pax_global_header00006660000000000000000000000064123111022410014475gustar00rootroot0000000000000052 comment=c280b289824cdf3005f6b036524c326844ede90a
blockfinder-3.14159/000077500000000000000000000000001231110224100141455ustar00rootroot00000000000000blockfinder-3.14159/.gitignore000066400000000000000000000000071231110224100161320ustar00rootroot00000000000000*.pyc
blockfinder-3.14159/.travis.yml000066400000000000000000000001311231110224100162510ustar00rootroot00000000000000language: python
python:
- "2.6"
- "2.7"
- "3.3"
script: python blockfindertest.py
blockfinder-3.14159/CHANGELOG000066400000000000000000000001371231110224100153600ustar00rootroot00000000000000Changes in version 3.1 - 2009-12-25
o Initial public release
- Published on github
blockfinder-3.14159/LICENSE000066400000000000000000000022501231110224100151510ustar00rootroot00000000000000Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
blockfinder-3.14159/Makefile000066400000000000000000000005561231110224100156130ustar00rootroot00000000000000EXEC =blockfinder
default:
echo "This is a python program and doesn't compile!"
install:
test -d $(DESTDIR)/usr/bin/ || mkdir -p $(DESTDIR)/usr/bin/
cp $(EXEC) $(DESTDIR)/usr/bin/
uninstall:
rm $(DESTDIR)/usr/bin/$(EXEC)
deb-src:
dpkg-buildpackage -S -rfakeroot -us -uc
deb:
dpkg-buildpackage -rfakeroot -us -uc
deb-clean:
-rm build
debian/rules clean
blockfinder-3.14159/README000066400000000000000000000030571231110224100150320ustar00rootroot00000000000000blockfinder by Jacob Appelbaum , David
"All that Blockfinder does is allow you to identify, contact and potentially
hack into every computer network in the world." - Rolling Stone, August 2010 [0]
Contrary to popular media claims, blockfinder is a simple text based console
tool that returns a list of netblocks for a given country. It does this by
fetching the following lists of allocations:
ftp://ftp.arin.net/pub/stats/arin/delegated-arin-latest
ftp://ftp.ripe.net/ripe/stats/delegated-ripencc-latest
ftp://ftp.afrinic.net/pub/stats/afrinic/delegated-afrinic-latest
ftp://ftp.apnic.net/pub/stats/apnic/delegated-apnic-latest
ftp://ftp.lacnic.net/pub/stats/lacnic/delegated-lacnic-latest
The list of ISO codes is ISO 3166-1 as found here:
http://www.iso.org/iso/home/standards/country_codes/country_names_and_code_elements_txt-temp.htm
http://en.wikipedia.org/wiki/ISO_3166-1
blockfinder has two methods of operation:
Update the lists of network object allocations
Returning a list of all netblocks (or asn, etc) for a given country
To use blockfinder, first create or update the cache:
blockfinder -i
Once you have a proper cache, search for the desired resource in the country
of your choice:
./blockfinder -v -t mm
Additionally, to filter results for a specific protocol you can use a selector:
./blockfinder -v -t mm:ipv4
On Windows (in cmd, PowerShell and 4nt) one may find blockfinder.bat useful:
blockfinder.bat
[0] http://www.rollingstone.com/culture/news/17389/192242
blockfinder-3.14159/TODO000066400000000000000000000041031231110224100146330ustar00rootroot00000000000000High Priority:
Add support for LIR blocks by parsing the ripe.db.inetnum.gz.
This lists sub-allocations and assignments made by local LIR/ISPs:
ftp://ftp.ripe.net/ripe/dbase/split/ripe.db.inetnum.gz
Add Custom GeoIP support
If a user wants to supply their own DB; we should allow this
Add GeoIP database inversion
Optionally combine the results with delegation information to produce more
accurate netblocks
Add/Fix support for IPv6
./blockfinder -r 2001:200:dff:fff1:216:3eff:feb1:44d7
Add lock file to ensure '-i' only runs once
Add support for BGP related information
Interface with routeviews.org for data
show all ASNs announced by a country (as allocated)
show all blocks announced by ASN
show all blocks announced by a collection of ASNs (country)
we need to parse MRT binary archives from http://archive.routeviews.org/
maybe with http://code.google.com/p/pybgpdump/ ?
Add latency GeoIP confirmation test
As an interface with routeviews.org
pick n out of x netblocks total, randomly select an ip in the block,
traceroute, repeat this process until n is reasonably near x, average
the results to find a likely lowest latency into the country.
Given the target ip and the above calculated latency map, compare the
latency - shorest latency is likely the most honest - liars can only
delay packets or drop them.
Unit Tests!
Lower Priority:
Fix country code searching code
It appears to be broken for "korea"
Add country-code re-init code and progress meter
When creating or refreshng the cache, we should display progress
Add manpage
Add support for proxies during updating/fetching
Fix country xml download
content-length verify and check for stale cache
Add support to list all country codes with possible results
Add an option to print the whois description(seems the most complete).
Refactor the argument parsing to make it reasonable
Required arguments should be postional, etc
Refactor updating/fetching animation
Add system wide cache_dir to ease blockfinder use on multi user systems
Package for Debian
blockfinder-3.14159/blockfinder000077500000000000000000001644451231110224100163730ustar00rootroot00000000000000#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# For the people of Smubworld!
import os
import time
import optparse
import sys
import sqlite3
import hashlib
import gzip
import zipfile
import re
import bz2
from math import log
if sys.version_info[0] >= 3:
import configparser
import ipaddress as ipaddr
from urllib.request import (urlopen, Request)
from urllib.error import URLError
long = int
else:
import ConfigParser as configparser
from urllib2 import (urlopen, Request, URLError)
try:
from embedded_ipaddr import ipaddr
ipaddr.ip_address = ipaddr.IPAddress
except:
import ipaddr
is_win32 = (sys.platform == "win32")
__program__ = 'blockfinder'
__url__ = 'https://github.com/ioerror/blockfinder/'
__author__ = 'Jacob Appelbaum , David '
__copyright__ = 'Copyright (c) 2010'
__license__ = 'See LICENSE for licensing information'
__version__ = '3.14159'
try:
from future import antigravity
except ImportError:
antigravity = None
class DatabaseCache:
def __init__(self, cache_dir, verbose=False):
self.cache_dir = cache_dir
self.verbose = verbose
self.cursor = None
self.conn = None
self.db_version = "0.0.4"
self.db_path = os.path.join(self.cache_dir + "sqlitedb")
def erase_database(self):
""" Erase the database file. """
if os.path.exists(self.db_path):
os.remove(self.db_path)
def connect_to_database(self):
""" Connect to the database cache, possibly after creating it if
it doesn't exist yet, or after making sure an existing
database cache has the correct version. Return True if a
connection could be established, False otherwise. """
if not os.path.exists(self.cache_dir):
if self.verbose:
print("Initializing the cache directory...")
os.mkdir(self.cache_dir)
if os.path.exists(self.db_path):
cache_version = self.get_db_version()
if not cache_version:
cache_version = "0.0.1"
if cache_version != self.db_version:
print(("The existing database cache uses version %s, "
"not the expected %s." % (cache_version,
self.db_version)))
return False
self.conn = sqlite3.connect(self.db_path)
self.cursor = self.conn.cursor()
self.create_assignments_table()
self.create_asn_description_table()
self.create_asn_assignments_table()
return True
def __get_default_config_file_obj(self):
open_flags = 'r+'
file_path = os.path.join(self.cache_dir, 'db.cfg')
if not os.path.exists(file_path):
open_flags = 'w+'
return open(file_path, open_flags)
def _get_db_config(self, file_obj=None):
""" Return the database configuration object from the provided
file_obj if provided, otherwise from the default database
configuration file. """
if file_obj is None:
file_obj = self.__get_default_config_file_obj()
config = configparser.SafeConfigParser()
config.readfp(file_obj)
file_obj.close()
return config
def set_db_version(self, file_obj=None):
""" Set the database version string in the config file. """
if file_obj is None:
file_obj = self.__get_default_config_file_obj()
config = self._get_db_config()
if not config.has_section('db'):
config.add_section('db')
config.set('db', 'version', self.db_version)
config.write(file_obj)
file_obj.close()
def get_db_version(self):
""" Read and return the database version string from the config
file. """
config = self._get_db_config()
if not config.has_section('db'):
return None
return config.get('db', 'version')
def commit_and_close_database(self):
self.conn.commit()
self.cursor.close()
def create_assignments_table(self):
""" Create the assignments table that stores all assignments from
IPv4/IPv6/ASN to country code. Blocks are stored as first hex
of and first hex after the assignment. Numbers are stored
as hex strings, because SQLite's INTEGER type only holds up to
63 unsigned bits, which is not enough to store a /64 IPv6
block. Hex strings have leading zeros, with IPv6 addresses
being 33 hex characters long and IPv4 addresses and ASN being
9 hex characters long. The first number after an assignment
range is stored instead of the last number in the range to
facilitate comparisons with neighboring ranges. """
sql = ('CREATE TABLE IF NOT EXISTS assignments(start_hex TEXT, '
'next_start_hex TEXT, num_type TEXT, country_code TEXT, '
'source_type TEXT, source_name TEXT)')
self.cursor.execute(sql)
self.conn.commit()
def create_asn_description_table(self):
""" Create the assignments table that stores all the descriptions
associated with ASNs. """
sql = ('CREATE TABLE IF NOT EXISTS asn_descriptions(as_num INT, '
'source_name TEXT, description TEXT)')
self.cursor.execute(sql)
sql = ('CREATE INDEX IF NOT EXISTS DescriptionsByASN ON '
'asn_descriptions ( as_num )')
self.cursor.execute(sql)
self.conn.commit()
def create_asn_assignments_table(self):
""" Create the assignments table that stores the assignments from
IPv4 to ASN """
#XXX: IPv6 not yet supported. (Not available from routeviews?)
sql = ('CREATE TABLE IF NOT EXISTS asn_assignments(start_hex TEXT, '
'next_start_hex TEXT, num_type TEXT, as_num INT, '
'source_type TEXT, source_name TEXT, PRIMARY KEY(start_hex, '
'next_start_hex))')
self.cursor.execute(sql)
sql = ('CREATE INDEX IF NOT EXISTS ASNEntriesByStartHex on '
'asn_assignments ( start_hex )')
self.cursor.execute(sql)
self.conn.commit()
def delete_assignments(self, source_type):
""" Delete all assignments from the database cache matching a
given source type ("rir", "lir", etc.). """
sql = 'DELETE FROM assignments WHERE source_type = ?'
self.cursor.execute(sql, (source_type, ))
self.conn.commit()
def delete_asn_descriptions(self):
""" Delete all asn descriptions from the database cache. """
sql = 'DELETE FROM asn_descriptions'
self.cursor.execute(sql)
self.conn.commit()
def delete_asn_assignments(self):
""" Delete all the bgp netblock to as entries """
sql = 'DELETE FROM asn_assignments'
self.cursor.execute(sql)
self.conn.commit()
def insert_assignment(self, start_num, end_num, num_type,
country_code, source_type, source_name):
""" Insert an assignment into the database cache, without
commiting after the insertion. """
sql = ('INSERT INTO assignments (start_hex, next_start_hex, '
'num_type, country_code, source_type, source_name) '
'VALUES (?, ?, ?, ?, ?, ?)')
if num_type == 'ipv6':
start_hex = '%033x' % start_num
next_start_hex = '%033x' % (end_num + 1)
else:
start_hex = '%09x' % start_num
next_start_hex = '%09x' % (end_num + 1)
self.cursor.execute(sql, (start_hex, next_start_hex, num_type,
country_code, source_type, source_name))
def insert_asn_description(self, asn, source_name, description):
sql = ('INSERT INTO asn_descriptions (as_num, source_name, description) '
'VALUES (?, ?, ?)')
self.cursor.execute(sql, (asn, source_name, unicode(description)))
def insert_asn_assignment(self, start_num, end_num, num_type, asn,
source_type, source_name):
#XXX: This is sqlite specific syntax
sql = ('INSERT OR IGNORE INTO asn_assignments (start_hex, '
'next_start_hex, num_type, as_num, source_type, source_name) '
'VALUES (?, ?, ?, ?, ?, ?)')
if num_type == 'ipv6':
start_hex = '%033x' % start_num
next_start_hex = '%033x' % (end_num + 1)
else:
start_hex = '%09x' % start_num
next_start_hex = '%09x' % (end_num + 1)
self.cursor.execute(sql, (start_hex, next_start_hex, num_type, asn,
source_type, source_name))
def commit_changes(self):
""" Commit changes, e.g., after inserting assignments into the
database cache. """
self.conn.commit()
def fetch_assignments(self, num_type, country_code):
""" Fetch all assignments from the database cache matching the
given number type ("asn", "ipv4", or "ipv6") and country code.
The result is a sorted list of tuples containing (start_num,
end_num). """
sql = ('SELECT start_hex, next_start_hex FROM assignments '
'WHERE num_type = ? AND country_code = ? '
'ORDER BY start_hex')
self.cursor.execute(sql, (num_type, country_code))
result = []
for row in self.cursor:
result.append((long(row[0], 16), long(row[1], 16) - 1))
return result
def fetch_country_code(self, num_type, source_type, lookup_num):
""" Fetch the country code from the database cache that is
assigned to the given number (e.g., IPv4 address in decimal
notation), number type (e.g., "ipv4"), and source type (e.g.,
"rir"). """
sql = ('SELECT country_code FROM assignments WHERE num_type = ? '
'AND source_type = ? AND start_hex <= ? '
'AND next_start_hex > ?')
if num_type == 'ipv6':
lookup_hex = '%033x' % long(lookup_num)
else:
lookup_hex = '%09x' % long(lookup_num)
self.cursor.execute(sql, (num_type, source_type, lookup_hex,
lookup_hex))
row = self.cursor.fetchone()
if row:
return row[0]
def fetch_country_blocks_in_other_sources(self, first_country_code):
""" Fetch all assignments matching the given country code, then look
up to which country code(s) the same number ranges are assigned in
other source types. Return 8-tuples containing (1) first source
type, (2) first and (3) last number of the assignment in the first
source type, (4) second source type, (5) first and (6) last number
of the assignment in the second source type, (7) country code in
the second source type, and (8) number type. """
sql = ('SELECT first.source_type, first.start_hex, '
'first.next_start_hex, second.source_type, '
'second.start_hex, second.next_start_hex, '
'second.country_code, first.num_type '
'FROM assignments AS first '
'JOIN assignments AS second '
'WHERE first.country_code = ? '
'AND first.start_hex <= second.next_start_hex '
'AND first.next_start_hex >= second.start_hex '
'AND first.num_type = second.num_type '
'ORDER BY first.source_type, first.start_hex, '
'second.source_type, second.start_hex')
self.cursor.execute(sql, (first_country_code, ))
result = []
for row in self.cursor:
result.append((str(row[0]), long(row[1], 16),
long(row[2], 16) - 1, str(row[3]), long(row[4], 16),
long(row[5], 16) - 1, str(row[6]), str(row[7])))
return result
def fetch_org_by_ip_address(self, lookup_str, num_type):
if num_type == 'ipv4':
lookup_hex = '%09x' % long(int(lookup_str))
else:
lookup_hex = '%033x' % long(int(lookup_str))
sql = ('SELECT asn_descriptions.as_num, asn_descriptions.description, '
'asn_assignments.start_hex, asn_assignments.next_start_hex '
'FROM asn_descriptions JOIN asn_assignments ON '
'asn_assignments.as_num = asn_descriptions.as_num '
'WHERE num_type = ? AND start_hex <= ? AND next_start_hex > ?')
self.cursor.execute(sql, (num_type, lookup_hex, lookup_hex))
row = self.cursor.fetchall()
if row:
return row
def fetch_org_by_ip_range(self, lookup_start, lookup_end, num_type):
if num_type == 'ipv4':
lookup_start_hex = '%09x' % long(int(lookup_start))
lookup_end_hex = '%09x' % long(int(lookup_end))
else:
lookup_start_hex = '%033x' % long(int(lookup_start))
lookup_end_hex = '%033x' % long(int(lookup_end))
sql = ('SELECT asn_descriptions.as_num, asn_descriptions.description, '
'asn_assignments.start_hex, asn_assignments.next_start_hex '
'FROM asn_descriptions JOIN asn_assignments ON '
'asn_assignments.as_num = asn_descriptions.as_num '
'WHERE num_type = ? AND start_hex >= ? AND next_start_hex <= ?')
self.cursor.execute(sql, (num_type, lookup_start_hex, lookup_end_hex))
row = self.cursor.fetchall()
if row:
return row
def _concatenate_and_write(self, records, write_function=None, record_filter=None, bits=32):
netblocks = []
for row in records:
try:
start_hex, next_start_hex, record = \
long(row[0], 16), long(row[1], 16), str(row[2])
nb = bits - int(log(next_start_hex - start_hex, 2))
net = ipaddr.IPNetwork("%s/%d" %
(ipaddr.IPAddress(start_hex),nb))
if callable(record_filter):
record = record_filter(record)
except ValueError:
continue
# Concatenate adjacent blocks of the same country
if netblocks and netblocks[-1][1] == record:
pn = netblocks[-1][0]
nb = bits - int(log(int(net.network) + \
int(net.numhosts) - int(pn.network), 2))
netblocks[-1] = (ipaddr.IPNetwork("%s/%d" % \
(pn.network, nb)), record)
# if the adjacent blocks aren't the same country,
# write the last block out to csv and add the new block
# to the list for possible concatenation
elif netblocks:
prev_n,prev_record = netblocks.pop()
if write_function:
write_function(prev_n,prev_record)
netblocks.append((net,record))
# this is the base case
else:
netblocks.append((net,record))
def export_asn(self, filename, num_type):
""" Export assignments to the CSV format used to build the geoip-database asn lookup """
sql = ('SELECT start_hex, next_start_hex, as_num '
'FROM asn_assignments WHERE num_type = ? ORDER BY start_hex')
self.cursor.execute(sql, (num_type,))
try:
f = open(filename, 'w')
except IOError:
print("Unable to open %s" % filename)
return
def write_csv_line(network, asn):
#XXX: wild guess
f.write(""""%s","%s","%d","%d","%s"\n""" % (network.network,
network.broadcast, int(network.network),
int(network.broadcast), asn))
if num_type == 'ipv6': ip_bits = 128
elif num_type == 'ipv4': ip_bits = 32
else: return
self._concatenate_and_write(self.cursor, write_function=write_csv_line,
bits=ip_bits)
f.close()
def export_geoip(self, lookup, filename, num_type):
""" Export assignments to the CSV format used to build the
geoip-database package """
sql = ('SELECT start_hex, next_start_hex, country_code '
'FROM assignments WHERE num_type = ? ORDER BY start_hex')
self.cursor.execute(sql, (num_type,))
try:
f = open(filename, 'w')
except IOError:
print("Unable to open %s" % filename)
return
def write_csv_line(network, country_code):
country_name = lookup.get_name_from_country_code(country_code)
if country_name:
country_name = country_name.split("#")[0].strip() #Drop comments
f.write(""""%s","%s","%d","%d","%s","%s"\n""" % (network.network,
network.broadcast, int(network.network),
int(network.broadcast), country_code, country_name))
if num_type == 'ipv6': ip_bits = 128
elif num_type == 'ipv4': ip_bits = 32
else: return
self._concatenate_and_write(self.cursor, write_function=write_csv_line,
record_filter=str.upper, bits=ip_bits)
f.close()
class DownloaderParser:
def __init__(self, cache_dir, database_cache, user_agent,
verbose=False):
self.cache_dir = cache_dir
self.database_cache = database_cache
self.user_agent = user_agent
self.verbose = verbose
MAXMIND_URLS = """
http://geolite.maxmind.com/download/geoip/database/GeoIPCountryCSV.zip
http://geolite.maxmind.com/download/geoip/database/GeoIPv6.csv.gz
"""
RIR_URLS = """
ftp://ftp.arin.net/pub/stats/arin/delegated-arin-extended-latest
ftp://ftp.ripe.net/ripe/stats/delegated-ripencc-latest
ftp://ftp.afrinic.net/pub/stats/afrinic/delegated-afrinic-latest
ftp://ftp.apnic.net/pub/stats/apnic/delegated-apnic-latest
ftp://ftp.lacnic.net/pub/stats/lacnic/delegated-lacnic-latest
"""
LIR_URLS = """
ftp://ftp.ripe.net/ripe/dbase/split/ripe.db.inetnum.gz
ftp://ftp.ripe.net/ripe/dbase/split/ripe.db.inet6num.gz
"""
COUNTRY_CODE_URL = "http://www.iso.org/iso/home/standards/country_codes/country_names_and_code_elements_txt-temp.htm"
ASN_DESCRIPTION_URL = "http://www.cidr-report.org/as2.0/autnums.html"
ASN_ASSIGNMENT_URLS = """
http://archive.routeviews.org/oix-route-views/oix-full-snapshot-latest.dat.bz2
"""
def download_maxmind_files(self):
""" Download all LIR delegation urls. """
for maxmind_url in self.MAXMIND_URLS.split():
self._download_to_cache_dir(maxmind_url)
def download_rir_files(self):
""" Download all RIR delegation files including md5 checksum. """
for rir_url in self.RIR_URLS.split():
rir_md5_url = rir_url + '.md5'
self._download_to_cache_dir(rir_url)
self._download_to_cache_dir(rir_md5_url)
def download_lir_files(self):
""" Download all LIR delegation urls. """
for lir_url in self.LIR_URLS.split():
self._download_to_cache_dir(lir_url)
def download_country_code_file(self):
""" Download and save the latest semicolon-separated open country
codes file. """
self._download_to_cache_dir(self.COUNTRY_CODE_URL)
def download_asn_description_file(self):
""" Download and save the latest ASN to Name report from
cidr-report.org"""
self._download_to_cache_dir(self.ASN_DESCRIPTION_URL)
def download_asn_assignment_files(self):
""" Download and save the latest routing snapshots. """
for assignment_url in self.ASN_ASSIGNMENT_URLS.split():
self._download_to_cache_dir(assignment_url)
def _download_to_cache_dir(self, url):
""" Fetch a resource (with progress bar) and store contents to the
local cache directory under the file name given in the URL. """
if not os.path.exists(self.cache_dir):
if self.verbose:
print("Initializing the cache directory...")
os.mkdir(self.cache_dir)
filename = url.split('/')[-1]
if self.verbose:
print(url)
req = Request(url)
if self.user_agent:
req.add_header('User-Agent', self.user_agent)
# TODO Allow use of a proxy.
#req.set_proxy(host, type)
try:
fetcher = urlopen(req)
except URLError as err:
msg = "An error occurred while attempting to cache file from:"
print(("%s\n\t%s\n\t%s" % (msg, url, str(err))))
return
length_header = fetcher.headers.get("Content-Length")
expected_bytes = -1
if length_header:
expected_bytes = int(length_header)
print(("Fetching %d kilobytes" %
round(float(expected_bytes / 1024), 2)))
download_started = time.time()
output_file = open(os.path.join(self.cache_dir, filename), "wb")
received_bytes, seconds_elapsed = 0, 0
while True:
seconds_elapsed = time.time() - download_started
if expected_bytes >= 0:
self._update_progress_bar(received_bytes, expected_bytes,
seconds_elapsed)
chunk = fetcher.read(1024)
if len(chunk) == 0:
if expected_bytes >= 0 and received_bytes != expected_bytes:
print(("Expected %s bytes, only received %s" %
(expected_bytes, received_bytes)))
print("")
break
received_bytes += len(chunk)
output_file.write(chunk)
output_file.close()
def _update_progress_bar(self, received_bytes, expected_bytes,
seconds_elapsed):
""" Write a progress bar to the console. """
if is_win32:
rows = 100 # use some WinCon function for these?
columns = 80 # but not really important.
