validity-0.11.0.0/src/0000755000000000000000000000000013644617172012544 5ustar0000000000000000validity-0.11.0.0/src/Data/0000755000000000000000000000000013646331306013407 5ustar0000000000000000validity-0.11.0.0/test/0000755000000000000000000000000013644617172012734 5ustar0000000000000000validity-0.11.0.0/test/Data/0000755000000000000000000000000013646331306013577 5ustar0000000000000000validity-0.11.0.0/src/Data/RelativeValidity.hs0000644000000000000000000000127513644617172017237 0ustar0000000000000000{-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-| Relative validity -} module Data.RelativeValidity ( RelativeValidity(..) , isInvalidFor ) where -- | A class of types that have additional invariants defined upon them -- that aren't enforced by the type system -- -- If there is a @Validity a@ instance as well, then @a `isValidFor` b@ -- should imply @isValid a@ for any @b@. -- -- If there is a @Validity b@ instance as well, then @a `isValidFor` b@ -- should imply @isValid b@ for any @a@. class RelativeValidity a b where isValidFor :: a -> b -> Bool isInvalidFor :: RelativeValidity a b => a -> b -> Bool isInvalidFor a b = not $ isValidFor a b validity-0.11.0.0/src/Data/Validity.hs0000644000000000000000000005216513646331306015541 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE TypeOperators #-} #if MIN_VERSION_base(4,9,0) {-# OPTIONS_GHC -fno-warn-redundant-constraints #-} #endif {-| @Validity@ is used to specify additional invariants upon values that are not enforced by the type system. Let's take an example. Suppose we were to implement a type @Prime@ that represents prime integers. If you were to completely enforce the invariant that the represented number is a prime, then we could use 'Natural' and only store the index of the given prime in the infinite sequence of prime numbers. This is very safe but also very expensive if we ever want to use the number, because we would have to calculcate all the prime numbers until that index. Instead we choose to implement @Prime@ by a @newtype Prime = Prime Int@. Now we have to maintain the invariant that the @Int@ that we use to represent the prime is in fact positive and a prime. The @Validity@ typeclass allows us to specify this invariant (and enables testing via the @genvalidity@ libraries: https://hackage.haskell.org/package/genvalidity ): > instance Validity Prime where > validate (Prime n) = check (isPrime n) "The 'Int' is prime." If certain typeclass invariants exist, you can make these explicit in the validity instance as well. For example, 'Fixed a' is only valid if 'a' has an 'HasResolution' instance, so the correct validity instance is @HasResolution a => Validity (Fixed a)@. -} module Data.Validity ( Validity(..) -- * Helper functions to define 'validate' , trivialValidation , genericValidate , check , declare , annotate , delve , decorate , decorateList , invalid , valid -- ** Helpers for specific types -- *** Char , validateCharNotUtf16SurrogateCodePoint , isUtf16SurrogateCodePoint -- *** RealFloat (Double) , validateNotNaN , validateNotInfinite -- *** Ratio , validateRatioNotNaN , validateRatioNotInfinite , validateRatioNormalised -- * Utilities -- ** Utilities for validity checking , isValid , isInvalid , constructValid , constructValidUnsafe -- ** Utilities for validation , Validation(..) , ValidationChain(..) , checkValidity , validationIsValid , prettyValidate , prettyValidation -- * Re-exports , Monoid(..) #if MIN_VERSION_base(4,11,0) , Semigroup(..) #endif ) where import Data.Either (isRight) import Data.Fixed (Fixed(MkFixed), HasResolution) import Data.List (intercalate) #if MIN_VERSION_base(4,9,0) import Data.List.NonEmpty (NonEmpty((:|))) #endif import Data.Maybe (fromMaybe) #if MIN_VERSION_base(4,8,0) #else import Data.Monoid import Data.Ratio #endif import Data.Bits ((.