stockfish-14.1.orig/ 0000755 0001750 0001750 00000000000 14136433513 012520 5 ustar pdm pdm stockfish-14.1.orig/.github/ 0000755 0001750 0001750 00000000000 14136433513 014060 5 ustar pdm pdm stockfish-14.1.orig/.github/workflows/ 0000755 0001750 0001750 00000000000 14136433513 016115 5 ustar pdm pdm stockfish-14.1.orig/.github/workflows/stockfish.yml 0000644 0001750 0001750 00000020115 14136433513 020634 0 ustar pdm pdm name: Stockfish
on:
push:
branches:
- master
- tools
- github_ci
pull_request:
branches:
- master
- tools
jobs:
Stockfish:
name: ${{ matrix.config.name }}
runs-on: ${{ matrix.config.os }}
env:
COMPILER: ${{ matrix.config.compiler }}
COMP: ${{ matrix.config.comp }}
CXXFLAGS: "-Werror"
strategy:
matrix:
config:
- {
name: "Ubuntu 20.04 GCC",
os: ubuntu-20.04,
compiler: g++,
comp: gcc,
run_expensive_tests: true,
run_32bit_tests: true,
run_64bit_tests: true,
shell: 'bash {0}'
}
- {
name: "Ubuntu 20.04 Clang",
os: ubuntu-20.04,
compiler: clang++,
comp: clang,
run_expensive_tests: false,
run_32bit_tests: true,
run_64bit_tests: true,
shell: 'bash {0}'
}
- {
name: "MacOS 10.15 Apple Clang",
os: macos-10.15,
compiler: clang++,
comp: clang,
run_expensive_tests: false,
run_32bit_tests: false,
run_64bit_tests: true,
shell: 'bash {0}'
}
- {
name: "MacOS 10.15 GCC 10",
os: macos-10.15,
compiler: g++-10,
comp: gcc,
run_expensive_tests: false,
run_32bit_tests: false,
run_64bit_tests: true,
shell: 'bash {0}'
}
- {
name: "Windows 2019 Mingw-w64 GCC x86_64",
os: windows-2019,
compiler: g++,
comp: gcc,
run_expensive_tests: false,
run_32bit_tests: false,
run_64bit_tests: true,
msys_sys: 'mingw64',
msys_env: 'x86_64',
shell: 'msys2 {0}'
}
- {
name: "Windows 2019 Mingw-w64 GCC i686",
os: windows-2019,
compiler: g++,
comp: gcc,
run_expensive_tests: false,
run_32bit_tests: true,
run_64bit_tests: false,
msys_sys: 'mingw32',
msys_env: 'i686',
shell: 'msys2 {0}'
}
defaults:
run:
working-directory: src
shell: ${{ matrix.config.shell }}
steps:
- uses: actions/checkout@v2
with:
fetch-depth: 0
- name: Download required linux packages
if: runner.os == 'Linux'
run: |
sudo apt update
sudo apt install expect valgrind g++-multilib
- name: Setup msys and install required packages
if: runner.os == 'Windows'
uses: msys2/setup-msys2@v2
with:
msystem: ${{matrix.config.msys_sys}}
install: mingw-w64-${{matrix.config.msys_env}}-gcc make git expect
- name: Download the used network from the fishtest framework
run: |
make net
- name: Extract the bench number from the commit history
run: |
git log HEAD | grep "\b[Bb]ench[ :]\+[0-9]\{7\}" | head -n 1 | sed "s/[^0-9]*\([0-9]*\).*/\1/g" > git_sig
[ -s git_sig ] && echo "benchref=$(cat git_sig)" >> $GITHUB_ENV && echo "Reference bench:" $(cat git_sig) || echo "No bench found"
- name: Check compiler
run: |
$COMPILER -v
- name: Test help target
run: |
make help
# x86-32 tests
- name: Test debug x86-32 build
if: ${{ matrix.config.run_32bit_tests }}
run: |
export CXXFLAGS="-Werror -D_GLIBCXX_DEBUG"
make clean
make -j2 ARCH=x86-32 optimize=no debug=yes build
../tests/signature.sh $benchref
- name: Test x86-32 build
if: ${{ matrix.config.run_32bit_tests }}
run: |
make clean
make -j2 ARCH=x86-32 build
../tests/signature.sh $benchref