EOL = "\r"
else:
rows, columns = list(map(int, os.popen('stty size', 'r'
).read().split()))
EOL = "\x1b[G"
if seconds_elapsed == 0:
seconds_elapsed = 1
percent_done = float(received_bytes) / float(expected_bytes)
caption = "%.2f K/s" % (received_bytes / 1024 / seconds_elapsed)
width = columns - 4 - len(caption)
sys.stdout.write("[%s>%s] %s%s" % (
"=" * int(percent_done * width),
"." * (width - int(percent_done * width)), caption, EOL))
sys.stdout.flush()
def check_rir_file_mtimes(self):
""" Return True if the mtime of any RIR file in our cache directory
is > 24 hours, False otherwise. """
if not os.path.exists(self.cache_dir):
return False
for rir_url in self.RIR_URLS.split():
rir_path = os.path.join(self.cache_dir,
rir_url.split('/')[-1])
if os.path.exists(rir_path):
rir_stat = os.stat(rir_path)
if (time.time() - rir_stat.st_mtime) > 86400:
return True
return False
def verify_rir_files(self):
""" Compute md5 checksums of all RIR files, compare them to the
provided .md5 files, and return True if the two checksums match,
or False otherwise. """
for rir_url in self.RIR_URLS.split():
rir_path = os.path.join(self.cache_dir,
rir_url.split('/')[-1])
rir_md5_path = os.path.join(self.cache_dir,
rir_url.split('/')[-1] + '.md5')
if not os.path.exists(rir_md5_path) or \
not os.path.exists(rir_path):
continue
rir_md5_file = open(rir_md5_path, 'r')
expected_checksum = rir_md5_file.read()
rir_md5_file.close()
if "=" in expected_checksum:
expected_checksum = expected_checksum.split("=")[-1].strip()
elif expected_checksum == "":
if self.verbose:
print("No checksum... skipping verification...")
continue
else:
regex = re.compile("[a-f0-9]{32}")
regres = regex.findall(expected_checksum)
if len(regres) > 1:
print("Error: mutiple checksum found")
elif len(regres) < 1:
print("Error: no checksum found")
else:
expected_checksum = regres[0]
computed_checksum = ""
rir_file = open(rir_path, 'rb')
rir_data = rir_file.read()
rir_file.close()
computed_checksum = str(hashlib.md5(rir_data).hexdigest())
if expected_checksum != computed_checksum:
print(("The computed md5 checksum of %s, %s, does *not* "
"match the provided checksum %s!" %
(rir_path, computed_checksum, expected_checksum)))
def parse_maxmind_files(self, maxmind_urls=None):
""" Parse locally cached MaxMind files and insert assignments to the
local database cache, overwriting any existing MaxMind
assignments. """
if not maxmind_urls:
maxmind_urls = self.MAXMIND_URLS.split()
self.database_cache.delete_assignments('maxmind')
for maxmind_url in maxmind_urls:
maxmind_path = os.path.join(self.cache_dir,
maxmind_url.split('/')[-1])
if not os.path.exists(maxmind_path):
print("Unable to find %s." % maxmind_path)
continue
if maxmind_path.endswith('.zip'):
maxmind_zip_path = zipfile.ZipFile(maxmind_path)
for contained_filename in maxmind_zip_path.namelist():
content = maxmind_zip_path.read(contained_filename)
self._parse_maxmind_content(content, 'maxmind',
'maxmind')
elif maxmind_path.endswith('.gz'):
content = gzip.open(maxmind_path).read()
self._parse_maxmind_content(content, 'maxmind', 'maxmind')
self.database_cache.commit_changes()
def import_maxmind_file(self, maxmind_path):
self.database_cache.delete_assignments(maxmind_path)
if not os.path.exists(maxmind_path):
print("Unable to find %s." % maxmind_path)
return
content = open(maxmind_path).read()
self._parse_maxmind_content(content, maxmind_path, maxmind_path)
self.database_cache.commit_changes()
def _parse_maxmind_content(self, content, source_type, source_name):
keys = ['start_str', 'end_str', 'start_num', 'end_num',
'country_code', 'country_name']
for line in content.decode('utf-8').split('\n'):
if len(line.strip()) == 0 or line.startswith("#"):
continue
line = line.replace('"', '').replace(' ', '').strip()
parts = line.split(',')
entry = dict((k, v) for k, v in zip(keys, parts))
start_num = int(entry['start_num'])
end_num = int(entry['end_num'])
country_code = str(entry['country_code'])
start_ipaddr = ipaddr.ip_address(entry['start_str'])
if isinstance(start_ipaddr, ipaddr.IPv4Address):
num_type = 'ipv4'
else:
num_type = 'ipv6'
self.database_cache.insert_assignment(start_num, end_num,
num_type, country_code, source_type, source_name)
def parse_rir_files(self, rir_urls=None):
""" Parse locally cached RIR files and insert assignments to the local
database cache, overwriting any existing RIR assignments. """
if not rir_urls:
rir_urls = self.RIR_URLS.split()
self.database_cache.delete_assignments('rir')
keys = "registry country_code type start value date status"
for rir_url in rir_urls:
rir_path = os.path.join(self.cache_dir,
rir_url.split('/')[-1])
if not os.path.exists(rir_path):
print("Unable to find %s." % rir_path)
continue
for line in open(rir_path, 'r'):
if line.startswith("#"):
continue
entry = dict((k, v) for k, v in
zip(keys.split(), line.strip().split("|")))
source_name = str(entry['registry'])
country_code = str(entry['country_code'])
if source_name.replace(".", "", 1).isdigit() or country_code == "*":
continue
num_type = entry['type']
if num_type == 'asn':
start_num = end_num = int(entry['start'])
elif num_type == 'ipv4':
start_num = int(ipaddr.IPv4Address(entry['start']))
end_num = start_num + int(entry['value']) - 1
elif num_type == 'ipv6':
network_str = entry['start'] + '/' + entry['value']
network_ipaddr = ipaddr.IPv6Network(network_str)
start_num = int(network_ipaddr.network_address)
end_num = int(network_ipaddr.broadcast_address)
self.database_cache.insert_assignment(start_num,
end_num, num_type, country_code, 'rir',
source_name)
self.database_cache.commit_changes()
def parse_lir_files(self, lir_urls=None):
""" Parse locally cached LIR files and insert assignments to the local
database cache, overwriting any existing LIR assignments. """
if not lir_urls:
lir_urls = self.LIR_URLS.split()
self.database_cache.delete_assignments('lir')
for lir_url in lir_urls:
lir_path = os.path.join(self.cache_dir,
lir_url.split('/')[-1])
if not os.path.exists(lir_path):
print("Unable to find %s." % lir_path)
continue
if lir_path.endswith('.gz'):
lir_file = gzip.open(lir_path)
else:
lir_file = open(lir_path)
start_num = 0
end_num = 0
country_code = ""
entry = False
num_type = ""
for line in lir_file:
line = line.decode('utf-8', 'ignore').replace("\n", "")
if line == "":
entry = False
start_num, end_num, country_code, num_type = 0, 0, "", ""
elif not entry and "inetnum:" in line:
try:
line = line.replace("inetnum:", "").strip()
start_str = line.split("-")[0].strip()
end_str = line.split("-")[1].strip()
start_num = int(ipaddr.IPv4Address(start_str))
end_num = int(ipaddr.IPv4Address(end_str))
entry = True
num_type = 'ipv4'
except Exception as e:
if self.verbose:
print(repr(e), line)
elif not entry and "inet6num:" in line:
try:
network_str = line.replace("inet6num:", "").strip()
network_ipaddr = ipaddr.IPv6Network(network_str)
start_num = int(network_ipaddr.network_address)
end_num = int(network_ipaddr.broadcast_address)
entry = True
num_type = 'ipv6'
except Exception as e:
if self.verbose:
print(repr(e), line)
elif entry and "country:" in line:
country_code = line.replace("country:", "").strip()
self.database_cache.insert_assignment(start_num,
end_num, num_type, country_code, 'lir', 'ripencc')
self.database_cache.commit_changes()
def parse_asn_description_file(self, asn_description_url=None):
""" Parse locally cached ASN to Description mappings and insert
mappings to the local database cache, overwriting any existing ASN
to Name assignments. """
if not asn_description_url:
asn_description_url = self.ASN_DESCRIPTION_URL
self.database_cache.delete_asn_descriptions()
asn_description_path = os.path.join(self.cache_dir,
asn_description_url.split('/')[-1])
asn_descriptions = open(asn_description_path)
source_name = 'cidr_report'
skiplen = len(' 0:
return country_name[0][0]
def get_country_code_from_name(self, country_name):
""" Return the country code for a given country name. """
if not self.knows_country_names():
return
cc_code = [self.map_co[key] for key in list(self.map_co.keys()) if \
key.upper().startswith(country_name.upper())]
if len(cc_code) > 0:
return cc_code[0]
def lookup_ipv6_address(self, lookup_ipaddr):
print("Reverse lookup for: " + str(lookup_ipaddr))
for source_type in ['maxmind', 'rir', 'lir']:
cc = self.database_cache.fetch_country_code('ipv6',
source_type, int(lookup_ipaddr))
if cc:
print(source_type.upper(), "country code:", cc)
cn = self.get_name_from_country_code(cc)
if cn:
print(source_type.upper(), "country name:", cn)
def lookup_ipv4_address(self, lookup_ipaddr):
print("Reverse lookup for: " + str(lookup_ipaddr))
maxmind_cc = self.database_cache.fetch_country_code('ipv4', 'maxmind',
int(lookup_ipaddr))
if maxmind_cc:
print('MaxMind country code:', maxmind_cc)
maxmind_cn = self.get_name_from_country_code(maxmind_cc)
if maxmind_cn:
print('MaxMind country name:', maxmind_cn)
rir_cc = self.database_cache.fetch_country_code('ipv4', 'rir',
int(lookup_ipaddr))
if rir_cc:
print('RIR country code:', rir_cc)
rir_cn = self.get_name_from_country_code(rir_cc)
if rir_cn:
print('RIR country name:', rir_cn)
else:
print('Not found in RIR db')
lir_cc = self.database_cache.fetch_country_code('ipv4', 'lir',
int(lookup_ipaddr))
if lir_cc:
print('LIR country code:', lir_cc)
lir_cn = self.get_name_from_country_code(lir_cc)
if lir_cn:
print('LIR country name:', lir_cn)
if maxmind_cc and maxmind_cc != rir_cc:
print("It appears that the RIR data conflicts with MaxMind's "
"data. MaxMind's data is likely closer to being "
"correct due to sub-delegation issues with LIR databases.")
def lookup_ip_address(self, lookup_str):
""" Return the country code and name for a given ip address. """
try:
lookup_ipaddr = ipaddr.ip_address(lookup_str)
if isinstance(lookup_ipaddr, ipaddr.IPv4Address):
self.lookup_ipv4_address(lookup_ipaddr)
elif isinstance(lookup_ipaddr, ipaddr.IPv6Address):
self.lookup_ipv6_address(lookup_ipaddr)
else:
print(("Did not recognize '%s' as either IPv4 or IPv6 "
"address." % lookup_str))
except ValueError as e:
print("'%s' is not a valid IP address." % lookup_str)
def asn_lookup(self, asn):
asn_cc = self.database_cache.fetch_country_code('asn', 'rir', asn)
if asn_cc:
print("AS country code: %s" % asn_cc)
asn_cn = self.get_name_from_country_code(asn_cc)
if asn_cn:
print("AS country name: %s" % asn_cn)
else:
print("AS%s not found!" % asn)
def fetch_rir_blocks_by_country(self, request, country):
result = []
for (start_num, end_num) in \
self.database_cache.fetch_assignments(request, country):
if request == "ipv4" or request == "ipv6":
start_ipaddr = ipaddr.ip_address(start_num)
end_ipaddr = ipaddr.ip_address(end_num)
result += [str(x) for x in
ipaddr.summarize_address_range(
start_ipaddr, end_ipaddr)]
else:
result.append(str(start_num))
return result
def lookup_countries_in_different_source(self, first_country_code):
""" Look up all assignments matching the given country code, then
look up to which country code(s) the same number ranges are
assigned in other source types. Print out the result showing
similarities and differences. """
print(("\nLegend:\n"
" '<' = found assignment range with country code '%s'\n"
" '>' = overlapping assignment range with same country code\n"
" '*' = overlapping assignment range, first conflict\n"
" '#' = overlapping assignment range, second conflict and "
"beyond\n ' ' = neighboring assignment range") % (
first_country_code, ))
results = self.database_cache.fetch_country_blocks_in_other_sources(
first_country_code)
prev_first_source_type = ''
prev_first_start_num = -1
cur_second_country_codes = []
for (first_source_type, first_start_num, first_end_num,
second_source_type, second_start_num, second_end_num,
second_country_code, num_type) in results:
if first_source_type != prev_first_source_type:
print("\nAssignments in '%s':" % (first_source_type, ))
prev_first_source_type = first_source_type
if first_start_num != prev_first_start_num:
cur_second_country_codes = []
print("")
prev_first_start_num = first_start_num
marker = ''
if second_end_num >= first_start_num and \
second_start_num <= first_end_num:
if first_country_code != second_country_code and \
second_country_code not in cur_second_country_codes:
cur_second_country_codes.append(second_country_code)
if first_source_type == second_source_type:
marker = '<'
elif len(cur_second_country_codes) == 0:
marker = '>'
elif len(cur_second_country_codes) == 1:
marker = '*'
else:
marker = '#'
if num_type.startswith("ip") and \
second_start_num == second_end_num:
second_range = "%s" % (ipaddr.ip_address(second_start_num), )
elif num_type.startswith("ip") and \
second_start_num < second_end_num:
second_range = "%s-%s" % (ipaddr.ip_address(second_start_num),
ipaddr.ip_address(second_end_num))
elif second_start_num < second_end_num:
second_range = "AS%d-%d" % (second_start_num, second_end_num)
else:
second_range = "AS%d" % (second_start_num, )
print("%1s %s %s %s" % (marker, second_country_code, second_range,
second_source_type, ))
def _get_network_string_from_range(self, end, start, bits=32):
start, end = int(start,16), int(end,16)
netbits = bits - int(log(end - start,2))
return ipaddr.IPNetwork("%s/%d" % (ipaddr.IPAddress(start), netbits))
def lookup_org_by_ip(self, lookup_str):
""" Return the ASN and AS Description by IP """
try:
lookup_ipaddr = ipaddr.IPAddress(lookup_str)
if isinstance(lookup_ipaddr, ipaddr.IPv4Address):
num_type = 'ipv4'
len_bits = 32
elif isinstance(lookup_ipaddr, ipaddr.IPv6Address):
num_type = 'ipv6'
len_bits = 128
else:
raise ValueError
rs = self.database_cache.fetch_org_by_ip_address(lookup_ipaddr, num_type)
for r in rs:
network = self._get_network_string_from_range(r[3],r[2], bits=len_bits)
print("%s in %s announced by AS%s - %s" % (lookup_str, network, r[0], r[1]))
except ValueError:
print("'%s' is not a valid IP address." % lookup_str)
except TypeError:
print("Did not find any matching announcements containing %s." % lookup_str)
def lookup_org_by_range(self, start_range, end_range):
output_str = "%s announced by AS%s - %s"
try:
a = ipaddr.IPAddress(start_range)
b = ipaddr.IPAddress(end_range)
if isinstance(a, ipaddr.IPv4Address) and isinstance(b, ipaddr.IPv4Address):
num_type = 'ipv4'
len_bits = 32
elif isinstance(a, ipaddr.IPv6Address) and isinstance(b, ipaddr.IPv6Address):
num_type = 'ipv6'
len_bits = 128
else:
raise ValueError
rs = self.database_cache.fetch_org_by_ip_range(min(a,b), max(a,b), num_type)
for r in rs:
network = self._get_network_string_from_range(r[3],r[2], bits=len_bits)
print(output_str % (network, r[0], r[1]))
except ValueError:
print("%s %s is not a valid IP range." % (start_range, end_range))
except TypeError:
print("Did not find any matching announcements in range %s %s." % (start_range, end_range))
def split_callback(option, opt, value, parser):
split_value = value.split(':')
setattr(parser.values, option.dest, split_value[0])
if len(split_value) > 1 and split_value[1] != '':
setattr(parser.values, 'type_filter', split_value[1])
def main():
""" Where the magic starts. """
usage = ("Usage: %prog [options]\n\n"
"Example: %prog -v -t mm")
parser = optparse.OptionParser(usage)
parser.add_option("-v", "--verbose", action="store_true",
dest="verbose", help = "be verbose", default=False)
parser.add_option("-c", "--cache-dir", action="store", dest="dir",
help="set cache directory [default: %default]",
default=str(os.path.expanduser('~')) + "/.blockfinder/")
parser.add_option("--user-agent", action="store", dest="ua",
help=('provide a User-Agent which will be used when '
'fetching delegation files [default: "%default"]'),
default="Mozilla/5.0 (Windows NT 6.1; rv:17.0) Gecko/20100101 Firefox/17.0")
parser.add_option("-x", "--hack-the-internet", action="store_true",
dest="hack_the_internet", help=optparse.SUPPRESS_HELP)
group = optparse.OptionGroup(parser, "Cache modes",
"Pick at most one of these modes to initialize or update "
"the local cache. May not be combined with lookup modes.")
