆeŞń{·í(Gw=#(FŰÉŮ>q7saŔjߡ¨ŚÝ~卢Cc~¬kű·@sµ4U|r_Ó‡1Ô¶•v…=ˇ´uçąĐ9z¶Ń¦a¸'’0ž6ę×~+yŃ÷ţžjW«ë–Ü÷ô Ó •ď‘_™z&!‚ۉ©&Ňşćů6Ç|ć_/©Ň“j¨óýه2«:úÇ7¦Á@´îëN–Xd§§ty®GŚ'Ź˘Ut†™©pŚx•wkA"öW@„ţPÓ—†´Đ:&ę+íîšµ#m/Ö„…ąĂíĹűůz@ăw‚™UŢ á“ańV{Ęďn†?ç÷‘ź~UPÓű…(â\Ę ćÇ.u=§BD¨ĎËK |¸˙{¸Ń~^Q˝ĎŘs'ˇĄ"-†óCĺ/Ô…+řpÉŰŚ§•}*çQç$ ¨‘\˙iâfy)+®ďÚ,°^úŽĂĎHÓmŃzÁ猀Ľ˙iÍ—Ť®0ŕ†Ëµ7CŰvCŕń5§öĎmL| ”ń˙)˛#ÍIőŔ±žĎKu‚t;jk ÂŐbj‡Ť=‡Čw`ť¤»BÖLč’Žq°„<”Ď…j=(ʰ镢ŐĎăhH5g ů!¦x"żK‘Őć–żât*ľó@­5‹Ëëča_G´Š“j®*–ÇŢVćG“ĚŻkÓ k3ç|›Ä+BŘÄs†•óQ‹Á!Kŕ‡wnŠCÁN‡ ˝üSÎcGEdśü oç1Vţ˛ćS“.Ľk‚Oü\Ćî Q]éěôőĄm+PŮAolÝŮ!ÝSYN©z~–ý!z€$ °7ĂVwó·Đ?Ş ˛µnü7¦íˇ]5ä¦Á|X·ď&+hť7lÎ˙5á†\ŕłę!;_ ˙Ô 3©‡h[Šżra‚ŚN©w'ş‡ĚϦâ1¬ŹĐc ţO×ęJJ,ŐaŐ*Ąô°ɇÄqľ­V”=ą^‚hăwâ…A"ĽDČaue5Ő>}y ‹«qŰ&7e†-Ëł 0GLÁŠĂÄTÎrĹŐĺŕ«l3ÜńĹĐn’6˙°qU¶AhźTzŃ7 ŘşĆĚ”Îe…E˛…GÔü.3~w5E`)¨ Hщᱯ Uç–‹’V*y*”‚¦É!}>UéŠĐxŔT‚° 6ýŚď u}Ďႎ;Î<ŽŠx"Fá1s­@@łl9J@l¦IÁ·¨ž=/»űI–{ďáŘL}ą^+$±ŹI—Yćo+§üöâYN32ěY ŢQ—âÄŤË2ő×/GÇňÔßíÇőv‘żĎßzĆđ-\Tx‚°"~:{9߯ĺýݱűLźByęš©xl˛¦q=•¸˙+->=GŠřüÇGɦŤY”ţŔPÔŃĽáę”›°Áť]39újúEĐ掤ąĽÉ/sĹ$Eřtć ŽN—Ľ5Şu; µ-ăńTöޞöőÂ…ĄťĘY‡ĐĂü•ĂW)&ş<†ă‹ńŽ·ŽňćPç‹áđ˘qÉŕNáÓ˘ăöp |~¶…2<<Ă´¸ dÜ­Z‹Ő8’Æ Ną˛ân UozJĄµ˘CU+Ű÷ç¦ý˝T04ŰN ÎüąďdŕŹüŚ\ęIϵ&ű¨Ƈ^Ő}żÍţL¤ˇ!]śZ¸`ĎP¸ł˙.çbźń©čF—JKŹ…(7EşC$–‚AD¡[CúđéRKř˝bĘŮ'•Ł­çY0sEGȰG«U•:°©ćm“6ńEťE‰*}«l,wĹÔ—†@ŽŚSξ܇xčAŞ[JË“Ú×2)Ĺľżi10›łdđ=¤73ęÇ—´Ő°Nó»|5|ËćąNH%zTď ;˙,E›¶Á™ ď‰âM3§´Ň1î3-‚ř4ćuĆM:Ç0HĂ$˙šŐ, 1dg©ú>̬“˛ĂÄx¨Ŕa:#°FÎVťď;v- DŘŕýĘ´‘­j6Ş6Á[(›atzÝÝććá…t€“B ŮřGąŤ1U:ąŮ‰ł˙^ĆjEâ uE«mK‘¬=XqgÔŚ1—éŃRIۢĆâ©ăŇ!i#lŁĹS·ĺ!RäĄ~ŠĄČyqäęhTŹÁŠěů®]ö=”띥)%/QŔŮŹl\P&ŤG ç—ĹŞÝçăčşĂ/q˛h(ů Ç`ŢB›w{‰­ąN`í:˘vŢnN Ţp|un©U Ě•‹X 1vvŇVlťôQ+Ę'UzŔpçh(ďÁřÎiž×–ĂĽÓNv«;@´-&ŐĂś5Ťí rúˇ#MÉć‡Ö*3›«/“j”×ţŹ^ŘĚxŠĘ;iŞ› €Ľ%üÄL{UŰŚçí”ß0÷ÓK-·"Iüő‹g22\&`i°a.ÓEuâ&]¬ ›˙ő…«w<¤ŔXV#?OŰBg Gf÷•nöĄň©Lă˘cµ)˛¦<ŹU ˝c«ŹźĎ_Âź ÚFsFŻV*'4âüȡ5)Ë'šÓ42]“űsl&ŢŽńŹă Đ@ąnd濆"ťp ®¶‘ˇîF“®lđG â5¬7«é/ü˛NÚ‘Nű¸îręz_<®'Űńq̵ó§2c>ďt‚¤!ôď“ÉÄŽ%×÷ÝřlőřF[P˙ řé&˛S…›W>^Cńů=­Ž*©?Ťý°>ÝÜ‹ZűŇ;R™67"Ý–IÁ¨á+«ë†0G x`{ŰŢsE^"d·=şs.ňRĆJY0ml—w5ĄW˘RĎśî—@Át®&<’8-dY¸żď}ä (ÉtĐĹ´Nˇ=9Ö«üŢ‘mĂżşďq=ŃŽbŮoĆb¶d ¸*F˘şąsÝŞĐС( ů(±ŮS_‰’ž…`W"MüÝ:h޵iëßoŽżč QafOЧ2zDß¶Y§•UýiKµ ÖÇÄăéjöѨÉg‘ĹUŹębaäő-d*–;]ÁźT,yTs(‡r'ź៊? ©aÍ”ął/H´ZhĐ´ŕŻ_Ôýgů[Ř%{B®E ßߤ/žýMBédz›nçóbyIXťbÄĎHšűtWŹPâ©á÷Sj“ĆÉď›*WŢ-ˇ‘˙ x;uKÜxoîţÁÖĎa†ă^nHziĆž¸ŇßX™Ł§?oŕ›Ń2 yôÜĐ U „?ćŰ&ÁµľîŘŞŰĆ—Ĺ­NyÖŮ@·tŘçč}Ă-†Ű&4ŽžľČ6źđs®ľ(Č»&a lt VĄ`ę5˝>f»Ű@9ÉŽWĐ“P3Näµ;^ż–lôĄ©üsKv_·Żţ R-×G‡úG’(1Â*:2‰«SŔ’*  Ľ`9ŕőÝ•ˇő÷íkµERݤ±qČ= ®°ętTëb#vĂ檱''.BíE+„ŁŢĺÝčD¶RÇńaépŮqŠAĎÍpě]F®’xZHŔ&Ě5ř™5yE—×8ęĹ:7.˝qä5íBÓäT!΂tęlb”Ţ.ë äťUŐHŕpqôcżłŃPˇŘGůótp´F^ŹöO†ën[\ŮëdlşlrěÍň˝şQç—Ź_µÝ;âkě)Śů'Ző®‰1Ćr–›üşą“ů ÇÝĎĘxô«ž‘A$-#䂾-é $ń7řôűŻâk€NŕŐ!Q(NÍ)Ą•®5?WOżŔ 8˛L)ŽőjTĎŕŽ(č”ZÓ^¨Ó(>ëp‡ł‰ ·bĄ_e?ÎţNâ¤Y0ŘXÖÍ…Ď%nęś7eüĄ˘ůźYeďl]¤4UĽ—ÚĄĄ8ß;"†#ÄşGⲜ…XÚ8Śż'˝ô¬ßč*‹čNK.ďŘďkčŕBĎÖ|%ř…wăAO™Áa9ŐĎö=«°şF)1˘_ö8±e¨“«pR-J˝ű€)@XvĘĆýô>ź‘ :ą^jáY3#¬m¶áZҰťŔôąĽ)â~šÁ(†[Ůâ UŁŮĚ(Ä›Xwŕ ¨(t»<0}ez]ˇŠrúőż‚s4ÉV€oś˙T§8G‡@%lŐÄéÄ–s§M ŽEo€'Ď×*<„ŇkËĂh…-›*H*@ÖgruFłžˇ¦%Ż1nC:­ţšHËH‘qĂ|Ą8oŚFŕ äü}ĐđۨĦ6ůr˙-Ń~tš`„] HyQoŰ”b ¸#›ąCw^·ńŠI]žPŽŕ1ú‚Žď>ę`â …<Ëŕ* Űß×/*bÔŤ${펾ÁtËľ†ů §’¶ŁŠ {0şű! (™Ś&Eµ_1}îÚÜłT’HaWÖđך…Ruµ"jí0t˙ţÇ„v)$h 7µŚÄOBćlJ;f8ŞoŽĚ©pŘiĘ$y;ˇ»Ľ GÉ«ÚYT‚Mt®8ĽËÜö»Ž0GĚ”1š>lÝ,·™äRi9ŐLĚ&|NáéëREÁU,Ŕ‘1ăX˛ę™čł…ĄŰü„z qfü˘JddŠé¤ÜPÔÁbvďE)±_®W®3ľŤ ,˘č pZ¶LtňčĘcÇ-ččÂřJţ×Ý=$!TH],Wăr±ŰzŻé;Á™¨6ňâţ.Z?üű¦l~ˇđs°×ăă3˘®ćşčbKŐş€0´EřůµT}-×Ě ›dóíűÂXHg ¶Ym‰·˛®h"ţ.‡~0\\)ĂÉĘ3ŞSžµ~C¸Î#ĄÖ'bŮř˙9lDËĽ‚xÝ’Áů©˝f! \ř­yžB@uSkII·ÂÍaďŻ+±H'±(ŐU°ť\*,UtÜ9<ůŚcň•śCîrh(žŃmy„´A‹­ŢSŤ‘;±ĐZG€K—‰ ÉĚşě~še8Ů>śˇaxÔ šnXR˙™?&‰AB?w† 3îĽű YžUNM*4]ţ”rÄ.*~wMĐ&ç *·8 zăÉv]ĺ=Ç—%î …1±rJ‰ŰNTuŘZ[P…6şÎ|Ľň21haä.Á®öš|í?…l"'&ßĘQ'»#‰ŞŁ*'Pw/ŮŹ…Ž/VWP‚BÇ'ŇŹ»o‰w˛—s‘;&ÖŐ$ëŻ] ‘×ő}Ó¶Ô§¦Ř%©k÷ŠKľĺçFĎđ±JÂújŹEmîĄsš-ącPB­ÜAÓn1ĐŻě4Ő›¸1mZ.ÜL?íŕg^ťńŃÄgÚß—sĆŃ;as´~tnľßF %¸ĄÝž.U•p9ę˛F/ŐwVt Ć×n҇yÂŐţü5ŽÝήáRśYś:Ľź_Íohéź#ß‘ä°Qb¨Ňc4ő©šÉ^źl"` Ł!őś¨łëĚĽ„}ňě;GÇŠ§ Ŕwć){*Ň“á·Î„.Đ©HĎOGs\»µ}“¦ďlĘř­ŚăMs“6Hq)ĺŻäŤv4`ÎWwőźćń‚^,Éłň—9˙‡a"dҶęÖÍWÓě®ţ}WŤh áő9‘ůĆZ~gZ2Ç{ ‘RÓZÓÜ=ÓÜ›=§w#š©–Ď ÎYjó=TöŚękçÝ.-˙‹ö3GŞY žIyôOkţX|ň$’{°w9ôŠuúLę”Ř@püŕ]“+'•šŘ_Ě•Ąý٢#ŰŔć©dîo‘·˙<]‰n«ŘĽ"ܸ!ľ#§/ Ę"C!ńžęĚÍpeeŻ÷Ĺ]¨ÉsOszµŁÂÝSOb‰2üŹŇ0NxO9(»lyvţżČxšűť(–ź[ŔŘOT#˙1…J¨ú×Ç> ˘Ş(ÄO®ţ#thVuő27¦]‘ä±5üfCO˘µF€Á‹ŃgÚłŔ˝kBřOşë(T낚'> æ ś”Ŕ1Ňî„„\úˇ/  ßJS¤Ŕű2źá&&4ÇŢ=ÜvĚâ?`Atłż\9Ýn~C50–dŁłď łhcĹp ¦1ΙŘ&ŻLđ‰Äb+ŢCd# m1›TËÉěgČq-w/ ĎѷҲI«č& #»‰Má¸w3ŐÂhE!ęS°sĎR\QÜ ŠR[60Ô˘IŢmç5ŠŇ~žC"ż» _ţëo92ÜĐ>o cx–© WžŰ›ŹŐ jŢĂ~kw$čU–ęÉ§ë ąt]ÝćF%F'ń±´çuyÖÄWw©5f_ËkÓ%FžÔ«“@ű•Ő2řy;ą“zűqőKňŞ„Öúe¸K4F:Ö UĆJŞŻB 8,GŻ4.3m6ܰůÜ©ýDË9ˇČâ‹‹ĎPiČĂÝPS ¸ŽŤăZđ´S&ÍśfĘKi§˘]çÝ?[Ţ{ÉSú¨¬Ä 5öęB;Ű2S˝—íĺŢ.ŮuF s^âÓQÁ?&YV:Uąt¨Óö*ţÜ󼆹뎓ň ĚyżÉ©¶dąß üW0NŻ3M\˘ţÍ–K™îł°­¨O®•ţĽűş¨qÚ´ăQ¨Bjô'ç—ô„ű?őŽÝ3&p¦Ď•XrěĆTővUSGę­ŮůčÉú ‘ë.7~g+YyZúg¶ęq¨cDVŕćÇ‚ě)j‚GęwÁjUŘ»VäňŤÍć©o%?Ývó÷ŚĘŻë=’Ě8ž±|+ĆE&1%Eęńď8óĄ$…5bvîőp[΀IˇçÚcÍřbĹ‘…GŕŤi.|Ň”•hÂ5 YŰ8ĚTôŹ–n™?)J(ŞrôĂQĎŘĐěW(&ůͧŃaf“î—Ç.7űŹľöY=Ζ8ęRń3źË¶Ú7XŞd‰§JhtŚxĽ–¤mŇV·f¶Ąém6ś[˛»’ŃçÜÔ"e[˘pAČLů¸ţĹű ˛°/ş>K§ž;tź%=‚}gËľÔňC$ÚJSmŚĹ+Żś˙pťŠŐIW**”BŔ—Švµo<+DüŔDĎO™eĽśË’Đžă©É󕆷î HŐÉżŔ˘Ă©bEZ×=[Ř;Ü0ŃY«R°ęa»-ń’ňÎLWׯöáu‘I 9<¸łë0&÷ëĹ1[B8n™ źgő|zB— UŔµ”Ć5$‘ý2_Ö|ĐgĎžhu±ŁßoEu ĆöŔŕ¬qů3ŤŘ×-çű¨$ Ă2äZü6nRßíş¤°áwş:ĹŞä$5´üĄ`ŢtĺëšjŔÓŰ-ż•qŃFĆÍÁőS˝=ř¬ű–.Uč~[mR°´9Ľ(dn$m (ŕQ9łßëťěm1Ä(*4lJČwlĂÎ5˙â3F——3,szMjWů¨ť§±cnŃbęR.k–‹ä*—A'Yî#%qę*ôČ·ńMTiGp4iË{ó¤đŔ– q‰űy’‚@Ër+yř"ŇşQ×ýďÜć&& –2“ ťÝXŕ txJ-Ž|I{á<Ů€0dĘnçq6uóű›YŔ=,tđď^ÇŐ*ń5ńcŃ­ôŤ]-'cöWt=YłůC+ŃrXąwpIAH$݉oĚtą»ŰŐŠÇNAiäH7#-î@ň†ĽkźxSxJiŘ©÷«BŁţ5QËÝÂ̲F\Űç5»ČÖĚé)ńźóä‘›yţ}—ŕňXŠ#˲(oĹÔăZ™ŔÔ64#ah7kť2=Şą!Ü«îeůO™yÇLđiłÝĸ„îeµ. ­ąż† Öh1oĽ`Ákß Q˙\ĽŮÇiŢ ?ÚU-­X—‹ę<ëáĆ5Éń~pt“˛mřŞţXŞpF©~qtÖČć`6uW™€Đ¬«•ńŞzŕ÷9đâlŁg)<«s8Üą1¬j‡)ú jÜagű˛ťł›¬ ‹qęG48Ô‹ř–3FÄOÉăĐQńÇŐc¤¦«ŕ´BţŚŮ1ĚéÇ=÷ ą€ĎĚT|˘‡bv qűµÔőW7iäTŁFË‹UŤN~”ŢЧW·ŮܰDX´”MŢ÷kč“ÁŻ Ë6(Ź­ä˛ýĹ5 aÎX/€zę[ěTCĐ4ř”^ Cd›§qŔ„™Ćh«˘GXá)‰ěH¸bnń!Jwź˘O·ë•ăŮíđŐ;ŐŢS\RădqȢhpVx˛-ŹŹß\«ßYoćMńD yĘ}L"Č˝żŠŇ‰{:âA>Îń†*ž":ˇެóŘD ¶7_ęä”pĎ!'0µŠĺÝE(ľçT’‰f?Á‡4%ZměB…řŻZpÄQ*°'4[5÷ëĂô]©äť1[Ţ–ĺÁÖŞýçJu"3];7çínÜvÍ*ŮNX\ćĄŘö^Ia‰IvÝŢ3LWĎs;‹äÇw€m‚yqLżÄE x§ ”–HĽVđž+9ľtT6’dzy9˛śýÂĘÎłř%ă‚éjK@­©X˝yQ" ?skŹkÔĘĹ´%Ť¶Ë++™ŃçB1–…‹xN ‰ ˘ĺ…fą]NőÔň4ŮđÓýcÍňG0dRĆU ső<•Öă˙KíLa™Î§éd˛c´&V(+Żi »ÄtŻX›© s„™–Eř6ó|AŰ ę9Śó<$dóČ/"ďŻ]ÎÓ(ŁŐ•ćŹĘ ‹ěĎâ· ¤˝Í¬¨2?óÁRoiă+ұ_şYúŰ“?“X`$lęęk‰©h;ź37 ˘.*ž’IÎÇ~s zu+Jи¦-¬–0±2Y°f˛ůďL FŤmµ® °fîŠÍ­F§XĘŻDďVx—qŘ„.M€ârJĘfhĆ#dŤp¶üxun’Eڦ±~—»ńNĘŘ?p?S¤Őř\. ´Oáë‚Cbµű{[ŮFÝ Ř˘m†ýŢÓŘ6Q˘´Ö»¨KĹ}Çjz?3cZ‡°ë«W¬>ňl~ösĐö!Aµ.0|:P?&[řN/Ţ.)×­łľ8Z§¶ă)Ťłš¬ţs>,‹±ÖŹ@dŰ%oš`Ů’dŕĺőîÇU6v ¶ďvDňZ_Ë"%ŞVčo˘"Kb¤ŠČŠa´58Üó†@ö“ÎO řĺ“)ů!ńĎj ucé[ÚęŔ9ŠŁ»Ő цáyCS›±ÚG 硓 wa95EdŁ&ÁJ›‘ş2ôVářk“Ł–ý_°Ńîóoúl'Ë.'¨ťE #Z\(zMËŔ¤J«B˝Ťf;K’€˙š^žÓ_Q8ůŁó±lîçn=ަ%YŞÉ”ë#­˙glkÂß÷-ĹőĂ(’÷ű)5|÷”őt{s{‡Ď‘Ćl÷C˝¬Ç°†EČä¬ţÄ˝\L ťX¨µŽĄ GńwćĂńyCü.ÓâŻňP +ňEÍ?é7ʢ¬/căE¬&_–eD2ř‘™TÍŤk­óă{áƦŢĄ%®”cěŞKŔč¶«“ă„°ľ Á¸Á4ĐRk,­C`AÉVŔ !ş_S†Né¬üâQ(e1DÖ»ĄĆZ˝aŕi µÚI3ΡŻf=‰÷…\×qPäë-é§Éj}š{ś‹·O‰đčăłlF]Őľ­ Q1Íw ~ňÔ{˘Ů%âÖ43łä%½\„gÁ§‹Ż˛Ěgdë@z„NRpQkĂo¨ź%łof{G91™îó?r)8şÇxâ“Ô(i;Î˙ucîŇdz©¤üúˇVőc\I÷MţE±x„ÎŰa†Â;şçP˙ 4,ߪ‡­,AÝ"^O•íŔɆ×=\€üóŽĹڦEŽTî0ňÉ1¦  €Őą)HU?˙XżŐ*ř)bČ)ĹŔ źzg,îG 먠FbęKŠl¶ČÜŞň‡š’Ëš˛}…O7 “fçĐuˇqÄ,;ť_1Q‹– ‚ˇ=-B3HßrĂe>k^čôŠL÷ăŕűa´ŕJöČÉúLɸ*QŚŇrô€Ň—lj“p©Ůł+B;=#•®ţ!÷Jó Ĺí c˘äMć˘,Ő‡,*\jA`Ć.ŰC}ʇYAI™,ŚŃ¦`PĎ2ţzźe3|˙‰»łŁečÔî(É:{ď7é ěiäp˘Ť3‹ńUů*ę±StŚë;ň=ăh2“…Móh!Á—üp˝6ź-g\qŚB:e(öŐ0µŻC‹Ł“¦ Ţ÷JĘ9"¤j&kΑś‰E|Ř˙“<[‡î‰+Úi±T^ŁaÎ#“˘ş Ť”bOÁĄ×ˇj]˝#đ][Ó3 TÚŇ5Ż}»kďč=”H5ĚÜ„ ŁxD±ąťóú7ˇżŘ7-݆•ăä„Ä Ś°6„Ţq Öy¬ÓŤT±Áą•rY“tćĎ…ŃÖQ$Ű×eŁËĺ<Âę/řÂĂ™ ŤŮvý-ݲ†G4–^É"–FŢ^ Ś{Ľ% -Đ,ÔX%Üů4Ŕ| i6BŢ !M>˘4đę–‚k}›pĹýżŰoÎţĂWdIŽšTHé'xóR«B ÉgxxGB—˙Ůę­mËo“ 'ů«Aë1µ 4a;’ăJ:—_J% Ź2x;(ËUH`ľĎ¸„ĐwçĽÍź’B¸ĆČÔŁ 3Éě"ňÖVŮtM¤K0A~ňŤäîł14mȇĚpĹzlߦ'dL/ůßHÜŹš@k7P©z±eŕôZŢű_µQ‘ ÄÓpřĆůNPČyĂ뉡NŮz?ĄUt=ŻłÁjëkh?Aű|űW!#¤©ÝžŰ5Đ„»·Â\Nd©iT_s: 5çJËő+yH ±š8NWt™.˛q¤vevlW§ĄÉCŰšńâśM^DEĚĘMBŁ.$tŮP.6é-eqţ‚^çŻ ôˤ˙r[ä@ žŔ%;…ö0÷C-LV\ń©#Á8.Tuď€:#đ‚żDúúî’ÚţŰC%×Ç…÷ĺšdş˙ĆǻѳK#ÄKăO d.ť‹ď*Ú\ďvV鏥gZ¸¦Ń >TzĄT)~Ém†d``‹ŰˇÖ”Ëhé¨ŰŔć3E+„o5śŮŘěeköňÝ™:°Ł1‰ 15<Ž@•Ń J¦Pď)öËgŔLńE5+Y2٤6"ąiŘ‘ß '’C!J•Z¸ž©@&KÁѢbÇő‡ cLź î¬4—ţrHü^×@Ą>ö?kť: Ľ©}Óc8hş—ť- Á¦ Y,V~HśäbČă•C¬gE6ů‰Čmf‚ciq§Ç/źŇ0žĎĹ+«TGşÓÚF,µj7ĄˇP»Ö#âJ>LíŘ,“e= ®΂Ľ„Š;%ÝxDBx!]ř÷8ŻÎ†’Ç•ţxlCńK±GäoQ»h)RK经هʶ ‘)Él0¬ç<&zŇRŐĎ Z– e“ăJóÂG˝E¦QĆCi!V ÔŹ>&Ó<±(0řnMô HíŘ”,űÓ¨s?A϶ŢQ żöżÄ˝]k aż•Ą˘ŇžˇŽżf(Ś8łŕG¬éúňŃo ČIeŠ©Vý×NzÂ1o‡ţH@;Öz¸Nč!.ޤěPáŠs7k:Iž˛Ů Ôľ'Y˙–/QSUަ1Ś)OÍQsµMDë}Čvşţ+‚«‚ źŔţbVE]-Ř_®…¨ă濤Cťš†J¶ ’lhn•Jžľä|‘ô|ŹŢd,}Şł4&ŢEĂ€ÜŮhóĂx9Žč řŤyqiŤź”0_ßÉ9Ö<şDÁüÂX-ŻZ´ň|gÎ%rĐçś~‡€VD2ĂeČŁK–SB° M¨?ż5ŢÜzrND¬«CŁxŠ˙3Á2$?y@út%3°áNT?۵řÄ9úťpd’Â÷ąç±€*ě‚Fk!dĆ1z-ů–‹S•ŚÂftŰCŠ„HÉáÂ=zŢWĄikŇ®Ç b8ă€ęŚ×÷F¶YŽhȢ>0ă\äŇrćłnÎbza–Ň?ÁHbԀݼ–f݇­Ŕk¬l"¦ĐN‰sÎaKűšŢ"DJc»Ük;ÚT¬OĄ5GéFW˘Žµ`ŘQçľâ ˛Â¬>őІ›bÖ*ŚÉ¬0´ uŻS—#»×đđ5d>ĎöÉ÷f`7ý)'€09!ĆźÝlŢüˇ§Á˝ šOqµÚćE€Ą‚ĺ!xĽTŇŚ}Ś•µneé©á^ÁŔe«K:$:™ )—¸d+3fÝÇ)٬śr¨âĺ±e#%‡BS` ¸­aül“$©ü$7ţFNN€đ ÷ŇIPé H›UýËĆ(JâPZ‚ ŽžŤˇzXě…wS©Ó0ç`S4±e%^t$݇üöť¨n´Ä'áŮ^Bb&ęĂ9r°ň­}ŽkĎß®ĄzD“˛«űőž˙OôxlsŹ0ńŁĆë¤ŰďţCôQŠ/ěŤ{îŻŘ8´:yň,,ĺF_‹j´&řŹ70"ľäľH´nüRX\'8FPĄŔ3ÝľŚçć ߻•;žKëUĎŃmŐkUxGµ*ęĐ|Ť´ý V~ĐsQűľősąSŕ,Ze)‹đ«×)Nx6¸ćÚé’¶sĺGuî0‰qŕŞsŰŮ8~îHĂ<Űůţч2P6·á Sô}°Ţ dţź¶Ă+ľh›Á \üş÷HśiNť“%cU–j<şV!oÜĽ}ćLßď„Ř›ňŐçĚű;|W 0Ť"±$ÜăIh×ČČwO\—ᄥb\“v{>õĎ[0UGĆşîgBą ßÜ˙Ƹ2ŠTwmĘ}Üx÷]NŇŚb±ňôő(ĐűôdFPŁ9  łŠ`PgĺIîâ,UŢŻN}‰Ŕ–ôar¤m‡řÔčAYí6ńkýľŹeD}Á]Í|éU%ĄA€¬ŞĘ8η«aß&MĆň%`űn“k‚¤Ö y=BŘ<}]OĹTrŇź´[ýŕžńŘŞâŐ?„bŁŕ€Żô‰)vnoZť7ľE'ăŃR0b\C•.g:Ďm^\ŰŻL>ś#µť–_ÓŘĹ3ËE˛Ť›PO“ôc€Y®JżA6ĆÇ„ÇxJíânDŃQo€_aŤŻS˝*!*5T'0AŃN>,Z€ř ¤š-=đC DłŇśĐúŕţŕďĂ$ě] ×Ń*WÚ¬b şFĐtV‘čb¨–(řź]¦“ńń©p¤~šf—˛dÎßńą:©dj…ąF#xĎ1WĘÇD‰¸ń”ĐâǨI˛Á:oWźÍCS­±ćć:â1‘"R^„04TÓb„Ü VĚ*3jü‘b›ŘÚe‚¸2kÔ#2ěBŘŐ?y#)çŕşĹŐ÷ݶŢ%íŃÉ9áäW°ýG\¸Š[ď±M¤(*!ź¦ŃU´ű߀BÜ­f´*+;dYćĘ|3çd€y(łünß¶íŔşÉLęďA6‹—ś‡٤]ż|żď*žJ$RHÜs Öc˝V˛ÍđŔĂxŁ“ď­5ł5ÎéPbłžšˇ´]ÇŮϻݴ‘ďŃß—t™Ż6“Ş>Ý1D*ůâĂ˝„ĺ$’Úţ´Ä\f9‰őI ‘ćZűM¶IÁa=Űó™­ µ\NŠBŹÎ*zr[¶Çň?–ÚäŁ4 ¦š_™'~  ø 8ŕ—ޤÇ!łTéŤl0ś5§ó?c5'n‡Ů ŰúE\é|ˇňRV[‹^÷üó™M§Q[×Ń:vµx.ů[ÉĐMKĺęčF·Ž(Ú\汕˝·-<¦-P¸(efä·Lďc°5ŻYĹ=>€ľ”zz#f9şg”Ţş* ·tEpI[Nů`LúÎĂ㔵g9¬N»:K̶ĘZłVŁĆ¨]¨Řkc®IK\«­'¸xSąJňRŠÓţě˛9^¨trüéc‚Ńo´^ôőXťyÚ*uuʩۺfŻŁË>F‚Ŕş™@’Ń+ZM)Ú™5ß3Gľ G–Ş.p´ĺ>˘˛âí¦E¤‰…ˇ¬,ë¨f}ĚÓ]°Š6Üćźupä˘Đ Q<S× .ČĽóy0ż°ńźA,/‘LÂS™73µąPA¤gĹD‚'‚ «Ś9„^ń >‘\ë¦ ˇŚ05Ť“˝Ż¦4RwA—§®’˘9¸“Đí¬ńžH¶Z]#›6…ÜÚAL‰Ţ}ŃŘ7šÍbmĆ”á9wÖ#Ë”%^źÇ°Ŕh)Qr¸Éąx„óEUEZ”GÇľO‡Ű ß+ćrţE„r˛DăÂlŁuÎ!ËďÎ×»4ŔoL¶ADňEČ?1;\¸€ús Ě Ôk‰ÓűŞDOÍ ‡;†OôčU¸ŮfŢůTct:zŚŕîď/M”…•¦[¤ĂŮ4e´©(G.UŞ)EtŘmҨV$ÎýEzËëYŮÓ’NÜŁOj›ş6Âő„—q®IÚČ)$źBEŃEŚ·˙U͛ʀT‹a[ç¬D†ôFśŰVú°y•őWCáˤgłxp9Xˇ¬(¨µLz{ňňů Ňä˛9Ęş´eé|’‰~5=zŽŢ`… Ş{é ?ă›—­«:€°őźŻ˝ëą(°–¨fU>ră=÷žIÄ®)# C~B”­d |a{K®`í”»'ÝzĆó‡YžIŁ:Ű*仮͹®±ÜPA¤Ż‚ĺ Ŕ»ŕ«đŠĹG¨ÍĘK“»ŞŢ8Hä óż0pŃ/ČÁPŞŁχ"$ •r ~ˇ„$(ÖżÖÖ‡@¸îĐ’î_ ¸Ľöš".}˙ŘĚŮÂŁFŹkđ•„Ěôń&ꉯCyżRY¨¸mRčc©śçkŐöS­±ĹĂf^|Ţ^ŘŮ8lPĂ«ŃGŞÄ±8TŚĘç>m!”awC÷`ß=‰p˘PÔ›ŻkRĄj‘5x;ص>é§p3ý=µ?GŁăq}ʵŔľňďäsđ¸ˇE"é†+Z­IVŻ×¬f‹Ďşp°W÷QÎ,VTHpĆü-Lhcé„¶^h®ćVjÉ'É&uc_u±ÇN¤-C˙SłĚÄ:iđch¬Ę„ľ?yLG‰Ü#uÂŽQř2]¶‰ťźĄVÂ&¬AC.g:űűY¶Ó94‚”LśŇZô»0óú<Ś2Ź ű PÚ¶Ń%pđ_\¨°çL†¬YK)*´Í‹nw-9&fťţfTɗÚB¦ÉË*f–@’śŰ[Yđ”ő0ŇťŰŃí+ôƶ~śűhC·•ÝU…ë‰ç¸˙-0XË ¶Ômĺ îꛨ0TśLÖ†2,3ň4W´ýĚ>fsńÖáĆ{ílŇ}kĘk[¤V˙Q>‘LäZ6%–~Ś˘_\pmŃ˝pQĹgçŰ>bźĆ8Â<X‹ú8®ěí a¶Őľ.Ôôɰ/ ďřJ"±ß1Nűűqy çl÷ócź.Ňv—D’6?–Á¦!G¶!ö)™aęodx·@H U;/dK1Ž8[•ÇěŻ'̦pÔRčîřTě´đ‚53ű„÷%­Ö›čĺu®'W[ p„ ˝«°|xť-CEŢÔČĚg™P ýš^yÜmWҤçvä„].»ÄAEŰGr5'Dť|–ݢ|EŃšX6ŔŘÓë”Őq”óśÖYŠżBq…4Ţ ďM^ň°Hm–üúQvÝĚ(ł/Íä,‡j,9/» B±«0,{× de)Š‘‡?®TzŻD8Ŕž-T`Ě쉭$»ä9|űîO.@XxżţhÎzy'´ž“_µÔ/T.…Y»ţrnzśtż Łú§»l{Ż”b÷îů~L15\)EŮ}®o•ř]U`Öšű3KßŽŠź[µřúp@S׋މDďšŠŹ¨ęr>§“ صáĎ˙}噫Ć1EÇ A/lYRY~ÍŠ-u iF‚7!`ař‘"IŘĎ! ś–8ŁÝŃeĽź‹ő=4Nľä6‡Č•ő*‹ó9€©(éaŽŔ×Ć+C§Ü†ě-TŽ­[CEOJ!żBBžň•€ <¨+™˙ł&…ü98E R÷|8¸Ő[1şsmĘŐş¬ÉÄŽ]X§ň+•„ňTÄCŐ(9§+”ÂlÝŁ_ĂGfÁ:}˙ÉŽźŽ&űŢ«Y´_»ă3dqFó¶Ř¬stډŘs9„3ś} <ç*r°·Ú–ýki×ÎŘB[Ă­‘§8 îÇWĽ)-†•éFZIu OöôŃń`=Bnţ‚ă,.ž0ŽX”’đ/Sâűŕ+~­•n±tW•AęA‹Ęí6RĘe«ŰQ8^Ď^O#TÁ‡4\ŻÂéŰ7ł§ hŻ®(çú¸5űÚ. ­´¬ĎĽ,űÂÉhq®˛ý0‰tüĺĄKG«±2&Ü®ő"y2Â}lŤěě[ZwČGűE çn×€lW&†ő_|ägőÄᱞ¤Ă?Ľ«1 ľĺM/1›řQ…ň©evôťűťŹŔ[ˇě;M/ѱ \­’Ń’ÝJj0Es©\—+WşM:‘-™ÝQkć×ÇT.ÂîC€ř @söUČ˨WRŰôůZëLí,2+Ő/ü¦Ý.ežÓ©ÁáŢŹ}uFę9Š_kŇ 4¨µ nĂ»XŽ"yř/jn5‚Zm‰–­ *ĺĄ]ůútŠňĐ4¶[Ľ9úwî0bčň„3íZ†”^U׸ďšÓ3ÇEB”[ßvĘ:‚UĎä×Ű­ř{$Ý‹Çď´‹?ÜuňÁěÉMŘ}4Ç%-†Â÷‰*έňVEq˙Ç˙&őGŤW±ăŇ‚] n«śú/Ź?üáąFh ¨ĺbFZŁ(ä %ďÜ.™·"HLT¶:” VŽ+AGÝÉ0úVţ}ěB4ôSň%d.UNPŁň÷Ě3±C™›•'*nĚĺ^úŘôú”z“ĘcÜm‚čř.š1*Ô¦ő˙ÔŞx»Bš’×d"/9Ł˙Űç´bE‹Żók¨ł!+—Tâ[ Éę„ âNčé»9ü0f%‡FW©<`éÜ„X‡ú¤és%’,:đŹą‚ ţ…˝hlÓĚÁĆĹ2Şl™-Ř˝Áž (­,ÄŽÍŤwżt`µ(äČިńäř†VV'Üéfţb3ďŃ{”`®t—·$V}ÇÚ΄ çíwy- r„Éźcҧ @ľ¸ÚµÚšÓdCJe˘ÜEI÷O<·‘ŰŁ®c”¦+.ß‹ŞkO̱.¬V˛ţ7\˛=«řŔĘסŮÁćöbÎÜ7§’źOeÄM~ ťš(ăËBČÖčS=@Đߊ«YÉpş’ é%–€ů  É 7 DIůEďąáV…öJŔgâEwßvIđý®Ú:–[Eč3»éŃ<Ĺ @αGĽ·–ÚčÚÍBm˛–foýGů+Šý ră]í)É_W÷Ä‘0Îĺa¸§X;1QÁűű¸ÂĽ”śfO: R'AâÜÍDy*?ÝľęöÚä›Ć–Č*oM ŢůVh¦ “6gŹô8‰~‡{ś2|^?íľ"ŹA okWýirO©“Ą,z© E[]ĺít˛ ¨ţÎüĄC şÝąq:K6Dŕa îW7SČwÚǤđć±íDäJ¸zʎ#n"Ň>sf pÜJ’Äe=°LmBdČŤ€•¸ĺ/*.¸o˛ç¬Á%5ŽâyŕµZbss™Ĺ».v®ü´N )!łŘ¬#„:O“ĺçt&HF˛OÁZĄ|o_¬SE­«pÝČ<ŤD:=ʧĘ®®–Ől,Ţę^tź¶r§FUKĆ ď/"Ő%–X)°Á^ů16E]€ÉhbJQáúmoőŚ­÷ ąYŐbz_[ç}UăK!ňB(—‘ŹŽß†Q¶ř>µ®¬e1ooÉ R+`‡íxCŻŐ<żât?ůŔÄńańoŃ%Ŕ/˘‘®ňaiěőmqŻŹŞś7sžÜqFĂoRď}Ŕ2>Ë®^ňy„LrFľR6;‘¦â·ľ} Ôtůt 9¬żË›j€@VrÖ¨GŐżwĐO}óęĐN剭G‘nIĚÚŐe32jQv÷RÓâąő»šÓťSj€ăĐ•vlęümit<™9‚µ Ä&îĽR1Ó©¸V…ÄÂ6Ű‹†ţ0uŞ‚5a0ÉX+µ…ýöFB×’¤UB¤ÇAÜBU›Á^ÜâÁ¶ř>…ęßŮŻÚ*}džÉĽs †СĽcd€P*#!-ć ÉŁŃž˘.•—ĄŃYX^ }oáŔ«XNzřkç2«Ł:·-¤WB"ÇcÓBgĘ›J“$ĂŮŞ±îD\ńÓuâµ|sv&7Ŕ}Dş­š @K/)R÷ĹwjáńQ§<ÍNÎNdˇgÓd€5îH¬~ĂaIŮ«şĄ“ şÄF˘»a’ÚU«Ą'bŻ‹ŕ\/*¤Ä;?Ż´ă˙‰Ö/łóI&sés–¨÷.âjIN#MÓŠštŠÜđŰč·ËEÓ Ż…Č‡~S {—ÜŤFąÚĆqX •áąčżM5X#ŔÓZ¬)ŕőĐm×Gú3¦LŮ ¦—OńŔ‡)9<ĚQ^‘ÎE‰Gď.ˇJšóŠXsđgťy+š˛Vşu0 ·¨Iɦ-Yźěóp­8;°ń’á2‘Éý*~Ś˙•>ldďŕ¬3±GÚ&™I÷˙ą.Ę€xPß~@\´w©Ş š°Śř&Ă\\€ö­Ř—CÜŢŢnřuG{§H·Ü`DNŘ‚·Č€hbĂ”'ŹXßĎĽ 8±ŁÚărdBz!Őy/źÓ'ö,ăÔ•^ąä‚%M=Š…Ŕ¤&ús1ş`RA@Žü›Ëo|]Qh$XŻůşgqVđ9‹Ç\\é4 ĘH üL@iýź‰RľJ&07©_ź˙€)äßW8'ÎMíw‚$*şĘU7úďÎą}ďéóbHąż7¤šř^F¨n…hKöŔŔöß›”AĚ6PSďŻULËČŰ[ňµöםŔÉQ ´xť†Źń•ĺ˝éţé IËa Éš+‚0ѵáK) jRśÔWo-LÜ(oăY/năË`NŹŻ_ kŢř#‰Uü\Eń,úÓ˛xŢŽiR»}öaújV;íÜéÂ=ϡt¨ľ‡î;k4ů }MˇLpŃ&2‚7¶Ë-žĄRî‚tŚă,D#Ţ3 w€@…í[îŃOJ—­«`ă& xŮiµEăž:gV’ uö!ݟܢQgiŘSűvŃô˙]!Ď*ó«CřÍZnM 42´+PŤÁţ<Ł.ľŐ”=Ę<彩$@=çÁ*Ě÷aŃý˝ą@ Ă,,ŹĚ’ũ+!Q‚7BÄşsjŽąÔ\ŠĚÖ0?±LÁtב¨I!+ňVŻđ‹â,™S3˝Đ˝ž©yŘŇł@^‚÷ؼ͉7dVx&?BńÚö5^5ę’ă|šä®”Ő”n:Wźn<şu śexh®·ą)«°;/Ú÷vÔ · ZŞńĐşĆ|÷˛čwmAö”˝¶č]“FŁ•‡0çCč•pf۲ŕlsAÝĂ­°÷(ďAöÂŰŢł>öĄwFOdřŞv~“vZ+# ĘX9˙źăŘʡßQ»zţîPĆnŇ Y 9‹fLYÝGzdBŔÝWS«ÖŐšî¤'Šxa¤%ghG“:iÄĆ[=o‚ź2Ű·ĂÍŻ˙L\¤\şé×˙ôBÉRŘÄqî÷•NŚŹ>Ŕ'ś®Ó¬jAy Óš@-ŁŮŽrĘşĘQ$Ŭw…Ňٵ‹żúŘ3´ŚŃĚyĂă'H_=gż^Dęű™°hOÄ·J†QćÚ„ďŕ&Đ|yAś×r$·úĵÜ(XBťhHvőÚüü x0A«•§¨qA]ÚŁĽ9#2Ä˝_ #qxZI*Ź ĽŘś$ŰŤ¶¬|Ě·[Rßt'˘×–ŐýWćkěÓ ‰‹łIˇI† m!› Ő2ff"˛ÔQxCS´‘[Në¶­{¬¨çŇyęúqOGRÎPh˘îŹŽzo7-ˇ°®‚ä­…<çNsL(hƤYTń×9s+NŦ[°˝Š$ w e‰ łÉ:´/‹,žúA縄ţ~^o¦Ť-h˙żŮ¸2hYŞ´cQ˝Ń4µ%Ů˝%WJłUĹ0‹ÇĂďf ݉żiQ‘˝s©Éu'kĎŃńÝp!Cꬬ_NĹX‚XśëŞ >´Öąęúši b~úúI#qŐ,p¦|591ÜGʦ$˙{޵Ńcýr Ó’Pţ/QîŤ[+X7Üo0űZ/`őú‡-ٵ=%×ÉŃ´¶,fË™ŤŻNć p«q€´Ź}gšĹ ÎżB8/Ö48sŮXŮÜŤŠÄŤú ů˛(G©ˇ>átp§‡EaŻZ’EŞüLş‹:¶!=%˝óťBP3Y`ń3 ŕ˙  @ÇÖŤ €±Śľ·¦ÉŇSŕ˘Ń‚’Ě…urŐ¦i5Đeí›^˝ţő¸°oÓ©7'â¦YXDťĐxvlSgöZéý Ă8°EDĺŻ-wĚŇ/5Ëĺ±­Ř Q†MvŚjläĆĘĎ@[…3§AŤˇ]ݡądĐÖÉ1űOę8“ΓÂÉ}śiML Ĺč‰yU{6DąúňĐŘg ާ!…OL ß3ť±6ó3qOĘóú<Ż•ZĆ*_QĹ Ĺ@hUŁ­Pś,l /`ąÎŕĚ^ĄŔć ˝™Ëť{,Żąę:1*«€ŽtNźÚŐżĺý|IźMř /Źgë#´4ôŐwţ¦"dÖ‚÷]ÚîŰ:l× W–dŘłIżúbq–EN2¨lrę%O˝+ŮkTk_Sjç¸ßĺwËPł:dă‰ŘVřÁĆ7ź^©–I„<ý\† ۲3ďü˙żŻ"vgź…ń©·WąUĺo—˛+ś0˛IQe\Q•ÖÂbrŔĆŃŔYíĐŕAřqsc‚çů@;=IncßôAŠAÁbv óü‰0°ˇ‚$Q"ú‰Dü‡U0űrj(T„ťiŔ=’ßZ= &ĂIň·ˇş¤ł5}$ł7‘”Ô[2ăíEĂĐâęż©ŽČ Čľ ŻÓ˙)°.ÂąpęŠ!ôďpŹĽţfů*Ż©łůŔ#^_.“B˛€ˇ,EŞ ťđŞúőŤŮ×ËQ7?FŻďÜŢLťép“Ě{fŐµwv‚ŕGşÍęűŃiô ‹Őŕg©ę0-˘°Šô .'g™*y<Ł\hk6Ť:dS Čp"lô ¨ˇ”Ę|ĽCî~ąF ôŞą¸·EQvČ@z«âMh¶ţ–b˛¶MÉKvgšąOöe\!︆ÝŞ&ŕ†‚ykf7~Á¤h_i9ă™bÂíÍPp?,˝ëAB–O•—GÚŽ´Sp»Éʔ׏w¤ĂŕúĘ ,vĺ2 Ť}$}#¦Č›đ˙‚lZ={¬łxEĄµßËŽĹR9>'¸ę#q*ßĂÖËŢÜţÉż‰ČfiĎkEL ˘śXÎ%®§mµ}oć€Q=–čLś¤ca˝ÎÇě×¶Ö{škMnÖâ2Ů,˙ ±G!÷ ¤%jť…–9ŻpĘ\›ő0÷ 6f6˝O€šľ’“e `jŤ+™Ű3¶çî˘ě–JídȨ›sÝc6ÝăŘř(É·) Ď4H‘˙ĎhÓŐ@®¸•G™qYPŻŹ´ýkŰq-ŘŢ )eÉÎŔqWwÉë@Ź®’+;ö±s' ©}·HŻNßăĚô¦čëľËůúë˛vzŔ!DyÂwŞRĽ2^CÓ#iŠÂf“W°Ľ\6ůşĎŤŁŢY s9ˇ É ¨A;NăDJŘ{ŘĄRçé)ZýşÁ&Őîn7¶„z‰´µŘ/®Ň:[ń§şí‡¬SĘO<ă`ĺÖT}…j¶¦ţ‚–ú…2ÉᲕ+ë‹@Ě—kQŞ‘e3Pn*®@éO7!v¶i KÔ>' X–™YÓ÷FËŕ(4®¤:ŔÉś­2zckŤ#ć>˙ńv§˛µ÷»Đě“Ćă`ą<ťTů®Čů‡ ΰŽíöµa˙Ŕř†§¤Úy‚ů‰SPđüŁzO—xř1®M}b3§ÍĐŹ˙˙ŕs)ż%Ż SşÖŃHBž`OgýľËŘP˘c˝”®~ëÉjÄ Î !mY¶˛ZgSÚňx~ă¶”PĘ€Ą 5÷MJ˝ŕsÁČŁÉ)ŠýEĐ—j§«–j€n”¦čłÂ+ ł1h¦h›˙…ńŇR\T±6©b”¨słuäřŐ·Źî™ď~ Ň*ĺďňđ”®é”Ő„§”žäď4ÉËnŚc«3 o…Ő–9®ÚĆŐ›Rr~ĐŔíB|„Őĺ3;i©ö^Š­› `1‹{öôß<ă$8Çe„«łľUFŞ[¬>bo.ĘĂ?Ţo7 s#¸ü´_âă˙Ďr‹Ź3ňćŢŚÔČŞásE-Π#|·^Ě˙N°ŃÎĐţ<ď¦"śnŔîŇ’±aĐ]Ţ“›>•<´ (G·Ţ*0L…čÇô7ß1ŤqR‰ű}¨f#úÚŰ>ćbç ц¸Ś(şŃTLU¶Ł‡Ö—‘{cÍ'üÖF_,Cí\éčJČݓՓ·Í¸ąSŁcSËÄP†+yᝌ,ůťˇŕ ÷<Đ1v/© ńkęČ[zVęßčÇż“îřüáś™Á Vď»Őĺ*ĂžZgGĂ´†8I Gőjcp)Ą©Xy^[ O€EŢ!Ĺ·ZlRsPŻă;&ÄőĂ{_ŇKĂ_ʆźů/˘˘ÇPüÁBŢ­ ÍâoV>Ôó1;$dćó©*–s§‰ŘŇćeŽVU§ďEx3}ďâ ţµ–ÂűD«WĐWŤRÄ´š„ůGŐÁĎĺ]îV…ťI@—ŤÉŇ85đÜĄÉ|ŚuipĐ>ËmTbLG7 őÇ'§Ň ĺ-/!ŔCĘ„bż8ë…Éo¬´we%žvTÜ9H®ył°©(ÉJ śýćŔ§Âhaž·Xţ Ź™ĂD’“ádQgz•Ü‹wŹyaj}çţpră $ó™/#Ć)Â&rOäŤÇš/]ĺčŕő†ĂI2’Ľ¤żxŮÔă9ší#™_ĎÔ|"ś–BÍüě**ł\‰Ł•SS? 3ń ŔĘüF 1ÇăSn±7UWGÍ:ś¶äałÂCr";p)Ź|ŻëčÎÚĽW)źł…&Ü@˘îÇ+dp´Źx5 Ě·»ÖđŻŢ˙ýá›.`ţ@«§˘•óHü]†Y>έŤk(¦PAé{”H’ !…U`!¨ö; ĎŢR˘ G ‹Í–í5I™Űb‘ż¸ĚšěáŢ;KCŕDLŚü7\f űjJŔŻűs"ażoů36`Oµ˘Ě`Ř:Ŕ |섾1L$|-RÖ/3őĂ4 $؉}phaî´u Í9m>nt®× ëÜoNŚE>ŰXŠbKâä‰5.Ę—ŠÄIPÜ—GíödŽXró4učí˘üuÉË ł›4š˦ńv§Mü*•LrDGń%Ň–ëiNÁÍLŤzî—sMÓdž6OžŞÖMĽ{‡…˘,r4‰ŞPÍ›Qö±4C{ŠdC®î "VŃ÷â±ÔbŘz±x÷7Č㥱ëóĘMPĹĄ”†fűďż-i¶+™Še AŢSô"';#&Fĺ»›;`OS˛/“–¬H1k+ś_ŇăĎ›*„ßşfŠ3Żśç{Ľ#¨•Ű] RŻOŮęxĽ šÍŐIëĺôˇ™”Öoq!Vî03›µRQ1pŕ€űjJʵPHśCĺ˙şť@MÖą?Oú!ˇźTmj馶'čcü±ëńë'Čk Ąż—Ą¸ŮĹűăą®ŕyĺ¦Nl?#şßTťŞ8¬˝¸iěňqM–´Ť1ö{|f{?Ůą€¨ćv ™‡bŠŻ‚¬gŃ‚Q35i§Ő”ŞAkřI‚[$C™ ˛aŰ>̇ÁęS¸eŐ4Wmq;n¬Á @řť[ÜPiČ-*T$š¦Ü•SŠIjá{!ěÜ­#šü†15Ęaź?CIIf@± µÁ@qźEš“ő› !|T˝ĆţUl4­t„~Xüł‚˛rćüuî ¶¶ą‚D[Ňá ܰâš×ě~ŔNT~(7ÝYşäXi$Źß㎮Ôć‰rM¨‰"¦ ZG/«9fţ±§®XšŐ Ť;)*dżęSTúł34]Ä‘žµ‚v~Pľˇrz'Ě ř¬ ŽhőÜwĹtťŕ!S‘ýf-䏵p¸pHNŞťChéď™ß Ęđ»•y~ŁťŻAbőŃąsăëłŕŹŹ))W‹Ű<ˇŕµ(l¬ $ġöąĐwW]H!m+J˙°(ŇĹ$±‡ľDđÝ›ę©0;Olĺf´ÚxÂČ#noW>ę~ąPF0;`ôP€řłî=ě h1I†#p$'Ů/g¸Ű;ĐFŻ ¤›/6 ŁÄńô‘2´qŘ·t »é‡5Ľ˘§výi=5®)¸’¨4ꍚ”|±Öť#ř Á6IzÖŘ!·ĂM$¦ŠéÍi˛ĺÇN!MËż=Űk%˛ŐëńliĎ\‹ÜŮUĹV{ݦÍMh_6ŐÚ–Pý: Ëžëřx^s»¦Ű+Oš˝Fúô.eE†?(R“ĽÎË,Úm;žŘ¬\x$®\vúZČęÍůţ &ČŹňŮţďxďUzxđ_±Ă&^T˙/ŕkÓŘÂńä<,ôÉX;Š?…v%8B=ej,)‚)ÚÉL䱿  $ů6ˡď2Č»“Ť î ČÍvGżzniX N|Bۢ‹÷ “÷B÷6áť"EÄG‡ggáv)ř„}Ýyř _´q®‰şűÂ˙ÝöUqCĐ—K‘Ő™Ń˙ÇÚ_đx6P@oôß~˘Şş€xÁśý÷š%ŔoíČőq›µFĎt‘8•Á¦ć×VGřAŹů7ă3„ţ9.u—…Ą3&>˘ioľ$u7ţŔ7"×݉+¬Ŕ Đă2DLěúIÍ$ŕŕSŃńNgY·UN)ăÜŻę#ťÜRŢ3R~vCKš@ŁJkFě‘$ˇĽ Ľx•#P .Š(űrîÇ)ÔŐJ=ĚŃöN ]ޤ¨óÜŞŠt+Bł¤›8 »sĎ•‘ÁEYuQrdąąŤĘPçfjVOŞ4Ň2:qa,Ň.‰s"¶t|?°ĺăÖ%ŕ†©Ř8»QšđçłżRÉ«üˇş2iÄ8¸ŘRw˘âyŹĂś‡¸č§Ço3_ÜX]™Ŕ»ŹůĘńÄ”p!GF×¶”ĄćÚ˝W‹1^@ë}»§-ĺ“Ieý†ţliÔy÷:™‚\<…g€}Źd†Q Hí^=¤"ÍÝä‹—kŽ­†Ł1ú®.Ü·CO©ŇŞm†iĐȧĹzĂBđE’Bńť(R†ZŹ=h:Q 7ů|"< {9©śąćó\•ŕm+îC¤ Ă©‡!ŻDOř@Y 7ÔŔŇ·4ŘçAčPmCš Rµµ’!ç«Ć]saĆĂ(h šm+ěiâ·LĘÎÇó°Ţß8ŢŢÄrsóń¶©ő5<-6@"ŻÖCĐ®’iŘçů6™zhG׏ŚýÝ[˙@uĐÓ,?˘€jśŠ)<ÖóŽV±Ôń¦Ä–·2%:U dÖ–ćŰű~t#‹I%J˘°®u ĂAű6_I 52Ôáâ|őÆryÓč°¦¨Î>’Ęű‰vý<~ Ĺrť]Ţĺ t‚#„b(8ѤLŰMčlFŘs˛'ăc7|}éC0ŢŃýĺß~2´ů±kĆíKuWŻ2W„™˘Č-N—­ŤáÇ=ÚÓÚĹé­CĂŻ9ßG8µŃŐÎLFc$'OQ´ő>‚Cž2ÔŃwé¶*-Ö¦ě§N›ŚĐ˝á"ô=v3˛Ďy–AăAaˇJă!˝ţ{ř–<óYňf‹´\KÚß÷'·{$ă¸}gÁ \P#¶ů)gş®P46„öÄęÇËĺzŔ'¬ÄW1ăVĹ<˙ŇÔ/%Xć Ő“cňKŚ´ ăČvÇźč´z_‹`.ř.ýő#z*á\ůF7yí>s{Q˛‹Hň‡VÁśË{Ě;#ç<7»„ŠŢnbłŃ"¤ę\ę.ĂAĽgv‚ŕ†‡őÎ4Ί]|–λ3Ôe˛hy´)Da„NŕŻŢ5ä<…TÓDÁ¤łóçjŔšČ¶lÓ;Aöُ—DŃe˙ŽŐ‚—I™©©Şţzč—őť2>|롬.ž“ł<…)HStQzE4Ł«˙NŃ„ś„Óß?˛PRí ]űă"ř´…«ŻQâ×hĽŞLâ“­„~ö[iqQmgÖXkôÚ¨RŮ ës)ŽĚDSđŇźČKéŹńăk–ř†lš1n5~€B8µ%ÝĘžG:ޱµ8ôę‘ů_¬Äu6ŃĐşěhC°NNł÷ĺťx˝ H’JĹËŃr@˝T›CńÓ¸ŹUň‰•ÎY®ęě,şÜß—ĄiEmžąű±Uşf,]™Ă\Ýőxç&äž|qŕh˙tü0 b0÷Qß7BÝówéĽFg‚€µ ý'ě<) Ó¶vhIXdkČřÂĆůŢcIëŚT˘Űý€ü$JĎÍ7.}ôë‚guŮňíĄc‚€tŤĄP<Ő9 ´}sťÓW& D]“&«ЬŔNlI’®Ú’˘â ŁÉ¶–šúîěĂçÖsŢ3g­ĹČA®˛05 ă1ż’ Ŕ9ۆé(jÚ"č3Šj]oĎ)fDÉ'{x‡/dÓÉ_%ťFţšÎ Z[î<Śî¦%JŠÔ5e>׿QUóĺ;邪2jÖŞ—üoćoĺ'Ńíz©“>A:ĚÎů¶¦[sÚ=śöö<Îçňé´Ű8§Q+t<şzĄműěśţÍ*Ĺ·iŠTWCĹ@%ąľwé!}Ҷ  `¨¨Źś±=^=6ýKZĂ˝XÝ8Ž˛Ď†A=JŃľ˙”m“Ţ,x&j†ľ˙ÆőĐ'Ă);VMMŰ}‘8@Ž9ŘTRáťĺąbpłtpy‘Ž÷¸kęq¶<[MMł~\R–,bHfŕ§Rô^¨»0´ő'GĐËŢś\Ą‰E âŁŹp€¤PĽ®­2p»jĺünGެa>űIükmçÎUžŚô;,űĽu”Ďţ¸ß6÷•żôń÷ůFę˘D„fR?ĺë<ě éřń«—ŃÎęh÷ŁW}o_őd(zŢ9ILč°á[©XgÖZýáŰ$lÄůH»ŤHÖĄřM°x{S=#tÍÓ˙‘NŹ`™§żfůŻČ!ńá¦ĚíÖdç—`¸éqm÷ľçĆJu«2¸nTŤBô>ÜKB'ćx˙Dy)W1–Č+UßçµÄą—´ď˙˝š˛iCî”G4RU9Í’„+0XĚj~qĹ#,FÝńíkéc7{GvHţŰvôm_‰:Şé p%ŕ⢚—Ŕ~Jq—V>yëZäťPĘoş fá1quĹ3Äáç´c!Uč3¤/YyB)“!Q0ă\Żđ@·Ažb—‘Ţ—Ň[¤ł±-Či·§—y.w,G.ŻxöĐâŕyîiłý ÁĚ7˘äĂá?s¶¬çîk{Ľ&˘bů Ţ Ă?c?ôyTčC˛ř·{>,0ż©Ç|äQ„mŻ4˙Ś<ón3U‘ă,Ň72Ć/ČBžçEâh°ąîŰoQ./çY©´â x“€żJ)Őů˝Úýéě´ßbtŠí >Ěđ Öµ§ĄĽ—!Ą(#î°˘ÓŇÓö«—ßŔ§3BA8”J˝Î[h7”Kőš—WDýüĆŽy©™ÂîĂÔR*×UŔ»AÓŰž{đ“f­¶gżuđ–6Ş{OhM^Ăűµć?ŇϨJśnébK=>|ţúĹ»8y|Ş2>´a«ÔŽL†d±f"HĆĄż‡(x_ŃÎŮJŻřëĹŁéČ;ćBŚ:Ô/ăýú‰ÜˇŰ#VÖO|ë¸Y„‹ô $hĘKŮČLÜ:Řř‰Ë¦á:öKOLᙜă„ĐÔuGLojJzoČ䡱çZ4Aŕ8÷HZuh!ô2^ð˺îʆ˘¤ ż 74ĺţ‰ł+ÖÓ ˘§rĚ…3řmńô ĚWó}H4*$5ë°5Ř ńĎę'¶eSÄ:ĚŤŰłĘxJQ®0÷%~†ć ŕŇdwť XŤ§jוB„ŠÄ¸ÖL»ë=;őx›h ż=ý˛öŮ’ŔFvfÖ<MuÎ^3—ťľu‰Í™ćOĂęÇ ¶ß"¶µůÍ˝=ÄÎ9V8C$qŞřĺdÍXx€:S'FŻô*ę­•şů-§pˇR´ÁpŐKW­I(Ąť]§'F x˙•ř˘´Ŕ2wżĂ˝(šÎŹůx''ůé€ĆhĽă/ÖÖÎľČ!ĺ D;1¤'ĐQ—öwąy®â)xţôćE´ü`šşŞMNČ ń>1áqŹ$zŮuÓixë# /Hâ=€· žm¨Hö!+ĄjhŽT¬>ŽäaIŘ(‚ޡ¶ÂpŚmđž?a9Q‘ŹP…őXŘÉ BéNж˝őôý†ĎîÍ@ąp› “_¦»±eš%”ËŔ`7 ŮŇxĘ´˝“VÂ1˙hŤĆrÉpX%y÷óđRjë(Úżá\v˙ą‹; ťÇq»Đf,‚~o_|MÓĂŤŃý„ň$r•ˇp©@ń9Ď…jeÚĐM×} ĺ¨ĆŚ“6ÎtH)7fƆŤ~żýw˘˙OUQŢżůč˛ď”%–nX”ŔĆëh4넲.Ć*[łyvßşăŘŰâOćl!W =żÄtĐ,+rę‘´®ŘÚ “ĺ×r59kł{ˇgđZF˛FŤC(+Ég2Ĺ©_±Ăă,Ŕ0±áĚmąY‹*ËEGhŢîBGZŻĐúčS͉Ʈ®ÔÜů«eą ÇśˇE<’Ąf 7—ş®˛%íĐĐŠr3%(I¶déľ*BĘ#ťŤŰ\í č}âÇĺŰŃ{î ňvô ďDIeY„–OŘ^çćăĺř¤@GÇąř1ťÓFŇ’VSű©†"7X…A3ˇXÚD^ń\hćeg0iěÁé¬ĺd·ń;âUşD\Ő©ˇ(ióá›úÔÚ(ůČ|ć×F°Q|ĚÚbŞ'ćv· †ł%ÇH TîEF}ŤÂ.©ş öcĚ—~»×©÷”±zľhł€ó-ケ)8`w óű-ŠÁŚ{jE"`D_ËYTuaI>C¦8™+ÝEžÂ«őĽävŚ>4Ú ‹ë~˘Y÷ŕÂGˇĽituÂ0hą,µźT\Ć3ą‹OŔ "ÔżFµ?®& ľ˝>Ýą…ďÓ_ś°ŽŠ ĄP˔ڋ° )qëđ=‰˙•-J©!‰‚zufŞ+DŘ9aęwf…Ä,”W3‘ý+„ŔI2¤KPtâ°Ě-Gű“ôđ¸CýÉ&ó +KŁsKmf6ÜÇĎ„pBÎ32đ„Ţ«nĂO.=ţý<4š„ŘČůúĹź ¬‹…ó×ůhőŮOşkÔ+ż˛u®ˇ<Ě–ďĂ}Ý @˙{«şŇîúŽ)ňČ\Ă…9ľ/§ÜŠ/l”Ďé=Łá6äďţ–“’MłTi•$ń0’6eG-az†"‚s(Ů{źŘ÷RłÓ˛é r5ş+ţ2ÇĐ-?ŁQ»˝:ČD—¤Ô} @âa§sW˝`ĐcFűB†ËëŘB҇J.]7=—@p:gŰj'Ŕ,Âźč‹R’‘B|ô(%ý˝g˙Ë+oűb€Ť®™7W‚dVĄ¦‘Ż>Ü5­ ¬ßM$E ű˝ęd&ür2ź"IHľPÇzö;¶ÎŇŚ…­cąéčnőď •őîo]B{̨ŐřöĐŹzĺé˝ßż\Jł“ČŰ÷Čv^¨KPÔ6~…ŚcöřĂuŁŤ¶Ĺ€ÚPIÓŞ˘•«űĄ{ŹúĽÚ·®’aÎ|Zćţ®úFÚ?4m+@Y˝hŚ3¬úŞ0çmś‰élhrŚ»·çoĐó ţ‘=¬ą%:Ľ heţޡiJ(*BZśâ3żÖĹ®Y­5m; d˘,*Ŕ«îÍËČŐ„~.ł2^Xbăy”~§)0ýá÷Ł#pJ +YţżÇ§Úpëô,W)ᕪ˛řzűNf±ĽŘű7Ŕ{»Á(yY škMÝ)Ó%Ţë4kŽs §ë‘ęâž źKŘô$Ă"n­˛Qr˘dĎ>˛˝ÔD †"ľDř 7µÍŤăÍřî¤Ä$˝ /Xř® ;:y^´7‚"%íŽú3 ‡5=?˛[”F¸ăFëÓ¶0Q&zý#ZßyeIĘ_Űtóy “ŔGźµÔÔÉ–üHĄ5$dÍ«ˇ^¬™j:‹N[3“މçÜZÇ%„.Łě ´ż˛ibvS97qAPUhrĆ}µ ‡JY–Ć?- Oç´ă—fz’,ĸŔA3V»z6Żł ĂŽĆ䚉·×vsňfđY{TLec%Öú—Ń ŬŢäŐřř·Ťy3Ł«vÂűáB)úŰĎF=óžĂ› …?ŰĄ¨ou®Šűj6ójÓĚtlŇ%źpr®ŽkŇ\ P=Ë<@ľáλŹ#O †R0Vű&‘ĄI”öôÖ¤ĆëăÝîÚ«2Ąv]Ă[sR"w‹ĚŔ9$=írن¬Ň]Ş ţ„tg'—şüńőXOrµ3B˝8Ś=ůź´m€˛¶ ó¦ P—µBť űćU°~Gáý§“˛Fη€ĺ<Ý’M¤Cň „|0·…eŇLX©ýúƵtv!ţ.¬ňx»ďęA†-ÜŘ&ŔV÷`sf@ě¨ńMÍ!F'I–zGíŕń'Ýíjôů-ŢŻHÚ*un­9¸‹ô#ĺ"Ń2ŇĘK‡>‹ŞYvCsh_m$¬ž‘×"úPŰłÁHnŮČ{ÇD—^ý_$‡ÁűŤ©ů\‰·©ŠŚ¬Ď’ű*Ë$ĆĄ±ž™cCŘĆ˙ý‹OŠęţ´ouć†ňn˘"ŚiŰiІ¨uĽ× BĎşU™¬/Ś N\Í:n°Ţ@ `ą4h+ݤWĺž Wő•Ф¶&=n¬ ĹLHh˘™‰Ľ|?aŠG–ôüĐD![śU_\Ř!ŢôžtÝ<ĽâM ]ɫҪ4+·ĹFĐĺµFÜŕöÓë‚D+Wßă.“kśĄbRĎjžXXÇťkĺ śHmk á´ö-^ł©Íń¶Q¬Öł5”46äQ¸TńžmŰs1Ż")I˝"łS`΂ŚmI?ŕ´ó vĽäî…]ýB)(‚,!Ţ®7Łn)r`ÁŕťŕŹ/Ź źŐŘ#xő±r§>ŇĂ_°(Č›„K:ĎýŠ«ĐÉjÎĽxA‡<ĺŢC/(ôGú7Ľ{Ă \!Ő·§‡¬AµĚ˝Wíkřz9ůUčcĎóč˛ď…ľ…䎥š†m*o±¬B¨ŃŚNcGŁ'ý %ążń„Gôž ¨WëŃL»úŰäw|ŕ†HQN7ŕlXXi—ű-řz’Íp•Yzv0ůŁ.u­¬®ßVDsĎ7ž_Źn?ed–xilă¤T\0¨ŹŠ_ĘĽKާSvµ?JŽ˙ OGŠé‚Ż˙¸ľÍÔëËóţU˘)çrj®~Šyý‹“ňľ€öJçۉ_ĚP`űS<_˘L˲śJN.c™ďZѱ·××>Gś¬úľ{S< 0ržn# ł_^őÇ_txXÖ¶6-µ7Űžť×Öčąž[]áŚl‚q ąšË$öíľĎ´µm`L a ł QÂč‘gö7y–=¨…őC † ›POh¸ˇígϲ`ĐIP/łÝí{F…5׉‹âFpŹlŔ±¬›`žh¦Ĺę¦_äô2÷ănAď4äzć|<–¨;NmçOq B«–`:ćDZţ-ËOq IÍ#§Ó›ößúq›Íx ď„Â,Š')ŕ «9Syá ü› ~Šě7ó˘@đá^©žU[̨÷z›ôŔ)ewzf"Ŕ“í†&ů÷¶ńřFůŻ·Żä%hÓwÍj¨\g9`ÖŠšž‹ŰőăÔ–!CQg÷H>ĹîÚ?Xí Z±űŃÍ“‚‹x9é/LDě·Ă×E>™§<Ž&Iť cĽ…rŞĘůűě5“ËŘ ÷ŠýźD—í]éÇ…˛I€éWäp€Y â˝Čý¬+ó¤ĘŤ›Ź.Ţw’Oš=ł›x§áˇů×6 Źľ{Őm‰qëśřđµjŰy€şżťkŔ_séąůł8Ćx %ţÎÝ:r^ě1&MśÂŘ˙üv’úQŢu5Âq÷%aË·;áPĘ€AśĎ˾߲ę€ö70F”Ë$goo€ěukEBŔ,اq•_ç„~ĺb®7Zĺch3yµ:·s«§â O)Lc¤¸NdŞf'#$U$Kˇl™ÔźIčnÓĘÔ§‚ }sCłáOć~ő±u¶l:‚EĂ8čH¤¦§™ˇ–yâ ĄäżRX\š0ZħF_ťĐ%Śz$ńZá°xŃ‚őeĐ»ÎH_±Ĺl뀕•ÝÔgĘ&ąd˝Â†ßĽŰsD"YŤÉ´ô_6kŕ?ŔW%á_ԙȣ%¦(U`ŠÜ@÷±Ńő;ż îß đdşŞ#ľŇO/ą8ëٶ‡˛uB^"łq Ťł×=s×jĚ>T«  ˙¸űÜ÷Ky^čön0fyné˝^• <0ätšŹŕy.Ť %–‘(&«*€Ŕ˘·ĺŐĹC‚%{Ö˙L(hňOXĘ0( H)č Z,áEză sb2Kí”5ďĐa¨“kµ 2ßĘTU—âE4b3Ë@)ćT˙;a®Sí™W˘ HO`#ʲ®Äo ĐR÷|ďÇőxß_-u¬ ć˝űSK-jň¦V+z.Nş¨µă·=>ńěsG”ćéĹÇaßO=°ÔWĺŐ˝Ő?ŕĄ@â­iŁx}$˝w\ßUzĆźÔśuoeđ·C;&;·őäËAB]čŔĘő­ďÜE­ń­}?¤{žÂ(Ŕo Ť†ěˇšë†ąr@łČŰăÔŁ,żŚ§ý÷0>\ŮHÔKńšČ.SÎ)ˇčRKŚłK3IaĚ@Śs/wB0b˝ĺ Á‘ľq „e@X­UHaýIC´ĽĄ.͇6§ň~JŰW)ĄÖW%!Mxýv¸Ą ¬0–Ćü‘xŮI÷ĐcCĽm¦Úö´NÉź­~^LąŮD`Rb¬ä˘’B›~i¤üáU˝^7Dĺéۦöĺ—Đ’2(N(DUÁO` ©+dgšTťTOWJÖ1äC­Ď^E©éĐ(©;Ńű%›@ý“ŮítżÜ­FM%RůóçîEťtü˘Ěç×é äEKĽh7 d«ŻĎY-;řcyvZyęEużjŻ!1Sí#s#č¸%*d`)ŁQôóV‘}©k‘YÓ_Lňö[(łžÚ®î»)r¬'˙trśMX¤ĚŐvW•´/ ă2Í­h+÷gçŇŘłĆ÷Ą…éč©>ýy´m/ŢĽI>ěÁ´ßőŁgS‡ö<ţqf¬“ň2$ÁŃ„č^‘ů§WňSŹńˡŕăÇ™ ézăc°u*âÉN,ZÜýĄ÷#ĆĐ•[ą&ůËĽ+Ořň¬)cîw0{R_ŞĂľ®>cŰY=Ő˝ßxťß< DF×"ł)fZ•Î27ó­_żş;iFLĺ¦'źę‚µ·ÓŰH=OţcEÄs(5%S) ÄűóŃČ3„ň™HrđPň5 m3Hć\ą¶!W‘Ź{ÍHG/˛ŇÎ,ôĚYT–EAP¨J ڽߵ`$¸¬c őQÁi˝äAë‚ôŤ:P/ť Ł]a~Fđľgü÷~uu÷jRTŽ›ž~€{ ˇl?tP(ąjß:”q• —Ôůçi=[P¨Ť Ű'gŕ‡‘Ą}çAÁ‚"Ѱ¶¸Ř[9Híś—+Í&gµŞŚ$Â8U8L20ĄŮ«$x5Łw±Ŕ6|NŞţž*D$mŁŠ*áŕ  Ŕ>–ó^f—ZŤ#łŔž—K‚évŹ!ŮŰęťŰ»×†÷ßg°"k·ČĹĄ`|LĆ #MAł2CuT¤ő¦‘TĹAĂvľ#x±Ă`H—A[˙^î͉a"CJüžFŕ"x}q5‘9jwtŕś×ą› ¦!NĆĚő·‰(¶Ů|ú]Yţ=6®qwk•mĹ ĽśËČ -Aę7Ý©ýĄtŽC#[ Śô+¨ôk°JËď_i•^}!@‹đí.s[°·ëŐŃź-) C6DˇDęrúŢ#…ĆÝŠĄ>ţ(é‡Gl¨O”ń÷–Ře€l.d#wIÖ©$Ěi|ëÜH1/Í%Ä›ŃYý‘„E­FýŚőż”XŤĺ5zćŔőß‘ąÝ[‚čc-á‘_iĹa6Č ä0ţV™1™çţîĎáo˝ä> žS´Ŕ”}ĂÁ|‡7|W†Ö›%?1_Z›•×'5°ď!ç|0o… QSŞóOŻŤ§¨Mµh}MŇ٨!‚ĹÝ4ę÷»»ŘÓJYĐŻ÷Să(HüTŚčś:ĺ˛Ţ·ąâQTçź("ş4ĎJ'5eź j«’ŻŤ¤ Ť¸° YÓ°Ůön˙§›6žuDp9f‡îE˘Źrôܸ×Í%OöHÝ.aÚ ‰ŘÉš„'ü(Ň8|™L¸ţićó˘GÜÔ«u~=2ű»äG‚\GVÔć Á‚7Ř§Ś ”·ŞfŠ+Ĺăľ· şä[5ÎŚď©ÂŃÎMŔľiˇĎ!Á„Čdc–ĐĹQýĘiç€wo·×>ŇNă·Ż]ŁÁę®bF‹ýÄě{˙!¸+ő‰`ň·0Xc‡ŐT‘›\÷Ń­h°nr~U›Ó ’N˝čÎâUőMY5°kyš¨©zUŇAäđ˘†ŕřOoŃR¶~ŽU=νx°č—2±€k<1kĹź'X…•'E31ţŔě W[x|@0ÁJL‘j7Ł«H€ńJ^ş‘¬żuꆛž„k0ň»Ęď©eÜIÎAáE¬ i·ü©+Ţ~ĄcĄß‡hdŻťîBŐc©-~J虎 „[G“jÇElR đ‚*“§Ł2°ŠĄőĘźţ#ńŁ4Vws˝Ĺîn¨! '1ť‹,× ¶§ä¦=UQ%)PŞĄýĄyDân•eôr7}3 ˝Xźěýnă}íŰĐţúĹŇ™^§ŕ”¬D (íĂ4±ń˛bĂ  ¸.ż>SqN(bP}Ďř]˘)Ń#ŠLľîÉ`b0ŔŮW~<—ę¨ń‰w`IÁ1úóhr‹Ěáýyo¦t•xţ3¨u}Ö{ą -ŤMńrĹĘ޵ŔX\1uĘa´BE2>Z`¬}x°päĄÔ˘(îx†p®~€đŤá—ýŮ×Őý3 jĎ~żĹo¶µI¸ÚJ‰GíôŤ*jWŚßÇ–fŻ09ž-Wę&Ô¬´SÄJMŐ@ dćOčś ŮDi€Ž!;@ZYŠC‰Ň›3 ŕLSbkň^ŮâUv‚, `wjďTqqFU^×f†˝žÁśä)!ţ»1ďÇź Ě-©Ž±ôŔ˛:™9{ÂŃčĄ^áĂőś.Ę´43uúíC-͵HÇ’üŇĐy–Ć«ČMJ ÇęĺâDo˛‡ xî]Ą>őŞ!e0˝ěęÔY/5-őҔפáŃ@7Ő_|†ÉÎyŚěÉçŤůca¶OBeĽ\Ő„Í6-‡Fët–O¸Ó§fµ‰ĘĂ=é~%˘Ň}vb€>jZÓ ”©ŮÔžŁ*±kšűŻ~(˘‚„ŕ ÜĎSűáhÜ7Ż.NÓD 4Ó4ď˛ruW'CŐ§±U:Ú‡¬¦:‹ŘůđZđ oq»S˘¶rí-íFó|[Ó“ťZ>D¨}1)–yŞÁâ¦aP›Ô:=› ý©Ö<|DŹčˇGe%>WŁ >2FĽÇ<$ŘE"ő­3Wđ=ËćPqŇýŹVkµF+Ô";3$'ŻBö˛ÓŘ·9 m©şő–Ą ĘUŁľ°$bFăî[ÉĽđťžVź#N1őSÂňó!1řo÷ü‚táÖO´y“ÖH€µ\Ď@Â-ð€ ęC!ŕţÂ۶…[űÓłî×+éî‘L}™:©ḉ˝*“‡ňŃ“ßßTž©ţµóčţ8Ąs†IJBŔeGÇrzVĆ… ąÖv+~÷bꢄ®k†S!x.3Cµî30+öµZS©Ü·}˘Rcé}é—`×ĘŚGůO‚Ö]ÂÖŘĐčh!VpŞýˇ™}¶K]Cŕb ç5Ş«ĐŐ7-Ł=Z´gCČQ¶ĄW6euč°ĺ•oÚŰy§<gS\ݤťőgć9§ Op4yŻh’Ŕ€ŘÜ<:Żs%b¶îÖ{bUµë”kÎS‚! yÝÓ˝Éý©p„ĎéĆYš…ń`MĄiĽj „©a•[c 3SËkSÍ_:—7¶ąřČ>Č´˛ux÷hžz~ý$ˇ\«Óa/ł1,PwR¬Čęą3„–¦…Fő®ž ©‹ŁĚbsć×Iuđyń‡é˘¤,~–|ÚlÄˇŞ ±śřèHďĂ&aŤ)K$QŇÔÂĹQ˙ ®X˙9`ťëěý<䧆ŚN÷šŞGĂTu‘ÓIÔŤ4š42-µ˙TUÁW"§âTĘÖÂëŇT˘ďkKfÉr›IšĂy€áüĄy»cś)9– bÍ .ăeZ¦3C\đČĹ  0\ä¤:$óŐŃŕáYÜ•[»|G;véz˘ä#ŻwŹcłün ©2¦jĐ(Ů+ÝdTŮüŠq¦ž78h%˙o˘—)źµĄ×˛›®«SÂr0š…1•ëB•e闪ת˘MĎŞwźÔT;â-ş‰˝˝§.î•íl¨ý#˙ďaÂá©–~§”Ýĺvŕč7âŮ&˝üÎőTeW=tMqj WóBÔ'’&ŮŰhţRK]ł"ŻŞć8žÎčAĺköÁmßů˛Ň ¶ş]Š®‰Z_[Šäź!‡šI7ŹÁ4myD Ť×nĚDžŞľQv^qŞ€©{ŤLý”7p–2.C%ş&ý rṳ̈™gL›läd;KÎůpkx«%ńpî­słE#kŞY¶ď+RO1ZŻlŤ8Ĺüf©—hTĺ™~ää…p—ăße°·Ý"XRIţ řÎŹh2Ë#Ľcx‡A9bń†–pŕ=ĺç*]Ńa6R‚¬‰^ ,Uz Ö7źßpSřpżw3ô÷,[Ţ»q>”Î$ ­CµnMCVŇíuâ ĚKľ­˛jBٰÄč” @u39úĐńí‹dUJfy±µ°ť@Ď Ň±^ąžć˛ÚÎyŘĐÄÂŢęůó8elhިŐz°˘+ů–ŃŰůŁ…u2+§áFp§Ď/ ̨-ő1‚ěĄÇ©Í`¤)ŔđeŔďÉxV»dć]ë9P’żk~+ ę1š”ÓL­v;_Ăř˙ÝxÓĂ•übľM={X¸ŕ3ü†Ě楫‰×>ÖŻBĘôÖüĎXŵ´°™ü€‹?˛&0–E¶®†M4ťŤrSdc@ţa¶Ţ„v‘k@đµ>©˘ő /.ŹSe˝Źç°ÚónzÝbőđüGY–5ŻÄ "Ř;xŽ”˛żäŔnť‡Ü¬;˝”‰·މۚ°ĹšVZëȱť ›ž1€ß%D ř0¶yů[ďŽě˝KM[±–ě5c5)‘öř3+6ŃŐá+z ŽüĹĺëvĄ]ĺjćě;#qvŠ6d¨<˘ĽőĄnqßł(fzCĘSBeŰp‹ü㽉{µYRÔ\­yŞš¬»^ÄĄ,4M=ŞMn:H|mîm0É´GĂĹLńĹř‡­a†@ä»˙ś‰ľ‚ÉsÂS,şbđĄ%RŤF˘Ź7I¬~•Ŕö2Aâ’đ?ůÓYťKͰŤ“Ô;é˘ř!ć¤ĎąňFĺF˙X;‰?=küa𛥦‰\ŮüĺQ¬O]˛±ňüPĄź©€ŔÇ<ÚÂ> Š«hą¶.‡DegŰŢGëÎJFl)żňEdÖ ±Ž+‚ż7– ]Ţßď]î[y/íR ŠA?"X˝u5ľ_UŇEXăŚ&¸… ëďn `Ă{ŔČßÔű鄤{› Ć~c®”e“¶;ČŚ(†Í6棩.&*ŰŇŚsăUƤhoɰzÇu©Ůg;ÔŞt.¬ĽÖ‡.wĆţ¬ H™Ý"nDIb®`1˙Ŕćökq´bŕűkş@{¨Mü˘EÍa^ '›˛ŘóŐ ¸JĐ^/‘…«,XצŮx¶ÜvłŇ4] ţ!Öxz&çŕ÷$üQ;'x÷})j·dÖ>9Nâcb5ôuꛂ°V*b€ý\ď(ěcűťÂâÍ„A@R{¦:‹{ó•Ô¦jh%¦§őćKHőPs´¨ń»Ąv˘ůUc5µ‰~‘XŇ`ŰË,ěÄKµŰŽ\DĆţ8˛6Źt+*®­ăŠgťŮ_ŹőD5Ą=†-(¦ą j;±Ľńń.šz±ş÷í6×R¨´C)WHńŔçĄqŰ<×GârloxlQ1QíčYB\—Z`ÜŚ°_ĚĄpnäćđźĐ`}މśëq°×Î8ťĺ đů=Ď °˝Őưŕ¬ÓäHA%„g`}šxÉ‚B4püt)~#Ć羚Į€"6@j¤ŔŠŃ:nŞ}Îă0­’§¶°Ž_•hˇ ôQbu|) Üě„\[aPJżŕ"[Ó+ây„ĄH ËÄý« ËŰY ë‹ë#I&bŐĺޢŮIÉŐFHVî;÷Ó–Qy‚7ůG˙)>DqOwďR3ýÔaťń›ˇXîŠjÁöT)”Č«3Ó©órĘÚ óë0@—8x …3Ľ¨]`—×a6ćŹ|Bť)vhlv«.Á‰>"ĽP÷ź–|^ݰÇI©ćG¤ëšŮ1+‹|đM– qôąřÔ&`‰žkC€’f`OŇă:‘Z9~ń¨—:/_°é–q‚\‹A‹úDźt łŇo †€5™Ĺ%-#jhÓ}eńŹ igˇ%¦aŁÖ¶ŠsłŐnâ=˛Ř˝ `»F\9=h»‰eŕ€”†ÉFÉś’·ö(Ü­)6ź§Ëźřo9Eój#FşP ŔěÁH¶'ţ“ÔšĚ2š¨36Čď;Í'ăß{ŕußé )Ćk<2Ć_•‡u>ĹŐX|w›yfťF^]nŐsĚ„ŢHeď|öK$Ň­·éŽś"ęˇ.ź°DĹFCôV%n+wFꦕ˘ť{ůË- z…b&(—orďB Ą,ŽF©Ű+Łăx˙ąůp«W7Ćü˛ńNĽ•„^†›ŤşI'ń€ĄP Íź;ci(,8ŚsŠćEkŢŰGEŔŻCčĄ^xc‹—h•HŘ8ö+eŘ‘<±ş±b}h‰les6 sî@›čďbĎs|l‘J;"ŚmWLµwC`aVŤĂÖaj©eíRó)ĎßyâWCuqŮ&ɡfcrÜźÄůŰÉ%DźX±] Oé4óŞĚ!CµÚIđŃĘkń˙Yă*µă2ÁpE%"ßđ Í’WżăůmÁ‡6Ć„˛JŇ+SęU˘0=–5éh;˙HS-䪅+Č;Ľ EÉs'ě7¤ĹŇďTµÎóÁéđ#88ß5oľ¬`‘ü`W|"ř…¦Âd{UM¨,!0uiřˇľ˛Ř%6YQŘţőúŠÄö€$g}˘Ü‘ńö9_×»`űĆ`H!Ű+KrR{)üŮÉŠ^=CžcgŮ}wüh"oN”KČ÷äÎrDbČC FšŕŰŠŘĎ]21HfěGO_Î{ 6Y“»kú”4_D¸?kaHűvÓ ¦ňđŤÂÄĘ…žÖ¦žc\Ý._,Ë…ÝŤv®$ٞCŁÝ¸m.ăľë+}¦ !ŮčZű“/ť’oőĐÂ7UXż˝˝©ťBq‘ˇuq97]ť5X™]sNŐÂÓP+§Ĺ †d4©ĹşLŁ®N©rF’čWú‹¸6Ąp"âÖ5qÄ?7aŞĽ\™übłŰäLHşS5(Vv«• ľý.»uµ”µcĆ řč8“O/Ź'Ź1ťÔł¤‘€;‹ŽđÉw¬=éşqŹA˘Ë§–¦úŚ3*3ę™cĆ ŹGăďˇ)]Ş'ofžm'ĐłşżŽM¬‰MŽSKa@™ÇţśĘä«*iĘčáďŰÇ͢XŮ«^˙=kRMpňĆýH$Ĺx8qAĄ¸ëcŞĹůň%bÔ~$,»‰3ďĐiF•'?ü ů—P¨›Ç‡KŹ”C;&0%ĘxȧŰÄó”ÓyČ˙ĐDIömGÔžl€—|<ŘT\đ˘uÝ˝ŇlöIh(íľu ç|Á;Éj¸đ 3´ĚćB<\ŹÎ™ßhCüédüńŘ@ edM±…šÂkŰgO]öY¨ žlŔ9ą­ßĂSšVÚĽ+y«űuăŠa΋\WžĐ{±e¬Ľ˙au[¬‚u#ť]ř<”ňµYĹI­)ŞĂrć´ë7 Žbş­cV˛UUúXVläUˇ3Źk%ń©âǑ˅6kjsA§´î&ďDó.nU7aŢúÁW }7­Íćé˘YŤ<­úVTÁţ)Ĺć@hÇ5Z21§”´âÜÁňbđEz_ën~Ö8T0ˇóčńő>Ic ŕČýö /—ĺxŐxv–ń™Ů€ç#žËŰ%lq6đSłöÖŰŮSÎä&¤ÚČŘ´÷^Kˇâęť(™O­‰ęÖä4a¶˙Ý37¶ĐÝE˙ČCÁiţ Y4ă9đä1Îývąŕz9fŚĐo|ů%Şv uąô"ńy%ÇÜ"?&Q¤ŁÁehK@°F:«Xve˙Đôú^ý˙üNŽ‘Ű âůçWD°şśqşr´oÝçzÉíÄěň}5}C ŰşzSÍJ.izÂ˙¨_ČHÎŐR·ńż*N7ěŠÇ3CŻ˘ ´ę»ÝµűŐ^‘D»…qżEŻĐtwÎz$U›ÉŰŠV:hě Šç\ýŇ»YĆĺJ=qčĄ}bżv“5ˇ„—*ćÓ"«R`˙­š'Ýć¦"âílé9ÓI{Ż—x#ţA¦öŐ¦ú†YR,žpűŔQ…$}2AÇ‚^ňV"»{­%I-Ó čS )M©©Č"YîТíĄUú‚ţâŔ‘M™‰ľ:ĺřŐú¨ ŠÉÂM¶Ţ>©1ňŇ ŰnĽ6÷­žÇßÄX}ż#­bÍ“őđç_ĹeY>…pNdi+3 0¬™}ľ]%Ě2»…°('žAw E'ƶŔD^.ţ›„¬~đ¤Őo‹—%7HfI´đüşé{Á˝4ë“ű‘…/A°Ź`’h±dĘt˝ ‹˝qvŕEđzám ufaJôY¦R^LÚ2ž…ޱłg¸[ďT®=Ôľc7•)O_’ H»tŰ]ÔšHńńµ´ ¨[î7„'öÉCru”ă 0Ź…żb徎A÷™˘ŻéÎăęBĐahľĄ;WĄl7wµ¨ T4ÎîŹRĚ©ž`¬= šńEňhG"Zű»ÔŤ-ďWiěďFQ ŞAsńSV¦ŢžPRÝ÷CĄŢDöĘč@šŃ“˝ě¸|´˘vô”żX§¤hJ¶z±)cpnĎ‹{gT8D}áHR ?ŘdGA“™"%mkŔ~şáÝĐKÔ·śqŤDĂl’Úi'ÔŞĂ!Ń51ýK5ăöFŠ«Kt7Fíp_Ő/“Éfî“Ć-¬‡=` 9Ř[h…©ţÓ¶ś¬îľęT>÷‘OVc§DŠUpsÓÁ Č)čâzÍĹäFW…k ĘQ®± ç´ŐJęŶ÷z¶5E7hľZp ă‚„ÚZ`¦y¨ţɸ.—vľśú\kÄHüxvłXňÚ׾›RK ëŐŚęŹK¬»ĂŐ=’ ­W‡©ţcŽĺč·=łĽ‹ů»˛joÔ®"ăpqm'ÜőzÁňý7€­X w+# ”Íbńęěčľ2´ h~›ÄhtWŕ[Ł OšŔ¦,ŕŽ/ęĺ˛đhwĎŇV$řć]îJI đB1ŤÄ 0qý…ř¶Ń”ę®Ő…ěżËV?ň…ö}ϿŒ龿 ří€ĚÉčűŻ›˝¦Ľ~Í9©Ľś» ˝yAf )îóĄć±•7˛¶ 0$”ć=zp8‡ŚĘňug/˛•¸ S­YW4Źš<ŚŚĐÂîăăä˛ÁźEş`Ż´ľš=cş™[üĐ…Ŕ ĄľsŻšD6°Đ ł–Xl X{đLWÂĹU%GpĽlĚ;‚O\ŠĐ%ŠöuĽýŕ®É6„öb"R?q»č¤ ú˙DezVňś η«§±ć6»KEbsxw’»ĐF¶đqŶśZö‚•ŁÜS¬;Č˝†.<·˙=•:'¨ŁĂlľČ›ô[µ§;z¶p:üdČŢôdÓňńŢľI#Y>˙sŻ(ĐęĹ›WĐ1•˝“±7Çä+¤@Ë=¸ „ö{=}°–U—Ż} {ôh}:{´ĺĹćçSÄç\Xé(Ď[G3 ŇlâÔŁDŽ˝käűé›»ţŚ1ΕfIZĺą7‡/©t]ů—¤4&ŕEVĄ uş®4ň«.űĚÔk—a vE›*‡BßŢť) E7YKٍéâ 5˝I¶Eśěěo)•@FÓj:ďč–ţżó,PˇH¦ĎĽSňĄ>řEčWc łĄLóŮ“ĘšŚŁŕ‘g— Ŕ;^\TQű’(…ÉśŁŰdúĽ3†.:›Şka‚ÂNz=X8©n`&‘) LO;ŽhzŐrá” WE;„<âšuŔ>“ŻŽbćţ7 ±Jw°ĺ¦×=2%wí|Y°rŇ@5f ™ęD;sÚ ‘łEA˙túdč»dÚ2ÂÁźR€čąÍÔťý~™ýzuIî®Ń9xť Řöz <ýOQÜWÍ :®‘5ëďČߥyişłjWĐęŔŢů5·Iř8ŔQÝ}ľ °<ëĆcÇâwKĂĘĎŹŁŹ‹äu÷„6–n6¬ćÓŠŔ;m‡f GÜM/%ă,śÓťĺaÓ9*h–pć1‹źg”‡/0´şČIČŔjŕ†„}?Ł ‚ĆŐ ©ňrË›yÚpî$\J¦úËŇy)ę±jÓYáSjţÉámýýż¤§zcKIq|,‹aL‡˙[zhŇ„*ŠéT<7Ş˙“N0 ±JÖ°Ńć+€—É»ťćiÝđFlí;|n)ä¶đFű)€ňš¬ęsG=đkÁ]źNÄ)´Ŕ,řf1vě‘SŐřćo*h¤˘üĎ'¦®>~W´ŠđR”q´Ľ†§úSĹZd¸<ŮgRźLU© žšgČüwď‹+hÖţ T,fŹb‹ÝIŘéĄ'Đ_4^Ő¤“mčnÜWpÍĐG1’­`Îȧ'ß9€¤°ą[Ȟʜę˝s!¦Şá–róű¬$.”ęZz‚ţál__sŐ™_Ůţ˙ĄďźPPŰĂŮľŽŰ˝wă÷1ć3…{đžĹĐ„F“su\ńĹżĎĘ4–ö,ěŽ}ŚĐ §ŽĽĂ&…ŤŘZŔÚ)ů(>’,ľ´}š9Ń.î}˝Ąt#˘÷]ŽŞ-ĚwÁNµmĄďâ~—iĄ-dV3Ô{÷\& ;Ç‚/±{ÝJű÷NĘӢϑ úÍ/ÇÂů&pżPĺÔg!fśz‹t×ćŢnş€€l$č Ä+ĽŇĐ6éŔJľc´‹Ë¤ #0˛ý7ŃĂR°BN~đ·˙_X: E|ÄŔîÓŁ¬“âÖîŕܢ“oOoüÂuĺXĄţ>â3qűzCߪ»ĺ$‘ĐŽžÇ‰('_ˇ©ÉZdaůC,y’źç;‰ýŽ’Îí#ăĽtŽ_Tř9:0% @rÝŔ€c]çqŠ”Síp¬ĎŘ%ÎdË,tFŻ:śżëD˛Q7Żt\ťĐ‘”żSŚVµn@Ôć¶ĽŇ«K¬F+ÂXjÝ¸ŁŽ^AÚ[łnQd Źg­ď…çÝâ·Ů§\ńFµĎJ§>x`™I±G2ußŘĘS7ŤJˇ-ß_é´ČĘ˝Ë+¬N´VxMQłupĹËA>şn[ś}íQdŚâRűĎ´P€‘ĆĎŇÉ ŇQ¶ÚOA+˛!OąŔçnĐ1¦.xř¸b­ëˇ“ďr9Ł0÷7 ~V9HS„ţRř)yăEć„$lćŁi%v/"ÜőXăzUĘĺí:JpĹ8Žý?lVoá¨âŁĎč­oPSc‹%‰šĹ‡pc]%ŞU_É$…ĺdqÝí‡ëĺš«Z¬):–ŇĘÔjśďc°ăB¶®ZĆSU­[™°˛týH|W¶5(ő+EPbĐ!NééN;đYňÔÄ0%'V@/7O#jçŠĆ¶ =@Í;ň„KÉuż«P2čN­ŐęDĆĹ ÷Ů”„´G¨GhS«éíßЬă/“Ý—@ű˘„}•ËÄzľS/ Š–ň#AŽâńó"ŇÝFć°±.ęďÓsKŘăEСO¨HůŐľX9ű/nÜ"ĆŻë˙Q‚mxń›ä@ ‘^fÔÁ´ä :főÝ=ěQăůŮxyE<ďyIĹNË»žŻÔăr˙ĺ}ň±©gR†b’lzk+Ţż±Á Lü‚8őh‚uŘŹ„"1u\oSöă[nU¸ 8&.†â~÷Bp¦ąm„*©>śĂŹÚF˘‰Â«ŘăV_” @ĺâşVN¦† făŇčPłX˛Ő«»2 霪{Ks°!čŕçĎdŮ—¶p0śW Ě»ľĂ}rه<Ť§6XýŠ06†3G+zä:č©:Ő’h)ÜPd4†€Z°ű(7pĘí“ĆѬÜTާpÓ¸â%mŮý‘ÁňwŢ›á×äz° R„‰ąžŹ4T~“öż•_ShKÂĺä6µ­óť7K%DwxâÓgµ2ĄOM ˙ł~éĎ‚Ň[á &¸Ůş“á~ę­Gškݰh“KW˘EoN‡kô–öB”ýtBVZ­6 B§µéżR—­čŻ©R»í€ĽĽ˛W/÷˘G’,ă˘V(ĺwńh‡żL˝_môÝúĆ(QČŕ]LŹżTˇŹÂͬŰçđZEĄ9]ţţ(?ˇĆąŻťşęő{§Ő4;T2řń¶;ż©_•˝x˛— Ě ĚcÎď%če·hWtD“§ Nlpé€:ź%wZ_p!ó hŐŮś;Ő§°Ç·Ňú[Č´ňmxBŔ Q¸«ů;Ż1< é»mÂÁ.8M:st˙`DäĐF·QßDxňbĺED35Â˙[QřqŁnČFźĄˇ‹F°Wđ‹BuöčŁŔa¶#’Âi2ç€Ěxűě°¶ą™Křt«ń+ô¦óüăäâk=8ěĽt!ąCÖ,ź~($ŁýŕT»j[†6käĹŢń}ŤÄó´XTôéÇ«ÁS·E:ę—E%lĚoř€i!#2©?ůÄ\̵ř‹Vůläjń_cÚhiĚĺé;lP(ˇ‹GÂ&7 °ýý·•2żÚü.Ąs'SśÜŃ϶ăúő«©9žíPÍG1´ć[ ŚŻËë- @.ͤ^רĂÂ(íq/H±JTŰ"Ć˙7q‹cÍÖÖDp…Eş^ę‚ň4üaÉШlÁ%çřĎ9iÉVT'y˘×XćÁ«;×ówńK 1I+Č\zt‘Ř{ľä›"[xţb«A¨_…úČÜ0bŠwjé"Ćo«S˝,=dM±Ň!=ÇávGÜ&BŚDEň¤ LôćiďĆ7][ü'0gŕeőćv|ňp(ź"ř€FŔs¦ŻŐ¨ɦvŁçŇŚ&Đć°Â¨d‡‹ČçőżŞą‹ĺŇ5eHŻŁlq86Č9˝`PéMűDjĂ=‹ôÄz @^×1öŃĆ(Ď–čbُń‡™ ¤ýd°dçMRâęM<‚‘şU(k’:Đ_ NWĄۢ'˝Cň{÷WÉuŻ)N1ÜŔń}ĺ®;ŽĄ°óćă€{\fĘÓ_Ô™˛¬+őŔŞ×µĹZĆä~PJ} &ůbZĐXž.Gü`’Îň“!›ŞŠß×l/ĘVúiT/’ń=µfćń 7‹݉Č,Ęéô"ľ%Ë^°2$_QSąŞúé¨6‡bŤWŃĎó\®ż\L‰7Ő—'ł÷P—ZenŞ®áqXňHćĐâ{uşNß»]ŻÜęD´4đ Żď±ëř57ˇÔ5S\ÔŔH30ŇÉXMČ[ĚU ^vá¸Jő˘E1+śÄxöwéab‡GĂcÝeBŐ ŤďxˇöciŠÍ,ĺäjć„»Ŕ }_·słž@°w! ‰ÔyłČ-ôě'ÚéŘ9<$F›ŐD-ÓÍ|F$:BH9UZiĘ›ŮF˝ÚŃŤ4ß15Ť2FŤŚ_Ĭ]`:•~§wţÖeţ a Ď[eÄó ¶Ćnöč"ŚjŇ2…đfúć¸ůňPÝR®Ţß1á-—˙hČWÚ«ś ş˛ň÷:ľ•BEšňd+[Űa×Ksn®¤V`7ŐäVúŤŞŘrü‘Qň§}J…F­DĆ3‡÷Ö)Hg0Úĺ ˝ąKËÄ Rż:•Ô‚ăh¨˘ĂĆç>XŹ ź™oBš&@yk‡Uĺ{“>¨†m^X’áŚZ<ĎŢáĆTßpanŰGEŕHôőN+ťyô͆ˮëOŮľ)ţ±ő&xbę®.'ÍzD\WlN íď ôÚi2–úvAl Żź%©ŐëE“śÎSY°Ě[Şç·–Fž-ëE‹ělÝřJ¤˙»´¸§©–á)ł6‘z§[e·2çNÔJuŔ™(úÔ(sňĽ×/ăQЍ˝SÚ/??P#ßë‚Îu¤8ÇkăKXGąĹ4d[rÉ=ˇŻLÓ3Şlq7˘Ť«ňS×Ŕ‘¨Z –Ůąămł‰ĽÝľ&źç¨.ˇČ,·‘QUďĚř9Eq’đXŠQg+•u=9a7Őę´¦ŐiU±çs˝_Ţ$tZ>ír·ďÂĂÓwôSě–óÍ&ĐôKähźKô\ő€v>ëÁÖjČÝ}úë÷\’ÉďmÁâ˛aĚĹň#NbŤÎďÓůB«łŤRíş^‚F_Ĺ4ćÍ‘źP*ĽĄOxÉEŞ'+zĂš$/ĐÔtQX± ¨ˇzOX3„,jĺřŰü$)Á*fwĆŽĐW7Ži™í—?ĎľĄ›Ő‘T«¤˛#˛µś”~â,’ ¡·P1°AŢň_/^bžÎľUĹĺĐ×YŔTÖŕ¶(¶.´ËŚm éśjů,Véšßçü{=Pr—|ĹÜXĽ(őľEwjŕ·±˛ýĚiÉ÷ěÖjĎťŻ•f*Éď‚Ǥ%łŽřýű}őÖĐ{pÍ.#wđhkĽůŚČł·‡>ČJ|.ŚĺĹ+gćçaŞ,ŠČ&oíˇ/± n«@Ý×Ufř„î(×l(µE6Ą~Y˘)«Ţq¨ |; Şĺ —üKźB}‘ĺ_˙íKnËíYBGmŘÔ ,«•#¶QÇď¤VI ™@C·xn’ÂWşuÖˇkÇ@N[Ę'µ39µlrÓCĺ9•Ż‹1ý°iëpîE÷2č´ůÁ’Ňâd#ľŹ„ĹsVp#nžŐv¶_Ş7ś¶Ú żŇ’5ۉ]`TAµm‰ł!Ęx!ěâíABEeÖWuéHmÂPŤt4âËŃÉŐę&˘_ ‡Ł/%ň„€_Nó!çĐH0G‹Śí˙łeLĄôbpü˝ÚcqŘËŽ‹¤(óÇ_¶¦°AĆőĐţ ěn˙iŮ+ĺ{éňÄSfDîiq5MÄ ?ńh[%h*M^áă@Ý´Í~C“,á ůĄ‡í1O—őá;آ©6ěĺÂ3m3©([<ÉH ›:Wi§Äě«–ęvQúҤa‡‰Ŕ˛I"bőx'A€ź^}=I}¤»F‚]WđyĚ)ŐĐĹCÇÎS°ßâ©·SËŃÚe%I´/Ň OČôvŹJs1•`ĂšćĽîUžźĄFŠŞ[‡¦ó!@wâ‰yI¨…-fěsłÜUâQ+qD´†w8NŰ0´áoš˙h5›`1ýĺţ›g yńhk âMLéÉJaéZ[Đ‘~VvŹ“5’Úfďٶ˙ˇ ľcŕ–7ČÉÉz ˇ„[›Ď Ó–«S0kňßd)¬ş‘6„Ą´zPE#g荟5g:ů uĹg§“Ż„RĐ2ťr“IbđÇFJRX,nBa»|jW‰×™ąż©;Ą9^ĹŠ^Ůp_üŞ„6Őů1>ňŞoGÂ
Ôů®Ę®ě‚Č|Ä+‡Ó:ô/wMŚ$ěš%˙L$vČçŔ™Üń†~ďZ…űS´n¤ú[ż\gŁ·Ř+_n©–>xI-„\Lç¨wŚVŇJˇŤ Ó™ČÂçŮO],rŕK,Čż-zqȢ˛ĆzX3ʬ&-4Şk 9Óef©^©^ď Â8MşvŮ`,Ń·ď,ŽmĽˇ Ç_ÜŞaĺpđT‰O‡©ä—y9t}‰ţŚFÖźµCOľG˙@„}QĽ=˙"ĽAŃ'çํřµŮň?6mŃ$h[CR´ ŁíëĂ@r›˘BRYŁ… sw–ž"ĽLY0ZĘ©9Š÷ęb”*ŕ{(npć‘Ń5‡¸yQ\ÓćÔŻÍ;S«´Â/ńQrÇnüvŔ睼§”Ĺ®×â@g&©é!“šUu1>‡úvČücNa~ôÖĽńűGĆÓ˛˛ÖŐÍáŞďĆ·“:Úć\˝_8e<|%:÷KŚĄŘp› †ß䕺1ZżŔĄŚô…†…Ŕ1ĹÚpá“hYt8u€Ď_Ó‚3Ť Č<9šóC ďąîTĚ$vĆÔ$V7UŁ…rW˙fŇdüdoÖ‡,1ŐŰF‘ŻňrkPtBĚźk(˙Ülűxő>6 I`YwwŽ˝y0CŔŐŢ& 3tç9>…Î×É꯮’©a5F)%# 5l«¬pRcÉ“ˇ,|lŐ[îĘÄxúlóřzâ)f۶ß~Ü‘ľÖd¦‚rwĺ4ëŃůJć`K‰˙ LXOŔJ€·:›źZ/”®ŔޱÉ)7¦˛3Ô`UÉÔA§ ˇˇŞ(ě® †(wŠf[{üJ­[“‡:¤9ÓëĚyµ¸Wó›äQéÔ(ÎGÖż ݦłľ°·<Ă ’”ŘĆż ¸d‘×/Ę{Uˇ˙aĄÍ)O2„Ś@ńB*z‡ĆŤžUËľ jÝť/Ě´Î(=Oq]‰6™Ý¸”ţ¶b jaçLhŁĹ&±F–±!Š'Žśđ\śď>vt8úň’Eń)0®ć|šÁřvˇ5$˝Xßęsňs<Ř‚ůę@?UŐ§Ňúł°$Rq¬¸ 4 Ď‹`Ž=řy˛čŮÂŐĄCýŤn@ą·Fş{Sd*ź¬5=! ‡·ťµ’)9¶¤÷ĄÇjIŃŤKuáĎ(±B˙ŽV€’RRźő<^ŻŁa @E+„ĂéŘXT··‰1^~06đ[ü J` ¤ŕgŠ '"Ĺó›Í´VÉÍ+ G…s6‘Ľ}P+đ‹ćËS÷®Kk¦Ú‘ ÷ôkĹPóţ•R<äÔ#ťó“ިăůţZ‹ŰŢéýt/r Ŕ}eä ą™ ü¬ĘĄ-Ĺb8ŕŃĂËĂ8Ë”~nabÇ#91^A·2Ő¤M€µn2ŢŁ+<Áo™ó*YçĽQ™­ť$wőú7Îu>vjëq)2ůP§d6Ďz®vhM:¬j޵»©ŇŁĘňřŚń†5Ú/‹ Ń7Č?.RXNÜë—Ö¸;ź`˝Ë|`ÚÔ)ąbď늴 řŚÉ)Ą­đë4pHgk‰=l·»yhwOšb „ţŹjđ=&–…çÁ¤ äęG$ôö¬ťýńZčňjo‘·T4QqY49i׹é&źEnLŢÓ©Y!7Ő$Ř-Ęvüŕ•Yĺý%„ăćö'lÁߍsň::…)*®Ę‚Ę`ŕ~?—†ş&pl´^¨RCĐۨüR]´¦´`ű‘+˙j 2&c ŞŔĐQćÜv”:¶îµĄÁ"Q]€Úc«yÚhV’ ŻpîŕÔđĆlź?ĽJ n­=K¦%gu x%şQ5ΨżbŇ‹šşM Ěj®„ú( ZxÝexေM€¬Âí¨5ĄőT!ő Ç{’4ť•ěPÍ=D(Z»mí|U] v:GUěTŐ'‚•a>/§Ťě,:Ł=ĹÇsú}ݡ†çÔ üNŔFÖ@7#ÇůřÚ»dŤ}ʰö „JŚîn=Ě~HÄ ŔyÝň=ÇŠ'ś*iŮČöé‰ĎaˇWă¸,z˝85čĎř›EóIq4›ző!]Ä\SEcA]h:lm*+)tm^3Â1,ŞóÎđ´>k5S“A[Ţ ÁŻĺÔ¨nżÍýtÔŻłźšm”3Ű<…‘¬ÉŚj:©çŠ„ PžĎ!źĚlž~ 8 ·Ą¦ĹLTH‰«¸}°<(AßČŐŞü‚hĹgĺ¦úgOYÜč:}ĐÉš]Ďj¤«ď:‚”t¬Ü‹}ön¶5—Ţ1Ű“ c؉Y„ĘxµwńfP`<ŠŤ _{"Ýś˘ç @!Ľ\Hˇn…Jź´qę|EńB]JC”^ŘšX×c„łĆíŢÎĽ Ł2ÝřR·’ç5„ĽâĄÉż›ĘÂ}«6Šöuă=|±^b‹űúP˙‹™ţo´ś˙x0Ů\PUá2&„:)Âg×µÝhHĘćeRŽĄ-űö4ě!ü@Ŕž°n±ÄqľMIf{ÁWšX)ÓĎŞŤEµé̡ÁŻáĹ"÷€w·frµRdăő€49$ŔMʡFĘ]W®‡9J•Ż4e}ŮĎSáKţ΄lTůÄg&ifĄJohöŁn)§lí›Ů×jś[‡ŕA\ő8סÉí ëG¦Ľ& şá–R˛×Ą!ČŠxdşŰű†? ;»K5u~ßa®;˘ü•Ă%j†ŁŚĺŮÓ„D úŠ'3ÉÝkÎNYs3ęŚÇ´6˘LYŻBŠ\A–ť!!„%ŃČ „ɉ)/ŕe‘žF; )Ţ%Sđô^MTÓC\Ä©ľĎQ»b?čţě™IλOĘüâc›ÔŇ%‹Ű‰ž~żűb:iĎ'ňp†°HÎćŮ6×eá!±nërq‘,Ř® Ôťiá|'(â}~ érýrÜÍŢţky˝e1~8;ÁôŐ5ąÉ¬‚7ů¸I§ĘÎ-ßX“ KIŁôkK$ď+Ŕ©#ź@+•íjGŹĎމř(ŮÁĎ[iQL‘1'uă{m‚Ѝ?˛ye“±l®Taĺvç6ŚC$ćśF:;U‘)SÉ{ŇóĄg;ţ|Š·xüÔ×ĘĘUUźŇaCz^áîI;·M‹¸ş+yŰęP .»_ył¨v†¨;ĄĘo§™ęŚc/ypx ‰K"?Ű,tśd.DTéG˙ eŻÁ†l˙xşßţňĺä× _pDJlŃ"–U™îĹży* ÇÍ÷KjQ Ŧ íÂßDHë[h3j{ČNćáٰě:ëĹԇň6\°Ű…!xV ßű^JĚ>ÚËö„SxôA ŮŤłÎ^+˛ykë*RŔSş2†ž–"jA83®®‡Ľ‹«FŢxiÎĹ?•§ăĂŻ™+‚ :ěQ〽`ŮŰ<ôĄvł>+{ÚsŹŁ°Zăqř:Ľ×ś}Čzh2yö"ÖÖGvíÓ9ÁľQ» Cőë–|yď 8‹6%Č~ůŹBŚ™Úd°€Đ.ŘNÖnŮ[ćcăđÉ„‹(áBXgŢŠŽôJŁpŮôÚĎkׂ•sRŚż0iŢ}oí2t˛5ˇB?=ÉF#ś®žűWŐgţ ĹkçÖˇÖ|nxŚdşŽmbŚŢżVr7mb•¤HyL6ŇŐVŞ©–ŞFŃŠŽ2~Ď`ĺţŃ8ýˇHüXú1P«şě<šŰŹ«łöKiżÉýşC¶ßf稳NóŚl‘ńng`ľ ŕß{NFŠSeq6V5ńÍŰ0LÉ ĆĺUá±TÁë :ŃrŚ›ÇéM­űf0p÷a®ę>ŃÓ]Ç«‚YŁŃ«¬çzɱ!Űo^čv´±ŹăÉ|ĂlS ´"źŁ|ĘđŃN¦ů?É—+.•źßÝZ7»™};4!ZXxth[•*ˇug°)R„m€iééµ]ă+*@Ş9pÝ•ĐYDŔBÇĄi‡†ý÷`5uăĄX´ô6F‘˛5 Á«bŚ$Śj¶“+t>ن±¤č<ŮžrFÜ>—Ý:ˇ{٬¦eös›ü×5&i¶4 z{”ÝP'~lÉŚÁgoSżőşĄ™b¤.şVđ­„njFś˙}™s)`\Y_wĄőR_µU70Ű索 -Z„Ýn_w„K4ő‹n-ű{Ç˝®äĐcśIĎ /&SţĘ{ażBÚĘ`~ň˘”˝ńö‘}Źďm´ŰŇx0d·ď•8Ő9ĺ"†šÓŔ †‚ÄľGé–Ć˝‘$T@Źń7á;źEEB§ Ă”řj· {óÝVĽgeýsg'[Ă\źŇÜH¨ČĂëZ ăĹ#×YŞ×‚luúÜ"t[Á}śµW@… Z:.wŻŐŃ‚ŔHż7ÎşÇ×ÁFŁůرnÄc¶á’Žç1ö}úCm®_¤Í§6‚űÉz©‚ćD’ gŁţ0ťGÄ Řš˛ŤW5áT€Ž˙·˛†1ša‘SůR“ąBŻşĄźm×CE&í‹÷ąź+ÁŞ[3=ă®Ń©7¸8°U ě/LĺQ=w´‰Š°ĎÚN>E‹ş8vţ>¤yo>}Rt}52_ş*Vîş\DůhG;°Ć„Q‡:ĐÚI$ĄrĄ\ÄÖŘ:†5©ÔQ€cü/âúWŃD †ý¦bÄS;.źu»›™ă.»j(©†2&8ŇúGÂĐ!Ôó=‡ÚČ)WŻ_ˇ°Ě"şr9 3wš^;Ř‚-@Óm)d7&]‰Ž®Ňb¦m§F y­ŹÍĂbąÎ!2ø2š€,1ÚiˇX]5®Ő ć~›ź¤Ě;*Yă+|”m.§ŇT\Ö BË™äµËŹqF˘{yŁx®"ľĐ*zĽ éŃ»V6Čc Ú5Hü´ˇĽr;8SÁDŹčľg««‡`.´DĽÔ5,śpÎć]ag&Ąí¸Ť¸ĺ„fĚŐÜ6„n6& ĺVD«LýĹüŐ©‘oVšű¬\—ńîéDčÉ[÷ű:HÄ eM}]”›„ŞM}L:×äă™ŕAÍUz6jHI¤űÝĆr§OWiwâŘt놏ČLq`Ť]ÁöýNÝEĄpX­§™°]Č”îrQ53 •N¬W=óvČz¸ZĐ‚¨DRJŕ;퇚˝`•˘Á„šĄÔ 2J_ă]&ĘŽăAM$•î,Ţ]ÖŻ7č ›–G Vś¤Í‹ŔPŚ4x‚äň Ĺż/#EsŐKĺ°qDősh63 d"¢^Đ/‡ĚÁ k? Šp´n­S3;üě%éŞ0ŃÓ}SŁU[DĽÚLJ_Ë»eN˝÷ś‘Ň1±±RÜJo2ýĎÚ–°Ş‘¦G׬ԡqÖP(ŐYÜMîť´fb´ ů´Ăő;^ë@ŇLä4ěV [mÇ›]1Ć#ěđÇUŚÁ殆ĆmÓŇE@s>,™Żč.Bć"cóĂÔˇ łŻH4Ň>/ËZ-kő>„EIÚ ±$?”´Ô?čŢ‘oĐ˝r ¶ţ軍R©s|ç÷´Ś¶É©Í¦~«ŢµZĆĆ9Âřđĺ[ş|ş+ÉÇ~ë“â©o+1< ¦5ô˙_Í=rŤń ŔPťú(”Uz)Ěő˛EÎŮp-s—›”†$u;d±…ę<Ş+¸óÜ€óΤ´EŰ{9 P Ä»QµŽ>wľ§/='_)ˇŃ50ý`iú_öýj¶8‘Ś}:`ËŰďODĹ·}ąúŮ$mKÂŃÖ­Ľ’¤©î¤ü‹Ęç/ůĐÄéĐ·j¦Řş€Ü(Đž‰Ő†ŘĂwnźÂ•Ť< Ý˙E.Ś#KĽ0*© >@ë´"­S»…v-ŠâÝ(渠Ü$z”Mß´etŕ„ET‚iĂ ˙Ă!1!€Ľ'\mÍž‰ ,w@şł<ᛌî˙‰Á’LýŘL|”€gfU¦`‰şrĽó—áÜ«rÝĎmŕmÁęKa¸ '¤ĄVŞż÷=4zŔA˛I…ţVLČ^«/ŤÖh6÷'›z'zy¶R叼‡Šs>Ny”‰›ÖI´ő'ČŠď>‘X=2]¸j\ÁßP·q$.iÖÖö‹i!ÇÖrMY0ţ 3ő @ľ+fü¦ž1–¸>RĽ˙<–ŁÚ#łľülľé#1ĎÁ7-•ˇ§łŕ:Ę=},Km†üź˙!ÜĐjŹs‹Đí~C–5ÉJĆä:ĘtđĎśqÍ_g@28Â:Q{ëŮJpŞęw'2»"„[)D±|ßÁď& kí9üCב‡„lµĺnZŻĎ3mEyĹƵŘôaÇ·zň7üu/") 0ďě8wF5W܆’Ó°Ub÷†fçŮÍ KIܨ ^—Öl ŰÓ7ţ¨—Ö‡‚ýčXq‘1˝ĽP˛,ż.e'˝uOE_ažY®ĚGJĎŔv‚e1˘Đř9„HMňňń"-çaÁŮMŻTŞwëĚJľ#I ôü˝QŃ€;; ZA=|ýŇÜáQÁ‰ćľŞ¸‘T3 źJĚF6 VYUńĄ35ˇqńµŮo!— ׾kîÖŕ=łj4± Żda„ڞÔçÝOt~^2VÉŤI"+"ł(ćÁ—CXĎşß<}ëš}UsřBůPŤÚź+'ŁÂű¨±˙˘ßťł'Ö‘eI‡hüikýÔÔއgC‹•’Go…sđ}÷tµ‰19>7ŰűtnŻ|˘OxËl±ăľ¤yr{ťľŮ¸¦CĎ2tĂ–tĺÎÇ4PÔ30Ä 8wnź×błącî‹z°m„q ýŰZTuJŽ”|‘pŽb›mZÍ8÷vŁjěĚÍ–h9¸Ĺđg'ęöśŽÄň©Ďix*ž¸Ž’€ţĄE‚íľč,öۤićc‡…ĆŠď_•Ż;'GŹKi …řą`Fn;ĄfňúËře˘éśi ÎéŔ%eÁň>­gŻf;@kT·¬x™cß,ńQݧß:+oAňqTŢšůĽŘŮ#j%ŃúŢ7ďůqH[gh[K,bŇ~ĺµřWb§lg7ßĹÍ4+¶îôfzš|ÜěÔkâĐ3‚4űĄ®Ć&] •3‹×îl—TíBmt€ĺ”m)©^K|^5ΰ¬Ĺ‘–&…a:=ŞúÇóžkÖ÷sÝ!6/Ľa§d9ćUÖ´(۱µÁ•ô]›š˙ —[©ŤCŞŘ}h)Ć*?đ>ˇ(Úh+1fě`¦፳¨"F0?żŹôo”ŚoÚ(v˙¤)Ł/Ď® ÉŮNa‰tv!ľŰjj9š}kě.Tt#`pŽŚĽăÎ⌓}O|2,ÁŕŔťĹ°©ÁÜZWě•ɡ”y‰”\ćŃĹ‚Ť»Ţܵ…Ô50C5› ŻTZNŠŐzŰ]‰H‚]yŹšÂA4ËkÄDKPFúBŕň]XvÇ"wR–Ěn-Ś„˘śÖnÖ‡ Ŕ©…Ăa”´Ľ9Ő…ĂXóp—ĺTޤi =ŔŐŞň ö`a/ËČĄ*żžĎvVµhÝ@˙&ă)B/#ą~qk•…śjÇ ukĎa«Ć©XĐHŰć@dҨŚbš«Pv„.oÄÇ Ç`§jb xÎîLůko'X ¦Č6sŠ Ł˙‚żŤ®]˙ÉĂ6TřŠ} +0EۢţŔťGňC^qN„w¸ŢmČšĆV¦ŢŹ]~ÖTÄť~bńŐda|Ľ\ËÄňě;¬”‹V|CW•ČVźĆ'gRÍ! E𬻕ľ‹ËÔč«ŕ–Ł~Ôđ/žŚ@Ę×´GEbkZĄÎŮu‰z_‡·ITdÇlRôj;Ѩ­íxŹŇŤ__/>¤°Áĺ}š'´‹Ś1ýtÔÖÝ7"ŤŠŞŔá]ÂŘ% ÉmiôS؆`Ű!źÖĆşH µ"ĚwFĂŻjš<ďwžË—Ů•ŘŃý—8KM¨ŔË%m#Bq›1˛óq§+' ‰•®ł¦`P:’&J‰ăÁ,].ž»Fřw µ€ÂÎ]Ť©™sö&-ʇ`˝ŁĘ0Ťż‡SŘȸh ÜZĹ‚ńJPÔiŹšl­<żă§F.‘čňý¬by_ˇŻN Ľ0z`Ą^ň+I3 =ri A´Ę‹Š’¬ř¶ř&łEÇŕ?pńGzńlE{ҢŤVżląo¶/Ť±fÝ‹Ľ{đćŁčÎ߼*Q˙˘XYŇôőłî•Cdm|=ěl3˛śürËľ,v,n]Ý.2ÔJyVţZN} Ű›JłţŤă]±ÁęY<%۰?áĆőşŹaŐCĽp4L›… ć›Mˇk+ţ:0¦úđYŞČ;«š$¸wŰř˘„ĐÎO äżâĎ8fś—ÔI Ł–ţ¤Ń°Ę›1VÁŐÉö»&ŐUFşĹ0ÄřHDtX W?”ÔKEcĚBňÇ*t!><" ąo8Á>ňlĂۤXD¬T›ÁĂ+{±GÓ߀8UQ4ß’DľHř;G2V! šáăťí59aúJi‡ŹDßhĄ'ń‘ٵj¸ýĹ řĺďÇWôîź&™—MQí›GZ>D-ţ «.ů˛Ük°Źą“…YEmĽ¦x&đt±­â/|0ČuhŚ/°"Ć<~zţ–…<:4tٝ፼&{™ nĘBŚjCő|áHŁż+×ĺÎ/JÂćea6ÂvűúŽhATůË%S°0>^©<żŕ‡2”áú`vĂŁ°‰,}´Ť2X…űć¤÷ŘßÇ>9µßăáqbŢŻ¦qëŐĽwěNĘä.Ď]¨‡ˇfȦłĺ\jÜ Ż7J•Őr"|=DaăşëÍYŠuŔ¤fľbNæňŃşŽĘnĽđ/ĽA஠ň*¶HćH¤'J" ‰ď·ď\´–f0ř±/B™{\/gJsŢU± ŞZä_llŽŕÔÚţÚ1Š]”hc-uvůů7D,Ü´h'á\’#MO‹/‚ć»Ë% ÷Ç‹eŁ‚ßř‡Ź•OňKźŢ}ÂmvkWzj˘Ý© ©…© ű†^Í•<'xŮGČG\p:çŇ{ǢđCÂa·|§ök°;Ţ„żUxéşE”|,’9*R{ö/ë¬\ÇŠa ¨·— ő3J4xk éFőtT­ ÜÉâŹ^‘AůfĹxľc2ú´ßvšô ”@,W°ć‡– ;nv|FцçUÔϬLRUž…T»=ę~ôłů¶ć†iCl‰Ě”"ˇĺZb°×ýµ»đüDů˙-Ľ´†Ş™nô't&GOö)M˝fźđŃžz~Łô¸îyçÜGńÍ=^¬ű¤WŘ"+^<ŻrĽB :ÂsőzGĄ:?µłÁ&cmŞµÄ `z›3pÓům,džI ž}—Ďíů¤Ĺ cć„uĹt5çˇâťiÂü» OČnË^źvW;¤büšŻůLQtÖ•¸ę')Ä…F„…ÔQ˙đ< ř´ŁÉ3úSw+ezČTňę·?k÷¤/ëí˘ż>Č”šÂGhh |¶Ł#U‹©¨_X˝N/ľ uĄJ]×%÷ÜžqłlU$YČ(‡ő»‹tćuăň¤Uç<ëŇUlCÁĄ[M]t]+u˙Ą$#l4…ěĘŐń2i›“ 5/U+‚nyŃŁŁK5§߇Ŵ4j˙ÂÇp‰öŔB9#¶Č*őŹâŘŘNo¦@`?Ó«G4@Ůvďĺ›í®Ëď:űÔTc"§ť«şçÁŘ»bĆQÓvăĺđŘ üŃ1Ćz¸ÔéúI\NţŤ»TIŔáŢ¨ĺŻ ­>_Z–_5yÝJ"ä¨YÚń±ŮTńÇ’ţpĽSk=dQů·DŰ3$,&}ť_‘Áń‰Î\ňŇ)ţšŰ¦žĎ~k!6~ß=´G=vBĆĽ÷ËÚł[ĆŔ‰oť­ęů %­(9KKĎâ"IĽÔfŮě%oÂŽŃiĎőBUěÍ´Çß y˛ęĚ⡲ŹçRKkm)SéaTMř“ŢźWU•DľUrÚ¨ Z#`Ł|n™) Ą~ ôí[ ŃR§ń·{Ď€ůéaĹç ^/U1ˇĐŧj ›¸“ż:wAĂPÄł¬özl°eńĎ/Ť“…~§@…¤čJŤZ"ť!ˇ^zęrąĺ >kŐDĎŔÜCFĎş÷f—ż©¶c‚\Ľ€żó±6 f/>ŤżťćŘp&Đ ŘBt‹^&ľÜ îłHC‰©„ßÓôЦę­mđÇ&ͱ¶Ä8ńÇř©ç§‹É+“GK˙ÚXĘJty˝×L"óă$NŠBÂ{śá()sŔjŔ1Ö´ˇGş{”Ä žEbśŰ"aHóęŐI7Š&‘ ˘ŁĺÇH^÷óž0S(VA[˘g<ß6Yß®©ěń 5<ň°"JcW±p˝›QĽFÇ—KO t´v_łŠĂuóá é˛ĹU üĐ"ţ@éşë„…ç4u ţ„#Ř© Ń˝żüťµb6Ć‹ë`G.ŠzăůV U7ˇ÷ j>áW»űŚ€ VJ–ňyN‹_†HSĹZóáčĎ5Ę.ľ$vů4Ů Äqä’ÎP lWń¸ĘD†úŻŠÁÍŕs-žłSH…JhźdGŽÄ^Z)Ćá[čroó(`UT{śźL,K\µyălŃň^‰7aľ°ĚĐ6ät ľÇîËÁ‚'šíf©NË®§ZřĘGYv§ťŕé1®°âW©Žgn$ ¦)AćŔŽ%g?Śí~0Ű6nÎ(mÄ˝-±=Ű^yÖ2đ.3„Ĺ,űŐ.sš|ČĂÓ=(([«O]etˇ“¬ŻŻŹüĆÍŮ'´ŇĎţPë¦7đđÉBx°µĽţÔRŻT§9÷f·8ĂiŽËŘrťD‡Sg% ´"­U k´wÁľŚă?70B˝ČMÉ©Đ}ˇ ?H˛pô»˝µŻ†‡ĹęřčÇ;˨ťâĹÚ˘Jđ,!§pŰٱqŕx»*ľVÖ$RŤNnr§×ĘU&ĘWŇ®˛Hʦz,Ż>:")Ţ"ßíHôÉ îçUŔŢRď¤ô]Tpç–Ejr6ÖPĹt,¦0÷ĐT¦ÖBgŘrł/‚Á3[Äycm6ŃĚ2ş±z´źE†š^äŠJ‰Ń[^¦řđíÓŻP=ü—ŔA&R’ÉűöT!Wf×–şWíłŞ–łJs¬Ş`—Ńú÷jř“ôµ°˝˝IDhÔgë ęqË?‡ăĹ- Ť—lâ%ÍĎÁKĹ‘Óh“ZöŘ&ŤÖ®ý‹;”âµbů™A}…Đ=J‚ţZÉĹ i\©ě†Ő@ějňA÷ŔŇc—Ó^ł5ëë'Zs÷°Đ÷ţ"ŁZď©ĂŤguďIY9kÉÚŰcŘźC]¸7>.ŁâüČŁ’ ŮUŤ€TެX.&BŚŇłăőŐ+˙˘őh*JŁ\”D:™!?Ď5ŠřrßYvpš/ďž$Îá§'ţ(f“z7xN!Č5ttŁň Ăş 1Č«a§ÓT)ç,6°‹sY%^±°)ĆčSńÖńdD9ik†#fĂvĎře™Ůq‘·ţŕ‡ˇľ*¶Ů±—şXő!čśś˘Ž{ýŰ˙ÔlŘ<…WµhůŢ2ˇB¦<ţuJĺ嫌ĐÍgůUž<ÓÓ5x†ÂਇMĄ{É®ćťŇ„ĽÚ™ѬΠ3¨+ř‰čůůŞ[ CVâ‘ÄŇĽĆ3Śłćë:sŠîť9˛.{–Á/&üă €Gň}ˇ9ßSmĆěi‘AŽjµ&ä-áńÖo2]\ O•[RóâŁĎn09/çS„ ýެćW[g2VmĎJć"ŻţU¨{żŮޤ֠fن_ăł.Öşil¤ľh©§ş>#Γ$ŞŘĎ"ZľŞb˘(ʜךż,şőý—ťšśÔűL˝"0ě…"Dß2㔲[Ľ Ö >ß…&Ą TáČvßXF©Jß:}BĆg':‹ ďĐBĆQsžx^Ŕů5ąoTnVÁłWĽ^e¸z9 /Üîżĺ»s O"o˝Č8ě¤-—5®]€/_wz0â~Ó$ÝOŕ4żŮ{’cŐ ¤aŢÎ<]UčwŃÚsFëÖC  ~ăoT'Ô›ËőŚJJĄş¬gKŘy ń…Żę‘·0>KFĆń˙(#ětĐu 1MťO8jŰ ’ÓA$­ň”ť]đUdP‚ÖŹT€/Ulm‰›×T̂ԛ¬+ÁOÚžňĽ<”s;•đ:Z† §…îŠÂ#3Ă/*$÷fşŃŔ\˛Ôz˘®&ĂĂE˛h±c!L“SS ¶ďU™đIrđšŁz´JčŰ«ł['ĄPě?[Î1Z F Y"ë7nPnpK$Ôb†y ö’!I{Öđx9%ēƒě_~LeiY§šţh™ülöî—€˝a’»°‡ľ‚Öh>ÝĚDmsŮ®ÝÓëňđĂ`Tâ‘óU|ćřÚ=®Q>Ay&Ń^kž®Şł0±!›ůÔ§µXÄ!ć‚"8[›*‚i™;8\Ї¦XÇżĄ°źÉQšv€Ć/7Ä{öÄŹW`°ž C÷tôP‚¨ŚIę.ČHFÍTôV.ę.Č]Şi9˛Ĺ"~ÎçžhŔć<á3p1  ě/Q Ź#Ňó®[°ŤôŹůńĘşJ˛ľa¨` —t3q r™7îÍ_ÎĚ”ęâWÄ*ĐG\ž›nßčjYîDąr°+pçÓö~TŐOÓÄ (®-3fW=6z,*¸ ·0í‰óâZÜĎ.–Ă÷‰52sŻôaąąWś°8Ŕű—#k-$/.ÇňJ‹µ'¦Ć’±ÍófĄŠĽX |ŕeiöíŕza§–KhâűY‚5çÂŮHcŢŠ§C}anwµ;W`"ŢŐ1#ů÷ăę8źAúŘ‘«Ç˝÷:IÝ9(ŕŞnřŰąŠ]˛éüH¸€oŠžĎ?¶ĄZëÂďŽX2ÖĄÁ ?ž$™‡ëäţrD‹•óŠÇ»ŢmB…Lç˛Ä&~‘P‡VqĄŕ]ˇ2žl­ę|Ô•!ŰűŞx;?É2ë‰nÍË}ÎcTG*Vť&ĆÎeú(­_§ł TŢÍŕ¨/•ąµT2éQY:_VŕęÎqOOďł5ü…?\>'÷—|yd€aŹđ°ĐĄÍČ#«čěďܤéşçźuýWeŮwEźť•Ö›‘±ýSęďń‡Ă”Iďt¶Ó÷‹Ű»€aÁU˘Ô§!ĽľŻg„…ÎUvWÚĎęąV7Âňc(*´Rčz}Ćś NT‘»Ŕ˘Wvą+/ű”’@×f¨…/ É7ІbÖ!ď®·wîdąô/˝°%[‘7€ä’(}ň÷/,¬Zv0Ř:Ý@qF_}+$3EFßa¤Ję4«ŔX-Đ„XpYjŕ‘Őô}NŮ˝éë´›C|rd,ŢÇšĘ(âJěîOĽďÂŔCäč˝üúśG¶ąŢ^Ş-ÔíG¦·q!,F˝*ČwSŢąŕ]ź8Pş"Ě$ç°ÖŽĺC×P‹ë2¤{cŰŰ”]ú ZßY«š`Mw˝śF‹Îlmzé%®±3¦7šµÎww?sČéD>íŮĆš1Z ľ D €n.ü÷”ńťÄűBŇÓ%˘ëîń4% iFŤFG–WpŃţxN~deqoi¶ÉN©>ä “µ¦)é+V•ÔO˛c«Čv]ć­PfŤ´YśrMZďÖ&ČĘŽv¤2äČ®#Ýxzlm\úl…›őD]ĺ\[t Ţâ÷€ë¶©'‚zÇ™§HÓ„!{e¶;ď§Őů_?µ.ńůín{?ű!~ßř˛3­]ĽNBĂPĹÉßÚŇi^ž©™Â;Ŕ;Ť©p¤\·; 6Ţ®˝r: ]×§ɱĎÁm pDňŤ"€!ÂDnŔ)UuĂŞ!^ňBÁˇÓČî´9 <ŁťĎďm=÷ĺ"†ŤçŘ+x±˘ ÂĂŽ:‰Őě".ĺOSŮ˘Š´Ň­Ç˙ě,Š*Uőűv ÜXĄA8Ućî3¦eM¦ŽK÷ ˙DßQíČÇ”i˝ľęNWuż Ó!M—Ox¶@Äí?CË!§íuié?€śŐCî¶Şń›ß·P‘+Ş0RhG5äżjăţŃŮ=§>Ĺf ˇÚp>“ĂŤ’—â7řąä÷'9ÉěxţqîOŔ¬‚·Ô=q®@ę­wăÔ®őrŔ Úöż¤×i€Ë€Ě4|ú:{Ń…KqT/7áq“ ‹`›•ö{©ę§ş™ 4PaQo 'ĽHBqňLůͤ,WnĘ`ˇMmŻńD¶ŐÉz–W-˝céIŃ“ÔAÖ ;E1Í)—q–nż ö.ÉŔ˘łt0—F6äŐNő˘éLŃö řç¶U_ ďOí@µnסӻç¬,ú»1‰€PŘ@zš0ňő«MŕtG{p·\y!ś{ľô‹ą!ęo‰VÂ*.ŻžŰÇ˙‚ää3ő1Â?rÉKJťÖŕ…VŐd‘Qí…ţf‹ŽĐ Áv€TŰ]ěc­V;´ë®ć Ş]¨Ô”-áZ}„‹•ŚÖ<üđeë;¨cbR;aU¨»-ăɰ/ůk6ő±VĺĚ:É–â+”(%rÉEŮ~é8şło–5ňÜâ¦ÚřŠ Gzk—7®fÔŹ‚Ňq›šd:ć´Vv9• @Q:ČTU~ ›đ˘¸Ć×ňéwĐVĆpÂZópŰFŘÉk[ϵţô–ę˘I˙ůďëžU<‹ÖFďůdţĄ·U[ËĐŐđí¦°Őx/ba0Ť,ďQ¬»§äâÓg;M+Ç[ÝVoR0Y©Ć/™„éz Ęň‚ş˙•ĎçB…® %.d?ę2k˙O 1T›4rÄ 3ĂcěŔŇI‡”•EëŻĺ„~w ž/ 3’ćc=#‹üVŇyőRźG•ѫԻá¤*ă.˝†Ć}ôÝF 0ÔVíFˇÎ_ĺ4těvK‡Gă!Źőm©[¸ů—3@o)˘rëG±€ĐkľęĽ"aÝÖ ăćšó]ż]Ô᳼‰ÜĄ ß…ë.ŘK ÷ňŘäQ`t6^ý2?®Ęf Ϣ'ć(en”ć8WŚýöŰ*”‘‘€íŁŻC“iUžJt’`\»¦!€ÂšŹĽŻÉ%©Ě­‹ #µZüKŻô\|6­Qł 7»®»ŹĄ‚í=2?ÄŠ÷ŽŞ őhŮtĂĂgË Âś±Ř·?ŞÁľK;&1Ó(Ž÷‡ś÷a—>çĺäq ‚*¬mFľ~r+ť ĚĘ­ÎçX^=‹Ť»ÎĽëŁŔżíËý|“qřŇÉ@Ź` „źžnZu[¸‚Xě &—gćˇîľ! á¶-ź: vy?v™ë(ŃmS{î‹~]«"oßeŰ©yîö'kH§ň¸`S¤…ôěĹ×ŢFci,dÜd@Âşś7ĺnŔĺ;ĐP‹#v‡>#l´]îěáÔm`U(ĐKxĺ–„žŐ-n=Їě'ĄJĄCă ćéďŘpőhAZŔOĆćă•ËúädizžR˲•‰îF@W®’E Ę™$§w Fyԓʦ8öU˛Ä'źÔp0LĂVŹĚ™‹TđËCŹ\*c( Őu°ˇÔëš†Š‹ĽŮě¶5Śyí4÷Ë6#ě(2éĄĐ’;íÜVY†(É©ÚŐE[ZTÎĺČŽI«T•)îN˘ąŠp!dK$‡ţéc+™V Ěj{ç·ušA!ŠłQÉůˇ·úo™ťTud ¶ÂuuYýFP€z­g’2şđ7ű…˙ű¤ŘećŔbÍGÚźćßLo=ę|čđ˛Ö": !kôÄ y-ŤÄ>ŘĐOŞ…ĹŃńžÍŘďťkG =$*L>öYGŢ›îůerw—–$[“˝ykťĂľ®7ŃŇ |5öĘůĘĚ{¤T ¤CîRś×˛­Ą54yjżô‚Q“í˘éň‰–őP‡˙›Ł´÷äź&µ‚ Ţź˝ř®xgjŞ%©¤ÖL¤s9Aß ú#ĺ÷vöđžsr9‚QÇSÍÚh^"˙e.Čj\(´˛ĐƢ®Ý–R㬾»ţ&Ř—ľ°Ŕ/O¬Mľţâő…Em°ăśĺ ĎO áT˛ Ç0pC(›Bśfá ҉ůĐMv;xŹl˝ ±7ľ$)˝ŐpgćS…™.5e‘÷¤ŢWtÜY ĆŰ[DŢu‹†Á@ÁqykŰžŁÂć­˝ l5oŕÁí­‰O*ĘŞy¬"R‹¸˙çéQýëĽwýž‘lž=ŕA.ĄÔ˝“ц1Ţ3 ®~Üăčpdt=5f?ó;a­±˝ó 4‰Öđů#» ;2„6 ó›7|¶WÓŢđŔ˝ryĄĺÚöQő5D <ź0§WĆ^ĄŃ ĐȤ¨ż4=zR¸ň’Ödr>ÓřO™ËĚTvź: ~¸ş»‚˛\[ŇŘ—.—nH•ĚăRWŻnNŕo‘Kľ€ű$ąjWy@LY&ľ q÷&eŔ;:ŮĎč}{>nň©łťX*~ž—\7–˝Bµ¨­ÜĽj÷ň(ŻHu;b#ń đđC˙JXďWżĚîę’ ¬ß ś§‚‹?±<}˘ysSî*I§ČăćŁÇÚeŘťůďŠĹ˙Ĺ~n˘Tó.^µ™ů§&fş‚ň ąť@h™Ę/út°fö'fű…G®FRĆŠü˙}ľ±ÉÂ4¨#SŢ ůĘM\ćá/ hś¦ÜĐ'M´ť1RŚ$ţĐ’ëLÉu=‹;ô‰ř¶]y·żŹ©őJwÚb@aÖ?á’, óZp=‘s…QóĽ:ORě‡Rm00݇”}»IkL{ŐF¦9 Ć6»ŁľT^GE0é§ŰÉM#TĹÔłýU‰Ť[ű®^Řř„ú¬"˙Ëß}žfw4UŰ ă €â’ćO‰§,—ĺĹ‘ŕg­r^:@]\ ¬ ůfŕü"úĄ‰‰x(˝eh¨€Ă…·$ eńmµšXÉf0}ôřĽ_ĄZšűR)–îW5ň¸^ĘĹîiT˘HŐé®^qÝŃh: ő?őűý \ź®1ňĹÝ_ÖU—÷wîά‰{L#bj®Fj–eU*Nóđ®řrîÓľ•ô•&5Ú"§Ú…6ŐóŹTŘĄoÖç#ĂASÍ,+Nľ1-"Ť4´|¤YÉâF L‰˘ź—w¶ěG-ł\sm§ŰžXŮ­@—<˛KôđÖáxµ‹śčÇ[Y@Č<äÇ–x:“CUĂŃ^lí#o¬JŰ7…HsÉ2ž˝ă1™/|®±Š¤Î†ŇŐ¤Ž(zĽ¤KkxZE“ę/Ę:×X ˝pAuUĹ" ¸ČŹ -źŐ›Ą·Ťď*ä’#¨KTřÚśâć_˙nŻe=ST‘Ś7XŐ=qbƧą ŘčXÚPŐ´čbőľ=˙‡=ĽT\nB±ŞoO­.–ďUűńđg†cĹô‹Ao8ĂkH)µ"ËÎÚĚäy‚˝„kEueĐŃ­‹Ŕ›;=–ěď^{;D§{^Ű(°{ m÷]7h¨ş?™®ŔCóť@Ő@üŹgĄđ€†ý2űüKÎu§ú1Š-Ř?•IŻiőÚ•{Tµ2ö–ÁĽ&źa;;E»ŐXa± |{]ĺ}OË̢› ¬jpe5 ‹]dÇ’ňť•6BmTŘ»o}ŤjŁP y9a¨ÄŢB‡ĹE¸#cPîĄb¦¨´ĂH˝Ő¨ý7ÁŁR6y7÷Ôă÷Ťv}ú˛[VŚ’>jëČ{ŹhmXůCNňK«Z%%}8!_†Yö_c·?…ję;·Ń§w¨ŠůÜź˛ZĹ5–\^ŃaßŢÁé#ŃZ°O;ťĘqÖ'V«Ĺ;ŰZż.néTô:Á!ĆĐânj‡ Őt¶wÉ4;Đ:¶¸Znו™U ˇ´űĎň¦3¸őĽ”0ľwť‘Ë2ýÇ4ş‡U°‡rU¬%YG(f0€>¨Ů·Ä2»).