- name: Test x86-32-sse41-popcnt build
if: ${{ matrix.config.run_32bit_tests }}
run: |
make clean
make -j2 ARCH=x86-32-sse41-popcnt build
../tests/signature.sh $benchref
- name: Test x86-32-sse2 build
if: ${{ matrix.config.run_32bit_tests }}
run: |
make clean
make -j2 ARCH=x86-32-sse2 build
../tests/signature.sh $benchref
- name: Test general-32 build
if: ${{ matrix.config.run_32bit_tests }}
run: |
make clean
make -j2 ARCH=general-32 build
../tests/signature.sh $benchref
# x86-64 tests
- name: Test debug x86-64-modern build
if: ${{ matrix.config.run_64bit_tests }}
run: |
export CXXFLAGS="-Werror -D_GLIBCXX_DEBUG"
make clean
make -j2 ARCH=x86-64-modern optimize=no debug=yes build
../tests/signature.sh $benchref
- name: Test x86-64-modern build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-modern build
../tests/signature.sh $benchref
- name: Test x86-64-ssse3 build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-ssse3 build
../tests/signature.sh $benchref
- name: Test x86-64-sse3-popcnt build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-sse3-popcnt build
../tests/signature.sh $benchref
- name: Test x86-64 build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64 build
../tests/signature.sh $benchref
- name: Test general-64 build
if: matrix.config.run_64bit_tests
run: |
make clean
make -j2 ARCH=general-64 build
../tests/signature.sh $benchref
# x86-64 with newer extensions tests
- name: Compile x86-64-avx2 build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-avx2 build
- name: Compile x86-64-bmi2 build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-bmi2 build
- name: Compile x86-64-avx512 build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-avx512 build
- name: Compile x86-64-vnni512 build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-vnni512 build
- name: Compile x86-64-vnni256 build
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-vnni256 build
# Other tests
- name: Check perft and search reproducibility
if: ${{ matrix.config.run_64bit_tests }}
run: |
make clean
make -j2 ARCH=x86-64-modern build
../tests/perft.sh
../tests/reprosearch.sh
# Sanitizers
- name: Run under valgrind
if: ${{ matrix.config.run_expensive_tests }}
run: |
export CXXFLAGS="-O1 -fno-inline"
make clean
make -j2 ARCH=x86-64-modern debug=yes optimize=no build > /dev/null
../tests/instrumented.sh --valgrind
../tests/instrumented.sh --valgrind-thread
- name: Run with UB sanitizer
if: ${{ matrix.config.run_expensive_tests }}
run: |
export CXXFLAGS="-O1 -fno-inline"
make clean
make -j2 ARCH=x86-64-modern sanitize=undefined optimize=no debug=yes build > /dev/null
../tests/instrumented.sh --sanitizer-undefined
- name: Run with thread sanitizer
if: ${{ matrix.config.run_expensive_tests }}
run: |
export CXXFLAGS="-O1 -fno-inline"
make clean
make -j2 ARCH=x86-64-modern sanitize=thread optimize=no debug=yes build > /dev/null
../tests/instrumented.sh --sanitizer-thread
stockfish-14.1.orig/.gitignore 0000644 0001750 0001750 00000000222 14136433513 014504 0 ustar pdm pdm # Files from build
**/*.o
**/*.s
src/.depend
# Built binary
src/stockfish*
src/-lstdc++.res