group.add_option("-m", "--init-maxmind", action="store_true",
dest="init_maxmind",
help="initialize or update MaxMind GeoIP database")
group.add_option("-g", "--reload-maxmind", action="store_true",
dest="reload_maxmind",
help=("update cache from existing MaxMind GeoIP database"))
group.add_option("-r", "--import-maxmind", action="store",
dest="import_maxmind", metavar="FILE",
help=("import the specified MaxMind GeoIP database file into "
"the database cache using its file name as source "
"name"))
group.add_option("-i", "--init-rir",
action="store_true", dest="init_del",
help="initialize or update delegation information")
group.add_option("-d", "--reload-rir", action="store_true",
dest="reload_del",
help="use existing delegation files to update the database")
group.add_option("-l", "--init-lir", action="store_true",
dest="init_lir",
help=("initialize or update lir information; can take up to "
"5 minutes"))
group.add_option("-z", "--reload-lir", action="store_true",
dest="reload_lir",
help=("use existing lir files to update the database; can "
"take up to 5 minutes"))
group.add_option("-o", "--download-cc", action="store_true",
dest="download_cc", help="download country codes file")
group.add_option("-e", "--erase-cache", action="store_true",
dest="erase_cache", help="erase the local database cache")
group.add_option("-j", "--init-asn-descriptions", action="store_true",
dest="init_asn_descriptions",
help=("initialize or update asn description information"))
group.add_option("-k", "--reload-asn-descriptions", action="store_true",
dest="reload_asn_descriptions",
help=("Use existing asn descriptions to update database"))
group.add_option("-y", "--init-asn-assignments", action="store_true",
dest="init_asn_assignments",
help=("initialize or update asn assignment information"))
group.add_option("-u", "--reload-asn-assignments", action="store_true",
dest="reload_asn_assignments",
help=("Use existing asn assignments to update database"))
parser.add_option_group(group)
group = optparse.OptionGroup(parser, "Lookup modes",
"Pick at most one of these modes to look up data in the "
"local cache. May not be combined with cache modes.")
group.add_option("-4", "--ipv4", action="store", dest="ipv4",
help=("look up country code and name for the specified IPv4 "
"address"))
group.add_option("-6", "--ipv6", action="store", dest="ipv6",
help=("look up country code and name for the specified IPv6 "
"address"))
group.add_option("-a", "--asn", action="store", dest="asn",
help="look up country code and name for the specified ASN")
group.add_option("-t", "--code", action="callback", dest="cc",
callback=split_callback, metavar="CC[:type]", type="str",
help=("look up all allocations (or only those for number "
"type 'ipv4', 'ipv6', or 'asn' if provided) in the "
"delegation cache for the specified two-letter country "
"code"))
group.add_option("-n", "--name", action="callback", dest="cn",
callback=split_callback, metavar="CN[:type]", type="str",
help=("look up all allocations (or only those for number "
"type 'ipv4', 'ipv6', or 'asn' if provided) in the "
"delegation cache for the specified full country name"))
group.add_option("-p", "--compare", action="store", dest="compare",
metavar="CC",
help=("compare assignments to the specified country code "
"with overlapping assignments in other data sources; "
"can take some time and produce some long output"))
group.add_option("-w", "--what-country", action="store", dest="what_cc",
help=("look up country name for specified country code"))
group.add_option("--lookup-org-by-ip", "--lookup-org-by-ip",
action="store", dest="lookup_org_by_ip",
help=("look up ASN and AS Description for an IP address"))
group.add_option("--lookup-org-by-range", "--lookup-org-by-range",
action="store_true", dest="lookup_org_by_range",
help=("look up announced networks in a range of addresses; "
"requires --range-start and --range-end to be set"))
group.add_option("--range-start", "--range-start",
action="store", dest="range_start",
help=("Specify the start of a range of addresses"))
group.add_option("--range-end", "--range-end",
action="store", dest="range_end",
help=("Specify the end of a range of addresses"))
parser.add_option_group(group)
group = optparse.OptionGroup(parser, "Export modes")
group.add_option("--export-geoip", "--export-geoip", action="store_true",
dest="export",
help=("export the lookup database to GeoIPCountryWhois.csv and "
"v6.csv files in the format used to build the debian "
"package geoip-database"))
group.add_option("--geoip-v4-file", "--geoip-v4-file", action="store",
dest="geoip_v4_filename",
help=("The filename to write the IPv4 GeoIP dataset to"))
group.add_option("--geoip-v6-file", "--geoip-v6-file", action="store",
dest="geoip_v6_filename",
help=("The filename to write the IPv6 GeoIP dataset to"))
group.add_option("--geoip-asn-file", "--geoip-asn-file", action="store",
dest="geoip_asn_filename",
help=("The filename to write the IPv4 GeoIP ASNum dataset to"))
parser.add_option_group(group)
group = optparse.OptionGroup(parser, "Network modes")
(options, args) = parser.parse_args()
if options.hack_the_internet:
print("all your bases are belong to us!")
sys.exit(0)
options_dict = vars(options)
modes = 0
for mode in ["init_maxmind", "reload_maxmind", "import_maxmind",
"init_del", "init_lir", "reload_del", "reload_lir",
"download_cc", "erase_cache", "ipv4", "ipv6", "asn",
"cc", "cn", "compare", "what_cc", "init_asn_descriptions",
"reload_asn_descriptions", "init_asn_assignments",
"reload_asn_assignments", "lookup_org_by_ip",
"lookup_org_by_range", "export"]:
if mode in options_dict and options_dict.get(mode):
modes += 1
if modes > 1:
parser.error("only 1 cache or lookup mode allowed")
elif modes == 0:
parser.error("must provide 1 cache or lookup mode")
database_cache = DatabaseCache(options.dir, options.verbose)
if options.erase_cache:
database_cache.erase_database()
sys.exit(0)
if not database_cache.connect_to_database():
print("Could not connect to database.")
print("You may need to erase it using -e and then reload it "
"using -d/-z. Exiting.")
sys.exit(1)
database_cache.set_db_version()
downloader_parser = DownloaderParser(options.dir, database_cache,
options.ua)
lookup = Lookup(options.dir, database_cache)
if options.ipv4 or options.ipv6 or options.asn or options.cc \
or options.cn or options.compare:
if downloader_parser.check_rir_file_mtimes():
print("Your cached RIR files are older than 24 hours; you "
"probably want to update them.")
if options.asn:
lookup.asn_lookup(options.asn)
elif options.lookup_org_by_ip:
lookup.lookup_org_by_ip(options.lookup_org_by_ip)
elif options.lookup_org_by_range:
if not (options.range_start and options.range_end):
print("You must specify the start and end addresses; "
"see --range-start and --range-end")
else:
lookup.lookup_org_by_range(options.range_start, options.range_end)
elif options.ipv4:
lookup.lookup_ip_address(options.ipv4)
elif options.ipv6:
lookup.lookup_ip_address(options.ipv6)
elif options.cc or options.cn or options.what_cc:
country = None
if options.cc:
country = options.cc.upper()
elif not lookup.knows_country_names():
print("Need to download country codes first before looking "
"up countries by name.")
elif options.what_cc:
country = options.what_cc.upper()
country_name = lookup.get_name_from_country_code(country)
if country_name:
print(("Hmm...%s? That would be %s."
% (options.what_cc, country_name)))
sys.exit(0)
else:
print(("Hmm, %s? We're not sure either. Are you sure that's "
"a country code?" % options.what_cc))
sys.exit(1)
else:
country = lookup.get_country_code_from_name(options.cn)
if not country:
print("It appears your search did not match a country.")
if country:
types = ["ipv4", "ipv6", "asn"]
if hasattr(options, 'type_filter') and options.type_filter.lower() in types:
types = [options.type_filter.lower()]
for request in types:
print("\n".join(lookup.fetch_rir_blocks_by_country(\
request, country)))
elif options.compare:
print("Comparing assignments with overlapping assignments in other "
"data sources...")
lookup.lookup_countries_in_different_source(options.compare)
elif options.init_maxmind or options.reload_maxmind:
if options.init_maxmind:
print("Downloading Maxmind GeoIP files...")
downloader_parser.download_maxmind_files()
print("Importing Maxmind GeoIP files...")
downloader_parser.parse_maxmind_files()
elif options.import_maxmind:
print("Importing Maxmind GeoIP files...")
downloader_parser.import_maxmind_file(options.import_maxmind)
elif options.init_del or options.reload_del:
if options.init_del:
print("Downloading RIR files...")
downloader_parser.download_rir_files()
print("Verifying RIR files...")
downloader_parser.verify_rir_files()
print("Importing RIR files...")
downloader_parser.parse_rir_files()
elif options.init_lir or options.reload_lir:
if options.init_lir:
print("Downloading LIR delegation files...")
downloader_parser.download_lir_files()
print("Importing LIR files...")
downloader_parser.parse_lir_files()
elif options.download_cc:
print("Downloading country code file...")
downloader_parser.download_country_code_file()
elif options.init_asn_descriptions or options.reload_asn_descriptions:
if options.init_asn_descriptions:
print("Downloading ASN Descriptions...")
downloader_parser.download_asn_description_file()
print("Importing ASN Descriptions...")
downloader_parser.parse_asn_description_file()
elif options.init_asn_assignments or options.reload_asn_assignments:
if options.init_asn_assignments:
print("Downloading ASN Assignments...")
downloader_parser.download_asn_assignment_files()
print("Importing ASN Assignments...")
downloader_parser.parse_asn_assignment_files()
elif options.export:
v4_file = options.geoip_v4_filename or "GeoIPCountryWhois.csv"
v6_file = options.geoip_v6_filename or "v6.csv"
asn_file = options.geoip_asn_filename or "GeoIPASNum.csv"
print("Exporting GeoIP IPv4 to %s" % v4_file)
database_cache.export_geoip(lookup, v4_file, 'ipv4')
print("Exporting GeoIP IPv6 to %s" % v6_file)
database_cache.export_geoip(lookup, v6_file, 'ipv6')
print("Exporting GeoIP IPv4 ASNum to %s" % asn_file)
database_cache.export_asn(asn_file, 'ipv4')
#XXX: Unsupported
#print("Exporting GeoIP IPv6 ASNum to %s" % asn_file)
#database_cache.export_geoip(asn_file, 'ipv6')
database_cache.commit_and_close_database()
if __name__ == "__main__":
main()
blockfinder-3.14159/blockfinder.bat000066400000000000000000000004311231110224100171150ustar00rootroot00000000000000@echo off
::
:: This .bat file invokes python (on PATH) with the full path of
:: the script 'blockfinder'. This requires 'blockfinder' and
:: 'blockfinder.bat' to be in the same directory.
:: Look at "cmd /c for /?" to understand the "~dp0" label.
::
python "%~dp0\blockfinder" %*
blockfinder-3.14159/blockfinder.py000077700000000000000000000000001231110224100212012blockfinderustar00rootroot00000000000000blockfinder-3.14159/blockfindertest.py000066400000000000000000000103531231110224100177030ustar00rootroot00000000000000#!/usr/bin/python
import unittest
import os
import shutil
import sys
import tempfile
import blockfinder
from blockfinder import ipaddr
class BaseBlockfinderTest(unittest.TestCase):
def setUp(self):
self.base_test_dir = tempfile.mkdtemp()
self.test_dir = self.base_test_dir + "/test/"
self.database_cache = blockfinder.DatabaseCache(self.test_dir)
self.downloader_parser = blockfinder.DownloaderParser(
self.test_dir, self.database_cache, "Mozilla")
self.lookup = blockfinder.Lookup(self.test_dir, self.database_cache)
self.database_cache.connect_to_database()
self.database_cache.set_db_version()
shutil.copy('test_rir_data', self.test_dir + 'test_rir_data')
shutil.copy('test_lir_data.gz', self.test_dir + 'test_lir_data.gz')
self.downloader_parser.parse_rir_files(['test_rir_data'])
self.downloader_parser.parse_lir_files(['test_lir_data.gz'])
def tearDown(self):
shutil.rmtree(self.base_test_dir, True)
class CheckReverseLookup(BaseBlockfinderTest):
def test_rir_ipv4_lookup(self):
self.assertEqual(self.database_cache.fetch_country_code('ipv4',
'rir', int(ipaddr.IPv4Address('175.45.176.100'))), 'KP')
self.assertEqual(self.database_cache.fetch_country_code('ipv4',
'rir', int(ipaddr.IPv4Address('193.9.26.0'))), 'HU')
self.assertEqual(self.database_cache.fetch_country_code('ipv4',
'rir', int(ipaddr.IPv4Address('193.9.25.1'))), 'PL')
self.assertEqual(self.database_cache.fetch_country_code('ipv4',
'rir', int(ipaddr.IPv4Address('193.9.25.255'))), 'PL')
def test_rir_asn_lookup(self):
self.assertEqual(self.database_cache.fetch_country_code('asn',
'rir', 681), 'NZ')
self.assertEqual(self.database_cache.fetch_country_code('asn',
'rir', 173), 'JP')
def test_lir_ipv4_lookup(self):
self.assertEqual(self.database_cache.fetch_country_code('ipv4',
'lir', int(ipaddr.IPv4Address('80.16.151.184'))), 'IT')
self.assertEqual(self.database_cache.fetch_country_code('ipv4',
'lir', int(ipaddr.IPv4Address('80.16.151.180'))), 'IT')
self.assertEqual(self.database_cache.fetch_country_code('ipv4',
'lir', int(ipaddr.IPv4Address('213.95.6.32'))), 'DE')
def test_lir_ipv6_lookup(self):
self.assertEqual(self.database_cache.fetch_country_code('ipv6',
'lir', int(ipaddr.IPv6Address('2001:0658:021A::'))), 'DE')
self.assertEqual(self.database_cache.fetch_country_code('ipv6',
'lir', int(ipaddr.IPv6Address('2001:67c:320::'))), 'DE')
self.assertEqual(self.database_cache.fetch_country_code('ipv6',
'lir', int(ipaddr.IPv6Address('2001:670:0085::'))), 'FI')
class CheckBlockFinder(BaseBlockfinderTest):
def test_ipv4_bf(self):
known_ipv4_assignments = (
('MM', ['203.81.64.0/19', '203.81.160.0/20']),
('KP', ['175.45.176.0/22']))
for cc, values in known_ipv4_assignments:
expected = [(int(ipaddr.IPv4Network(network_str).network_address),
int(ipaddr.IPv4Network(network_str).broadcast_address))
for network_str in values]
result = self.database_cache.fetch_assignments('ipv4', cc)
self.assertEqual(result, expected)
def test_ipv6_bf(self):
known_ipv6_assignments = ['2001:200::/35', '2001:200:2000::/35',
'2001:200:4000::/34', '2001:200:8000::/33']
expected = [(int(ipaddr.IPv6Network(network_str).network_address),
int(ipaddr.IPv6Network(network_str).broadcast_address))
for network_str in known_ipv6_assignments]
result = self.database_cache.fetch_assignments('ipv6', 'JP')
self.assertEqual(result, expected)
if __name__ == '__main__':
failures = 0
for test_class in [CheckReverseLookup, CheckBlockFinder]:
test_suite = unittest.makeSuite(test_class)
test_runner = unittest.TextTestRunner(verbosity=2)
results = test_runner.run(test_suite)
failures += len(results.errors)
failures += len(results.failures)
sys.exit(failures)
blockfinder-3.14159/embedded_ipaddr/000077500000000000000000000000001231110224100172215ustar00rootroot00000000000000blockfinder-3.14159/embedded_ipaddr/COPYING000066400000000000000000000261161231110224100202620ustar00rootroot00000000000000
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2008 Google Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
blockfinder-3.14159/embedded_ipaddr/MANIFEST.in000066400000000000000000000000741231110224100207600ustar00rootroot00000000000000include COPYING
include ipaddr_test.py
include RELEASENOTES
blockfinder-3.14159/embedded_ipaddr/OWNERS000066400000000000000000000000341231110224100201560ustar00rootroot00000000000000pmoody
harro
mshields
smart
blockfinder-3.14159/embedded_ipaddr/README000066400000000000000000000006021231110224100200770ustar00rootroot00000000000000ipaddr.py is a library for working with IP addresses, both IPv4 and IPv6.
It was developed by Google for internal use, and is now open source.
Project home page: http://code.google.com/p/ipaddr-py/
Please send contributions to ipaddr-py-dev@googlegroups.com. Code should
include unit tests and follow the Google Python style guide:
http://code.google.com/p/soc/wiki/PythonStyleGuide
blockfinder-3.14159/embedded_ipaddr/__init__.py000066400000000000000000000000001231110224100213200ustar00rootroot00000000000000blockfinder-3.14159/embedded_ipaddr/ipaddr.py000066400000000000000000001665031231110224100210510ustar00rootroot00000000000000#!/usr/bin/python
#
# Copyright 2007 Google Inc.
# Licensed to PSF under a Contributor Agreement.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
"""A fast, lightweight IPv4/IPv6 manipulation library in Python.
This library is used to create/poke/manipulate IPv4 and IPv6 addresses
and networks.
"""
__version__ = 'trunk'
import struct
IPV4LENGTH = 32
IPV6LENGTH = 128
class AddressValueError(ValueError):
"""A Value Error related to the address."""
class NetmaskValueError(ValueError):
"""A Value Error related to the netmask."""
def IPAddress(address, version=None):
"""Take an IP string/int and return an object of the correct type.
Args:
address: A string or integer, the IP address. Either IPv4 or
IPv6 addresses may be supplied; integers less than 2**32 will
be considered to be IPv4 by default.
version: An Integer, 4 or 6. If set, don't try to automatically
determine what the IP address type is. important for things
like IPAddress(1), which could be IPv4, '0.0.0.1', or IPv6,
'::1'.
Returns:
An IPv4Address or IPv6Address object.
Raises:
ValueError: if the string passed isn't either a v4 or a v6
address.
"""
if version:
if version == 4:
return IPv4Address(address)
elif version == 6:
return IPv6Address(address)
try:
return IPv4Address(address)
except (AddressValueError, NetmaskValueError):
pass
try:
return IPv6Address(address)
except (AddressValueError, NetmaskValueError):
pass
raise ValueError('%r does not appear to be an IPv4 or IPv6 address' %
address)
def IPNetwork(address, version=None, strict=False):
"""Take an IP string/int and return an object of the correct type.
Args:
address: A string or integer, the IP address. Either IPv4 or
IPv6 addresses may be supplied; integers less than 2**32 will
be considered to be IPv4 by default.
version: An Integer, if set, don't try to automatically
determine what the IP address type is. important for things
like IPNetwork(1), which could be IPv4, '0.0.0.1/32', or IPv6,
'::1/128'.
Returns:
An IPv4Network or IPv6Network object.
Raises:
ValueError: if the string passed isn't either a v4 or a v6
address. Or if a strict network was requested and a strict
network wasn't given.
"""
if version:
if version == 4:
return IPv4Network(address, strict)
elif version == 6:
return IPv6Network(address, strict)
try:
return IPv4Network(address, strict)
except (AddressValueError, NetmaskValueError):
pass
try:
return IPv6Network(address, strict)
except (AddressValueError, NetmaskValueError):
pass
raise ValueError('%r does not appear to be an IPv4 or IPv6 network' %
address)
def v4_int_to_packed(address):
"""The binary representation of this address.
Args:
address: An integer representation of an IPv4 IP address.
Returns:
The binary representation of this address.
Raises:
ValueError: If the integer is too large to be an IPv4 IP
address.
"""
if address > _BaseV4._ALL_ONES:
raise ValueError('Address too large for IPv4')
return Bytes(struct.pack('!I', address))
def v6_int_to_packed(address):
"""The binary representation of this address.
Args:
address: An integer representation of an IPv6 IP address.
Returns:
The binary representation of this address.
"""
return Bytes(struct.pack('!QQ', address >> 64, address & (2**64 - 1)))
def _find_address_range(addresses):
"""Find a sequence of addresses.
Args:
addresses: a list of IPv4 or IPv6 addresses.
Returns:
A tuple containing the first and last IP addresses in the sequence.
"""
first = last = addresses[0]
for ip in addresses[1:]:
if ip._ip == last._ip + 1:
last = ip
else:
break
return (first, last)
def _get_prefix_length(number1, number2, bits):
"""Get the number of leading bits that are same for two numbers.
Args:
number1: an integer.
number2: another integer.
bits: the maximum number of bits to compare.
Returns:
The number of leading bits that are the same for two numbers.
"""
for i in range(bits):
if number1 >> i == number2 >> i:
return bits - i
return 0
def _count_righthand_zero_bits(number, bits):
"""Count the number of zero bits on the right hand side.
Args:
number: an integer.
bits: maximum number of bits to count.
Returns:
The number of zero bits on the right hand side of the number.
"""
if number == 0:
return bits
for i in range(bits):
if (number >> i) % 2:
return i
def summarize_address_range(first, last):
"""Summarize a network range given the first and last IP addresses.
Example:
>>> summarize_address_range(IPv4Address('1.1.1.0'),
IPv4Address('1.1.1.130'))
[IPv4Network('1.1.1.0/25'), IPv4Network('1.1.1.128/31'),
IPv4Network('1.1.1.130/32')]
Args:
first: the first IPv4Address or IPv6Address in the range.
last: the last IPv4Address or IPv6Address in the range.
Returns:
The address range collapsed to a list of IPv4Network's or
IPv6Network's.
Raise:
TypeError:
If the first and last objects are not IP addresses.
If the first and last objects are not the same version.
ValueError:
If the last object is not greater than the first.
If the version is not 4 or 6.