Ú@ MŃĘĺb*Ť8´•Hă ˝i ›Â¶Ö͡^Űd|)<­1PvŻÔk¶c©9u:-™˘ąŘ2Bj‹3qÔŘ>‚™ĂZ‰ĎŤ’©Ô»wÁ7h%Ę’~~Z’ęďŘJ{…čťí•äőr ·°ô ŕbwLh`ŽĂ˛Px<\¸ňd/9đ\€Ň}Ě Z•ťłpŞ2§ĂN‚r3 ‘—ĹäÚHGŰ×ÍĐĆN&(Ç‹fXý[»tĘ ľÜ0`Zúc$ő’1”K{řql©Ur őç|°WŇ wú>—Žq0*aˇ’UZśŐ˘5Rń§%)ÓB?]ň'~éiüR$¬h;ËDŃ'{@ˇű(ÁÜ-“i+ä śîŻëŇľ Ö{íŃDpműďoş\6Ę‘a<ňŢ=h­N<˛ śŐóˇÎJL~÷×|Í“Đ~\ …îîÂN5„~Žîů’ďTůž÷îŽF]c‹\˘ÂŐt˙Úe’ŰśÚ*Č€VwB ^ąâ+Ť ů Şź@źľ\ôo.Î|€VVŽD#¤vćf4ńř›‡3řÓ8ô,˝ÔĐÇđ”Ń…»"n%f©@v$[ľ¨Ŕ±U®•H‹÷ů2űv5Â]r;˛µ¨ :ě+Ť ˝÷ĘítäÚ{rµ V‘˙eôĂÔŽŠ- NČU@T1–$JúoČ’ ›­‰A`ë/Ő۸Č~«Ď•˘ă´Z…LŹ4 ¶M~±ň&†ťł„˝Üp—ŢĄPXöX%®€ĂÝÉV-hČÍ’wĚž–¶ŔŮÚůÉGWD A(‡,Ší#^–-úQăB}‰:A™wt¬R¶ĎFďaÉ™é5°×iTíłng¦ľ<űrńĘX鳎â Gâřŕ%9P¬ö­śÍ´J°ů5ŽIÉ6LÎ~ëĆWf;É»+üPžşwUčĹ-ĚT®AW˝ŚK¸q»m§šŮžaĐÜĄ«A2n/¦B·ŕDGÎŔ(‚ ŕ[{‡ŇŰM5č&`«%TG«8ž˙öž©ŞÄdŢÔ˛sg/ŹSy€qßćŤ]RHĽoWeą”ŐGÖ TJĹš±/\Ú-u¤]iű%3wWş“x¨ššŹ›2‹ĚűC”!Ě’»DŐűiřnĹ °SÎ Ů„U˙%ä9–°~÷Őb©208°l»Q„ŮŃš´žVÄNg'šđ~çŘ÷ýYźGG•z‰>7 ]Fc± 9qҶŐMďi ŕ±póž_&Ö!=|‘"îąÖŕiúČ~9ĺxýÎ+ý|Y+Č&íwꏓű”ěwn+1 ĺ^¦Â‡ËKíŇN€ýŇ©D~•Kň^W6‡ÔY|Ůőűâô˝‡ęź%FŚŹPڧ;”<ŽŔ%hM˓׽›$˛""şUć´Ó*Č^(AÓ‰ülôU’mk)IQDućEä1+ą*¶DIëýÁ žßheśĚ·aüďži\, B_CINżv-)ů ž·x#ŇÂĺú„G¬b$Őé¦(Á>Á‘j5_:®É€K$ÉÁóáM=€®łN‡OFšAY­¸Ö]Ő7a@W/Yj)߸ŃL°imiйɓ‚7ż0rCŁN4‰™<;ŁŔÉ#8*je‘öXÎc®őśP)ls  ëńÜjάâ_•Í„ą´ĆAËB’s+´›HjŢA‚勤 „ęŃfŔ<.[ĹYšȨ̈÷7TpŁ´Gf&Ď>ßÉ äńXëkMś(ÜD†ňů•°Sűuă(ČĂ«pyńĐöÎACť>vŮŘ.¬«b¬Öú/쯌 Ďw,×Ű1^˝Žżő“šî˙(®"ţ b IĐ2KßóvÇÖ+ÁµÄşaü«Ę˘DŐçj–IJ…Ă ‘}âb€»Î賉>ńO€j<ŕJ+˝,ć»·sC˙Ŕ©ě•Gr'2׸ Q_ś.Ăze*:dŐüÉČ{g™XűĂóŮ0"WçÄmżo8łČi4áŐ5i—9)kIżŃůđޢ Cŕ<¤ˇeďŢŰtýŢ}kmŃÔ'§ű(íS•y¤đÎB*ř‹ş·°Ďtsďšr¤5UÚQŘ”ÚŰ´%‘ÂN¸V¤cŻ…&dŘ]†©ó”)ś:ąť“ű´VÔ1súčÎQŽ! ¸Ř·-¬źĺ…cÚ(Čň{‹(ďäű}‚ÓŔ5 f%0ĹŰî|Id/ßžµB:ťÎ›!j#ĽĹD˘*ôôB)ăPM.ă¤鯄ú‘QÁ}e’ĽéŢď~†ßD'O ©!KPCš/t#*¨°µ¶šÁjÁO¤ÁSOô‚¤pವ„"r\ľ± äY)¦wá ĎłW•¦zź!ůčĆÍ  ‡MP!Ó ß`"Pb/Żćf.˙Ú>ú*Çk%϶Wăĺ ±§Î>ś ~řŁtzh<,DYU5+ oé@`ÉŰČóĐî3^¸€BÍ2)> Ŕ‹é4jě- opwXżŞ˝đĺ‡ěĆßa’î$\{Cá-:”CCRys§Q@Áü s#âb۶ÜO°ŻČô°lĄŘhx«,U”_)Ź…`¶Fľës"»ch:dŕ’âR˛ŮŰ}ţ{1Ay2Iq‘)&ßoĽ  Őá!ëö9šc;Ű ä«Ç/©›Ál1výőş…p9<€r|dˇ·Ű’ĘĹË#Qúĺ`UââĎ+Ő1ďUâ02cV1-ÜM’|† 1ř=rĐÜU‰lŁnoąˇ6Ú~lžŘóÁ‚Ďů:"&™ pô°©—R•wřŘČ­h2äŠđDiÔĂú¸č6l*Ô´µ9J}i”L¸ąi‰ř†¶¤ËÎăIýť1˘×hcF…Ĺ$ÍÚ¦Ůe-îLrÂYŇ{|"˘v>·łľfŢŽS8¨–µŽç:źg¨’‚YnŔ)Éât¨ ËÖłQc@˘P^źŃŞ`˝@ětůýÚ\c ˛za"ü^ľR®ß=1$'e  ż[yl9ĂëC˛šIÔőÝFEŰ««ŤrůK·cĺZ`6s˙bçmËĘ ÄwT‘v1ưá.sř ú ‰Wtl&ş,$urS5´ß‰[Ü”=É®kbÁ=•Ô)/Uµ9HÚĽ‹0e𩳣¤†Ëp-G‡Ťîu–ôěÖŮŹâ2ś†ůˇ…ç5ěXţťâŁxÝŁS„©n éżĺ\QfŃv”EIެÁĚ’’G«s }C‹ýę}zű©uß8#ÓM†Zűţ€Y(>yĄťtĄ!_-TSI»Ű‚U ?Ąç6šťËt•ű/¸k¸8QÍ'ÁĎmÉ J~UÜU}˘ł„C2´g&9đşçď1‘˛ż?ĐŰŐ‘SĹë4PKőéFMéţL嫯ŇnzĄ‡ź-žĄˇŃ6°)Ąlš@\wČ,W}5Ćmľ˝Ť‹‡`Üp‘$5Ś[XŽßčqżs8iáXĆsąi ę‡+ąőíRFžÝu×MŰÚ,GaDâÂŃÔ Žń˘tËÄů}•B®3âŹ×{öW´¦ž‡ŔüŞî.F‡­1ĽQ 9źśďËĽń‰sîçŽhP$®'’S’Sh%em3jíhůá‚Ţ;z'™Ěh(ĄuO@>Ö~ÉŚ‹‰I_Πq6nÖywqç?Řőźi3 ąéC„Q‰’VlťN¸—¨)Bź őU­˘.¶Ý2#' Đ„ zÝŤQ§yÔŚ;Ç2-oA P1W4Ŕµ—…cÔ™s]­Fe‰<ť\r˛bčTô;9^›é1%$Ť˙ťNµlyYËS8ż©¤śSŐŻ@ 8TV˝y87 Ęţüă!$ö˘\(Ç’C°yŚŻ?ž“ °´/’M!MĹH·A—ÚŢqÝ’”ó—ŁŻd´Ë“š 3‚ ‚ÁŐľŚJ}Ă×É0¤•{pĚ|'OÚ] é`Ëcň'vąĂě>´‚ÄŇ3ŐdGqFV+8ś™Ş0‚E6BŢâú./áÄÍ2ćł§u~ 2öAo¨‹5•„t˝9µ€ďŽ«b~Śb“kę“yü Ô‹h1C­wE™”ňľúj3>C}č‘÷§=~0ŇţŰaU«÷ZP=ëŽň¤)—QŽŔ@ůPŕQč}~*Ý.'xHĂcĘ+2˙“ _l7Ő$ÇQl-­U]¨G;°ĘNtÁ-Y—ŕ8áłË‹žń›j?Ű üŽÁedťěŤl?p‡NúŮÚǨ |Q˝bġăŃľ—iŮ·÷tˇc«äóĚ'Čo¨Ć$j2Q—™,§°ŰCßć—ąŞp2HođŕőÖÁ=_ź! €ŔxŚśQ1ŤAG󿪑$ú_Ýĺb™\+ů jčó™=ĽÄöµň$HpŹ(:Ł7mP_xX`•ŔÉ–ICl§·[óĽ‘Cp‡C~qcóŚRo“PeXÖßqns4«ÝzpÔ 8 ˘‚Ü…CśŐ«$‘±Ć3¦sŤÇSőŻŁĐŠôĺ06QYß‹łĐlŚé^ ÜľŔî…PNŕĘ™¬űZŕ˘x!,ĘVµˇkłQÖ •~MwLy˛—Š›ůŃĽO’Ő/b Ńűé˛2'öŃf®PXG?!ůe7Ý/÷ĘF¨#áí@+ô{×Âă3ý#“»ĆYD©„rH,î{5]§8Ä őxŐH•?ŐŕIű‘˙®)_ÍIxstńJÓÎ0­ĐLcY+s:¨”Kđśřiă˙ÍëÂ3_IC 7¬&ä!d ¸ #¦ő~G„w5çFY~ ˛K´&j„«Kß•ăM٨gĹ[ýä—óćöަżĆ´ŔÔlýĂ `ă<›Á^±3áż&*´ěŕđ–ĎbĂ čˇúdşRŮŐjčŮ7ˇ$pĄÇ8‰aGy/bľ q ç†-5eǨ—U˙ł´»P<ěxřÁ[żÖ1ô»{”a ”~.߉&hlŠŐ­ŃQ4>†€ Ő—ľ࿡b‚óĎŚQ 7ľ|ŮŃ%x:§vf5ňłMş!ä/Ϣ\‘ů‚=vężc*;DYžŚBä"éĚEWI} Á"ZŰţĆ+·Ň\6”ş].pL-R7>nĆZä—zŻü”eµŤ’KM„ŕqíľť —â§Ť„>ÝÝVaă…ťĎrmŕ™n„޲ Ç–}ü Ö]ßőS†ŐfůS*VőŚ*ZŔ[í‹—2%8Í4›ţţE`Ą+%&Ó-q¶ĽËy–ř ·3€aßśVł9ŞżžÝÄgŢł¸­PôtÝßÉ·GkŠě§×đegŻěĐk2|k -q€fĄděm~qA|QőZˇ(“˙ €j!f?ů§Őc‹ďX›ŻDŞrć%Ň?Ş ©@ z]g=Ó…ĹéDřL d3ś”ÁçËQoL!X)M`0ú=ęoäKi?iÇŞĺZŽ7zÓÚkĺű† TDV9ě7zůżh=;=˘ ŁtŰş˝Ô\Őýlš´”ČY¤o¨ŰÎľ T|o‚ç2ń<âř]˘’ůśýź ma«ú^ý3J×ÜŘ"CftzŤżôŢÚ®˛e•í pĂí·ÝŇ”ŘăŃş=ş$qç'+çbH2’Šh`–”îWŽďŁář´ţs'(±F`BÜȵ0” +ŁC–eúBą@‡5Ó|ł^eéŕ'âŤÉĘEŚÎÍFsLkŰfŔoźźŚ&%®K8QĐĎcěMŇróoĘ óô!&ÉťÔ6L†ŻŁ W-X1HŔ‰A˙ č!0:z˙Ă×BňbÂ`‚š;€{ż+‰WRâ4`Ň›ńh`Ó_¶‡„eA€1Á§ź6OÉţ˛mĽ6ۨQ^#tĐäsߥ$­ÚŇBäëČ6óM"¤zUŃŚŁYQż8 g”W#ˇ“Ák š Ř!ćXör{ť¸ł\9dí»"ę­-˝KÉú ™$ÉÖy#e€@qsĺü Ë´Á)lK«ëč*6” "ŕR˛XIÝnżÜ N/ŇúV rňú51ÂtŤpJĘa¤–Ţ+ŠÓŤŔý¤łĄĐ7_# j‘Đ„É覛~Ý/ľäh®^yˇŻú!µBđQ·ţá3ĄŮÖc ÜFµ­ ţěc—-ŞSZě8iâČ~–,u2<ýwńéź{”ŻuDHsý©&3üéGُ0Ő}Žĺ"–n&u+˘*•»Ü;FŮłç"‘ŹCÓĽĺ%ďČx˘ë`iJ‰ŔąL×cHKµ~7Čv'iŇ*@ń*%€řwq)T¸Ż‹T‘ő´/’Zöű¶P˘Ş’+†ă;{ĂްTö*¤śGĂQż­DÖ‹y©ŰAЦĐóóylýłB1Ü=řüÎb®4[‘Ú†S° @k•ĆŚIlÝńĺÖâť“‚†#Kô,%UůRŰČď ł ČtQž¨¸LŐă8îpĄiK[»QYÓ PM''SżşŽ:ög€'rşůłuĘ SŹĎۉš*ť ; ™FťÍZ¶˙ş˘Ü=Ď~şÔŠś´BÜ$_×HBÄČtxńů …¨2s3d§NÖkńj}j:1dDĚ_dĆ˙' ső»ĺ¸^„*»5ăź±`G'·yA0OÁÇ,O“ÁEü,Hr{_¤9dDË–iŤ‰ďÓ!Mrľ‡ ˇe*ď#gFëZ_g±Lh•§żf÷ĎD›aű˙NµO„ľˇ{\UY_ÓÂđ}Ţů'ţśĽV)ř+±l2ďĆ8ÖÚ ó€˙ż2+”yęÇe`Š©µHěoĽódă·÷;¬ĎŠŕ855ŻĘ}µ]g´›‡‚şäłił^MĎ’ă®CdŕW ˛qś­¬`µĎî# ĚÓ9’ők:J˙ő˛˙rźŘ;ÄA0J»š/!Ŕ¤Éc‚řŔHIňˇ™ň ¦U–g>“ńé<÷ÁA }UYĄAmrĽjŹW*ŢJ}cż‘ć·fźxzT é VÍŢóŻÁŕ¶v=6%Ňü·†klĂűN-űi·૽ҞÎ<Ąśw¸~ŁZëŚĐżńđűgtPś¨¦+ëA÷:A‹÷Ą÷žßŰ‹/˛úźcˇî.ţ–füČú’—ä>Ŕ Ö’=vŽ˙RNŤígă_/1źĂ",rîm‘c¬4&ł; ݡ´ögâ•1ŞÉíB[Ś€Ĺ¤CÝ*!őÖ< ě e‹R‚ĽĎęjĺ&@Pűż€ýĎaóN˛ĽDŽtí•EÓÚ*‘çKş8íšżk?Y~*LB)Yë#-ž¶F!r^®ÄuµĹÁC¨Ń™žčH(q‰ólĺ YčĹiť#aÓÚ™¦HpMş=PľŕąiŮ hŃÚwÎl{ҧHťđMn8=Bµź˝!6O%j˙§ÎSĐy¤˙¦QŤL,,NĆÖ!·ăČú ý@öíŃđIJ¸dxE=Kĺ$ߍ<ŢlnwŹ5ăe9~R€*·ťÇ ahfĹ”#Ó[͟đtšŇJÉ@×顑ë°{ŔžßŔóúî6pvá…Dqé˝ŇaY{bgE‘î??lńc´PHÓáSn^Ă9O‘k#áZĆŻł¤ˇÄmó"“Ę}ܱ %í‰?ČF9Ú/ŚÄ–ŁŽˇd°CžťRĘM!GŇY^˝ËžŞ>BŚo‡'+Ce§UZ. ĎŘO#1yšßRďD_°/ô’®v bŹŮŮŔ€ĄF>tZ¨śî–YU@‹ÚDkoś’6źŽr”ŢaŮŐÎćř¦‚˝ş»ů ř«ŠC!/<ÚŢŁ¬Żâä থćZ›÷(ĄT]žń˙٧qB6tîÂⅹǖ—ş%W§{’ڤŁîTsďdaA ż^\îiś[­080úb#Ôá.!‰uëZ«€ ÔţóETJżRˇ2ŞÉŤÍ9A®0:5ĚĹýYz›#Ď6ék*Ş4^–ŠÂŻÍďć%x#Ýq—y ŘfůQ¸Ó’ž`ă Ě„C_ę_±cĽĚ>ŤÁƤŐňŹOóhň a5ŮČŕëÎýřGăj0Ę®väłßihâż^]m ćeŞÔkŹAýyy˛ÁgÜηş¦žťŮ€íä(ŐëČ?L••Ś$p.’©ăčĆDZæ3Ô#ď¤s‰­Q¦J¨*yÂ.řBRm©­ěy&¤.‚VąNćGMŇ(e×¶: GJY‡ťôqžůAf*#5`l.°-Ňđ{Ăk(Úš›˛vÜ0nˇ›‹ żĐÜgËqb!Ć ®OÜ$Vü­|ᆵö˛ź÷Ţ!UPěřŔ˛B•ž»ĎiÍľ,ˇ$qłĚíßÎîĎp VôË{´łć×`Żh.e°Ż4ĹlL"ů Ü@ٶŽČ,ÁßPňŚ\ľqěńóţauťů<0H”Ő¸‡‹ˇLTý[Ô .ăxOťĆ§ÓŘęGřú¦V ć‚đŻçZlË·3Hű8´’Ŕ«Kmć?ÎnGUâä˛Ôűx§ź_ yß@­îXĘÝĎ›‡WAËŠđÓ_4‚m¤&Zň.a0Ia—Mţz\ĂNé·ú|Ýľ„Ç„ěşěł‘bVúĆ˽΢#4= ÎęĐ›‘]mp@í9­=0eĘÖŔ€Âé© ío°Í`oEÜšj¶m¶šn‰ľrÄ čę»s@X¦ ŰA]ŠóÉĐĺěś3‡đTŚť¸mv‡ŹÔáUŰßĎŢęă¶rŐ‰žK4‡'̇±–—/­vma°4‹!I^g0ŽHŢcyěíˇT“÷5eŠwˇIĘîóô*Ň {ÎZŇ—úĐş«%íóὄ®u®(Ż>jhqk¤Đ/€_1%G«gń‹°†=|ŰKŐ“!npF¬­í0y”—Ńbŕ´ožěř5LEüě§ŻQöŇ:„ĺą…ś4%ČÚ*ĺíć2dExDë^AÜ´™;ęÂLóRP \*4 >$W‘㡶ń‘Š˘§ÔjđwktćB~’ĂóűD8˘C·%źĽusÔ÷—éćér±ş j N…=‚0GŐ÷)°r8hřĄ§sĚ’J•DÓ €ŕďQ\!ą…(öž$Eß ¤ Ź“&çĺ 9×`ZŻěĘŤ¨—1ň˝ÝV1¤•LCÁ0ýˇ¤.±b±oaP˛ŁíŮ4+Ұ٠¸w„SőŤ‘4 Śô®ěn$ž•[;̡ $D™vŰX”3lŘG?‹ÂĄ^Ű[ĐsëűÇÉŁűLŤŢŤ% OpşÎ™ý·căŇ#Ń;_BRnr띸ÔYńq|ˇs»ëH6úV«Ť`+Űj÷f)ŻAŻ1çŤÜהּFąÔ‰>ɢ©‚ëáťë^•ř«Nś©ý…%t›ĐZpĽboŕ$ôŞOźĂĂXhh)˙^ŹŚ°\lĘ`` Jړʕý%k¤´ĺM¦¨i@+ąZýüAL‚§6ŁŮ†‡®& ih ÇŕĘ]KŔwÍbsĆC1ÔD_âÇN 3 ÍďîéŃâ^Ó-é&půÜdxąúiÂ?h›’ďŰĆ’ÚŔ °•şôdxĹşäv¶üő±”x°ÇČÂŘ~ţRkJv±Ć@dPÂŢé™`^÷ ×Ř~Úzq™k‹憨^ýŽ»Şěń'ŮČ(_00ˇ×Ś˙€L&ŹěGűsĐ>,Ŕ3-váçą„Ż¶ČY6ÝkĄL˘A}ÍT¦uĹëšôĆÎ_KÎYäL‘c SLOÂ}‘YO0ÖłxĚôŽ_Ěň˝µŞn„=Ésżj)\Ńľ|Ş2}‡V­;*lZ ÚwMźłĺ%SĚ.ŠFSž…2X‘Ë "@H•X]ľíUOÍsŕ^¬kY‘ßŇ„Qó eÚő,6*Äă21Ł|--&dW¤î ¨ŞŇÚ"•¸ŞÚÄaí‚·Z—µAâż[ĺ÷UhCľ+ÓŃ?În>ĆgsňŽHřI<˛) Ś6íkNwů6~Ĺ+öb a *­EüîTÖĄ-4b6’.hĄ§y¬řVzG©Î]Hüw€W-ä]ŽC´ŮšOFĎ7†Ę¬ĺ¤żëp'ŕ“,$îÔŹđżfJ5™Ä_Z….=ą]*;SŰqšîÓh !t`Ş`Pď\îĆĐĆîČ·7™Ë…ýýĹÄxv4-Í# T$»·•q@¦UˇÇ}¦µÜWöůCbţ9VŕżŐAHĘŠâhŰź>VaĹaqĐvb/»9ĺ-+†Âł…ł"=i•#ą¶+*^"I;kÎĆňĎ#”Č—l‚oiÓe‹“ňš-ŤĽ.\–hIŢYš¸ ÄćˇýţĹFcŽüOšmçú `ż9ÄĄŮ |𲟂…âx몀9Ôr܇-Dš…$šKłŽß™=kXQ—Ó_«aŞćë—ŰŇ”›ě`JR_:öíôŘĹŤ;ĄĆCńÚŁěČPNßÎ˙řW¶µÂ3§1<Â~LD BRôlň»š¨ÍV’µqF~ÇCďé!ŕ,~DČĄâ°ô;/¸IQŃ÷é†!Ńť2eA_ý9Ns‡ľXLL|îÁkZjÄűŐfŇ@7űžú`§…É(&Ř|Ú’e¬Ąđáí ńŐŇMůâøκ ŹJ¦|ŮÍKW—9“ čËKž0ů–ćę0Ů~«QkĽ’% Ě$}$x5G TŐhg=)DúHkšĄżEŽěĂ}?¬'(}șťÇ7q>Ál"—‹db=x˘ż©Óš`I“Ůî·g>žë(WtF*Ôcđ(ŢIě0ý!‹@’T[ŽťtĽlډ¦‡pQ2ŕÝdÉ×sj>Ń݆T7$=›ĚĹzTjŠ~=ŽĚ;_‚®8’í ±źë ?nÜÁĆ †=˘|‘ŽôĚ瞬:b¨á_–*ZŤč‹on/0öаâ+°‘Ꮝ\űřn'ăŻĚŁgWî›ú zpWŰĽ7đ¦žŕc#ÁÄ T˙ţQ–ńařö[ Jo¨>zŽćj0Úú¬—6U ‹•řşN˘řČÚ.+#ľjSíäŕUŐ’š~L6ußeŐ°ĆFrńŃęëęÖq!;–Áł$#Ţcµ]ĄČĂĘ·®ÎÄíÚ›­ÂĽ¤ąňí-ň¸Ý/‡· R'•čV`,šţťČÝÝ7•oő#ęĹ_¨‡;«7-qAߎGi¤°ŃeKľ(z‡/µAą\*Ä`rĽ‰>„ŕ G^óöÉ›QHź±r–’áv0ôki™šI|W婎ßsăć9Ś˝Łá/âާÓ|Č‚NŚ;3ĹK:A¦ŚO˝ÔĘŚł„Čpś;|SY·‰enß¶z1oű™P˘ć¬š )â<ĆéRÁěxě@a‘řŃ”¬ qťá0kÄpJ“zj"ăŕF˛B˛QÇËő.(Ʊ›u’’¤2–¸w/O‹m†Omý€Ŕ%—1 ŐIDAŮŔs%t‚|â FŐô×{U¶$ Gx†Ţńß,ëŐ‹AI‘ĺj©Qňý´†Ép™śg)Ű/ z‚ĘđĐ Úq‡°HÜ_ť.ęz±€ßCrůAş[Ů8¨'­ ̜ƷrwtFj(©űd¸ËŽW\Ü;Ţ«O ÄmĆÇK;UŔ3z­k¤TSˇI ŕŮ?Ě™'ŮĹ9‹ď7F@AŹůúĎ^¤:×[óNžěiśÂ}8őÜd¨yÔ>Häby>zMo*Dż7N`včÄ/qDwĂĐńăe3Ř+0äî¤GŇT·Ě& ÝK´.ńýř”C–¤Ť¬ß´#vÚšIĆŃNdV»{ ÚŰáD0Ó Ý«Vk´°_>%]×ĺ–žđÄ^qĎvIC“3hŻ‘w%Tč÷sé!žŽĐŤňy Ź‚ďm;šzÇ´ÍŕŐ)‡D’3™yB€Î|?öбîv™i†ĘJ~vfš{•Ă ˝BŹś¤}It¤çh¨~i¬śĎÖ <Ce†$E@ĹĐ8F*T^;‚ÝŘYľ :\_g°éXŻ• ]®"c±I^ô0( `AÝ@ZýřÍńż×'^.\-SăŽĎŠ™ÖęE‡f·/?Ž×{y8mô٬ŔeÔĺ9Ż·Č·ö¦řüľbô‰ĽyüCČ€Uvkŕ"–?Ĺ‹1vt¶N«lvťeÓăŇ˝w퓢÷'‘ú“웊Otl"…ě+úýĆ Qň@PŁÎI›…LłŐ%7č¦\ ŕ].(ߤZhÂbfe|ŕ żÎŇ,Z´ÖH ‰(ÚAŹĐoŮŔx[pŻ´›úĺgćĆlź?+G^}çÉFˇ`ň˝÷ěŐNjú×GíQé>|Ž ąűćdłĐ;ţdَLěĎ=ăzgąŻTąçy†ćĹ\ëŹśŚź6í’ü7R¨A ú¸=f–Çut_Açf˙aÎ(r ÝXfx]ő‰]Ť¨fř.«S› žşľěŮ`ؤřĺÇ‹—g©t€żďt8žO—•łZboé*Ú}^Ľđ€Ŕ˘ű^ŘaÚĹfűÝ×3éîZt{%Ů[ö,#XP—+łN/IĂŕSć=&őÁ]sš,ŰÍ“v]“˙ń„şśÎ-Dśi‹šŮËÚ-H6Fúr;2dsÝşPZ2oxW)SĆâh‚Cqa~^ĺęCí… złyŐD?rr}a˝`´jŞ :ď&Ě>îp§Â®Î¦FńŠ"F>ŐwٍBČR¤­m4 ˝µ‰±5.˛FŰr -ĂÓp ‘•„VÄKH";”roq@D¦HuwKQĘ.ýeČy’x řĐeś >Fł\ô/ Ä÷“ýë«1íËęÔ°°˙mÇÖ]Čü,Kŕ–5;şř–#ô6’2đ˙ś;ŽČw-¸ĺ[”O1Á4±Z~ŤIW*KEf ^ĎάąŇÎJł·ábŃęń ľ{[áIrť—đ ŚaĂâďuĘĆČ-;ŰĹFŤ`č>ýż&˛ű<ń¨ćŇ“ncźA±ĐˇíU÷¦RÚ^`RAĂý}S—Źň;‘ŕD€-(Q«]ÎZ” %É}ˇę™EđË=02ú­ÁܤĽŻĘSÖČv„Ä×c/Űeq»đ?6EZjćFa: ÄŹ0E‘VÇn-ILďa±á„«oëm˙„ 'Eť‘˘Ţ} YSáŠ\ůŮ "á&č·ţÄ˝oTć!ˇ‹ ąHŚçaŔB ‡q™‰Ę('ă‘Đ|QkăKĆú†/Ăĺđ…q·z,–αó íybh ńOAćXÎO8±źĹ‘·ü»K6©óoržBŃ­ĐâFkG4ŠzµĚjęŃ—…jTá…h ¬™úEÎô‰ú°ĆržR±ďĐ'1n_ź Ëk¶ż EZ«=ń@cŤťüŽ+â|Í <Ů•Ć}ž„ú ĆÄ 8ç|ěâAXč҉XVŇcě>Qůĺ'›Ô€Št‹[👆±~Ô1g(×ćađżć%Ó)QČŇÜ›Ěn¬h*ŕ”xŔ)îŚO}* }ˇC>uJWŘŻĚ <ü_voniwTBĚP ¦ćŤşVĽA7^g.`g)ś˛¨2Ô޲RÁ»P(Ű_/¦Y˘“˘V±č`ŻőšfâĘýdoŁO”źŘS&N@OҰăőí{¦…ס Ajxç^"ĚĄâť·ăO7óđź÷¤ďúŇ0µ÷őˇ)“ô7_áA n ôŻčçŘ.ˇ —a‰†pę…ôQsą/óa(Ú̬©4óU㪺Ąń»@ŚĚhWßř%|ŢÄQs† Îř(6RźÔË0)şkőÁdççčS*ˇşî”ĄrK€#óN“¸ P$_jµŹżä×H¦L÷9€Üu±›N8ˇr+°›¦˙"?ë0v 4eäʸCÜpU6C¤—'屝´o«jV‡›´č€ÇŇVY# [í-żił_ŐvbűÝ!`ôiľ’5üĺ2ŘFđA««{vň‚×[]g–­čÂłtm¨3§‡ó‘‘úç]±q#ůź`d{ó×ú‚ŘçůµŻpĆO‰!läPzOĂ."…L©$4ôŕBÍ;KĄ˛Ś1Ł@&ď6qh'łoqcą» S:ŕVΞ©±Ů5đU®]‘÷,ýŮŻ&f!öŠ×ë]ŽÎi/Ăą¶±TvšsL8˘\Př’MYňÔ¨<^żJ+'úW‹ŁfşĘđ+CR9ŐS@ÜU¬)Ţ-éA‘ ŽKfG?SE*N.$¸8Á~ˇŘ{ĐăsmܰřĹqÇONÉ#çXüß‘°ĎŮn±ŤŁ4âJ´ßf— Ŕ) J«r‡Ş#»‰‡rYó#Ĺv­?ž   ”•v–1ŃO2ULu­ĎÜŠ¬ž`yóC7űyăÖZ”-ŕŮnc ‰4Ĺťý"•¦5âÓzŤm1–©dkłzSę‹ćÜť4“»´lâĆ[_–bF-ś÷Ľŕł]Čk ź]ŞLXĄŔ{pŚß}ă§!`XßojżĚ©+¬{-†ĺt–ťÝ›ţŁÇĐ#—Y%|‚Zý§śOEť"â}Ü •&fýÎ4 M&ޡ©°< qŮsű˝€Í5XgŢ•#N9ŻŘ¨aclZ ŔŹ„S›¨ŤlôeÚSJ–Nš˙§ů^-ěămŠnáÚ¨]nůć䞼«5ĚĄJ2Ú§ý/?żÎ±‹±:I›Pb&;ř±Hµîů”őU˛¨âA×f&mŢ_‹YS˛ęÄ„ŻýŢl«äôövmąâŇ´]¸÷bdśřŕ0×61¤ëĚE­P†č÷3–µj pźRâ@×j» _0ŰTłîpÚČźPd^ČďJÜ?÷@ńPćÍé*š˙MuHŹ5ľ¬těaŔťnÓnkŤ žŰEeçŘňBŞĎčREŻť¨%ď[ôR”aZ`.eÎs5×`$0žěaŠ€Z»<|Q©3÷fE˘ÖŚ›5ë3‹ýn¶ĽA`®•%0żšĘ€ôţ«oźvÉ@I2Ŕ;Ë–«dőäüÜ"ý)ětŤVe9ńT0ßÚ*°#'„"vnwŕw’N’ýÖauDj=ťzÝ­ř–ßBţ´Î2hcV‚‰¨ Ó´ŔDŰ•Ę!ć@‚’,T:î$őW¬jB*ä,\NŃLśŤ¨­y\wň·¶„rě÷×n?ˇkiÖë°ĂÜ,ĹĆ•çŘWĂ+ú˛”+űNR¨^04Ç V›c‹Ż»îÇ)6{źtž=5Âď,-GđĆwTď" ň ]‡F{ŁĎu}2`ĚU+$ś@nţOWÜź śĚ€´dŘŹš+¨ýy0ĐD΀·„pŘł®1ÄwÁžÂáŔâ<ŘŮbC,˛-ţ:šSĹ_ĽşP•r‹®Şĺä}P čÖ\Đ˝¶ŠÇßQÜg.GÓŽP5¸ş¬±mČş˝đî˝ö{BD’ôŃî„aWöÖ ~Żů?‹ŰH]<ťG†KĄGăAţŃśč KŞ٦|FéLl’qńĺ ĺ&ĺ!ü1KiŤ<Ź J´-‹Bв$ŚÁ(÷z÷ý+vO[+˘uť&Úq`ŰÎ}ň θUxVĆ·îĂaôŕˇF3JX몠‘oŞýz/áH«ęÚ2ŇÇîO˙Ľ‹aŚu) ®vM÷ÖüB>_ŔžĆµ@5 < _YŐ$Ů~yá{{é\éź+ uq­:ű`!čí×zEřŠ% aťHbf~n€ąśp•Ă‘„<˝/L=ý?Şx»;6ÚZ„şü±Ţ`ĽSň^ÖQ’Ezv˛ßÇ·tVK;Âç÷Ş żťLŚeýAXËš±NwÓ¸ű_mâŤćĘ5źŔEôžM¶.m–ٲÍßů5 ˛üČŻĘ`áh=$ŕ‰uČâ\÷MH…’´_yß΀™ľ=#d(|röúräjĚÉYRĄ0żRJýÉö$5c1Láđë9đV+Z!ßq-CUϨĄŁš62Ęđ«a”/Ě’™ ¤d´±Q~ ‘—[e5 d¶ó ,ŕôĚc ]cʞG—Ěžę—ôR÷«&ziX,p’ťŻaó5Px‚X_B‚ĆôfË{ĺ`Ôsj‰ ĂźdCGĆTó”ĺ|GČYĐ•Ővi:Ů4Y-řR>2\ˇ¤6RXĄ ĐlŇîźĘi—WŁ–M$v×Nđ~¤^˛ű!ĘşÜeëçÓ·[>[„ďIîK(Őńëź˝ă3Âlß·ĺ+t¬ëľX=>tµś?|`©±k[= Ľ/Ćíĺ0]¶őŃ]’eµ‘ŐŐ˝uîżŘŇCꇕÄܨU° €´jąÝôďl×1}ç!¶´ď|đ8 1[†ę˛‡˙Bqż |J+TŘş…ą##łZŔŠdČ‹Ľe0ą°KMěQ­çhĘ_ŠÄÖq÷[உ QAú®rúíżżĐ’aŘŞňă’ÜüĐ!,ÇžÄ糨ńÓEř/g٩֏óăĆu`i}u‘Ô›á;‹Ţ+n,ýßÍň«źá ţ.N0ŰÇ0Ń4ęJâÉq9'€ęźŠ q“]7-(—Wťó†íVnE>~ŹŘ.żŚ‡GDŠvhD%ͤA±äöc§&bŮ6íĽŘ3 8g"`yĚfDď[Ű tČ5ĽfJ+FťŃx ŘôNrlŇŕTŠěî,e…EEÚô´m€ŕ^*bŠ&µń˝»’ó4p§’Í}»"EZrˇ5_•Á\LD?łń˙ě/Cš1gřĐfď"PlćjÓ”?hűVH,VČ»8$ىŠ1— c<č§řŽ«ÂËÝ‹q˙`A“_m±w‘ň]_GťSK+‰™ůg4_öiç ő8V0ŔŃŹĎ·É””ăj‡s„śsóa\'xť¬Z¦TX…lQ– Đ6pxT±ČËáÖą©ßż;N,Ş"÷h¬,?÷µáK™Í=ǦťÄˇtšř„ź÷í ôÎòX:1 ‹čNKúw˛a[76€ŢIŤg=ť×@eśDÖDܨ¬ˇü&TăŚ-˙®,Ó˛űĐs×cFś ţp-xł™¦źugBHědAÂwxŐ%ŰúH’{ pÓÂĹ{Sž¸6‡>Ě´M˘ŕ"Ô Ş.UTˇ†Ź˙ĂUBa7ŔÚs°–eQ°Bh'h :ëŹ97éű•]çíŮ ďę¨0;ęŇŠYnĄ/îĐ2MŕŐCG0‘¦ÄiΖK¤±‰„«C¨ńéY‘+f –ÁvÂ@OŔCv–]HÁÇŠ‚×4ů˙eţ+3?DłX»ShÁ<÷2öYm/U8jŃâČďýöźĄ6…°™•ýĎŻ ÎŚͧ箶×>ÝOµmÇ^ľ iý˰M-ŢJÔ‚±ü¬g Ľ`ëecâ że]ŕččĺ ČOŹRĆg69„ä©Ů—Őf–ÁŁpÄYńŮĄłżC€1řĚńÜ5|$ç&®Ve‘s ˇö†a=:aRM8ú ®˝ŁŰé†ä°˙)käF`SĽ”{Ěaü}ťuŤ\Ä51j¨éHe»&j”ˡcIgŢČüË!_§'Ó÷­˘Ż4BRÖŚHżôwŕ_,™‹@`śbß’^ę"6ß<Ô Ó~řúpÁ?>ţ™.µčT"r0Ý}D{Ě2Ůó„líňş,{"Ýôýv#X3%uâ űż,©ĺaóýČ÷čç{?„UîoAƧ¶€ˇDúP€ś˘OËvžĂÓ€xÎfâ)Ŕ9ě6 –#Üń_\~Ă6Š#SęäŃ#254ßůă± ř‰Ôůe(ଠńzô"\Ὺ6ľ:čŞÉ´<âłô»“?Q)ú"Č$†¨]ZOrDŘÓ`ÜŻejxČĄXć¶h uŁp‰Ś`BÁ¶#üGZ* !hę8ó IĚ·°Đµ/ËŰĎK×ďd-ľ \OT-I‚5® Zh˘žˇZ-˙ú\jżN=ŢÂ7M&‚ÓTŻ2mxźi÷ZŐÜĐn$N{FŁí H#˝'í¶™b$“—ë@cô»źĽ”gZÄť3ç­U‰”őżµHݬřŻň ť“đąÝµ÷~2mÝ×¶Ý"<;·Đ˝k"Yŕ&Z𳎳‘La<8¸ĎľŮ||áě-k¤˙‡´ÂqöľO‰Á)‡Ú fB gÎAl#8Řy7}zĽ1dečOŠMsjlš9Ń^oů^®«»ú±0zÚW©Vłó«nYSŇŕ±FxŔţ%&ç{Ě€2 “ ŞĂ@m¦ă1>Wů° és€j ą!Ýɶٺö—ę#T°Şĺ‹‚ëŢ „źsyŹŇő9!wM$™ÇÍ‹T,÷LA°­Ô+ч2ÎMŞ?Z"+câ =ÎmŇV×|“h¶@x0SĹ s@jŤNÖMă}»´ ?čçÂý€äôĘÂ|¶>lč_©§8˘÷‘›Ú›ę=äĹ" ‘(¸ŁJęĘK˝î  ŻKő”.őÎÇŢ<ß·´ QĽLU ˙úIFd*®äbÔç›]Ä:ĐÍë:UŞľ_HĺŔBkĎKO#kT¶ąt*¨ÇďMóëT9×'ń‘Ç Öf¶Ž4ňJG§=úlą„ň2Xďţmc’.ś±4ůů8ĺ-Ö†Oó{XçćŤRŁ{+0ĘrÚˇçţ§ŐZj=a–I-‘ň6ZqTŽGW–’z]îš!»c •đţ‹ůŹ'k)”G (eL vˇžřu@¶]™nĎ&Twű‚Úĺr{¦˝ËPęç;çź6ú5k+ÄăŇžµW[­`» ¸= ©…Băl˝B(GFß”p.ă,č°SgR§@r´líç>[;nś¶ťwĄ›Rđđő–ďtČ3öÔD}ĘŮ/#RN6‚ B˘4a¦Ő°Öý›űDdĺ<Űr_†ĘžU‘ŢŐcÜP;BCÓ X#RÖEo‡cKŘľ’˝č »8§@ĄűA=§Ç Ëýl•[ńüúŇ˝ö×ý–y.ęîž0gÖbÍ8Ç˙‚Ž+â_x#˝iýÍEn[F`H÷§řa”6­6 š4aH/ůţ”LK*ź“Ýôĺ‰ëşÉĄĽÔĂ4.O˝ Ź.™„8č¦&?çl*˙ŢĽ•fřg˛¶Ş{ő–‚ę:Ú˘ý§`˙Ë{ň™ţäŁ98ŮĐŠ±IĆhŚŇ¦lg“WçgÓ8h(ÓßjpXÎż,@•RÚT"Šš\¦f%#`HCń2Ěźqrö_±sť0i&,ál3–SűrE6†Ű—‰˛ăV‚@!„ĺŮ3k-j™mfć'˝~~‡nŹŕ% 3[»6­m.ßJś;ţ«…•d}®ŁmW™ŇłÍ´ŞihţŐeHgĹę\ü{Vgç“ůÎ_Ý•ŔŘH ćL‹“\ Î9jáŕŽĎ®ňbkŻĆĄČy&gýŞˇ‡‰P|ëńcĚ˙ńňč§Éź÷»d™ÎđL`+ß\íńŤ`¤|Óź’?\ź%ŚP¸&Ý:J ÷n9űéM;*y‘1c¬±ÖÇál~9.Zx/§d”qp;ŢóűŔ©ÍĂžPă•ô_Ç‘ńÓŮĹÔD˛ÂÉ{6E1vte'áΤú iĹ›¨ őáÁscŻ÷ĂnpO­"OŽľ±Mý¬eK–Ť‘–.:Ź}QËřçň˝ ŰÁ$µ6rĹD—ŐÉ“ř?wöLŹ/šdˇ‡“s®Ďőá6|á7RĽ}*yn'{¬‘{íO‘H¬®BĐÜóŇ+éNX6BćŘĎýJŽ]Ĺ1'Žń0ŐT4˘©ĚśäëžâĽ8Mű ŠŤ†x g®ľć<5zŕ°¸@<•)Ţ1ńýë©°ükukĐ·ě yć°i@ěnÂq"¦2Ĺ`«â !}ił×«qZ4]¦ÍÝ­—AE_Š#ôm‡LL¶`…ľY†@9ď+´3䳎o´lh[%»‚ť® ü°.hő ‡fR;ŕ2B(ćch;Në^ᦪ~pHó3Ř$Ym-%őÍPSáţ7ŹÄuQ÷3Ář»bNlZuxřşť)÷ ‰±SŰ—ýä‹ImˇŐI<®“)f;ŐŇm%ŹŔß§ţd,p•Ęşt†ŁyÜ~tôŤWô•ňj˝mS¸O—ÂŕŕPÎôúJöX^;řdtůë|%l<‹í™śz*‡ôr{Ű&€7B†ó”JÔ1™” 8Řęhřd+ĹrťÓTŰËŕ„°ĐnbűP„P ­ŁöD’‰(ÇDööťÁK¸'ÔÝÎR‡ę÷Ö§űg‹Ďź !h)/'âČŠ‰QâĆD9.ĂB?2ŤÄ>ů&KΚ›`8Ú€č uÇ}Ŕ‡®úöŽą +Ńr}wŘĚßjűźzÉë¸Ř„Nkz‘ÖôŐzŻMKr DÓk˝ ·Ź«üMáÎö[qÇě˝fémp^|o€c©pîÚĽćłxNdá-jÍš_ń\"ÔšŚťČóęćSE˝®Č8ř »ŚWQĽägkÍü}őV8«5,,/*WGqůKÇ7*śz¨]ě’psą¸ŽŃ¦]|óŠ t.Ş%ü3‚YVyŻ!IdŇ!ľ¨ç " Ŕ.«+&Gćŕ§z×ém'É´( DĽŰ衹TÎě}„ŹRĹwŞ…Ü’”zA,‰_Ńłé|MĄ_ăx¨—·¸Ĺ¬çJY•h ±oó(dÁtŔ*sů<Ł“eu3ç:…E^<ě"ü¤ëź$ÔăE¦Ö˛ô~¤D­óÇ[mâ/ę.čÁÂ{=ËÖ\ îxL~xq™ń»íś(řüägˇľÂUďçÚľgJ84űôůQB§÷3€ři@°Rř4Gá Ą+CŠla©X7“gÔ+A´L™(/‘ ­_ˇĆß{rű°Ş{ş~e1łÉ)HĎÜEĐŠć-zĚî_zĂöŰaú7a:ż“5·pí¬űÍË˙s´yĎś?ł×Ýă}7ĐÓ›}$»wLµďđ'§RĄ_ç/W5'Lĺ nýýß/ˇ¦ď°^Č>Gh'ˇđ C_‘ ©— 䬑)LOMQďÁE}ÎXS'FJíú‰bĘ;CJćóš˝q_ ß„éĂú¶g¬I.ç,Ăž ˙ŁÖ®r°1Áşm°IĄ\ˇş— Ö·jôł€°ô`™”ĘúŁ<37°·ÓB‚/ _ÚŁS¶Z^şPÁ‡˛ěq®š9ş!#TŘiÄĆÇÔěmÓ©k•>°Ö–wÜ5čśŃ&@Ô†ë¶ä°‰_ŃhÁguźÉ±H>PÝń6ňxCĽ’Ńř='q­sÉB!5ÔÉ% ů‚ąaDÚnmň‹*14Řó,䝏h—ÓÝp-¬]ޤ&QN^„·÷óžEâWětĽ!îMň¬Ż¨TŔáŔě-Ąb€ Ő!¤z§pĎŮK·µŮF¶ć![~ݶ¶ĘX„D›Aµ/nťßÜOÎ#YXšJÖlx‹ A1cŁÎ> RpP  ęˇËŕ…`.ţ ł4AŐśzĂ[4şkUóÂF\Hzá!‚»¦[ß­ÔK$x3É*R÷/bąÍýÖ5ć@ů%”ě® j‘Y‘Xě)ľŤ‚(ů×ÂóŔQŢ«hÇŢf7ˇwˇ_—Ž}N.­ŠŚą8Ż[9ęýRL§s-`‡-?SQĎÔk_V-»- Ťî:Dq{~¶=Ř —7lÍ|Şúnş$S•Ű8X´Ř*¦kp5 Ü1Ô$ţTgűŤ±™ Gxr¤3ER…ćĎöü)·;îăKŇÂ|’#ą»h4šV7=žô§23äŔHm-uꢨU˙ń¤ŤŇÇD‡ź|YĘ*wAÜś­uÁ!Ç|6b¸P\aý´’K_ĂzÜ5tjJAw÷@vř{«ço¶”őÜţa^·íVU¸Śň•ŚCąůgÜŔ™ŢdĄeđXÜâzEa0?î¦÷đŽ˙ÎŰÍ-±rlZ^ßó,ý0ŚH n˙äx¸…~~Óz}ířF… ¸lŔţöuŰ<Ůn á… ‡EŔ×G”­ě‹µć…Ż9÷OÍŽ4Ş1č!¤ă,yÎy!ĘßçVů‘;¨@HÜAvr4LŃň&€(:ý‚aL©˝ݰSţçHäm|·:€âŠß¤ŘA‡3’ĚJ–ć•…47@| ĐŇ?¶?#$"ĄŇééâ¦Ä&Čá¤ËJŻhg»Ż÷őnä<>˝ôH,ŻmX¸•ş%%ü9„qTűŞÍÚ˙}ťhĆ9Îí‰m;Ń1ˇśŔđŤş%=Ę˙ť:Ť^ĽdoĂť=ҾƄĎm!¨M·«ä"öv4,Ľ'\ůd…ăV6ۧVY걢v: rkĽ7śplÚhé­O}5íT¬Ůü¦öޱsa'˛AÎ|"5>!qŮä/K#D9…§=Xw{xěTąç—‹=<ËB>=9¸Ďé˙U="zcÀɞV2ö&ëńđÄäŢě řD˙ęšQŇś&PüăABÓĂhaV8Ţ=§©Ä‡[¤ĂĺÎŐŚ82±çÜS6­ŇƢyžĎOčŹP—f÷ČŘ=˙_ę¸Ç¦[.{lú8Íżb®ĺO7.A˘>ÎS4Ѧž4=˛Ţn*QJćSyJayžáÓŤUÄ…Y8-ÜĚ<Ǣă–ÚLë±%µŘ(‹ŃňÝ@w,?;/ĘkŞ'‰lvxÁ··xŰĎĚ,ˇ˙bŢG/“ĚK«qDQĐ6 _]Űm®Ó ¸ü>–pĆ—[Ç0ĺ‚9đ” /'Ká|=Ç_ĺ/řH ¨Ś{ž._ ŰcpmhÄaéҦp°ß& |LeK:§yÁ{%ă&…‹fNk}0`(}v꬏1¦)`]żc•lp+sçŇä‡^żG›e4Ö™sÖN¨ä”ŤAI'ő'›Îň°Sz*÷DtCH,KČŔ†Őí 9, :Ő`–îčX–ˇWŁ‚n ĎFä-Wš őćfPüüŻ/¦eá<6źrV¦zńKďĺí÷d©ä2 =ÇTOŹŇňwcz}0žcĄ7őţ‚u¶řżâÖ(?5+X˝’(7bbÔNY0ňŘŐüřp¨żůWGXĂ}›Ŕ§br!Ż5ÔňmdťśŽ+q®ŚOľĎ*¦e§~ńLúí5>ëH7ěĆĹŐ˛_×=B嫾6_ëxáw­ś6<÷>‡Áx—kâv˙ŞóE« ­llÖHâ^ÁorFŚ3fäP˛ă1öBČÔ\ëąJ€ßBÓ TÓµ}öLłđ[úűÎŻ)”Ńű=Bđ¸a}o&Ôó*äPÁQx«¤üÓú+*S •“Č :›˘9ତbö‹ë@V¦| ą#ąň扅EM×ÉÝMüË>Pq¸fî7đŮO(|–Ľ„ş‡ýŇ}îś´ë'Z8(şyÖXBa`ěSP^ęç~ĺňrŞhK/Ú`P/ąˇ`ĺĽm&áK='đ§ç(^M*wç|b–!®áx 3eäsŚš}Ó4ÁôĆ‚mÖ?…k˘Ň·ÇPěŻuC=ÄâW´ĹŚ?Ą e@ĄmÔâĆưÖÇÇ1‚Ů…Mó.âÄÚ™Y¶tŇĘç$ń,sˇ3‚ŽV]+ŁI0ľSÖ·ĆŚ%KÔXÓ ăYŚF±»}¸„őZ.±˛|ĺöTYÉ^â”V›: +•4ťŐű™))솞ćZŹ5—đá ĄX··5ßž˘×ćŢĹÜ"´Z^/(!Ś(˘LČ´ŤöŤ™x‘ľ˘ĆňrŁ_„vX¨B&)( \Ź–Âěž8Î[ÖđAŤńňzěsŻVŁK?,šőČĆóËO¬^ě 4J’GuçĐś«E»÷Żé­ő %śî|ŘsúÉFá÷ćţÖÍŽ’‘‹%YólČČ0E‰© 2q”¤) Ňăq1Í97ěrý-“äĐ­$ˇâŔ¦ßľKŠhŠŘ$ÄŮ–Żíü:Č$†ŐcŻ箩Ńq•qÓ‘wS° 2Y‰íckď!·˝üŽ Ź ŁŐ“˙zn şż ®Á…S»5Ľ,[ŐÓ×Ň۵ěea‡ýŕ‹Âł÷ŐÇč¸^ĎăćőbÓ0A‹ŤQeť8W°Ń1Bęľl(ĘůéuKů»‰cDřNBŠö&+ŤŘk¤h,Ä.ŔŢ aŮŹbuď뇣ťp( ŕ“󄢄6¶W{‰ë~Ô7ńXłű†­SŁÚuN±Ú˝ŤěQ3$ŘG$ş·3˘%TIëH›θqµÁq"°őż”äCÜ S~·v)µŻP˝—wu­¤×ą§HBâ¨zâÔ¸m»°żň DćśĂ±]q}M/bg ^Ą7ă´ĄL42( ZŽĆŇ f[›ÔgE*’ôţ®šn÷üçâZË {˝]/u˘+-vłłŞ/‡ßYµôĘPţzxŐ|U ?Ă˝`> 뼌‹ËD§çľLM"©ą¨dÇË^ń 0”o­×ăĘ#E&ž oyGý27 łgîU«>ůŕ<Č›ňç€\±°¬ #é— Ä÷…Ąá“ă2›ăQ@YZlme4/R/lmer.R0000644000176200001440000034123215113136610012400 0ustar liggesusers## NB: doc in ../man/*.Rd ***not*** auto generated ## FIXME: need to document S3 methods better (can we pull from r-forge version?) ##' Fit a linear mixed model (LMM) lmer <- function(formula, data=NULL, REML = TRUE, control = lmerControl(), start = NULL , verbose = 0L , subset, weights, na.action, offset , contrasts = NULL , devFunOnly=FALSE ) ## , ...) { mc <- mcout <- match.call() missCtrl <- missing(control) ## see functions in modular.R for the body .. if (!missCtrl && !inherits(control, "lmerControl")) { if(!is.list(control)) stop("'control' is not a list; use lmerControl()") ## back-compatibility kluge warning("passing control as list is deprecated: please use lmerControl() instead", immediate.=TRUE) control <- do.call(lmerControl, control) } ## if (!is.null(list(...)[["family"]])) { ## warning("calling lmer with 'family' is deprecated; please use glmer() instead") ## mc[[1]] <- quote(lme4::glmer) ## if(missCtrl) mc$control <- glmerControl() ## return(eval(mc, parent.frame(1L))) ## } mc$control <- control ## update for back-compatibility kluge ## https://github.com/lme4/lme4/issues/50 ## parse data and formula mc[[1]] <- quote(lme4::lFormula) lmod <- eval(mc, parent.frame(1L)) mcout$formula <- lmod$formula lmod$formula <- NULL if (is.matrix(y <- model.response(lmod$fr)) && ncol(y) > 1) { stop("can't handle matrix-valued responses: consider using refit()") } ## create deviance function for covariance parameters (theta) devfun <- do.call(mkLmerDevfun, c(lmod, list(start=start, verbose=verbose, control=control))) if (devFunOnly) return(devfun) ## optimize deviance function over covariance parameters s <- getStart(start, environment(devfun)$pp) if (identical(control$optimizer,"none")) stop("deprecated use of optimizer=='none'; use NULL instead") ## Checks if the user actually enabled calc.derivs force.calc.derivs <- isTRUE(control$calc.derivs) calc.derivs <- control$calc.derivs %||% (nrow(lmod$fr) < control$checkConv$check.conv.nobsmax & length(s) < control$checkConv$check.conv.nparmax) opt <- if (length(control$optimizer)==0) { list(par=s,fval=devfun(s), conv=1000,message="no optimization") } else { optimizeLmer(devfun, optimizer = control$optimizer, restart_edge = control$restart_edge, boundary.tol = control$boundary.tol, control = control$optCtrl, verbose=verbose, start=start, calc.derivs=calc.derivs, force.calc.derivs=force.calc.derivs, use.last.params=control$use.last.params) } cc <- checkConv(attr(opt,"derivs"), opt$par, ctrl = control$checkConv, lbound = environment(devfun)$lower, nobs = nrow(lmod$fr), ndim = length(s)) mkMerMod(environment(devfun), opt, lmod$reTrms, fr = lmod$fr, mc = mcout, lme4conv=cc) ## prepare output }## { lmer } ##' Fit a generalized linear mixed model (GLMM) glmer <- function(formula, data=NULL , family = gaussian , control = glmerControl() , start = NULL , verbose = 0L , nAGQ = 1L , subset, weights, na.action, offset, contrasts = NULL , mustart, etastart , devFunOnly = FALSE) { if (!inherits(control, "glmerControl")) { if(!is.list(control)) stop("'control' is not a list; use glmerControl()") ## back-compatibility kluge if (class(control)[1]=="lmerControl") { warning("please use glmerControl() instead of lmerControl()", immediate.=TRUE) control <- ## unpack sub-lists c(control[!names(control) %in% c("checkConv","checkControl")], control$checkControl,control$checkConv) control["restart_edge"] <- NULL ## not implemented for glmer } else { msg <- "Use control=glmerControl(..) instead of passing a list" if(length(cl <- class(control))) { msg <- paste(msg, "of class", dQuote(cl[1])) } warning(msg, immediate.=TRUE) } control <- do.call(glmerControl, control) } mc <- mcout <- match.call() ## family-checking code duplicated here and in glFormula (for now) since ## we really need to redirect at this point; eventually deprecate formally ## and clean up if (is.character(family)) family <- get(family, mode = "function", envir = parent.frame(2)) if( is.function(family)) family <- family() if (isTRUE(all.equal(family, gaussian()))) { ## redirect to lmer (with warning) warning("calling glmer() with family=gaussian (identity link) as a shortcut to lmer() is deprecated;", " please call lmer() directly") mc[[1]] <- quote(lme4::lmer) mc["family"] <- NULL # to avoid an infinite loop return(eval(mc, parent.frame())) } ## see https://github.com/lme4/lme4/issues/50 ## parse the formula and data mc[[1]] <- quote(lme4::glFormula) glmod <- eval(mc, parent.frame(1L)) mcout$formula <- glmod$formula glmod$formula <- NULL if (is.matrix(y <- model.response(glmod$fr)) && ((family$family != "binomial" && ncol(y) > 1) || (ncol(y) >2))) { stop("can't handle matrix-valued responses: consider using refit()") } calc.derivs <- control$calc.derivs %||% (nrow(glmod$fr) < control$checkConv$check.conv.nobsmax) ## create deviance function for covariance parameters (theta) nAGQinit <- if(control$nAGQ0initStep) 0L else 1L devfun <- do.call(mkGlmerDevfun, c(glmod, list(verbose = verbose, control = control, nAGQ = nAGQinit))) if (nAGQ==0 && devFunOnly) return(devfun) pp <- environment(devfun)$pp ppdim <- length(pp$theta) + length(pp$delb) ## optimize deviance function over covariance parameters ## FIXME: perhaps should be in glFormula instead?? if (is.list(start)) { start.bad <- setdiff(names(start), c("theta","fixef", "beta")) if (length(start.bad)>0) { stop(sprintf("bad name(s) for start vector (%s); should be from {%s, %s, %s}", paste(start.bad,collapse=", "), shQuote("theta"), shQuote("fixef"), shQuote("beta")), call.=FALSE) } ## rename beta -> fixef internally if ("beta" %in% names(start)) { names(start)[names(start) == "beta"] <- "fixef" } if (!is.null(start$fixef) && nAGQ==0) { stop("should not specify both start$fixef (or $beta) and nAGQ==0") } } ## FIX ME: allow calc.derivs, use.last.params etc. if nAGQ=0 if(control$nAGQ0initStep) { opt <- optimizeGlmer(devfun, optimizer = control$optimizer[[1]], ## DON'T try fancy edge tricks unless nAGQ=0 explicitly set restart_edge=if (nAGQ==0) control$restart_edge else FALSE, boundary.tol=if (nAGQ==0) control$boundary.tol else 0, control = control$optCtrl, start=start, nAGQ = 0, verbose=verbose, calc.derivs=FALSE) } ## Note to self: length(opt) works for the theta parameters... if(nAGQ > 0L) { ## update deviance function to include fixed effects as inputs devfun <- updateGlmerDevfun(devfun, glmod$reTrms, nAGQ = nAGQ) if (control$nAGQ0initStep) { start <- updateStart(start,theta=opt$par) } ## if nAGQ0 was skipped ## we don't actually need to do anything here, it seems -- ## getStart gets called again in optimizeGlmer if (devFunOnly) return(devfun) ## reoptimize deviance function over covariance parameters and fixed effects opt <- optimizeGlmer(devfun, optimizer = control$optimizer[[2]], restart_edge=control$restart_edge, boundary.tol=control$boundary.tol, control = control$optCtrl, start=start, nAGQ=nAGQ, verbose = verbose, stage=2, calc.derivs=calc.derivs, use.last.params=control$use.last.params) } cc <- if (!calc.derivs) NULL else { if (verbose > 10) cat("checking convergence\n") checkConv(attr(opt,"derivs"),opt$par, ctrl = control$checkConv, lbound=environment(devfun)$lower, nobs = nrow(glmod$fr), ndim = ppdim) } ## prepare output mkMerMod(environment(devfun), opt, glmod$reTrms, fr = glmod$fr, mc = mcout, lme4conv=cc) }## {glmer} ##' Fit a nonlinear mixed-effects model nlmer <- function(formula, data=NULL, control = nlmerControl(), start = NULL, verbose = 0L, nAGQ = 1L, subset, weights, na.action, offset, contrasts = NULL, devFunOnly = FALSE) { vals <- nlformula(mc <- match.call()) p <- ncol(X <- vals$X) if ((rankX <- rankMatrix(X)) < p) stop(gettextf("rank of X = %d < ncol(X) = %d", rankX, p)) rho <- list2env(list(verbose=verbose, tolPwrss=0.001, # this is reset to the tolPwrss argument's value later resp=vals$resp, lower=vals$reTrms$lower), parent=parent.frame()) rho$pp <- do.call(merPredD$new, c(vals$reTrms[c("Zt","theta","Lambdat","Lind")], list(X=X, n=length(vals$respMod$mu), Xwts=vals$respMod$sqrtXwt, beta0=qr.coef(qr(X), unlist(lapply(vals$pnames, get, envir = rho$resp$nlenv)))))) rho$u0 <- rho$pp$u0 rho$beta0 <- rho$pp$beta0 ## deviance as a function of theta only : devfun <- mkdevfun(rho, 0L, verbose=verbose, control=control) if (devFunOnly && !nAGQ) return(devfun) devfun(rho$pp$theta) # initial coarse evaluation to get u0 and beta0 rho$u0 <- rho$pp$u0 rho$beta0 <- rho$pp$beta0 rho$tolPwrss <- control$tolPwrss # Reset control parameter (the initial optimization is coarse) ## set lower and upper bounds: if user-specified, select ## only the ones corresponding to random effects if (!is.null(lwr <- control$optCtrl$lower)) { rho$lower <- lwr[seq_along(rho$lower)] control$optCtrl$lower <- NULL } upper <- rep(Inf, length(rho$lower)) if (!is.null(upr <- control$optCtrl$upper)) { upper <- upr[seq_along(rho$lower)] control$optCtrl$upper <- NULL } opt <- optwrap(control$optimizer[[1]], devfun, rho$pp$theta, lower=rho$lower, upper=upper, control=control$optCtrl, adj=FALSE) rho$control <- attr(opt,"control") if (nAGQ > 0L) { ## set lower/upper to values already harvested from control$optCtrl$upper rho$lower <- if(!is.null(lwr)) lwr else c(rho$lower, rep.int(-Inf, length(rho$beta0))) upper <- if(!is.null(upr)) upr else c( upper, rep.int( Inf, length(rho$beta0))) rho$u0 <- rho$pp$u0 rho$dpars <- seq_along(rho$pp$theta) ## fixed-effect parameters rho$beta0 <- pmin(upper[-rho$dpars], pmax(rho$pp$beta0,rho$lower[-rho$dpars])) if (nAGQ > 1L) { if (length(vals$reTrms$flist) != 1L || length(vals$reTrms$cnms[[1]]) != 1L) stop("nAGQ > 1 is only available for models with a single, scalar random-effects term") rho$fac <- vals$reTrms$flist[[1]] } devfun <- mkdevfun(rho, nAGQ, verbose=verbose, control=control) if (devFunOnly) return(devfun) opt <- optwrap(control$optimizer[[2]], devfun, par = c(rho$pp$theta, rho$beta0), lower = rho$lower, upper = upper, control = control$optCtrl, adj = TRUE, verbose=verbose) } mkMerMod(environment(devfun), opt, vals$reTrms, fr = vals$frame, mc = mc) }## {nlmer} ## R 3.1.0 devel [2013-08-05]: This does not help yet if(getRversion() >= "3.1.0") utils::suppressForeignCheck("nlmerAGQ") if(getRversion() < "3.1.0") dontCheck <- identity ## *not* exported (had help page till early 2018) ## -> issue #92: -> also look at devfun2() in ./profile.R (which returns class!) ##' Create a deviance evaluation function from a predictor and a response module ##' @param rho an `environment` already containing `verbose` and tolPwrss ##' @param nAGQ for glmer/nlmer: #{AGQ steps}; 0 <==> Laplace ##' @param maxit maximal number of PIRLS iterations ##' @param verbose integer specifying if outputs should be produced ##' @param control a list as from lmerControl() etc mkdevfun <- function(rho, nAGQ=1L, maxit = if(extends(rho.cld, "nlsResp")) 300L else 100L, verbose=0, control=list()) { ## FIXME: should nAGQ be automatically embedded in rho? stopifnot(is.environment(rho), ## class definition, compute and save : extends(rho.cld <- getClass(class(rho$resp)), "lmResp")) ## silence R CMD check warnings *locally* in this function ## (clearly preferred to using globalVariables() !] fac <- pp <- resp <- lp0 <- compDev <- dpars <- baseOffset <- tolPwrss <- pwrssUpdate <- ## <-- even though it's a function below GQmat <- nlmerAGQ <- NULL ## The deviance function (to be returned, with 'rho' as its environment): ff <- if (extends(rho.cld, "lmerResp")) { rho$lmer_Deviance <- lmer_Deviance function(theta) .Call(lmer_Deviance, pp$ptr(), resp$ptr(), as.double(theta)) } else if (extends(rho.cld, "glmResp")) { ## control values will override rho values *if present* if (!is.null(tp <- control$tolPwrss)) rho$tolPwrss <- tp if (!is.null(cd <- control$ compDev)) rho$compDev <- cd if (nAGQ == 0L) function(theta) { resp$updateMu(lp0) pp$setTheta(theta) p <- pwrssUpdate(pp, resp, tol=tolPwrss, GQmat=GHrule(0L), compDev=compDev, maxit=maxit, verbose=verbose) resp$updateWts() p } else ## nAGQ > 0 function(pars) { ## pp$setDelu(rep(0, length(pp$delu))) resp$setOffset(baseOffset) resp$updateMu(lp0) pp$setTheta(as.double(pars[dpars])) # theta is first part of pars spars <- as.numeric(pars[-dpars]) offset <- if (length(spars)==0) baseOffset else baseOffset + pp$X %*% spars resp$setOffset(offset) p <- pwrssUpdate(pp, resp, tol=tolPwrss, GQmat=GQmat, compDev=compDev, grpFac=fac, maxit=maxit, verbose=verbose) resp$updateWts() p } } else if (extends(rho.cld, "nlsResp")) { if (nAGQ <= 1L) { rho$nlmerLaplace <- nlmerLaplace rho$tolPwrss <- control$tolPwrss rho$maxit <- maxit switch(nAGQ + 1L, function(theta) .Call(nlmerLaplace, pp$ptr(), resp$ptr(), as.double(theta), as.double(u0), beta0, verbose, FALSE, tolPwrss, maxit), function(pars) .Call(nlmerLaplace, pp$ptr(), resp$ptr(), pars[dpars], u0, pars[-dpars], verbose, TRUE, tolPwrss, maxit)) } else { stop("nAGQ > 1 not yet implemented for nlmer models") rho$nlmerAGQ <- nlmerAGQ rho$GQmat <- GHrule(nAGQ) ## function(pars) { ## .Call(nlmerAGQ, ## <- dontCheck(nlmerAGQ) should work according to docs but does not ## pp$ptr(), resp$ptr(), fac, GQmat, pars[dpars], ## u0, pars[-dpars], tolPwrss) ##} } } else stop("code not yet written") environment(ff) <- rho ff } ## Determine a step factor that will reduce the pwrss ## ## The penalized, weighted residual sum of squares (pwrss) is the sum ## of the weighted residual sum of squares from the resp module and ## the squared length of u from the predictor module. The predictor module ## contains a base value and an increment for the coefficients. ## @title Determine a step factor ## @param pp predictor module ## @param resp response module ## @param verbose logical value determining verbose output ## @return NULL if successful ## @note Typically all this is done in the C++ code. ## The R code is for debugging and comparisons of ## results. ## stepFac <- function(pp, resp, verbose, maxSteps = 10) { ## stopifnot(is.numeric(maxSteps), maxSteps >= 2) ## pwrss0 <- resp$wrss() + pp$sqrL(0) ## for (fac in 2^(-(0:maxSteps))) { ## wrss <- resp$updateMu(pp$linPred(fac)) ## pwrss1 <- wrss + pp$sqrL(fac) ## if (verbose > 3L) ## cat(sprintf("pwrss0=%10g, diff=%10g, fac=%6.4f\n", ## pwrss0, pwrss0 - pwrss1, fac)) ## if (pwrss1 <= pwrss0) { ## pp$installPars(fac) ## return(NULL) ## } ## } ## stop("step factor reduced below ",signif(2^(-maxSteps),2)," without reducing pwrss") ## } RglmerWrkIter <- function(pp, resp, uOnly=FALSE) { pp$updateXwts(resp$sqrtWrkWt()) pp$updateDecomp() pp$updateRes(resp$wtWrkResp()) if (uOnly) pp$solveU() else pp$solve() resp$updateMu(pp$linPred(1)) # full increment resp$resDev() + pp$sqrL(1) } ##' @param pp pred module ##' @param resp resp module ##' @param tol numeric tolerance ##' @param GQmat matrix of Gauss-Hermite quad info ##' @param compDev compute in C++ (as opposed to doing as much as possible in R) ##' @param grpFac grouping factor (normally found in environment ..) ##' @param verbose verbosity, of course glmerPwrssUpdate <- function(pp, resp, tol, GQmat, compDev=TRUE, grpFac=NULL, maxit = 70L, verbose=0) { nAGQ <- nrow(GQmat) if (compDev) { if (nAGQ < 2L) return(.Call(glmerLaplace, pp$ptr(), resp$ptr(), nAGQ, tol, as.integer(maxit), verbose)) return(.Call(glmerAGQ, pp$ptr(), resp$ptr(), tol, as.integer(maxit), GQmat, grpFac, verbose)) } ### does this show anywhere ??? [i.e. is it ever used in our checks/examples/scripts/vignettes ? ### message("glmerPwrssUpdate(*, compDev=FALSE) --> using more R, no direct .Call() to C.") # [DBG] only oldpdev <- .Machine$double.xmax uOnly <- nAGQ == 0L i <- 0 repeat { ## oldu <- pp$delu ## olddelb <- pp$delb pdev <- RglmerWrkIter(pp, resp, uOnly=uOnly) if (verbose > 2) cat(i,": ",pdev,"\n",sep="") ## check convergence first so small increases don't trigger errors if (is.na(pdev)) stop("encountered NA in PWRSS update") if (abs((oldpdev - pdev) / pdev) < tol) break ## if (pdev > oldpdev) { ## ## try step-halving ## ## browser() ## k <- 0 ## while (k < 10 && pdev > oldpdev) { ## pp$setDelu((oldu + pp$delu)/2.) ## if (!uOnly) pp$setDelb((olddelb + pp$delb)/2.) ## pdev <- RglmerWrkIter(pp, resp, uOnly=uOnly) ## k <- k+1 ## } ## } if (pdev > oldpdev) stop("PIRLS update failed") oldpdev <- pdev i <- i+1 } resp$Laplace(pp$ldL2(), 0., pp$sqrL(1)) ## FIXME: should 0. be pp$ldRX2 ? } ## create a deviance evaluation function that uses the sigma parameters ## df2 <- function(dd) { ## stopifnot(is.function(dd), ## length(formals(dd)) == 1L, ## is((rem <- (rho <- environment(dd))$rem), "Rcpp_reModule"), ## is((fem <- rho$fem), "Rcpp_deFeMod"), ## is((resp <- rho$resp), "Rcpp_lmerResp"), ## all((lower <- rem$lower) == 0)) ## Lind <- rem$Lind ## n <- length(resp$y) ## function(pars) { ## sigma <- pars[1] ## sigsq <- sigma * sigma ## sigmas <- pars[-1] ## theta <- sigmas/sigma ## rem$theta <- theta ## resp$updateMu(numeric(n)) ## solveBetaU(rem, fem, resp$sqrtXwt, resp$wtres) ## resp$updateMu(rem$linPred1(1) + fem$linPred1(1)) ## n * log(2*pi*sigsq) + (resp$wrss + rem$sqrLenU)/sigsq + rem$ldL2 ## } ## } ## bootMer() ---> now in ./bootMer.R ## Methods for the merMod class ## Anova for merMod objects ## ## @title anova() for merMod objects ## @param a merMod object ## @param ... further such objects ## @param refit should objects be refitted with ML (if applicable) ## @return an "anova" data frame; the traditional (S3) result of anova() anovaLmer <- function(object, ..., refit = TRUE, model.names=NULL) { mCall <- match.call(expand.dots = TRUE) dots <- list(...) .sapply <- function(L, FUN, ...) unlist(lapply(L, FUN, ...)) modp <- (as.logical(vapply(dots, is, NA, "merMod")) | as.logical(vapply(dots, is, NA, "lm"))) if (any(modp)) { ## multiple models - form table ## opts <- dots[!modp] mods <- c(list(object), dots[modp]) nobs.vec <- vapply(mods, nobs, 1L) if (var(nobs.vec) > 0) stop("models were not all fitted to the same size of dataset") ## model names if (is.null(mNms <- model.names)) mNms <- vapply(as.list(mCall)[c(FALSE, TRUE, modp)], deparse1, "") ## HACK to try to identify model names in situations such as ## 'do.call(anova,list(model1,model2))' where the model names ## are lost in the call stack ... this doesn't quite work but might ## be useful for future attempts? ## maxdepth <- -2 ## depth <- -1 ## while (depth >= maxdepth & ## all(grepl("S4 object of class structure",mNms))) { ## xCall <- match.call(call=sys.call(depth)) ## mNms <- .sapply(as.list(xCall)[c(FALSE, TRUE, modp)], deparse) ## depth <- depth-1 ## } ## if (depth < maxdepth) { if (any(substr(mNms, 1,4) == "new(") || any(duplicated(mNms)) || ## <- only if S4 objects are *not* properly deparsed max(nchar(mNms)) > 200) { warning("failed to find model names, assigning generic names") mNms <- paste0("MODEL",seq_along(mNms)) } if (length(mNms) != length(mods)) stop("model names vector and model list have different lengths") names(mods) <- sub("@env$", '', mNms) # <- hack models.reml <- vapply(mods, function(x) is(x,"merMod") && isREML(x), NA) models.GHQ <- vapply(mods, function(x) is(x,"glmerMod") && getME(x,"devcomp")$dims["nAGQ"]>1 , NA) if (any(models.GHQ) && any(vapply(mods, function(x) is(x,"glm"), NA))) stop("GLMMs with nAGQ>1 have log-likelihoods incommensurate with glm() objects") if (refit) { ## message only if at least one models is REML: if (any(models.reml)) message("refitting model(s) with ML (instead of REML)") mods[models.reml] <- lapply(mods[models.reml], refitML) } else { ## check that models are consistent (all REML or all ML) if(any(models.reml) && any(!models.reml)) warning("some models fit with REML = TRUE, some not") } ## devs <- sapply(mods, deviance) llks <- lapply(mods, logLik) ## Order models by increasing degrees of freedom: ii <- order(npar <- vapply(llks, attr, FUN.VALUE=numeric(1), "df")) mods <- mods[ii] llks <- llks[ii] npar <- npar [ii] calls <- lapply(mods, getCall) data <- lapply(calls, `[[`, "data") if(!all(vapply(data, identical, NA, data[[1]]))) stop("all models must be fit to the same data object") header <- paste("Data:", abbrDeparse(data[[1]])) subset <- lapply(calls, `[[`, "subset") if(!all(vapply(subset, identical, NA, subset[[1]]))) stop("all models must use the same subset") if (!is.null(subset[[1]])) header <- c(header, paste("Subset:", abbrDeparse(subset[[1]]))) llk <- unlist(llks) chisq <- 2 * pmax(0, c(NA, diff(llk))) dfChisq <- c(NA, diff(npar)) val <- data.frame(npar = npar, ## afraid to swap in vapply here; wondering ## why .sapply was needed in the first place ... AIC = .sapply(llks, AIC), # FIXME? vapply() BIC = .sapply(llks, BIC), # " " logLik = llk, "-2*log(L)" = -2*llk, Chisq = chisq, Df = dfChisq, "Pr(>Chisq)" = ifelse(dfChisq==0,NA,pchisq(chisq, dfChisq, lower.tail = FALSE)), row.names = names(mods), check.names = FALSE) class(val) <- c("anova", class(val)) forms <- lapply(lapply(calls, `[[`, "formula"), deparse1) structure(val, heading = c(header, "Models:", paste(rep.int(names(mods), lengths(forms)), unlist(forms), sep = ": "))) } else { ## ------ single model --------------------- if (length(dots)>0) { warnmsg <- "additional arguments ignored" nd <- names(dots) nd <- nd[nzchar(nd)] if (length(nd)>0) { warnmsg <- paste0(warnmsg,": ", paste(sQuote(nd),collapse=", ")) } warning(warnmsg) } dc <- getME(object, "devcomp") X <- getME(object, "X") stopifnot(length(asgn <- attr(X, "assign")) == dc$dims[["p"]]) ss <- as.vector(object@pp$RX() %*% object@beta)^2 names(ss) <- colnames(X) terms <- terms(object) nmeffects <- attr(terms, "term.labels")[unique(asgn)] if ("(Intercept)" %in% names(ss)) nmeffects <- c("(Intercept)", nmeffects) ss <- unlist(lapply(split(ss, asgn), sum)) stopifnot(length(ss) == length(nmeffects)) df <- lengths(split(asgn, asgn)) ## dfr <- unlist(lapply(split(dfr, asgn), function(x) x[1])) ms <- ss/df f <- ms/(sigma(object)^2) ## No longer provide p-values, but still the F statistic (may not be F distributed): ## ## P <- pf(f, df, dfr, lower.tail = FALSE) ## table <- data.frame(df, ss, ms, dfr, f, P) table <- data.frame(df, ss, ms, f) dimnames(table) <- list(nmeffects, ## c("npar", "Sum Sq", "Mean Sq", "Denom", "F value", "Pr(>F)")) c("npar", "Sum Sq", "Mean Sq", "F value")) if ("(Intercept)" %in% nmeffects) table <- table[-match("(Intercept)", nmeffects), ] structure(table, heading = "Analysis of Variance Table", class = c("anova", "data.frame")) } }## {anovaLmer} ##' @importFrom stats anova ##' @S3method anova merMod anova.merMod <- anovaLmer ##' @S3method as.function merMod as.function.merMod <- function(x, ...) { rho <- list2env(list(resp = x@resp$copy(), pp = x@pp$copy(), beta0 = x@beta, u0 = x@u), parent=as.environment("package:lme4")) ## FIXME: extract verbose [, maxit] and control mkdevfun(rho, getME(x, "devcomp")$dims[["nAGQ"]], ...) } ## coef() method for all kinds of "mer", "*merMod", ... objects ## ------ should work with fixef() + ranef() alone coefMer <- function(object, ...) { if(...length()) warning('arguments named ', paste(sQuote(...names()), collapse = ", "), ' ignored') fef <- data.frame(rbind(fixef(object)), check.names = FALSE) ref <- ranef(object, condVar = FALSE) ## check for variables in RE but missing from FE, fill in zeros in FE accordingly refnames <- unlist(lapply(ref,colnames)) nmiss <- length(missnames <- setdiff(refnames,names(fef))) if (nmiss > 0) { fillvars <- setNames(data.frame(rbind(rep(0,nmiss))),missnames) fef <- cbind(fillvars,fef) } val <- lapply(ref, function(x) fef[rep.int(1L, nrow(x)),,drop = FALSE]) for (i in seq_along(val)) { refi <- ref[[i]] row.names(val[[i]]) <- row.names(refi) nmsi <- colnames(refi) if (!all(nmsi %in% names(fef))) stop("unable to align random and fixed effects") for (nm in nmsi) val[[i]][[nm]] <- val[[i]][[nm]] + refi[,nm] } class(val) <- "coef.mer" val } ## {coefMer} ##' @importFrom stats coef ##' @S3method coef merMod coef.merMod <- coefMer ## FIXME: should these values (i.e. ML criterion for REML models ## and vice versa) be computed and stored in the object in the first place? ##' @importFrom stats deviance ##' @S3method deviance merMod deviance.merMod <- function(object, REML = NULL, ...) { ## type = c("conditional", "unconditional", "penalized"), ## relative = TRUE, ...) { if (isGLMM(object)) { return(sum(residuals(object,type="deviance")^2)) ## ------------------------------------------------------------ ## proposed change to deviance function for GLMMs ## ------------------------------------------------------------ ## @param type Type of deviance (can be unconditional, ## penalized, conditional) ## @param relative Should deviance be shifted relative to a ## saturated model? (only available with type == penalized or ## conditional) ## ------------------------------------------------------------ ## ans <- switch(type[1], ## unconditional = { ## if (relative) { ## stop("unconditional and relative deviance is undefined") ## } ## c(-2 * logLik(object)) ## }, ## penalized = { ## sqrL <- object@pp$sqrL(1) ## if (relative) { ## object@resp$resDev() + sqrL ## } else { ## useSc <- unname(getME(gm1, "devcomp")$dims["useSc"]) ## qLog2Pi <- unname(getME(object, "q")) * log(2 * pi) ## object@resp$aic() - (2 * useSc) + sqrL + qLog2Pi ## } ## }, ## conditional = { ## if (relative) { ## object@resp$resDev() ## } else { ## useSc <- unname(getME(gm1, "devcomp")$dims["useSc"]) ## object@resp$aic() - (2 * useSc) ## } ## }) ## return(ans) } if (isREML(object) && is.null(REML)) { warning("deviance() is deprecated for REML fits; use REMLcrit for the REML criterion or deviance(.,REML=FALSE) for deviance calculated at the REML fit") return(devCrit(object, REML=TRUE)) } devCrit(object, REML=FALSE) } REMLcrit <- function(object) { devCrit(object, REML=TRUE) } ## original deviance.merMod -- now wrapped by REMLcrit ## REML=NULL: ## if REML fit return REML criterion ## if ML fit, return deviance ## REML=TRUE: ## if not LMM, stop. ## if ML fit, compute and return REML criterion ## if REML fit, return REML criterion ## REML=FALSE: ## if ML fit, return deviance ## if REML fit, compute and return deviance devCrit <- function(object, REML = NULL) { ## cf. (1) lmerResp::Laplace in respModule.cpp ## (2) section 5.6 of lMMwR, listing lines 34-42 if (isTRUE(REML) && !isLMM(object)) stop("can't compute REML deviance for a non-LMM") cmp <- object@devcomp$cmp if (is.null(REML) || is.na(REML[1])) REML <- isREML(object) if (REML) { if (isREML(object)) { cmp[["REML"]] } else { ## adjust ML results to REML lnum <- log(2*pi*cmp[["pwrss"]]) n <- object@devcomp$dims[["n"]] nmp <- n - length(object@beta) ldW <- sum(log(weights(object, method = "prior"))) - ldW + cmp[["ldL2"]] + cmp[["ldRX2"]] + nmp*(1 + lnum - log(nmp)) } } else { if (!isREML(object)) { cmp[["dev"]] } else { ## adjust REML results to ML n <- object@devcomp$dims[["n"]] lnum <- log(2*pi*cmp[["pwrss"]]) ldW <- sum(log(weights(object, method = "prior"))) - ldW + cmp[["ldL2"]] + n*(1 + lnum - log(n)) } } } ## copied from stats:::safe_pchisq safe_pchisq <- function (q, df, ...) { df[df <= 0] <- NA pchisq(q = q, df = df, ...) } ##' @importFrom stats drop1 ##' @S3method drop1 merMod drop1.merMod <- function(object, scope, scale = 0, test = c("none", "Chisq", "user"), k = 2, trace = FALSE, sumFun=NULL, ...) { evalhack <- "formulaenv" test <- match.arg(test) if ((test=="user" && is.null(sumFun)) || ((test!