# Neural network for the NNUE evaluation
**/*.nnue
stockfish-14.1.orig/AUTHORS 0000644 0001750 0001750 00000011175 14136433513 013575 0 ustar pdm pdm # List of authors for Stockfish
# Founders of the Stockfish project and fishtest infrastructure
Tord Romstad (romstad)
Marco Costalba (mcostalba)
Joona Kiiski (zamar)
Gary Linscott (glinscott)
# Authors and inventors of NNUE, training, NNUE port
Yu Nasu (ynasu87)
Motohiro Isozaki (yaneurao)
Hisayori Noda (nodchip)
# all other authors of the code in alphabetical order
Aditya (absimaldata)
Adrian Petrescu (apetresc)
Ajith Chandy Jose (ajithcj)
Alain Savard (Rocky640)
Alayan Feh (Alayan-stk-2)
Alexander Kure
Alexander Pagel (Lolligerhans)
Alfredo Menezes (lonfom169)
Ali AlZhrani (Cooffe)
Andrei Vetrov (proukornew)
Andrew Grant (AndyGrant)
Andrey Neporada (nepal)
Andy Duplain
Antoine Champion (antoinechampion)
Aram Tumanian (atumanian)
Arjun Temurnikar
Artem Solopiy (EntityFX)
Auguste Pop
Balint Pfliegel
Ben Koshy (BKSpurgeon)
Bill Henry (VoyagerOne)
Bojun Guo (noobpwnftw, Nooby)
braich
Brian Sheppard (SapphireBrand, briansheppard-toast)
Bruno de Melo Costa (BM123499)
Bryan Cross (crossbr)
candirufish
Chess13234
Chris Cain (ceebo)
Dale Weiler (graphitemaster)
Dan Schmidt (dfannius)
Daniel Axtens (daxtens)
Daniel Dugovic (ddugovic)
Dariusz Orzechowski (dorzechowski)
David Zar
Daylen Yang (daylen)
Deshawn Mohan-Smith (GoldenRare)
Dieter Dobbelaere (ddobbelaere)
DiscanX
Dominik Schlösser (domschl)
double-beep
Douglas Matos Gomes (dsmsgms)
Eduardo Cáceres (eduherminio)
Eelco de Groot (KingDefender)
Elvin Liu (solarlight2)
erbsenzaehler
Ernesto Gatti
Linmiao Xu (linrock)
Fabian Beuke (madnight)
Fabian Fichter (ianfab)
Fanael Linithien (Fanael)
fanon
Fauzi Akram Dabat (FauziAkram)
Felix Wittmann
gamander
Gary Heckman (gheckman)
George Sobala (gsobala)
gguliash
Giacomo Lorenzetti (G-Lorenz)
Gian-Carlo Pascutto (gcp)
Gontran Lemaire (gonlem)
Goodkov Vasiliy Aleksandrovich (goodkov)
Gregor Cramer
GuardianRM
Günther Demetz (pb00067, pb00068)
Guy Vreuls (gvreuls)
Henri Wiechers
Hiraoka Takuya (HiraokaTakuya)
homoSapiensSapiens
Hongzhi Cheng
Ivan Ivec (IIvec)
Jacques B. (Timshel)
Jan Ondruš (hxim)
Jared Kish (Kurtbusch)
Jarrod Torriero (DU-jdto)
Jean Gauthier (OuaisBla)
Jean-Francois Romang (jromang)
Jekaa
Jerry Donald Watson (jerrydonaldwatson)
jjoshua2
Jonathan Calovski (Mysseno)
Jonathan Buladas Dumale (SFisGOD)
Joost VandeVondele (vondele)
Jörg Oster (joergoster)
Joseph Ellis (jhellis3)
Joseph R. Prostko
Julian Willemer (NightlyKing)
jundery
Justin Blanchard (UncombedCoconut)
Kelly Wilson
Ken Takusagawa
kinderchocolate
Kiran Panditrao (Krgp)
Kojirion
Krystian Kuzniarek (kuzkry)
Leonardo Ljubičić (ICCF World Champion)
Leonid Pechenik (lp--)
Liam Keegan (lkeegan)
Linus Arver (listx)
loco-loco
Lub van den Berg (ElbertoOne)
Luca Brivio (lucabrivio)
Lucas Braesch (lucasart)
Lyudmil Antonov (lantonov)
Maciej Żenczykowski (zenczykowski)
Malcolm Campbell (xoto10)
Mark Tenzer (31m059)
marotear
Matt Ginsberg (mattginsberg)
Matthew Lai (matthewlai)
Matthew Sullivan (Matt14916)
Maxim Molchanov (Maxim)
Michael An (man)
Michael Byrne (MichaelB7)
Michael Chaly (Vizvezdenec)
Michael Stembera (mstembera)
Michael Whiteley (protonspring)
Michel Van den Bergh (vdbergh)
Miguel Lahoz (miguel-l)