"""
if not (isinstance(first, _BaseIP) and isinstance(last, _BaseIP)):
raise TypeError('first and last must be IP addresses, not networks')
if first.version != last.version:
raise TypeError("%s and %s are not of the same version" % (
str(first), str(last)))
if first > last:
raise ValueError('last IP address must be greater than first')
networks = []
if first.version == 4:
ip = IPv4Network
elif first.version == 6:
ip = IPv6Network
else:
raise ValueError('unknown IP version')
ip_bits = first._max_prefixlen
first_int = first._ip
last_int = last._ip
while first_int <= last_int:
nbits = _count_righthand_zero_bits(first_int, ip_bits)
current = None
while nbits >= 0:
addend = 2**nbits - 1
current = first_int + addend
nbits -= 1
if current <= last_int:
break
prefix = _get_prefix_length(first_int, current, ip_bits)
net = ip('%s/%d' % (str(first), prefix))
networks.append(net)
if current == ip._ALL_ONES:
break
first_int = current + 1
first = IPAddress(first_int, version=first._version)
return networks
def _collapse_address_list_recursive(addresses):
"""Loops through the addresses, collapsing concurrent netblocks.
Example:
ip1 = IPv4Network('1.1.0.0/24')
ip2 = IPv4Network('1.1.1.0/24')
ip3 = IPv4Network('1.1.2.0/24')
ip4 = IPv4Network('1.1.3.0/24')
ip5 = IPv4Network('1.1.4.0/24')
ip6 = IPv4Network('1.1.0.1/22')
_collapse_address_list_recursive([ip1, ip2, ip3, ip4, ip5, ip6]) ->
[IPv4Network('1.1.0.0/22'), IPv4Network('1.1.4.0/24')]
This shouldn't be called directly; it is called via
collapse_address_list([]).
Args:
addresses: A list of IPv4Network's or IPv6Network's
Returns:
A list of IPv4Network's or IPv6Network's depending on what we were
passed.
"""
ret_array = []
optimized = False
for cur_addr in addresses:
if not ret_array:
ret_array.append(cur_addr)
continue
if cur_addr in ret_array[-1]:
optimized = True
elif cur_addr == ret_array[-1].supernet().subnet()[1]:
ret_array.append(ret_array.pop().supernet())
optimized = True
else:
ret_array.append(cur_addr)
if optimized:
return _collapse_address_list_recursive(ret_array)
return ret_array
def collapse_address_list(addresses):
"""Collapse a list of IP objects.
Example:
collapse_address_list([IPv4('1.1.0.0/24'), IPv4('1.1.1.0/24')]) ->
[IPv4('1.1.0.0/23')]
Args:
addresses: A list of IPv4Network or IPv6Network objects.
Returns:
A list of IPv4Network or IPv6Network objects depending on what we
were passed.
Raises:
TypeError: If passed a list of mixed version objects.
"""
i = 0
addrs = []
ips = []
nets = []
# split IP addresses and networks
for ip in addresses:
if isinstance(ip, _BaseIP):
if ips and ips[-1]._version != ip._version:
raise TypeError("%s and %s are not of the same version" % (
str(ip), str(ips[-1])))
ips.append(ip)
elif ip._prefixlen == ip._max_prefixlen:
if ips and ips[-1]._version != ip._version:
raise TypeError("%s and %s are not of the same version" % (
str(ip), str(ips[-1])))
ips.append(ip.ip)
else:
if nets and nets[-1]._version != ip._version:
raise TypeError("%s and %s are not of the same version" % (
str(ip), str(nets[-1])))
nets.append(ip)
# sort and dedup
ips = sorted(set(ips))
nets = sorted(set(nets))
while i < len(ips):
(first, last) = _find_address_range(ips[i:])
i = ips.index(last) + 1
addrs.extend(summarize_address_range(first, last))
return _collapse_address_list_recursive(sorted(
addrs + nets, key=_BaseNet._get_networks_key))
# backwards compatibility
CollapseAddrList = collapse_address_list
# We need to distinguish between the string and packed-bytes representations
# of an IP address. For example, b'0::1' is the IPv4 address 48.58.58.49,
# while '0::1' is an IPv6 address.
#
# In Python 3, the native 'bytes' type already provides this functionality,
# so we use it directly. For earlier implementations where bytes is not a
# distinct type, we create a subclass of str to serve as a tag.
#
# Usage example (Python 2):
# ip = ipaddr.IPAddress(ipaddr.Bytes('xxxx'))
#
# Usage example (Python 3):
# ip = ipaddr.IPAddress(b'xxxx')
try:
if bytes is str:
raise TypeError("bytes is not a distinct type")
Bytes = bytes
except (NameError, TypeError):
class Bytes(str):
def __repr__(self):
return 'Bytes(%s)' % str.__repr__(self)
def get_mixed_type_key(obj):
"""Return a key suitable for sorting between networks and addresses.
Address and Network objects are not sortable by default; they're
fundamentally different so the expression
IPv4Address('1.1.1.1') <= IPv4Network('1.1.1.1/24')
doesn't make any sense. There are some times however, where you may wish
to have ipaddr sort these for you anyway. If you need to do this, you
can use this function as the key= argument to sorted().
Args:
obj: either a Network or Address object.
Returns:
appropriate key.
"""
if isinstance(obj, _BaseNet):
return obj._get_networks_key()
elif isinstance(obj, _BaseIP):
return obj._get_address_key()
return NotImplemented
class _IPAddrBase(object):
"""The mother class."""
def __index__(self):
return self._ip
def __int__(self):
return self._ip
def __hex__(self):
return hex(self._ip)
@property
def exploded(self):
"""Return the longhand version of the IP address as a string."""
return self._explode_shorthand_ip_string()
@property
def compressed(self):
"""Return the shorthand version of the IP address as a string."""
return str(self)
class _BaseIP(_IPAddrBase):
"""A generic IP object.
This IP class contains the version independent methods which are
used by single IP addresses.
"""
def __eq__(self, other):
try:
return (self._ip == other._ip
and self._version == other._version)
except AttributeError:
return NotImplemented
def __ne__(self, other):
eq = self.__eq__(other)
if eq is NotImplemented:
return NotImplemented
return not eq
def __le__(self, other):
gt = self.__gt__(other)
if gt is NotImplemented:
return NotImplemented
return not gt
def __ge__(self, other):
lt = self.__lt__(other)
if lt is NotImplemented:
return NotImplemented
return not lt
def __lt__(self, other):
if self._version != other._version:
raise TypeError('%s and %s are not of the same version' % (
str(self), str(other)))
if not isinstance(other, _BaseIP):
raise TypeError('%s and %s are not of the same type' % (
str(self), str(other)))
if self._ip != other._ip:
return self._ip < other._ip
return False
def __gt__(self, other):
if self._version != other._version:
raise TypeError('%s and %s are not of the same version' % (
str(self), str(other)))
if not isinstance(other, _BaseIP):
raise TypeError('%s and %s are not of the same type' % (
str(self), str(other)))
if self._ip != other._ip:
return self._ip > other._ip
return False
# Shorthand for Integer addition and subtraction. This is not
# meant to ever support addition/subtraction of addresses.
def __add__(self, other):
if not isinstance(other, int):
return NotImplemented
return IPAddress(int(self) + other, version=self._version)
def __sub__(self, other):
if not isinstance(other, int):
return NotImplemented
return IPAddress(int(self) - other, version=self._version)
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, str(self))
def __str__(self):
return '%s' % self._string_from_ip_int(self._ip)
def __hash__(self):
return hash(hex(long(self._ip)))
def _get_address_key(self):
return (self._version, self)
@property
def version(self):
raise NotImplementedError('BaseIP has no version')
class _BaseNet(_IPAddrBase):
"""A generic IP object.
This IP class contains the version independent methods which are
used by networks.
"""
def __init__(self, address):
self._cache = {}
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, str(self))
def iterhosts(self):
"""Generate Iterator over usable hosts in a network.
This is like __iter__ except it doesn't return the network
or broadcast addresses.
"""
cur = int(self.network) + 1
bcast = int(self.broadcast) - 1
while cur <= bcast:
cur += 1
yield IPAddress(cur - 1, version=self._version)
def __iter__(self):
cur = int(self.network)
bcast = int(self.broadcast)
while cur <= bcast:
cur += 1
yield IPAddress(cur - 1, version=self._version)
def __getitem__(self, n):
network = int(self.network)
broadcast = int(self.broadcast)
if n >= 0:
if network + n > broadcast:
raise IndexError
return IPAddress(network + n, version=self._version)
else:
n += 1
if broadcast + n < network:
raise IndexError
return IPAddress(broadcast + n, version=self._version)
def __lt__(self, other):
if self._version != other._version:
raise TypeError('%s and %s are not of the same version' % (
str(self), str(other)))
if not isinstance(other, _BaseNet):
raise TypeError('%s and %s are not of the same type' % (
str(self), str(other)))
if self.network != other.network:
return self.network < other.network
if self.netmask != other.netmask:
return self.netmask < other.netmask
return False
def __gt__(self, other):
if self._version != other._version:
raise TypeError('%s and %s are not of the same version' % (
str(self), str(other)))
if not isinstance(other, _BaseNet):
raise TypeError('%s and %s are not of the same type' % (
str(self), str(other)))
if self.network != other.network:
return self.network > other.network
if self.netmask != other.netmask:
return self.netmask > other.netmask
return False
def __le__(self, other):
gt = self.__gt__(other)
if gt is NotImplemented:
return NotImplemented
return not gt
def __ge__(self, other):
lt = self.__lt__(other)
if lt is NotImplemented:
return NotImplemented
return not lt
def __eq__(self, other):
try:
return (self._version == other._version
and self.network == other.network
and int(self.netmask) == int(other.netmask))
except AttributeError:
if isinstance(other, _BaseIP):
return (self._version == other._version
and self._ip == other._ip)
def __ne__(self, other):
eq = self.__eq__(other)
if eq is NotImplemented:
return NotImplemented
return not eq
def __str__(self):
return '%s/%s' % (str(self.ip),
str(self._prefixlen))
def __hash__(self):
return hash(int(self.network) ^ int(self.netmask))
def __contains__(self, other):
# always false if one is v4 and the other is v6.
if self._version != other._version:
return False
# dealing with another network.
if isinstance(other, _BaseNet):
return (self.network <= other.network and
self.broadcast >= other.broadcast)
# dealing with another address
else:
return (int(self.network) <= int(other._ip) <=
int(self.broadcast))
def overlaps(self, other):
"""Tell if self is partly contained in other."""
return self.network in other or self.broadcast in other or (
other.network in self or other.broadcast in self)
@property
def network(self):
x = self._cache.get('network')
if x is None:
x = IPAddress(self._ip & int(self.netmask), version=self._version)
self._cache['network'] = x
return x
@property
def network_address(self):
return self.network
@property
def broadcast(self):
x = self._cache.get('broadcast')
if x is None:
x = IPAddress(self._ip | int(self.hostmask), version=self._version)
self._cache['broadcast'] = x
return x
@property
def broadcast_address(self):
return self.broadcast
@property
def hostmask(self):
x = self._cache.get('hostmask')
if x is None:
x = IPAddress(int(self.netmask) ^ self._ALL_ONES,
version=self._version)
self._cache['hostmask'] = x
return x
@property
def with_prefixlen(self):
return '%s/%d' % (str(self.ip), self._prefixlen)
@property
def with_netmask(self):
return '%s/%s' % (str(self.ip), str(self.netmask))
@property
def with_hostmask(self):
return '%s/%s' % (str(self.ip), str(self.hostmask))
@property
def numhosts(self):
"""Number of hosts in the current subnet."""
return int(self.broadcast) - int(self.network) + 1
@property
def version(self):
raise NotImplementedError('BaseNet has no version')
@property
def prefixlen(self):
return self._prefixlen
def address_exclude(self, other):
"""Remove an address from a larger block.
For example:
addr1 = IPNetwork('10.1.1.0/24')
addr2 = IPNetwork('10.1.1.0/26')
addr1.address_exclude(addr2) =
[IPNetwork('10.1.1.64/26'), IPNetwork('10.1.1.128/25')]
or IPv6:
addr1 = IPNetwork('::1/32')
addr2 = IPNetwork('::1/128')
addr1.address_exclude(addr2) = [IPNetwork('::0/128'),
IPNetwork('::2/127'),
IPNetwork('::4/126'),
IPNetwork('::8/125'),
...
IPNetwork('0:0:8000::/33')]
Args:
other: An IPvXNetwork object of the same type.
Returns:
A sorted list of IPvXNetwork objects addresses which is self
minus other.
Raises:
TypeError: If self and other are of difffering address
versions, or if other is not a network object.
ValueError: If other is not completely contained by self.
"""
if not self._version == other._version:
raise TypeError("%s and %s are not of the same version" % (
str(self), str(other)))
if not isinstance(other, _BaseNet):
raise TypeError("%s is not a network object" % str(other))
if other not in self:
raise ValueError('%s not contained in %s' % (str(other),
str(self)))
if other == self:
return []
ret_addrs = []
# Make sure we're comparing the network of other.
other = IPNetwork('%s/%s' % (str(other.network), str(other.prefixlen)),
version=other._version)
s1, s2 = self.subnet()
while s1 != other and s2 != other:
if other in s1:
ret_addrs.append(s2)
s1, s2 = s1.subnet()
elif other in s2:
ret_addrs.append(s1)
s1, s2 = s2.subnet()
else:
# If we got here, there's a bug somewhere.
assert True == False, ('Error performing exclusion: '
's1: %s s2: %s other: %s' %
(str(s1), str(s2), str(other)))
if s1 == other:
ret_addrs.append(s2)
elif s2 == other:
ret_addrs.append(s1)
else:
# If we got here, there's a bug somewhere.
assert True == False, ('Error performing exclusion: '
's1: %s s2: %s other: %s' %
(str(s1), str(s2), str(other)))
return sorted(ret_addrs, key=_BaseNet._get_networks_key)
def compare_networks(self, other):
"""Compare two IP objects.
This is only concerned about the comparison of the integer
representation of the network addresses. This means that the
host bits aren't considered at all in this method. If you want
to compare host bits, you can easily enough do a
'HostA._ip < HostB._ip'
Args:
other: An IP object.
Returns:
If the IP versions of self and other are the same, returns:
-1 if self < other:
eg: IPv4('1.1.1.0/24') < IPv4('1.1.2.0/24')
IPv6('1080::200C:417A') < IPv6('1080::200B:417B')
0 if self == other
eg: IPv4('1.1.1.1/24') == IPv4('1.1.1.2/24')
IPv6('1080::200C:417A/96') == IPv6('1080::200C:417B/96')
1 if self > other
eg: IPv4('1.1.1.0/24') > IPv4('1.1.0.0/24')
IPv6('1080::1:200C:417A/112') >
IPv6('1080::0:200C:417A/112')
If the IP versions of self and other are different, returns:
-1 if self._version < other._version
eg: IPv4('10.0.0.1/24') < IPv6('::1/128')
1 if self._version > other._version
eg: IPv6('::1/128') > IPv4('255.255.255.0/24')
"""
if self._version < other._version:
return -1
if self._version > other._version:
return 1
# self._version == other._version below here:
if self.network < other.network:
return -1
if self.network > other.network:
return 1
# self.network == other.network below here:
if self.netmask < other.netmask:
return -1
if self.netmask > other.netmask:
return 1
# self.network == other.network and self.netmask == other.netmask
return 0
def _get_networks_key(self):
"""Network-only key function.
Returns an object that identifies this address' network and
netmask. This function is a suitable "key" argument for sorted()
and list.sort().
"""
return (self._version, self.network, self.netmask)
def _ip_int_from_prefix(self, prefixlen=None):
"""Turn the prefix length netmask into a int for comparison.
Args:
prefixlen: An integer, the prefix length.
Returns:
An integer.
"""
if not prefixlen and prefixlen != 0:
prefixlen = self._prefixlen
return self._ALL_ONES ^ (self._ALL_ONES >> prefixlen)
def _prefix_from_ip_int(self, ip_int, mask=32):
"""Return prefix length from the decimal netmask.
Args:
ip_int: An integer, the IP address.
mask: The netmask. Defaults to 32.
Returns:
An integer, the prefix length.
"""
while mask:
if ip_int & 1 == 1:
break
ip_int >>= 1
mask -= 1
return mask
def _ip_string_from_prefix(self, prefixlen=None):
"""Turn a prefix length into a dotted decimal string.
Args:
prefixlen: An integer, the netmask prefix length.
Returns:
A string, the dotted decimal netmask string.
"""
if not prefixlen:
prefixlen = self._prefixlen
return self._string_from_ip_int(self._ip_int_from_prefix(prefixlen))
def iter_subnets(self, prefixlen_diff=1, new_prefix=None):
"""The subnets which join to make the current subnet.
In the case that self contains only one IP
(self._prefixlen == 32 for IPv4 or self._prefixlen == 128
for IPv6), return a list with just ourself.
Args:
prefixlen_diff: An integer, the amount the prefix length
should be increased by. This should not be set if
new_prefix is also set.
new_prefix: The desired new prefix length. This must be a
larger number (smaller prefix) than the existing prefix.
This should not be set if prefixlen_diff is also set.
Returns:
An iterator of IPv(4|6) objects.
Raises:
ValueError: The prefixlen_diff is too small or too large.
OR
prefixlen_diff and new_prefix are both set or new_prefix
is a smaller number than the current prefix (smaller
number means a larger network)
"""
if self._prefixlen == self._max_prefixlen:
yield self
return
if new_prefix is not None:
if new_prefix < self._prefixlen:
raise ValueError('new prefix must be longer')
if prefixlen_diff != 1:
raise ValueError('cannot set prefixlen_diff and new_prefix')
prefixlen_diff = new_prefix - self._prefixlen
if prefixlen_diff < 0:
raise ValueError('prefix length diff must be > 0')
new_prefixlen = self._prefixlen + prefixlen_diff
if not self._is_valid_netmask(str(new_prefixlen)):
raise ValueError(
'prefix length diff %d is invalid for netblock %s' % (
new_prefixlen, str(self)))
first = IPNetwork('%s/%s' % (str(self.network),
str(self._prefixlen + prefixlen_diff)),
version=self._version)
yield first
current = first
while True:
broadcast = current.broadcast
if broadcast == self.broadcast:
return
new_addr = IPAddress(int(broadcast) + 1, version=self._version)
current = IPNetwork('%s/%s' % (str(new_addr), str(new_prefixlen)),
version=self._version)
yield current
def masked(self):
"""Return the network object with the host bits masked out."""
return IPNetwork('%s/%d' % (self.network, self._prefixlen),
version=self._version)
def subnet(self, prefixlen_diff=1, new_prefix=None):
"""Return a list of subnets, rather than an iterator."""
return list(self.iter_subnets(prefixlen_diff, new_prefix))
def supernet(self, prefixlen_diff=1, new_prefix=None):
"""The supernet containing the current network.
Args:
prefixlen_diff: An integer, the amount the prefix length of
the network should be decreased by. For example, given a
/24 network and a prefixlen_diff of 3, a supernet with a
/21 netmask is returned.
Returns:
An IPv4 network object.
Raises:
ValueError: If self.prefixlen - prefixlen_diff < 0. I.e., you have a
negative prefix length.
OR
If prefixlen_diff and new_prefix are both set or new_prefix is a
larger number than the current prefix (larger number means a
smaller network)
"""
if self._prefixlen == 0:
return self
if new_prefix is not None:
if new_prefix > self._prefixlen:
raise ValueError('new prefix must be shorter')
if prefixlen_diff != 1:
raise ValueError('cannot set prefixlen_diff and new_prefix')
prefixlen_diff = self._prefixlen - new_prefix
if self.prefixlen - prefixlen_diff < 0:
raise ValueError(
'current prefixlen is %d, cannot have a prefixlen_diff of %d' %
(self.prefixlen, prefixlen_diff))
return IPNetwork('%s/%s' % (str(self.network),
str(self.prefixlen - prefixlen_diff)),
version=self._version)
# backwards compatibility
Subnet = subnet
Supernet = supernet
AddressExclude = address_exclude
CompareNetworks = compare_networks
Contains = __contains__
class _BaseV4(object):
"""Base IPv4 object.
The following methods are used by IPv4 objects in both single IP
addresses and networks.
"""
# Equivalent to 255.255.255.255 or 32 bits of 1's.
_ALL_ONES = (2**IPV4LENGTH) - 1
_DECIMAL_DIGITS = frozenset('0123456789')
def __init__(self, address):
self._version = 4
self._max_prefixlen = IPV4LENGTH
def _explode_shorthand_ip_string(self):
return str(self)
def _ip_int_from_string(self, ip_str):
"""Turn the given IP string into an integer for comparison.
Args:
ip_str: A string, the IP ip_str.
Returns:
The IP ip_str as an integer.
Raises:
AddressValueError: if ip_str isn't a valid IPv4 Address.
"""
octets = ip_str.split('.')
if len(octets) != 4:
raise AddressValueError(ip_str)
packed_ip = 0
for oc in octets:
try:
packed_ip = (packed_ip << 8) | self._parse_octet(oc)
except ValueError:
raise AddressValueError(ip_str)
return packed_ip
def _parse_octet(self, octet_str):
"""Convert a decimal octet into an integer.