="user" && !is.null(sumFun)))) stop(sQuote("sumFun"),' must be specified if (and only if) test=="user"') tl <- attr(terms(object), "term.labels") if(missing(scope)) scope <- drop.scope(object) else { if(!is.character(scope)) { scope <- attr(terms(getFixedFormula(update.formula(object, scope))), "term.labels") } if(!all(match(scope, tl, 0L) > 0L)) stop("scope is not a subset of term labels") } ns <- length(scope) if (is.null(sumFun)) { sumFun <- function(x,scale,k,...) setNames(extractAIC(x,scale,k,...),c("df","AIC")) } ss <- sumFun(object, scale=scale, k=k, ...) ans <- matrix(nrow = ns + 1L, ncol = length(ss), dimnames = list(c("", scope), names(ss))) ans[1, ] <- ss n0 <- nobs(object, use.fallback = TRUE) env <- environment(formula(object)) # perhaps here is where trouble begins?? for(i in seq_along(scope)) { ## was seq(ns), failed on empty scope tt <- scope[i] if(trace > 1) { cat("trying -", tt, "\n", sep='') flush.console() } ## FIXME: make this more robust, somehow? ## three choices explored so far: ## (1) evaluate nfit in parent frame: tests in inst/tests/test-formulaEval.R ## will fail on lapply(m_data_List,drop1) ## (formula environment contains r,x,y,z but not d) ## (2) evaluate nfit in frame of formula: tests will fail when data specified and formula is character ## (3) update with data=NULL: fails when ... ## if (evalhack %in% c("parent","formulaenv")) { nfit <- update(object, as.formula(paste("~ . -", tt)), evaluate = FALSE) ## nfit <- eval(nfit, envir = env) # was eval.parent(nfit) if (evalhack=="parent") { nfit <- eval.parent(nfit) } else if (evalhack=="formulaenv") { nfit <- eval(nfit,envir=env) } } else { nfit <- update(object, as.formula(paste("~ . -", tt)),data=NULL, evaluate = FALSE) nfit <- eval(nfit,envir=env) } if (test=="user") { ans[i+1, ] <- sumFun(object, nfit, scale=scale, k=k, ...) } else { ans[i+1, ] <- sumFun(nfit, scale, k = k, ...) } nnew <- nobs(nfit, use.fallback = TRUE) if(all(is.finite(c(n0, nnew))) && nnew != n0) stop("number of rows in use has changed: remove missing values?") } if (test=="user") { aod <- as.data.frame(ans) } else { dfs <- ans[1L, 1L] - ans[, 1L] dfs[1L] <- NA aod <- data.frame(npar = dfs, AIC = ans[,2]) if(test == "Chisq") { ## reconstruct deviance from AIC (ugh) dev <- ans[, 2L] - k*ans[, 1L] dev <- dev - dev[1L] ; dev[1L] <- NA nas <- !is.na(dev) P <- dev P[nas] <- safe_pchisq(dev[nas], dfs[nas], lower.tail = FALSE) aod[, c("LRT", "Pr(Chi)")] <- list(dev, P) } else if (test == "F") { ## FIXME: allow this if denominator df are specified externally? stop("F test STUB -- unfinished maybe forever") dev <- ans[, 2L] - k*ans[, 1L] dev <- dev - dev[1L] ; dev[1L] <- NA nas <- !is.na(dev) P <- dev P[nas] <- safe_pchisq(dev[nas], dfs[nas], lower.tail = FALSE) aod[, c("LRT", "Pr(F)")] <- list(dev, P) } } head <- c("Single term deletions", "\nModel:", deparse(formula(object)), if(scale > 0) paste("\nscale: ", format(scale), "\n")) if (!is.null(method <- attr(ss,"method"))) { head <- c(head,"Method: ",method,"\n") } structure(aod, heading = head, class = c("anova", "data.frame")) } ##' @importFrom stats extractAIC ##' @S3method extractAIC merMod extractAIC.merMod <- function(fit, scale = 0, k = 2, ...) { L <- logLik(refitML(fit)) edf <- attr(L,"df") c(edf,-2*L + k*edf) } ##' @importFrom stats family ##' @S3method family merMod family.merMod <- function(object, ...) family(object@resp, ...) ##' @S3method family glmResp family.glmResp <- function(object, ...) { # regenerate initialize # expression if necessary ## FIXME: may fail with user-specified/custom family? ## should be obsolete if(is.null(object$family$initialize)) return(do.call(object$family$family, list(link=object$family$link))) object$family } ##' @S3method family lmResp family.lmResp <- function(object, ...) gaussian() ##' @S3method family nlsResp family.nlsResp <- function(object, ...) gaussian() ##' @importFrom stats fitted ##' @S3method fitted merMod fitted.merMod <- function(object, ...) { xx <- object@resp$mu if (length(xx)==0) { ## handle 'fake' objects created by simulate() xx <- rep(NA,nrow(model.frame(object))) } if (is.null(nm <- rownames(model.frame(object)))) nm <- seq_along(xx) names(xx) <- nm if (!is.null(fit.na.action <- attr(model.frame(object),"na.action"))) napredict(fit.na.action, xx) else xx } ##' Extract the fixed-effects estimates ##' ##' Extract the estimates of the fixed-effects parameters from a fitted model. ##' @name fixef ##' @title Extract fixed-effects estimates ##' @aliases fixef fixed.effects fixef.merMod ##' @docType methods ##' @param object any fitted model object from which fixed effects estimates can ##' be extracted. ##' @param noScale logical; if TRUE, returns the non-scaled parameters ##' @param \dots optional additional arguments. Currently none are used in any ##' methods. ##' @return a named, numeric vector of fixed-effects estimates. ##' @keywords models ##' @examples ##' fixef(lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject), sleepstudy)) ##' @importFrom nlme fixef ##' @export fixef ##' @method fixef merMod ##' @export fixef.merMod <- function(object, add.dropped = FALSE, noScale = NULL, ...) { X <- getME(object,"X") ff <- structure(object@beta, names = dimnames(X)[[2]]) if(is.null(noScale) || (!is.null(noScale) && !noScale)){ if (!is.null(sc <- attr(X, "scaled:scale"))) { ce <- attr(X, "scaled:center") ## modifying intercept if ("(Intercept)" %in% names(ff)) { intercept_shift <- sum((ff[names(sc)] * ce[names(sc)]) / sc[names(sc)]) ff[["(Intercept)"]] <- ff[["(Intercept)"]] - intercept_shift } # modifying beta coefficients ff[names(sc)] <- ff[names(sc)] / sc[names(sc)] } } if (add.dropped) { if (!is.null(dd <- attr(X,"col.dropped"))) { ## restore positions dropped for rank deficiency vv <- numeric(length(ff)+length(dd)) all.pos <- seq_along(vv) kept.pos <- all.pos[-dd] vv[kept.pos] <- ff names(vv)[kept.pos] <- names(ff) vv[dd] <- NA names(vv)[dd] <- names(dd) ff <- vv } } return(ff) } getFixedFormula <- function(form) { RHSForm(form) <- reformulas::nobars(RHSForm(form)) form } ##' @importFrom stats formula ##' @S3method formula merMod formula.merMod <- function(x, fixed.only=FALSE, random.only=FALSE, ...) { if (missing(fixed.only) && random.only) fixed.only <- FALSE if (fixed.only && random.only) stop("can't specify 'only fixed' and 'only random' terms") if (is.null(form <- attr(x@frame,"formula"))) { if (!grepl("lmer$",deparse(getCall(x)[[1]]))) stop("can't find formula stored in model frame or call") form <- as.formula(formula(getCall(x),...)) } if (fixed.only) { form <- getFixedFormula(form) } if (random.only) { ## from predict.R form <- reOnly(form,response=TRUE) } form } ##' @S3method isREML merMod isREML.merMod <- function(x, ...) as.logical(x@devcomp$dims[["REML"]]) ##' @S3method isGLMM merMod isGLMM.merMod <- function(x,...) { as.logical(x@devcomp$dims[["GLMM"]]) ## or: is(x@resp,"glmResp") } ##' @S3method isNLMM merMod isNLMM.merMod <- function(x,...) { as.logical(x@devcomp$dims[["NLMM"]]) ## or: is(x@resp,"nlsResp") } ##' @S3method isLMM merMod isLMM.merMod <- function(x,...) { !isGLMM(x) && !isNLMM(x) ## or: is(x@resp,"lmerResp") ? } npar.merMod <- function(object) { n <- length(object@beta) + length(object@theta) + object@devcomp[["dims"]][["useSc"]] ## FIXME: this is a bit of a hack: a user *might* have specified ## negative binomial family with a known theta, in which case we ## shouldn't count it as extra. Either glmer.nb needs to set a ## flag somewhere, or we need class 'nbglmerMod' to extend 'glmerMod' ... ## We do *not* want to use the 'useSc' slot (as above), because ## although theta is in some sense a scale parameter, it's not ## one in the formal sense (and isn't stored in the 'sigma' slot) if (grepl("Negative Binomial",family(object)$family)) { n <- n+1 } return(n) ## TODO: how do we feel about counting the scale parameter ??? } ##' @importFrom stats logLik ##' @S3method logLik merMod logLik.merMod <- function(object, REML = NULL, ...) { if (is.null(REML) || is.na(REML[1])) REML <- isREML(object) val <- -devCrit(object, REML = REML)/2 ## dc <- object@devcomp nobs <- nobs.merMod(object) structure(val, nobs = nobs, nall = nobs, df = npar.merMod(object), ## length(object@beta) + length(object@theta) + dc$dims[["useSc"]], class = "logLik") } ##' @importFrom stats df.residual ##' @S3method df.residual merMod ## TODO: not clear whether the residual df should be based ## on p=length(beta) or p=length(c(theta,beta)) ... but ## this is just to allow things like aods3::gof to work ... ## df.residual.merMod <- function(object, ...) { nobs(object)-npar.merMod(object) } ##' @importFrom stats logLik ##' @S3method model.frame merMod model.frame.merMod <- function(formula, fixed.only=FALSE, ...) { fr <- formula@frame if (fixed.only) { vars <- attr(terms(fr),"varnames.fixed") if (is.null(vars)) { ## back-compatibility: saved objects pre 1.1-15 ff <- formula(formula,fixed.only=TRUE) ## thanks to Thomas Leeper and Roman Lustrik, Stack Overflow ## https://stackoverflow.com/questions/18017765/extract-variables-in-formula-from-a-data-frame vars <- rownames(attr(terms.formula(ff), "factors")) } vars <- gsub("`","",vars) ## weirdness in deparsing variable names with spaces fr <- fr[vars] } fr } ##' @importFrom stats model.matrix ##' @S3method model.matrix merMod ##' @param noScale logical; if TRUE, returns the non-scaled parameters model.matrix.merMod <- function(object, type = c("fixed", "random", "randomListRaw"), noScale = NULL,...) { X <- object@pp$X # Re-scales back the model matrix on command if (!is.null(sc <- attr(object@pp$X, "scaled:scale"))){ if((is.null(noScale)) || (!is.null(noScale) && !noScale)){ unscale_cols <- setdiff(colnames(X), "(Intercept)") ce <- attr(object@pp$X, "scaled:center") X[, unscale_cols] <- sweep(X[, unscale_cols], 2, sc, `*`) X[, unscale_cols] <- sweep(X[, unscale_cols], 2, ce, `+`) } } switch(type[1], "fixed" = X, "random" = getME(object, "Z"), "randomListRaw" = mmList(object)) } ##' Dummy variables (experimental) ##' ##' Largely a wrapper for \code{model.matrix} that ##' accepts a factor, \code{f}, and returns a dummy ##' matrix with \code{nlevels(f)-1} columns. dummy <- function(f, levelsToKeep){ f <- as.factor(f) if (all(is.na(f))) return(rep(NA_real_, length(f))) mm <- model.matrix(~ 0 + f) colnames(mm) <- levels(f) # sort out levels to keep missingLevels <- missing(levelsToKeep) if(missingLevels) levelsToKeep <- levels(f)[-1] if(!any(levels(f) %in% levelsToKeep)) stop("at least some of the levels in f ", "must also be present in levelsToKeep") if(!all(levelsToKeep %in% levels(f))) stop("all of the levelsToKeep must be levels of f") mm <- mm[, levelsToKeep, drop=FALSE] ## # communicate that some usages are unlikely ## # to help with readibility, which is the ## # whole purpose of dummy() ## if((!missingLevels)&&(ncol(mm) > 1)) ## message("note from dummy: explicitly specifying more than one ", ## "level to keep may do little to improve readibility") return(mm) } ##' @importFrom stats nobs ##' @S3method nobs merMod nobs.merMod <- function(object, ...) nrow(object@frame) ## used in summary.merMod(): ngrps <- function(object, ...) UseMethod("ngrps") ngrps.default <- function(object, ...) stop("Cannot extract the number of groups from this object") ngrps.merMod <- function(object, ...) vapply(object@flist, nlevels, 1) ngrps.factor <- function(object, ...) nlevels(object) ##' @importFrom nlme ranef ##' @export ranef NULL ##' Extract the modes of the random effects ##' ##' A generic function to extract the conditional modes of the random effects ##' from a fitted model object. For linear mixed models the conditional modes ##' of the random effects are also the conditional means. ##' ##' If grouping factor i has k levels and j random effects per level the ith ##' component of the list returned by \code{ranef} is a data frame with k rows ##' and j columns. If \code{condVar} is \code{TRUE} the \code{"postVar"} ##' attribute is an array of dimension j by j by k. The kth face of this array ##' is a positive definite symmetric j by j matrix. If there is only one ##' grouping factor in the model the variance-covariance matrix for the entire ##' random effects vector, conditional on the estimates of the model parameters ##' and on the data will be block diagonal and this j by j matrix is the kth ##' diagonal block. With multiple grouping factors the faces of the ##' \code{"postVar"} attributes are still the diagonal blocks of this ##' conditional variance-covariance matrix but the matrix itself is no longer ##' block diagonal. ##' @name ranef ##' @aliases ranef ranef.merMod ##' @param object an object of a class of fitted models with random effects, ##' typically an \code{"\linkS4class{merMod}"} object. ##' @param condVar an optional logical argument indicating if the conditional ##' variance-covariance matrices of the random effects should be added as an attribute. ##' @param postVar a (deprecated) synonym for \code{condVar} ##' @param drop an optional logical argument indicating components of the return ##' value that would be data frames with a single column, usually a column ##' called \sQuote{\code{(Intercept)}}, should be returned as named vectors. ##' @param whichel an optional character vector of names of grouping factors for ##' which the random effects should be returned. Defaults to all the grouping ##' factors. ##' @param \dots some methods for this generic function require additional ##' arguments. ##' @return A list of data frames, one for each grouping factor for the random ##' effects. The number of rows in the data frame is the number of levels of ##' the grouping factor. The number of columns is the dimension of the random ##' effect associated with each level of the factor. ##' ##' If \code{condVar} is \code{TRUE} each of the data frames has an attribute ##' called \code{"postVar"} which is a three-dimensional array with symmetric ##' faces. ##' ##' When \code{drop} is \code{TRUE} any components that would be data frames of ##' a single column are converted to named numeric vectors. ##' @note To produce a \dQuote{caterpillar plot} of the random effects apply ##' \code{\link[lattice:xyplot]{dotplot}} to the result of a call to ##' \code{ranef} with \code{condVar = TRUE}. ##' @examples ##' fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) ##' fm2 <- lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject), sleepstudy) ##' fm3 <- lmer(diameter ~ (1|plate) + (1|sample), Penicillin) ##' ranef(fm1) ##' str(rr1 <- ranef(fm1, condVar = TRUE)) ##' dotplot(rr1) ## default ##' ## specify free scales in order to make Day effects more visible ##' dotplot(rr1,scales = list(x = list(relation = 'free')))[["Subject"]] ##' str(ranef(fm2, condVar = TRUE)) ##' op <- options(digits = 4) ##' ranef(fm3, drop = TRUE) ##' options(op) ##' @keywords models methods ##' @method ranef merMod ##' @export ranef.merMod <- function(object, condVar = TRUE, drop = FALSE, whichel = names(ans), postVar = FALSE, ...) { if (length(L <- list(...))>0) { warning(paste("additional arguments to ranef.merMod ignored:", paste(names(L),collapse=", "))) } if (!missing(postVar) && missing(condVar)) { warning(sQuote("postVar")," is deprecated: please use ", sQuote("condVar")," instead") condVar <- postVar } ans <- object@pp$b(1) ## not always == c(matrix(unlist(getME(object,"b")))) if (!is.null(fl <- object@flist)) { ## evaluate the list of matrices levs <- lapply(fl, levels) asgn <- attr(fl, "assign") cnms <- object@cnms nc <- lengths(cnms) ## number of terms ## nb <- nc * lengths(levs)[asgn] ## number of cond modes per term nb <- diff(object@Gp) ## differencing group index is more robust nbseq <- rep.int(seq_along(nb), nb) ml <- split(ans, nbseq) for (i in seq_along(ml)) ml[[i]] <- matrix(ml[[i]], ncol = nc[i], byrow = TRUE, dimnames = list(NULL, cnms[[i]])) ## create a list of data frames corresponding to factors ans <- lapply(seq_along(fl), function(i) { m <- ml[asgn == i] b2 <- vapply(m,nrow,numeric(1)) ub2 <- unique(b2) if (length(ub2)>1) stop("differing numbers of b per group") ## if number of sets of modes != number of levels (e.g. Gaussian process/phyloglmm), ## generate numeric sequence for names rnms <- if (ub2==length(levs[[i]])) levs[[i]] else seq(ub2) data.frame(do.call(cbind, m), row.names = rnms, check.names = FALSE) }) names(ans) <- names(fl) # process whichel stopifnot(is(whichel, "character")) whchL <- names(ans) %in% whichel ans <- ans[whchL] if (condVar) { sigsqr <- sigma(object)^2 rp <- rePos$new(object) if(any(lengths(rp$terms) > 1L)) { ## use R machinery here ... vv <- arrange.condVar(object,condVar(object, scaled=TRUE)) } else { vv <- .Call(merPredDcondVar, object@pp$ptr(), as.environment(rp)) vv <- lapply(vv, "*", sigsqr) } for (i in names(ans)) { attr(ans[[i]], "postVar") <- vv[[i]] } } if (drop) ans <- lapply(ans, function(el) { if (ncol(el) > 1) return(el) pv <- drop(attr(el, "postVar")) el <- drop(as.matrix(el)) if (!is.null(pv)) attr(el, "postVar") <- pv el }) class(ans) <- "ranef.mer" } ans }## ranef.merMod print.ranef.mer <- function(x, ...) { print(unclass(x), ...) if(any(has.pv <- vapply(x, function(el) !is.null(attr(el, "postVar")), NA))) cat('with conditional variances for', paste(dQuote(names(x)[has.pv]), sep=", "), "\n") invisible(x) } ## try to redo refit by calling modular structure ... refit2.merMod <- function(object, newresp=NULL) { ## the idea is to steal as much structure as we can from the ## previous fit, including ## * starting parameter values ## * random-effects structure ## * fixed-effects structure ## * model frame ## and jump into the modular structure at an appropriate place; ## essentially, this should merge with a smart-as-possible ## version of 'update' ... } ## FIXME DRY: much of copy'n'paste from lmer() etc .. ==> become more modular (?) refit.merMod <- function(object, newresp = NULL, newweights = NULL, ## formula=NULL, weights=NULL, rename.response = FALSE, maxit = 100L, ...) { l... <- list(...) ctrl.arg <- NULL if("control" %in% names(l...)) ctrl.arg <- l...$control if(!all(names(l...) %in% c("control", "verbose"))) { warning("additional arguments to refit.merMod ignored") } ## TODO: not clear whether we should reset the names ## to the new response variable. Maybe not. ## retrieve name before it gets mangled by operations on newresp newrespSub <- substitute(newresp) ## for backward compatibility/functioning of refit(fit,simulate(fit)) if (is.list(newresp)) { if (length(newresp)==1) { na.action <- attr(newresp,"na.action") newresp <- newresp[[1]] attr(newresp,"na.action") <- na.action } else { stop("refit not implemented for 'newresp' lists of length > 1: ", "consider ", sQuote("lapply(object,refit)")) } } ## oldresp <- object@resp$y # need to set this before deep copy, ## # otherwise it gets reset with the call ## # to setResp below ## somewhat repeated from profile.merMod, but sufficiently ## different that refactoring is slightly non-trivial ## "three minutes' thought would suffice ..." control <- if (!is.null(ctrl.arg)) { if (length(ctrl.arg$optCtrl) == 0) { ## use object's version: obj.control <- object@optinfo$control ignore.pars <- c("xst", "xt") if (any(ign <- names(obj.control) %in% ignore.pars)) obj.control <- obj.control[!ign] ctrl.arg$optCtrl <- obj.control } ctrl.arg } else if (isGLMM(object)) glmerControl() else lmerControl() if (object@optinfo$optimizer == "optimx") { control$optCtrl <- object@optinfo$control } ## we need this stuff defined before we call .glmerLaplace below ... pp <- object@pp$copy() dc <- object@devcomp nAGQ <- dc$dims["nAGQ"] # possibly NA nth <- dc$dims[["nth"]] verbose <- l...$verbose; if (is.null(verbose)) verbose <- 0L if (!is.null(newresp)) { ## update call and model frame with new response rcol <- attr(attr(model.frame(object), "terms"), "response") if (rename.response) { attr(object@frame,"formula")[[2]] <- object@call$formula[[2]] <- newrespSub names(object@frame)[rcol] <- deparse(newrespSub) } if (!is.null(na.act <- attr(object@frame,"na.action")) && is.null(attr(newresp,"na.action"))) { ## will only get here if na.action is 'na.omit' or 'na.exclude' ## *and* newresp does not have an 'na.action' attribute ## indicating that NAs have already been filtered newresp <- if (is.matrix(newresp)) newresp[-na.act, ] else newresp[-na.act] } object@frame[[rcol]] <- newresp } if (!is.null(newweights)) { ## DRY ... if (!is.null(na.act <- attr(object@frame,"na.action")) && is.null(attr(newweights, "na.action"))) { newweights <- newweights[-na.act] } object@frame[["(weights)"]] <- newweights oc <- attr(attr(object@frame, "terms"), "dataClasses") attr(attr(object@frame, "terms"), "dataClasses") <- c(oc, `(weights)` = "numeric") object@call$weights <- substitute(newweights) ## try to make sure new weights are findable later assign(deparse(substitute(newweights)), newweights, environment(formula(object))) } rr <- if(isLMM(object)) mkRespMod(model.frame(object), REML = object@resp$REML) else if(isGLMM(object)) { mkRespMod(model.frame(object), family = family(object)) } else stop("refit.merMod not working for nonlinear mixed models.\n", "try update.merMod instead.") if(!is.null(newresp)) { if(family(object)$family == "binomial") { ## re-do conversion of two-column matrix and factor ## responses to proportion/weights format if (is.matrix(newresp) && ncol(newresp) == 2) { ntot <- rowSums(newresp) ## FIXME: test what happens for (0,0) rows newresp <- newresp[,1]/ntot rr$setWeights(ntot) } if (is.factor(newresp)) { ## FIXME: would be better to do this consistently with ## whatever machinery is used in glm/glm.fit/glmer ?? newresp <- as.numeric(newresp)-1 } } ## if (isGLMM(object) && rr$family$family=="binomial") { ## } stopifnot(length(newresp <- as.numeric(as.vector(newresp))) == length(rr$y)) } if (isGLMM(object)) { GQmat <- GHrule(nAGQ) if (nAGQ <= 1) { glmerPwrssUpdate(pp,rr, control$tolPwrss, GQmat, maxit=maxit) } else { glmerPwrssUpdate(pp,rr, control$tolPwrss, GQmat, maxit=maxit, grpFac = object@flist[[1]]) } } devlist <- if (isGLMM(object)) { baseOffset <- forceCopy(object@resp$offset) list(tolPwrss= dc$cmp [["tolPwrss"]], compDev = dc$dims[["compDev"]], nAGQ = unname(nAGQ), lp0 = pp$linPred(1), ## object@resp$eta - baseOffset, baseOffset = baseOffset, pwrssUpdate = glmerPwrssUpdate, ## save GQmat in the object and use that instead of nAGQ GQmat = GHrule(nAGQ), fac = object@flist[[1]], pp=pp, resp=rr, u0=pp$u0, verbose=verbose, dpars=seq_len(nth)) } else list(pp=pp, resp=rr, u0=pp$u0, verbose=verbose, dpars=seq_len(nth)) ff <- mkdevfun(list2env(devlist), nAGQ=nAGQ, maxit=maxit, verbose=verbose) ## rho <- environment(ff) == list2env(devlist) xst <- rep.int(0.1, nth) x0 <- pp$theta lower <- object@lower if (!is.na(nAGQ) && nAGQ > 0L) { xst <- c(xst, sqrt(diag(pp$unsc()))) x0 <- c(x0, unname(fixef(object))) lower <- c(lower, rep(-Inf,length(x0)-length(lower))) } ## control <- c(control,list(xst=0.2*xst, xt=xst*0.0001)) ## FIX ME: allow use.last.params to be passed through calc.derivs <- !is.null(object@optinfo$derivs) ## if(isGLMM(object)) { ## rho$resp$updateWts() ## rho$pp$updateDecomp() ## rho$lp0 <- rho$pp$linPred(1) ## } optimizer <- object@optinfo$optimizer if (!is.null(newopt <- ctrl.arg$optimizer)) { ## we might end up with a length-2 optimizer vector ... ## use the *last* element optimizer <- newopt[length(newopt)] } opt <- optwrap(optimizer, ff, x0, lower=lower, control=control$optCtrl, calc.derivs=calc.derivs) cc <- checkConv(attr(opt,"derivs"),opt$par, ## FIXME: was there a reason that ctrl was passed ## via the call slot? it was causing problems ## when optTheta called refit (github issue #173) # ctrl = eval(object@call$control)$checkConv, ctrl = control$checkConv, lbound=lower) if (isGLMM(object)) rr$setOffset(baseOffset) mkMerMod(environment(ff), opt, list(flist=object@flist, cnms=object@cnms, Gp=object@Gp, lower=object@lower), object@frame, getCall(object), cc) } refitML.merMod <- function (x, optimizer="bobyqa", ...) { ## FIXME: optimizer is set to 'bobyqa' for back-compatibility, but that's not ## consistent with lmer (default NM). Should be based on internally stored 'optimizer' value if (!isREML(x)) return(x) stopifnot(is(rr <- x@resp, "lmerResp")) rho <- new.env(parent=parent.env(environment())) rho$resp <- new(class(rr), y=rr$y, offset=rr$offset, weights=rr$weights, REML=0L) xpp <- x@pp$copy() rho$pp <- new(class(xpp), X=xpp$X, Zt=xpp$Zt, Lambdat=xpp$Lambdat, Lind=xpp$Lind, theta=xpp$theta, n=nrow(xpp$X)) devfun <- mkdevfun(rho, 0L) # FIXME? also pass {verbose, maxit, control} opt <- ## "smart" calc.derivs rules if(optimizer == "bobyqa" && !any("calc.derivs" == ...names())) optwrap(optimizer, devfun, x@theta, lower=x@lower, calc.derivs=TRUE, ...) else optwrap(optimizer, devfun, x@theta, lower=x@lower, ...) ## FIXME: Should be able to call mkMerMod() here, and be done n <- length(rr$y) pp <- rho$pp p <- ncol(pp$X) dims <- c(N=n, n=n, p=p, nmp=n-p, q=nrow(pp$Zt), nth=length(pp$theta), useSc=1L, reTrms=length(x@cnms), spFe=0L, REML=0L, GLMM=0L, NLMM=0L)#, nAGQ=NA_integer_) wrss <- rho$resp$wrss() ussq <- pp$sqrL(1) pwrss <- wrss + ussq cmp <- c(ldL2=pp$ldL2(), ldRX2=pp$ldRX2(), wrss=wrss, ussq=ussq, pwrss=pwrss, drsum=NA, dev=opt$fval, REML=NA, sigmaML=sqrt(pwrss/n), sigmaREML=sqrt(pwrss/(n-p))) ## modify the call to have REML=FALSE. (without evaluating the call!) cl <- x@call cl[["REML"]] <- FALSE new("lmerMod", call = cl, frame=x@frame, flist=x@flist, cnms=x@cnms, theta=pp$theta, beta=pp$delb, u=pp$delu, optinfo = .optinfo(opt), lower=x@lower, devcomp=list(cmp=cmp, dims=dims), pp=pp, resp=rho$resp, Gp=x@Gp) } ##' residuals of merMod objects --> ../man/residuals.merMod.Rd ##' @param object a fitted [g]lmer (\code{merMod}) object ##' @param type type of residuals ##' @param scaled scale residuals by residual standard deviation (=scale parameter)? ##' @param \dots additional arguments (ignored: for method compatibility) residuals.merMod <- function(object, type = if(isGLMM(object)) "deviance" else "response", scaled = FALSE, ...) { r <- residuals(object@resp, type,...) fr <- model.frame(object) if (is.null(nm <- rownames(fr))) nm <- seq_along(r) names(r) <- nm if (scaled) r <- r/sigma(object) if (!is.null(na.action <- attr(fr, "na.action"))) naresid(na.action, r) else r } ##' @rdname residuals.merMod ##' @S3method residuals lmResp ##' @method residuals lmResp residuals.lmResp <- function(object, type = c("working", "response", "deviance", "pearson", "partial"), ...) { y <- object$y r <- object$wtres mu <- object$mu switch(match.arg(type), working =, response = y-mu, deviance =, pearson = r, partial = stop(gettextf("partial residuals are not implemented yet"), call. = FALSE) ) } ##' @rdname residuals.merMod ##' @S3method residuals glmResp ##' @method residuals glmResp residuals.glmResp <- function(object, type = c("deviance", "pearson", "working", "response", "partial"), ...) { type <- match.arg(type) y <- object$y mu <- object$mu switch(type, deviance = { ## protect against slightly negative resids ## (GH 812) d.res <- sqrt(pmax(0,object$devResid())) ifelse(y > mu, d.res, -d.res) }, pearson = object$wtres, working = object$wrkResids(), response = y - mu, partial = stop(gettextf("partial residuals are not implemented yet"), call. = FALSE) ) } hatvalues.merMod <- function(model, fullHatMatrix = FALSE, ...) { if(isGLMM(model)) warning("the hat matrix may not make sense for GLMMs") ## FIXME: add restriction for NLMMs? ## prior weights, W ^ {1/2} : sqrtW <- Diagonal(x = sqrt(weights(model, type = "prior"))) vList <- getME(model, c("L", "Lambdat", "Zt", "RX", "X", "RZX")) ## CL:= right factor of the random-effects component of the hat matrix (64) CL <- with(vList, solve(L, solve(L, Lambdat %*% Zt %*% sqrtW, system = "P"), system = "L")) ## restore dimnames (needed since Matrix 1.5.2) dimnames(CL) <- dimnames(vList$Zt) ## CR:= right factor of the fixed-effects component of the hat matrix (65) ## {MM (FIXME Matrix): t(.) %*% here faster than crossprod()} CR <- with(vList, solve(t(RX), ## colScale(t(X), sqrtW) - crossprod(RZX, CL) t(X) %*% sqrtW - crossprod(RZX, CL)) ) res <- if(fullHatMatrix) { ## H = (C_L^T C_L + C_R^T C_R) (63) crossprod(CL) + crossprod(CR) } else { ## diagonal of the hat matrix, diag(H) : colSums(CR^2) + colSums(CL^2) } napredict(attr(model.frame(model),"na.action"), res) } ###----- Printing etc ---------------------------- ## lme4.0, for GLMM had ## 'Generalized linear mixed model fit by the Laplace approximation' ## 'Generalized linear mixed model fit by the adaptive Gaussian Hermite approximation' ## so did *not* mention "maximum likelihood" at all in the GLMM case methTitle <- function(dims) { # dims == object@devcomp$dims GLMM <- dims[["GLMM"]] kind <- switch(1L + GLMM * 2L + dims[["NLMM"]], "Linear", "Nonlinear", "Generalized linear", "Generalized nonlinear") paste(kind, "mixed model fit by", if(dims[["REML"]]) "REML" else paste("maximum likelihood", if(GLMM) { ## TODO? Use shorter wording here, for (new) 'long = FALSE' argument if((nAGQ <- dims[["nAGQ"]]) == 1) "(Laplace Approximation)" else sprintf("(Adaptive Gauss-Hermite Quadrature, nAGQ = %d)", nAGQ) })) } cat.f <- function(...) cat(..., fill = TRUE) famlink <- function(object, resp = object@resp) { if(is(resp, "glmResp")) resp$family[c("family", "link")] else list(family = NULL, link = NULL) } ##' @title print method title ##' @param mtit the result of methTitle(obj) ##' @param class typically class(obj) .prt.methTit <- function(mtit, class) { if(nchar(mtit) + 5 + nchar(class) > (w <- getOption("width"))) { ## wrap around mtit <- strwrap(mtit, width = w - 2, exdent = 2) cat(mtit, " [",class,"]", sep = "", fill = TRUE) } else ## previous: simple one-liner cat(sprintf("%s ['%s']\n", mtit, class)) } .prt.family <- function(famL) { if (!is.null(f <- famL$family)) { cat.f(" Family:", f, if(!is.null(ll <- famL$link)) paste(" (", ll, ")")) } } .prt.resids <- function(resids, digits, title = "Scaled residuals:", ...) { cat(title,"\n") ## FIXME: need testing code rq <- setNames(zapsmall(quantile(resids, na.rm=TRUE), digits + 1L), c("Min", "1Q", "Median", "3Q", "Max")) print(rq, digits = digits, ...) cat("\n") } .prt.call <- function(call, long = TRUE) { if (!is.null(cc <- call$formula)) cat.f("Formula:", deparse(cc)) if (!is.null(cc <- call$data)) cat.f(" Data:", deparse(cc)) if (!is.null(cc <- call$weights)) cat.f("Weights:", deparse(cc)) if (!is.null(cc <- call$offset)) cat.f(" Offset:", deparse(cc)) if (long && length(cc <- call$control) && !identical((dc <- deparse(cc)), "lmerControl()")) ## && !identical(eval(cc), lmerControl())) cat.f("Control:", dc) if (!is.null(cc <- call$subset)) cat.f(" Subset:", deparse(cc)) } ##' @title Extract Log Likelihood, AIC, and related statics from a Fitted LMM ##' @param object a LMM model fit ##' @param devianceFUN the function to be used for computing the deviance; should not be changed for \pkg{lme4} created objects. ##' @param chkREML optional logical indicating \code{object} maybe a REML fit. ##' @param devcomp ##' @return a list with components \item{logLik} and \code{AICtab} where the first is \code{\link{logLik(object)}} and \code{AICtab} is a "table" of AIC, BIC, logLik, deviance, df.residual() values. llikAIC <- function(object, devianceFUN = devCrit, chkREML = TRUE, devcomp = object@devcomp) { llik <- logLik(object) # returns NA for a REML fit - maybe change? AICstats <- { if(chkREML && devcomp$dims[["REML"]]) devcomp$cmp["REML"] # *no* likelihood stats here else { c(AIC = AIC(llik), BIC = BIC(llik), logLik = c(llik), `-2*log(L)` = devianceFUN(object), df.resid = df.residual(object)) } } list(logLik = llik, AICtab = AICstats) } .prt.aictab <- function(aictab, digits = 1) { t.4 <- round(aictab, digits) if (length(aictab) == 1 && names(aictab) == "REML") cat.f("REML criterion at convergence:", t.4) else { ## slight hack to get residual df formatted as an integer t.4F <- format(t.4) t.4F["df.resid"] <- format(t.4["df.resid"]) print(t.4F, quote = FALSE) } } .prt.VC <- function(varcor, digits, comp = "Std.Dev.", corr = any(comp == "Std.Dev."), formatter = format, ...) { # '...' *only* passed to print() cat("Random effects:\n") fVC <- formatVC(varcor, digits=digits, formatter=formatter, comp=comp, corr=corr) print(fVC, quote = FALSE, digits = digits, ...) } .prt.grps <- function(ngrps, nobs) { cat(sprintf("Number of obs: %d, groups: ", nobs), paste(paste(names(ngrps), ngrps, sep = ", "), collapse = "; "), fill = TRUE) } ## FIXME: print header ("Warnings:\n") ? ## change position in output? comes at the very end, could get lost ... .prt.warn <- function(optinfo, summary=FALSE, ...) { if(length(optinfo) == 0) return() # currently, e.g., from refitML() ## check all warning slots: print numbers of warnings (if any) cc <- optinfo$conv$opt msgs <- unlist(optinfo$conv$lme4$messages) ## can't put nmsgs/nwarnings compactly into || expression ## because of short-circuiting nmsgs <- length(msgs) warnings <- optinfo$warnings nwarnings <- length(warnings) if (cc > 0 || nmsgs > 0 || nwarnings > 0) { m <- if (cc==0) { "(OK)" } else if (!is.null(optinfo$message)) { sprintf("(%s)",optinfo$message) } else "" convmsg <- sprintf("optimizer (%s) convergence code: %d %s", optinfo$optimizer, cc, m) if (summary) { cat(convmsg,sprintf("; %d optimizer warnings; %d lme4 warnings", nwarnings,nmsgs),"\n") } else { cat(convmsg, msgs, unlist(warnings), sep="\n") cat("\n") } } } ## options(lme4.summary.cor.max = 20) --> ./hooks.R ## ~~~~~~~~ ## was .summary.cor.max <- 20 a lme4-namespace hidden global variable ## This is modeled a bit after print.summary.lm : ## Prints *both* 'mer' and 'merenv' - as it uses summary(x) mainly ##' @S3method print summary.merMod print.summary.merMod <- function(x, digits = max(3, getOption("digits") - 3), correlation = NULL, symbolic.cor = FALSE, signif.stars = getOption("show.signif.stars"), ranef.comp = c("Variance", "Std.Dev."), ranef.corr = any(ranef.comp == "Std.Dev."), show.resids = TRUE, ...) { .prt.methTit(x$methTitle, x$objClass) .prt.family(x) .prt.call(x$call); cat("\n") .prt.aictab(x$AICtab); cat("\n") if (show.resids) ## need residuals.merMod() rather than residuals(): ## summary.merMod has no residuals method .prt.resids(x$residuals, digits = digits) .prt.VC(x$varcor, digits = digits, useScale = x$useScale, comp = ranef.comp, corr = ranef.corr, ...) .prt.grps(x$ngrps, nobs = x$devcomp$dims[["n"]]) p <- nrow(x$coefficients) if (p > 0) { cat("\nFixed effects:\n") printCoefmat(x$coefficients, # too radical: zap.ind = 3, #, tst.ind = 4 digits = digits, signif.stars = signif.stars) ## do not show correlation when summary(*, correlation=FALSE) was used: hasCor <- !is.null(VC <- x$vcov) && !is.null(VC@factors$correlation) ## FIXME: don't understand the logic here. We can easily ## defend against the problem of missing pre-computed correlation ## function by reconstituting it if necessary ## (e.g. if using merDeriv::vcov.lmerMod), as in commented code below. ## However, we currently have a test (using fit_agridat_archbold, ## see test-methods.R) that fails if we 'fix' this problem ... ## ## if (hasCor && is.null(VC@factors$correlation)) { ## ## defend against merDeriv definition of vcov.lmerMod; reconstruct ## cc <- cov2cor(VC) ## dimnames(cc) <- dimnames(VC) ## Matrix 1.5.2 bug ## VC@factors <- c(VC@factors, list(correlation = cc)) ## } if(is.null(correlation)) { # default cor.max <- getOption("lme4.summary.cor.max") correlation <- hasCor && (isTRUE(x$corrSet) || p <= cor.max) if(!correlation && p > cor.max && is.na(x$corrSet)) { nam <- deparse(substitute(x)) if(length(nam) > 1 || nchar(nam) >= 32) nam <- "...." message(sprintf(paste( "\nCorrelation matrix not shown by default, as p = %d > %d.", "Use print(%s, correlation=TRUE) or", " vcov(%s) if you need it\n", sep = "\n"), p, cor.max, nam, nam)) } } else if(!is.logical(correlation)) stop("'correlation' must be NULL or logical") if(correlation) { if(is.null(VC)) VC <- vcov(x, correlation = TRUE) corF <- VC@factors$correlation if (is.null(corF)) { # can this still happen? message("\nCorrelation of fixed effects could have been required in summary()") corF <- cov2cor(VC) } p <- ncol(corF) if (p > 1) { rn <- rownames(x$coefficients) rns <- abbreviate(rn, minlength = 11) cat("\nCorrelation of Fixed Effects:\n") if (is.logical(symbolic.cor) && symbolic.cor) { corf <- as(corF, "matrix") dimnames(corf) <- list(rns, abbreviate(rn, minlength = 1, strict = TRUE)) print(symnum(corf)) } else { corf <- matrix(format(round(corF@x, 3), nsmall = 3), ncol = p, dimnames = list(rns, abbreviate(rn, minlength = 6))) corf[!lower.tri(corf)] <- "" print(corf[-1, -p, drop = FALSE], quote = FALSE) } ## !symbolic.cor } ## if (p > 1) } ## if (correlation) } ## if (p>0) if(length(x$fitMsgs) && any(nchar(x$fitMsgs) > 0)) { cat("fit warnings:\n"); writeLines(x$fitMsgs) } .prt.warn(x$optinfo,summary=FALSE) invisible(x) }## print.summary.merMod ##' @S3method print merMod print.merMod <- function(x, digits = max(3, getOption("digits") - 3), correlation = NULL, symbolic.cor = FALSE, signif.stars = getOption("show.signif.stars"), ranef.comp = "Std.Dev.", ranef.corr = any(ranef.comp == "Std.Dev."), ...) { dims <- x@devcomp$dims .prt.methTit(methTitle(dims), class(x)) .prt.family(famlink(x, resp = x@resp)) .prt.call(x@call, long = FALSE) ## useScale <- as.logical(dims[["useSc"]]) llAIC <- llikAIC(x) .prt.aictab(llAIC$AICtab, 4) varcor <- VarCorr(x) .prt.VC(varcor, digits = digits, comp = ranef.comp, corr = ranef.corr, ...) ngrps <- vapply(x@flist, nlevels, 0L) .prt.grps(ngrps, nobs = dims[["n"]]) if(length(cf <- fixef(x)) > 0) { cat("Fixed Effects:\n") print.default(format(cf, digits = digits), print.gap = 2L, quote = FALSE, ...) } else cat("No fixed effect coefficients\n") fitMsgs <- .merMod.msgs(x) if(any(nchar(fitMsgs) > 0)) { cat("fit warnings:\n"); writeLines(fitMsgs) } .prt.warn(x@optinfo,summary=TRUE) invisible(x) } ##' @exportMethod show setMethod("show", "merMod", function(object) print.merMod(object)) ##' Return the deviance component list devcomp <- function(x) { .Deprecated("getME(., \"devcomp\")") stopifnot(is(x, "merMod")) x@devcomp } ##' @exportMethod getL setMethod("getL", "merMod", function(x) { .Deprecated("getME(., \"L\")") getME(x, "L") }) ##' used by tnames mkPfun <- function(diag.only = FALSE, old = TRUE, prefix = NULL){ local({ function(g,e) { mm <- outer(e,e,paste,sep = ".") if(old) { diag(mm) <- e } else { mm[] <- paste(mm,g,sep = "|") if (!is.null(prefix)) mm[] <- paste(prefix[2],mm,sep = "_") diag(mm) <- paste(e,g,sep = "|") if (!is.null(prefix)) diag(mm) <- paste(prefix[1],diag(mm),sep = "_") } mm <- if (diag.only) diag(mm) else mm[lower.tri(mm,diag = TRUE)] if(old) paste(g,mm,sep = ".") else mm } }) } ##' Construct names of individual theta/sd:cor components ##' ##' @param object a fitted model ##' @param diag.only include only diagonal elements? ##' @param old (logical) give backward-compatible results? ##' @param prefix a character vector with two elements giving the prefix ##' for diagonal (e.g. "sd") and off-diagonal (e.g. "cor") elements tnames <- function(object, diag.only = FALSE, old = TRUE, prefix = NULL) { pfun <- mkPfun(diag.only=diag.only, old=old, prefix=prefix) c(unlist(mapply(pfun, names(object@cnms), object@cnms))) } ## -> ../man/getME.Rd getME <- function(object, name, ...) UseMethod("getME") ##' Extract or Get Generalized Components from a Fitted Mixed Effects Model getME.merMod <- function(object, name = c("X", "Z","Zt", "Ztlist", "mmList", "y", "mu", "u", "b", "Gp", "Tp", "L", "Lambda", "Lambdat", "Lind", "Tlist", "A", "RX", "RZX", "sigma", "flist", "fixef", "beta", "theta", "ST", "REML", "is_REML", "n_rtrms", "n_rfacs", "N", "n", "p", "q", "p_i", "l_i", "q_i", "k", "m_i", "m", "cnms", "devcomp", "offset", "lower", "devfun", "glmer.nb.theta" ), ...) { if(missing(name)) stop("'name' must not be missing") ## Deal with multiple names -- "FIXME" is inefficiently redoing things if (length(name <- as.character(name)) > 1) { names(name) <- name return(lapply(name, getME, object = object)) } if(name == "ALL") ## recursively get all provided components return(sapply(eval(formals()$name), getME.merMod, object=object, simplify=FALSE)) stopifnot(is(object,"merMod")) name <- match.arg(name) rsp <- object@resp PR <- object@pp dc <- object@devcomp th <- object@theta cnms <- object@cnms dims <- dc $ dims Tpfun <- function(cnms) { ltsize <- function(n) n*(n+1)/2 # lower triangle size cLen <- cumsum(ltsize(lengths(cnms))) setNames(c(0, cLen), c("beg__", names(cnms))) ## such that diff( Tp ) is well-named } ## mmList. <- mmList(object) if(any(name == c("p_i", "q_i", "m_i"))) p_i <- vapply(mmList(object), ncol, 1L) if(any(name == c("l_i", "q_i"))) l_i <- vapply(object@flist, nlevels, 1L) switch(name, "X" = PR$X, ## ok ? - check -- use model.matrix() method instead? "Z" = t(PR$Zt), "Zt" = PR$Zt, "Ztlist" = { getInds <- function(i) { n <- diff(object@Gp)[i] ## number of elements in this block nt <- length(cnms[[i]]) ## number of REs inds <- lapply(seq(nt), seq, to = n, by = nt) ## pull out individual RE indices inds <- lapply(inds,function(x) x + object@Gp[i]) ## add group offset } inds <- do.call(c,lapply(seq_along(cnms),getInds)) setNames(lapply(inds,function(i) PR$Zt[i,]), tnames(object,diag.only = TRUE)) }, "mmList" = mmList.merMod(object), "y" = rsp$y, "mu" = rsp$mu, "u" = object@u, "b" = crossprod(PR$Lambdat, object@u), # == Lambda %*% u "L" = PR$ L(), "Lambda" = t(PR$ Lambdat), "Lambdat" = PR$ Lambdat, "A" = PR$Lambdat %*% PR$Zt, "Lind" = PR$ Lind, "RX" = structure(PR$RX(), dimnames = list(colnames(PR$X), colnames(PR$X))), ## maybe add names elsewhere? "RZX" = structure(PR$RZX, dimnames = list(NULL, colnames(PR$X))), ## maybe add names elsewhere? "sigma" = sigma(object), "Gp" = object@Gp, "Tp" = Tpfun(cnms), # "term-wise theta pointer" "flist" = object@flist, "fixef" = fixef(object), "beta" = object@beta, "theta" = setNames(th, tnames(object)), "ST" = setNames(vec2STlist(object@theta, n = lengths(cnms)), names(cnms)), "Tlist" = { nc <- lengths(cnms) # number of columns per term nt <- length(nc) # number of random-effects terms ans <- vector("list",nt) names(ans) <- names(nc) pos <- 0L for (i in 1:nt) { # will need modification for more general Lambda nci <- nc[i] tt <- matrix(0., nci, nci) inds <- lower.tri(tt, diag=TRUE) nthi <- sum(inds) tt[inds] <- th[pos + seq_len(nthi)] pos <- pos + nthi ans[[i]] <- tt } ans }, "REML" = dims[["REML"]], "is_REML" = isREML(object), ## number of random-effects terms "n_rtrms" = length(cnms), ## number of random-effects grouping factors "n_rfacs" = length(object@flist), "N" = dims[["N"]], "n" = dims[["n"]], "p" = dims[["p"]], "q" = dims[["q"]], "p_i" = p_i, "l_i" = l_i, "q_i" = p_i * l_i, "k" = length(cnms), "m_i" = choose(p_i + 1, 2), "m" = dims[["nth"]], "cnms" = cnms, "devcomp" = dc, "offset" = rsp$offset, "lower" = setNames(object@lower, tnames(object)), "devfun" = { verbose <- getCall(object)$verbose; if (is.null(verbose)) verbose <- 0L if (isGLMM(object)) { reTrms <- getME(object,c("Zt","theta","Lambdat","Lind","flist","cnms")) d1 <- mkGlmerDevfun(object@frame, getME(object,"X"), reTrms=reTrms, family(object), verbose=verbose) nAGQ <- object@devcomp$dims[["nAGQ"]] updateGlmerDevfun(d1, reTrms, nAGQ=nAGQ) } else { ## copied from refit ... DRY ... devlist <- list(pp=PR, resp=rsp, u0=PR$u0, dpars=seq_along(PR$theta), verbose=verbose) mkdevfun(rho=list2env(devlist), ## FIXME: fragile ... // also pass 'maxit' ? verbose=verbose, control=object@optinfo$control) } }, ## FIXME: current version