&.)) import Data.Char (ord) import Data.Int (Int64) import GHC.Int (Int8(..), Int16(..), Int32(..)) import GHC.Exts (Char(..), ord#, isTrue#, (<=#), (>=#), (<#), (>=#)) #if MIN_VERSION_base(4,8,0) import GHC.Word (Word8(..), Word16(..), Word32(..), Word64(..)) #else import Data.Word (Word) import GHC.Word (Word8(..), Word16(..), Word32(..), Word64(..)) #endif import GHC.Exts (ltWord#) import GHC.Generics #if MIN_VERSION_base(4,8,0) import GHC.Natural #endif import GHC.Real (Ratio(..)) -- | A class of types that have additional invariants defined upon them -- -- === Purpose -- -- 'validate' checks whether a given value is a valid value and reports all -- reasons why the given value is not valid if that is the case. -- -- 'isValid' only checks whether a given value is a valid value of its type. -- It is a helper function that checks that 'validate' says that there are -- no reasons why the value is invalid. -- -- === Instantiating 'Validity' -- -- To instantiate 'Validity', one has to implement only 'validate'. -- Use the helper functions below to define all the reasons why a given -- value would be a valid value of its type. -- -- Example: -- -- > newtype Even = Even Int -- > -- > instance Validity Even -- > validate (Event i) -- > even i "The contained 'Int' is even." -- -- === Semantics -- -- 'validate' should be an underapproximation of actual validity. -- -- This means that if 'isValid' is not a perfect representation of actual -- validity, for safety reasons, it should never return 'True' for invalid -- values, but it may return 'False' for valid values. -- -- For example: -- -- > validate = const $ invalid "always" -- -- is a valid implementation for any type, because now 'isValid' never returns -- 'True' for invalid values. -- -- > validate (Even i) = declare "The integer is equal to two" $ i == 2 -- -- is a valid implementation for @newtype Even = Even Int@, but -- -- > validate (Even i) = declare "The integer is even or equal to one" $ even i || i == 1 -- -- is not because then `isValid` returns 'True' for an invalid value: '1'. -- -- === Automatic instances with 'Generic' -- -- An instance of this class can be made automatically if the type in question -- has a 'Generic' instance. This instance will try to use 'valid' to -- on all structural sub-parts of the value that is being checked for validity. -- -- Example: -- -- > {-# LANGUAGE DeriveGeneric #-} -- > -- > data MyType = MyType -- > { myDouble :: Double -- > { myString :: String -- > } deriving (Show, Eq, Generic) -- > -- > instance Validity MyType -- -- generates something like: -- -- > instance Validity MyType where -- > validate (MyType d s) -- > = annotate d "myDouble" -- > <> annotate s "myString" class Validity a where validate :: a -> Validation default validate :: (Generic a, GValidity (Rep a)) => a -> Validation validate = genericValidate genericValidate :: (Generic a, GValidity (Rep a)) => a -> Validation genericValidate = gValidate . from data ValidationChain = Violated String | Location String ValidationChain deriving (Show, Eq, Generic) instance Validity ValidationChain -- | The result of validating a value. -- -- `mempty` means the value was valid. -- -- This type intentionally doesn't have a `Validity` instance to make sure -- you can never accidentally use `annotate` or `delve` twice. newtype Validation = Validation { unValidation :: [ValidationChain] } deriving (Show, Eq, Generic) #if MIN_VERSION_base(4,11,0) instance Semigroup Validation where (Validation v1) <> (Validation v2) = Validation $ v1 ++ v2 #endif instance Monoid Validation where mempty = Validation [] #if MIN_VERSION_base(4,11,0) mappend = (<>) #else mappend (Validation v1) (Validation v2) = Validation $ v1 ++ v2 #endif -- | Declare any value to be valid in validation -- -- > trivialValidation a = seq a mempty trivialValidation :: a -> Validation trivialValidation a = seq a mempty -- | Check that a given invariant holds. -- -- The given string should describe the invariant, not the violation. -- -- Example: -- -- > check (x < 5) "x is strictly smaller than 5" -- -- instead of -- -- > check (x < 5) "x is greater than 5" check :: Bool -> String -> Validation check b err = if b then mempty else Validation [Violated err] -- | 'check', but with the arguments flipped declare :: String -> Bool -> Validation declare = flip check -- | Declare a sub-part as a necessary part for validation, and annotate it with a name. -- -- Example: -- -- > validate (a, b) = -- > mconcat -- > [ annotate a "The first element of the tuple" -- > , annotate b "The second