Args:
octet_str: A string, the number to parse.
Returns:
The octet as an integer.
Raises:
ValueError: if the octet isn't strictly a decimal from [0..255].
"""
# Whitelist the characters, since int() allows a lot of bizarre stuff.
if not self._DECIMAL_DIGITS.issuperset(octet_str):
raise ValueError
octet_int = int(octet_str, 10)
# Disallow leading zeroes, because no clear standard exists on
# whether these should be interpreted as decimal or octal.
if octet_int > 255 or (octet_str[0] == '0' and len(octet_str) > 1):
raise ValueError
return octet_int
def _string_from_ip_int(self, ip_int):
"""Turns a 32-bit integer into dotted decimal notation.
Args:
ip_int: An integer, the IP address.
Returns:
The IP address as a string in dotted decimal notation.
"""
octets = []
for _ in xrange(4):
octets.insert(0, str(ip_int & 0xFF))
ip_int >>= 8
return '.'.join(octets)
@property
def max_prefixlen(self):
return self._max_prefixlen
@property
def packed(self):
"""The binary representation of this address."""
return v4_int_to_packed(self._ip)
@property
def version(self):
return self._version
@property
def is_reserved(self):
"""Test if the address is otherwise IETF reserved.
Returns:
A boolean, True if the address is within the
reserved IPv4 Network range.
"""
return self in IPv4Network('240.0.0.0/4')
@property
def is_private(self):
"""Test if this address is allocated for private networks.
Returns:
A boolean, True if the address is reserved per RFC 1918.
"""
return (self in IPv4Network('10.0.0.0/8') or
self in IPv4Network('172.16.0.0/12') or
self in IPv4Network('192.168.0.0/16'))
@property
def is_multicast(self):
"""Test if the address is reserved for multicast use.
Returns:
A boolean, True if the address is multicast.
See RFC 3171 for details.
"""
return self in IPv4Network('224.0.0.0/4')
@property
def is_unspecified(self):
"""Test if the address is unspecified.
Returns:
A boolean, True if this is the unspecified address as defined in
RFC 5735 3.
"""
return self in IPv4Network('0.0.0.0')
@property
def is_loopback(self):
"""Test if the address is a loopback address.
Returns:
A boolean, True if the address is a loopback per RFC 3330.
"""
return self in IPv4Network('127.0.0.0/8')
@property
def is_link_local(self):
"""Test if the address is reserved for link-local.
Returns:
A boolean, True if the address is link-local per RFC 3927.
"""
return self in IPv4Network('169.254.0.0/16')
class IPv4Address(_BaseV4, _BaseIP):
"""Represent and manipulate single IPv4 Addresses."""
def __init__(self, address):
"""
Args:
address: A string or integer representing the IP
'192.168.1.1'
Additionally, an integer can be passed, so
IPv4Address('192.168.1.1') == IPv4Address(3232235777).
or, more generally
IPv4Address(int(IPv4Address('192.168.1.1'))) ==
IPv4Address('192.168.1.1')
Raises:
AddressValueError: If ipaddr isn't a valid IPv4 address.
"""
_BaseV4.__init__(self, address)
# Efficient constructor from integer.
if isinstance(address, (int, long)):
self._ip = address
if address < 0 or address > self._ALL_ONES:
raise AddressValueError(address)
return
# Constructing from a packed address
if isinstance(address, Bytes):
try:
self._ip, = struct.unpack('!I', address)
except struct.error:
raise AddressValueError(address) # Wrong length.
return
# Assume input argument to be string or any object representation
# which converts into a formatted IP string.
addr_str = str(address)
self._ip = self._ip_int_from_string(addr_str)
class IPv4Network(_BaseV4, _BaseNet):
"""This class represents and manipulates 32-bit IPv4 networks.
Attributes: [examples for IPv4Network('1.2.3.4/27')]
._ip: 16909060
.ip: IPv4Address('1.2.3.4')
.network: IPv4Address('1.2.3.0')
.hostmask: IPv4Address('0.0.0.31')
.broadcast: IPv4Address('1.2.3.31')
.netmask: IPv4Address('255.255.255.224')
.prefixlen: 27
"""
# the valid octets for host and netmasks. only useful for IPv4.
_valid_mask_octets = set((255, 254, 252, 248, 240, 224, 192, 128, 0))
def __init__(self, address, strict=False):
"""Instantiate a new IPv4 network object.
Args:
address: A string or integer representing the IP [& network].
'192.168.1.1/24'
'192.168.1.1/255.255.255.0'
'192.168.1.1/0.0.0.255'
are all functionally the same in IPv4. Similarly,
'192.168.1.1'
'192.168.1.1/255.255.255.255'
'192.168.1.1/32'
are also functionaly equivalent. That is to say, failing to
provide a subnetmask will create an object with a mask of /32.
If the mask (portion after the / in the argument) is given in
dotted quad form, it is treated as a netmask if it starts with a
non-zero field (e.g. /255.0.0.0 == /8) and as a hostmask if it
starts with a zero field (e.g. 0.255.255.255 == /8), with the
single exception of an all-zero mask which is treated as a
netmask == /0. If no mask is given, a default of /32 is used.
Additionally, an integer can be passed, so
IPv4Network('192.168.1.1') == IPv4Network(3232235777).
or, more generally
IPv4Network(int(IPv4Network('192.168.1.1'))) ==
IPv4Network('192.168.1.1')
strict: A boolean. If true, ensure that we have been passed
A true network address, eg, 192.168.1.0/24 and not an
IP address on a network, eg, 192.168.1.1/24.
Raises:
AddressValueError: If ipaddr isn't a valid IPv4 address.
NetmaskValueError: If the netmask isn't valid for
an IPv4 address.
ValueError: If strict was True and a network address was not
supplied.
"""
_BaseNet.__init__(self, address)
_BaseV4.__init__(self, address)
# Constructing from an integer or packed bytes.
if isinstance(address, (int, long, Bytes)):
self.ip = IPv4Address(address)
self._ip = self.ip._ip
self._prefixlen = self._max_prefixlen
self.netmask = IPv4Address(self._ALL_ONES)
return
# Assume input argument to be string or any object representation
# which converts into a formatted IP prefix string.
addr = str(address).split('/')
if len(addr) > 2:
raise AddressValueError(address)
self._ip = self._ip_int_from_string(addr[0])
self.ip = IPv4Address(self._ip)
if len(addr) == 2:
mask = addr[1].split('.')
if len(mask) == 4:
# We have dotted decimal netmask.
if self._is_valid_netmask(addr[1]):
self.netmask = IPv4Address(self._ip_int_from_string(
addr[1]))
elif self._is_hostmask(addr[1]):
self.netmask = IPv4Address(
self._ip_int_from_string(addr[1]) ^ self._ALL_ONES)
else:
raise NetmaskValueError('%s is not a valid netmask'
% addr[1])
self._prefixlen = self._prefix_from_ip_int(int(self.netmask))
else:
# We have a netmask in prefix length form.
if not self._is_valid_netmask(addr[1]):
raise NetmaskValueError(addr[1])
self._prefixlen = int(addr[1])
self.netmask = IPv4Address(self._ip_int_from_prefix(
self._prefixlen))
else:
self._prefixlen = self._max_prefixlen
self.netmask = IPv4Address(self._ip_int_from_prefix(
self._prefixlen))
if strict:
if self.ip != self.network:
raise ValueError('%s has host bits set' %
self.ip)
if self._prefixlen == (self._max_prefixlen - 1):
self.iterhosts = self.__iter__
def _is_hostmask(self, ip_str):
"""Test if the IP string is a hostmask (rather than a netmask).
Args:
ip_str: A string, the potential hostmask.
Returns:
A boolean, True if the IP string is a hostmask.
"""
bits = ip_str.split('.')
try:
parts = [int(x) for x in bits if int(x) in self._valid_mask_octets]
except ValueError:
return False
if len(parts) != len(bits):
return False
if parts[0] < parts[-1]:
return True
return False
def _is_valid_netmask(self, netmask):
"""Verify that the netmask is valid.
Args:
netmask: A string, either a prefix or dotted decimal
netmask.
Returns:
A boolean, True if the prefix represents a valid IPv4
netmask.
"""
mask = netmask.split('.')
if len(mask) == 4:
if [x for x in mask if int(x) not in self._valid_mask_octets]:
return False
if [y for idx, y in enumerate(mask) if idx > 0 and
y > mask[idx - 1]]:
return False
return True
try:
netmask = int(netmask)
except ValueError:
return False
return 0 <= netmask <= self._max_prefixlen
# backwards compatibility
IsRFC1918 = lambda self: self.is_private
IsMulticast = lambda self: self.is_multicast
IsLoopback = lambda self: self.is_loopback
IsLinkLocal = lambda self: self.is_link_local
class _BaseV6(object):
"""Base IPv6 object.
The following methods are used by IPv6 objects in both single IP
addresses and networks.
"""
_ALL_ONES = (2**IPV6LENGTH) - 1
_HEXTET_COUNT = 8
_HEX_DIGITS = frozenset('0123456789ABCDEFabcdef')
def __init__(self, address):
self._version = 6
self._max_prefixlen = IPV6LENGTH
def _ip_int_from_string(self, ip_str):
"""Turn an IPv6 ip_str into an integer.
Args:
ip_str: A string, the IPv6 ip_str.
Returns:
A long, the IPv6 ip_str.
Raises:
AddressValueError: if ip_str isn't a valid IPv6 Address.
"""
parts = ip_str.split(':')
# An IPv6 address needs at least 2 colons (3 parts).
if len(parts) < 3:
raise AddressValueError(ip_str)
# If the address has an IPv4-style suffix, convert it to hexadecimal.
if '.' in parts[-1]:
ipv4_int = IPv4Address(parts.pop())._ip
parts.append('%x' % ((ipv4_int >> 16) & 0xFFFF))
parts.append('%x' % (ipv4_int & 0xFFFF))
# An IPv6 address can't have more than 8 colons (9 parts).
if len(parts) > self._HEXTET_COUNT + 1:
raise AddressValueError(ip_str)
# Disregarding the endpoints, find '::' with nothing in between.
# This indicates that a run of zeroes has been skipped.
try:
skip_index, = (
[i for i in xrange(1, len(parts) - 1) if not parts[i]] or
[None])
except ValueError:
# Can't have more than one '::'
raise AddressValueError(ip_str)
# parts_hi is the number of parts to copy from above/before the '::'
# parts_lo is the number of parts to copy from below/after the '::'
if skip_index is not None:
# If we found a '::', then check if it also covers the endpoints.
parts_hi = skip_index
parts_lo = len(parts) - skip_index - 1
if not parts[0]:
parts_hi -= 1
if parts_hi:
raise AddressValueError(ip_str) # ^: requires ^::
if not parts[-1]:
parts_lo -= 1
if parts_lo:
raise AddressValueError(ip_str) # :$ requires ::$
parts_skipped = self._HEXTET_COUNT - (parts_hi + parts_lo)
if parts_skipped < 1:
raise AddressValueError(ip_str)
else:
# Otherwise, allocate the entire address to parts_hi. The endpoints
# could still be empty, but _parse_hextet() will check for that.
if len(parts) != self._HEXTET_COUNT:
raise AddressValueError(ip_str)
parts_hi = len(parts)
parts_lo = 0
parts_skipped = 0
try:
# Now, parse the hextets into a 128-bit integer.
ip_int = 0L
for i in xrange(parts_hi):
ip_int <<= 16
ip_int |= self._parse_hextet(parts[i])
ip_int <<= 16 * parts_skipped
for i in xrange(-parts_lo, 0):
ip_int <<= 16
ip_int |= self._parse_hextet(parts[i])
return ip_int
except ValueError:
raise AddressValueError(ip_str)
def _parse_hextet(self, hextet_str):
"""Convert an IPv6 hextet string into an integer.
Args:
hextet_str: A string, the number to parse.
Returns:
The hextet as an integer.
Raises:
ValueError: if the input isn't strictly a hex number from [0..FFFF].
"""
# Whitelist the characters, since int() allows a lot of bizarre stuff.
if not self._HEX_DIGITS.issuperset(hextet_str):
raise ValueError
if len(hextet_str) > 4:
raise ValueError
hextet_int = int(hextet_str, 16)
if hextet_int > 0xFFFF:
raise ValueError
return hextet_int
def _compress_hextets(self, hextets):
"""Compresses a list of hextets.
Compresses a list of strings, replacing the longest continuous
sequence of "0" in the list with "" and adding empty strings at
the beginning or at the end of the string such that subsequently
calling ":".join(hextets) will produce the compressed version of
the IPv6 address.
Args:
hextets: A list of strings, the hextets to compress.
Returns:
A list of strings.
"""
best_doublecolon_start = -1
best_doublecolon_len = 0
doublecolon_start = -1
doublecolon_len = 0
for index in range(len(hextets)):
if hextets[index] == '0':
doublecolon_len += 1
if doublecolon_start == -1:
# Start of a sequence of zeros.
doublecolon_start = index
if doublecolon_len > best_doublecolon_len:
# This is the longest sequence of zeros so far.
best_doublecolon_len = doublecolon_len
best_doublecolon_start = doublecolon_start
else:
doublecolon_len = 0
doublecolon_start = -1
if best_doublecolon_len > 1:
best_doublecolon_end = (best_doublecolon_start +
best_doublecolon_len)
# For zeros at the end of the address.
if best_doublecolon_end == len(hextets):
hextets += ['']
hextets[best_doublecolon_start:best_doublecolon_end] = ['']
# For zeros at the beginning of the address.
if best_doublecolon_start == 0:
hextets = [''] + hextets
return hextets
def _string_from_ip_int(self, ip_int=None):
"""Turns a 128-bit integer into hexadecimal notation.
Args:
ip_int: An integer, the IP address.
Returns:
A string, the hexadecimal representation of the address.
Raises:
ValueError: The address is bigger than 128 bits of all ones.
"""
if not ip_int and ip_int != 0:
ip_int = int(self._ip)
if ip_int > self._ALL_ONES:
raise ValueError('IPv6 address is too large')
hex_str = '%032x' % ip_int
hextets = []
for x in range(0, 32, 4):
hextets.append('%x' % int(hex_str[x:x+4], 16))
hextets = self._compress_hextets(hextets)
return ':'.join(hextets)
def _explode_shorthand_ip_string(self):
"""Expand a shortened IPv6 address.
Args:
ip_str: A string, the IPv6 address.
Returns:
A string, the expanded IPv6 address.
"""
if isinstance(self, _BaseNet):
ip_str = str(self.ip)
else:
ip_str = str(self)
ip_int = self._ip_int_from_string(ip_str)
parts = []
for i in xrange(self._HEXTET_COUNT):
parts.append('%04x' % (ip_int & 0xFFFF))
ip_int >>= 16
parts.reverse()
if isinstance(self, _BaseNet):
return '%s/%d' % (':'.join(parts), self.prefixlen)
return ':'.join(parts)
@property
def max_prefixlen(self):
return self._max_prefixlen
@property
def packed(self):
"""The binary representation of this address."""
return v6_int_to_packed(self._ip)
@property
def version(self):
return self._version
@property
def is_multicast(self):
"""Test if the address is reserved for multicast use.
Returns:
A boolean, True if the address is a multicast address.
See RFC 2373 2.7 for details.
"""
return self in IPv6Network('ff00::/8')
@property
def is_reserved(self):
"""Test if the address is otherwise IETF reserved.
Returns:
A boolean, True if the address is within one of the
reserved IPv6 Network ranges.
"""
return (self in IPv6Network('::/8') or
self in IPv6Network('100::/8') or
self in IPv6Network('200::/7') or
self in IPv6Network('400::/6') or
self in IPv6Network('800::/5') or
self in IPv6Network('1000::/4') or
self in IPv6Network('4000::/3') or
self in IPv6Network('6000::/3') or
self in IPv6Network('8000::/3') or
self in IPv6Network('A000::/3') or
self in IPv6Network('C000::/3') or
self in IPv6Network('E000::/4') or
self in IPv6Network('F000::/5') or
self in IPv6Network('F800::/6') or
self in IPv6Network('FE00::/9'))
@property
def is_unspecified(self):
"""Test if the address is unspecified.
Returns:
A boolean, True if this is the unspecified address as defined in
RFC 2373 2.5.2.
"""
return self._ip == 0 and getattr(self, '_prefixlen', 128) == 128
@property
def is_loopback(self):
"""Test if the address is a loopback address.
Returns:
A boolean, True if the address is a loopback address as defined in
RFC 2373 2.5.3.
"""
return self._ip == 1 and getattr(self, '_prefixlen', 128) == 128
@property
def is_link_local(self):
"""Test if the address is reserved for link-local.
Returns:
A boolean, True if the address is reserved per RFC 4291.
"""
return self in IPv6Network('fe80::/10')
@property
def is_site_local(self):
"""Test if the address is reserved for site-local.
Note that the site-local address space has been deprecated by RFC 3879.
Use is_private to test if this address is in the space of unique local
addresses as defined by RFC 4193.
Returns:
A boolean, True if the address is reserved per RFC 3513 2.5.6.
"""
return self in IPv6Network('fec0::/10')
@property
def is_private(self):
"""Test if this address is allocated for private networks.
Returns:
A boolean, True if the address is reserved per RFC 4193.
"""
return self in IPv6Network('fc00::/7')
@property
def ipv4_mapped(self):
"""Return the IPv4 mapped address.
Returns:
If the IPv6 address is a v4 mapped address, return the
IPv4 mapped address. Return None otherwise.
"""
if (self._ip >> 32) != 0xFFFF:
return None
return IPv4Address(self._ip & 0xFFFFFFFF)
@property
def teredo(self):
"""Tuple of embedded teredo IPs.
Returns:
Tuple of the (server, client) IPs or None if the address
doesn't appear to be a teredo address (doesn't start with
2001::/32)
"""
if (self._ip >> 96) != 0x20010000:
return None
return (IPv4Address((self._ip >> 64) & 0xFFFFFFFF),
IPv4Address(~self._ip & 0xFFFFFFFF))
@property
def sixtofour(self):
"""Return the IPv4 6to4 embedded address.
Returns:
The IPv4 6to4-embedded address if present or None if the
address doesn't appear to contain a 6to4 embedded address.
"""
if (self._ip >> 112) != 0x2002:
return None
return IPv4Address((self._ip >> 80) & 0xFFFFFFFF)
class IPv6Address(_BaseV6, _BaseIP):
"""Represent and manipulate single IPv6 Addresses.
"""
def __init__(self, address):
"""Instantiate a new IPv6 address object.
Args:
address: A string or integer representing the IP
Additionally, an integer can be passed, so
IPv6Address('2001:4860::') ==
IPv6Address(42541956101370907050197289607612071936L).
or, more generally
IPv6Address(IPv6Address('2001:4860::')._ip) ==
IPv6Address('2001:4860::')
Raises:
AddressValueError: If address isn't a valid IPv6 address.
"""
_BaseV6.__init__(self, address)
# Efficient constructor from integer.
if isinstance(address, (int, long)):
self._ip = address
if address < 0 or address > self._ALL_ONES:
raise AddressValueError(address)
return
# Constructing from a packed address
if isinstance(address, Bytes):
try:
hi, lo = struct.unpack('!QQ', address)
except struct.error:
raise AddressValueError(address) # Wrong length.
self._ip = (hi << 64) | lo
return
# Assume input argument to be string or any object representation
# which converts into a formatted IP string.
addr_str = str(address)
if not addr_str:
raise AddressValueError('')
self._ip = self._ip_int_from_string(addr_str)
class IPv6Network(_BaseV6, _BaseNet):
"""This class represents and manipulates 128-bit IPv6 networks.
Attributes: [examples for IPv6('2001:658:22A:CAFE:200::1/64')]
.ip: IPv6Address('2001:658:22a:cafe:200::1')
.network: IPv6Address('2001:658:22a:cafe::')
.hostmask: IPv6Address('::ffff:ffff:ffff:ffff')
.broadcast: IPv6Address('2001:658:22a:cafe:ffff:ffff:ffff:ffff')
.netmask: IPv6Address('ffff:ffff:ffff:ffff::')
.prefixlen: 64
"""
def __init__(self, address, strict=False):
"""Instantiate a new IPv6 Network object.
Args:
address: A string or integer representing the IPv6 network or the IP
and prefix/netmask.
'2001:4860::/128'
'2001:4860:0000:0000:0000:0000:0000:0000/128'
'2001:4860::'
are all functionally the same in IPv6. That is to say,
failing to provide a subnetmask will create an object with
a mask of /128.
Additionally, an integer can be passed, so
IPv6Network('2001:4860::') ==
IPv6Network(42541956101370907050197289607612071936L).
or, more generally
IPv6Network(IPv6Network('2001:4860::')._ip) ==
IPv6Network('2001:4860::')
strict: A boolean. If true, ensure that we have been passed
A true network address, eg, 192.168.1.0/24 and not an
IP address on a network, eg, 192.168.1.1/24.