gives lower bounds for theta parameters only: ## -- these must be extended for [GN]LMMs -- give extended value including -Inf values for beta values? "glmer.nb.theta" = if(isGLMM(object) && isNBfamily(rsp$family$family)) getNBdisp(object) else NA, "..foo.." = # placeholder! stop(gettextf("'%s' is not implemented yet", sprintf("getME(*, \"%s\")", name))), ## otherwise stop(sprintf("Mixed-Effects extraction of '%s' is not available for class \"%s\"", name, class(object)))) }## {getME} ##' @importMethodsFrom Matrix t %*% crossprod diag tcrossprod ##' @importClassesFrom Matrix dgCMatrix dpoMatrix corMatrix NULL ## Extract the conditional variance-covariance matrix of the fixed-effects ## parameters vcov.merMod <- function(object, correlation = TRUE, sigm = sigma(object), use.hessian = NULL, full = FALSE, noScale = NULL, ...) { ## FIXME: warn/message if GLMM (RX-computation is approximate), ## if other vars are specified? if (full) return(vcov_full(object, sigm)) hess.avail <- ## (1) numerical Hessian computed? (!is.null(h <- object@optinfo$derivs$Hessian) && ## (2) does Hessian include fixed-effect parameters? nrow(h) > (ntheta <- length(getME(object,"theta")))) if (is.null(use.hessian)) use.hessian <- hess.avail if (use.hessian && !hess.avail) stop(shQuote("use.hessian"), "=TRUE specified, ", "but Hessian is unavailable") calc.vcov.hess <- function(h) { ## invert 2*Hessian, catching errors and forcing symmetric result ## ~= forceSymmetric(solve(h/2)[i,i]) : solve(h/2) = 2*solve(h) h <- tryCatch(solve(h), error=function(e) matrix(NA,nrow=nrow(h),ncol=ncol(h))) i <- -seq_len(ntheta) ## drop var-cov parameters h <- h[i,i] forceSymmetric(h + t(h)) } ## alternately: calculate var-cov from implicit (RX) information ## provided by fit (always the case for lmerMods) V <- sigm^2 * object@pp$unsc() if (hess.avail) { V.hess <- calc.vcov.hess(h) bad.V.hess <- any(is.na(V.hess)) if (!bad.V.hess) { ## another 'bad var-cov' check: positive definite? e.hess <- eigen(V.hess,symmetric = TRUE,only.values = TRUE)$values if (min(e.hess) <= 0) bad.V.hess <- TRUE } } if (!use.hessian && hess.avail) { ## if hessian is available, go ahead and check ## for similarity with the RX-based estimate var.hess.tol <- 1e-4 # FIXME: should var.hess.tol be user controlled? if (!bad.V.hess && any(abs(V-V.hess) > var.hess.tol * V.hess)) warning("variance-covariance matrix computed ", "from finite-difference Hessian\nand ", "from RX differ by >",var.hess.tol,": ", "consider ",shQuote("use.hessian=TRUE")) } if (use.hessian) { if (!bad.V.hess) { V <- V.hess } else { warning("variance-covariance matrix computed ", "from finite-difference Hessian is\n", "not positive definite or contains NA values: falling back to ", "var-cov estimated from RX") } } ## FIXME: try to catch non-PD matrices rr <- tryCatch(as(V, "dpoMatrix"), error = function(e)e) if (inherits(rr, "error")) { warning(gettextf("Computed variance-covariance matrix problem: %s;\nreturning NA matrix", rr$message), domain = NA) rr <- matrix(NA,nrow(V),ncol(V)) } nmsX <- colnames(object@pp$X) dimnames(rr) <- list(nmsX,nmsX) if(correlation) rr@factors$correlation <- if(!is.na(sigm)) as(rr, "corMatrix") else rr # (is NA anyway) ## If auto-scaling is enabled if(is.null(noScale) || (!is.null(noScale) && !noScale)){ if (!is.null(sc <- attr(object@pp$X, "scaled:scale"))) { ce <- attr(object@pp$X, "scaled:center") rr <- scale_vcov(rr, sc, ce) } } rr } vcov_full <- function(object, s = sigma(object)) { L <- getME(object, "L") RX <- getME(object, "RX") RZX <- getME(object, "RZX") Lambdat <- getME(object, "Lambdat") RXtinv <- solve(t(RX)) LinvLambdat <- solve(L, Lambdat, system = "L") Minv <- s * rbind( cbind(LinvLambdat, Matrix(0, nrow = nrow(L), ncol = ncol(RX))), cbind(-RXtinv %*% t(RZX) %*% LinvLambdat, RXtinv) ) Cmat <- crossprod(Minv) ## do we have machinery elsewhere for this (names for b-vector) ? ## should this be extracted into a utility f'n (e.g. for getME(., "b") ? fix_nms <- colnames(object@pp$X) rr <- ranef(object, condVar = FALSE) gnms <- function(x) c(outer(colnames(x), rownames(x), function(x,y) paste(y, x, sep = "."))) rnms <- lapply(rr, gnms) re_nms <- unlist(Map(function(n, r) paste(n, r, sep = "."), names(rr), rnms)) all_nms <- unname(c(re_nms, fix_nms)) dimnames(Cmat) <- list(all_nms, all_nms) return(Cmat) } ##' @importFrom stats vcov ##' @S3method vcov summary.merMod vcov.summary.merMod <- function(object, ...) { if(is.null(object$vcov)) stop("logic error in summary of merMod object") object$vcov } ##' Make variance and correlation matrices from \code{theta} ##' ##' @param sc scale factor (residual standard deviation) ##' @param cnms component names ##' @param nc numeric vector: number of terms in each RE component ##' @param theta theta vector (lower-triangle of Cholesky factors) ##' @param nms component names (FIXME: nms/cnms redundant: nms=names(cnms)?) ##' @seealso \code{\link{VarCorr}} ##' @return A matrix ##' @export mkVarCorr <- function(sc, cnms, nc, theta, nms) { ncseq <- seq_along(nc) thl <- split(theta, rep.int(ncseq, (nc * (nc + 1))/2)) if(!all(nms == names(cnms))) ## the above FIXME warning("nms != names(cnms) -- whereas lme4-authors thought they were --\n", "Please report!", immediate. = TRUE) ans <- lapply(ncseq, function(i) { ## Li := \Lambda_i, the i-th block diagonal of \Lambda(\theta) Li <- diag(nrow = nc[i]) Li[lower.tri(Li, diag = TRUE)] <- thl[[i]] rownames(Li) <- cnms[[i]] ## val := \Sigma_i = \sigma^2 \Lambda_i \Lambda_i', the val <- tcrossprod(sc * Li) # variance-covariance stddev <- sqrt(diag(val)) corr <- t(val / stddev)/stddev diag(corr) <- 1 structure(val, stddev = stddev, correlation = corr) }) if(is.character(nms)) { ## FIXME: do we want this? Maybe not. ## Potential problem: the names of the elements of the VarCorr() list ## are not necessarily unique (e.g. fm2 from example("lmer") has *two* ## Subject terms, so the names are "Subject", "Subject". The print method ## for VarCorrs handles this just fine, but it's a little awkward if we ## want to dig out elements of the VarCorr list ... ??? if (anyDuplicated(nms)) nms <- make.names(nms, unique = TRUE) names(ans) <- nms } structure(ans, sc = sc) } ##' Extract variance and correlation components ##' VarCorr.merMod <- function(x, sigma = 1, ...) { ## TODO: now that we have '...', add type=c("varcov","sdcorr","logs" ? if (is.null(cnms <- x@cnms)) stop("VarCorr methods require reTrms, not just reModule") if(missing(sigma)) sigma <- sigma(x) nc <- lengths(cnms) # no. of columns per term structure(mkVarCorr(sigma, cnms = cnms, nc = nc, theta = x@theta, nms = { fl <- x@flist; names(fl)[attr(fl, "assign")]}), useSc = as.logical(x@devcomp$dims[["useSc"]]), class = "VarCorr.merMod") } if(FALSE)## *NOWHERE* used _FIXME_ ?? ## Compute standard errors of fixed effects from an merMod object ## ## @title Standard errors of fixed effects ## @param object "merMod" object, ## @param ... additional, optional arguments. None are used at present. ## @return numeric vector of length length(fixef(.)) unscaledVar <- function(object, ...) { stopifnot(is(object, "merMod")) sigma(object) * diag(object@pp$unsc()) } ##' @S3method print VarCorr.merMod print.VarCorr.merMod <- function(x, digits = max(3, getOption("digits") - 2), comp = "Std.Dev.", corr = any(comp == "Std.Dev."), formatter = format, ...) { print(formatVC(x, digits=digits, comp=comp, corr=corr, formatter=formatter), quote = FALSE, ...) invisible(x) } ##' "format()" the 'VarCorr' matrix of the random effects -- for ##' print()ing and show()ing ##' ##' @title Format the 'VarCorr' Matrix of Random Effects ##' @param varc a \code{\link{VarCorr}} (-like) matrix with attributes. ##' @param digits the number of significant digits. ##' @param comp character vector of length one or two indicating which ##' columns out of "Variance" and "Std.Dev." should be shown in the ##' formatted output. ##' @param formatter the \code{\link{function}} to be used for ##' formatting the standard deviations and or variances (but ##' \emph{not} the correlations which (currently) are always formatted ##' as "0.nnn" ##' @param ... optional arguments for \code{formatter(*)} in addition ##' to the first (numeric vector) and \code{digits}. ##' @return a character matrix of formatted VarCorr entries from \code{varc}. formatVC <- function(varcor, digits = max(3, getOption("digits") - 2), comp = "Std.Dev.", corr = any(comp == "Std.Dev."), formatter = format, useScale = attr(varcor, "useSc"), ...) { c.nms <- c("Groups", "Name", "Variance", "Std.Dev.") avail.c <- c.nms[-(1:2)] if(anyNA(mcc <- pmatch(comp, avail.c))) stop("Illegal 'comp': ", comp[is.na(mcc)]) nc <- length(colnms <- c(c.nms[1:2], (use.c <- avail.c[mcc]))) if(length(use.c) == 0) stop("Must show variances and/or standard deviations") reStdDev <- c(lapply(varcor, attr, "stddev"), if(useScale) list(Residual = unname(attr(varcor, "sc")))) reLens <- lengths(reStdDev) nr <- sum(reLens) reMat <- array('', c(nr, nc), list(rep.int('', nr), colnms)) reMat[1+cumsum(reLens)-reLens, "Groups"] <- names(reLens) reMat[,"Name"] <- c(unlist(lapply(varcor, colnames)), if(useScale) "") if(any("Variance" == use.c)) reMat[,"Variance"] <- formatter(unlist(reStdDev)^2, digits = digits, ...) if(any("Std.Dev." == use.c)) reMat[,"Std.Dev."] <- formatter(unlist(reStdDev), digits = digits, ...) if (any(reLens > 1L)) { ## append lower triangular matrix of correlations / covariances maxlen <- max(reLens) Lcomat <- if(corr) lapply(varcor, attr, "correlation") else # just the matrix, i.e. {dim,dimnames} lapply(varcor, identity) ## function(v) `attributes<-`(v, attributes(v)[c("dim","dimnames")]) co <- # corr or cov do.call(rbind, lapply(Lcomat, function(x) { x <- as.matrix(x) dig <- max(2, digits - 2) # use 'digits' ! ## not using formatter() for correlations cc <- format(round(x, dig), nsmall = dig) cc[!lower.tri(cc)] <- "" nr <- nrow(cc) if (nr >= maxlen) return(cc) cbind(cc, matrix("", nr, maxlen-nr)) }))[, -maxlen, drop = FALSE] if (nrow(co) < nrow(reMat)) co <- rbind(co, matrix("", nrow(reMat) - nrow(co), ncol(co))) colnames(co) <- c(if(corr) "Corr" else "Cov", rep.int("", max(0L, ncol(co)-1L))) cbind(reMat, co, deparse.level=0L) } else reMat } ##' @S3method summary merMod summary.merMod <- function(object, correlation = (p <= getOption("lme4.summary.cor.max")), use.hessian = NULL, ...) { if (...length() > 0) { ## FIXME: need testing code warning("additional arguments ignored") } ## se.calc: hess.avail <- (!is.null(h <- object@optinfo$derivs$Hessian) && nrow(h) > length(getME(object,"theta"))) if (is.null(use.hessian)) use.hessian <- hess.avail if (use.hessian && !hess.avail) stop("'use.hessian=TRUE' specified, but Hessian is unavailable") resp <- object@resp devC <- object@devcomp dd <- devC$dims ## cmp <- devC$cmp useSc <- as.logical(dd[["useSc"]]) sig <- sigma(object) ## REML <- isREML(object) famL <- famlink(resp = resp) p <- length(coefs <- fixef(object)) ## protect against merDeriv's vcov.glmerMod(), which only ## handles binomial and Poisson values if (is(object, "glmerMod") && !family(object)$family %in% c("binomial", "poisson")) { vcov <- vcov.merMod } vc <- vcov(object, use.hessian = use.hessian) stdError <- sqrt(diag(vc)) coefs <- cbind("Estimate" = coefs, "Std. Error" = stdError) if (p > 0) { coefs <- cbind(coefs, (cf3 <- coefs[,1]/coefs[,2]), deparse.level = 0) colnames(coefs)[3] <- paste(if(useSc) "t" else "z", "value") if (isGLMM(object)) # FIXME: if "t" above, cannot have "z" here coefs <- cbind(coefs, "Pr(>|z|)" = 2*pnorm(abs(cf3), lower.tail = FALSE)) } llAIC <- llikAIC(object) ## FIXME: You can't count on object@re@flist, ## nor compute VarCorr() unless is(re, "reTrms"): varcor <- VarCorr(object) # use S3 class for now structure(list(methTitle = methTitle(dd), objClass = class(object), devcomp = devC, isLmer = is(resp, "lmerResp"), useScale = useSc, logLik = llAIC[["logLik"]], family = famL$family, link = famL$link, ngrps = ngrps(object), coefficients = coefs, sigma = sig, ## explicitly call method to avoid getting m ## essed up by merDeriv's vcov method ## (which doesn't assign a VC attribute) vcov = vcov.merMod(object, correlation = correlation, sigm = sig), varcor = varcor, # and use formatVC(.) for printing. AICtab = llAIC[["AICtab"]], call = object@call, residuals = residuals(object,"pearson",scaled = TRUE), fitMsgs = .merMod.msgs(object), optinfo = object@optinfo, ## put corrSet **last** so we don't mess up people relying on numeric indexing ## of elements (!!) corrSet = if(!missing(correlation)) correlation else NA # TRUE/FALSE (when set) / NA ), class = "summary.merMod") } ## TODO: refactor? Why the hell do we need a summary method for summary.merMod? ##' @S3method summary summary.merMod summary.summary.merMod <- function(object, varcov = TRUE, ...) { if(varcov && is.null(object$vcov)) object$vcov <- vcov.merMod(object, correlation = TRUE, sigm = object$sigma) object } ##' @importFrom stats weights ##' @S3method weights merMod weights.merMod <- function(object, type = c("prior","working"), ...) { type <- match.arg(type) isPrior <- type == "prior" if(!isGLMM(object) && !isPrior) stop("working weights only available for GLMMs") res <- if(isPrior) object@resp$weights else object@pp$Xwts^2 ## the working weights available through pp$Xwts should be ## equivalent to: ## object@resp$weights*(object@resp$muEta()^2)/object@resp$variance() ## however, the unit tests in tests/glmmWeights.R suggest that this ## equivalence is approximate. this may be fine, however, if the ## discrepancy is due to another instance of the general problem of ## reference class fields not being updated at the optimum, then this ## could cause real problems. see for example: ## https://github.com/lme4/lme4/issues/166 ## FIXME: what to do about missing values (see stats:::weights.glm)? ## FIXME: add unit tests return(res) } ## utility function: x is a ranef.mer object, nx is the name of an element asDf0 <- function(x,nx,id=FALSE) { xt <- x[[nx]] ss <- stack(xt) ss$ind <- factor(as.character(ss$ind), levels = colnames(xt)) ss$.nn <- rep.int(reorder(factor(rownames(xt)), xt[[1]], FUN = mean,sort = sort), ncol(xt)) ## allow 'postVar' *or* 'condVar' names pv <- attr(xt,"postVar") if (is.null(pv)) { pv <- attr(xt,"condVar") } if (!is.null(pv)) { tmpfun <- function(pvi) { unlist(lapply(1:nrow(pvi), function(i) sqrt(pvi[i, i, ]))) } if (!is.list(pv)) { ss$se <- tmpfun(pv) } else { ## rely on ordering when unpacking! ss$se <- unlist(lapply(pv,tmpfun)) } } if (id) ss$id <- nx return(ss) } ## convert ranef object to a long-format data frame, e.g. suitable ## for ggplot2 (or homemade lattice plots) ## FIXME: have some gymnastics to do if terms, levels are different ## for different grouping variables - want to maintain ordering ## but still allow rbind()ing as.data.frame.ranef.mer <- function(x, ...) { xL <- lapply(names(x), asDf0, x=x, id=TRUE) ## combine xD <- do.call(rbind,xL) ## rename ... oldnames <- c("values", "ind", ".nn", "se", "id") newnames <- c("condval","term","grp", "condsd","grpvar") names(xD) <- newnames[match(names(xD),oldnames)] ## reorder ... neworder <- c("grpvar","term","grp","condval") if ("condsd" %in% names(xD)) neworder <- c(neworder,"condsd") xD[neworder] } dim.merMod <- function(x) { getME(x, c("n", "p", "q", "p_i", "l_i", "q_i", "k", "m_i", "m")) } ## Internal utility, only used in optwrap() : ##' @title Get the optimizer function and check it minimally ##' @param optimizer character string ( = function name) *or* function getOptfun <- function(optimizer) { if (((is.character(optimizer) && optimizer == "optimx") || deparse(substitute(optimizer)) == "optimx")) { if (!requireNamespace("optimx")) { stop(shQuote("optimx")," package must be installed order to ", "use ",shQuote('optimizer="optimx"')) } optfun <- optimx::optimx } else if (is.character(optimizer)) { optfun <- tryCatch(get(optimizer), error = function(e) NULL) } else optfun <- optimizer if (is.null(optfun)) stop("couldn't find optimizer function ",optimizer) if (!is.function(optfun)) stop("non-function specified as optimizer") needArgs <- c("fn","par","lower","control") if (anyNA(match(needArgs, names(formals(optfun))))) stop("optimizer function must use (at least) formal parameters ", paste(sQuote(needArgs), collapse = ", ")) optfun } optwrap <- function(optimizer, fn, par, lower = -Inf, upper = Inf, control = list(), adj = FALSE, calc.derivs = TRUE, force.calc.derivs = FALSE, use.last.params = FALSE, verbose = 0L) { ## calc.derivs may be passed as NULL by some upstream pkgs ... calc.derivs <- calc.derivs %||% TRUE ## control must be specified if adj==TRUE; ## otherwise this is a fairly simple wrapper optfun <- getOptfun(optimizer) optName <- if(is.character(optimizer)) optimizer else ## "good try": deparse(substitute(optimizer))[[1L]] lower <- rep_len(lower, length(par)) upper <- rep_len(upper, length(par)) if (adj) ## control parameter tweaks: only for second round in nlmer, glmer switch(optName, "bobyqa" = { if(!is.numeric(control$rhobeg)) control$rhobeg <- 0.0002 if(!is.numeric(control$rhoend)) control$rhoend <- 2e-7 }, "Nelder_Mead" = { if (is.null(control$xst)) { thetaStep <- 0.1 nTheta <- length(environment(fn)$pp$theta) betaSD <- sqrt(diag(environment(fn)$pp$unsc())) control$xst <- 0.2* c(rep.int(thetaStep, nTheta), pmin(betaSD, 10)) } if (is.null(control$xt)) control$xt <- control$xst*5e-4 }) switch(optName, "bobyqa" = { if(all(par == 0)) par[] <- 0.001 ## minor kludge if(!is.numeric(control$iprint)) control$iprint <- min(verbose, 3L) }, "Nelder_Mead" = control$verbose <- verbose, "nloptwrap" = control$print_level <- min(as.numeric(verbose),3L), ## otherwise: if(verbose) warning(gettextf( "'verbose' not yet passed to optimizer '%s'; consider fixing optwrap()", optName), domain = NA) ) arglist <- list(fn = fn, par = par, lower = lower, upper = upper, control = control) ## optimx: must pass method in control (?) because 'method' was previously ## used in lme4 to specify REML vs ML if (optName == "optimx") { if (is.null(method <- control$method)) stop("must specify 'method' explicitly for optimx") arglist$control$method <- NULL arglist <- c(arglist, list(method = method)) } ## FIXME: test! effects of multiple warnings?? ## may not need to catch warnings after all?? curWarnings <- list() opt <- withCallingHandlers(do.call(optfun, arglist), warning = function(w) { curWarnings <<- append(curWarnings,list(w$message)) }) ## cat("***",unlist(tail(curWarnings,1))) ## FIXME: set code to warn on convergence !=0 ## post-fit tweaking if (optName == "bobyqa") { opt$convergence <- opt$ierr } else if (optName == "Nelder_Mead") { ## fix-up: Nelder_Mead treats running out of iterations as "convergence" (!?) if (opt$NM.result==4) opt$convergence <- 4 } else if (optName == "optimx") { opt <- list(par = coef(opt)[1,], fvalues = opt$value[1], method = method, conv = opt$convcode[1], feval = opt$fevals + opt$gevals, message = attr(opt,"details")[,"message"][[1]]) } if ((optconv <- getConv(opt)) != 0) { wmsg <- paste("convergence code",optconv,"from",optName) if (!is.null(getMsg(opt))) wmsg <- paste0(wmsg,": ",getMsg(opt)) warning(wmsg) curWarnings <<- append(curWarnings,list(wmsg)) } ## pp_before <- environment(fn)$pp ## save(pp_before,file="pp_before.RData") singular <- any(opt$par[lower==0] < getSingTol()) if (force.calc.derivs || (calc.derivs && !singular)){ if (use.last.params) { ## +0 tricks R into doing a deep copy ... ## otherwise element of ref class changes! ## FIXME:: clunky!! orig_pars <- opt$par orig_theta <- environment(fn)$pp$theta+0 orig_pars[seq_along(orig_theta)] <- orig_theta } if (verbose > 10) cat("computing derivatives\n") derivs <- deriv12(fn, opt$par, fx = opt$value) if (use.last.params) { ## run one more evaluation of the function at the optimized ## value, to reset the internal/environment variables in devfun ... fn(orig_pars) } } else derivs <- NULL if (!use.last.params) { ## run one more evaluation of the function at the optimized ## value, to reset the internal/environment variables in devfun ... fn(opt$par) } structure(opt, ## store all auxiliary information optimizer = optimizer, control = control, warnings = curWarnings, derivs = derivs) } as.data.frame.VarCorr.merMod <- function(x,row.names = NULL, optional = FALSE, order = c("cov.last", "lower.tri"), ...) { order <- match.arg(order) tmpf <- function(v,grp) { vcov <- c(diag(v), v[lt.v <- lower.tri(v, diag = FALSE)]) sdcor <- c(attr(v,"stddev"), attr(v,"correlation")[lt.v]) nm <- rownames(v) n <- nrow(v) dd <- data.frame(grp = grp, var1 = nm[c(seq(n), col(v)[lt.v])], var2 = c(rep(NA,n), nm[row(v)[lt.v]]), vcov, sdcor, stringsAsFactors = FALSE) if (order=="lower.tri") { ## reorder *back* to lower.tri order m <- matrix(NA,n,n) diag(m) <- seq(n) m[lower.tri(m)] <- (n+1):(n*(n+1)/2) dd <- dd[m[lower.tri(m, diag=TRUE)],] } dd } r <- do.call(rbind, c(mapply(tmpf, x,names(x), SIMPLIFY = FALSE), deparse.level = 0)) if (attr(x,"useSc")) { ss <- attr(x,"sc") r <- rbind(r,data.frame(grp = "Residual",var1 = NA,var2 = NA, vcov = ss^2, sdcor = ss), deparse.level = 0) } rownames(r) <- NULL r } lme4/R/modular.R0000644000176200001440000011200615113136605013103 0ustar liggesusers#### --> ../man/modular.Rd #### ================== ### Small utilities to be used in lFormula() and glFormula() doCheck <- function(x) { is.character(x) && !any(x == "ignore") } RHSForm <- function(form,as.form=FALSE) { rhsf <- form[[length(form)]] if (as.form) reformulate(deparse(rhsf)) else rhsf } `RHSForm<-` <- function(formula,value) { formula[[length(formula)]] <- value formula } ##' Original formula, minus response ( = '~ ') : noLHSform <- function(formula) { if (length(formula)==2) formula else formula[-2] } ##' @param cstr name of control being set ##' @param val value of control being set checkCtrlLevels <- function(cstr, val, smallOK=FALSE) { bvals <- c("message","warning","stop","ignore") if (smallOK) bvals <- outer(bvals, c("","Small"), paste0) if (!is.null(val) && !val %in% bvals) stop("invalid control level ",sQuote(val)," in ",cstr,": valid options are {", paste(sapply(bvals,sQuote),collapse=","),"}") invisible(NULL) } ## general identifiability checker, used both in checkZdim and checkZrank wmsg <- function(n, cmp.val, allow.n, msg1="", msg2="", msg3="") { if (allow.n) { ## allow n == cmp.val unident <- n < cmp.val cmp <- "<" rstr <- "" } else { unident <- n <= cmp.val cmp <- "<=" rstr <- " and the residual variance (or scale parameter)" } ## %s without spaces intentional (don't want an extra space if the ## message component is empty) wstr <- sprintf("%s (=%d) %s %s (=%d)%s; the random-effects parameters%s are probably unidentifiable", msg1, n, cmp,msg2, cmp.val,msg3, rstr) list(unident=unident, wstr=wstr) } ##' For each r.e. term, test if Z has more columns than rows to detect ##' unidentifiability: ##' @title ##' @param Ztlist list of Zt matrices - one for each r.e. term ##' @param n no. observations ##' @param ctrl ##' @param allow.n allow as many random-effects as there are observations ##' for each term? ##' @return possibly empty character string with warning messages checkZdims <- function(Ztlist, n, ctrl, allow.n=FALSE) { stopifnot(is.list(Ztlist), is.numeric(n)) cstr <- "check.nobs.vs.nRE" checkCtrlLevels(cstr, cc <- ctrl[[cstr]]) term.names <- names(Ztlist) rows <- vapply(Ztlist, nrow, 1L) cols <- vapply(Ztlist, ncol, 1L) stopifnot(all(cols == n)) if (doCheck(cc)) { unique(unlist(lapply(seq_along(Ztlist), function(i) { ww <- wmsg(cols[i], rows[i], allow.n, "number of observations", "number of random effects", sprintf(" for term (%s)", term.names[i])) if(ww$unident) { switch(cc, "warning" = warning(ww$wstr, call.=FALSE), "stop" = stop (ww$wstr, call.=FALSE), stop(gettextf("unknown check level for '%s'", cstr), domain=NA)) ww$wstr } else character() }))) ## -> possibly empty vector of error messages } else character() } ##' @importFrom Matrix rankMatrix checkZrank <- function(Zt, n, ctrl, nonSmall = 1e6, allow.n=FALSE) { stopifnot(is.list(ctrl), is.numeric(n), is.numeric(nonSmall)) cstr <- "check.nobs.vs.rankZ" if (doCheck(cc <- ctrl[[cstr]])) { ## not NULL or "ignore" checkCtrlLevels(cstr, cc, smallOK=TRUE) d <- dim(Zt) doTr <- d[1L] < d[2L] # Zt is "wide" => qr needs transpose(Zt) if(!(grepl("Small",cc) && prod(d) > nonSmall)) { rankZ <- rankMatrix(if(doTr) t(Zt) else Zt, method="qr") ww <- wmsg(n, rankZ, allow.n, "number of observations", "rank(Z)") if(is.na(rankZ)) { cc <- "stop" ww <- list(unident = TRUE, wstr = sub("^.*;", "rank(Z) is NA: invalid random effect factors?", ww$wstr)) } if (ww$unident) { switch(cc, "warningSmall" =, "warning" = warning(ww$wstr,call.=FALSE), "stopSmall" =, "stop" = stop(ww$wstr,call.=FALSE), stop(gettextf("unknown check level for '%s'", cstr), domain=NA)) ww$wstr } else character() } else character() } else character() } ## check scale of non-dummy columns of X, both ## against each other and against 1 (implicit scale of theta parameters)? ## (shouldn't matter for lmer models?) ## TODO: check for badly centred models? ## TODO: check scale of Z columns? ## What should the rules be? try to find problematic columns ## and rescale them? scale+center? Just scale or scale+center ## all numeric columns? ## checkScaleX <- function(X, kind="warning", tol=1e3) { ## cstr <- "check.scaleX" kinds <- eval(formals(lmerControl)[["check.scaleX"]]) if (!kind %in% kinds) stop(gettextf("unknown check-scale option: %s",kind)) if (is.null(kind) || kind == "ignore") return(X) ## else : cont.cols <- apply(X,2,function(z) !all(z %in% c(0,1))) col.sd <- apply(X[,cont.cols, drop=FALSE], 2L, sd) sdcomp <- outer(col.sd,col.sd,"/") logcomp <- abs(log(sdcomp[lower.tri(sdcomp)])) logsd <- abs(log(col.sd)) if (any(c(logcomp,logsd) > log(tol))) { wmsg <- "Some predictor variables are on very different scales:" if (kind %in% c("warning","stop")) { msg2 <- "\nYou may also use (g)lmerControl(autoscale = TRUE) to improve numerical stability." wmsg <- paste(wmsg, "consider rescaling.", msg2) switch(kind, "warning" = warning(wmsg, call.=FALSE), "stop" = stop(wmsg, call.=FALSE)) } else { wmsg <- paste(wmsg, "auto-rescaled (results NOT adjusted)") ## mimic scale() because we don't want to make a copy in ## order to retrieve the center/scale X[,cont.cols] <- sweep(X[,cont.cols,drop=FALSE],2,col.sd,"/") attr(X,"scaled:scale") <- setNames(col.sd,colnames(X)[cont.cols]) if (kind == "warn+rescale") warning(wmsg, call.=FALSE) } } else wmsg <- character() structure(X, msgScaleX = wmsg) } ##' @title Check that grouping factors have at least 2 and 1 sampled level" switch(cc, "warning" = warning(wstr,call.=FALSE), "stop" = stop(wstr,call.=FALSE), ## FIXME: should never get here since we have checkCtrLevels test above? stop(gettextf("unknown check level for '%s'", cstr), domain=NA)) } else wstr <- character() ## Part 2 ---------------- cstr <- "check.nobs.vs.nlev" checkCtrlLevels(cstr, cc <- ctrl[[cstr]]) if (doCheck(cc) && any(if(allow.n) nlevelVec > n else nlevelVec >= n)) { ## figure out which factors are the problem? w <- if (allow.n) which(nlevelVec>n) else which(nlevelVec>=n) bad_facs <- names(nlevelVec)[w] wst2 <- gettextf( "number of levels of each grouping factor must be %s number of observations", if(allow.n) "<=" else "<") wst2 <- paste0(wst2," (problems: ",paste(bad_facs,collapse=", "),")") switch(cc, "warning" = warning(wst2, call.=FALSE), "stop" = stop(wst2, call.=FALSE) ## shouldn't reach here ) } else wst2 <- character() ## Part 3 ---------------- cstr <- "check.nlev.gtreq.5" checkCtrlLevels(cstr, cc <- ctrl[[cstr]]) if (doCheck(cc) && any(nlevelVec < 5)) { wst3 <- "grouping factors with < 5 sampled levels may give unreliable estimates" switch(cc, "warning" = warning(wst3, call.=FALSE), "stop" = stop (wst3, call.=FALSE), stop(gettextf("unknown check level for '%s'", cstr), domain=NA)) } else wst3 <- character() ## return: c(wstr, wst2, wst3) ## possibly == character(0) } ##' Coefficients (columns) are dropped from a design matrix to ##' ensure that it has full rank. ##' ##' Redundant columns of the design matrix are identified with the ##' LINPACK implementation of the \code{\link{qr}} decomposition and ##' removed. The returned design matrix will have \code{qr(X)$rank} ##' columns. ##' ##' (Note: I have lifted this function from the ordinal (soon Rufus) ##' package and modified it slightly./rhbc) ##' ##' @title Ensure full rank design matrix ##' @param X a design matrix, e.g., the result of ##' \code{\link{model.matrix}} possibly of less than full column rank, ##' i.e., with redundant parameters. ##' @param silent should a message not be issued if X is column rank ##' deficient? ##' @return The design matrix \code{X} without redundant columns. ##' @seealso \code{\link{qr}} and \code{\link{lm}} ##' @importFrom Matrix rankMatrix ##' @author Rune Haubo Bojesen Christensen (drop.coef()); Martin Maechler chkRank.drop.cols <- function(X, kind, tol = 1e-7, method = "qr") { ## Test and match arguments: stopifnot(is.matrix(X)) # i.e., *not* sparse kinds <- eval(formals(lmerControl)[["check.rankX"]]) if (!kind %in% kinds) stop(gettextf("undefined option for 'kind': %s", kind)) ## c("message+drop.cols", "ignore", ## "silent.drop.cols", "warn+drop.cols", "stop.deficient"), if(kind == "ignore") return(X) ## else : p <- ncol(X) if (kind == "stop.deficient") { if ((rX <- rankMatrix(X, tol=tol, method=method)) < p) stop(gettextf(sub("\n +", "\n", "the fixed-effects model matrix is column rank deficient (rank(X) = %d < %d = p); the fixed effects will be jointly unidentifiable"), rX, p), call. = FALSE) } else { ## kind is one of "message+drop.cols", "silent.drop.cols", "warn+drop.cols" ## --> consider to drop extraneous columns: "drop.cols": ## Perform the qr-decomposition of X using LINPACK method, ## as we need the "good" pivots (and the same as lm()): ## this rankMatrix(X, method="qrLINPACK"): FIXME? rankMatrix(X, method= "qr.R") qr.X <- qr(X, tol = tol, LAPACK = FALSE) rnkX <- qr.X$rank if (rnkX == p) return(X) ## return X if X has full column rank ## else: ## message about no. dropped columns: msg <- sprintf(ngettext(p - rnkX, "fixed-effect model matrix is rank deficient so dropping %d column / coefficient", "fixed-effect model matrix is rank deficient so dropping %d columns / coefficients"), p - rnkX) if (kind != "silent.drop.cols") (if(kind == "warn+drop.cols") warning else message)(msg, domain = NA) ## Save properties of X contr <- attr(X, "contrasts") asgn <- attr(X, "assign") ## Return the columns correponding to the first qr.x$rank pivot ## elements of X: keep <- qr.X$pivot[seq_len(rnkX)] dropped.names <- colnames(X[,-keep,drop=FALSE]) X <- X[, keep, drop = FALSE] if (rankMatrix(X, tol=tol, method=method) < ncol(X)) stop(gettextf("Dropping columns failed to produce full column rank design matrix"), call. = FALSE) ## Re-assign relevant attributes: if(!is.null(contr)) attr(X, "contrasts") <- contr if(!is.null(asgn)) attr(X, "assign") <- asgn[keep] attr(X, "msgRankdrop") <- msg attr(X, "col.dropped") <- setNames(qr.X$pivot[(rnkX+1L):p], dropped.names) } X } # check that response is not constant checkResponse <- function(y, ctrl) { stopifnot(is.list(ctrl)) cstr <- "check.response.not.const" checkCtrlLevels(cstr, cc <- ctrl[[cstr]]) if (doCheck(cc) && length(unique(y)) < 2L) { wstr <- "Response is constant" switch(cc, "warning" = warning(wstr, call.=FALSE), "stop" = stop(wstr, call.=FALSE), stop(gettextf("unknown check level for '%s'", cstr), domain=NA)) } else character() } ##' Extract all warning msgs from a merMod object .merMod.msgs <- function(x) { ## currently only those found with 'X' : aX <- attributes(x@pp$X) wmsgs <- grep("^msg", names(aX)) if(any(has.msg <- nchar(Xwmsgs <- unlist(aX[wmsgs])) > 0)) Xwmsgs[has.msg] else character() } ## NA predict and restore rownames of original data if necessary ## napredictx <- function(x,...) { ## res <- napredict(x) ## } ##' @rdname modular ##' @param control a list giving (for \code{[g]lFormula}) all options (see \code{\link{lmerControl}} for running the model; ##' (for \code{mkLmerDevfun,mkGlmerDevfun}) options for inner optimization step; ##' (for \code{optimizeLmer} and \code{optimize[Glmer}) control parameters for nonlinear optimizer (typically inherited from the \dots argument to \code{lmerControl}) ##' @return \bold{lFormula, glFormula}: A list containing components, ##' \item{fr}{model frame} ##' \item{X}{fixed-effect design matrix} ##' \item{reTrms}{list containing information on random effects structure: result of \code{\link{mkReTrms}}} ##' \item{REML}{(lFormula only): logical flag: use restricted maximum likelihood? (Copy of argument.)} ##' @export lFormula <- function(formula, data=NULL, REML = TRUE, subset, weights, na.action, offset, contrasts = NULL, control=lmerControl(), ...) { control <- control$checkControl ## this is all we really need mf <- mc <- match.call() dontChk <- c("start", "verbose", "devFunOnly") dots <- list(...) do.call(checkArgs, c(list("lmer"), dots[!names(dots) %in% dontChk])) if (!is.null(dots[["family"]])) { ## lmer(...,family=...); warning issued within checkArgs mc[[1]] <- quote(lme4::glFormula) if (missing(control)) mc[["control"]] <- glmerControl() return(eval(mc, parent.frame())) } cstr <- "check.formula.LHS" checkCtrlLevels(cstr,control[[cstr]]) denv <- checkFormulaData(formula, data, checkLHS = control$check.formula.LHS == "stop") #mc$formula <- formula <- as.formula(formula,env=denv) ## substitute evaluated call formula <- as.formula(formula, env=denv) ## as.formula ONLY sets environment if not already explicitly set. ## ?? environment(formula) <- denv # get rid of || terms so update() works as expected RHSForm(formula) <- reformulas::expandDoubleVerts(RHSForm(formula)) mc$formula <- formula ## (DRY! copied from glFormula) m <- match(c("data", "subset", "weights", "na.action", "offset"), names(mf), 0L) mf <- mf[c(1L, m)] mf$drop.unused.levels <- TRUE mf[[1L]] <- quote(stats::model.frame) fr.form <- reformulas::subbars(formula) # substitute "|" by "+" environment(fr.form) <- environment(formula) ## model.frame.default looks for these objects in the environment ## of the *formula* (see 'extras', which is anything passed in '...'), ## so they have to be put there: for (i in c("weights", "offset")) { if (!eval(bquote(missing(x=.(i))))) assign(i,get(i,parent.frame()),environment(fr.form)) } mf$formula <- fr.form fr <- eval(mf, parent.frame()) if (nrow(fr) == 0L) stop("0 (non-NA) cases") ## convert character vectors to factor (defensive) fr <- factorize(fr.form, fr, char.only=TRUE) ## store full, original formula & offset attr(fr,"formula") <- formula attr(fr,"offset") <- mf$offset n <- nrow(fr) ## random effects and terms modules reTrms <- reformulas::mkReTrms(reformulas::findbars(RHSForm(formula)), fr) wmsgNlev <- checkNlevels(reTrms$flist, n=n, control) wmsgZdims <- checkZdims(reTrms$Ztlist, n=n, control, allow.n=FALSE) if (anyNA(reTrms$Zt)) { stop("NA in Z (random-effects model matrix): ", "please use ", shQuote("na.action='na.omit'"), " or ", shQuote("na.action='na.exclude'")) } wmsgZrank <- checkZrank(reTrms$Zt, n=n, control, nonSmall = 1e6) ## fixed-effects model matrix X - remove random effect parts from formula: fixedform <- formula RHSForm(fixedform) <- reformulas::nobars(RHSForm(fixedform)) mf$formula <- fixedform ## re-evaluate model frame to extract predvars component fixedfr <- eval(mf, parent.frame()) attr(attr(fr,"terms"), "predvars.fixed") <- attr(attr(fixedfr,"terms"), "predvars") ## so we don't have to fart around retrieving which vars we need ## in model.frame(.,fixed.only=TRUE) attr(attr(fr,"terms"), "varnames.fixed") <- names(fixedfr) ## ran-effects model frame (for predvars) ## important to COPY formula (and its environment)? ranform <- formula RHSForm(ranform) <- reformulas::subbars(RHSForm(reOnly(formula))) mf$formula <- ranform ranfr <- eval(mf, parent.frame()) attr(attr(fr,"terms"), "predvars.random") <- attr(terms(ranfr), "predvars") ## FIXME: shouldn't we have this already in the full-frame predvars? X <- model.matrix(fixedform, fr, contrasts)#, sparse = FALSE, row.names = FALSE) ## sparseX not yet ## Scaling (if autoscale is on...) if (!is.null(control$autoscale) && control$autoscale) { if("(Intercept)" %in% colnames(X)){ X_scaled <- scale(X[, -1]) X[,-1] <- X_scaled } else { X_scaled <- scale(X) X <- X_scaled } attr(X, "scaled:center") <- attr(X_scaled, "scaled:center") attr(X, "scaled:scale") <- attr(X_scaled, "scaled:scale") } ## backward compatibility (keep no longer than ~2015): if(is.null(rankX.chk <- control[["check.rankX"]])) rankX.chk <- eval(formals(lmerControl)[["check.rankX"]])[[1]] X <- chkRank.drop.cols(X, kind=rankX.chk, tol = 1e-7) if(is.null(scaleX.chk <- control[["check.scaleX"]])) scaleX.chk <- eval(formals(lmerControl)[["check.scaleX"]])[[1]] X <- checkScaleX(X, kind=scaleX.chk) list(fr = fr, X = X, reTrms = reTrms, REML = REML, formula = formula, wmsgs = c(Nlev = wmsgNlev, Zdims = wmsgZdims, Zrank = wmsgZrank)) } ## utility f'n for checking starting values getStart <- function(start, pred, returnVal = c("theta","all")) { returnVal <- match.arg(returnVal) doFixef <- returnVal == "all" ## default values theta <- pred$theta fixef <- pred$delb if (is.numeric(start)) { theta <- start } else if (is.list(start)) { if (!all(vapply(start, is.numeric, NA))) stop("all elements of start must be numeric") if (length((badComp <- setdiff(names(start), c("theta","fixef")))) > 0) stop("incorrect components in start list: ", badComp) if (!is.null(start$theta)) theta <- start$theta if (doFixef) { noBeta <- is.null(start$beta) if(!is.null(sFE <- start$fixef) || !noBeta) { fixef <- if(!is.null(sFE)) { if(!noBeta) message("Starting values for fixed effects coefficients", "specified through both 'fixef' and 'beta',", "only 'fixef' used") ## FIXME? accumulating heuristic evidence for drop1()-like case if((p <- length(fixef)) < length(sFE) && p == ncol(pred$X) && is.character(ns <- names(sFE)) && all((cnX <- dimnames(pred$X)[[2L]]) %in% ns)) ## take "matching" fixef[] only sFE[cnX] else sFE } else if(!noBeta) start$beta } if (length(fixef)!=length(pred$delb)) stop("incorrect number of fixef components (!=",length(pred$delb),")") } } else if (!is.null(start)) stop("'start' must be NULL, a numeric vector or named list of such vectors") if (!is.null(start) && length(theta) != length(pred$theta)) stop("incorrect number of theta components (!=",length(pred$theta),")") if(doFixef) c(theta, fixef) else theta } ## update start ## should refactor this to ## turn numeric start into start=list(theta=start) immediately ?? updateStart <- function(start, theta) { if (is.numeric(start)) { theta } else { if (!is.null(start$theta)) start$theta <- theta start } } ##' @rdname modular ##' @param fr A model frame containing the variables needed to create an ##' \code{\link{lmerResp}} or \code{\link{glmResp}} instance ##' @param X fixed-effects design matrix ##' @param reTrms information on random effects structure (see \code{\link{mkReTrms}}) ##' @param REML (logical) fit restricted maximum likelihood model? ##' @param start starting values ##' @param verbose print output? ##' @return \bold{mkLmerDevfun, mkGlmerDevfun}: A function to calculate deviance ##' (or restricted deviance) as a function of the theta (random-effect) parameters ##' (for GlmerDevfun, of beta (fixed-effect) parameters as well). These deviance ##' functions have an environment containing objects required for their evaluation. ##' CAUTION: The output object of \code{mk(Gl|L)merDevfun} is an \code{\link{environment}} ##' containing reference class objects (see \code{\link{ReferenceClasses}}, \code{\link{merPredD-class}}, ##' \code{\link{lmResp-class}}), which behave in ways that may surprise many users. For example, if the ##' output of \code{mk(Gl|L)merDevfun} is naively copied, then modifications to the original will ##' also appear in the copy (and vice versa). To avoid this behavior one must make a deep copy ##' (see \code{\link{ReferenceClasses}} for details). ##' \cr ##' \cr ##' @export mkLmerDevfun <- function(fr, X, reTrms, REML = TRUE, start = NULL, verbose = 0, control = lmerControl(), ...) { ## FIXME: make sure verbose gets handled properly #if (missing(fr)) { ## reconstitute frame #} ## pull necessary arguments for making the model frame out of ... p <- ncol(X) # maybe also do rank check on X here?? rho <- new.env(parent=parent.env(environment())) rho$pp <- do.call(merPredD$new, c(reTrms[c("Zt","theta","Lambdat","Lind")], n=nrow(X), list(X=X))) REMLpass <- if(REML) p else 0L rho$resp <- if(missing(fr)) mkRespMod( REML = REMLpass, ...) else mkRespMod(fr, REML = REMLpass) ## FIXME / note: REML does double duty as rank of X and a flag for using ## REML maybe this should be mentioned in the help file for ## mkRespMod?? currently that help file says REML is logical. a ## consequence of this double duty is that it is impossible to fit ## a model with no fixed effects using REML (MM: ==> FIXME) ## devfun <- mkdevfun(rho, 0L, verbose=verbose, control=control) ## prevent R CMD check false pos. warnings (in this function only): pp <- resp <- NULL rho$lmer_Deviance <- lmer_Deviance devfun <- function(theta) .Call(lmer_Deviance, pp$ptr(), resp$ptr(), as.double(theta)) environment(devfun) <- rho # if all random effects are of the form 1|f and starting values not # otherwise provided (and response variable is present, i.e. not doing # a simulation) then compute starting values if (is.null(start) && all(reTrms$cnms == "(Intercept)") && length(reTrms$flist) == length(reTrms$lower) && !is.null(y <- model.response(fr))) { v <- sapply(reTrms$flist, function(f) var(ave(y, f))) v.e <- var(y) - sum(v) if (!is.na(v.e) && v.e > 0) { v.rel <- v / v.e if (all(v.rel >= reTrms$lower^2)) rho$pp$setTheta(sqrt(v.rel)) } } ## theta <- getStart(start, rho$pp) ## ^^^^^ unused / obfuscation? should the above be rho$pp$setTheta(.) ? ## MM: commenting it did not break any of our checks if (length(rho$resp$y) > 0) ## only if non-trivial y devfun(rho$pp$theta) # one evaluation to ensure all values are set rho$lower <- reTrms$lower # to be more consistent with mkGlmerDevfun devfun # this should pass the rho environment implicitly } ##' @param devfun a deviance function, as generated by \code{\link{mkLmerDevfun}} ##' @return \bold{optimizeLmer}: Results of an optimization. optimizeLmer <- function(devfun, optimizer= formals(lmerControl)$optimizer, restart_edge= formals(lmerControl)$restart_edge, boundary.tol = formals(lmerControl)$boundary.tol, start = NULL, verbose = 0L, control = list(), ...) { verbose <- as.integer(verbose) rho <- environment(devfun) opt <- optwrap(optimizer, devfun, getStart(start, rho$pp), lower=rho$lower, control=control, adj=FALSE, verbose=verbose, ...) if (restart_edge) { ## FIXME: should we be looking at rho$pp$theta or opt$par ## at this point??? in koller example (for getData(13)) we have ## rho$pp$theta=0, opt$par=0.08 if (length(bvals <- which(rho$pp$theta==rho$lower)) > 0) { ## *don't* use numDeriv -- cruder but fewer dependencies, no worries ## about keeping to the interior of the allowed space theta0 <- new("numeric",rho$pp$theta) ## 'deep' copy: d0 <- devfun(theta0) btol <- 1e-5 ## FIXME: make user-settable? bgrad <- sapply(bvals, function(i) { bndval <- rho$lower[i] theta <- theta0 theta[i] <- bndval+btol (devfun(theta)-d0)/btol }) ## what do I need to do to reset rho$pp$theta to original value??? devfun(theta0) ## reset rho$pp$theta after tests ## FIXME: allow user to specify ALWAYS restart if on boundary? if (any(is.na(bgrad))) { warning("some gradient components are NA near boundaries, skipping boundary check") return(opt) } else { if (any(bgrad < 0)) { if (verbose) message("some theta parameters on the boundary, restarting") opt <- optwrap(optimizer, devfun, opt$par, lower=rho$lower, control=control, adj=FALSE, verbose=verbose, ...) } } ## bgrad not NA } } ## if restart.edge if (boundary.tol > 0) check.boundary(rho, opt, devfun, boundary.tol) else opt } ## TODO: remove any arguments that aren't actually used by glFormula (same for lFormula) ## TODO(?): lFormula() and glFormula() are very similar: merge or use common baseFun() ##' @rdname modular ##' @inheritParams glmer ##' @export glFormula <- function(formula, data=NULL, family = gaussian, subset, weights, na.action, offset, contrasts = NULL, start, mustart, etastart, control = glmerControl(), ...) { ## FIXME: does start= do anything? test & fix control <- control$checkControl ## this is all we really need mf <- mc <- match.call() ## extract family, call lmer for gaussian if (is.character(family)) family <- get(family, mode = "function", envir = parent.frame(2)) if( is.function(family)) family <- family() if (isTRUE(all.equal(family, gaussian()))) { mc[[1]] <- quote(lme4::lFormula) mc["family"] <- NULL # to avoid an infinite loop return(eval(mc, parent.frame())) } if (family$family %in% c("quasibinomial", "quasipoisson", "quasi")) stop('"quasi" families cannot be used in glmer') dontChk <- c("verbose", "devFunOnly", "optimizer", "nAGQ") dots <- list(...) do.call(checkArgs, c(list("glmer"), dots[!names(dots) %in% dontChk])) cstr <- "check.formula.LHS" checkCtrlLevels(cstr, control[[cstr]]) denv <- checkFormulaData(formula, data, checkLHS = control$check.formula.LHS == "stop") mc$formula <- formula <- as.formula(formula, env = denv) ## substitute evaluated version ## DRY ... m <- match(c("data", "subset", "weights", "na.action", "offset", "mustart", "etastart"), names(mf), 0L) mf <- mf[c(1L, m)] mf$drop.unused.levels <- TRUE mf[[1L]] <- quote(stats::model.frame) fr.form <- reformulas::subbars(formula) # substitute "|" by "+" environment(fr.form) <- environment(formula) ## model.frame.default looks for these objects in the environment ## of the *formula* (see 'extras', which is anything passed in '...'), ## so they have to be put there: for (i in c("weights", "offset")) { if (!eval(bquote(missing(x=.