Mikael Bäckman (mbootsector)
Mira
Miroslav Fontán (Hexik)
Moez Jellouli (MJZ1977)
Mohammed Li (tthsqe12)
Nathan Rugg (nmrugg)
Nick Pelling (nickpelling)
Nicklas Persson (NicklasPersson)
Niklas Fiekas (niklasf)
Nikolay Kostov (NikolayIT)
Nguyen Pham (nguyenpham)
Norman Schmidt (FireFather)
notruck
Ofek Shochat (OfekShochat, ghostway)
Ondrej Mosnáček (WOnder93)
Oskar Werkelin Ahlin
Pablo Vazquez
Panthee
Pascal Romaret
Pasquale Pigazzini (ppigazzini)
Patrick Jansen (mibere)
pellanda
Peter Zsifkovits (CoffeeOne)
Praveen Kumar Tummala (praveentml)
Rahul Dsilva (silversolver1)
Ralph Stößer (Ralph Stoesser)
Raminder Singh
renouve
Reuven Peleg
Richard Lloyd
Rodrigo Exterckötter Tjäder
Ron Britvich (Britvich)
Ronald de Man (syzygy1, syzygy)
rqs
Ryan Schmitt
Ryan Takker
Sami Kiminki (skiminki)
Sebastian Buchwald (UniQP)
Sergei Antonov (saproj)
Sergei Ivanov (svivanov72)
Sergio Vieri (sergiovieri)
sf-x
Shane Booth (shane31)
Shawn Varghese (xXH4CKST3RXx)
Siad Daboul (Topologist)
Stefan Geschwentner (locutus2)
Stefano Cardanobile (Stefano80)
Steinar Gunderson (sesse)
Stéphane Nicolet (snicolet)
Prokop Randáček (ProkopRandacek)
Thanar2
thaspel
theo77186
Tom Truscott
Tom Vijlbrief (tomtor)
Tomasz Sobczyk (Sopel97)
Torsten Franz (torfranz, tfranzer)
Torsten Hellwig (Torom)
Tracey Emery (basepr1me)
tttak
Unai Corzo (unaiic)
Uri Blass (uriblass)
Vince Negri (cuddlestmonkey)
zz4032
# Additionally, we acknowledge the authors and maintainers of fishtest,
# an amazing and essential framework for the development of Stockfish!
#
# https://github.com/glinscott/fishtest/blob/master/AUTHORS
stockfish-14.1.orig/Copying.txt 0000644 0001750 0001750 00000105755 14136433513 014706 0 ustar pdm pdm GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc.
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
Copyright (C)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
Copyright (C)
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
.
stockfish-14.1.orig/README.md 0000644 0001750 0001750 00000036664 14136433513 014016 0 ustar pdm pdm ## Overview
[](https://github.com/official-stockfish/Stockfish/actions)
[](https://ci.appveyor.com/project/mcostalba/stockfish/branch/master)
[Stockfish](https://stockfishchess.org) is a free, powerful UCI chess engine
derived from Glaurung 2.1. Stockfish is not a complete chess program and requires a
UCI-compatible graphical user interface (GUI) (e.g. XBoard with PolyGlot, Scid,
Cute Chess, eboard, Arena, Sigma Chess, Shredder, Chess Partner or Fritz) in order
to be used comfortably. Read the documentation for your GUI of choice for information
about how to use Stockfish with it.
The Stockfish engine features two evaluation functions for chess, the classical
evaluation based on handcrafted terms, and the NNUE evaluation based on efficiently
updatable neural networks. The classical evaluation runs efficiently on almost all
CPU architectures, while the NNUE evaluation benefits from the vector
intrinsics available on most CPUs (sse2, avx2, neon, or similar).
## Files
This distribution of Stockfish consists of the following files:
* [Readme.md](https://github.com/official-stockfish/Stockfish/blob/master/README.md), the file you are currently reading.