Raises:
AddressValueError: If address isn't a valid IPv6 address.
NetmaskValueError: If the netmask isn't valid for
an IPv6 address.
ValueError: If strict was True and a network address was not
supplied.
"""
_BaseNet.__init__(self, address)
_BaseV6.__init__(self, address)
# Constructing from an integer or packed bytes.
if isinstance(address, (int, long, Bytes)):
self.ip = IPv6Address(address)
self._ip = self.ip._ip
self._prefixlen = self._max_prefixlen
self.netmask = IPv6Address(self._ALL_ONES)
return
# Assume input argument to be string or any object representation
# which converts into a formatted IP prefix string.
addr = str(address).split('/')
if len(addr) > 2:
raise AddressValueError(address)
self._ip = self._ip_int_from_string(addr[0])
self.ip = IPv6Address(self._ip)
if len(addr) == 2:
if self._is_valid_netmask(addr[1]):
self._prefixlen = int(addr[1])
else:
raise NetmaskValueError(addr[1])
else:
self._prefixlen = self._max_prefixlen
self.netmask = IPv6Address(self._ip_int_from_prefix(self._prefixlen))
if strict:
if self.ip != self.network:
raise ValueError('%s has host bits set' %
self.ip)
if self._prefixlen == (self._max_prefixlen - 1):
self.iterhosts = self.__iter__
def _is_valid_netmask(self, prefixlen):
"""Verify that the netmask/prefixlen is valid.
Args:
prefixlen: A string, the netmask in prefix length format.
Returns:
A boolean, True if the prefix represents a valid IPv6
netmask.
"""
try:
prefixlen = int(prefixlen)
except ValueError:
return False
return 0 <= prefixlen <= self._max_prefixlen
@property
def with_netmask(self):
return self.with_prefixlen
blockfinder-3.14159/embedded_ipaddr/ipaddr_test.py000077500000000000000000001423471231110224100221130ustar00rootroot00000000000000#!/usr/bin/python
#
# Copyright 2007 Google Inc.
# Licensed to PSF under a Contributor Agreement.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Unittest for ipaddr module."""
import unittest
import time
import ipaddr
# Compatibility function to cast str to bytes objects
if issubclass(ipaddr.Bytes, str):
_cb = ipaddr.Bytes
else:
_cb = lambda bytestr: bytes(bytestr, 'charmap')
class IpaddrUnitTest(unittest.TestCase):
def setUp(self):
self.ipv4 = ipaddr.IPv4Network('1.2.3.4/24')
self.ipv4_hostmask = ipaddr.IPv4Network('10.0.0.1/0.255.255.255')
self.ipv6 = ipaddr.IPv6Network('2001:658:22a:cafe:200:0:0:1/64')
def tearDown(self):
del(self.ipv4)
del(self.ipv4_hostmask)
del(self.ipv6)
del(self)
def testRepr(self):
self.assertEqual("IPv4Network('1.2.3.4/32')",
repr(ipaddr.IPv4Network('1.2.3.4')))
self.assertEqual("IPv6Network('::1/128')",
repr(ipaddr.IPv6Network('::1')))
def testAutoMasking(self):
addr1 = ipaddr.IPv4Network('1.1.1.255/24')
addr1_masked = ipaddr.IPv4Network('1.1.1.0/24')
self.assertEqual(addr1_masked, addr1.masked())
addr2 = ipaddr.IPv6Network('2000:cafe::efac:100/96')
addr2_masked = ipaddr.IPv6Network('2000:cafe::/96')
self.assertEqual(addr2_masked, addr2.masked())
# issue57
def testAddressIntMath(self):
self.assertEqual(ipaddr.IPv4Address('1.1.1.1') + 255,
ipaddr.IPv4Address('1.1.2.0'))
self.assertEqual(ipaddr.IPv4Address('1.1.1.1') - 256,
ipaddr.IPv4Address('1.1.0.1'))
self.assertEqual(ipaddr.IPv6Address('::1') + (2**16 - 2),
ipaddr.IPv6Address('::ffff'))
self.assertEqual(ipaddr.IPv6Address('::ffff') - (2**16 - 2),
ipaddr.IPv6Address('::1'))
def testInvalidStrings(self):
def AssertInvalidIP(ip_str):
self.assertRaises(ValueError, ipaddr.IPAddress, ip_str)
AssertInvalidIP("")
AssertInvalidIP("016.016.016.016")
AssertInvalidIP("016.016.016")
AssertInvalidIP("016.016")
AssertInvalidIP("016")
AssertInvalidIP("000.000.000.000")
AssertInvalidIP("000")
AssertInvalidIP("0x0a.0x0a.0x0a.0x0a")
AssertInvalidIP("0x0a.0x0a.0x0a")
AssertInvalidIP("0x0a.0x0a")
AssertInvalidIP("0x0a")
AssertInvalidIP("42.42.42.42.42")
AssertInvalidIP("42.42.42")
AssertInvalidIP("42.42")
AssertInvalidIP("42")
AssertInvalidIP("42..42.42")
AssertInvalidIP("42..42.42.42")
AssertInvalidIP("42.42.42.42.")
AssertInvalidIP("42.42.42.42...")
AssertInvalidIP(".42.42.42.42")
AssertInvalidIP("...42.42.42.42")
AssertInvalidIP("42.42.42.-0")
AssertInvalidIP("42.42.42.+0")
AssertInvalidIP(".")
AssertInvalidIP("...")
AssertInvalidIP("bogus")
AssertInvalidIP("bogus.com")
AssertInvalidIP("192.168.0.1.com")
AssertInvalidIP("12345.67899.-54321.-98765")
AssertInvalidIP("257.0.0.0")
AssertInvalidIP("42.42.42.-42")
AssertInvalidIP("3ffe::1.net")
AssertInvalidIP("3ffe::1::1")
AssertInvalidIP("1::2::3::4:5")
AssertInvalidIP("::7:6:5:4:3:2:")
AssertInvalidIP(":6:5:4:3:2:1::")
AssertInvalidIP("2001::db:::1")
AssertInvalidIP("FEDC:9878")
AssertInvalidIP("+1.+2.+3.4")
AssertInvalidIP("1.2.3.4e0")
AssertInvalidIP("::7:6:5:4:3:2:1:0")
AssertInvalidIP("7:6:5:4:3:2:1:0::")
AssertInvalidIP("9:8:7:6:5:4:3::2:1")
AssertInvalidIP("0:1:2:3::4:5:6:7")
AssertInvalidIP("3ffe:0:0:0:0:0:0:0:1")
AssertInvalidIP("3ffe::10000")
AssertInvalidIP("3ffe::goog")
AssertInvalidIP("3ffe::-0")
AssertInvalidIP("3ffe::+0")
AssertInvalidIP("3ffe::-1")
AssertInvalidIP(":")
AssertInvalidIP(":::")
AssertInvalidIP("::1.2.3")
AssertInvalidIP("::1.2.3.4.5")
AssertInvalidIP("::1.2.3.4:")
AssertInvalidIP("1.2.3.4::")
AssertInvalidIP("2001:db8::1:")
AssertInvalidIP(":2001:db8::1")
AssertInvalidIP(":1:2:3:4:5:6:7")
AssertInvalidIP("1:2:3:4:5:6:7:")
AssertInvalidIP(":1:2:3:4:5:6:")
AssertInvalidIP("192.0.2.1/32")
AssertInvalidIP("2001:db8::1/128")
AssertInvalidIP("02001:db8::")
self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv4Network, '')
self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv4Network,
'google.com')
self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv4Network,
'::1.2.3.4')
self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Network, '')
self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Network,
'google.com')
self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Network,
'1.2.3.4')
self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Network,
'cafe:cafe::/128/190')
self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Network,
'1234:axy::b')
self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Address,
'1234:axy::b')
self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Address,
'2001:db8:::1')
self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Address,
'2001:888888::1')
self.assertRaises(ipaddr.AddressValueError,
ipaddr.IPv4Address(1)._ip_int_from_string,
'1.a.2.3')
self.assertEqual(False, ipaddr.IPv4Network(1)._is_hostmask('1.a.2.3'))
def testGetNetwork(self):
self.assertEqual(int(self.ipv4.network), 16909056)
self.assertEqual(str(self.ipv4.network), '1.2.3.0')
self.assertEqual(str(self.ipv4_hostmask.network), '10.0.0.0')
self.assertEqual(int(self.ipv6.network),
42540616829182469433403647294022090752)
self.assertEqual(str(self.ipv6.network),
'2001:658:22a:cafe::')
self.assertEqual(str(self.ipv6.hostmask),
'::ffff:ffff:ffff:ffff')
def testBadVersionComparison(self):
# These should always raise TypeError
v4addr = ipaddr.IPAddress('1.1.1.1')
v4net = ipaddr.IPNetwork('1.1.1.1')
v6addr = ipaddr.IPAddress('::1')
v6net = ipaddr.IPAddress('::1')
self.assertRaises(TypeError, v4addr.__lt__, v6addr)
self.assertRaises(TypeError, v4addr.__gt__, v6addr)
self.assertRaises(TypeError, v4net.__lt__, v6net)
self.assertRaises(TypeError, v4net.__gt__, v6net)
self.assertRaises(TypeError, v6addr.__lt__, v4addr)
self.assertRaises(TypeError, v6addr.__gt__, v4addr)
self.assertRaises(TypeError, v6net.__lt__, v4net)
self.assertRaises(TypeError, v6net.__gt__, v4net)
def testMixedTypeComparison(self):
v4addr = ipaddr.IPAddress('1.1.1.1')
v4net = ipaddr.IPNetwork('1.1.1.1/32')
v6addr = ipaddr.IPAddress('::1')
v6net = ipaddr.IPNetwork('::1/128')
self.assertFalse(v4net.__contains__(v6net))
self.assertFalse(v6net.__contains__(v4net))
self.assertRaises(TypeError, lambda: v4addr < v4net)
self.assertRaises(TypeError, lambda: v4addr > v4net)
self.assertRaises(TypeError, lambda: v4net < v4addr)
self.assertRaises(TypeError, lambda: v4net > v4addr)
self.assertRaises(TypeError, lambda: v6addr < v6net)
self.assertRaises(TypeError, lambda: v6addr > v6net)
self.assertRaises(TypeError, lambda: v6net < v6addr)
self.assertRaises(TypeError, lambda: v6net > v6addr)
# with get_mixed_type_key, you can sort addresses and network.
self.assertEqual([v4addr, v4net], sorted([v4net, v4addr],
key=ipaddr.get_mixed_type_key))
self.assertEqual([v6addr, v6net], sorted([v6net, v6addr],
key=ipaddr.get_mixed_type_key))
def testIpFromInt(self):
self.assertEqual(self.ipv4.ip, ipaddr.IPv4Network(16909060).ip)
self.assertRaises(ipaddr.AddressValueError,
ipaddr.IPv4Network, 2**32)
self.assertRaises(ipaddr.AddressValueError,
ipaddr.IPv4Network, -1)
ipv4 = ipaddr.IPNetwork('1.2.3.4')
ipv6 = ipaddr.IPNetwork('2001:658:22a:cafe:200:0:0:1')
self.assertEqual(ipv4, ipaddr.IPNetwork(int(ipv4)))
self.assertEqual(ipv6, ipaddr.IPNetwork(int(ipv6)))
v6_int = 42540616829182469433547762482097946625
self.assertEqual(self.ipv6.ip, ipaddr.IPv6Network(v6_int).ip)
self.assertRaises(ipaddr.AddressValueError,
ipaddr.IPv6Network, 2**128)
self.assertRaises(ipaddr.AddressValueError,
ipaddr.IPv6Network, -1)
self.assertEqual(ipaddr.IPNetwork(self.ipv4.ip).version, 4)
self.assertEqual(ipaddr.IPNetwork(self.ipv6.ip).version, 6)
def testIpFromPacked(self):
ip = ipaddr.IPNetwork
self.assertEqual(self.ipv4.ip,
ip(_cb('\x01\x02\x03\x04')).ip)
self.assertEqual(ip('255.254.253.252'),
ip(_cb('\xff\xfe\xfd\xfc')))
self.assertRaises(ValueError, ipaddr.IPNetwork, _cb('\x00' * 3))
self.assertRaises(ValueError, ipaddr.IPNetwork, _cb('\x00' * 5))
self.assertEqual(self.ipv6.ip,
ip(_cb('\x20\x01\x06\x58\x02\x2a\xca\xfe'
'\x02\x00\x00\x00\x00\x00\x00\x01')).ip)
self.assertEqual(ip('ffff:2:3:4:ffff::'),
ip(_cb('\xff\xff\x00\x02\x00\x03\x00\x04' +
'\xff\xff' + '\x00' * 6)))
self.assertEqual(ip('::'),
ip(_cb('\x00' * 16)))
self.assertRaises(ValueError, ip, _cb('\x00' * 15))
self.assertRaises(ValueError, ip, _cb('\x00' * 17))
def testGetIp(self):
self.assertEqual(int(self.ipv4.ip), 16909060)
self.assertEqual(str(self.ipv4.ip), '1.2.3.4')
self.assertEqual(str(self.ipv4_hostmask.ip), '10.0.0.1')
self.assertEqual(int(self.ipv6.ip),
42540616829182469433547762482097946625)
self.assertEqual(str(self.ipv6.ip),
'2001:658:22a:cafe:200::1')
def testGetNetmask(self):
self.assertEqual(int(self.ipv4.netmask), 4294967040L)
self.assertEqual(str(self.ipv4.netmask), '255.255.255.0')
self.assertEqual(str(self.ipv4_hostmask.netmask), '255.0.0.0')
self.assertEqual(int(self.ipv6.netmask),
340282366920938463444927863358058659840)
self.assertEqual(self.ipv6.prefixlen, 64)
def testZeroNetmask(self):
ipv4_zero_netmask = ipaddr.IPv4Network('1.2.3.4/0')
self.assertEqual(int(ipv4_zero_netmask.netmask), 0)
self.assertTrue(ipv4_zero_netmask._is_valid_netmask(str(0)))
ipv6_zero_netmask = ipaddr.IPv6Network('::1/0')
self.assertEqual(int(ipv6_zero_netmask.netmask), 0)
self.assertTrue(ipv6_zero_netmask._is_valid_netmask(str(0)))
def testGetBroadcast(self):
self.assertEqual(int(self.ipv4.broadcast), 16909311L)
self.assertEqual(str(self.ipv4.broadcast), '1.2.3.255')
self.assertEqual(int(self.ipv6.broadcast),
42540616829182469451850391367731642367)
self.assertEqual(str(self.ipv6.broadcast),
'2001:658:22a:cafe:ffff:ffff:ffff:ffff')
def testGetPrefixlen(self):
self.assertEqual(self.ipv4.prefixlen, 24)
self.assertEqual(self.ipv6.prefixlen, 64)
def testGetSupernet(self):
self.assertEqual(self.ipv4.supernet().prefixlen, 23)
self.assertEqual(str(self.ipv4.supernet().network), '1.2.2.0')
self.assertEqual(ipaddr.IPv4Network('0.0.0.0/0').supernet(),
ipaddr.IPv4Network('0.0.0.0/0'))
self.assertEqual(self.ipv6.supernet().prefixlen, 63)
self.assertEqual(str(self.ipv6.supernet().network),
'2001:658:22a:cafe::')
self.assertEqual(ipaddr.IPv6Network('::0/0').supernet(),
ipaddr.IPv6Network('::0/0'))
def testGetSupernet3(self):
self.assertEqual(self.ipv4.supernet(3).prefixlen, 21)
self.assertEqual(str(self.ipv4.supernet(3).network), '1.2.0.0')
self.assertEqual(self.ipv6.supernet(3).prefixlen, 61)
self.assertEqual(str(self.ipv6.supernet(3).network),
'2001:658:22a:caf8::')
def testGetSupernet4(self):
self.assertRaises(ValueError, self.ipv4.supernet, prefixlen_diff=2,
new_prefix=1)
self.assertRaises(ValueError, self.ipv4.supernet, new_prefix=25)
self.assertEqual(self.ipv4.supernet(prefixlen_diff=2),
self.ipv4.supernet(new_prefix=22))
self.assertRaises(ValueError, self.ipv6.supernet, prefixlen_diff=2,
new_prefix=1)
self.assertRaises(ValueError, self.ipv6.supernet, new_prefix=65)
self.assertEqual(self.ipv6.supernet(prefixlen_diff=2),
self.ipv6.supernet(new_prefix=62))
def testIterSubnets(self):
self.assertEqual(self.ipv4.subnet(), list(self.ipv4.iter_subnets()))
self.assertEqual(self.ipv6.subnet(), list(self.ipv6.iter_subnets()))
def testIterHosts(self):
self.assertEqual([ipaddr.IPv4Address('2.0.0.0'),
ipaddr.IPv4Address('2.0.0.1')],
list(ipaddr.IPNetwork('2.0.0.0/31').iterhosts()))
def testFancySubnetting(self):
self.assertEqual(sorted(self.ipv4.subnet(prefixlen_diff=3)),
sorted(self.ipv4.subnet(new_prefix=27)))
self.assertRaises(ValueError, self.ipv4.subnet, new_prefix=23)
self.assertRaises(ValueError, self.ipv4.subnet,
prefixlen_diff=3, new_prefix=27)
self.assertEqual(sorted(self.ipv6.subnet(prefixlen_diff=4)),
sorted(self.ipv6.subnet(new_prefix=68)))
self.assertRaises(ValueError, self.ipv6.subnet, new_prefix=63)
self.assertRaises(ValueError, self.ipv6.subnet,
prefixlen_diff=4, new_prefix=68)
def testGetSubnet(self):
self.assertEqual(self.ipv4.subnet()[0].prefixlen, 25)
self.assertEqual(str(self.ipv4.subnet()[0].network), '1.2.3.0')
self.assertEqual(str(self.ipv4.subnet()[1].network), '1.2.3.128')
self.assertEqual(self.ipv6.subnet()[0].prefixlen, 65)
def testGetSubnetForSingle32(self):
ip = ipaddr.IPv4Network('1.2.3.4/32')
subnets1 = [str(x) for x in ip.subnet()]
subnets2 = [str(x) for x in ip.subnet(2)]
self.assertEqual(subnets1, ['1.2.3.4/32'])
self.assertEqual(subnets1, subnets2)
def testGetSubnetForSingle128(self):
ip = ipaddr.IPv6Network('::1/128')
subnets1 = [str(x) for x in ip.subnet()]
subnets2 = [str(x) for x in ip.subnet(2)]
self.assertEqual(subnets1, ['::1/128'])
self.assertEqual(subnets1, subnets2)
def testSubnet2(self):
ips = [str(x) for x in self.ipv4.subnet(2)]
self.assertEqual(
ips,
['1.2.3.0/26', '1.2.3.64/26', '1.2.3.128/26', '1.2.3.192/26'])
ipsv6 = [str(x) for x in self.ipv6.subnet(2)]
self.assertEqual(
ipsv6,
['2001:658:22a:cafe::/66',
'2001:658:22a:cafe:4000::/66',
'2001:658:22a:cafe:8000::/66',
'2001:658:22a:cafe:c000::/66'])
def testSubnetFailsForLargeCidrDiff(self):
self.assertRaises(ValueError, self.ipv4.subnet, 9)
self.assertRaises(ValueError, self.ipv6.subnet, 65)
def testSupernetFailsForLargeCidrDiff(self):
self.assertRaises(ValueError, self.ipv4.supernet, 25)
self.assertRaises(ValueError, self.ipv6.supernet, 65)
def testSubnetFailsForNegativeCidrDiff(self):
self.assertRaises(ValueError, self.ipv4.subnet, -1)
self.assertRaises(ValueError, self.ipv6.subnet, -1)
def testGetNumHosts(self):
self.assertEqual(self.ipv4.numhosts, 256)
self.assertEqual(self.ipv4.subnet()[0].numhosts, 128)
self.assertEqual(self.ipv4.supernet().numhosts, 512)
self.assertEqual(self.ipv6.numhosts, 18446744073709551616)
self.assertEqual(self.ipv6.subnet()[0].numhosts, 9223372036854775808)
self.assertEqual(self.ipv6.supernet().numhosts, 36893488147419103232)
def testContains(self):
self.assertTrue(ipaddr.IPv4Network('1.2.3.128/25') in self.ipv4)
self.assertFalse(ipaddr.IPv4Network('1.2.4.1/24') in self.ipv4)
self.assertTrue(self.ipv4 in self.ipv4)
self.assertTrue(self.ipv6 in self.ipv6)
# We can test addresses and string as well.
addr1 = ipaddr.IPv4Address('1.2.3.37')
self.assertTrue(addr1 in self.ipv4)