(i))))) assign(i, get(i, parent.frame()), environment(fr.form)) } mf$formula <- fr.form fr <- eval(mf, parent.frame()) ## convert character vectors to factor (defensive) fr <- factorize(fr.form, fr, char.only = TRUE) ## store full, original formula & offset attr(fr,"formula") <- formula attr(fr,"offset") <- mf$offset ## attach starting coefficients to model frame so we can ## pass them through to mkRespMod -> family()$initialize ... if (!missing(start) && is.list(start)) { fixef <- start$fixef %||% start$beta attr(fr,"start") <- fixef } n <- nrow(fr) ## random effects and terms modules reTrms <- reformulas::mkReTrms(reformulas::findbars(RHSForm(formula)), fr) ## TODO: allow.n = !useSc {see FIXME below} wmsgNlev <- checkNlevels(reTrms$ flist, n = n, control, allow.n = TRUE) wmsgZdims <- checkZdims(reTrms$Ztlist, n = n, control, allow.n = TRUE) wmsgZrank <- checkZrank(reTrms$ Zt, n = n, control, nonSmall = 1e6, allow.n = TRUE) ## FIXME: adjust test for families with estimated scale parameter: ## useSc is not defined yet/not defined properly? ## if (useSc && maxlevels == n) ## stop("number of levels of each grouping factor must be", ## "greater than number of obs") ## fixed-effects model matrix X - remove random effect parts from formula: fixedform <- formula RHSForm(fixedform) <- reformulas::nobars(RHSForm(fixedform)) mf$formula <- fixedform ## re-evaluate model frame to extract predvars component fixedfr <- eval(mf, parent.frame()) attr(attr(fr,"terms"),"predvars.fixed") <- attr(attr(fixedfr,"terms"),"predvars") ## ran-effects model frame (for predvars) ## important to COPY formula (and its environment)? ranform <- formula RHSForm(ranform) <- reformulas::subbars(RHSForm(reOnly(formula))) mf$formula <- ranform ranfr <- eval(mf, parent.frame()) attr(attr(fr,"terms"), "predvars.random") <- attr(terms(ranfr), "predvars") X <- model.matrix(fixedform, fr, contrasts)#, sparse = FALSE, row.names = FALSE) ## sparseX not yet ## Scaling (if autoscale is on...) if (!is.null(control$autoscale) && control$autoscale) { if("(Intercept)" %in% colnames(X)){ X_scaled <- scale(X[, -1]) X[,-1] <- X_scaled } else { X_scaled <- scale(X) X <- X_scaled } attr(X, "scaled:center") <- attr(X_scaled, "scaled:center") attr(X, "scaled:scale") <- attr(X_scaled, "scaled:scale") } ## backward compatibility (keep no longer than ~2015): if(is.null(rankX.chk <- control[["check.rankX"]])) rankX.chk <- eval(formals(lmerControl)[["check.rankX"]])[[1]] X <- chkRank.drop.cols(X, kind=rankX.chk, tol = 1e-7) if(is.null(scaleX.chk <- control[["check.scaleX"]])) scaleX.chk <- eval(formals(lmerControl)[["check.scaleX"]])[[1]] X <- checkScaleX(X, kind=scaleX.chk) list(fr = fr, X = X, reTrms = reTrms, family = family, formula = formula, wmsgs = c(Nlev = wmsgNlev, Zdims = wmsgZdims, Zrank = wmsgZrank)) } ##' @rdname modular ##' @export mkGlmerDevfun <- function(fr, X, reTrms, family, nAGQ = 1L, verbose = 0L, maxit = 100L, control = glmerControl(), ...) { stopifnot(length(nAGQ <- as.integer(nAGQ)) == 1L, 0L <= nAGQ, nAGQ <= 25L) verbose <- as.integer(verbose) maxit <- as.integer(maxit) rho <- list2env(list(verbose=verbose, maxit=maxit, tolPwrss= control$tolPwrss, compDev = control$compDev), parent = parent.frame()) rho$pp <- do.call(merPredD$new, c(reTrms[c("Zt","theta","Lambdat","Lind")], n=nrow(X), list(X=X))) rho$resp <- if (missing(fr)) mkRespMod(family=family, ...) else mkRespMod(fr, family=family) nAGQinit <- if(control$nAGQ0initStep) 0L else 1L ## allow trivial y if (length(y <- rho$resp$y) > 0) { checkResponse(y, control$checkControl) rho$verbose <- as.integer(verbose) ## initialize (from mustart) .Call(glmerLaplace, rho$pp$ptr(), rho$resp$ptr(), nAGQinit, control$tolPwrss, maxit, verbose) rho$lp0 <- rho$pp$linPred(1) # each pwrss opt begins at this eta rho$pwrssUpdate <- glmerPwrssUpdate } rho$lower <- reTrms$lower # not needed in rho? mkdevfun(rho, nAGQinit, maxit=maxit, verbose=verbose, control=control) ## this should pass the rho environment implicitly } ##' @rdname modular ##' @param nAGQ number of Gauss-Hermite quadrature points ##' @param stage optimization stage (1: nAGQ=0, optimize over theta only; 2: nAGQ possibly >0, optimize over theta and beta) ##' @export optimizeGlmer <- function(devfun, optimizer = if(stage == 1) "bobyqa" else "Nelder_Mead", restart_edge=FALSE, boundary.tol = formals(glmerControl)$boundary.tol, verbose = 0L, control = list(), nAGQ = 1L, stage = 1, start = NULL, ...) { ## FIXME: do we need nAGQ here?? or can we clean up? verbose <- as.integer(verbose) rho <- environment(devfun) if (stage == 1) { start <- getStart(start, rho$pp, "theta") adj <- FALSE } else { ## stage == 2 start <- getStart(start, rho$pp, "all") adj <- TRUE } opt <- optwrap(optimizer, devfun, start, rho$lower, control=control, adj=adj, verbose=verbose, ...) if (stage == 1) { rho$control <- attr(opt,"control") rho$nAGQ <- nAGQ } else { ## stage == 2 rho$resp$setOffset(rho$baseOffset) } if (restart_edge) ## FIXME: implement this ... stop("restart_edge not implemented for optimizeGlmer yet") if (boundary.tol > 0) { opt <- check.boundary(rho, opt, devfun, boundary.tol) if(stage != 1) rho$resp$setOffset(rho$baseOffset) } opt } check.boundary <- function(rho,opt,devfun,boundary.tol) { bdiff <- rho$pp$theta - rho$lower[seq_along(rho$pp$theta)] if (any(edgevals <- 0 < bdiff & bdiff < boundary.tol)) { ## try sucessive "close-to-edge parameters" to see ## if we can improve by setting them equal to the boundary pp <- opt$par for (i in which(edgevals)) { tmppar <- pp tmppar[i] <- rho$lower[i] if (devfun(tmppar) < opt$fval) pp[i] <- tmppar[i] } opt$par <- pp opt$fval <- devfun(opt$par) ## re-run to reset (whether successful or not) ## FIXME: derivatives, Hessian etc. (and any other ## opt messages) *not* recomputed } return(opt) } ## only do this function if nAGQ > 0L ##' @rdname modular ##' @export updateGlmerDevfun <- function(devfun, reTrms, nAGQ = 1L){ if (nAGQ > 1L) { if (length(reTrms$flist) != 1L || length(reTrms$cnms[[1]]) != 1L) stop("nAGQ > 1 is only available for models with a single, scalar random-effects term") } rho <- environment(devfun) rho$nAGQ <- nAGQ rho$lower <- c(rho$lower, rep.int(-Inf, length(rho$pp$beta0))) rho$lp0 <- rho$pp$linPred(1) rho$dpars <- seq_along(rho$pp$theta) rho$baseOffset <- forceCopy(rho$resp$offset) # forcing a copy (!) rho$GQmat <- GHrule(nAGQ) rho$fac <- reTrms$flist[[1]] mkdevfun(rho, nAGQ) # does this attach rho to devfun?? } lme4/R/vcconv.R0000644000176200001440000001716115103163201012733 0ustar liggesusers## These files are not currently exported; we are still trying to figure ## out the most appropriate user interface/naming convention/etc ## These functions will become more important, and need to be ## modified/augmented, if we start allowing for varying V-C structures ## (e.g. diagonal matrices, compound symmetry ...) ## In principle we might want to extract or input information: ## 1. as variance-covariance matrices ## 2. as Cholesky factors ## 3. as 'sdcorr' matrices (std dev on diagonal, correlations off diagonal) ## and we might want the structure to be: ## 1. a concatenated vector representing the lower triangles ## (with an attribute carrying the information about group sizes) ## 2. a list of lower-triangle vectors ## 3. a list of matrices ## 4. a block-diagonal matrix ## If we are trying to convert to and from theta vectors, we also ## have to consider whether we are returning scaled Cholesky factors/ ## var-cov matrices or unscaled ones. For the code below I have ## chosen to allow the residual variance etc. to be appended as ## the last element of a variance-covariance vector. (This last ## part is a little less generic than the rest of it.) ##' List of matrices to concatenated vector ##' ##' Convert list of matrices to concatenated vector of lower triangles ##' with an attribute that gives the dimension of each matrix in the ##' original list. This attribute may be used to reconstruct the ##' matrices. ##' ##' @param L list of symmetric, upper-triangular, or lower-triangular ##' square matrices ##' @return A concatenation of the elements in one triangle of each ##' matrix. An attribute \code{"clen"} gives the dimension of each ##' matrix. mlist2vec <- function(L) { if(is.atomic(L)) L <- list(L) n <- vapply(L, nrow, 1L) ## allow for EITHER upper- or lower-triangular input; ## in either case, read off in "lower-triangular" order ## (column-wise) ff <- function(x) { if (all(na.omit(x[iu <- upper.tri(x)] == 0))) t(x[!iu]) else t(x)[!iu] } structure(unlist(lapply(L,ff)), clen = n) } ## Compute dimensions of a square matrix from the size ## of the lower triangle (length as a vector) get_clen <- function(v,n=NULL) { if (is.null(n)) { if (is.null(n <- attr(v,"clen"))) { ## single component n <- (sqrt(8*length(v)+1)-1)/2 } } n } ##' Concatenated vector to list of matrices ##' ##' Convert concatenated vector to list of matrices (lower triangle or ##' symmetric). These matrices could represent Cholesky factors, ##' covariance matrices, or correlation matrices (with standard ##' deviations on the diagonal). ##' ##' @param v concatenated vector ##' @param n FIXME: this has something to do with the dimension of ##' associated matrices. ##' @param symm Return symmetric matrix if \code{TRUE} or ##' lower-triangular if \code{FALSE} ##' @return List of matrices vec2mlist <- function(v,n=NULL,symm=TRUE) { n <- get_clen(v,n) s <- split(v,rep.int(seq_along(n),n*(n+1)/2)) m <- mapply(function(x,n0) { m0 <- diag(nrow=n0) m0[lower.tri(m0,diag=TRUE)] <- x if (symm) m0[upper.tri(m0)] <- t(m0)[upper.tri(m0)] m0 },s,n,SIMPLIFY=FALSE) m } ## Convert concatenated vector to list of ST matrices vec2STlist <- function(v, n = NULL){ ch <- vec2mlist(v, n, FALSE) # cholesky sdiag <- function(x) { ## 'safe' diag() if (length(x)==1) matrix(x,1,1) else diag(x) } lapply(ch, function(L) { ST <- L%*%sdiag(1/sdiag(L)) diag(ST) <- diag(L) ST }) } ##' Standard deviation-correlation matrix to covariance matrix ##' ##' convert 'sdcor' format -- diagonal = std dev, off-diag=cor to and ##' from variance-covariance matrix ##' ##' @param m Standard deviation-correlation matrix ##' @return Covariance matrix sdcor2cov <- function(m) { sd <- diag(m) diag(m) <- 1 m * outer(sd,sd) } ##' Covariance matrix to standard deviation-correlation matrix ##' ##' convert cov to sdcor ##' ##' @param V Covariance matrix ##' @return Standard deviation-correlation matrix cov2sdcor <- function(V) { ## "own version" of cov2cor(): 1. no warning for NA; 2. diagonal = sd(.) p <- (d <- dim(V))[1L] if (!is.numeric(V) || length(d) != 2L || p != d[2L]) stop("'V' is not a square numeric matrix") sd <- sqrt(diag(V)) Is <- 1/sd r <- V r[] <- Is * V * rep(Is, each = p) diag(r) <- sd if (any(is.na(r))) { warning("NA values in sdcor matrix converted to 0") r[is.na(r)] <- 0 } r } ## dmult <- function(m,s) { ## diag(m) <- diag(m)*s ## m ## } ## attempt to compute Cholesky, allow for positive semi-definite cases ## (hackish) safe_chol <- function(m) { if (any(is.na(m)) || all(m==0)) return(m) if (nrow(m)==1) return(sqrt(m)) if (.isDiagonal.sq.matrix(m)) return(diag(sqrt(diag(m)))) ## attempt regular Chol. decomp if (!is.null(cc <- tryCatch(chol(m), error=function(e) NULL))) return(cc) ## ... pivot if necessary ... cc <- suppressWarnings(chol(m,pivot=TRUE)) oo <- order(attr(cc,"pivot")) cc[,oo] ## FIXME: pivot is here to deal with semidefinite cases, ## but results might be returned in a strange format: TEST } ##' Variance-covariance to relative covariance factor ##' ##' from var-cov to scaled Cholesky: ##' ##' @param v Vector of elements from the lower triangle of a ##' variance-covariance matrix. ##' @param n FIXME: see "@param n" above ##' @param s Scale parameter ##' @return Vector of elements from the lower triangle of a relative ##' covariance factor. Vv_to_Cv <- function(v,n=NULL,s=1) { if (!missing(s)) { v <- v[-length(v)] } r <- mlist2vec(lapply(vec2mlist(v,n,symm=TRUE), function(m) t(safe_chol(m/s^2)))) attr(r,"clen") <- get_clen(v,n) r } ##' Standard-deviation-correlation to relative covariance factor ##' ##' from sd-cor to scaled Cholesky ##' ##' @param v Vector of elements from the lower triangle of a ##' standard-deviation-correlation matrix. ##' @param n FIXME: see "@param n" above ##' @param s Scale parameter ##' @return Vector of elements from the lower triangle of a relative ##' covariance factor. Sv_to_Cv <- function(v,n=NULL,s=1) { if (!missing(s)) { v <- v[-length(v)] } r <- mlist2vec(lapply(vec2mlist(v,n,symm=TRUE), function(m) t(safe_chol(sdcor2cov(m)/s^2)))) attr(r,"clen") <- get_clen(v,n) r } ##' Relative covariance factor to variance-covariance ##' ##' from unscaled Cholesky vector to (possibly scaled) ##' variance-covariance vector ##' ##' @param v Vector of elements from the lower triangle of a ##' relative covariance factor. ##' @param n FIXME: see "@param n" above ##' @param s Scale parameter ##' @return Vector of elements from the lower triangle of a ##' variance-covariance matrix. Cv_to_Vv <- function(v,n=NULL,s=1) { r <- mlist2vec(lapply(vec2mlist(v,n,symm=FALSE), function(m) tcrossprod(m)*s^2)) if (!missing(s)) r <- c(r,s^2) attr(r,"clen") <- get_clen(v,n) r } ##' Relative covariance factor to standard-deviation-correlation ##' ##' from unscaled Chol to sd-cor vector ##' ##' @param v Vector of elements from the lower triangle of a ##' relative covariance factor. ##' @param n FIXME: see "@param n" above ##' @param s Scale parameter ##' @return Vector of elements from the lower triangle of a ##' standard-deviation-correlation matrix. Cv_to_Sv <- function(v,n=NULL,s=1) { r <- mlist2vec(lapply(vec2mlist(v,n,symm=FALSE), function(m) cov2sdcor(tcrossprod(m)*s^2))) if (!missing(s)) r <- c(r,s) attr(r,"clen") <- get_clen(v,n) r } ## tests --> ../inst/tests/test-utils.R lme4/R/AllGeneric.R0000644000176200001440000000412115022107260013435 0ustar liggesusers## utilities, these *exported*: ##' @export getL setGeneric("getL", function(x) standardGeneric("getL")) fixed.effects <- function(object, ...) { ## fixed.effects was an alternative name for fixef .Deprecated("fixef") mCall = match.call() mCall[[1]] = as.name("fixef") eval(mCall, parent.frame()) } random.effects <- function(object, ...) { ## random.effects was an alternative name for ranef .Deprecated("ranef") mCall = match.call() mCall[[1]] = as.name("ranef") eval(mCall, parent.frame()) } ## Create a Markov chain Monte Carlo sample from the posterior ## distribution of the parameters ## ## ## @title Create an MCMC sample ## @param object a fitted model object ## @param n number of samples to generate. Defaults to 1; for real use values of 200-1000 are more typical ## @param verbose should verbose output be given? ## @param ... additional, optional arguments (not used) ## @return a Markov chain Monte Carlo sample as a matrix mcmcsamp <- function(object, n = 1L, verbose = FALSE, ...) UseMethod("mcmcsamp") if(getRversion() < "3.3") { sigma <- function(object, ...) UseMethod("sigma") } isREML <- function(x, ...) UseMethod("isREML") isLMM <- function(x, ...) UseMethod("isLMM") isGLMM <- function(x, ...) UseMethod("isGLMM") isNLMM <- function(x, ...) UseMethod("isNLMM") ##' Refit a model using the maximum likelihood criterion ##' ##' This function is primarily used to get a maximum likelihood fit of ##' a linear mixed-effects model for an \code{\link{anova}} comparison. ##' ##' @title Refit a model by maximum likelihood criterion ##' @param x a fitted model, usually of class \code{"\linkS4class{lmerMod}"}, ##' to be refit according to the maximum likelihood criterion ##' @param ... optional additional parameters. None are used at present. ##' @return an object like \code{x} but fit by maximum likelihood ##' @export refitML <- function(x, ...) UseMethod("refitML") refit <- function(object, newresp, ...) UseMethod("refit") if (FALSE) { setGeneric("HPDinterval", function(object, prob = 0.95, ...) standardGeneric("HPDinterval")) } lme4/R/predict.R0000644000176200001440000012645115113136605013103 0ustar liggesusers##' test for no-random-effect specification: TRUE if NA or ~0, other ##' possibilities are NULL or a non-trivial formula isRE <- function(re.form) { isForm <- inherits(re.form, "formula") (is.null(re.form) || isForm || !is.na(re.form)) && (!isForm || length(re.form) != 2L || !identical(re.form[[2L]], 0)) } if(FALSE) { isRE(NA) ## FALSE isRE(~0) ## " isRE(~y+x) ## TRUE isRE(NULL) ## " isRE(~0+x) ## " } ##' Random Effects formula only reOnly <- function(f, response=FALSE) { reformulate(paste0("(", vapply(reformulas::findbars(f), deparse1, ""), ")"), response = if(response && length(f)==3L) f[[2]], env = environment(f)) } ## '...' may contain fixed.only=TRUE, random.only=TRUE, .. get.orig.levs <- function(object, FUN=levels, newdata=NULL, sparse = FALSE, ...) { Terms <- terms(object, data = newdata, ...) mf <- model.frame(object, ...) isFac <- vapply(mf, is.factor, FUN.VALUE=TRUE) ## ignore response variable isFac[attr(Terms,"response")] <- FALSE mf <- mf[isFac] hasSparse <- any(grepl("sparse", names(formals(FUN)))) # check if FUN has sparse argument orig_levs <- if (any(isFac) && hasSparse) lapply(mf, FUN, sparse = sparse) else if(any(isFac) && !hasSparse) lapply(mf, FUN) # else NULL ## if necessary (allow.new.levels ...) add in new levels if (!is.null(newdata)) { for (n in names(mf)) { orig_levs[[n]] <- c(orig_levs[[n]], setdiff(unique(as.character(newdata[[n]])),orig_levs[[n]])) } } ## more clues about factor-ness of terms if(!is.null(orig_levs)) attr(orig_levs,"isFac") <- isFac orig_levs } ##' Force new parameters into a merMod object ##' (should this be an S3 method?): params(object) <- newvalue ##' @param object ##' @param params a list of the form specified by \code{start} in ##' \code{\link{lmer}} or \code{\link{glmer}} (i.e. a list containing ##' theta and/or beta; maybe eventually further parameters ... ##' What updating do we have to do in order to make the resulting object ##' consistent/safe? ##' TODO: What kind of checking of input do we have to do? (Abstract from ##' lmer/glmer code ...) ##' TODO: make sure this gets updated when the parameter structure changes ##' from (theta, beta) to alpha=(theta, beta, phi) ##' @param inplace logical specifying if object should be modified in place; not yet ##' @param subset logical; needs to be true, if only parts of params are to be reset ##' @examples ##' fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) ##' fm1M <- setParams(fm1,list(theta=rep(1,3))) ##' getME(fm1M,"theta") ##' getME(fm1,"theta") ## check that original didn't get messed up ##' ## check that @resp and @pp are the only reference class slots ... ##' sapply(slotNames(fm1),function(x) class(slot(fm1,x))) setParams <- function(object, params, inplace=FALSE, subset=FALSE) { pNames <- c("beta","theta") if (object@devcomp$dims["useSc"]) pNames <- c(pNames, "sigma") if (!is.list(params) || length(setdiff(names(params),pNames)) > 0) stop("params should be specifed as a list with elements from ", "{",paste(shQuote(pNames),collapse=", "),"}") if (!subset && length(setdiff(pNames,names(params))) > 0) { warning("some parameters not specified in setParams()") } nbeta <- length(object@pp$beta(1)) ntheta <- length(object@pp$theta) if (!is.null(beta <- params$beta) && length(beta)!=nbeta) stop("length mismatch in beta (",length(beta), "!=",nbeta,")") if (!is.null(theta <- params$theta) && length(theta)!=ntheta) stop("length mismatch in theta (",length(theta), "!=",ntheta,")") matchNames <- function(x,tn,vecname="theta") { if (!is.null(pn <- names(x))) { if (!setequal(pn,tn)) { ## pn.not.tn <- setdiff(pn,tn) ## tn.not.pn <- setdiff(tn,pn) ## TO DO: more detail? stop("mismatch between ",shQuote(vecname)," parameter vector names and internal names (", paste(tn,collapse=","),")") } x <- x[tn] ## reorder } ## no longer issue warning if unnamed ... return(x) } theta <- matchNames(theta,tnames(object),"theta") beta <- matchNames(beta,colnames(getME(object,"X")),"beta") sigma <- params$sigma if(inplace) { stop("modification in place (copy=FALSE) not yet implemented") } else { ## copy : newObj <- object ## make a copy of the reference class slots to ## decouple them from the original object newObj@pp <- newObj@pp$copy() newObj@resp <- newObj@resp$copy() if (!is.null(beta)) { newObj@pp$setBeta0(beta) newObj@beta <- beta } if (!is.null(theta)) { ## where does theta live and how do I set it? ## (1) in .@theta ## (2) in .@pp$theta newObj@theta <- theta newObj@pp$setTheta(theta) } if (!is.null(sigma)) { snm <- if (object@devcomp$dims[["REML"]]) "sigmaREML" else "sigmaML" newObj@devcomp[["cmp"]][snm] <- sigma } return(newObj) } } ##' Make new random effect terms from specified object and new data, ##' possibly omitting some random effect terms ##' @param object fitted model object ##' @param newdata (optional) data frame containing new data ##' @param re.form formula specifying random effect terms to include (NULL=all, ~0) ##' @param na.action ##' ##' @note Hidden; _only_ used (twice) in this file mkNewReTrms <- function(object, newdata, re.form=NULL, na.action=na.pass, allow.new.levels=FALSE, sparse = max(lengths(orig.random.levs)) > 100) { ## construct (fixed) model frame in order to find out whether there are ## missing data/what to do about them ## need rfd to inherit appropriate na.action; need grouping ## variables as well as any covariates that are included ## in RE terms ## FIXME: mfnew is new data frame, rfd is processed new data ## why do we need both/what is each doing/how do they differ? ## rfd is *only* used in mkReTrms ## mfnew is *only* used for its na.action attribute (!) [fixed only] ## using model.frame would mess up matrix-valued predictors (GH #201) fixed.na.action <- NULL re.form <- re.form %||% reOnly(formula(object)) if (is.null(newdata)) { rfd <- mfnew <- model.frame(object) fixed.na.action <- attr(mfnew,"na.action") } else { if (!identical(na.action,na.pass)) { ## only need to re-evaluate for NAs if na.action != na.pass mfnew <- model.frame(delete.response(terms(object, fixed.only=TRUE)), newdata, na.action=na.action) fixed.na.action <- attr(mfnew,"na.action") } ## make sure we pass na.action with new data ## it would be nice to do something more principled like ## rfd <- model.frame(~.,newdata,na.action=na.action) ## but this adds complexities (stored terms, formula, etc.) ## that mess things up later on ... ## rfd <- na.action(get_all_vars(delete.response(terms(object,fixed.only=FALSE)), newdata)) newdata.NA <- newdata if (!is.null(fixed.na.action)) { newdata.NA <- newdata.NA[-fixed.na.action,] } tt <- delete.response(terms(object,random.only=TRUE)) orig.random.levs <- get.orig.levs(object, random.only=TRUE, newdata=newdata.NA) orig.random.cntr <- get.orig.levs(object, random.only=TRUE, FUN=contrasts, sparse=sparse) ## need to let NAs in RE components go through -- they're handled downstream if (inherits(re.form,"formula")) { ## We use the RE terms *from the original model fit* to construct ## the model frame. This is good for preserving predvars information, ## getting interactions constructed correctly, etc etc etc, ## but can fail if a partial RE specification is used and some of the variables ## in the original RE form are missing from 'newdata' ... ## Fill them in as necessary. Filling in NA is OK - these vars won't actually ## be used later ... pv <- attr(tt,"predvars") for (i in 2:(length(pv))) { missvars <- setdiff(all.vars(pv[[i]]), all.vars(re.form)) for (mv in missvars) { newdata.NA[[mv]] <- NA } } } ## see comments about why suppressWarnings() is needed below ... rfd <- suppressWarnings( model.frame(tt, newdata.NA, na.action=na.pass, xlev=orig.random.levs)) ## restore contrasts (why???) ## find *factor* variables involved in terms (left-hand side of RE formula): reset their contrasts ## only interested in components in re.form, not al REs ff <- re.form ## was: formula(object,random.only=TRUE) termvars <- unique(unlist(lapply(reformulas::findbars(ff), function(x) all.vars(x[[2]])))) for (fn in Reduce(intersect, list( names(orig.random.cntr), termvars, names(rfd)))) { ## a non-factor grouping variable *may* sneak in here via simulate(...) if (!is.factor(rfd[[fn]])) rfd[[fn]] <- factor(rfd[[fn]]) contrasts(rfd[[fn]]) <- orig.random.cntr[[fn]] } if (!is.null(fixed.na.action)) attr(rfd,"na.action") <- fixed.na.action ## ## ## need terms to preserve info about spline/orthog polynomial bases ## attr(rfd,"terms") <- terms(object) ## ## ... but variables list messes things up; can we fix it? ## vlist <- lapply(all.vars(terms(object)), as.name) ## attr(attr(rfd,"terms"),"variables") <- as.call(c(quote(list), vlist)) ## ## take out variables that appear *only* in fixed effects ## all.v <- all.vars(delete.response(terms(object,fixed.only=FALSE))) ## ran.v <- vapply(findbars(formula(object)),all.vars,"") ## fix.v <- all.vars(delete.response(terms(object,fixed.only=TRUE))) ## rfd <- model.frame(delete.response(terms(object,fixed.only=FALSE)), ## newdata,na.action=na.action) } if (inherits(re.form, "formula")) { ## DROP values with NAs in fixed effects if (length(fixed.na.action) > 0) { newdata <- newdata[-fixed.na.action,] } ## note: mkReTrms automatically *drops* unused levels ReTrms <- reformulas::mkReTrms(reformulas::findbars(re.form[[2]]), rfd) ## update Lambdat (ugh, better way to do this?) ReTrms <- within(ReTrms,Lambdat@x <- unname(getME(object,"theta")[Lind])) if (!allow.new.levels && any(vapply(ReTrms$flist, anyNA, NA))) stop("NAs are not allowed in prediction data", " for grouping variables unless allow.new.levels is TRUE") ns.re <- names(re <- ranef(object, condVar = FALSE)) nRnms <- names(Rcnms <- ReTrms$cnms) if (!all(nRnms %in% ns.re)) stop("grouping factors specified in re.form that were not present in original model") new_levels <- lapply(ReTrms$flist, function(x) levels(factor(x))) ## fill in/delete levels as appropriate re_x <- Map(function(r,n) levelfun(r,n, allow.new.levels=allow.new.levels), re[names(new_levels)], new_levels) ## pick out random effects values that correspond to ## random effects incorporated in re.form ... ## NB: Need integer indexing, as nRnms can be duplicated: (age|Subj) + (sex|Subj) : hacked_names <- FALSE get_re <- function(rname, cnms) { nms <- names(re[[rname]]) if (identical(cnms,"(Intercept)") && length(nms)==1 && grepl("^s(.*)$",nms)) { ## HACK to allow gamm4 prediction hacked_names <<- TRUE cnms <- nms } miss_names <- setdiff(cnms, nms) if (length(miss_names)>0) { stop("random effects specified in re.form that were not present in original model ", paste(miss_names, collapse=", ")) } t(re_x[[rname]][,cnms]) ## transpose to make sure unlisting works } re_new <- unlist(Map(get_re, nRnms, Rcnms)) ## only issue warning once per prediction ... if (hacked_names) warning("modified RE names for gamm4 prediction") } Zt <- ReTrms$Zt attr(Zt, "na.action") <- attr(re_new, "na.action") <- fixed.na.action list(Zt=Zt, b=re_new, Lambdat = ReTrms$Lambdat, flist = ReTrms$flist) } ##' @param x a random effect (i.e., data frame with rows equal to levels, columns equal to terms ##' @param n vector of new levels levelfun <- function(x, nl.n, allow.new.levels=FALSE) { ## 1. find and deal with new levels new.levels <- setdiff(nl.n, rownames(x)) if (length(new.levels)>0) { if (!allow.new.levels) { max.err.len <- 60 err.str <- paste(new.levels, collapse = ", ") if (nchar(err.str) > max.err.len) { err.str <- substr(err.str, 1, max.err.len) err.str <- gsub(",[^,]*$", ", ...", err.str) } stop("new levels detected in newdata: ", err.str) } ## create an all-zero data frame corresponding to the new set of levels ... nl.n.comb <- union(nl.n, rownames(x)) newx <- as.data.frame(matrix(0, nrow=length(nl.n.comb), ncol=ncol(x), dimnames=list(nl.n.comb, names(x)))) ## then paste in the matching RE values from the original fit/set of levels newx[rownames(x),] <- x x <- newx } ## 2. find and deal with missing old levels ## ... these should have been dropped when making the Z matrices ## etc. in mkReTrms, so we'd better drop them here to match ... if (!all(r.inn <- rownames(x) %in% nl.n)) { x <- x[r.inn,,drop=FALSE] } return(x) } ##' ##' \code{\link{predict}} method for \code{\linkS4class{merMod}} objects ##' ##' @title Predictions from a model at new data values ##' @param object a fitted model object ##' @param newdata data frame for which to evaluate predictions ##' @param newparams new parameters to use in evaluating predictions ##' @param re.form formula for random effects to condition on. If \code{NULL}, ##' include all random effects; if \code{NA} or \code{~0}, ##' include no random effects ##' @param terms a \code{\link{terms}} object - not used at present ##' @param type character string - either \code{"link"}, the default, ##' or \code{"response"} indicating the type of prediction object returned ##' @param allow.new.levels (logical) if FALSE (default), then any new levels ##' (or NA values) detected in \code{newdata} will trigger an error; if TRUE, then ##' the prediction will use the unconditional (population-level) ##' values for data with previously unobserved levels (or \code{NA}s) ##' @param na.action function determining what should be done with missing values for fixed effects in \code{newdata}. The default is to predict \code{NA}: see \code{\link{na.pass}}. ##' @param se.fit A logical value indicating whether the standard errors should be included or not. Default is FALSE. ##' @param ... optional additional parameters. None are used at present. ##' @return a numeric vector of predicted values, unless \code{se.fit=TRUE} (in which case a list with elements \code{fit} (predicted values) and \code{se.fit} is returned) ##' @note There is no option for computing standard errors of predictions because it is difficult to define an efficient method that incorporates uncertainty in the variance parameters; we recommend \code{\link{bootMer}} for this task. ##' @examples ##' (gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 |herd), cbpp, binomial)) ##' str(p0 <- predict(gm1)) # fitted values ##' str(p1 <- predict(gm1,re.form=NA)) # fitted values, unconditional (level-0) ##' newdata <- with(cbpp, expand.grid(period=unique(period), herd=unique(herd))) ##' str(p2 <- predict(gm1,newdata)) # new data, all RE ##' str(p3 <- predict(gm1,newdata,re.form=NA)) # new data, level-0 ##' str(p4 <- predict(gm1,newdata,re.form=~(1|herd))) # explicitly specify RE ##' @method predict merMod ##' @export predict.merMod <- function(object, newdata=NULL, newparams=NULL, re.form=NULL, random.only=FALSE, terms=NULL, type=c("link","response"), allow.new.levels=FALSE, na.action=na.pass, se.fit = FALSE, ...) { ## FIXME: appropriate names for result vector? ## FIXME: make sure behaviour is entirely well-defined for NA in grouping factors ## Dealing with NAs: ## we might need to distinguish among ## (i) NAs in original data and in new data ## (ii) na.action possibilities (exclude, fail, omit, pass) ## (iii) na.action setting in original fit and in predict() ## (iii) NAs in (fixed effect) predictors vs RE grouping variables ## (iv) setting of allow.new.level ## NAs in original data (in the fixed or random effects) ## may lead to a model frame within the ## fitted object that is missing rows; if na.exclude was used, ## these will need to be reconstituted in the prediction. ## ## For the most part, 'na.action's used at the predict stage ## (i.e. for newdata) will work on NAs *in the fixed effects* ## without further intervention; 'na.pass' will automatically ## produce NA values in the output, so 'na.exclude' is not really ## necessary (but might get specified anyway) ## ## In the random effects, NAs in newdata will give a population-level ## prediction if allow.new.levels is TRUE; if it's FALSE they give ## an error (although it could be argued that in that case they ## should follow 'na.action' instead ...) if (any(...names() %in% c("ReForm", "REForm", "REform"))) stop("synonyms 'ReForm', 'REForm', 'REform' are deprecated: please use 're.form' instead") if (...length() > 0) warning("unused arguments ignored") type <- match.arg(type) if (!is.null(terms)) stop("terms functionality for predict not yet implemented") if (!is.null(newparams)) object <- setParams(object,newparams) if (is.null(newdata) && is.null(re.form) && is.null(newparams) && !random.only) { ## raw predict() call, just return fitted values ## (inverse-link if appropriate) if (isLMM(object) || isNLMM(object)) { ## make sure we do *NOT* have NAs in fitted object pred <- na.omit(fitted(object)) } else { ## inverse-link pred <- switch(type,response=object@resp$mu, ## == fitted(object), link=object@resp$eta) eta <- object@resp$eta if (is.null(nm <- rownames(model.frame(object)))) nm <- seq_along(pred) names(pred) <- nm } fit.na.action <- NULL ## flow jumps to end for na.predict } else { ## newdata and/or re.form and/or newparams and/or random.only specified fit.na.action <- attr(object@frame,"na.action") ## original NA action nobs <- if (is.null(newdata)) nrow(object@frame) else nrow(newdata) pred <- rep(0,nobs) if (!random.only) { X <- getME(object, "X") X.col.dropped <- attr(X, "col.dropped") ## modified from predict.glm ... if (is.null(newdata)) { ## Use original model 'X' matrix and offset ## orig. offset: will be zero if there are no matches ... offset <- model.offset(model.frame(object)) if (is.null(offset)) offset <- 0 } else { ## new data specified ## evaluate new fixed effect RHS <- formula(substitute(~R, list(R=RHSForm(formula(object,fixed.only=TRUE))))) ## https://github.com/lme4/lme4/issues/414 ## contrasts are not relevant in random effects; ## model.frame.default warns about dropping contrasts ## if (1) xlev is specified and (2) any factors in ## original data frame had contrasts set ## alternative solution: drop contrasts manually ## (could assign to a new variable newdata2 for safety, ## but I don't think newdata ## is used downstream in this function?) ## isFacND <- which(vapply(newdata, is.factor, FUN.VALUE = TRUE)) ## for (j in isFacND) { ## attr(newdata[[j]], "contrasts") <- NULL ## } orig.fixed.levs <- get.orig.levs(object, fixed.only=TRUE, newdata = newdata) mfnew <- suppressWarnings( model.frame(delete.response(terms(object, fixed.only=TRUE, data = newdata)), newdata, na.action = na.action, xlev = orig.fixed.levs)) X <- model.matrix(RHS, data=mfnew, contrasts.arg=attr(X,"contrasts")) ## hack to remove unused interaction levels? ## X <- X[,colnames(X0)] offset <- 0 # rep(0, nrow(X)) tt <- terms(object, data = newdata) if (!is.null(off.num <- attr(tt, "offset"))) { for (i in off.num) offset <- offset + eval(attr(tt,"variables")[[i + 1]], newdata) } ## FIXME?: simplify(no need for 'mfnew'): can this be different from 'na.action'? fit.na.action <- attr(mfnew,"na.action") ## only need to drop if new data specified ... if(is.numeric(X.col.dropped) && length(X.col.dropped) > 0) X <- X[, -X.col.dropped, drop=FALSE] } pred <- drop(X %*% fixef(object)) ## FIXME:: need to unname() ? ## FIXME: is this redundant?? ## if (!is.null(frOffset <- attr(object@frame,"offset"))) ## offset <- offset + eval(frOffset, newdata) pred <- pred+offset } ## end !(random.only) if (isRE(re.form)) { if (is.null(re.form)) re.form <- reOnly(formula(object)) # RE formula only rfd <- if (is.null(newdata)) { ## try to retrieve original data ... fall back to model frame if necessary ## FIXME: this doesn't solve the problem if columns of model frame and data ## diverge (e.g. transformed objects [log(x)], offsets [offset(x)] ... will ## fail farther along tryCatch(getData(object), error = function(e) object@frame) } else newdata newRE <- mkNewReTrms(object, rfd, re.form, na.action=na.action, allow.new.levels=allow.new.levels) REvals <- base::drop(as(newRE$b %*% newRE$Zt, "matrix")) ## only needed if called as simulation? NAs sometimes excluded within mkNewReTrms ... if (length(pred) != length(REvals)) { if (!class(fit.na.action) %in% c("omit", "exclude") && length(fit.na.action)>0) { stop("fixed/RE pred length mismatch") } REvals <- REvals[-fit.na.action] } pred <- pred + REvals if (random.only) { fit.na.action <- attr(newRE$Zt,"na.action") } } if (isGLMM(object) && type=="response") { eta <- pred pred <- object@resp$family$linkinv(pred) } } ## newdata/newparams/re.form ## fill in NAs as appropriate: ## if NAs were detected in original model fit, OR in updated model frame construction ## but DON'T double-NA if raw prediction in the first place if (is.null(newdata)) { fit.na.action <- attr(model.frame(object),"na.action") if (!missing(na.action)) { ## hack to override action where explicitly specified if (!is.null(fit.na.action)) class(fit.na.action) <- class(attr(na.action(NA),"na.action")) } } pred <- napredict(fit.na.action, pred) if (!se.fit) return(pred) if (!isLMM(object)) warning("se.fit computation uses an approximation to estimate the sampling distribution of the parameters") Cmat <- vcov_full(object) n_u <- length(getME(object, "u")) n_beta <- length(getME(object, "beta")) ## FIXME: these need to be fixed (????) if(is.null(newdata)) { X <- getME(object, "X") if(is.null(re.form)) { Z <- getME(object, "Z") } else { if(isRE(re.form)) { ## FIXME: newRE is not computed here Z <- t(newRE$Zt) } else { Z <- Matrix(0, nrow = nrow(X), ncol = n_u) } } } else { if(isRE(re.form)) { Z <- t(newRE$Zt) } else { ## this is inefficient and we could just calculate ## X %*% Cmat[X part only] t(X) instead Z <- Matrix(0, nrow = nrow(X), ncol = n_u) } } if(random.only) X <- Matrix(0, nrow = nrow(Z), ncol = n_beta) ZX <- cbind(Z, X) ## Subsetting Cmat if (ncol(ZX) != nrow(Cmat)) { Cmat_names <- rownames(Cmat) ## Subsetting appears to occur in the case we use newRE; Z_factors <- newRE$flist C_factors <- object@flist cnms <- object@cnms fix_nms <- colnames(object@pp$X) ## Cmat is padded with zeros for new levels if(allow.new.levels){ Cmat_mod <- pad_Cmat(Cmat, C_factors, Z_factors, Cmat_names, cnms) Cmat <- Cmat_mod$Cmat Cmat_names <- Cmat_mod$Cmat_names C_factors <- Cmat_mod$C_factors } is_group_term <- !Cmat_names %in% fix_nms ## looking to compute the groups (factor levels) that are actually ## included in the Z matrix keep_idx <- !is_group_term mask <- unlist(lapply( intersect(names(C_factors), names(Z_factors)), function(grp) { level_mask <- levels(C_factors[[grp]]) %in% levels(Z_factors[[grp]]) rep(level_mask, each = length(cnms[[grp]])) } )) keep_idx[seq_along(mask)] <- is_group_term[seq_along(mask)] & mask # For now, don't worry about keeping it as dpoMatrix? Cmat <- Cmat[keep_idx, keep_idx] #Cmat <- as(Cmat[keep_idx, keep_idx], "dpoMatrix") } res <- list(fit = pred, se.fit = sqrt(quad.tdiag(Cmat, ZX)) ) if (isGLMM(object) && type=="response") { ## pred0 (linear predictor) will have been stored previously in this case ... res$se.fit <- res$se.fit*abs(family(object)$mu.eta(eta)) } res } # end {predict.merMod} ## all possible LHS evaluated values ... simulate.formula_lhs_matrix <- simulate.formula_lhs_numeric <- simulate.formula_lhs_integer <- simulate.formula_lhs_factor <- simulate.formula_lhs_logical <- simulate.formula_lhs_ <- function(object, nsim = 1, seed = NULL, newdata, ...) { ## N.B. *must* name all arguments so that 'object' is missing in .simulateFun() .simulateFun(formula=object, nsim=nsim, seed=seed, newdata=newdata, ...) } simulate.merMod <- function(object, nsim = 1, seed = NULL, use.u = FALSE, re.form=NA, newdata=NULL, newparams=NULL, family=NULL, cluster.rand=rnorm, allow.new.levels=FALSE, na.action=na.pass, ...) { ## FIXME: is there a reason this can't be a copy of .simulateFun ... ? mc <- match.call() mc[[1]] <- quote(lme4::.simulateFun) eval(mc, parent.frame(1L)) } .simulateFun <- function(object, nsim = 1, seed = NULL, use.u = FALSE, re.form=NA, newdata=NULL, newparams=NULL, formula=NULL,family=NULL, cluster.rand=rnorm, weights=NULL, offset=NULL, allow.new.levels=FALSE, na.action=na.pass, cond.sim=TRUE, ...) { if (...length() > 0) warning("unused arguments ignored") if (missing(object) && (is.null(formula) || is.null(newdata) || is.null(newparams))) { stop("if ",sQuote("object")," is missing, must specify all of ", sQuote("formula"),", ",sQuote("newdata"),", and ", sQuote("newparams")) } nullWts <- FALSE if (is.null(weights)) { if (is.null(newdata)) { weights <- weights(object) } else { nullWts <- TRUE # this flags that 'weights' wasn't supplied by the user weights <- rep(1,nrow(newdata)) } } if (missing(object)) { ## construct fake-fitted object from data, params ## copied from glm(): DRY; this all stems from the ## original sin of handling family=gaussian as a special ## case if (is.character(family)) family <- get(family, mode = "function", envir = parent.frame()) if (is.function(family)) family <- family() if (is.null(family) || (family$family=="gaussian" && family$link=="identity")) { lmod <- lFormula(formula,newdata, weights=weights, offset=offset, control=lmerControl(check.formula.LHS="ignore")) devfun <- do.call(mkLmerDevfun, lmod) object <- mkMerMod(environment(devfun), ## (real parameters will be filled in later) opt = list(par=NA,fval=NA,conv=NA), lmod$reTrms, fr = lmod$fr) } else { glmod <- glFormula(formula,newdata,family=family, weights=weights, offset=offset, control=glmerControl(check.formula.LHS="ignore")) devfun <- do.call(mkGlmerDevfun, glmod) object <- mkMerMod(environment(devfun), ## (real parameters will be filled in later) opt = list(par=NA,fval=NA,conv=NA), glmod$reTrms, fr = glmod$fr) } ## would like to do this: ## so predict() -> fitted() -> set default names will work ## instead we have a special case in fitted() ## object@resp$mu <- rep(NA_real_,nrow(model.frame(object))) } stopifnot((nsim <- as.integer(nsim[1])) > 0, is(object, "merMod")) if (!is.null(newparams)) { object <- setParams(object,newparams) } if (!missing(use.u)) { if (!missing(re.form)) { stop("should specify only one of ",sQuote("use.u"), " and ",sQuote("re.form")) } re.form <- if (use.u) NULL else ~0 } if (is.null(re.form)) { # formula w/o response re.form <- reOnly(formula(object)) } if(!is.null(seed)) set.seed(seed) if(!exists(".Random.seed", envir = .GlobalEnv)) runif(1) # initialize the RNG if necessary RNGstate <- .Random.seed sigma <- sigma(object) ## OBSOLETE: no longer use X? ## n <- nrow(X <- getME(object, "X")) ## link <- if (isGLMM(object)) "response" ## predictions, conditioned as specified, on link scale ## previously: do **NOT** use na.action as specified here (inherit ## from object instead, for consistency) ## now: use na.omit, because we have to match up ## with whatever is done in mkNewReTrms etapred <- predict(object, newdata=newdata, re.form=re.form, type="link", na.action=na.omit, allow.new.levels=allow.new.levels) n <- length(etapred) ## now add random components: ## only the ones we did *not* condition on ## compre.form <- noLHSform(formula(object)) ## construct RE formula ONLY: leave out fixed terms, ## which might have loose terms like offsets in them ... ##' combine unary or binary operator + arguments (sugar for 'substitute') makeOp <- function(x,y,op=NULL) { if (is.null(op)) { ## unary substitute(OP(X),list(X=x,OP=y)) } else substitute(OP(X,Y), list(X=x,OP=op,Y=y)) } compReForm <- reOnly(formula(object)) if (isRE(re.form)) { rr <- reOnly(re.form)[[2]] ## expand RE and strip ~ ftemplate <- substitute(.