* [Copying.txt](https://github.com/official-stockfish/Stockfish/blob/master/Copying.txt), a text file containing the GNU General Public License version 3.
* [AUTHORS](https://github.com/official-stockfish/Stockfish/blob/master/AUTHORS), a text file with the list of authors for the project
* [src](https://github.com/official-stockfish/Stockfish/tree/master/src), a subdirectory containing the full source code, including a Makefile
that can be used to compile Stockfish on Unix-like systems.
* a file with the .nnue extension, storing the neural network for the NNUE
evaluation. Binary distributions will have this file embedded.
## The UCI protocol and available options
The Universal Chess Interface (UCI) is a standard protocol used to communicate with
a chess engine, and is the recommended way to do so for typical graphical user interfaces
(GUI) or chess tools. Stockfish implements the majority of it options as described
in [the UCI protocol](https://www.shredderchess.com/download/div/uci.zip).
Developers can see the default values for UCI options available in Stockfish by typing
`./stockfish uci` in a terminal, but the majority of users will typically see them and
change them via a chess GUI. This is a list of available UCI options in Stockfish:
* #### Threads
The number of CPU threads used for searching a position. For best performance, set
this equal to the number of CPU cores available.
* #### Hash
The size of the hash table in MB. It is recommended to set Hash after setting Threads.
* #### Clear Hash
Clear the hash table.
* #### Ponder
Let Stockfish ponder its next move while the opponent is thinking.
* #### MultiPV
Output the N best lines (principal variations, PVs) when searching.
Leave at 1 for best performance.
* #### Use NNUE
Toggle between the NNUE and classical evaluation functions. If set to "true",
the network parameters must be available to load from file (see also EvalFile),
if they are not embedded in the binary.
* #### EvalFile
The name of the file of the NNUE evaluation parameters. Depending on the GUI the
filename might have to include the full path to the folder/directory that contains the file.
Other locations, such as the directory that contains the binary and the working directory,
are also searched.
* #### UCI_AnalyseMode
An option handled by your GUI.
* #### UCI_Chess960
An option handled by your GUI. If true, Stockfish will play Chess960.
* #### UCI_ShowWDL
If enabled, show approximate WDL statistics as part of the engine output.
These WDL numbers model expected game outcomes for a given evaluation and
game ply for engine self-play at fishtest LTC conditions (60+0.6s per game).
* #### UCI_LimitStrength
Enable weaker play aiming for an Elo rating as set by UCI_Elo. This option overrides Skill Level.
* #### UCI_Elo
If enabled by UCI_LimitStrength, aim for an engine strength of the given Elo.
This Elo rating has been calibrated at a time control of 60s+0.6s and anchored to CCRL 40/4.
* #### Skill Level
Lower the Skill Level in order to make Stockfish play weaker (see also UCI_LimitStrength).
Internally, MultiPV is enabled, and with a certain probability depending on the Skill Level a
weaker move will be played.
* #### SyzygyPath
Path to the folders/directories storing the Syzygy tablebase files. Multiple
directories are to be separated by ";" on Windows and by ":" on Unix-based
operating systems. Do not use spaces around the ";" or ":".
Example: `C:\tablebases\wdl345;C:\tablebases\wdl6;D:\tablebases\dtz345;D:\tablebases\dtz6`
It is recommended to store .rtbw files on an SSD. There is no loss in storing
the .rtbz files on a regular HD. It is recommended to verify all md5 checksums
of the downloaded tablebase files (`md5sum -c checksum.md5`) as corruption will
lead to engine crashes.
* #### SyzygyProbeDepth
Minimum remaining search depth for which a position is probed. Set this option
to a higher value to probe less aggressively if you experience too much slowdown
(in terms of nps) due to tablebase probing.
* #### Syzygy50MoveRule
Disable to let fifty-move rule draws detected by Syzygy tablebase probes count
as wins or losses. This is useful for ICCF correspondence games.
* #### SyzygyProbeLimit
Limit Syzygy tablebase probing to positions with at most this many pieces left
(including kings and pawns).
* #### Move Overhead
Assume a time delay of x ms due to network and GUI overheads. This is useful to
avoid losses on time in those cases.