element of the tuple" -- > ] annotate :: Validity a => a -> String -> Validation annotate = annotateValidation . validate -- | 'annotate', but with the arguments flipped. delve :: Validity a => String -> a -> Validation delve = flip annotate -- | Decorate a validation with a location decorate :: String -> Validation -> Validation decorate = flip annotateValidation -- | Decorate a piecewise validation of a list with their location in the list decorateList :: [a] -> (a -> Validation) -> Validation decorateList as func = mconcat $ flip map (zip [0..] as) $ \(i, a) -> decorate (unwords ["The element at index", show (i :: Integer), "in the list"]) $ func a -- | Construct a trivially invalid 'Validation' -- -- Example: -- -- > data Wrong -- > = Wrong -- > | Fine -- > deriving (Show, Eq) -- > -- > instance Validity Wrong where -- > validate w = -- > case w of -- > Wrong -> invalid "Wrong" -- > Fine -> valid invalid :: String -> Validation invalid = check False valid :: Validation valid = mempty -- | Any tuple of things is valid if both of its elements are valid instance (Validity a, Validity b) => Validity (a, b) where validate (a, b) = mconcat [ annotate a "The first element of the tuple" , annotate b "The second element of the tuple" ] -- | Any Either of things is valid if the contents are valid in either of the cases. instance (Validity a, Validity b) => Validity (Either a b) where validate (Left a) = annotate a "The 'Left'" validate (Right b) = annotate b "The 'Right'" -- | Any triple of things is valid if all three of its elements are valid instance (Validity a, Validity b, Validity c) => Validity (a, b, c) where validate (a, b, c) = mconcat [ annotate a "The first element of the triple" , annotate b "The second element of the triple" , annotate c "The third element of the triple" ] -- | Any quadruple of things is valid if all four of its elements are valid instance (Validity a, Validity b, Validity c, Validity d) => Validity (a, b, c, d) where validate (a, b, c, d) = mconcat [ annotate a "The first element of the quadruple" , annotate b "The second element of the quadruple" , annotate c "The third element of the quadruple" , annotate d "The fourth element of the quadruple" ] -- | Any quintuple of things is valid if all five of its elements are valid instance (Validity a, Validity b, Validity c, Validity d, Validity e) => Validity (a, b, c, d, e) where validate (a, b, c, d, e) = mconcat [ annotate a "The first element of the quintuple" , annotate b "The second element of the quintuple" , annotate c "The third element of the quintuple" , annotate d "The fourth element of the quintuple" , annotate e "The fifth element of the quintuple" ] -- | Any sextuple of things is valid if all six of its elements are valid instance ( Validity a , Validity b , Validity c , Validity d , Validity e , Validity f ) => Validity (a, b, c, d, e, f) where validate (a, b, c, d, e, f) = mconcat [ annotate a "The first element of the sextuple" , annotate b "The second element of the sextuple" , annotate c "The third element of the sextuple" , annotate d "The fourth element of the sextuple" , annotate e "The fifth element of the sextuple" , annotate f "The sixth element of the sextuple" ] -- | A list of things is valid if all of the things are valid. -- -- This means that the empty list is considered valid. -- If the empty list should not be considered valid as part of your custom data -- type, make sure to write a custom @Validity instance@ instance Validity a => Validity [a] where validate = flip decorateList validate #if MIN_VERSION_base(4,9,0) -- | A nonempty list is valid if all the elements are valid. -- -- See the instance for 'Validity [a]' for more information. instance Validity a => Validity (NonEmpty a) where validate (e :| es) = mconcat [ annotate e "The first element of the nonempty list" , annotate es "The rest of the elements of the nonempty list" ] #endif -- | A Maybe thing is valid if the thing inside is valid or it's nothing -- It makes sense to assume that 'Nothing' is valid. -- If Nothing wasn't valid, you wouldn't have used a Maybe -- in the datastructure. instance Validity a => Validity (Maybe a) where validate Nothing = mempty validate (Just a) = annotate a "The 'Just'" -- | Trivially valid instance Validity () where validate = trivialValidation -- | Trivially valid instance Validity Bool where validate = trivialValidation -- | Trivially valid instance Validity Ordering where validate = trivialValidation -- | Trivially valid instance Validity Char where validate (C# c#) = mconcat [ declare "The contained value is positive" $ isTrue# (ord# c# >=# 0#) , declare "The contained value is smaller than 0x10FFFF = 1114111" $ isTrue# (ord# c# <=# 1114111#) ] validateCharNotUtf16SurrogateCodePoint :: Char -> Validation validateCharNotUtf16SurrogateCodePoint c = declare "The character is not a UTF16 surrogate codepoint" $ not $ isUtf16SurrogateCodePoint c isUtf16SurrogateCodePoint :: Char -> Bool isUtf16SurrogateCodePoint c = ord c .&. 0x1ff800 == 0xd800 -- | Trivially valid instance Validity Int where validate = trivialValidation -- | NOT trivially valid on GHC because small number types are represented using a 64bit structure underneath. instance Validity Int8 where validate (I8# i#) = mconcat [ declare "The contained integer is smaller than 2^7 = 128" $ isTrue# (i# <# 128#) , declare "The contained integer is greater than or equal to -2^7 = -128" $ isTrue# (i# >=# -128#) ] -- | NOT trivially valid on GHC because small number types are represented using a 64bit structure underneath. instance Validity Int16 where validate (I16# i#) = mconcat [ declare "The contained integer is smaller than 2^15 = 32768" $ isTrue# (i# <# 32768#) , declare "The contained integer is greater than or equal to -2^15 = -32768" $ isTrue# (i# >=# -32768#) ] -- | NOT trivially valid on GHC because small number types are represented using a 64bit structure underneath. instance Validity Int32 where validate (I32# i#) = mconcat [ declare "The contained integer is smaller than 2^31 = 2147483648" $ isTrue# (i# <# 2147483648#) , declare "The contained integer is greater than or equal to -2^31 = -2147483648" $ isTrue# (i# >=# -2147483648#) ] -- | Trivially valid instance Validity Int64 where validate = trivialValidation -- | Trivially valid instance Validity Word where validate = trivialValidation -- | NOT trivially valid on GHC because small number types are represented using a 64bit structure underneath. instance Validity Word8 where validate (W8# w#) = declare "The contained integer is smaller than 2^8 = 256" $ isTrue# (w# `ltWord#` 256##) -- | NOT trivially valid on GHC because small number types are represented using a 64bit structure underneath. instance Validity Word16 where validate (W16# w#) = declare "The contained integer is smaller than 2^16 = 65536" $ isTrue# (w# `ltWord#` 65536##) -- | NOT trivially valid on GHC because small number types are represented using a 64bit structure underneath. instance Validity Word32 where validate (W32# w#) = declare "The contained integer is smaller than 2^32 = 4294967296" $ isTrue# (w# `ltWord#` 4294967296##) -- | Trivially valid instance Validity Word64 where validate = trivialValidation -- | Trivially valid: instance Validity Float where validate = trivialValidation -- | Trivially valid: instance Validity Double where validate = trivialValidation validateNotNaN :: RealFloat a => a -> Validation validateNotNaN d = declare "The RealFloat is not NaN." $ not (isNaN d) validateNotInfinite :: RealFloat a => a -> Validation validateNotInfinite d = declare "The RealFloat is not infinite." $ not (isInfinite d) validateRatioNotNaN :: Integral a => Ratio a -> Validation validateRatioNotNaN r = declare "The Ratio is not NaN." $ case r of (0 :% 0) -> False _ -> True validateRatioNotInfinite :: Integral a => Ratio a -> Validation validateRatioNotInfinite r = declare "The Ratio is not infinite." $ case r of (1 :% 0) -> False ((-1) :% 0) -> False _ -> True validateRatioNormalised :: Integral a => Ratio a -> Validation validateRatioNormalised (n :% d) = declare "The Ratio is normalised." $ case d of 0 -> False _ -> let g = gcd n d gcdOverflows = g < 0 n' :% d' = (n `quot` g) :% (d `quot` g) valueIsNormalised = n' :% d' == n :% d in not gcdOverflows && valueIsNormalised -- | Trivially valid -- -- Integer is not trivially valid under the hood, but