~.-XX, list(XX=rr)) compReForm <- update.formula(compReForm,ftemplate)[-2] ## update, then delete LHS } ## (1) random effect(s) sim.reff <- if (!is.null(reformulas::findbars(compReForm))) { newRE <- mkNewReTrms(object, newdata, compReForm, na.action=na.action, allow.new.levels=allow.new.levels) ## this *can* justifiably happen, if we are using mkNewReTrms ## in the context of predicting/simulating with a non-trivial ## re.form ... ## paranoia ... ## stopifnot(!is.null(newdata) || ## isTRUE(all.equal(newRE$Lambdat,getME(object,"Lambdat")))) U <- t(newRE$Lambdat %*% newRE$Zt) # == Z Lambda u <- cluster.rand(ncol(U)*nsim) ## UNSCALED random-effects contribution: as(U %*% matrix(u, ncol = nsim), "matrix") } else 0 val <- if (isLMM(object)) { ## result will be matrix n x nsim : etapred + sigma * (sim.reff + ## residual contribution: if (cond.sim) # always rnorm regardless of cluster.rand matrix(rnorm(n * nsim), ncol = nsim) else 0) } else if (isGLMM(object)) { ## GLMM ## n.b. DON'T scale random-effects (???) etasim <- etapred+sim.reff family <- normalizeFamilyName(object@resp$family) musim <- family$linkinv(etasim) #-> family$family == "negative.binomial" if(NB) ## ntot <- length(musim) ## FIXME: or could be dims["n"]? ## if (family$family=="binomial" && is.matrix(r <- model.response(object@frame))) { # unless the user passed in new weights, take them from the response matrix # e.g. cbind(incidence, size-incidence) ~ ... if(nullWts) weights <- rowSums(r) } if (is.null(sfun <- simfunList[[family$family]])) { ## family$simulate just won't work ... ## sim funs must be hard-coded, see below stop("simulation not implemented for family ", sQuote(family$family)) } ## don't rely on automatic recycling if (cond.sim) { val <- sfun(object, nsim=1, ftd = rep_len(musim, n*nsim), wts = weights) } else { val <- rep_len(musim, n*nsim) } ## split results into nsims: need special case for binomial matrix/factor responses if (family$family=="binomial" && is.matrix(r <- model.response(object@frame))) { lapply(split(val[[1]], gl(nsim, n, 2 * nsim * n)), matrix, ncol = 2, dimnames = list(NULL, colnames(r))) } else if (family$family=="binomial" && is.factor(val[[1]])) { split(val[[1]], gl(nsim,n)) } else split(val, gl(nsim,n)) } else stop("simulate method for NLMMs not yet implemented") ## from src/library/stats/R/lm.R if(!is.list(val)) { dim(val) <- c(n, nsim) val <- as.data.frame(val) } else class(val) <- "data.frame" names(val) <- paste("sim", seq_len(nsim), sep="_") ## have not yet filled in NAs, so need to use names of fitted ## object NOT including values with NAs f <- fitted(object) nm <- names(f)[!is.na(f)] ## unnamed input, *or* simulation from new data ... if (length(nm) == 0) { nm <- as.character(seq(n)) } else if (!is.null(newdata)) { nm <- rownames(newdata) } row.names(val) <- nm fit.na.action <- attr(model.frame(object), "na.action") if (!missing(na.action) && !is.null(fit.na.action)) { ## retrieve name of na.action type ("omit", "exclude", "pass") class.na.action <- class(attr(na.action(NA), "na.action")) if (!identical(class.na.action, class(fit.na.action))) { ## hack to override action where explicitly specified class(fit.na.action) <- class.na.action } } nafun <- function(x) { x[] <- apply(x, 2L, napredict, omit = fit.na.action); x } val <- if (is.matrix(val[[1]])) { ## have to handle binomial response matrices differently -- ## fill in NAs as appropriate in *both* columns structure(lapply(val, nafun), ## have to put this back into a (weird) data frame again, ## carefully (should do the napredict stuff ## earlier, so we don't have to redo this transformation!) class = "data.frame") } else { as.data.frame(lapply(val, napredict, omit=fit.na.action)) } ## reconstruct names: first get rid of NAs, then refill them ## as appropriate based on fit.na.action (which may be different ## from the original model's na.action spec) nm2 <- if (is.null(newdata)) names(napredict(na.omit(f), omit=fit.na.action)) else rownames(napredict(newdata, omit=fit.na.action)) if (length(nm2) > 0) row.names(val) <- nm2 structure(val, ## as.data.frame(lapply(...)) blows away na.action attribute, ## so we have to re-assign here na.action = fit.na.action, seed = RNGstate) }## .simulateFun() ######################## ## modified from stats/family.R ## TODO: the $simulate methods included with R families by default ## are not sufficiently flexible to be re-used by lme4. ## these are modified by: ## (1) adding a 'ftd' argument for the fitted values ## that defaults to fitted(object), to allow more flexibility ## e.g. in conditioning on or marginalizing over random effects ## (fitted(object) can be produced from predict.merMod() with ## alternative parameters rather than being extracted directly ## from the fitted objects -- this allows simulation with new ## parameters or new predictor variables ## (2) modifying wts from object$prior.weights to weights(object) ## (3) adding wts as an argument ## ## these can be incorporated by overwriting the simulate() ## components, or calling them ## gaussian_simfun <- function(object, nsim, ftd=fitted(object), wts=weights(object)) { if (any(wts != 1)) warning("ignoring prior weights") rnorm(nsim*length(ftd), ftd, sd=sigma(object)) } binomial_simfun <- function(object, nsim, ftd=fitted(object), wts=weights(object)) { n <- length(ftd) ntot <- n*nsim if (any(wts %% 1 != 0)) stop("cannot simulate from non-integer prior.weights") ## Try to figure out if the original data were ## proportions, a factor or a two-column matrix if (!is.null(m <- model.frame(object))) { y <- model.response(m) if(is.factor(y)) { ## ignore weights yy <- factor(levels(y)[1 + rbinom(ntot, size = 1, prob = ftd)], levels = levels(y)) split(yy, rep(seq_len(nsim), each = n)) } else if(is.matrix(y) && ncol(y) == 2) { yy <- vector("list", nsim) for (i in seq_len(nsim)) { Y <- rbinom(n, size = wts, prob = ftd) YY <- cbind(Y, wts - Y) colnames(YY) <- colnames(y) yy[[i]] <- YY } yy } else rbinom(ntot, size = wts, prob = ftd)/wts } else rbinom(ntot, size = wts, prob = ftd)/wts } poisson_simfun <- function(object, nsim, ftd=fitted(object), wts=weights(object)) { ## A Poisson GLM has dispersion fixed at 1, so prior weights ## do not have a simple unambiguous interpretation: ## they might be frequency weights or indicate averages. wts <- weights(object) if (any(wts != 1)) warning("ignoring prior weights") rpois(nsim*length(ftd), ftd) } ##' FIXME: need a gamma.shape.merMod method in order for this to work. ##' (see initial shot at gamma.shape.merMod below) Gamma_simfun <- function(object, nsim, ftd=fitted(object), wts=weights(object)) { if (any(wts != 1)) message("using weights to scale shape parameter") ## used to use gamma.shape(), but sigma() is more general ## (wouldn't work *outside* of the merMod context though) shape <- 1/sigma(object)^2*wts rgamma(nsim*length(ftd), shape = shape, rate = shape/ftd) } gamma.shape.merMod <- function(object, ...) { if(family(object)$family != "Gamma") stop("Can not fit gamma shape parameter because Gamma family not used") y <- getME(object, "y") mu <- getME(object, "mu") w <- weights(object) # Sec 8.3.2 (MN) L <- w*(log(y/mu)-((y-mu)/mu)) dev <- -2*sum(L) # Eqs. between 8.2 & 8.3 (MN) Dbar <- dev/length(y) structure(list(alpha = (6+2*Dbar)/(Dbar*(6+Dbar)), SE = NA), # FIXME: obtain standard error class = "gamma.shape") } inverse.gaussian_simfun <- function(object, nsim, ftd=fitted(object), wts = weights(object)) { if (any(wts != 1)) message("using weights as inverse variances") if (!requireNamespace("statmod")) { stop("The ",sQuote("statmod")," package must be installed ", " in order to simulate inverse-Gaussian distributions") } statmod::rinvgauss(nsim * length(ftd), mean = ftd, shape= wts/sigma(object)) } ## in the original MASS version, .Theta is assigned into the environment ## (triggers a NOTE in R CMD check) ## modified from @aosmith16 GH contribution negative.binomial_simfun <- function (object, nsim, ftd = fitted(object), wts=weights(object)) { if (any(wts != 1)) warning("ignoring prior weights") theta <- getNBdisp(object) rnbinom(nsim * length(ftd), mu = ftd, size = theta) } simfunList <- list(gaussian = gaussian_simfun, binomial = binomial_simfun, poisson = poisson_simfun, Gamma = Gamma_simfun, negative.binomial = negative.binomial_simfun, inverse.gaussian = inverse.gaussian_simfun) lme4/R/error_factory.R0000644000176200001440000000615315022107260014317 0ustar liggesusers#' Catch errors and warnings and store them for subsequent evaluation #' #' Factory modified from a version written by Martin Morgan on Stack Overflow (see below). #' Factory generates a function which is appropriately wrapped by error handlers. #' If there are no errors and no warnings, the result is provided. #' If there are warnings but no errors, the result is provided with a warn attribute set. #' If there are errors, the result retutrns is a list with the elements of warn and err. #' This is a nice way to recover from a problems that may have occurred during loop evaluation or during cluster usage. #' Check the references for additional related functions. #' I have not included the other factory functions included in the original Stack Overflow answer because they did not play well with the return item as an S4 object. #' @export #' @param fun The function to be turned into a factory #' @param debug print debugging statements? #' @param errval the value to be returned from the function if an error is thrown #' @param types which types to catch? #' @return The result of the function given to turn into a factory. If this function was in error "An error as occurred" as a character element. factory-error and factory-warning attributes may also be set as appropriate. #' @references #' \url{http://stackoverflow.com/questions/4948361/how-do-i-save-warnings-and-errors-as-output-from-a-function} #' @author Martin Morgan; Modified by Russell S. Pierce and Ben Bolker #' @examples #' f.log <- factory(log) #' f.log("a") #' f.log.NA <- factory(log,errval=NA) #' f.log.NA("a") #' f.as.numeric <- factory(as.numeric) #' f.as.numeric(c("a","b",1)) factory <- function (fun, debug=FALSE, errval="An error occurred in the factory function", types=c("message","warning","error")) { function(...) { errorOccurred <- FALSE warn <- err <- msg <- NULL res <- withCallingHandlers(tryCatch(fun(...), error = function(e) { if (debug) cat("error: ",conditionMessage(e),"\n") err <<- conditionMessage(e) errorOccurred <<- TRUE NULL }), warning = function(w) { if (!"warning" %in% types) { warning(conditionMessage(w)) } else { warn <<- append(warn, conditionMessage(w)) invokeRestart("muffleWarning") } }, message = function(m) { if (debug) cat("message: ",conditionMessage(m),"\n") if (!"message" %in% types) { message(conditionMessage(m)) } else { msg <<- append(msg, conditionMessage(m)) invokeRestart("muffleMessage") } }) if (errorOccurred) { if (!"error" %in% types) stop(err) res <- errval } setattr <- function(x, attrib, value) { attr(x,attrib) <- value x } attr_fun <- function(x,str,msg) { setattr(x,paste0("factory-",str), if(is.character(msg)) msg else NULL) } res <- attr_fun(res, "message", msg) res <- attr_fun(res, "warning", warn) res <- attr_fun(res, "error", err) return(res) } } lme4/R/plots.R0000644000176200001440000001110215022107260012566 0ustar liggesusers### Plots for the ranef.mer class ---------------------------------------- ##' @importFrom lattice dotplot ##' @S3method dotplot ranef.mer dotplot.ranef.mer <- function(x, data, main = TRUE, transf=I, level = 0.95, ...) { rng <- qnorm((1+level)/2) prepanel.ci <- function(x, y, se, subscripts, ...) { if (is.null(se)) return(list()) x <- as.numeric(x) hw <- rng * as.numeric(se[subscripts]) list(xlim = range(transf(x - hw), transf(x + hw), finite = TRUE)) } panel.ci <- function(x, y, se, subscripts, pch = 16, horizontal = TRUE, col = dot.symbol$col, lty.h = dot.line$lty, lty.v = dot.line$lty, lwd.h = dot.line$lwd, lwd.v = dot.line$lwd, col.line.h = dot.line$col, col.line.v = dot.line$col, levels.fos = unique(y), groups = NULL, ...) { x <- as.numeric(x) y <- as.numeric(y) dot.line <- trellis.par.get("dot.line") dot.symbol <- trellis.par.get("dot.symbol") sup.symbol <- trellis.par.get("superpose.symbol") panel.abline(h = levels.fos, col = col.line.h, lty = lty.h, lwd = lwd.h) panel.abline(v = 0, col = col.line.v, lty = lty.v, lwd = lwd.v) if (!is.null(se)) { se <- as.numeric(se[subscripts]) panel.segments( transf(x - rng * se), y, transf(x + rng * se), y, col = 'black') } panel.xyplot(transf(x), y, pch = pch, col = col, ...) } f <- function(nx, ...) { ss <- asDf0(x,nx) mtit <- if(main) nx dotplot(.nn ~ values | ind, ss, se = ss$se, prepanel = prepanel.ci, panel = panel.ci, xlab = NULL, main = mtit, ...) } setNames(lapply(names(x), f, ...), names(x)) } ##' @importFrom graphics plot ##' @S3method plot ranef.mer plot.ranef.mer <- function(x, y, ...) { lapply(x, function(x) { cn <- lapply(colnames(x), as.name) switch(min(ncol(x), 3), qqmath(eval(substitute(~ x, list(x = cn[[1]]))), x, ...), xyplot(eval(substitute(y ~ x, list(y = cn[[1]], x = cn[[2]]))), x, ...), splom(~ x, ...)) }) } ##' @importFrom lattice qqmath ##' @S3method qqmath ranef.mer qqmath.ranef.mer <- function(x, data, main = TRUE, level = 0.95, ...) { rng <- qnorm((1+level)/2) prepanel.ci <- function(x, y, se, subscripts, ...) { x <- as.numeric(x) se <- as.numeric(se[subscripts]) hw <- rng * se list(xlim = range(x - hw, x + hw, finite = TRUE)) } panel.ci <- function(x, y, se, subscripts, pch = 16, ...) { panel.grid(h = -1,v = -1) panel.abline(v = 0) x <- as.numeric(x) y <- as.numeric(y) se <- as.numeric(se[subscripts]) panel.segments(x - rng * se, y, x + rng * se, y, col = 'black') panel.xyplot(x, y, pch = pch, ...) } f <- function(nx) { xt <- x[[nx]] mtit <- if(main) nx # else NULL if (!is.null(pv <- attr(xt, "postVar"))) { d <- dim(pv) se <- vapply(seq_len(d[1]), function(i) sqrt(pv[i, i, ]), numeric(d[3])) nr <- nrow(xt) nc <- ncol(xt) ord <- unlist(lapply(xt, order)) + rep((0:(nc - 1)) * nr, each = nr) rr <- 1:nr ind <- gl(nc, nr, labels = names(xt)) xyplot(rep(qnorm((rr - 0.5)/nr), nc) ~ unlist(xt)[ord] | ind[ord], se = se[ord], prepanel = prepanel.ci, panel = panel.ci, scales = list(x = list(relation = "free")), ylab = "Standard normal quantiles", xlab = NULL, main = mtit, ...) } else { qqmath(~values|ind, data = stack(xt), scales = list(y = list(relation = "free")), xlab = "Standard normal quantiles", ylab = NULL, main = mtit, ...) } } sapply(names(x), f, simplify = FALSE) } ##' @importFrom graphics plot ##' @S3method plot coef.mer plot.coef.mer <- function(x, y, ...) { ## remove non-varying columns from frames reduced <- lapply(x, function(el) el[, !vapply(el, function(cc) all(cc == cc[1L]), NA)]) plot.ranef.mer(reduced, ...) } ##' @importFrom lattice dotplot ##' @S3method dotplot coef.mer dotplot.coef.mer <- function(x, data, ...) { mc <- match.call() mc[[1]] <- as.name("dotplot.ranef.mer") eval(mc) } lme4/R/checkConv.R0000644000176200001440000002046615113136605013353 0ustar liggesusers### Adapted from Rune Haubo's ordinal code ### extended convergence checking ### http://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions ## global (for use in several functions) help_str <- "\n See ?lme4::convergence and ?lme4::troubleshooting." ##' @param derivs typically the "derivs" attribute of optimizeLmer(); with ##' "gradients" and possibly "Hessian" component ##' @param coefs estimated function value ##' @param ctrl list of lists, each with \code{action} character strings specifying ##' what should happen when a check triggers, and \code{tol} numerical tolerances, ##' as is the result of \code{\link{lmerControl}()$checkConv}. ##' @param lbound vector of lower bounds \emph{for random-effects parameters only} ##' (length is taken to determine number of RE parameters) ##' @param debug useful if some checks are on "ignore", but would "trigger" ##' @param nobs the number of observations from the dataset ##' @param ndim the number of dimensions for the variance-covariance matrix ##' of random effects checkConv <- function(derivs, coefs, ctrl, lbound, debug = FALSE, nobs = NULL, ndim = NULL) { res <- list() ntheta <- length(lbound) ## check singularity first, and unconditionally ## (ignore "ignore") ccl <- ctrl[[cstr <- "check.conv.singular"]] ; checkCtrlLevels(cstr, cc <- ccl[["action"]]) ## similar logic to isSingular, but we don't have the fitted object to test bcoefs <- seq(ntheta)[lbound==0] is.singular <- any(coefs[bcoefs] < ccl$tol) if (doCheck(cc)) { ## singular fit ## are there other circumstances where we can get a singular fit? if (is.singular) { wstr <- "boundary (singular) fit: see help('isSingular')" res$messages <- c(res$messages,wstr) switch(cc, "message" = message(wstr), "warning" = warning(wstr), "stop" = stop(wstr), stop(gettextf("unknown check level for '%s'", cstr), domain=NA)) } } ## DON'T check remaining gradient issues if (is.singular) return(res) ## bail out if (is.null(derivs) || (!is.null(nobs) && nobs > ctrl$check.conv.nobsmax) || (!is.null(ndim) && ndim > ctrl$check.conv.nparmax)) { return(NULL) } if (anyNA(derivs$gradient)) return(list(code = -5L, messages = gettextf("Gradient contains NAs"))) ## gradients: ## check absolute gradient (default) ccl <- ctrl[[cstr <- "check.conv.grad"]] ; checkCtrlLevels(cstr, cc <- ccl[["action"]]) wstr <- NULL if (doCheck(cc)) { scgrad <- tryCatch(with(derivs,solve(chol(Hessian),gradient)), error=function(e)e) if (inherits(scgrad, "error") || ## some BLAS versions return NA rather than throwing an error? ## GH #677 any(is.na(scgrad))) { wstr <- "unable to evaluate scaled gradient" res$code <- -1L } else { ## find parallel *minimum* of scaled and absolute gradient ## the logic here is that we can sometimes get large ## *scaled* gradients even when the *absolute* gradient ## is small because the curvature is very flat as well ... mingrad <- pmin(abs(scgrad),abs(derivs$gradient)) maxmingrad <- max(mingrad) if (maxmingrad > ccl$tol) { w <- which.max(maxmingrad) res$code <- -1L wstr <- gettextf("Model failed to converge with max|grad| = %g (tol = %g, component %d)", maxmingrad, ccl$tol,w) wstr <- paste0(wstr, help_str) } } if (!is.null(wstr)) { res$messages <- wstr switch(cc, "warning" = warning(wstr), "stop" = stop(wstr), stop(gettextf("unknown check level for '%s'", cstr), domain=NA)) } ## note: kktc package uses gmax > kkttol * (1 + abs(fval)) ## where kkttol defaults to 1e-3 and fval is the objective f'n value ## check relative gradient (only if enabled) if (!is.null(ccl$relTol) && (max.rel.grad <- max(abs(derivs$gradient/coefs))) > ccl$relTol) { res$code <- -2L wstr <- gettextf("Model failed to converge with max|relative grad| = %g (tol = %g)", max.rel.grad, ccl$relTol) wstr <- paste0(wstr, help_str) res$messages <- wstr switch(cc, "warning" = warning(wstr), "stop" = stop(wstr), stop(gettextf("unknown check level for '%s'", cstr), domain=NA)) } } ccl <- ctrl[[cstr <- "check.conv.hess"]] ; checkCtrlLevels(cstr, cc <- ccl[["action"]]) if (doCheck(cc)) { if (length(coefs) > ntheta) { ## GLMM, check for issues with beta parameters H.beta <- derivs$Hessian[-seq(ntheta),-seq(ntheta)] resHess <- checkHess(H.beta, ccl$tol, "fixed-effect") if (any(resHess$code!=0)) { res$code <- resHess$code res$messages <- c(res$messages,resHess$messages) wstr <- paste(resHess$messages,collapse=";") switch(cc, "warning" = warning(wstr), "stop" = stop(wstr), stop(gettextf("unknown check level for '%s'", cstr), domain=NA)) } } resHess <- checkHess(derivs$Hessian, ccl$tol) if (any(resHess$code != 0)) { res$code <- resHess$code res$messages <- c(res$messages,resHess$messages) wstr <- paste(resHess$messages,collapse=";") switch(cc, "warning" = warning(wstr), "stop" = stop(wstr), stop(gettextf("unknown check level for '%s'", cstr), domain=NA)) } } if (debug && length(res$messages) > 0) { print(res$messages) } res } checkHess <- function(H, tol, hesstype="") { ## FIXME: not sure why we decided to save messages as a list ## rather than as a character vector?? res <- list(code=numeric(0),messages=list()) evd <- tryCatch(eigen(H, symmetric=TRUE, only.values=TRUE)$values, error=function(e)e) if (inherits(evd,"error")) { res$code <- -6L res$messages <- gettextf("Problem with Hessian check (infinite or missing values?)") } else { negative <- sum(evd < -tol) if(negative) { res$code <- -3L res$messages <- gettextf(paste("Model failed to converge:", "degenerate",hesstype,"Hessian with %d negative eigenvalues"), negative) res$messages <- paste0(res$messages, help_str) } else { zero <- sum(abs(evd) < tol) if(zero || inherits(tryCatch(chol(H), error=function(e)e), "error")) { res$code <- -4L res$messages <- paste(hesstype,"Hessian is numerically singular: parameters are not uniquely determined") } else { res$cond.H <- max(evd) / min(evd) if(max(evd) * tol > 1) { res$code <- c(res$code, 2L) res$messages <- c(res$messages, paste("Model is nearly unidentifiable: ", "very large eigenvalue", "\n - Rescale variables?", sep="")) } if ((min(evd) / max(evd)) < tol) { res$code <- c(res$code, 3L) ## consider skipping warning message if we've ## already hit the previous flag? if(!5L %in% res$code) { res$messages <- c(res$messages, paste("Model is nearly unidentifiable: ", "large eigenvalue ratio", "\n - Rescale variables?", sep="")) } } } } } if (length(res$code)==0) res$code <- 0 res } lme4/LICENSE.note0000644000176200001440000000022615022107260013057 0ustar liggesusersThis package is licensed under GPL (>=2), except for the code in R/simulate.formula.R, which is licensed under the MIT license (details in that file).lme4/vignettes/0000755000176200001440000000000015113144725013126 5ustar liggesuserslme4/vignettes/lmer.bib0000644000176200001440000004257115022107260014544 0ustar liggesusers%% This BibTeX bibliography file was created using BibDesk. %% http://bibdesk.sourceforge.net/ %% Created for Steven Walker at 2014-02-14 16:07:20 -0500 %% Saved with string encoding Unicode (UTF-8) @InCollection{Chambers:1993, author = {John M. Chambers}, title = {Linear Models}, booktitle = {Statistical Models in \proglang{S}}, publisher = {Chapman \& Hall}, year = 1993, editor = {John M. Chambers and Trevor J. Hastie}, chapter = 4, pages = {95--144}, } @book{Rauden:Bryk:2002, Author = {Stephen W. Raudenbush and Anthony S. Bryk}, Edition = {2nd}, Isbn = {0-7619-1904-X}, Publisher = {Sage}, Title = {Hierarchical Linear Models: Applications and Data Analysis Methods}, Year = 2002 } @book{MLwiNUser:2000, Address = {London}, Author = {J. Rasbash and W. Browne and H. Goldstein and M. Yang and I. Plewis}, Publisher = {Multilevel Models Project, Institute of Education, University of London}, Title = {A User's Guide to \pkg{MLwiN}}, Year = 2000} @Book{davis06:csparse_book, address = {Philadelphia, PA}, author = {Tim Davis}, publisher = {SIAM}, title = {Direct Methods for Sparse Linear Systems}, year = 2006, doi = {10.1137/1.9780898718881}, } @Article{laird_ware_1982, author = {Nan M. Laird and James H. Ware}, journal = {Biometrics}, pages = {963--974}, title = {Random-Effects Models for Longitudinal Data}, volume = 38, number = 4, year = 1982, doi = {10.2307/2529876}, } @Book{bateswatts88:_nonlin, address = {Hoboken, NJ}, author = {Douglas M. Bates and Donald G. Watts}, publisher = {John Wiley \& Sons}, title = {Nonlinear Regression Analysis and Its Applications}, year = 1988, doi = {10.1002/9780470316757}, } @book{R:Pinheiro+Bates:2000, Author = {Jose C. Pinheiro and Douglas M. Bates}, Title = {Mixed-Effects Models in \proglang{S} and \proglang{S-PLUS}}, Year = 2000, Orderinfo = {springer.txt}, ISBN = {0-387-98957-0}, Publisher = {Springer-Verlag}, Abstract = {A comprehensive guide to the use of the `nlme' package for linear and nonlinear mixed-effects models.}, } @article{bates04:_linear, Author = {Douglas M. Bates and Saikat DebRoy}, Journal = {Journal of Multivariate Analysis}, doi = {10.1016/j.jmva.2004.04.013}, Number = 1, Pages = {1--17}, Title = {Linear Mixed Models and Penalized Least Squares}, Volume = 91, Year = 2004} @article{gelman2005analysis, title = {Analysis of Variance --- Why it is More Important than Ever}, author = {Gelman, Andrew}, journal = {The Annals of Statistics}, volume = 33, number = 1, pages = {1--53}, year = 2005, doi = {10.1214/009053604000001048}, publisher = {Institute of Mathematical Statistics} } @ARTICLE{1977EfronAndMorris, author = {{Efron}, B. and {Morris}, C.}, title = "{Stein's Paradox in Statistics}", journal = {Scientific American}, year = 1977, month = may, volume = 236, pages = {119-127}, doi = {10.1038/scientificamerican0577-119}, adsurl = {http://adsabs.harvard.edu/abs/1977SciAm.236e.119E}, adsnote = {Provided by the SAO/NASA Astrophysics Data System} } @article{henderson_1982, author = {Charles R. {Henderson Jr.}}, Title = {Analysis of Covariance in the Mixed Model: Higher-Level, Nonhomogeneous, and Random Regressions}, Journal = {Biometrics}, Year = 1982, Volume = 38, Number = 3, Pages = {623--640}, Language = {English}, Publisher = {International Biometric Society}, Url = {http://www.jstor.org/stable/2530044}, } @article{golub_pereyra_1973, Author = {Golub, G. H. and Pereyra, V.}, Title = {The Differentiation of Pseudo-Inverses and Nonlinear Least Squares Problems Whose Variables Separate}, Year = 1973, Journal = {SIAM Journal on Numerical Analysis}, Volume = 10, Number = 2, Pages = {413--432}, doi = {10.1137/0710036}, } @article{sleepstudy, Author = {Gregory Belenky and Nancy J. Wesensten and David R. Thorne and Maria L. Thomas and Helen C. Sing and Daniel P. Redmond and Michael B. Russo and Thomas J. Balkin}, Date-Modified = {2014-02-14 21:07:17 +0000}, Journal = {Journal of Sleep Research}, Pages = {1--12}, Title = {Patterns of Performance Degradation and Restoration During Sleep Restriction and Subsequent Recovery: A Sleep Dose-Response Study}, Volume = 12, Year = 2003, doi = {10.1046/j.1365-2869.2003.00337.x}, } @article{Chen:2008:ACS:1391989.1391995, author = {Chen, Yanqing and Davis, Timothy A. and Hager, William W. and Rajamanickam, Sivasankaran}, title = {Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate}, journal = {ACM Trans. Math. Softw.}, year = 2008, volume = 35, number = 3, month = oct, issn = {0098-3500}, pages = {22:1--22:14}, articleno = 22, doi = {10.1145/1391989.1391995}, publisher = {ACM}, address = {New York, NY, USA}, keywords = {Cholesky factorization, linear equations, sparse matrices}, } @article{kenward_small_1997, author = {M. G Kenward and J. H Roger}, title = {Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood}, year = {1997}, journal = {Biometrics}, volume = {53}, number = {3}, pages = {983--997}, abstract = {Restricted maximum likelihood {(REML)} is now well established as a method for estimating the parameters of the general Gaussian linear model with a structured covariance matrix, in particular for mixed linear models. Conventionally, estimates of precision and inference for fixed effects are based on their asymptotic distribution, which is known to be inadequate for some small-sample problems. In this paper, we present a scaled Wald statistic, together with an F approximation to its sampling distribution, that is shown to perform well in a range of small sample settings. The statistic uses an adjusted estimator of the covariance matrix that has reduced small sample bias. This approach has the advantage that it reproduces both the statistics and F distributions in those settings where the latter is exact, namely for Hotelling T\${\textasciicircum}2\$ type statistics and for analysis of variance F-ratios. The performance of the modified statistics is assessed through simulation studies of four different {REML} analyses and the methods are illustrated using three examples.}, doi = {10.2307/2533558}, } @Article{Satterthwaite_1946, author = {F. E. Satterthwaite}, title = {An Approximate Distribution of Estimates of Variance Components}, journal = {Biometrics Bulletin}, year = 1946, volume = 2, number = 6, pages = {110-114}, doi = {10.2307/3002019}, } @Manual{gamm4, title = {\pkg{gamm4}: Generalized Additive Mixed Models Using \pkg{mgcv} and \pkg{lme4}}, author = {Simon Wood and Fabian Scheipl}, year = 2014, note = {\proglang{R} package version 0.2-3}, url = {http://CRAN.R-project.org/package=gamm4}, } @Manual{blme, title = {\pkg{blme}: {Bayesian} Linear Mixed-Effects Models}, author = {Vincent Dorie}, year = 2015, note = {R package version 1.0-4}, url = {http://CRAN.R-project.org/package=blme}, } @Article{blme2, title = {A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models}, author = {Yeojin Chung and Sophia Rabe-Hesketh and Vincent Dorie and Andrew Gelman and Jingchen Liu}, year = 2013, journal = {Psychometrika}, volume = 78, number = 4, pages = {685--709}, } @article{doran2007estimating, author={Doran, Harold and Bates, Douglas and Bliese, Paul and Dowling, Maritza}, title={Estimating the Multilevel {Rasch} Model: With the \pkg{lme4} Package}, year=2007, journal={Journal of Statistical Software}, volume=20, number=2, pages={1--18}, doi = {10.18637/jss.v020.i02}, publisher={American Statistical Association}, } @TechReport{Powell_bobyqa, author = {M. J. D. Powell}, title = {The {BOBYQA} Algorithm for Bound Constrained Optimization without Derivatives}, institution = {Centre for Mathematical Sciences, University of Cambridge}, year = {2009}, number = {DAMTP 2009/NA06}, address = {Cambridge, England}, url = {http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf} } @article{pinheiro_unconstrained_1996, title = {Unconstrained Parametrizations for Variance-Covariance Matrices}, volume = {6}, doi = {10.1007/BF00140873}, abstract = {The estimation of variance-covariance matrices through optimization of an objective function, such as a log-likelihood function, is usually a difficult numerical problem. Since the estimates should be positive semi-definite matrices, we must use constrained optimization, or employ a parametrization that enforces this condition. We describe here five different parametrizations for variance-covariance matrices that ensure positive definiteness, thus leaving the estimation problem unconstrained. We compare the parametrizations based on their computational efficiency and statistical interpretability. The results described here are particularly useful in maximum likelihood and restricted maximum likelihood estimation in linear and non-linear mixed-effects models, but are also applicable to other areas of statistics.}, number = {3}, urldate = {2010-01-05}, journal = {Statistics and Computing}, author = {Pinheiro, JosĂ© C. and Bates, Douglas M.}, year = {1996}, pages = {289--296} } @article{bolker_strategies_2013, title = {Strategies for Fitting Nonlinear Ecological Models in \proglang{R}, \pkg{AD Model Builder}, and \proglang{BUGS}}, volume = 4, doi = {10.1111/2041-210X.12044}, number = 6, urldate = {2013-06-11}, journal = {Methods in Ecology and Evolution}, author = {Bolker, Benjamin M. and Gardner, Beth and Maunder, Mark and Berg, Casper W. and Brooks, Mollie and Comita, Liza and Crone, Elizabeth and Cubaynes, Sarah and Davies, Trevor and de Valpine, Perry and Ford, Jessica and Gimenez, Olivier and KĂ©ry, Marc and Kim, Eun Jung and Lennert-Cody, Cleridy and Magnusson, Arni and Martell, Steve and Nash, John and Nielsen, Anders and Regetz, Jim and Skaug, Hans and Zipkin, Elise}, editor = {Ramula, Satu}, month = jun, year = 2013, pages = {501--512}, pdf={bbpapers/bolker_strategies_2013.pdf} } @Article{Klein_nelder_2013, author = {Kyle Klein and Julian Neira}, title = {{Nelder-Mead} Simplex Optimization Routine for Large-Scale Problems: A Distributed Memory Implementation}, journal = {Computational Economics}, year = 2013, doi = {10.1007/s10614-013-9377-8} } @Misc{merBoot, author = {JosĂ© A. Sánchez-Espigares and Jordi Ocaña}, title = {An \proglang{R} Implementation of Bootstrap Procedures for Mixed Models}, howpublished = {Conference presentation, useR!}, month = {July}, year = {2009}, note = {accessed 25 May 2014}, url = {http://www.r-project.org/conferences/useR-2009/slides/SanchezEspigares+Ocana.pdf} } @book{gelman_data_2006, address = {Cambridge, England}, title = {Data Analysis Using Regression and {Multilevel/Hierarchical} Models}, url = {http://www.stat.columbia.edu/~gelman/arm/}, publisher = {Cambridge University Press}, author = {Gelman, Andrew and Hill, Jennifer}, year = {2006}, keywords = {uploaded} } @article{khatri1968solutions, title={Solutions to Some Functional Equations and their Applications to Characterization of Probability Distributions}, author={Khatri, CG and Rao, C Radhakrishna}, journal={Sankhy{\=a}: The Indian Journal of Statistics A}, pages={167--180}, volume = 30, number = 2, year = 1968, } @incollection{zhang2006schur, year={2005}, booktitle={The Schur Complement and its Applications}, volume={4}, series={Numerical Methods and Algorithms}, editor={Zhang, Fuzhen}, title={Basic Properties of the Schur Complement}, doi = {10.1007/0-387-24273-2_2}, publisher={Springer-Verlag}, author={Horn, RogerA. and Zhang, Fuzhen}, pages={17--46} } @book{gelman2013bayesian, title={Bayesian Data Analysis}, author={Gelman, Andrew and Carlin, John B and Stern, Hal S and Dunson, David B and Vehtari, Aki and Rubin, Donald B}, year={2013}, publisher={CRC press} } @Manual{Matrix_pkg, title = {\pkg{Matrix}: Sparse and Dense Matrix Classes and Methods}, author = {Douglas Bates and Martin Maechler}, year = 2015, note = {\proglang{R} package version 1.2-2}, url = {http://CRAN.R-project.org/package=Matrix}, } @Manual{minqa_pkg, title = {\pkg{minqa}: Derivative-Free Optimization Algorithms by Quadratic Approximation}, author = {Douglas Bates and Katharine M. Mullen and John C. Nash and Ravi Varadhan}, year = {2014}, note = {\proglang{R} package version 1.2.4}, url = {http://CRAN.R-project.org/package=minqa}, } @Article{optimx_pkg, author = {John C. Nash and Ravi Varadhan}, title = {Unifying Optimization Algorithms to Aid Software System Users: \pkg{optimx} for \proglang{R}}, journal = {Journal of Statistical Software}, year = 2011, volume = 43, number = 9, pages = {1--14}, doi = {10.18637/jss.v043.i09}, url = {http://www.jstatsoft.org/v43/i09/}, } @Misc{NLopt, author = {Steven G. Johnson}, title = {The \pkg{NLopt} Nonlinear-Optimization Package}, year = {2014}, url = {http://ab-initio.mit.edu/nlopt} } @Manual{nlme_pkg, title = {\pkg{nlme}: Linear and Nonlinear Mixed Effects Models}, author = {Jose Pinheiro and Douglas Bates and Saikat DebRoy and Deepayan Sarkar and {\proglang{R} Core Team}}, year = 2014, note = {\proglang{R} package version 3.1-117}, url = {http://CRAN.R-project.org/package=nlme}, } @Article{HLMdiag_pkg, title = {\pkg{HLMdiag}: A Suite of Diagnostics for Hierarchical Linear Models in \proglang{R}}, author = {Adam Loy and Heike Hofmann}, journal = {Journal of Statistical Software}, year = 2014, volume = 56, number = 5, pages = {1--28}, doi = {10.18637/jss.v056.i05}, url = {http://www.jstatsoft.org/v56/i05/}, } @Article{influenceME_pkg, title = {\proglang{Influence.ME}: Tools for Detecting Influential Data in Mixed Effects Models}, author = {Rense Nieuwenhuis and Manfred {Te Grotenhuis} and Ben Pelzer}, year = 2012, journal = {R Journal}, volume = 4, number = 2, pages = {38-47}, } @Manual{boot_pkg, author = {Angelo Canty and Brian Ripley}, year = 2015, title = { \pkg{boot}: Bootstrap \proglang{R} (\proglang{S-PLUS}) Functions}, note = {\proglang{R} package version 1.3-17}, url = {http://CRAN.R-project.org/package=boot} } @Book{DavisonHinkley1997, author = {A. C. Davison and D. V. Hinkley}, title = {Bootstrap Methods and Their Applications}, year = 1997, publisher = {Cambridge University Press}, ISBN = {0-521-57391-2}, address = {Cambridge, England} } @article{vaida2005conditional, title={Conditional Akaike Information for Mixed-Effects Models}, author={Vaida, Florin and Blanchard, Suzette}, journal={Biometrika}, volume={92}, number={2}, pages={351--370}, year={2005}, doi = {10.1093/biomet/92.2.351}, publisher={Biometrika Trust} } @book{cook1982residuals, title={Residuals and Influence in Regression}, author={Cook, R Dennis and Weisberg, Sanford}, year={1982}, publisher={New York: Chapman and Hall} } @comment -------- Software manuals, mostly R and R packages --------- @Manual{lme4, title = {\pkg{lme4}: Linear Mixed-Effects Models Using \pkg{Eigen} and \proglang{S}4}, author = {Douglas Bates and Martin Maechler and Ben Bolker and Steven Walker}, year = 2014, note = {\proglang{R} package version 1.1-7}, url = {http://CRAN.R-project.org/package=lme4}, } @Manual{R, title = {\proglang{R}: A Language and Environment for Statistical Computing}, author = {{\proglang{R} Core Team}}, organization = {\proglang{R} Foundation for Statistical Computing}, address = {Vienna, Austria}, year = 2015, url = {http://www.R-project.org/}, } @Unpublished{Julia, title = {\proglang{Julia}: A Fast Dynamic Language for Technical Computing}, author = {Jeff Bezanson and Stefan Karpinski and Viral B. Shah and Alan Edelman}, year = 2012, url = {http://arxiv.org/abs/1209.5145}, note = {{arXiv}:1209.5145 [cs.PL]}, } @Manual{MixedModels, title = {\pkg{MixedModels}: A \proglang{Julia} Package for Fitting (Statistical) Mixed-Effects Models}, author = {Douglas Bates}, year = 2015, note = {\proglang{Julia} package version 0.3-22}, url = {https://github.com/dmbates/MixedModels.jl}, } @Manual{lme4pureR, title = {\pkg{lme4pureR}: \pkg{lme4} in Pure \proglang{R}}, author = {Douglas Bates and Steven Walker}, year = 2013, note = {\proglang{R} package version 0.1-0}, url = {https://github.com/lme4/lme4pureR}, } @Manual{Eigen, title = {\pkg{Eigen}3}, author = {G Guennebaud and B Jacob and {and others}}, year = 2015, url = {http://eigen.tuxfamily.org/}, } @Manual{SuiteSparse, title = {\pkg{SuiteSparse}: A Suite of Sparse Matrix Software}, author = {Timothy A. Davis and others}, year = 2015, note = {Version 4.4-5}, url = {http://www.suitesparse.com/}, } @Book{lattice, title = {\pkg{lattice}: Multivariate Data Visualization with \proglang{R}}, author = {Deepayan Sarkar}, publisher = {Springer-Verlag}, address = {New York}, year = 2008, url = {http://lmdvr.R-Forge.R-project.org}, } lme4/vignettes/lme4.bib0000644000176200001440000000611615022107260014441 0ustar liggesusers@Book{bateswatts88:_nonlin, author = {Douglas M. Bates and Donald G. Watts}, title = {Nonlinear Regression Analysis and Its Applications}, publisher = {Wiley}, year = 1988} @Article{Davis:1996, author = {Tim Davis}, title = {An approximate minimal degree ordering algorithm}, journal = {SIAM J. Matrix Analysis and Applications}, year = 1996, volume = 17, number = 4, pages = {886-905} } @Misc{CSparse, author = {Tim Davis}, title = {{CSparse}: a concise sparse matrix package}, howpublished = {http://www.cise.ufl.edu/research/sparse/CSparse}, year = 2005 } @misc{Cholmod, author = {Tim Davis}, title = {{CHOLMOD}: sparse supernodal {Cholesky} factorization and update/downdate}, howpublished = {http://www.cise.ufl.edu/research/sparse/cholmod}, year = 2005 } @Book{mccullagh89:_gener_linear_model, author = {Peter McCullagh and John Nelder}, title = {Generalized Linear Models}, publisher = {Chapman and Hall}, year = 1989, edition = {2nd}} @Article{mccullough99:_asses_reliab_of_statis_softw, author = {B. D. McCullough}, title = {Assessing the reliability of statistical software: Part II}, journal = {The American Statistician}, year = 1999, volume = 53, number = 2, month = {May}} @Book{davis06:csparse_book, author = {Timothy A. Davis }, title = {Direct Methods for Sparse Linear Systems}, publisher = {SIAM}, year = 2006, series = {Fundamentals of Algorithms} } @Book{pinh:bate:2000, author = {Jos\'{e} C. Pinheiro and Douglas M. Bates}, title = {Mixed-Effects Models in {S} and {S-PLUS}}, year = 2000, pages = {528}, ISBN = {0-387-98957-9}, publisher = {Springer} } @Article{bate:debr:2004, author = {Douglas M. Bates and Saikat DebRoy}, title = {Linear Mixed Models and Penalized Least Squares}, journal = {J. of Multivariate Analysis}, year = 2004, note = {to appear} } @Book{mccullagh:nelder:1989, author = {P. McCullagh and J.A. Nelder}, title = {Generalized Linear Models}, publisher = {Chapman \& Hall}, year = 1989 } @TechReport{Davis:2004, author = {Timothy A. Davis}, title = {Algorithm 8xx: {A} concise sparse {C}holesky factorization package}, institution = {Department of Computer and Information Science and Engineering, University of Florida}, year = 2004 } @Article{tier:kada:1986, journal = JASA, volume = "81", number = "393", pages = "82--86", author = "Luke Tierney and Joseph B. Kadane", title = "Accurate approximations for posterior moments and densities", year = "1986", } @Book{Sing:Will:2003, author = {Judith D. Singer and John B. Willett}, title = {Applied Longitudinal Data Analysis}, publisher = {Oxford University Press}, year = 2003, ISBN = {0-19-515296-4} } @BOOK{R:Chambers+Hastie:1992, author = {John M. Chambers and Trevor J. Hastie}, title = {Statistical Models in {S}}, publisher = {Chapman \& Hall}, year = 1992, address = {London} } lme4/vignettes/downstream_methods.html0000644000176200001440000177217515032566716017756 0ustar liggesusers Downstream methods