* #### Slow Mover
Lower values will make Stockfish take less time in games, higher values will
make it think longer.
* #### nodestime
Tells the engine to use nodes searched instead of wall time to account for
elapsed time. Useful for engine testing.
* #### Debug Log File
Write all communication to and from the engine into a text file.
For developers the following non-standard commands might be of interest, mainly useful for debugging:
* #### bench *ttSize threads limit fenFile limitType evalType*
Performs a standard benchmark using various options. The signature of a version (standard node
count) is obtained using all defaults. `bench` is currently `bench 16 1 13 default depth mixed`.
* #### compiler
Give information about the compiler and environment used for building a binary.
* #### d
Display the current position, with ascii art and fen.
* #### eval
Return the evaluation of the current position.
* #### export_net [filename]
Exports the currently loaded network to a file.
If the currently loaded network is the embedded network and the filename
is not specified then the network is saved to the file matching the name
of the embedded network, as defined in evaluate.h.
If the currently loaded network is not the embedded network (some net set
through the UCI setoption) then the filename parameter is required and the
network is saved into that file.
* #### flip
Flips the side to move.
## A note on classical evaluation versus NNUE evaluation
Both approaches assign a value to a position that is used in alpha-beta (PVS) search
to find the best move. The classical evaluation computes this value as a function
of various chess concepts, handcrafted by experts, tested and tuned using fishtest.
The NNUE evaluation computes this value with a neural network based on basic
inputs (e.g. piece positions only). The network is optimized and trained
on the evaluations of millions of positions at moderate search depth.
The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward.
It can be evaluated efficiently on CPUs, and exploits the fact that only parts
of the neural network need to be updated after a typical chess move.
[The nodchip repository](https://github.com/nodchip/Stockfish) provides additional
tools to train and develop the NNUE networks. On CPUs supporting modern vector instructions
(avx2 and similar), the NNUE evaluation results in much stronger playing strength, even
if the nodes per second computed by the engine is somewhat lower (roughly 80% of nps
is typical).
Notes:
1) the NNUE evaluation depends on the Stockfish binary and the network parameter
file (see the EvalFile UCI option). Not every parameter file is compatible with a given
Stockfish binary, but the default value of the EvalFile UCI option is the name of a network
that is guaranteed to be compatible with that binary.
2) to use the NNUE evaluation, the additional data file with neural network parameters
needs to be available. Normally, this file is already embedded in the binary or it
can be downloaded. The filename for the default (recommended) net can be found as the default
value of the `EvalFile` UCI option, with the format `nn-[SHA256 first 12 digits].nnue`
(for instance, `nn-c157e0a5755b.nnue`). This file can be downloaded from
```
https://tests.stockfishchess.org/api/nn/[filename]
```
replacing `[filename]` as needed.
## What to expect from the Syzygy tablebases?
If the engine is searching a position that is not in the tablebases (e.g.
a position with 8 pieces), it will access the tablebases during the search.
If the engine reports a very large score (typically 153.xx), this means
it has found a winning line into a tablebase position.
If the engine is given a position to search that is in the tablebases, it
will use the tablebases at the beginning of the search to preselect all
good moves, i.e. all moves that preserve the win or preserve the draw while
taking into account the 50-move rule.
It will then perform a search only on those moves. **The engine will not move
immediately**, unless there is only a single good move. **The engine likely
will not report a mate score, even if the position is known to be won.**
It is therefore clear that this behaviour is not identical to what one might
be used to with Nalimov tablebases. There are technical reasons for this
difference, the main technical reason being that Nalimov tablebases use the
DTM metric (distance-to-mate), while the Syzygy tablebases use a variation of the
DTZ metric (distance-to-zero, zero meaning any move that resets the 50-move
counter). This special metric is one of the reasons that the Syzygy tablebases are
more compact than Nalimov tablebases, while still storing all information
needed for optimal play and in addition being able to take into account
the 50-move rule.
## Large Pages
Stockfish supports large pages on Linux and Windows. Large pages make
the hash access more efficient, improving the engine speed, especially
on large hash sizes. Typical increases are 5..10% in terms of nodes per
second, but speed increases up to 30% have been measured. The support is
automatic. Stockfish attempts to use large pages when available and
will fall back to regular memory allocation when this is not the case.