instantiating -- 'Validity' correctly would force validity to depend on a specific -- (big integer library @integer-gmp@ versus @integer-simple@). -- This is rather impractical so for the time being we have opted for -- assuming that an 'Integer' is always valid. -- Even though this is not technically sound, it is good enough for now. instance Validity Integer where validate = trivialValidation #if MIN_VERSION_base(4,8,0) -- | Valid according to 'isValidNatural' -- -- Only available with @base >= 4.8@. instance Validity Natural where validate = declare "The Natural is valid." . isValidNatural #endif -- | Valid if the contained numbers are valid and the denominator is -- strictly positive. instance (Validity a, Ord a, Num a, Integral a) => Validity (Ratio a) where validate r@(n :% d) = mconcat [ annotate n "The numerator" , annotate d "The denominator" , declare "The denominator is strictly positive." $ d > 0 , validateRatioNormalised r ] -- | Valid according to the contained 'Integer'. instance HasResolution a => Validity (Fixed a) where validate (MkFixed i) = validate i annotateValidation :: Validation -> String -> Validation annotateValidation val s = case val of Validation errs -> Validation $ map (Location s) errs class GValidity f where gValidate :: f a -> Validation instance GValidity U1 where gValidate = trivialValidation instance GValidity V1 where gValidate = trivialValidation instance (GValidity a, GValidity b) => GValidity (a :*: b) where gValidate (a :*: b) = gValidate a `mappend` gValidate b instance (GValidity a, GValidity b) => GValidity (a :+: b) where gValidate (L1 x) = gValidate x gValidate (R1 x) = gValidate x instance (GValidity a, Datatype c) => GValidity (M1 D c a) where gValidate m1 = gValidate (unM1 m1) instance (GValidity a, Constructor c) => GValidity (M1 C c a) where gValidate m1 = gValidate (unM1 m1) `annotateValidation` conName m1 instance (GValidity a, Selector c) => GValidity (M1 S c a) where gValidate m1 = gValidate (unM1 m1) `annotateValidation` selName m1 instance (Validity a) => GValidity (K1 R a) where gValidate (K1 x) = validate x -- | Check whether a value is valid. isValid :: Validity a => a -> Bool isValid = isRight . checkValidity -- | Check whether a value is not valid. -- -- > isInvalid = not . isValid isInvalid :: Validity a => a -> Bool isInvalid = not . isValid -- | Construct a valid element from an unchecked element constructValid :: Validity a => a -> Maybe a constructValid p = if isValid p then Just p else Nothing -- | Construct a valid element from an unchecked element, throwing 'error' -- on invalid elements. constructValidUnsafe :: (Show a, Validity a) => a -> a constructValidUnsafe p = fromMaybe (error $ show p ++ " is not valid") $ constructValid p -- | validate a given value. -- -- This function returns either all the reasons why the given value is invalid, -- in the form of a list of 'ValidationChain's, or it returns 'Right' with the -- input value, as evidence that it is valid. -- -- Note: You may want to use 'prettyValidation' instead, if you want to -- display these 'ValidationChain's to a user. checkValidity :: Validity a => a -> Either [ValidationChain] a checkValidity a = case validate a of Validation [] -> Right a Validation errs -> Left errs -- | Check if a 'Validation' concerns a valid value. validationIsValid :: Validation -> Bool validationIsValid v = case v of Validation [] -> True _ -> False -- | Validate a given value -- -- This function will return a nice error if the value is invalid. -- It will return the original value in 'Right' if it was valid, -- as evidence that it has been validated. prettyValidate :: Validity a => a -> Either String a prettyValidate a = case prettyValidation $ validate a of Just e -> Left e Nothing -> Right a -- | Render a `Validation` in a somewhat pretty way. -- -- This function will return 'Nothing' if the 'Validation' concerned a valid value. prettyValidation :: Validation -> Maybe String prettyValidation v = case v of Validation [] -> Nothing Validation errs -> Just $ intercalate "\n" $ map (errCascade . toStrings) errs where toStrings (Violated s) = ["Violated: " ++ s] toStrings (Location s vc) = s : toStrings vc