Downstream methods

Many packages provide tools for downstream processing — e.g. plot diagnostics, model comparisons, visual plotting, and regression tables – that are compatible with merMod objects. This vignette provides instructions on some recommended packages with examples. Rather than attempting an exhaustive survey, We aimed to include the more popular packages.

Diagnostic Plots

While plot(merMod_object) provides some diagnostic plots (see ?lme4::plot.merMod), other packages provide more complete functionality.

This section emphasizes the performance and DHARMa package.

library(lme4)
# Example of a linear mixed-effects model (LMM)
mod_ss <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
# Assume a non-mixed model for comparison
mod_ss2 <- lm(Reaction ~ Days, sleepstudy)

# Another (LMM) example, and others for comparison
mod_cw = lmer(weight ~ Time + Diet + (1|Chick), data = ChickWeight, REML = FALSE)
mod_cw2 = lm(weight ~ Time + Diet, data = ChickWeight)
mod_cw3 = lmer(weight ~ Time + (1|Chick), data = ChickWeight, REML = FALSE)

# Example of a Poisson generalized linear mixed-effects model (GLMM)
form <- TICKS~YEAR+HEIGHT+(1|BROOD)+(1|INDEX)+(1|LOCATION)
mod_gt  <- glmer(form, family="poisson",data=grouseticks)

Performance

The performance package is excellent for evaluating the quality of model fit and works well with merMod objects (and many others). The first example we’ll show is performance::check_model(), which does checks for classical assumptions used for most linear models: normality of residuals, linear relationship, homogeneity of variance, outliers.

For mixed-effect models, it also checks for normality of random effects. The uncommonly used posterior predictive checks is meant to see whether the distributional family used fits well to the data.

performance::check_model(mod_ss)

For those working with mixed models, it may important to check whether some dimensions of the variance-covariance are estimated to be zero.

performance::check_singularity(mod_ss)
## [1] FALSE

DHARMa

The DHARMa package uses a simulation-based method for residual checks for generalized linear (mixed) models.

simulationOutput <- DHARMa::simulateResiduals(fittedModel = mod_ss)
plot(simulationOutput)

The left plot performs three tests, the Kolmogorov–Smirnov test, simulation-based dispersion tests (see ??DHARMa::testDispersion), and simulation-based outlier tests (see ??DHARMa::testOutliers).

Car

The car package was designed for “An R Companion to Applied Regression” to provide functions that are applied to a fitted regression model. The car::influencePlot() creates a diagnostic bubble plot that visualizes influential observations in a regression by plotting Studentized residuals against leverage (hat values), with bubble size representing Cook’s distance.

car::influencePlot(mod_ss)

##       StudRes       Hat     CookD
## 10  1.6589487 0.2931772 0.5707626
## 20  0.4498749 0.2931772 0.0419733
## 57  5.5270053 0.1218763 2.1198891
## 60 -4.5704359 0.2931772 4.3321637

Model Comparison & Performance

Most model comparisons for merMod objects will focus on the fixed effects, and the ones shown will be just for fixed effects unless otherwise stated.

Performance

performance::model_performance(mod_ss)
## # Indices of model performance
## 
## AIC      |     AICc |      BIC | R2 (cond.) | R2 (marg.) |   ICC |   RMSE |  Sigma
## ----------------------------------------------------------------------------------
## 1755.628 | 1756.114 | 1774.786 |      0.799 |      0.279 | 0.722 | 23.438 | 25.592

We can also use performance::compare_performance().

performance::compare_performance(mod_ss, mod_ss2)
## # Comparison of Model Performance Indices
## 
## Name    |   Model |  AIC (weights) | AICc (weights) |  BIC (weights) |   RMSE |  Sigma | R2 (cond.)
## ---------------------------------------------------------------------------------------------------
## mod_ss  | lmerMod | 1764.0 (>.999) | 1764.5 (>.999) | 1783.1 (>.999) | 23.438 | 25.592 |      0.799
## mod_ss2 |      lm | 1906.3 (<.001) | 1906.4 (<.001) | 1915.9 (<.001) | 47.449 | 47.715 |           
## 
## Name    | R2 (marg.) |   ICC |    R2 | R2 (adj.)
## ------------------------------------------------
## mod_ss  |      0.279 | 0.722 |       |          
## mod_ss2 |            |       | 0.286 |     0.282

Pbkrtest

The pbkrtest package implements three tests to examine fixed effects from linear mixed-effects models (LMM): - Parametric bootstrap test pbkrtest::PBmodcomp() - Kenward-Roger-type F-test pbkrtest::KRmodcomp() - Satterthwaite-type F-test pbkrtest::SATmodcomp()

fm0 <- lmer(weight ~ Time + (1|Chick), data = ChickWeight)
fm1 <- update(fm0, .~.-Time)

pbkrtest::PBmodcomp(fm0, fm1)
## Bootstrap test; time: 21.32 sec; samples: 1000; extremes: 0;
## large : weight ~ Time + (1 | Chick)
##          stat df   p.value    
## LRT    926.47  1 < 2.2e-16 ***
## PBtest 926.47     0.000999 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
pbkrtest::KRmodcomp(fm0, fm1)
## large : weight ~ Time + (1 | Chick)
## small : weight ~ (1 | Chick)
##          stat     ndf     ddf F.scaling   p.value    
## Ftest 2471.07    1.00  530.53         1 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
pbkrtest::SATmodcomp(fm0, fm1)
## large : weight ~ Time + (1 | Chick)
## small : weight ~ (1 | Chick)
##      statistic    ndf    ddf   p.value    
## [1,]    2471.7    1.0 530.93 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note: the pbkrtest::KRmodcomp() function was package was intended for lmerMod objects only, as the Kenward-Roger-type F-test was designed for fitted linear mixed models.

MuMIn

The MuMIn package provides tools for model selection by automating the process through subsets of the maximum model.

options(na.action = "na.fail")

mumin_compare = MuMIn::dredge(mod_cw)
mumin_compare
## Global model call: lmer(formula = weight ~ Time + Diet + (1 | Chick), data = ChickWeight, 
##     REML = FALSE)
## ---
## Model selection table 
##   (Intrc) Diet  Time df    logLik   AICc  delta weight
## 4   11.23    + 8.718  7 -2802.600 5619.4   0.00  0.996
## 3   27.84      8.726  4 -2811.172 5630.4  11.02  0.004
## 2  101.80    +        6 -3265.144 6542.4 923.04  0.000
## 1  121.00             3 -3274.405 6554.9 935.46  0.000
## Models ranked by AICc(x) 
## Random terms (all models): 
##   1 | Chick

MuMIn::dredge() doesn’t print the fitted model object, so to find which the labelled models 1, 2, etc., correspond to, use get.models(mumin_compare, subset = TRUE). The output tends to be long and is omitted for space reasons.

RLRsim

A common way to test the significance of random effects is through a likelihood ratio test. The RLRsim package includes fast simulation-based exact tests that is compatible with lmerMod objects.

# First model is one with the random effects,
# the second is must be a lm-object.
RLRsim::exactLRT(m = mod_cw, m0 = mod_cw2)
## No restrictions on fixed effects. REML-based inference preferable.
## 
##  simulated finite sample distribution of LRT. (p-value based on 10000 simulated values)
## 
## data:  
## LRT = 172.41, p-value < 2.2e-16

Multcomp

The multcomp package was designed for performing general linear hypotheses in parametric models.

glh_cw = multcomp::glht(mod_cw)
summary(glh_cw)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Fit: lmer(formula = weight ~ Time + Diet + (1 | Chick), data = ChickWeight, 
##     REML = FALSE)
## 
## Linear Hypotheses:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept) == 0  11.2311     5.5780   2.013  0.17828    
## Time == 0          8.7175     0.1753  49.742  < 0.001 ***
## Diet2 == 0        16.2193     9.0788   1.787  0.28082    
## Diet3 == 0        36.5527     9.0788   4.026  < 0.001 ***
## Diet4 == 0        30.0255     9.0855   3.305  0.00447 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

We can also look at confidence intervals for the pairwise difference between groups:

plot(glh_cw)

Car

car::Anova() can be used traditional ANOVA-style tables using Wald \(\chi^{2}\) statistics on the fixed effects only.

car::Anova(mod_cw)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: weight
##         Chisq Df Pr(>Chisq)    
## Time 2474.247  1  < 2.2e-16 ***
## Diet   20.466  3  0.0001359 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Insight

As its name suggests, the insight package was designed to easily gather information from statistical models from a variety of different object types. Their documentation already covers examples of merMod objects here.

Plotting & Prediction

When interpreting results, we may be interested in seeing the coefficient plots or effect plots. Usually, the first step requires predicting the response and then fitting the model (using plot() or ggplot()).

library(ggplot2)

Dotwhisker

The dotwhisker package was designed to easily make dot-and-whisker plots from regression results. We recommend scaling by two standard deviations as recommended by Gelman (2008)..

effects_gt <- broom.mixed::tidy(mod_cw, effect = "fixed", conf.int = TRUE)

dotwhisker::dwplot(effects_gt, by_2sd = TRUE)

Notice that we combined the usage of broom.mixed package to extract the fixed effects (for the dot-and-whisker plots). Details can be found by clicking the url for broom.mixed or see this section.

Emmeans

As its name implies, the emmeans package obtains the estimated marginal means.

More details and examples for lmerMod objects can be found here.

plot(emmeans::emmeans(mod_cw, "Diet"))

SjPlot

The sjPlot package was built for easier plotting and table outputs.

sjPlot::plot_model(mod_cw)

ggEffects

The ggEffects package also computes the marginal effects, returning ready-to-graph results via the ggplot2 package.

The ggEffects documentation already includes more details and examples for lmerMod objects.

predict_ss <- ggeffects::predict_response(mod_ss, "Days [0:9]")
ggplot(predict_ss, aes(x, predicted)) +
  geom_line() + labs(x = "Days", y = "Predicted Reaction") +
  geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.1)

The ggEffects package is supposed to be superseded by modelbased, however, it may run errors when using lmerMod objects.

Marginaleffects

As its package name implies, the goal of marginaleffects is to compute the marginal means as well as various other model comparisons for a lot of different classes, merMod objects being one of them.

More details and examples for mixed models can be found here.

library(marginaleffects)
# Note: datagrid depends on marginaleffects

pred_ss <- predictions(mod_ss, newdata = datagrid(Days = 0:9))
# Plot using ggplot2
ggplot(pred_ss, aes(x = Days, y = estimate)) +
  geom_line() +
  geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.1) +
  labs(x = "Days", y = "Predicted Reaction")

Formatted Regression Tables

Although the output can easily be seen by applying summary() to the merMod object, it can be useful to use packages that automatically format the results nicely into \(\LaTeX\), HTML, and text output. There are many such functions that appear to be compatiable with merMod objects.

In this section, we display the code (though it is not executed) along with the resulting HTML output. The corresponding versions for \(\LaTeX\) and plain text are equally straightforward.

SjPlot

The sjPlot package can be used for table outputs in HTML. There is a fantastic example written in their documentation here.

Parameters

The Parameters package, as its name suggests, extracts parameters from a fitted model. Their own documentation also includes examples of mixed models from lme4 here. and exact table formatting can be found here.

Huxtable

The Huxtable package can be used to create \(\LaTeX\) (see huxtable::print_latex()) and HTML (see huxtable::print_html()) output.

h_tab = huxtable::huxreg(mod_ss)
huxtable::print_html(h_tab) 
(1)
(Intercept) 251.405 
(6.825)
Days 10.467 
(1.546)
sd__(Intercept) 24.741 
(NA)     
cor__(Intercept).Days 0.066 
(NA)     
sd__Days 5.922 
(NA)     
sd__Observation 25.592 
(NA)     
N 180     
logLik -871.814 
AIC 1755.628 
*** p < 0.001; ** p < 0.01; * p < 0.05.

Stargazer

Stargazer was intended to create well formatted regression tables in \(\LaTeX\), HTML/CSS, and plain text.

stargazer::stargazer(mod_ss, type = "html") # use type = "latex" for LaTeX
Dependent variable:
Reaction
Days 10.467***
(1.546)
Constant 251.405***
(6.825)
Observations 180
Log Likelihood -871.814
Akaike Inf. Crit. 1,755.628
Bayesian Inf. Crit. 1,774.786
Note: p<0.1; p<0.05; p<0.01

Texreg

We could also use the texreg package to create \(\LaTeX\) texreg::texreg() and HTML texreg::htmlreg() tables.

texreg::htmlreg(mod_ss)
Statistical models
  Model 1
(Intercept) 251.41***
  (6.82)
Days 10.47***
  (1.55)
AIC 1755.63
BIC 1774.79
Log Likelihood -871.81
Num. obs. 180
Num. groups: Subject 18
Var: Subject (Intercept) 612.10
Var: Subject Days 35.07
Cov: Subject (Intercept) Days 9.60
Var: Residual 654.94
***p < 0.001; **p < 0.01; *p < 0.05

Memisc

The goal of the memisc package is to make it easier to deal with survey data sets, such as table formatting in \(\LaTeX\) (using memisc::mtable_format_latex()) and HTML (using memisc::mtable_format_html()).

mem_tab <- memisc::mtable("Model 1"=mod_cw,"Model 2"=mod_cw2,
                          "Model 3"=mod_cw3, summary.stats=c("sigma","R-squared","F","p","N"))

memisc::mtable_format_html(mem_tab)
Model 1 Model 2 Model 3
(Intercept) 11 . 244 10 . 924** 27 . 845***
(5 . 789) (3 . 361) (4 . 388)
Time 8 . 717*** 8 . 750*** 8 . 726***
(0 . 175) (0 . 222) (0 . 176)
Diet: 2/1 16 . 210 16 . 166***
(9 . 464) (4 . 086)
Diet: 3/1 36 . 543*** 36 . 499***
(9 . 464) (4 . 086)
Diet: 4/1 30 . 013** 30 . 233***
(9 . 471) (4 . 107)
N 578 578 578
R-squared 0 . 745
sigma 35 . 993
F 419 . 177
p 0 . 000

Significance: *** = p < 0.001; ** = p < 0.01; * = p < 0.05

Other

This section covers other external packages that may be useful but does not fall under the category of previous sections.

Broom.mixed

The broom package takes output from built-in functions in R and converts them into a tibble, which is an alternative to R’s built in data.frame.

Broom.mixed is a spin-off of broom where it takes outputs from outputs from specifically mixed models from various popular mixed model packages, and of course lme4 is one of them.

broom.mixed::tidy(mod_ss)
## # A tibble: 6 Ă— 6
##   effect   group    term                  estimate std.error statistic
##   <chr>    <chr>    <chr>                    <dbl>     <dbl>     <dbl>
## 1 fixed    <NA>     (Intercept)           251.          6.82     36.8 
## 2 fixed    <NA>     Days                   10.5         1.55      6.77
## 3 ran_pars Subject  sd__(Intercept)        24.7        NA        NA   
## 4 ran_pars Subject  cor__(Intercept).Days   0.0656     NA        NA   
## 5 ran_pars Subject  sd__Days                5.92       NA        NA   
## 6 ran_pars Residual sd__Observation        25.6        NA        NA

Equatiomatic

The equatiomatic package takes a fitted model and writes the equation for you, formatted in \(\LaTeX\).

equatiomatic::extract_eq(mod_ss)