### Support on Linux
Large page support on Linux is obtained by the Linux kernel
transparent huge pages functionality. Typically, transparent huge pages
are already enabled, and no configuration is needed.
### Support on Windows
The use of large pages requires "Lock Pages in Memory" privilege. See
[Enable the Lock Pages in Memory Option (Windows)](https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/enable-the-lock-pages-in-memory-option-windows)
on how to enable this privilege, then run [RAMMap](https://docs.microsoft.com/en-us/sysinternals/downloads/rammap)
to double-check that large pages are used. We suggest that you reboot
your computer after you have enabled large pages, because long Windows
sessions suffer from memory fragmentation, which may prevent Stockfish
from getting large pages: a fresh session is better in this regard.
## Compiling Stockfish yourself from the sources
Stockfish has support for 32 or 64-bit CPUs, certain hardware
instructions, big-endian machines such as Power PC, and other platforms.
On Unix-like systems, it should be easy to compile Stockfish
directly from the source code with the included Makefile in the folder
`src`. In general it is recommended to run `make help` to see a list of make
targets with corresponding descriptions.
```
cd src
make help
make net
make build ARCH=x86-64-modern
```
When not using the Makefile to compile (for instance, with Microsoft MSVC) you
need to manually set/unset some switches in the compiler command line; see
file *types.h* for a quick reference.
When reporting an issue or a bug, please tell us which Stockfish version
and which compiler you used to create your executable. This information
can be found by typing the following command in a console:
```
./stockfish compiler
```
## Understanding the code base and participating in the project
Stockfish's improvement over the last decade has been a great community
effort. There are a few ways to help contribute to its growth.
### Donating hardware
Improving Stockfish requires a massive amount of testing. You can donate
your hardware resources by installing the [Fishtest Worker](https://github.com/glinscott/fishtest/wiki/Running-the-worker:-overview)
and view the current tests on [Fishtest](https://tests.stockfishchess.org/tests).
### Improving the code
If you want to help improve the code, there are several valuable resources:
* [In this wiki,](https://www.chessprogramming.org) many techniques used in
Stockfish are explained with a lot of background information.
* [The section on Stockfish](https://www.chessprogramming.org/Stockfish)
describes many features and techniques used by Stockfish. However, it is
generic rather than being focused on Stockfish's precise implementation.
Nevertheless, a helpful resource.
* The latest source can always be found on [GitHub](https://github.com/official-stockfish/Stockfish).
Discussions about Stockfish take place these days mainly in the [FishCooking](https://groups.google.com/forum/#!forum/fishcooking)
group and on the [Stockfish Discord channel](https://discord.gg/nv8gDtt).
The engine testing is done on [Fishtest](https://tests.stockfishchess.org/tests).
If you want to help improve Stockfish, please read this [guideline](https://github.com/glinscott/fishtest/wiki/Creating-my-first-test)
first, where the basics of Stockfish development are explained.
## Terms of use
Stockfish is free, and distributed under the **GNU General Public License version 3**
(GPL v3). Essentially, this means you are free to do almost exactly
what you want with the program, including distributing it among your
friends, making it available for download from your website, selling
it (either by itself or as part of some bigger software package), or
using it as the starting point for a software project of your own.
The only real limitation is that whenever you distribute Stockfish in
some way, you MUST always include the full source code, or a pointer
to where the source code can be found, to generate the exact binary
you are distributing. If you make any changes to the source code,
these changes must also be made available under the GPL.
For full details, read the copy of the GPL v3 found in the file named
[*Copying.txt*](https://github.com/official-stockfish/Stockfish/blob/master/Copying.txt).
stockfish-14.1.orig/Top CPU Contributors.txt 0000644 0001750 0001750 00000025355 14136433513 017123 0 ustar pdm pdm Contributors to Fishtest with >10,000 CPU hours, as of Jun 29, 2021.
Thank you!