errCascade errList = intercalate "\n" $ flip map (zip [0 ..] errList) $ \(i, segment) -> case i of 0 -> segment _ -> replicate i ' ' ++ "\\ " ++ segment validity-0.11.0.0/test/Spec.hs0000644000000000000000000000005413644617172014161 0ustar0000000000000000{-# OPTIONS_GHC -F -pgmF hspec-discover #-} validity-0.11.0.0/test/Data/ValiditySpec.hs0000644000000000000000000001506213646331306016537 0ustar0000000000000000{-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE MagicHash #-} -- {-# LANGUAGE CPP #-} module Data.ValiditySpec ( spec, ) where -- #if !MIN_VERSION_base(4,7,0) -- import Data.Monoid -- #endif import Data.Maybe import Data.Validity import GHC.Exts (Char (..), chr#) import GHC.Generics (Generic) import GHC.Int (Int16 (..), Int32 (..), Int8 (..)) import GHC.Real (Ratio (..), infinity, notANumber) import GHC.Word (Word16 (..), Word32 (..), Word8 (..)) import Test.Hspec newtype NormalisedRatio a = NormalisedRatio (Ratio a) deriving (Show, Eq, Generic) instance (Validity a, Integral a) => Validity (NormalisedRatio a) where validate nr@(NormalisedRatio r) = mconcat [ genericValidate nr, validateRatioNotNaN r, validateRatioNotInfinite r, validateRatioNormalised r ] data Wrong = Wrong | Fine deriving (Show, Eq) instance Validity Wrong where validate w = case w of Wrong -> invalid "Wrong" Fine -> valid data GeneratedValidity = G Rational Rational deriving (Show, Eq, Generic) instance Validity GeneratedValidity spec :: Spec spec = do describe "Small numbers" $ do describe "Validity Int8" $ do it "Says that minBound is valid" $ isValid (minBound :: Int8) `shouldBe` True it "Says that maxBound is valid" $ isValid (maxBound :: Int8) `shouldBe` True it "Says that Int# 200 is invalid" $ isValid (I8# 200#) `shouldBe` False it "Says that Int# -200 is invalid" $ isValid (I8# (-200#)) `shouldBe` False describe "Validity Int16" $ do it "Says that minBound is valid" $ isValid (minBound :: Int16) `shouldBe` True it "Says that maxBound is valid" $ isValid (maxBound :: Int16) `shouldBe` True it "Says that Int# 4000 is invalid" $ isValid (I16# 40000#) `shouldBe` False it "Says that Int# -4000 is invalid" $ isValid (I16# (-40000#)) `shouldBe` False describe "Validity Int32" $ do it "Says that minBound is valid" $ isValid (minBound :: Int32) `shouldBe` True it "Says that maxBound is valid" $ isValid (maxBound :: Int32) `shouldBe` True it "Says that Int# 2200000000 is invalid" $ isValid (I32# 2200000000#) `shouldBe` False it "Says that Int# -2200000000 is invalid" $ isValid (I32# (-2200000000#)) `shouldBe` False describe "Validity Word8" $ do it "Says that minBound is valid" $ isValid (minBound :: Word8) `shouldBe` True it "Says that maxBound is valid" $ isValid (maxBound :: Word8) `shouldBe` True it "Says that Word# 300 is invalid" $ isValid (W8# 300##) `shouldBe` False describe "Validity Word16" $ do it "Says that minBound is valid" $ isValid (minBound :: Word16) `shouldBe` True it "Says that maxBound is valid" $ isValid (maxBound :: Word16) `shouldBe` True it "Says that Word# 80000 is invalid" $ isValid (W16# 80000##) `shouldBe` False describe "Validity Word32" $ do it "Says that minBound is valid" $ isValid (minBound :: Word32) `shouldBe` True it "Says that maxBound is valid" $ isValid (maxBound :: Word32) `shouldBe` True it "Says that Word# 4800000000 is invalid" $ isValid (W32# 4800000000##) `shouldBe` False describe "Chars" $ do describe "Small" $ do describe "Validity Char" $ do it "Says that minBound is valid" $ isValid (minBound :: Char) `shouldBe` True it "Says that maxBound is valid" $ isValid (maxBound :: Char) `shouldBe` True it "Says that 2147483647 is invalid" $ isValid (C# (chr# 2147483647#)) `shouldBe` False it "Says that a negative char is invalid" $ isValid (C# (chr# -1#)) `shouldBe` False it "Says that a very positive char is invalid" $ isValid (C# (chr# 9223372036854775807#)) `shouldBe` False it "Says that a very negative char is invalid" $ isValid (C# (chr# -9223372036854775808#)) `shouldBe` False describe "Weird" $ do describe "isUtf16SurrogateCodePoint" $ do it "Says that a is a valid char" $ isUtf16SurrogateCodePoint 'a' `shouldBe` False it "Says that \\55810 is an invalid char" $ isUtf16SurrogateCodePoint '\55810' `shouldBe` True describe "validateCharNotUtf16SurrogateCodePoint" $ do it "Says that a is a valid char" $ prettyValidation (validateCharNotUtf16SurrogateCodePoint 'a') `shouldSatisfy` isNothing it "Says that \\55810 is an invalid char" $ prettyValidation (validateCharNotUtf16SurrogateCodePoint '\55810') `shouldSatisfy` isJust describe "Ratio" $ do it "says that 0 is valid" $ NormalisedRatio (0 :% 1 :: Ratio Int) `shouldSatisfy` isValid it "says that 1 is valid" $ NormalisedRatio (1 :% 1 :: Ratio Int) `shouldSatisfy` isValid it "says that minBound is valid" $ NormalisedRatio (minBound :% 1 :: Ratio Int) `shouldSatisfy` isValid it "says that maxBound is valid" $ NormalisedRatio (maxBound :% 1 :: Ratio Int) `shouldSatisfy` isValid it "says that maxBound / minBound is invalid" $ NormalisedRatio (maxBound :% minBound :: Ratio Int) `shouldSatisfy` (not . isValid) it "says that minBound / maxBound is invalid" $ NormalisedRatio (minBound :% maxBound :: Ratio Int) `shouldSatisfy` (not . isValid) it "says that minBound / 2957808295740799111 is valid" $ NormalisedRatio (minBound :% (2957808295740799111) :: Ratio Int) `shouldSatisfy` isValid describe "NormalisedRatio" $ do it "says that NaN is invalid" $ NormalisedRatio notANumber `shouldSatisfy` (not . isValid) it "says that +Inf is invalid" $ NormalisedRatio infinity `shouldSatisfy` (not . isValid) it "says that -Inf is invalid" $ NormalisedRatio (- infinity) `shouldSatisfy` (not . isValid) it "says that these non-normalised numbers are invalid" $ do NormalisedRatio ((5 :: Integer) :% 5) `shouldSatisfy` (not . isValid) NormalisedRatio ((1 :: Integer) :% (-5)) `shouldSatisfy` (not . isValid) NormalisedRatio ((6 :: Integer) :% 2) `shouldSatisfy` (not . isValid) NormalisedRatio ((2 :: Integer) :% 6) `shouldSatisfy` (not . isValid) NormalisedRatio ((2 :: Integer) :% 0) `shouldSatisfy` (not . isValid) NormalisedRatio ((0 :: Integer) :% 5) `shouldSatisfy` (not . isValid) NormalisedRatio ((0 :: Integer) :% 0) `shouldSatisfy` (not . isValid) describe "Wrong" $ do it "says Wrong is invalid" $ Wrong `shouldSatisfy` (not . isValid) it "says Fine is valid" $ Fine `shouldSatisfy` isValid describe "GeneratedValidity" $ do let nan = 1 :% 0 it "says G (1:%0) 0 is not valid" $ G nan 0 `shouldSatisfy` (not . isValid) it "says G 0 (1:%0) is not valid" $ G 0 nan `shouldSatisfy` (not . isValid) it "says G 0 0 is valid" $ G 0 0 `shouldSatisfy` isValid validity-0.11.0.0/LICENSE0000644000000000000000000000210413644617172012757 0ustar0000000000000000The MIT License (MIT) Copyright (c) 2016-2020 Tom Sydney Kerckhove Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. validity-0.11.0.0/Setup.hs0000644000000000000000000000005713644617172013413 0ustar0000000000000000import Distribution.Simple main = defaultMain validity-0.11.0.0/validity.cabal0000644000000000000000000000506513646332060014564 0ustar0000000000000000cabal-version: 1.12 -- This file has been generated from package.yaml by hpack version 0.33.0. -- -- see: https://github.com/sol/hpack -- -- hash: 6e3da519f8ddc7a538070f618f28ca85aa221ce124f13eae8d806fe81e827a0e name: validity version: 0.11.0.0 synopsis: Validity typeclass description: For more info, see . . Note: There are companion instance packages for this library: . * . * . * . * . * . * . * . * . * . * category: Validity homepage: https://github.com/NorfairKing/validity#readme bug-reports: https://github.com/NorfairKing/validity/issues author: Tom Sydney Kerckhove maintainer: syd@cs-syd.eu copyright: Copyright: (c) 2016-2020 Tom Sydney Kerckhove license: MIT license-file: LICENSE build-type: Simple source-repository head type: git location: https://github.com/NorfairKing/validity library exposed-modules: Data.RelativeValidity Data.Validity other-modules: Paths_validity hs-source-dirs: src build-depends: base >=4.7 && <5 if impl(ghc >=8.0.0) ghc-options: -Wno-redundant-constraints default-language: Haskell2010 test-suite validity-test type: exitcode-stdio-1.0 main-is: Spec.hs other-modules: Data.ValiditySpec Paths_validity hs-source-dirs: test ghc-options: -threaded -rtsopts -with-rtsopts=-N -Wall build-depends: base >=4.7 && <5 , hspec , validity default-language: Haskell2010