# issue 61, bad network comparison on like-ip'd network objects
# with identical broadcast addresses.
self.assertFalse(ipaddr.IPv4Network('1.1.0.0/16').__contains__(
ipaddr.IPv4Network('1.0.0.0/15')))
def testBadAddress(self):
self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv4Network,
'poop')
self.assertRaises(ipaddr.AddressValueError,
ipaddr.IPv4Network, '1.2.3.256')
self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Network,
'poopv6')
self.assertRaises(ipaddr.AddressValueError,
ipaddr.IPv4Network, '1.2.3.4/32/24')
self.assertRaises(ipaddr.AddressValueError,
ipaddr.IPv4Network, '10/8')
self.assertRaises(ipaddr.AddressValueError,
ipaddr.IPv6Network, '10/8')
def testBadNetMask(self):
self.assertRaises(ipaddr.NetmaskValueError,
ipaddr.IPv4Network, '1.2.3.4/')
self.assertRaises(ipaddr.NetmaskValueError,
ipaddr.IPv4Network, '1.2.3.4/33')
self.assertRaises(ipaddr.NetmaskValueError,
ipaddr.IPv4Network, '1.2.3.4/254.254.255.256')
self.assertRaises(ipaddr.NetmaskValueError,
ipaddr.IPv4Network, '1.1.1.1/240.255.0.0')
self.assertRaises(ipaddr.NetmaskValueError,
ipaddr.IPv6Network, '::1/')
self.assertRaises(ipaddr.NetmaskValueError,
ipaddr.IPv6Network, '::1/129')
def testNth(self):
self.assertEqual(str(self.ipv4[5]), '1.2.3.5')
self.assertRaises(IndexError, self.ipv4.__getitem__, 256)
self.assertEqual(str(self.ipv6[5]),
'2001:658:22a:cafe::5')
def testGetitem(self):
# http://code.google.com/p/ipaddr-py/issues/detail?id=15
addr = ipaddr.IPv4Network('172.31.255.128/255.255.255.240')
self.assertEqual(28, addr.prefixlen)
addr_list = list(addr)
self.assertEqual('172.31.255.128', str(addr_list[0]))
self.assertEqual('172.31.255.128', str(addr[0]))
self.assertEqual('172.31.255.143', str(addr_list[-1]))
self.assertEqual('172.31.255.143', str(addr[-1]))
self.assertEqual(addr_list[-1], addr[-1])
def testEqual(self):
self.assertTrue(self.ipv4 == ipaddr.IPv4Network('1.2.3.4/24'))
self.assertFalse(self.ipv4 == ipaddr.IPv4Network('1.2.3.4/23'))
self.assertFalse(self.ipv4 == ipaddr.IPv6Network('::1.2.3.4/24'))
self.assertFalse(self.ipv4 == '')
self.assertFalse(self.ipv4 == [])
self.assertFalse(self.ipv4 == 2)
self.assertTrue(ipaddr.IPNetwork('1.1.1.1/32') ==
ipaddr.IPAddress('1.1.1.1'))
self.assertTrue(ipaddr.IPNetwork('1.1.1.1/24') ==
ipaddr.IPAddress('1.1.1.1'))
self.assertFalse(ipaddr.IPNetwork('1.1.1.0/24') ==
ipaddr.IPAddress('1.1.1.1'))
self.assertTrue(self.ipv6 ==
ipaddr.IPv6Network('2001:658:22a:cafe:200::1/64'))
self.assertTrue(ipaddr.IPNetwork('::1/128') ==
ipaddr.IPAddress('::1'))
self.assertTrue(ipaddr.IPNetwork('::1/127') ==
ipaddr.IPAddress('::1'))
self.assertFalse(ipaddr.IPNetwork('::0/127') ==
ipaddr.IPAddress('::1'))
self.assertFalse(self.ipv6 ==
ipaddr.IPv6Network('2001:658:22a:cafe:200::1/63'))
self.assertFalse(self.ipv6 == ipaddr.IPv4Network('1.2.3.4/23'))
self.assertFalse(self.ipv6 == '')
self.assertFalse(self.ipv6 == [])
self.assertFalse(self.ipv6 == 2)
def testNotEqual(self):
self.assertFalse(self.ipv4 != ipaddr.IPv4Network('1.2.3.4/24'))
self.assertTrue(self.ipv4 != ipaddr.IPv4Network('1.2.3.4/23'))
self.assertTrue(self.ipv4 != ipaddr.IPv6Network('::1.2.3.4/24'))
self.assertTrue(self.ipv4 != '')
self.assertTrue(self.ipv4 != [])
self.assertTrue(self.ipv4 != 2)
addr2 = ipaddr.IPAddress('2001:658:22a:cafe:200::1')
self.assertFalse(self.ipv6 !=
ipaddr.IPv6Network('2001:658:22a:cafe:200::1/64'))
self.assertTrue(self.ipv6 !=
ipaddr.IPv6Network('2001:658:22a:cafe:200::1/63'))
self.assertTrue(self.ipv6 != ipaddr.IPv4Network('1.2.3.4/23'))
self.assertTrue(self.ipv6 != '')
self.assertTrue(self.ipv6 != [])
self.assertTrue(self.ipv6 != 2)
def testSlash32Constructor(self):
self.assertEqual(str(ipaddr.IPv4Network('1.2.3.4/255.255.255.255')),
'1.2.3.4/32')
def testSlash128Constructor(self):
self.assertEqual(str(ipaddr.IPv6Network('::1/128')),
'::1/128')
def testSlash0Constructor(self):
self.assertEqual(str(ipaddr.IPv4Network('1.2.3.4/0.0.0.0')),
'1.2.3.4/0')
def testCollapsing(self):
# test only IP addresses including some duplicates
ip1 = ipaddr.IPv4Address('1.1.1.0')
ip2 = ipaddr.IPv4Address('1.1.1.1')
ip3 = ipaddr.IPv4Address('1.1.1.2')
ip4 = ipaddr.IPv4Address('1.1.1.3')
ip5 = ipaddr.IPv4Address('1.1.1.4')
ip6 = ipaddr.IPv4Address('1.1.1.0')
# check that addreses are subsumed properly.
collapsed = ipaddr.collapse_address_list([ip1, ip2, ip3, ip4, ip5, ip6])
self.assertEqual(collapsed, [ipaddr.IPv4Network('1.1.1.0/30'),
ipaddr.IPv4Network('1.1.1.4/32')])
# test a mix of IP addresses and networks including some duplicates
ip1 = ipaddr.IPv4Address('1.1.1.0')
ip2 = ipaddr.IPv4Address('1.1.1.1')
ip3 = ipaddr.IPv4Address('1.1.1.2')
ip4 = ipaddr.IPv4Address('1.1.1.3')
ip5 = ipaddr.IPv4Network('1.1.1.4/30')
ip6 = ipaddr.IPv4Network('1.1.1.4/30')
# check that addreses are subsumed properly.
collapsed = ipaddr.collapse_address_list([ip5, ip1, ip2, ip3, ip4, ip6])
self.assertEqual(collapsed, [ipaddr.IPv4Network('1.1.1.0/29')])
# test only IP networks
ip1 = ipaddr.IPv4Network('1.1.0.0/24')
ip2 = ipaddr.IPv4Network('1.1.1.0/24')
ip3 = ipaddr.IPv4Network('1.1.2.0/24')
ip4 = ipaddr.IPv4Network('1.1.3.0/24')
ip5 = ipaddr.IPv4Network('1.1.4.0/24')
# stored in no particular order b/c we want CollapseAddr to call [].sort
ip6 = ipaddr.IPv4Network('1.1.0.0/22')
# check that addreses are subsumed properly.
collapsed = ipaddr.collapse_address_list([ip1, ip2, ip3, ip4, ip5, ip6])
self.assertEqual(collapsed, [ipaddr.IPv4Network('1.1.0.0/22'),
ipaddr.IPv4Network('1.1.4.0/24')])
# test that two addresses are supernet'ed properly
collapsed = ipaddr.collapse_address_list([ip1, ip2])
self.assertEqual(collapsed, [ipaddr.IPv4Network('1.1.0.0/23')])
# test same IP networks
ip_same1 = ip_same2 = ipaddr.IPv4Network('1.1.1.1/32')
self.assertEqual(ipaddr.collapse_address_list([ip_same1, ip_same2]),
[ip_same1])
# test same IP addresses
ip_same1 = ip_same2 = ipaddr.IPv4Address('1.1.1.1')
self.assertEqual(ipaddr.collapse_address_list([ip_same1, ip_same2]),
[ipaddr.IPNetwork('1.1.1.1/32')])
ip1 = ipaddr.IPv6Network('::2001:1/100')
ip2 = ipaddr.IPv6Network('::2002:1/120')
ip3 = ipaddr.IPv6Network('::2001:1/96')
# test that ipv6 addresses are subsumed properly.
collapsed = ipaddr.collapse_address_list([ip1, ip2, ip3])
self.assertEqual(collapsed, [ip3])
# the toejam test
ip1 = ipaddr.IPAddress('1.1.1.1')
ip2 = ipaddr.IPAddress('::1')
self.assertRaises(TypeError, ipaddr.collapse_address_list,
[ip1, ip2])
def testSummarizing(self):
#ip = ipaddr.IPAddress
#ipnet = ipaddr.IPNetwork
summarize = ipaddr.summarize_address_range
ip1 = ipaddr.IPAddress('1.1.1.0')
ip2 = ipaddr.IPAddress('1.1.1.255')
# test a /24 is sumamrized properly
self.assertEqual(summarize(ip1, ip2)[0], ipaddr.IPNetwork('1.1.1.0/24'))
# test an IPv4 range that isn't on a network byte boundary
ip2 = ipaddr.IPAddress('1.1.1.8')
self.assertEqual(summarize(ip1, ip2), [ipaddr.IPNetwork('1.1.1.0/29'),
ipaddr.IPNetwork('1.1.1.8')])
ip1 = ipaddr.IPAddress('1::')
ip2 = ipaddr.IPAddress('1:ffff:ffff:ffff:ffff:ffff:ffff:ffff')
# test a IPv6 is sumamrized properly
self.assertEqual(summarize(ip1, ip2)[0], ipaddr.IPNetwork('1::/16'))
# test an IPv6 range that isn't on a network byte boundary
ip2 = ipaddr.IPAddress('2::')
self.assertEqual(summarize(ip1, ip2), [ipaddr.IPNetwork('1::/16'),
ipaddr.IPNetwork('2::/128')])
# test exception raised when first is greater than last
self.assertRaises(ValueError, summarize, ipaddr.IPAddress('1.1.1.0'),
ipaddr.IPAddress('1.1.0.0'))
# test exception raised when first and last aren't IP addresses
self.assertRaises(TypeError, summarize,
ipaddr.IPNetwork('1.1.1.0'),
ipaddr.IPNetwork('1.1.0.0'))
self.assertRaises(TypeError, summarize,
ipaddr.IPNetwork('1.1.1.0'), ipaddr.IPNetwork('1.1.0.0'))
# test exception raised when first and last are not same version
self.assertRaises(TypeError, summarize, ipaddr.IPAddress('::'),
ipaddr.IPNetwork('1.1.0.0'))
def testAddressComparison(self):
self.assertTrue(ipaddr.IPAddress('1.1.1.1') <=
ipaddr.IPAddress('1.1.1.1'))
self.assertTrue(ipaddr.IPAddress('1.1.1.1') <=
ipaddr.IPAddress('1.1.1.2'))
self.assertTrue(ipaddr.IPAddress('::1') <= ipaddr.IPAddress('::1'))
self.assertTrue(ipaddr.IPAddress('::1') <= ipaddr.IPAddress('::2'))
def testNetworkComparison(self):
# ip1 and ip2 have the same network address
ip1 = ipaddr.IPv4Network('1.1.1.0/24')
ip2 = ipaddr.IPv4Network('1.1.1.1/24')
ip3 = ipaddr.IPv4Network('1.1.2.0/24')
self.assertTrue(ip1 < ip3)
self.assertTrue(ip3 > ip2)
self.assertEqual(ip1.compare_networks(ip2), 0)
self.assertTrue(ip1._get_networks_key() == ip2._get_networks_key())
self.assertEqual(ip1.compare_networks(ip3), -1)
self.assertTrue(ip1._get_networks_key() < ip3._get_networks_key())
ip1 = ipaddr.IPv6Network('2001::2000/96')
ip2 = ipaddr.IPv6Network('2001::2001/96')
ip3 = ipaddr.IPv6Network('2001:ffff::2000/96')
self.assertTrue(ip1 < ip3)
self.assertTrue(ip3 > ip2)
self.assertEqual(ip1.compare_networks(ip2), 0)
self.assertTrue(ip1._get_networks_key() == ip2._get_networks_key())
self.assertEqual(ip1.compare_networks(ip3), -1)
self.assertTrue(ip1._get_networks_key() < ip3._get_networks_key())
# Test comparing different protocols.
# Should always raise a TypeError.
ipv6 = ipaddr.IPv6Network('::/0')
ipv4 = ipaddr.IPv4Network('0.0.0.0/0')
self.assertRaises(TypeError, ipv4.__lt__, ipv6)
self.assertRaises(TypeError, ipv4.__gt__, ipv6)
self.assertRaises(TypeError, ipv6.__lt__, ipv4)
self.assertRaises(TypeError, ipv6.__gt__, ipv4)
# Regression test for issue 19.
ip1 = ipaddr.IPNetwork('10.1.2.128/25')
self.assertFalse(ip1 < ip1)
self.assertFalse(ip1 > ip1)
ip2 = ipaddr.IPNetwork('10.1.3.0/24')
self.assertTrue(ip1 < ip2)
self.assertFalse(ip2 < ip1)
self.assertFalse(ip1 > ip2)
self.assertTrue(ip2 > ip1)
ip3 = ipaddr.IPNetwork('10.1.3.0/25')
self.assertTrue(ip2 < ip3)
self.assertFalse(ip3 < ip2)
self.assertFalse(ip2 > ip3)
self.assertTrue(ip3 > ip2)
# Regression test for issue 28.
ip1 = ipaddr.IPNetwork('10.10.10.0/31')
ip2 = ipaddr.IPNetwork('10.10.10.0')
ip3 = ipaddr.IPNetwork('10.10.10.2/31')
ip4 = ipaddr.IPNetwork('10.10.10.2')
sorted = [ip1, ip2, ip3, ip4]
unsorted = [ip2, ip4, ip1, ip3]
unsorted.sort()
self.assertEqual(sorted, unsorted)
unsorted = [ip4, ip1, ip3, ip2]
unsorted.sort()
self.assertEqual(sorted, unsorted)
self.assertRaises(TypeError, ip1.__lt__, ipaddr.IPAddress('10.10.10.0'))
self.assertRaises(TypeError, ip2.__lt__, ipaddr.IPAddress('10.10.10.0'))
# <=, >=
self.assertTrue(ipaddr.IPNetwork('1.1.1.1') <=
ipaddr.IPNetwork('1.1.1.1'))
self.assertTrue(ipaddr.IPNetwork('1.1.1.1') <=
ipaddr.IPNetwork('1.1.1.2'))
self.assertFalse(ipaddr.IPNetwork('1.1.1.2') <=
ipaddr.IPNetwork('1.1.1.1'))
self.assertTrue(ipaddr.IPNetwork('::1') <= ipaddr.IPNetwork('::1'))
self.assertTrue(ipaddr.IPNetwork('::1') <= ipaddr.IPNetwork('::2'))
self.assertFalse(ipaddr.IPNetwork('::2') <= ipaddr.IPNetwork('::1'))
def testStrictNetworks(self):
self.assertRaises(ValueError, ipaddr.IPNetwork, '192.168.1.1/24',
strict=True)
self.assertRaises(ValueError, ipaddr.IPNetwork, '::1/120', strict=True)
def testOverlaps(self):
other = ipaddr.IPv4Network('1.2.3.0/30')
other2 = ipaddr.IPv4Network('1.2.2.0/24')
other3 = ipaddr.IPv4Network('1.2.2.64/26')
self.assertTrue(self.ipv4.overlaps(other))
self.assertFalse(self.ipv4.overlaps(other2))
self.assertTrue(other2.overlaps(other3))
def testEmbeddedIpv4(self):
ipv4_string = '192.168.0.1'
ipv4 = ipaddr.IPv4Network(ipv4_string)
v4compat_ipv6 = ipaddr.IPv6Network('::%s' % ipv4_string)
self.assertEqual(int(v4compat_ipv6.ip), int(ipv4.ip))
v4mapped_ipv6 = ipaddr.IPv6Network('::ffff:%s' % ipv4_string)
self.assertNotEqual(v4mapped_ipv6.ip, ipv4.ip)
self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Network,
'2001:1.1.1.1:1.1.1.1')