The output provides \(\LaTeX\) code that outputs the following equation: \[ \begin{aligned} \operatorname{Reaction}_{i} &\sim N \left(\alpha_{j[i]} + \beta_{1j[i]}(\operatorname{Days}), \sigma^2 \right) \\ \left( \begin{array}{c} \begin{aligned} &\alpha_{j} \\ &\beta_{1j} \end{aligned} \end{array} \right) &\sim N \left( \left( \begin{array}{c} \begin{aligned} &\mu_{\alpha_{j}} \\ &\mu_{\beta_{1j}} \end{aligned} \end{array} \right) , \left( \begin{array}{cc} \sigma^2_{\alpha_{j}} & \rho_{\alpha_{j}\beta_{1j}} \\ \rho_{\beta_{1j}\alpha_{j}} & \sigma^2_{\beta_{1j}} \end{array} \right) \right) \text{, for Subject j = 1,} \dots \text{,J} \end{aligned} \]

lme4/vignettes/lmerperf.Rmd0000644000176200001440000001321515022107260015400 0ustar liggesusers--- title: "lme4 performance tips" --- ```{r opts, echo = FALSE, message = FALSE} library("knitr") knitr::opts_chunk$set( ) (load(system.file("testdata", "lmerperf.rda", package="lme4")))# 'ss' 'fitlist' ``` ```{r loadpkg,message=FALSE} library("lme4") ``` ## overview In general `lme4`'s algorithms scale reasonably well with the number of observations and the number of random effect levels. The biggest bottleneck is in the number of *top-level parameters*, i.e. covariance parameters for `lmer` fits or `glmer` fits with `nAGQ`=0 [`length(getME(model, "theta"))`], covariance and fixed-effect parameters for `glmer` fits with `nAGQ`>0. `lme4` does a derivative-free (by default) nonlinear optimization step over the top-level parameters. For this reason, "maximal" models involving interactions of factors with several levels each (e.g. `(stimulus*primer | subject)`) will be slow (as well as hard to estimate): if the two factors have `f1` and `f2` levels respectively, then the corresponding `lmer` fit will need to estimate `(f1*f2)*(f1*f2+1)/2` top-level parameters. `lme4` automatically constructs the random effects model matrix ($Z$) as a sparse matrix. At present it does *not* allow an option for a sparse fixed-effects model matrix ($X$), which is useful if the fixed-effect model includes factors with many levels. Treating such factors as random effects instead, and using the modular framework (`?modular`) to fix the variance of this random effect at a large value, will allow it to be modeled using a sparse matrix. (The estimates will converge to the fixed-effect case in the limit as the variance goes to infinity.) ## setting `calc.derivs = FALSE` After finding the best-fit model parameters (in most cases using *derivative-free* algorithms such as Powell's BOBYQA or Nelder-Mead, `[g]lmer` does a series of finite-difference calculations to estimate the gradient and Hessian at the MLE. These are used to try to establish whether the model has converged reliably, and (for `glmer`) to estimate the standard deviations of the fixed effect parameters (a less accurate approximation is used if the Hessian estimate is not available. As currently implemented, this computation takes `2*n^2 - n + 1` additional evaluations of the deviance, where `n` is the total number of top-level parameters. Using `control = [g]lmerControl(calc.derivs = FALSE)` to turn off this calculation can speed up the fit, e.g. ```{r noderivs, eval = FALSE} m0 <- lmer(y ~ service * dept + (1|s) + (1|d), InstEval, control = lmerControl(calc.derivs = FALSE)) ``` ```{r calcs, echo = FALSE} ## based on loaded lmerperf file t1 <- fitlist$basic$times[["elapsed"]] t2 <- fitlist$noderivs$times[["elapsed"]] pct <- round(100*(t1-t2)/t1) e1 <- fitlist$basic$optinfo$feval ``` Benchmark results for this run with and without derivatives show an approximately `r pct`% speedup (from `r round(t1)` to `r round(t2)` seconds on a Linux machine with AMD Ryzen 9 2.2 GHz processors). This is a case with only 2 top-level parameters, but the fit took only `r e1` deviance function evaluations (see `m0@optinfo$feval`) to converge, so the effect of the additional 7 ($n^2 -n +1$) function evaluations is noticeable. ## choice of optimizer ```{r glmeropt, echo=FALSE} gg <- glmerControl()$optimizer ``` `lmer` uses the "`r lmerControl()$optimizer`" optimizer by default; `glmer` uses a combination of `r gg[1]` (`nAGQ=0` stage) and `r gg[2]`. These are reasonably good choices, although switching `glmer` fits to `nloptwrap` for both stages may be worth a try. `allFits()` gives an easy way to check the timings of a large range of optimizers: ```{r times, as.is=TRUE, echo=FALSE} tt <- sort(ss$times[,"elapsed"]) tt2 <- data.frame(optimizer = names(tt), elapsed = tt) rownames(tt2) <- NULL knitr::kable(tt2) ``` As expected, bobyqa - both the implementation in the `minqa` package [`[g]lmerControl(optimizer="bobyqa")`] and the one in `nloptwrap` [`optimizer="nloptwrap"` or `optimizer="nloptwrap", optCtrl = list(algorithm = "NLOPT_LN_BOBYQA"`] - are fastest. ## changing optimizer tolerances Occasionally, the default optimizer stopping tolerances are unnecessarily strict. These tolerances are specific to each optimizer, and can be set via the `optCtrl` argument in `[g]lmerControl`. To see the defaults for `nloptwrap`: ```{r default} environment(nloptwrap)$defaultControl ``` ```{r calcs2, echo = FALSE} ## based on loaded lmerperf file t1 <- fitlist$basic$times[["elapsed"]] t2 <- fitlist$noderivs$times[["elapsed"]] t3 <- fitlist$nlopt_sloppy$times[["elapsed"]] pct <- round(100*(t1-t2)/t1) e1 <- fitlist$basic$optinfo$feval ``` In the particular case of the `InstEval` example, this doesn't help much - loosening the tolerances to `ftol_abs=1e-4`, `xtol_abs=1e-4` only saves 2 functional evaluations and a few seconds, while loosening the tolerances still further gives convergence warnings. ## parallelization/BLAS There are not many options for parallelizing `lme4`. Optimized BLAS does not seem to help much. ## other packages - `glmmTMB` may be faster than `lme4` for GLMMs with large numbers of top-level parameters, especially for negative binomial models (i.e. compared to `glmer.nb`) - the `MixedModels.jl` package in Julia may be *much* faster for some problems. You do need to install Julia. - see [this short tutorial](https://github.com/ginettelafit/MixedModelswithRandJulia) or [this example](https://github.com/RePsychLing/MixedModels-lme4-bridge/blob/master/using_jellyme4.ipynb) (Jupyter notebook) - the [JellyMe4](https://github.com/palday/JellyMe4.jl) and [jglmm](https://github.com/mikabr/jglmm) packages provide R interfaces lme4/vignettes/PLSvGLS.Rnw0000644000176200001440000004356215022107260015012 0ustar liggesusers\documentclass[12pt]{article} \usepackage{Sweave,amsmath,amsfonts,bm} \usepackage[authoryear,round]{natbib} \bibliographystyle{plainnat} \DeclareMathOperator \tr {tr} \DefineVerbatimEnvironment{Sinput}{Verbatim} {formatcom={\vspace{-1ex}},fontshape=sl, fontfamily=courier,fontseries=b, fontsize=\footnotesize} \DefineVerbatimEnvironment{Soutput}{Verbatim} {formatcom={\vspace{-1ex}},fontfamily=courier,fontseries=b,% fontsize=\footnotesize} %%\VignetteIndexEntry{PLS vs GLS for LMMs} %%\VignetteDepends{lme4} \title{Penalized least squares versus generalized least squares representations of linear mixed models} \author{Douglas Bates\\Department of Statistics\\% University of Wisconsin -- Madison} \begin{document} \SweaveOpts{engine=R,eps=FALSE,pdf=TRUE,strip.white=true,keep.source=TRUE} \SweaveOpts{include=FALSE} \setkeys{Gin}{width=\textwidth} \newcommand{\code}[1]{\texttt{\small{#1}}} \newcommand{\package}[1]{\textsf{\small{#1}}} \newcommand{\trans}{\ensuremath{^\prime}} <>= options(width=65,digits=5) #library(lme4) @ \maketitle \begin{abstract} The methods in the \code{lme4} package for \code{R} for fitting linear mixed models are based on sparse matrix methods, especially the Cholesky decomposition of sparse positive-semidefinite matrices, in a penalized least squares representation of the conditional model for the response given the random effects. The representation is similar to that in Henderson's mixed-model equations. An alternative representation of the calculations is as a generalized least squares problem. We describe the two representations, show the equivalence of the two representations and explain why we feel that the penalized least squares approach is more versatile and more computationally efficient. \end{abstract} \section{Definition of the model} \label{sec:Definition} We consider linear mixed models in which the random effects are represented by a $q$-dimensional random vector, $\bm{\mathcal{B}}$, and the response is represented by an $n$-dimensional random vector, $\bm{\mathcal{Y}}$. We observe a value, $\bm y$, of the response. The random effects are unobserved. For our purposes, we will assume a ``spherical'' multivariate normal conditional distribution of $\bm{\mathcal{Y}}$, given $\bm{\mathcal{B}}$. That is, we assume the variance-covariance matrix of $\bm{\mathcal{Y}}|\bm{\mathcal{B}}$ is simply $\sigma^2\bm I_n$, where $\bm I_n$ denotes the identity matrix of order $n$. (The term ``spherical'' refers to the fact that contours of the conditional density are concentric spheres.) The conditional mean, $\mathrm{E}[\bm{\mathcal{Y}}|\bm{\mathcal{B}}=\bm b]$, is a linear function of $\bm b$ and the $p$-dimensional fixed-effects parameter, $\bm\beta$, \begin{equation} \label{eq:condmean} \mathrm{E}[\bm{\mathcal{Y}}|\bm{\mathcal{B}}=\bm b]= \bm X\bm\beta+\bm Z\bm b , \end{equation} where $\bm X$ and $\bm Z$ are known model matrices of sizes $n\times p$ and $n\times q$, respectively. Thus \begin{equation} \label{eq:yconditional} \bm{\mathcal{Y}}|\bm{\mathcal{B}}\sim \mathcal{N}\left(\bm X\bm\beta+\bm Z\bm b,\sigma^2\bm I_n\right) . \end{equation} The marginal distribution of the random effects \begin{equation} \label{eq:remargin} \bm{\mathcal{B}}\sim\mathcal{N}\left(\bm 0,\sigma^2\bm\Sigma(\bm\theta)\right) \end{equation} is also multivariate normal, with mean $\bm 0$ and variance-covariance matrix $\sigma^2\bm\Sigma(\bm\theta)$. The scalar, $\sigma^2$, in (\ref{eq:remargin}) is the same as the $\sigma^2$ in (\ref{eq:yconditional}). As described in the next section, the relative variance-covariance matrix, $\bm\Sigma(\bm\theta)$, is a $q\times q$ positive semidefinite matrix depending on a parameter vector, $\bm\theta$. Typically the dimension of $\bm\theta$ is much, much smaller than $q$. \subsection{Variance-covariance of the random effects} \label{sec:revarcov} The relative variance-covariance matrix, $\bm\Sigma(\bm\theta)$, must be symmetric and positive semidefinite (i.e. $\bm x\trans\bm\Sigma\bm x\ge0,\forall\bm x\in\mathbb{R}^q$). Because the estimate of a variance component can be zero, it is important to allow for a semidefinite $\bm\Sigma$. We do not assume that $\bm\Sigma$ is positive definite (i.e. $\bm x\trans\bm\Sigma\bm x>0,\forall\bm x\in\mathbb{R}^q, \bm x\ne\bm 0$) and, hence, we cannot assume that $\bm\Sigma^{-1}$ exists. A positive semidefinite matrix such as $\bm\Sigma$ has a Cholesky decomposition of the so-called ``LDL$\trans$'' form. We use a slight modification of this form, \begin{equation} \label{eq:TSdef} \bm\Sigma(\bm\theta)=\bm T(\bm\theta)\bm S(\bm\theta)\bm S(\bm\theta)\bm T(\bm\theta)\trans , \end{equation} where $\bm T(\bm\theta)$ is a unit lower-triangular $q\times q$ matrix and $\bm S(\bm\theta)$ is a diagonal $q\times q$ matrix with nonnegative diagonal elements that act as scale factors. (They are the relative standard deviations of certain linear combinations of the random effects.) Thus, $\bm T$ is a triangular matrix and $\bm S$ is a scale matrix. Both $\bm T$ and $\bm S$ are highly patterned. \subsection{Orthogonal random effects} \label{sec:orthogonal} Let us define a $q$-dimensional random vector, $\bm{\mathcal{U}}$, of orthogonal random effects with marginal distribution \begin{equation} \label{eq:Udist} \bm{\mathcal{U}}\sim\mathcal{N}\left(\bm 0,\sigma^2\bm I_q\right) \end{equation} and, for a given value of $\bm\theta$, express $\bm{\mathcal{B}}$ as a linear transformation of $\bm{\mathcal{U}}$, \begin{equation} \label{eq:UtoB} \bm{\mathcal{B}}=\bm T(\bm\theta)\bm S(\bm\theta)\bm{\mathcal{U}} . \end{equation} Note that the transformation (\ref{eq:UtoB}) gives the desired distribution of $\bm{\mathcal{B}}$ in that $\mathrm{E}[\bm{\mathcal{B}}]=\bm T\bm S\mathrm{E}[\bm{\mathcal{U}}]=\bm 0$ and \begin{displaymath} \mathrm{Var}(\bm{\mathcal{B}})=\mathrm{E}[\bm{\mathcal{B}}\bm{\mathcal{B}}\trans] =\bm T\bm S\mathrm{E}[\bm{\mathcal{U}}\bm{\mathcal{U}}\trans]\bm S\bm T\trans=\sigma^2\bm T\bm S\bm S\bm T\trans=\bm\Sigma . \end{displaymath} The conditional distribution, $\bm{\mathcal{Y}}|\bm{\mathcal{U}}$, can be derived from $\bm{\mathcal{Y}}|\bm{\mathcal{B}}$ as \begin{equation} \label{eq:YgivenU} \bm{\mathcal{Y}}|\bm{\mathcal{U}}\sim\mathcal{N}\left(\bm X\bm\beta+\bm Z\bm T\bm S\bm u, \sigma^2\bm I\right) \end{equation} We will write the transpose of $\bm Z\bm T\bm S$ as $\bm A$. Because the matrices $\bm T$ and $\bm S$ depend on the parameter $\bm\theta$, $\bm A$ is also a function of $\bm\theta$, \begin{equation} \label{eq:Adef} \bm A\trans(\bm\theta)=\bm Z\bm T(\bm\theta)\bm S(\bm\theta) . \end{equation} In applications, the matrix $\bm Z$ is derived from indicator columns of the levels of one or more factors in the data and is a \emph{sparse} matrix, in the sense that most of its elements are zero. The matrix $\bm A$ is also sparse. In fact, the structure of $\bm T$ and $\bm S$ are such that pattern of nonzeros in $\bm A$ is that same as that in $\bm Z\trans$. \subsection{Sparse matrix methods} \label{sec:sparseMatrix} The reason for defining $\bm A$ as the transpose of a model matrix is because $\bm A$ is stored and manipulated as a sparse matrix. In the compressed column-oriented storage form that we use for sparse matrices, there are advantages to storing $\bm A$ as a matrix of $n$ columns and $q$ rows. In particular, the CHOLMOD sparse matrix library allows us to evaluate the sparse Cholesky factor, $\bm L(\bm\theta)$, a sparse lower triangular matrix that satisfies \begin{equation} \label{eq:SparseChol} \bm L(\bm\theta)\bm L(\bm\theta)\trans= \bm P\left(\bm A(\bm\theta)\bm A(\bm\theta)\trans+\bm I_q\right)\bm P\trans , \end{equation} directly from $\bm A(\bm\theta)$. In (\ref{eq:SparseChol}) the $q\times q$ matrix $\bm P$ is a ``fill-reducing'' permutation matrix determined from the pattern of nonzeros in $\bm Z$. $\bm P$ does not affect the statistical theory (if $\bm{\mathcal{U}}\sim\mathcal{N}(\bm 0,\sigma^2\bm I)$ then $\bm P\trans\bm{\mathcal{U}}$ also has a $\mathcal{N}(\bm 0,\sigma^2\bm I)$ distribution because $\bm P\bm P\trans=\bm P\trans\bm P=\bm I$) but, because it affects the number of nonzeros in $\bm L$, it can have a tremendous impact on the amount storage required for $\bm L$ and the time required to evaluate $\bm L$ from $\bm A$. Indeed, it is precisely because $\bm L(\bm\theta)$ can be evaluated quickly, even for complex models applied the large data sets, that the \code{lmer} function is effective in fitting such models. \section{The penalized least squares approach to linear mixed models} \label{sec:Penalized} Given a value of $\bm\theta$ we form $\bm A(\bm\theta)$ from which we evaluate $\bm L(\bm\theta)$. We can then solve for the $q\times p$ matrix, $\bm R_{\bm{ZX}}$, in the system of equations \begin{equation} \label{eq:RZX} \bm L(\theta)\bm R_{\bm{ZX}}=\bm P\bm A(\bm\theta)\bm X \end{equation} and for the $p\times p$ upper triangular matrix, $\bm R_{\bm X}$, satisfying \begin{equation} \label{eq:RX} \bm R_{\bm X}\trans\bm R_{\bm X}= \bm X\trans\bm X-\bm R_{\bm{ZX}}\trans\bm R_{\bm{ZX}} \end{equation} The conditional mode, $\tilde{\bm u}(\bm\theta)$, of the orthogonal random effects and the conditional mle, $\widehat{\bm\beta}(\bm\theta)$, of the fixed-effects parameters can be determined simultaneously as the solutions to a penalized least squares problem, \begin{equation} \label{eq:PLS} \begin{bmatrix} \tilde{\bm u}(\bm\theta)\\ \widehat{\bm\beta}(\bm\theta) \end{bmatrix}= \arg\min_{\bm u,\bm\beta}\left\| \begin{bmatrix}\bm y\\\bm 0\end{bmatrix} - \begin{bmatrix} \bm A\trans\bm P\trans & \bm X\\ \bm I_q & \bm 0 \end{bmatrix} \begin{bmatrix}\bm u\\\bm\beta\end{bmatrix} , \right\|^2 \end{equation} for which the solution satisfies \begin{equation} \label{eq:PLSsol} \begin{bmatrix} \bm P\left(\bm A\bm A\trans+\bm I\right)\bm P\trans & \bm P\bm A\bm X\\ \bm X\trans\bm A\trans\bm P\trans & \bm X\trans\bm X \end{bmatrix} \begin{bmatrix} \tilde{\bm u}(\bm\theta)\\ \widehat{\bm\beta}(\bm\theta) \end{bmatrix}= \begin{bmatrix}\bm P\bm A\bm y\\\bm X\trans\bm y\end{bmatrix} . \end{equation} The Cholesky factor of the system matrix for the PLS problem can be expressed using $\bm L$, $\bm R_{\bm Z\bm X}$ and $\bm R_{\bm X}$, because \begin{equation} \label{eq:PLSChol} \begin{bmatrix} \bm P\left(\bm A\bm A\trans+\bm I\right)\bm P\trans & \bm P\bm A\bm X\\ \bm X\trans\bm A\trans\bm P\trans & \bm X\trans\bm X \end{bmatrix} = \begin{bmatrix} \bm L & \bm 0\\ \bm R_{\bm Z\bm X}\trans & \bm R_{\bm X}\trans \end{bmatrix} \begin{bmatrix} \bm L\trans & \bm R_{\bm Z\bm X}\\ \bm 0 & \bm R_{\bm X} \end{bmatrix} . \end{equation} In the \code{lme4} package the \code{"mer"} class is the representation of a mixed-effects model. Several slots in this class are matrices corresponding directly to the matrices in the preceding equations. The \code{A} slot contains the sparse matrix $\bm A(\bm\theta)$ and the \code{L} slot contains the sparse Cholesky factor, $\bm L(\bm\theta)$. The \code{RZX} and \code{RX} slots contain $\bm R_{\bm Z\bm X}(\bm\theta)$ and $\bm R_{\bm X}(\bm\theta)$, respectively, stored as dense matrices. It is not necessary to solve for $\tilde{\bm u}(\bm\theta)$ and $\widehat{\bm\beta}(\bm\theta)$ to evaluate the \emph{profiled} log-likelihood, which is the log-likelihood evaluated $\bm\theta$ and the conditional estimates of the other parameters, $\widehat{\bm\beta}(\bm\theta)$ and $\widehat{\sigma^2}(\bm\theta)$. All that is needed for evaluation of the profiled log-likelihood is the (penalized) residual sum of squares, $r^2$, from the penalized least squares problem (\ref{eq:PLS}) and the determinant $|\bm A\bm A\trans+\bm I|=|\bm L|^2$. Because $\bm L$ is triangular, its determinant is easily evaluated as the product of its diagonal elements. Furthermore, $|\bm L|^2 > 0$ because it is equal to $|\bm A\bm A\trans + \bm I|$, which is the determinant of a positive definite matrix. Thus $\log(|\bm L|^2)$ is both well-defined and easily calculated from $\bm L$. The profiled deviance (negative twice the profiled log-likelihood), as a function of $\bm\theta$ only ($\bm\beta$ and $\sigma^2$ at their conditional estimates), is \begin{equation} \label{eq:profiledDev} d(\bm\theta|\bm y)=\log(|\bm L|^2)+n\left(1+\log(r^2)+\frac{2\pi}{n}\right) \end{equation} The maximum likelihood estimates, $\widehat{\bm\theta}$, satisfy \begin{equation} \label{eq:thetamle} \widehat{\bm\theta}=\arg\min_{\bm\theta}d(\bm\theta|\bm y) \end{equation} Once the value of $\widehat{\bm\theta}$ has been determined, the mle of $\bm\beta$ is evaluated from (\ref{eq:PLSsol}) and the mle of $\sigma^2$ as $\widehat{\sigma^2}(\bm\theta)=r^2/n$. Note that nothing has been said about the form of the sparse model matrix, $\bm Z$, other than the fact that it is sparse. In contrast to other methods for linear mixed models, these results apply to models where $\bm Z$ is derived from crossed or partially crossed grouping factors, in addition to models with multiple, nested grouping factors. The system (\ref{eq:PLSsol}) is similar to Henderson's ``mixed-model equations'' (reference?). One important difference between (\ref{eq:PLSsol}) and Henderson's formulation is that Henderson represented his system of equations in terms of $\bm\Sigma^{-1}$ and, in important practical examples, $\bm\Sigma^{-1}$ does not exist at the parameter estimates. Also, Henderson assumed that equations like (\ref{eq:PLSsol}) would need to be solved explicitly and, as we have seen, only the decomposition of the system matrix is needed for evaluation of the profiled log-likelihood. The same is true of the profiled the logarithm of the REML criterion, which we define later. \section{The generalized least squares approach to linear mixed models} \label{sec:GLS} Another common approach to linear mixed models is to derive the marginal variance-covariance matrix of $\bm{\mathcal{Y}}$ as a function of $\bm\theta$ and use that to determine the conditional estimates, $\widehat{\bm\beta}(\bm\theta)$, as the solution of a generalized least squares (GLS) problem. In the notation of \S\ref{sec:Definition} the marginal mean of $\bm{\mathcal{Y}}$ is $\mathrm{E}[\bm{\mathcal{Y}}]=\bm X\bm\beta$ and the marginal variance-covariance matrix is \begin{equation} \label{eq:marginalvarcovY} \mathrm{Var}(\bm{\mathcal{Y}})=\sigma^2\left(\bm I_n+\bm Z\bm T\bm S\bm S\bm T\trans\bm Z\trans\right)=\sigma^2\left(\bm I_n+\bm A\trans\bm A\right) =\sigma^2\bm V(\bm\theta) , \end{equation} where $\bm V(\bm\theta)=\bm I_n+\bm A\trans\bm A$. The conditional estimates of $\bm\beta$ are often written as \begin{equation} \label{eq:condbeta} \widehat{\bm\beta}(\bm\theta)=\left(\bm X\trans\bm V^{-1}\bm X\right)^{-1}\bm X\trans\bm V^{-1}\bm y \end{equation} but, of course, this formula is not suitable for computation. The matrix $\bm V(\bm\theta)$ is a symmetric $n\times n$ positive definite matrix and hence has a Cholesky factor. However, this factor is $n\times n$, not $q\times q$, and $n$ is always larger than $q$ --- sometimes orders of magnitude larger. Blithely writing a formula in terms of $\bm V^{-1}$ when $\bm V$ is $n\times n$, and $n$ can be in the millions does not a computational formula make. \subsection{Relating the GLS approach to the Cholesky factor} \label{sec:GLStoL} We can use the fact that \begin{equation} \label{eq:Vinv} \bm V^{-1}(\bm\theta)=\left(\bm I_n+\bm A\trans\bm A\right)^{-1}= \bm I_n-\bm A\trans\left(\bm I_q+\bm A\bm A\trans\right)^{-1}\bm A \end{equation} to relate the GLS problem to the PLS problem. One way to establish (\ref{eq:Vinv}) is simply to show that the product \begin{multline*} (\bm I+\bm A\trans\bm A)\left(\bm I-\bm A\trans\left(\bm I+\bm A\bm A\trans\right)^{-1}\bm A\right)\\ \begin{aligned} =&\bm I+\bm A\trans\bm A-\bm A\trans\left(\bm I+\bm A\bm A\trans\right) \left(\bm I+\bm A\bm A\trans\right)^{-1}\bm A\\ =&\bm I+\bm A\trans\bm A-\bm A\trans\bm A\\ =&\bm I . \end{aligned} \end{multline*} Incorporating the permutation matrix $\bm P$ we have \begin{equation} \label{eq:PLA} \begin{aligned} \bm V^{-1}(\bm\theta)=&\bm I_n-\bm A\trans\bm P\trans\bm P\left(\bm I_q+\bm A\bm A\trans\right)^{-1}\bm P\trans\bm P\bm A\\ =&\bm I_n-\bm A\trans\bm P\trans(\bm L\bm L\trans)^{-1}\bm P\bm A\\ =&\bm I_n-\left(\bm L^{-1}\bm P\bm A\right)\trans\bm L^{-1}\bm P\bm A . \end{aligned} \end{equation} Even in this form we would not want to routinely evaluate $\bm V^{-1}$. However, (\ref{eq:PLA}) does allow us to simplify many common expressions. For example, the variance-covariance of the estimator $\widehat{\bm \beta}$, conditional on $\bm\theta$ and $\sigma$, can be expressed as \begin{equation} \label{eq:varcovbeta} \begin{aligned} \sigma^2\left(\bm X\trans\bm V^{-1}(\bm\theta)\bm X\right)^{-1} =&\sigma^2\left(\bm X\trans\bm X-\left(\bm L^{-1}\bm P\bm A\bm X\right)\trans\left(\bm L^{-1}\bm P\bm A\bm X\right)\right)^{-1}\\ =&\sigma^2\left(\bm X\trans\bm X-\bm R_{\bm Z\bm X}\trans\bm R_{\bm Z\bm X}\right)^{-1}\\ =&\sigma^2\left(\bm R_{\bm X}\trans\bm R_{\bm X}\right)^{-1} . \end{aligned} \end{equation} \section{Trace of the ``hat'' matrix} \label{sec:hatTrace} Another calculation that is of interest to some is the the trace of the ``hat'' matrix, which can be written as \begin{multline} \label{eq:hatTrace} \tr\left(\begin{bmatrix}\bm A\trans&\bm X\end{bmatrix} \left(\begin{bmatrix}\bm A\trans&\bm X\\\bm I&\bm0\end{bmatrix}\trans \begin{bmatrix}\bm A\trans&\bm X\\\bm I&\bm0\end{bmatrix}\right)^{-1} \begin{bmatrix}\bm A\\\bm X\trans\end{bmatrix}\right)\\ = \tr\left(\begin{bmatrix}\bm A\trans&\bm X\end{bmatrix} \left(\begin{bmatrix}\bm L&\bm0\\ \bm R_{\bm{ZX}}\trans&\bm R_{\bm X}\trans\end{bmatrix} \begin{bmatrix}\bm L\trans&\bm R_{\bm{ZX}}\\ \bm0&\bm R_{\bm X}\end{bmatrix}\right)^{-1} \begin{bmatrix}\bm A\\\bm X\trans\end{bmatrix}\right) \end{multline} \end{document} lme4/vignettes/autoscale_ref.bib0000644000176200001440000000241315103764661016426 0ustar liggesusers@article{bolker2013strategies, title={Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS}, author={Bolker, Benjamin M and Gardner, Beth and Maunder, Mark and Berg, Casper W and Brooks, Mollie and Comita, Liza and Crone, Elizabeth and Cubaynes, Sarah and Davies, Trevor and de Valpine, Perry and others}, journal={Methods in Ecology and Evolution}, volume={4}, number={6}, pages={501--512}, year={2013}, publisher={Wiley Online Library} } @article{gelman2008scaling, title={Scaling regression inputs by dividing by two standard deviations}, author={Gelman, Andrew}, journal={Statistics in medicine}, volume={27}, number={15}, pages={2865--2873}, year={2008}, publisher={Wiley Online Library} } @article{schielzethSimple2010, title = {Simple Means to Improve the Interpretability of Regression Coefficients: {{Interpretation}} of Regression Coefficients}, shorttitle = {Simple Means to Improve the Interpretability of Regression Coefficients}, author = {Schielzeth, Holger}, year = {2010}, month = feb, journal = {Methods in Ecology and Evolution}, volume = {1}, number = {2}, pages = {103--113}, issn = {2041210X, 2041210X}, doi = {10.1111/j.2041-210X.2010.00012.x}, urldate = {2016-06-08} } lme4/vignettes/autoscale.Rmd0000644000176200001440000001325615103764661015567 0ustar liggesusers--- title: "Autoscaling in lme4" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Autoscaling in lme4} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} bibliography: autoscale_ref.bib --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` Scaling predictors in a linear model (or extended linear models, such as LMMs or GLMMs) so that all of the predictors are on a similar scale (and thus, in general, the estimated parameters should have a similar scale) can improve the behaviour of various computational methods (see e.g. the "Remove eccentricity by scaling" section of @bolker2013strategies). `lmer()` and `glmer()` issue warnings suggesting that users consider re-scaling predictors when the predictor variables are on very different scales. Re-scaling predictors can improve both computation and interpretation [@schielzethSimple2010] of (extended) linear models. However, in cases where researchers want to scale predictors for computational stability, but get parameter estimates on the scale of the original (unscaled) predictors, back-transforming the predictors, covariance matrix, etc., is tedious. `lme4` now allows this scaling to be done automatically, behind the scenes. An example of a warning message due to disparate predictor scales: ```{r setup} library(lme4) set.seed(1) sleepstudy$var1 = runif(nrow(sleepstudy), 1e6, 1e7) fit1 <- lmer(Reaction ~ var1 + Days + (Days | Subject), sleepstudy) ``` Instead of re-fitting with scaled predictors we can use a new (as of `lme4` version >= 1.1.37) argument for `(g)lmerControl`, called `autoscale`, where `scale()` is automatically applied to the continuous covariates, but when delivered to the user, the coefficient estimates and the covariances are back-transformed. This maintains the original interpretation and minimizes user intervention. Hence: ```{r fit} fit2 <- lmer(Reaction ~ var1 + Days + (Days | Subject), control = lmerControl(autoscale = TRUE), sleepstudy) all.equal(fixef(fit1), fixef(fit2)) all.equal(vcov(fit2), vcov(fit2)) ``` ```{r echo = FALSE} ## https://stackoverflow.com/a/67456510/190277 get_val <- function(x) as.numeric(gsub("^.*?(\\d+\\.?\\d+e?[+-]?\\d+).*$", "\\1", x)) get_tol <- function(x,y, dig=1) signif(get_val(all.equal(x, y, tolerance = 0)), dig) ftol <- get_tol(fixef(fit1), fixef(fit2)) vtol <- get_tol(vcov(fit1), vcov(fit2)) ``` The parameters are in fact slightly different (relative difference in fixed effects of $`r vtol`$, and in covariance matrices of $`r ftol`$); these differences will be larger for less numerically stable models (i.e. more complicated or poorly data-constrained). ## Autoscale Mechanism The base function `scale()` is applied to the model matrix `X` as found in `lFormula()` or `glFormula()` from `R/Modular.R`. To back transform, we use the `scaled:center` and `scaled:scale` attributes to reverse the changes found in `fixef.merMod()`, `model.matrix.merMod()`, and `vcov.merMod()` such that the `summary()` output shows the coefficients according to the original scale. Reverting back the changes for `fixef.merMod()`, the $\beta$ coefficients, is not too difficult. However, reverting said changes for the variance-covariance matrix is a bit more involved. The exact modification can be found from the function `scale_vcov()` (found in `R/utilities.R`), and the derivation is explained below. Consider the following estimation of a simple linear model: \[ \widehat{Y} = \widehat{\beta}_{0} + \widehat{\beta}_{1} X^{*}, \] where $X^{*}$ represents the scaled version of $X$. That is, if we let $C$ represent a vector that contains the values for centering and $S$ represent a vector that contains the values for scaling, we have: \[ \widehat{Y} = \widehat{\beta}_{0} + \widehat{\beta}_{1} \left( \frac{X - C}{S} \right) \] \[ \widehat{Y} = \widehat{\beta}_{0} - \sum_{i=1}^{p} \frac{\widehat{\beta}_{i}c_{i}}{s_{i}} + \sum_{i=1}^{p} \frac{\widehat{\beta}_{i} x_{i}}{s_{i}}. \] From the above, it is clear that the new intercept can be represented as: \[ \widehat{\beta}_{0}' = \widehat{\beta}_{0} - \sum_{i=1}^{p} \frac{\widehat{\beta}_{i}c_{i}}{s_{i}}. \] Similarly, the new coefficients are represented as: \[ \widehat{\beta}_{i}' = \frac{\widehat{\beta}_{i}}{s_{i}}. \] Then, the new variance-covariance matrix can be derived using the following: \newcommand{\cov}{\textrm{Cov}}} \[ \cov\left( \frac{\widehat{\beta}_{i}}{s_{i}}, \frac{\widehat{\beta}_{j}}{s_{j}} \right) = \frac{1}{s_{i}s_{j}} \cov(\widehat{\beta}_{i}, \widehat{\beta_{j}}) = \frac{\sigma_{ij}^{2}}{s_{i}s_{j}} \] \begin{equation} \begin{split} \cov\left( \widehat{\beta}_{0} - \sum_{i=1}^{p} \frac{\widehat{\beta}_{i}c_{i}}{s_{i}}, \widehat{\beta}_{0} - \sum_{j=1}^{p} \frac{\widehat{\beta}_{i}c_{i}}{s_{i}} \right) &= \cov(\widehat{\beta}_{0}, \widehat{\beta}_{0} ) - 2 \sum_{i=1}^{p} \frac{c_{i}}{s_{i}} \cov(\widehat{\beta}_{0} , \widehat{\beta}_{i}) + \sum_{i=1}^{p} \sum_{j=1}^{p} \frac{c_{i}c_{j}}{s_{i}s_{j}} \cov(\widehat{\beta}_{i}, \widehat{\beta}_{j}) \\ &= \sigma_{0}^{2} - 2 \sum_{i=1}^{p} \frac{c_{i}}{s_{i}} \sigma_{0i}^{2} + \sum_{i=1}^{p} \sum_{j=1}^{p} \frac{c_{i}c_{j}}{s_{i}s_{j}} \sigma_{ij}^{2} \end{split} \end{equation} \begin{equation} \begin{split} \cov\left( \widehat{\beta}_{0} - \sum_{i=1}^{p} \frac{\widehat{\beta}_{i}c_{i}}{s_{i}}, \frac{\widehat{\beta_{j}}}{s_{j}} \right) &= \cov\left( \widehat{\beta}_{0}, \frac{\widehat{\beta}_{j}}{s_{j}} \right) - \sum_{i=1}^{p} \frac{c_{i}}{s_{i}s_{j}} \cov \left( \widehat{\beta}_{i}, \widehat{\beta}_{j} \right) \\ &= \frac{\sigma_{0j}^{2}}{s_{j}} - \sum_{i=1}^{p} \frac{c_{i}}{s_{i}s_{j}} \sigma_{ij}^{2}, \end{split} \end{equation} for $j = 1, 2, ..., p$. ## References lme4/vignettes/lmer.Rnw0000644000176200001440000041433615103753306014570 0ustar liggesusers%\VignetteEngine{knitr::knitr} %\VignetteDepends{ggplot2} %\VignetteDepends{gamm4} %\VignetteIndexEntry{Fitting Linear Mixed-Effects Models using lme4} \documentclass[nojss]{jss} \usepackage[T1]{fontenc}% for correct hyphenation and T1 encoding \usepackage[utf8]{inputenc}% \usepackage{lmodern}% latin modern font \usepackage[american]{babel} %% for texi2dvi ~ bug \usepackage{bm,amsmath,thumbpdf,amsfonts}%,minted} \usepackage{blkarray} \usepackage{array} %% huxtable-ish stuff %% \usepackage{adjustbox} %% \usepackage{threeparttable} %% \newcolumntype{P}[1]{>{\raggedright\arraybackslash}p{#1}} \newcommand{\matindex}[1]{\mbox{\scriptsize#1}}% Matrix index \newcommand{\github}{Github} \DeclareMathOperator{\tr}{tr} \DeclareMathOperator{\VEC}{vec} \newcommand{\bmb}[1]{{\color{red} \emph{#1}}} \newcommand{\scw}[1]{{\color{blue} \emph{#1}}} \newcommand{\dmb}[1]{{\color{magenta} \emph{#1}}} \shortcites{bolker_strategies_2013,sleepstudy,gelman2013bayesian} \author{Douglas Bates\\University of Wisconsin-Madison\And Martin M\"achler\\ETH Zurich\And Benjamin M. Bolker\\McMaster University\And Steven C. Walker\\McMaster University } \Plainauthor{Douglas Bates, Martin M\"achler, Ben Bolker, Steve Walker} \title{Fitting Linear Mixed-Effects Models Using \pkg{lme4}} \Plaintitle{Fitting Linear Mixed-Effects Models using lme4} \Shorttitle{Linear Mixed Models with lme4} \Abstract{% Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the \code{lmer} function in the \pkg{lme4} package for \proglang{R}. As for most model-fitting functions in \proglang{R}, the model is described in an \code{lmer} call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in \proglang{R}, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by \code{lmer}.} \Keywords{% sparse matrix methods, linear mixed models, penalized least squares, Cholesky decomposition} \Address{ Douglas Bates\\ Department of Statistics, University of Wisconsin\\ 1300 University Ave.\\ Madison, WI 53706, U.S.A.\\ E-mail: \email{bates@stat.wisc.edu}\\ \par\bigskip Martin M\"achler\\ Seminar f\"ur Statistik, HG G~16\\ ETH Zurich\\ 8092 Zurich, Switzerland\\ E-mail: \email{maechler@stat.math.ethz.ch}\\ % URL: \url{http://stat.ethz.ch/people/maechler}\\ \par\bigskip Benjamin M. Bolker\\ Departments of Mathematics \& Statistics and Biology \\ McMaster University \\ 1280 Main Street W \\ Hamilton, ON L8S 4K1, Canada \\ E-mail: \email{bolker@mcmaster.ca}\\ \par\bigskip Steven C. Walker\\ Department of Mathematics \& Statistics \\ McMaster University \\ 1280 Main Street W \\ Hamilton, ON L8S 4K1, Canada \\ E-mail: \email{scwalker@math.mcmaster.ca } } \newcommand{\thetavec}{{\bm\theta}} \newcommand{\betavec}{{\bm\beta}} \newcommand{\Var}{\operatorname{Var}} \newcommand{\abs}{\operatorname{abs}} \newcommand{\bLt}{\ensuremath{\bm\Lambda_{\bm\theta}}} \newcommand{\mc}[1]{\ensuremath{\mathcal{#1}}} \newcommand{\trans}{\ensuremath{^\top}} % JSS wants \top \newcommand{\yobs}{\ensuremath{\bm y_{\mathrm{obs}}}} \newcommand*{\eq}[1]{eqn.~\ref{#1}}% or just {(\ref{#1})} <>= options(width=70, show.signif.stars=FALSE, str=strOptions(strict.width="cut"), ## prefer empty continuation for reader's cut'n'paste: continue = " ", #JSS: prompt = "R> ", continue = "+ ", useFancyQuotes = FALSE) library("knitr") library("lme4") library("ggplot2")# Keeping default theme, nicer "on line": #JSS theme_set(theme_bw()) library("grid") zmargin <- theme(panel.spacing=unit(0,"lines")) library("lattice") library("minqa") library("reformulas") opts_chunk$set(engine='R',dev='pdf', fig.width=9, fig.height=5.5, prompt=TRUE, cache=TRUE, tidy=FALSE, comment=NA, error = FALSE) knitr::render_sweave() @ \setkeys{Gin}{width=\textwidth} \setkeys{Gin}{height=3.5in} \begin{document} A version of this manuscript has been published online in the \emph{Journal of Statistical Software}, on Oct.\ 2015, with DOI \linebreak[3] \texttt{10.18637/jss.v067.i01}, see \url{https://www.jstatsoft.org/article/view/v067i01/}. \section{Introduction} \label{sec:intro} The \pkg{lme4} package \citep{lme4} for \proglang{R} \citep{R} provides functions to fit and analyze linear mixed models, generalized linear mixed models and nonlinear mixed models. In each of these names, the term ``mixed'' or, more fully, ``mixed effects'', denotes a model that incorporates both fixed- and random-effects terms in a linear predictor expression from which the conditional mean of the response can be evaluated. In this paper we describe the formulation and representation of linear mixed models. The techniques used for generalized linear and nonlinear mixed models will be described separately, in a future paper. At present, the main alternative to \pkg{lme4} for mixed modeling in \proglang{R} is the \pkg{nlme} package \citep{nlme_pkg}. The main features distinguishing \pkg{lme4} from \pkg{nlme} are (1) more efficient linear algebra tools, giving improved performance on large problems; (2) simpler syntax and more efficient implementation for fitting models with crossed random effects; (3) the implementation of profile likelihood confidence intervals on random-effects parameters; and (4) the ability to fit generalized linear mixed models (although in this paper we restrict ourselves to linear mixed models). The main advantage of \pkg{nlme} relative to \pkg{lme4} is a user interface for fitting models with structure in the residuals (various forms of heteroscedasticity and autocorrelation) and in the random-effects covariance matrices (e.g., compound symmetric models). With some extra effort, the computational machinery of \pkg{lme4} can be used to fit structured models that the basic \code{lmer} function cannot handle (see Appendix~\ref{sec:modularExamples}). The development of general software for fitting mixed models remains an active area of research with many open problems. Consequently, the \pkg{lme4} package has evolved since it was first released, and continues to improve as we learn more about mixed models. However, we recognize the need to maintain stability and backward compatibility of \pkg{lme4} so that it continues to be broadly useful. In order to maintain stability while continuing to advance mixed-model computation, we have developed several additional frameworks that draw on the basic ideas of \pkg{lme4} but modify its structure or implementation in various ways. These descendants include the \mbox{\pkg{MixedModels}} package \citep{MixedModels} in \proglang{Julia} \citep{Julia}, the \pkg{lme4pureR} package \citep{lme4pureR} in \proglang{R}, and the \pkg{flexLambda} development branch of \pkg{lme4}. The current article is largely restricted to describing the current stable version of the \pkg{lme4} package (1.1-7), with Appendix~\ref{sec:modularExamples} describing hooks into the computational machinery that are designed for extension development. The \pkg{gamm4} \citep{gamm4} and \pkg{blme} \citep{blme, blme2} packages currently make use of these hooks. Another goal of this article is to contrast the approach used by \pkg{lme4} with previous formulations of mixed models. The expressions for the profiled log-likelihood and profiled REML (restricted maximum likelihood) criteria derived in Section~\ref{sec:profdev} are similar to those presented in \citet{bates04:_linear} and, indeed, are closely related to ``Henderson's mixed-model equations''~\citep{henderson_1982}. Nonetheless there are subtle but important changes in the formulation of the model and in the structure of the resulting penalized least squares (PLS) problem to be solved (Section~\ref{sec:PLSpureR}). We derive the current version of the PLS problem (Section~\ref{sec:plsMath}) and contrast this result with earlier formulations (Section~\ref{sec:previous_lmm_form}). This article is organized into four main sections (Sections~\ref{sec:lFormula}, \ref{sec:mkLmerDevfun}, \ref{sec:optimizeLmer}, and \ref{sec:mkMerMod}), each of which corresponds to one of the four largely separate modules that comprise \pkg{lme4}. Before describing the details of each module, we describe the general form of the linear mixed model underlying \pkg{lme4} (Section~\ref{sec:LMMs}); introduce the \code{sleepstudy} data that will be used as an example throughout (Section~\ref{sec:sleepstudy}); and broadly outline \pkg{lme4}'s modular structure (Section~\ref{sec:modular}). \subsection{Linear mixed models} \label{sec:LMMs} Just as a linear model is described by the distribution of a vector-valued random response variable, $\mc{Y}$, whose observed value is $\yobs$, a linear mixed model is described by the distribution of two vector-valued random variables: $\mc{Y}$, the response, and $\mc{B}$, the vector of random effects. In a linear model the distribution of $\mc Y$ is multivariate normal,%\begin{linenomath} \begin{equation} \label{eq:linearmodel} \mc Y\sim\mc{N}(\bm X\bm\beta+\bm o,\sigma^2\bm W^{-1}), \end{equation} where $n$ is the dimension of the response vector, $\bm W$ is a diagonal matrix of known prior weights, $\bm\beta$ is a $p$-dimensional coefficient vector, $\bm X$ is an $n\times p$ model matrix, and $\bm o$ is a vector of known prior offset terms. The parameters of the model are the coefficients $\bm\beta$ and the scale parameter $\sigma$. In a linear mixed model it is the \emph{conditional} distribution of $\mc Y$ given $\mc B=\bm b$ that has such a form, \begin{equation} \label{eq:LMMcondY} ( \mc Y|\mc B=\bm b)\sim\mc{N}(\bm X\bm\beta+\bm Z\bm b+\bm o,\sigma^2\bm W^{-1}), % | <- for ESS \end{equation} where $\bm Z$ is the $n\times q$ model matrix for the $q$-dimensional vector-valued random-effects variable, $\mc B$, whose value we are fixing at $\bm b$. The unconditional distribution of $\mc B$ is also multivariate normal with mean zero and a parameterized $q\times q$ variance-covariance matrix, $\bm\Sigma$, \begin{equation} \label{eq:LMMuncondB} \mc B\sim\mc N(\bm0,\bm\Sigma) . \end{equation} As a variance-covariance matrix, $\bm\Sigma$ must be positive semidefinite. It is convenient to express the model in terms of a \emph{relative covariance factor}, $\bLt$, which is a $q\times q$ matrix, depending on the \emph{variance-component parameter}, $\bm\theta$, and generating the symmetric $q\times q$ variance-covariance matrix, $\bm\Sigma$, according to%\begin{linenomath} \begin{equation} \label{eq:relcovfac} \bm\Sigma_{\bm\theta}=\sigma^2\bLt\bLt\trans , \end{equation}%\end{linenomath} where $\sigma$ is the same scale factor as in the conditional distribution (\ref{eq:LMMcondY}). Although Equations~\ref{eq:LMMcondY}, \ref{eq:LMMuncondB}, and \ref{eq:relcovfac} fully describe the class of linear mixed models that \pkg{lme4} can fit, this terse description hides many important details. Before moving on to these details, we make a few observations: \begin{itemize} \item This formulation of linear mixed models allows for a relatively compact expression for the profiled log-likelihood of $\bm\theta$ (Section~\ref{sec:profdev}, Equation~\ref{eq:profiledDeviance}). \item The matrices associated with random effects, $\bm Z$ and $\bLt$, typically have a sparse structure with a sparsity pattern that encodes various model assumptions. Sections~\ref{sec:LMMmatrix} and \ref{sec:CSCmats} provide details on these structures, and how to represent them efficiently. \item The interface provided by \pkg{lme4}'s \code{lmer} function is slightly less general than the model described by Equations~\ref{eq:LMMcondY}, \ref{eq:LMMuncondB}, and \ref{eq:relcovfac}. To take advantage of the entire range of possibilities, one may use the modular functions (Sections~\ref{sec:modular} and Appendix~\ref{sec:modularExamples}) or explore the experimental \pkg{flexLambda} branch of \pkg{lme4} on \github. \end{itemize} \subsection{Example} \label{sec:sleepstudy} Throughout our discussion of \pkg{lme4}, we will work with a data set on the average reaction time per day for subjects in a sleep deprivation study \citep{sleepstudy}. On day 0 the subjects had their normal amount of sleep. Starting that night they were restricted to 3 hours of sleep per night. The response variable, \code{Reaction}, represents average reaction times in milliseconds (ms) on a series of tests given each \code{Day} to each \code{Subject} (Figure~\ref{fig:sleepPlot}), % <>= str(sleepstudy) @ <>= ## BMB: seemed more pleasing to arrange by increasing slope rather than ## intercept ... xyplot(Reaction ~ Days | Subject, sleepstudy, aspect = "xy", layout = c(9, 2), type = c("g", "p", "r"), index.cond = function(x, y) coef(lm(y ~ x))[2], xlab = "Days of sleep deprivation", ylab = "Average reaction time (ms)", as.table = TRUE) @ % | Each subject's reaction time increases approximately linearly with the number of sleep-deprived days. However, subjects also appear to vary in the slopes and intercepts of these relationships, which suggests a model with random slopes and intercepts. As we shall see, such a model may be fitted by minimizing the REML criterion (Equation~\ref{eq:REMLdeviance}) using <>= fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy) @ % | The estimates of the standard deviations of the random effects for the intercept and the slope are \Sexpr{round(sqrt(VarCorr(fm1)$Subject[1,1]), 2)} ms % $ and \Sexpr{round(sqrt(VarCorr(fm1)$Subject[2,2]), 2)} ms/day. % $ The fixed-effects coefficients, $\betavec$, are \Sexpr{round(fixef(fm1)[1], 1)} ms and \Sexpr{round(fixef(fm1)[2], 2)} ms/day for the intercept and slope. In this model, one interpretation of these fixed effects is that they are the estimated population mean values of the random intercept and slope (Section~\ref{sec:intuitiveFormulas}). We have chosen the \code{sleepstudy} example because it is a relatively small and simple example to illustrate the theory and practice underlying \code{lmer}. However, \code{lmer} is capable of fitting more complex mixed models to larger data sets. For example, we direct the interested reader to \code{RShowDoc("lmerperf", package = "lme4")} for examples that more thoroughly exercise the performance capabilities of \code{lmer}. \subsection{High-level modular structure} \label{sec:modular} The \code{lmer} function is composed of four largely independent modules. In the first module, a mixed-model formula is parsed and converted into the inputs required to specify a linear mixed model (Section~\ref{sec:lFormula}). The second module uses these inputs to construct an \proglang{R} function which takes the covariance parameters, $\bm\theta$, as arguments and returns negative twice the log profiled likelihood or the REML criterion (Section~\ref{sec:mkLmerDevfun}). The third module optimizes this objective function to produce maximum likelihood (ML) or REML estimates of $\bm\theta$ (Section~\ref{sec:optimizeLmer}). Finally, the fourth module provides utilities for interpreting the optimized model (Section~\ref{sec:mkMerMod}). \begin{table}[tb] \centering \begin{tabular}{lllp{2.1in}} \hline Module & & \proglang{R} function & Description \\ \hline Formula module & (Section~\ref{sec:lFormula}) & \code{lFormula} & Accepts a mixed-model formula, data, and other user inputs, and returns a list of objects required to fit a linear mixed model. \\ Objective function module & (Section~\ref{sec:mkLmerDevfun}) & \code{mkLmerDevfun} & Accepts the results of \code{lFormula} and returns a function to calculate the deviance (or restricted deviance) as a function of the covariance parameters, $\bm\theta$.\\ Optimization module & (Section~\ref{sec:optimizeLmer}) & \code{optimizeLmer} & Accepts a deviance function returned by \code{mkLmerDevfun} and returns the results of the optimization of that deviance function. \\ Output module & (Section~\ref{sec:mkMerMod}) & \code{mkMerMod} & Accepts an optimized deviance function and packages the results into a useful object. \\ \hline \end{tabular} \caption{The high-level modular structure of \code{lmer}.} \label{tab:modular} \end{table} To illustrate this modularity, we recreate the \code{fm1} object by a series of four modular steps; the formula module, <>= parsedFormula <- lFormula(formula = Reaction ~ Days + (Days | Subject), data = sleepstudy) @ the objective function module, <>= devianceFunction <- do.call(mkLmerDevfun, parsedFormula) @ the optimization module, <>= optimizerOutput <- optimizeLmer(devianceFunction) @ and the output module, <>= mkMerMod( rho = environment(devianceFunction), opt = optimizerOutput, reTrms = parsedFormula$reTrms, fr = parsedFormula$fr) @ % | \section{Formula module} \label{sec:lFormula} \subsection{Mixed-model formulas} \label{sec:formulas} Like most model-fitting functions in \proglang{R}, \code{lmer} takes as its first two arguments a \emph{formula} specifying the model and the \emph{data} with which to evaluate the formula. This second argument, \code{data}, is optional but recommended and is usually the name of an \proglang{R} data frame. In the \proglang{R} \code{lm} function for fitting linear models, formulas take the form \verb+resp ~ expr+, where \code{resp} determines the response variable and \code{expr} is an expression that specifies the columns of the model matrix. Formulas for the \code{lmer} function contain special random-effects terms, <>= resp ~ FEexpr + (REexpr1 | factor1) + (REexpr2 | factor2) + ... @ where \code{FEexpr} is an expression determining the columns of the fixed-effects model matrix, $\bm X$, and the random-effects terms, \code{(REexpr1 | factor1)} and \code{(REexpr2 | factor2)}, determine both the random-effects model matrix, $\bm Z$ (Section~\ref{sec:mkZ}), and the structure of the relative covariance factor, $\bLt$ (Section~\ref{sec:mkLambdat}). In principle, a mixed-model formula may contain arbitrarily many random-effects terms, but in practice the number of such terms is typically low. \subsection{Understanding mixed-model formulas} \label{sec:intuitiveFormulas} Before describing the details of how \pkg{lme4} parses mixed-model formulas (Section~\ref{sec:LMMmatrix}), we provide an informal explanation and then some examples. Our discussion assumes familiarity with the standard \proglang{R} modeling paradigm \citep{Chambers:1993}. Each random-effects term is of the form \code{(expr | factor)}. The expression \code{expr} is evaluated as a linear model formula, producing a model matrix following the same rules used in standard \proglang{R} modeling functions (e.g., \code{lm} or \code{glm}). The expression \code{factor} is evaluated as an \proglang{R} factor. One way to think about the vertical bar operator is as a special kind of interaction between the model matrix and the grouping factor. This interaction ensures that the columns of the model matrix have different effects for each level of the grouping factor. What makes this a special kind of interaction is that these effects are modeled as unobserved random variables, rather than unknown fixed parameters. Much has been written about important practical and philosophical differences between these two types of interactions \citep[e.g., ][]{henderson_1982,gelman2005analysis}. For example, the random-effects implementation of such interactions can be used to obtain shrinkage estimates of regression coefficients \citep[e.g., ][]{1977EfronAndMorris}, or account for lack of independence in the residuals due to block structure or repeated measurements \citep[e.g., ][]{laird_ware_1982}. Table~\ref{tab:formulas} provides several examples of the right-hand-sides of mixed-model formulas. The first example, \code{(1 | g)}, % | is the simplest possible mixed-model formula, where each level of the grouping factor, \code{g}, has its own random intercept. The mean and standard deviation of these intercepts are parameters to be estimated. Our description of this model incorporates any nonzero mean of the random effects as fixed-effects parameters. If one wishes to specify that a random intercept has \emph{a priori} known means, one may use the \code{offset} function as in the second model in Table~\ref{tab:formulas}. This model contains no fixed effects, or more accurately the fixed-effects model matrix, $\bm X$, has zero columns and $\bm\beta$ has length zero. \begin{table}[tb] \centering \begin{tabular}{llP{1.5in}} %% see new column type for ragged right \hline Formula & Alternative & Meaning \\ \hline%------------------------------------------------ \code{(1 | g)} & \code{1 + (1 | g)} & Random intercept with fixed mean. \\ \code{0 + offset(o) + (1 | g)} & \code{-1 + offset(o) + (1 | g)} & Random intercept with \emph{a priori} means. \\ \code{(1 | g1/g2)} & \code{(1 | g1)+(1 | g1:g2)} % | & Intercept varying among \code{g1} and \code{g2} within \code{g1}. \\ \code{(1 | g1) + (1 | g2)} & \code{1 + (1 | g1) + (1 | g2)}. & Intercept varying among \code{g1} and \code{g2}. \\ \code{x + (x | g)} & \code{1 + x + (1 + x | g)} & Correlated random intercept and slope. \\ \code{x + (x || g)} & \code{1 + x + (1 | g) + (0 + x | g)} & Uncorrelated random intercept and slope. \\ \hline \end{tabular} \caption{Examples of the right-hand-sides of mixed-effects model formulas. The names of grouping factors are denoted \code{g}, \code{g1}, and \code{g2}, and covariates and \emph{a priori} known offsets as \code{x} and \code{o}.} \label{tab:formulas} \end{table} We may also construct models with multiple grouping factors. For example, if the observations are grouped by \code{g2}, which is nested within \code{g1}, then the third formula in Table \ref{tab:formulas} can be used to model variation in the intercept. A common objective in mixed modeling is to account for such nested (or hierarchical) structure. However, one of the most useful aspects of \pkg{lme4} is that it can be used to fit random effects associated with non-nested grouping factors. For example, suppose the data are grouped by fully crossing two factors, \code{g1} and \code{g2}, then the fourth formula in Table \ref{tab:formulas} may be used. Such models are common in item response theory, where \code{subject} and \code{item} factors are fully crossed \citep{doran2007estimating}. In addition to varying intercepts, we may also have varying slopes (e.g., the \code{sleepstudy} data, Section~\ref{sec:sleepstudy}). The fifth example in Table~\ref{tab:formulas} gives a model where both the intercept and slope vary among the levels of the grouping factor. \subsubsection{Specifying uncorrelated random effects} \label{sec:uncor} By default, \pkg{lme4} assumes that all coefficients associated with the same random-effects term are correlated. To specify an uncorrelated slope and intercept (for example), one may either use double-bar notation, \code{(x || g)}, or equivalently use multiple random-effects terms, \code{x + (1 | g) + (0 + x | g)}, as in the final example of Table~\ref{tab:formulas}. For example, if one examined the results of model \code{fm1} of the \code{sleepstudy} data (Section~\ref{sec:sleepstudy}) using \code{summary(fm1)}, one would see that the estimated correlation between the slope for \code{Days} and the intercept is fairly low (\Sexpr{round(attr(VarCorr(fm1)$Subject, "correlation")[2],3)}) % $ (See Section~\ref{sec:summary} below for more on how to extract the random-effects covariance matrix.) We may use double-bar notation to fit a model that excludes a correlation parameter: <>= fm2 <- lmer(Reaction ~ Days + (Days || Subject), sleepstudy) @ Although mixed models where the random slopes and intercepts are assumed independent are commonly used to reduce the complexity of random-slopes models, they do have one subtle drawback. Models in which the slopes and intercepts are allowed to have a nonzero correlation (e.g., \code{fm1}) are invariant to additive shifts of the continuous predictor (\code{Days} in this case). This invariance breaks down when the correlation is constrained to zero; any shift in the predictor will necessarily lead to a change in the estimated correlation, and in the likelihood and predictions of the model. For example, we can eliminate the correlation in \code{fm1} simply by adding an amount equal to the ratio of the estimated among-subject standard deviations multiplied by the estimated correlation (i.e., $\sigma_{\text{\small slope}}/\sigma_{\text{\small intercept}} \cdot \rho_{\text{\small slope:intercept}}$) to the \code{Days} variable. The use of models such as \code{fm2} should ideally be restricted to cases where the predictor is measured on a ratio scale (i.e., the zero point on the scale is meaningful, not just a location defined by convenience or convention), as is the case here. %% <>= %% sleepstudyShift <- within(sleepstudy, { %% Days <- Days + (24.74*0.07)/5.92 }) %% lmer(Reaction ~ Days + (Days | Subject), sleepstudyShift) %% @ \subsection{Algebraic and computational account of mixed-model formulas} \label{sec:LMMmatrix} The fixed-effects terms of a mixed-model formula are parsed to produce the fixed-effects model matrix, $\bm X$, in the same way that the \proglang{R} \code{lm} function generates model matrices. However, a mixed-model formula incorporates $k\ge1$ random-effects terms of the form \code{(r | f)} as well. % | These $k$ terms are used to produce the random-effects model matrix, $\bm Z$ (Equation~\ref{eq:LMMcondY}; Section~\ref{sec:mkZ}), and the structure of the relative covariance factor, $\bLt$ (Equation~\ref{eq:relcovfac}; Section~\ref{sec:mkLambdat}), which are matrices that typically have a sparse structure. We now describe how one might construct these matrices from the random-effects terms, considering first a single term, \code{(r | f)}, % | and then generalizing to multiple terms. Tables~\ref{tab:dim} and \ref{tab:algebraic} summarize the matrices and vectors that determine the structure of $\bm Z$ and $\bLt$. \begin{table}[tb] \centering \begin{tabular}{lll} \hline Symbol & Size \\ \hline $n$ & Length of the response vector, $\mc{Y}$ \\ $p$ & Number of columns of fixed-effects model matrix, $\bm X$ \\ $q = \sum_i^k q_i$ & Number of columns of random-effects model matrix, $\bm Z$ \\ $p_i$ & Number of columns of the raw model matrix, $\bm X_i$ \\ $\ell_i$ & Number of levels of the grouping factor indices, $\bm i_i$ \\ $q_i = p_i\ell_i$ & Number of columns of the term-wise model matrix, $\bm Z_i$ \\ $k$ & Number of random-effects terms \\ $m_i = \binom{p_i+1}{2}$ & Number of covariance parameters for term $i$ \\ $m = \sum_i^k m_i$ & Total number of covariance parameters \\ \hline \end{tabular} \caption{Dimensions of linear mixed models. The subscript $i = 1, \dots, k$ denotes a specific random-effects term.} \label{tab:dim} \end{table} \begin{table}[tb] \centering \begin{tabular}{lll} \hline Symbol & Size & Description \\ \hline $\bm X_i$ & $n\times p_i$ & Raw random-effects model matrix \\ $\bm J_i$ & $n\times \ell_i$ & Indicator matrix of grouping factor indices\\ $\bm X_{ij}$ & $p_i\times 1$ & Column vector containing $j$th row of $\bm X_i$ \\ $\bm J_{ij}$ & $\ell_i\times 1$ & Column vector containing $j$th row of $\bm J_i$ \\ $\bm i_i$ & $n$ & Vector of grouping factor indices \\ $\bm Z_i$ & $n\times q_i$ & Term-wise random-effects model matrix \\ $\bm\theta$ & $m$ & Covariance parameters \\ $\bm T_i$ & $p_i\times p_i$ & Lower triangular template matrix \\ $\bm\Lambda_i$ & $q_i\times q_i$ & Term-wise relative covariance factor \\ \hline \end{tabular} \caption{Symbols used to describe the structure of the random-effects model matrix and the relative covariance factor. The subscript $i = 1, \dots, k$ denotes a specific random-effects term.} \label{tab:algebraic} \end{table} The expression, \code{r}, is a linear model formula that evaluates to an \proglang{R} model matrix, $\bm X_i$, of size $n\times p_i$, called the \emph{raw random-effects model matrix} for term $i$. A term is said to be a \emph{scalar} random-effects term when $p_i=1$, otherwise it is \emph{vector-valued}. For a \emph{simple, scalar} random-effects term of the form \code{(1 | f)}, $\bm X_i$ is the % | $n\times 1$ matrix of ones, which implies a random intercept model. The expression \code{f} evaluates to an \proglang{R} factor, called the \emph{grouping factor}, for the term. For the $i$th term, we represent this factor mathematically with a vector $\bm i_i$ of \emph{factor indices}, which is an $n$-vector of values from $1,\dots,\ell_i$.\footnote{In practice, fixed-effects model matrices and random-effects terms are evaluated with respect to a \emph{model frame}, ensuring that any expressions for grouping factors have been coerced to factors and any unused levels of these factors have been dropped. That is, $\ell_i$, the number of levels in the grouping factor for the $i$th random-effects term, is well-defined.} Let $\bm J_i$ be the $n\times \ell_i$ matrix of indicator columns for $\bm i_i$. Using the \pkg{Matrix} package \citep{Matrix_pkg} in \proglang{R}, we may construct the transpose of $\bm J_i$ from a factor vector, \code{f}, by coercing \code{f} to a `\code{sparseMatrix}' object. For example, <>= set.seed(2) @ <>= (f <- gl(3, 2)) (Ji <- t(as(f, Class = "sparseMatrix"))) @ When $k>1$ we order the random-effects terms so that $\ell_1\ge\ell_2\ge\dots\ge\ell_k$; in general, this ordering reduces ``fill-in'' (i.e., the proportion of elements that are zero in the lower triangle of $\bLt\trans\bm Z\trans\bm W\bm Z\bLt+\bm I$ but not in the lower triangle of its left Cholesky factor, $\bm L_{\bm\theta}$, described below in Equation~\ref{eq:blockCholeskyDecomp}). This reduction in fill-in provides more efficient matrix operations within the penalized least squares algorithm (Section~\ref{sec:plsMath}). \subsubsection{Constructing the random-effects model matrix} \label{sec:mkZ} The $i$th random-effects term contributes $q_i=\ell_ip_i$ columns to the model matrix $\bm Z$. We group these columns into a matrix, $\bm Z_i$, which we refer to as the \emph{term-wise model matrix} for the $i$th term. Thus $q$, the number of columns in $\bm Z$ and the dimension of the random variable, $\mc{B}$, is \begin{equation} \label{eq:qcalc} q=\sum_{i=1}^k q_i = \sum_{i=1}^k \ell_i\,p_i . \end{equation} Creating the matrix $\bm Z_i$ from $\bm X_i$ and $\bm J_i$ is a straightforward concept that is, nonetheless, somewhat awkward to describe. Consider $\bm Z_i$ as being further decomposed into $\ell_i$ blocks of $p_i$ columns. The rows in the first block are the rows of $\bm X_i$ multiplied by the 0/1 values in the first column of $\bm J_i$ and similarly for the subsequent blocks. With these definitions we may define the term-wise random-effects model matrix, $\bm Z_i$, for the $i$th term as a transposed Khatri-Rao product, \begin{equation} \label{eq:Zi} \bm Z_i = (\bm J_i\trans * \bm X_i\trans)\trans = \begin{bmatrix} \bm J_{i1}\trans \otimes \bm X_{i1}\trans \\ \bm J_{i2}\trans \otimes \bm X_{i2}\trans \\ \vdots \\ \bm J_{in}\trans \otimes \bm X_{in}\trans \\ \end{bmatrix}, \end{equation} where $*$ and $\otimes$ are the Khatri-Rao\footnote{Note that the original definition of the Khatri-Rao product is more general than the definition used in the \pkg{Matrix} package, which is the definition we use here.} \citep{khatri1968solutions} and Kronecker products, and $\bm J_{ij}\trans$ and $\bm X_{ij}\trans$ are row vectors of the $j$th rows of $\bm J_i$ and $\bm X_i$. These rows correspond to the $j$th sample in the response vector, $\mc Y$, and thus $j$ runs from $1, \dots, n$. The \pkg{Matrix} package for \proglang{R} contains a \code{KhatriRao} function, which can be used to form $\bm Z_i$. For example, if we begin with a raw model matrix, <>= (Xi <- cbind(1, rep.int(c(-1, 1), 3L))) @ then the term-wise random-effects model matrix is, <>= (Zi <- t(KhatriRao(t(Ji), t(Xi)))) @ <>= ## alternative formulation of Zi (eq:Zi) rbind( Ji[1,] %x% Xi[1,], Ji[2,] %x% Xi[2,], Ji[3,] %x% Xi[3,], Ji[4,] %x% Xi[4,], Ji[5,] %x% Xi[5,], Ji[6,] %x% Xi[6,]) @ In particular, for a simple, scalar term, $\bm Z_i$ is exactly $\bm J_i$, the matrix of indicator columns. For other scalar terms, $\bm Z_i$ is formed by element-wise multiplication of the single column of $\bm X_i$ by each of the columns of $\bm J_i$. Because each $\bm Z_i$ is generated from indicator columns, its cross-product, $\bm Z_i\trans\bm Z_i$ is block-diagonal consisting of $\ell_i$ diagonal blocks each of size $p_i$.\footnote{To see this, note that by the properties of Kronecker products we may write the cross-product matrix $Z_i\trans Z_i$ as $\sum_{j=1}^n \bm J_{ij} \bm J_{ij}\trans \otimes \bm X_{ij} \bm X_{ij}\trans$. Because $\bm J_{ij}$ is a unit vector along a coordinate axis, the cross-product $\bm J_{ij} \bm J_{ij}\trans$ is a $p_i\times p_i$ matrix of all zeros except for a single $1$ along the diagonal. Therefore, the cross-products, $\bm X_{ij} \bm X_{ij}\trans$, will be added to one of the $\ell_i$ blocks of size $p_i\times p_i$ along the diagonal of $Z_i\trans Z_i$.} Note that this means that when $k=1$ (i.e., there is only one random-effects term, and $\bm Z_i = \bm Z$), $\bm Z\trans\bm Z$ will be block diagonal. These block-diagonal properties allow for more efficient sparse matrix computations (Section~\ref{sec:CSCmats}). The full random-effects model matrix, $\bm Z$, is constructed from $k\ge 1$ blocks, \begin{equation} \label{eq:Z} \bm Z = \begin{bmatrix} \bm Z_1 & \bm Z_2 & \hdots & \bm Z_k \\ \end{bmatrix}. \end{equation} By transposing Equation~\ref{eq:Z} and substituting in Equation~\ref{eq:Zi}, we may represent the structure of the transposed random-effects model matrix as follows, \begin{equation} \label{eq:Zt} \bm Z\trans = \begin{blockarray}{ccccc} \text{sample 1} & \text{sample 2} & \hdots & \text{sample } n & \\ \begin{block}{[cccc]c} \bm J_{11} \otimes \bm X_{11} & \bm J_{12} \otimes \bm X_{12} & \hdots & \bm J_{1n} \otimes \bm X_{1n} & \text{term 1} \\ \bm J_{21} \otimes \bm X_{21} & \bm J_{22} \otimes \bm X_{22} & \hdots & \bm J_{2n} \otimes \bm X_{2n} & \text{term 2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \end{block} \end{blockarray}. \end{equation} Note that the proportion of elements of $Z\trans$ that are structural zeros is \begin{equation} \label{eq:ZtSparsity} \frac{\sum_{i=1}^k p_i(\ell_i - 1)}{\sum_{i=1}^k p_i} \qquad . \end{equation} Therefore, the sparsity of $\bm Z\trans$ increases with the number of grouping factor levels. As the number of levels is often large in practice, it is essential for speed and efficiency to take account of this sparsity, for example by using sparse matrix methods, when fitting mixed models (Section~\ref{sec:CSCmats}). \subsubsection{Constructing the relative covariance factor} \label{sec:mkLambdat} The $q\times q$ covariance factor, $\bLt$, is a block diagonal matrix whose $i$th diagonal block, $\bm\Lambda_i$, is of size $q_i,i=1,\dots,k$. We refer to $\bm\Lambda_i$ as the \emph{term-wise relative covariance factor}. Furthermore, $\bm\Lambda_i$ is a homogeneous block diagonal matrix with each of the $\ell_i$ lower-triangular blocks on the diagonal being a copy of a $p_i\times p_i$ lower-triangular \emph{template matrix}, $\bm T_i$. The covariance parameter vector, $\bm\theta$, of length $m_i =\binom{p_i+1}{2}$, consists of the elements in the lower triangle of $\bm T_i,i=1,\dots,k$. To provide a unique representation we require that the diagonal elements of the $\bm T_i,i=1,\dots,k$ be non-negative. The template, $\bm T_i$, can be constructed from the number $p_i$ alone. In \proglang{R} code we denote $p_i$ as \code{nc}. For example, if we set \code{nc <- 3}\Sexpr{nc <- 3}, we could create the template for term $i$ as, <>= nc <- 3 @ %% sequence() is equivalent to unlist(lapply(nvec, seq_len)) %% and (?sequence) ``mainly exists in reverence to the very early history of R'' %% scw: i like sequence, and in fact i never understood why that %% statement is there in the help file. <