# Issue 67: IPv6 with embedded IPv4 address not recognized.
def testIPv6AddressTooLarge(self):
# RFC4291 2.5.5.2
self.assertEqual(ipaddr.IPAddress('::FFFF:192.0.2.1'),
ipaddr.IPAddress('::FFFF:c000:201'))
# RFC4291 2.2 (part 3) x::d.d.d.d
self.assertEqual(ipaddr.IPAddress('FFFF::192.0.2.1'),
ipaddr.IPAddress('FFFF::c000:201'))
def testIPVersion(self):
self.assertEqual(self.ipv4.version, 4)
self.assertEqual(self.ipv6.version, 6)
def testMaxPrefixLength(self):
self.assertEqual(self.ipv4.max_prefixlen, 32)
self.assertEqual(self.ipv6.max_prefixlen, 128)
def testPacked(self):
self.assertEqual(self.ipv4.packed,
_cb('\x01\x02\x03\x04'))
self.assertEqual(ipaddr.IPv4Network('255.254.253.252').packed,
_cb('\xff\xfe\xfd\xfc'))
self.assertEqual(self.ipv6.packed,
_cb('\x20\x01\x06\x58\x02\x2a\xca\xfe'
'\x02\x00\x00\x00\x00\x00\x00\x01'))
self.assertEqual(ipaddr.IPv6Network('ffff:2:3:4:ffff::').packed,
_cb('\xff\xff\x00\x02\x00\x03\x00\x04\xff\xff'
+ '\x00' * 6))
self.assertEqual(ipaddr.IPv6Network('::1:0:0:0:0').packed,
_cb('\x00' * 6 + '\x00\x01' + '\x00' * 8))
def testIpStrFromPrefixlen(self):
ipv4 = ipaddr.IPv4Network('1.2.3.4/24')
self.assertEqual(ipv4._ip_string_from_prefix(), '255.255.255.0')
self.assertEqual(ipv4._ip_string_from_prefix(28), '255.255.255.240')
def testIpType(self):
ipv4net = ipaddr.IPNetwork('1.2.3.4')
ipv4addr = ipaddr.IPAddress('1.2.3.4')
ipv6net = ipaddr.IPNetwork('::1.2.3.4')
ipv6addr = ipaddr.IPAddress('::1.2.3.4')
self.assertEqual(ipaddr.IPv4Network, type(ipv4net))
self.assertEqual(ipaddr.IPv4Address, type(ipv4addr))
self.assertEqual(ipaddr.IPv6Network, type(ipv6net))
self.assertEqual(ipaddr.IPv6Address, type(ipv6addr))
def testReservedIpv4(self):
# test networks
self.assertEqual(True, ipaddr.IPNetwork('224.1.1.1/31').is_multicast)
self.assertEqual(False, ipaddr.IPNetwork('240.0.0.0').is_multicast)
self.assertEqual(True, ipaddr.IPNetwork('192.168.1.1/17').is_private)
self.assertEqual(False, ipaddr.IPNetwork('192.169.0.0').is_private)
self.assertEqual(True, ipaddr.IPNetwork('10.255.255.255').is_private)
self.assertEqual(False, ipaddr.IPNetwork('11.0.0.0').is_private)
self.assertEqual(True, ipaddr.IPNetwork('172.31.255.255').is_private)
self.assertEqual(False, ipaddr.IPNetwork('172.32.0.0').is_private)
self.assertEqual(True,
ipaddr.IPNetwork('169.254.100.200/24').is_link_local)
self.assertEqual(False,
ipaddr.IPNetwork('169.255.100.200/24').is_link_local)
self.assertEqual(True,
ipaddr.IPNetwork('127.100.200.254/32').is_loopback)
self.assertEqual(True, ipaddr.IPNetwork('127.42.0.0/16').is_loopback)
self.assertEqual(False, ipaddr.IPNetwork('128.0.0.0').is_loopback)
# test addresses
self.assertEqual(True, ipaddr.IPAddress('224.1.1.1').is_multicast)
self.assertEqual(False, ipaddr.IPAddress('240.0.0.0').is_multicast)
self.assertEqual(True, ipaddr.IPAddress('192.168.1.1').is_private)
self.assertEqual(False, ipaddr.IPAddress('192.169.0.0').is_private)
self.assertEqual(True, ipaddr.IPAddress('10.255.255.255').is_private)
self.assertEqual(False, ipaddr.IPAddress('11.0.0.0').is_private)
self.assertEqual(True, ipaddr.IPAddress('172.31.255.255').is_private)
self.assertEqual(False, ipaddr.IPAddress('172.32.0.0').is_private)
self.assertEqual(True,
ipaddr.IPAddress('169.254.100.200').is_link_local)
self.assertEqual(False,
ipaddr.IPAddress('169.255.100.200').is_link_local)
self.assertEqual(True,
ipaddr.IPAddress('127.100.200.254').is_loopback)
self.assertEqual(True, ipaddr.IPAddress('127.42.0.0').is_loopback)
self.assertEqual(False, ipaddr.IPAddress('128.0.0.0').is_loopback)
self.assertEqual(True, ipaddr.IPNetwork('0.0.0.0').is_unspecified)
def testReservedIpv6(self):
self.assertEqual(True, ipaddr.IPNetwork('ffff::').is_multicast)
self.assertEqual(True, ipaddr.IPNetwork(2**128-1).is_multicast)
self.assertEqual(True, ipaddr.IPNetwork('ff00::').is_multicast)
self.assertEqual(False, ipaddr.IPNetwork('fdff::').is_multicast)
self.assertEqual(True, ipaddr.IPNetwork('fecf::').is_site_local)
self.assertEqual(True, ipaddr.IPNetwork(
'feff:ffff:ffff:ffff::').is_site_local)
self.assertEqual(False, ipaddr.IPNetwork('fbf:ffff::').is_site_local)
self.assertEqual(False, ipaddr.IPNetwork('ff00::').is_site_local)
self.assertEqual(True, ipaddr.IPNetwork('fc00::').is_private)
self.assertEqual(True, ipaddr.IPNetwork(
'fc00:ffff:ffff:ffff::').is_private)
self.assertEqual(False, ipaddr.IPNetwork('fbff:ffff::').is_private)
self.assertEqual(False, ipaddr.IPNetwork('fe00::').is_private)
self.assertEqual(True, ipaddr.IPNetwork('fea0::').is_link_local)
self.assertEqual(True, ipaddr.IPNetwork('febf:ffff::').is_link_local)
self.assertEqual(False, ipaddr.IPNetwork('fe7f:ffff::').is_link_local)
self.assertEqual(False, ipaddr.IPNetwork('fec0::').is_link_local)
self.assertEqual(True, ipaddr.IPNetwork('0:0::0:01').is_loopback)
self.assertEqual(False, ipaddr.IPNetwork('::1/127').is_loopback)
self.assertEqual(False, ipaddr.IPNetwork('::').is_loopback)
self.assertEqual(False, ipaddr.IPNetwork('::2').is_loopback)
self.assertEqual(True, ipaddr.IPNetwork('0::0').is_unspecified)
self.assertEqual(False, ipaddr.IPNetwork('::1').is_unspecified)
self.assertEqual(False, ipaddr.IPNetwork('::/127').is_unspecified)
# test addresses
self.assertEqual(True, ipaddr.IPAddress('ffff::').is_multicast)
self.assertEqual(True, ipaddr.IPAddress(2**128-1).is_multicast)
self.assertEqual(True, ipaddr.IPAddress('ff00::').is_multicast)
self.assertEqual(False, ipaddr.IPAddress('fdff::').is_multicast)
self.assertEqual(True, ipaddr.IPAddress('fecf::').is_site_local)
self.assertEqual(True, ipaddr.IPAddress(
'feff:ffff:ffff:ffff::').is_site_local)
self.assertEqual(False, ipaddr.IPAddress('fbf:ffff::').is_site_local)
self.assertEqual(False, ipaddr.IPAddress('ff00::').is_site_local)
self.assertEqual(True, ipaddr.IPAddress('fc00::').is_private)
self.assertEqual(True, ipaddr.IPAddress(
'fc00:ffff:ffff:ffff::').is_private)
self.assertEqual(False, ipaddr.IPAddress('fbff:ffff::').is_private)
self.assertEqual(False, ipaddr.IPAddress('fe00::').is_private)
self.assertEqual(True, ipaddr.IPAddress('fea0::').is_link_local)
self.assertEqual(True, ipaddr.IPAddress('febf:ffff::').is_link_local)
self.assertEqual(False, ipaddr.IPAddress('fe7f:ffff::').is_link_local)
self.assertEqual(False, ipaddr.IPAddress('fec0::').is_link_local)
self.assertEqual(True, ipaddr.IPAddress('0:0::0:01').is_loopback)
self.assertEqual(True, ipaddr.IPAddress('::1').is_loopback)
self.assertEqual(False, ipaddr.IPAddress('::2').is_loopback)
self.assertEqual(True, ipaddr.IPAddress('0::0').is_unspecified)
self.assertEqual(False, ipaddr.IPAddress('::1').is_unspecified)
# some generic IETF reserved addresses
self.assertEqual(True, ipaddr.IPAddress('100::').is_reserved)
self.assertEqual(True, ipaddr.IPNetwork('4000::1/128').is_reserved)
def testIpv4Mapped(self):
self.assertEqual(ipaddr.IPAddress('::ffff:192.168.1.1').ipv4_mapped,
ipaddr.IPAddress('192.168.1.1'))
self.assertEqual(ipaddr.IPAddress('::c0a8:101').ipv4_mapped, None)
self.assertEqual(ipaddr.IPAddress('::ffff:c0a8:101').ipv4_mapped,
ipaddr.IPAddress('192.168.1.1'))
def testAddrExclude(self):
addr1 = ipaddr.IPNetwork('10.1.1.0/24')
addr2 = ipaddr.IPNetwork('10.1.1.0/26')
addr3 = ipaddr.IPNetwork('10.2.1.0/24')
addr4 = ipaddr.IPAddress('10.1.1.0')
self.assertEqual(addr1.address_exclude(addr2),
[ipaddr.IPNetwork('10.1.1.64/26'),
ipaddr.IPNetwork('10.1.1.128/25')])
self.assertRaises(ValueError, addr1.address_exclude, addr3)
self.assertRaises(TypeError, addr1.address_exclude, addr4)
self.assertEqual(addr1.address_exclude(addr1), [])
def testHash(self):
self.assertEqual(hash(ipaddr.IPNetwork('10.1.1.0/24')),
hash(ipaddr.IPNetwork('10.1.1.0/24')))
self.assertEqual(hash(ipaddr.IPAddress('10.1.1.0')),
hash(ipaddr.IPAddress('10.1.1.0')))
# i70
self.assertEqual(hash(ipaddr.IPAddress('1.2.3.4')),
hash(ipaddr.IPAddress(
long(ipaddr.IPAddress('1.2.3.4')._ip))))
ip1 = ipaddr.IPAddress('10.1.1.0')
ip2 = ipaddr.IPAddress('1::')
dummy = {}
dummy[self.ipv4] = None
dummy[self.ipv6] = None
dummy[ip1] = None
dummy[ip2] = None
self.assertTrue(self.ipv4 in dummy)
self.assertTrue(ip2 in dummy)
def testCopyConstructor(self):
addr1 = ipaddr.IPNetwork('10.1.1.0/24')
addr2 = ipaddr.IPNetwork(addr1)
addr3 = ipaddr.IPNetwork('2001:658:22a:cafe:200::1/64')
addr4 = ipaddr.IPNetwork(addr3)
addr5 = ipaddr.IPv4Address('1.1.1.1')
addr6 = ipaddr.IPv6Address('2001:658:22a:cafe:200::1')
self.assertEqual(addr1, addr2)
self.assertEqual(addr3, addr4)
self.assertEqual(addr5, ipaddr.IPv4Address(addr5))
self.assertEqual(addr6, ipaddr.IPv6Address(addr6))
def testCompressIPv6Address(self):
test_addresses = {
'1:2:3:4:5:6:7:8': '1:2:3:4:5:6:7:8/128',
'2001:0:0:4:0:0:0:8': '2001:0:0:4::8/128',
'2001:0:0:4:5:6:7:8': '2001::4:5:6:7:8/128',
'2001:0:3:4:5:6:7:8': '2001:0:3:4:5:6:7:8/128',
'2001:0:3:4:5:6:7:8': '2001:0:3:4:5:6:7:8/128',
'0:0:3:0:0:0:0:ffff': '0:0:3::ffff/128',
'0:0:0:4:0:0:0:ffff': '::4:0:0:0:ffff/128',
'0:0:0:0:5:0:0:ffff': '::5:0:0:ffff/128',
'1:0:0:4:0:0:7:8': '1::4:0:0:7:8/128',
'0:0:0:0:0:0:0:0': '::/128',
'0:0:0:0:0:0:0:0/0': '::/0',
'0:0:0:0:0:0:0:1': '::1/128',
'2001:0658:022a:cafe:0000:0000:0000:0000/66':
'2001:658:22a:cafe::/66',
'::1.2.3.4': '::102:304/128',
'1:2:3:4:5:ffff:1.2.3.4': '1:2:3:4:5:ffff:102:304/128',
'::7:6:5:4:3:2:1': '0:7:6:5:4:3:2:1/128',
'::7:6:5:4:3:2:0': '0:7:6:5:4:3:2:0/128',
'7:6:5:4:3:2:1::': '7:6:5:4:3:2:1:0/128',
'0:6:5:4:3:2:1::': '0:6:5:4:3:2:1:0/128',
}
for uncompressed, compressed in test_addresses.items():
self.assertEqual(compressed, str(ipaddr.IPv6Network(uncompressed)))
def testExplodeShortHandIpStr(self):
addr1 = ipaddr.IPv6Network('2001::1')
addr2 = ipaddr.IPv6Address('2001:0:5ef5:79fd:0:59d:a0e5:ba1')
self.assertEqual('2001:0000:0000:0000:0000:0000:0000:0001/128',
addr1.exploded)
self.assertEqual('0000:0000:0000:0000:0000:0000:0000:0001/128',
ipaddr.IPv6Network('::1/128').exploded)
# issue 77
self.assertEqual('2001:0000:5ef5:79fd:0000:059d:a0e5:0ba1',
addr2.exploded)
def testIntRepresentation(self):
self.assertEqual(16909060, int(self.ipv4))
self.assertEqual(42540616829182469433547762482097946625, int(self.ipv6))
def testHexRepresentation(self):
self.assertEqual(hex(0x1020304),
hex(self.ipv4))
self.assertEqual(hex(0x20010658022ACAFE0200000000000001),
hex(self.ipv6))
# backwards compatibility
def testBackwardsCompability(self):
self.assertEqual(ipaddr.CollapseAddrList(
[ipaddr.IPNetwork('1.1.0.0/24'), ipaddr.IPNetwork('1.1.1.0/24')]),
[ipaddr.IPNetwork('1.1.0.0/23')])
self.assertEqual(ipaddr.IPNetwork('::42:0/112').AddressExclude(
ipaddr.IPNetwork('::42:8000/113')),
[ipaddr.IPNetwork('::42:0/113')])
self.assertTrue(ipaddr.IPNetwork('1::/8').CompareNetworks(
ipaddr.IPNetwork('2::/9')) < 0)
self.assertEqual(ipaddr.IPNetwork('1::/16').Contains(
ipaddr.IPNetwork('2::/16')), False)
self.assertEqual(ipaddr.IPNetwork('0.0.0.0/0').Subnet(),
[ipaddr.IPNetwork('0.0.0.0/1'),
ipaddr.IPNetwork('128.0.0.0/1')])
self.assertEqual(ipaddr.IPNetwork('::/127').Subnet(),
[ipaddr.IPNetwork('::/128'),
ipaddr.IPNetwork('::1/128')])
self.assertEqual(ipaddr.IPNetwork('1.0.0.0/32').Supernet(),
ipaddr.IPNetwork('1.0.0.0/31'))
self.assertEqual(ipaddr.IPNetwork('::/121').Supernet(),
ipaddr.IPNetwork('::/120'))
self.assertEqual(ipaddr.IPNetwork('10.0.0.2').IsRFC1918(), True)
self.assertEqual(ipaddr.IPNetwork('10.0.0.0').IsMulticast(), False)
self.assertEqual(ipaddr.IPNetwork('127.255.255.255').IsLoopback(), True)
self.assertEqual(ipaddr.IPNetwork('169.255.255.255').IsLinkLocal(),
False)
def testForceVersion(self):
self.assertEqual(ipaddr.IPNetwork(1).version, 4)
self.assertEqual(ipaddr.IPNetwork(1, version=6).version, 6)
def testWithStar(self):
self.assertEqual(str(self.ipv4.with_prefixlen), "1.2.3.4/24")
self.assertEqual(str(self.ipv4.with_netmask), "1.2.3.4/255.255.255.0")
self.assertEqual(str(self.ipv4.with_hostmask), "1.2.3.4/0.0.0.255")
self.assertEqual(str(self.ipv6.with_prefixlen),
'2001:658:22a:cafe:200::1/64')
# rfc3513 sec 2.3 says that ipv6 only uses cidr notation for
# subnets
self.assertEqual(str(self.ipv6.with_netmask),
'2001:658:22a:cafe:200::1/64')
# this probably don't make much sense, but it's included for
# compatibility with ipv4
self.assertEqual(str(self.ipv6.with_hostmask),
'2001:658:22a:cafe:200::1/::ffff:ffff:ffff:ffff')
def testNetworkElementCaching(self):
# V4 - make sure we're empty
self.assertFalse(self.ipv4._cache.has_key('network'))
self.assertFalse(self.ipv4._cache.has_key('broadcast'))
self.assertFalse(self.ipv4._cache.has_key('hostmask'))
# V4 - populate and test
self.assertEqual(self.ipv4.network, ipaddr.IPv4Address('1.2.3.0'))
self.assertEqual(self.ipv4.broadcast, ipaddr.IPv4Address('1.2.3.255'))
self.assertEqual(self.ipv4.hostmask, ipaddr.IPv4Address('0.0.0.255'))
# V4 - check we're cached
self.assertTrue(self.ipv4._cache.has_key('network'))
self.assertTrue(self.ipv4._cache.has_key('broadcast'))
self.assertTrue(self.ipv4._cache.has_key('hostmask'))
# V6 - make sure we're empty
self.assertFalse(self.ipv6._cache.has_key('network'))
self.assertFalse(self.ipv6._cache.has_key('broadcast'))
self.assertFalse(self.ipv6._cache.has_key('hostmask'))
# V6 - populate and test
self.assertEqual(self.ipv6.network,
ipaddr.IPv6Address('2001:658:22a:cafe::'))
self.assertEqual(self.ipv6.broadcast, ipaddr.IPv6Address(
'2001:658:22a:cafe:ffff:ffff:ffff:ffff'))
self.assertEqual(self.ipv6.hostmask,
ipaddr.IPv6Address('::ffff:ffff:ffff:ffff'))
# V6 - check we're cached
self.assertTrue(self.ipv6._cache.has_key('network'))
self.assertTrue(self.ipv6._cache.has_key('broadcast'))
self.assertTrue(self.ipv6._cache.has_key('hostmask'))
def testTeredo(self):
# stolen from wikipedia
server = ipaddr.IPv4Address('65.54.227.120')
client = ipaddr.IPv4Address('192.0.2.45')
teredo_addr = '2001:0000:4136:e378:8000:63bf:3fff:fdd2'
self.assertEqual((server, client),
ipaddr.IPAddress(teredo_addr).teredo)
bad_addr = '2000::4136:e378:8000:63bf:3fff:fdd2'
self.assertFalse(ipaddr.IPAddress(bad_addr).teredo)
bad_addr = '2001:0001:4136:e378:8000:63bf:3fff:fdd2'
self.assertFalse(ipaddr.IPAddress(bad_addr).teredo)
# i77
teredo_addr = ipaddr.IPv6Address('2001:0:5ef5:79fd:0:59d:a0e5:ba1')
self.assertEqual((ipaddr.IPv4Address('94.245.121.253'),
ipaddr.IPv4Address('95.26.244.94')),
teredo_addr.teredo)
def testsixtofour(self):
sixtofouraddr = ipaddr.IPAddress('2002:ac1d:2d64::1')
bad_addr = ipaddr.IPAddress('2000:ac1d:2d64::1')
self.assertEqual(ipaddr.IPv4Address('172.29.45.100'),
sixtofouraddr.sixtofour)
self.assertFalse(bad_addr.sixtofour)
if __name__ == '__main__':
unittest.main()
blockfinder-3.14159/embedded_ipaddr/setup.py000077500000000000000000000023721231110224100207420ustar00rootroot00000000000000#!/usr/bin/python
#
# Copyright 2008 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from distutils.core import setup
import ipaddr
setup(name='ipaddr',
maintainer='Google',
maintainer_email='ipaddr-py-dev@googlegroups.com',
version=ipaddr.__version__,
url='http://code.google.com/p/ipaddr-py/',
license='Apache License, Version 2.0',
classifiers=[
'Development Status :: 5 - Production/Stable',
'Intended Audience :: Developers',
'License :: OSI Approved :: Apache Software License',
'Operating System :: OS Independent',
'Topic :: Internet',
'Topic :: Software Development :: Libraries',
'Topic :: System :: Networking'],
py_modules=['ipaddr'])
blockfinder-3.14159/embedded_ipaddr/test-2to3.sh000077500000000000000000000020731231110224100213260ustar00rootroot00000000000000#!/bin/sh
# Copyright 2007 Google Inc.
# Licensed to PSF under a Contributor Agreement.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
#
# Converts the python2 ipaddr files to python3 and runs the unit tests
# with both python versions.
mkdir -p 2to3output && \
cp -f *.py 2to3output && \
( cd 2to3output && 2to3 . | patch -p0 ) && \
py3version=$(python3 --version 2>&1) && \
echo -e "\nTesting with ${py3version}" && \
python3 2to3output/ipaddr_test.py && \
rm -r 2to3output && \
pyversion=$(python --version 2>&1) && \
echo -e "\nTesting with ${pyversion}" && \
./ipaddr_test.py
blockfinder-3.14159/test_lir_data.gz000066400000000000000000000027511231110224100173320ustar00rootroot00000000000000�!*1Mtiny_lir_data_for_test�Xmo�6��_q@�a*Y��10 ������J�
Z�-.钔���;J��N��n �T>w<��x�Q���B,��\+� S�`)")�|�'�5h��I�2�.�dF���L�s�>g� �*GK�^����f�J��.��:�UU�Z imL�xg��4�0��/[O2ڻ��f��/���1:�k��[wk�y�vܰ�<��a7�g؞L$���.�Y~��ŵ�C!��5�ZK��k��z�AF�(>�riɢ~wY,s"��3���L�-!�Ɠ���t"2��L
�=��=� ���p�w�5��jn�2���}�W�i�hi�۹�^�0$jy��f��v�U=nZE�:�d�uz��a�k���_��0���
zknoj���|A�����%���k">#*q�TT#�[����x�I�UF�rl������ES��qgq�ވ[��;��(^�'��[[��I8-�������Qٳ)~��Q��������C�'3���c�V}k\��PŧOh��H���\c,��7�o��4t���U(�r�bbJ��IKI�:�cJ^F�q�"��A�[Bе��nǨ�j�u[
P�U˦Kc�a�Pƥ�<��~��콴r��1��nD��[�$��gX�7���T���D
�R_�]c�ybݯ�ٌ���4��8�G!�B�ȳm�p�g��ãd��U�gt�|o���x!�9_�%U4M��.�V���M�F�k�G��Q��BHX�D���5��%X���eK��`�;�|�^��wF�����,��N���l�'l��%�L��Ӊ4~E�M�lw��T�*oB�hf�5
�R��t���]K~cWӲ,�{��[��wĈ�2��l�9���Z��ɠ��:�m�>��V���q�5Ȱ�K0��}�5��Hm�s<Ո"+b�XN�|���l��"8С![��Ɠw�MP+��o{q�[M�1p��N8*�9Hņު� `�C��Ow3($M�kߟ�#�r�n����x�tv��d�� ��o��>~�g%?K��5_���H��<�yr����_t:W�h<'Ήu�\J�F�A'W�i�ܐ�5�)����\0ԁf�����/�{�j%�%���/����#����P���TԞ6N�B��_I\��W�g�d=����������~�Q{iblockfinder-3.14159/test_rir_data000066400000000000000000000012211231110224100167100ustar00rootroot000000000000002|apnic|20110113|23486|19850701|20110112|+1000
apnic|*|asn|*|3986|summary
apnic|*|ipv4|*|17947|summary
apnic|*|ipv6|*|1553|summary
apnic|JP|asn|173|1|20020801|allocated
apnic|NZ|asn|681|1|20020801|allocated
apnic|MM|ipv4|203.81.64.0|8192|20100504|assigned
apnic|MM|ipv4|203.81.160.0|4096|20100122|assigned
apnic|KP|ipv4|175.45.176.0|1024|20100122|assigned
apnic|JP|ipv6|2001:200::|35|19990813|allocated
apnic|JP|ipv6|2001:200:2000::|35|20030423|allocated
apnic|JP|ipv6|2001:200:4000::|34|20030423|allocated
apnic|JP|ipv6|2001:200:8000::|33|20030423|allocated
ripencc|PL|ipv4|193.9.25.0|256|20090225|assigned
ripencc|HU|ipv4|193.9.26.0|512|20081222|assigned