Username CPU Hours Games played
-----------------------------------------------------
noobpwnftw 27649494 1834734733
mlang 1426107 89454622
dew 1380910 82831648
mibere 703840 46867607
grandphish2 692707 41737913
tvijlbrief 669642 42371594
JojoM 597778 35297180
TueRens 519226 31823562
cw 458421 30307421
fastgm 439667 25950040
gvreuls 436599 28177460
crunchy 427035 27344275
CSU_Dynasty 374765 25106278
Fisherman 326901 21822979
ctoks 325477 21767943
velislav 295343 18844324
linrock 292789 10624427
bcross 278584 19488961
okrout 262818 13803272
pemo 245982 11376085
glinscott 217799 13780820
leszek 212346 12959025
nordlandia 211692 13484886
bking_US 198894 11876016
drabel 196463 13450602
robal 195473 12375650
mgrabiak 187226 12016564
Dantist 183202 10990484
Thanar 179852 12365359
vdv 175274 9889046
spams 157128 10319326
marrco 150295 9402141
sqrt2 147963 9724586
mhoram 141278 8901241
CoffeeOne 137100 5024116
vdbergh 137041 8926915
malala 136182 8002293
xoto 133702 9156676
davar 122092 7960001
dsmith 122059 7570238
Data 113305 8220352
BrunoBanani 112960 7436849
MaZePallas 102823 6633619
sterni1971 100532 5880772
ElbertoOne 99028 7023771
brabos 92118 6186135
oz 92100 6486640
psk 89957 5984901
amicic 89156 5392305
sunu 88851 6028873
Vizvezdenec 83761 5344740
0x3C33 82614 5271253
BRAVONE 81239 5054681
racerschmacer 80899 5759262
cuistot 80300 4606144
nssy 76497 5259388
teddybaer 75125 5407666
Pking_cda 73776 5293873
jromang 72192 5057715
solarlight 70517 5028306
dv8silencer 70287 3883992
Bobo1239 68515 4652287
manap 66273 4121774
skiminki 65088 4023328
tinker 64333 4268790
sschnee 60767 3500800
qurashee 57344 3168264
robnjr 57262 4053117
Freja 56938 3733019
ttruscott 56010 3680085
rkl 55132 4164467
renouve 53811 3501516
finfish 51360 3370515
eva42 51272 3599691
rap 49985 3219146
pb00067 49727 3298270
ronaldjerum 47654 3240695
bigpen0r 47653 3335327
eastorwest 47585 3221629
biffhero 46564 3111352
VoyagerOne 45476 3452465
yurikvelo 44834 3034550
speedycpu 43842 3003273
jbwiebe 43305 2805433
Spprtr 42279 2680153
DesolatedDodo 42007 2447516
Antihistamine 41788 2761312
mhunt 41735 2691355
homyur 39893 2850481
gri 39871 2515779
Fifis 38776 2529121
oryx 38724 2966648
SC 37290 2731014
csnodgrass 36207 2688994
jmdana 36157 2210661
strelock 34716 2074055
rpngn 33951 2057395
Garf 33922 2751802
EthanOConnor 33370 2090311
slakovv 32915 2021889
manapbk 30987 1810399
Prcuvu 30377 2170122
anst 30301 2190091
jkiiski 30136 1904470
hyperbolic.tom 29840 2017394
Pyafue 29650 1902349
Wolfgang 29260 1658936
zeryl 28156 1579911
OuaisBla 27636 1578800
DMBK 27051 1999456
chriswk 26902 1868317
achambord 26582 1767323
Patrick_G 26276 1801617
yorkman 26193 1992080
SFTUser 25182 1675689
nabildanial 24942 1519409
Sharaf_DG 24765 1786697
ncfish1 24411 1520927
rodneyc 24227 1409514
agg177 23890 1395014
JanErik 23408 1703875
Isidor 23388 1680691
Norabor 23164 1591830
cisco2015 22897 1762669
Zirie 22542 1472937
team-oh 22272 1636708
MazeOfGalious 21978 1629593
sg4032 21947 1643265
ianh2105 21725 1632562
xor12 21628 1680365
dex 21612 1467203
nesoneg 21494 1463031
sphinx 21211 1384728
jjoshua2 21001 1423089
horst.prack 20878 1465656
Ente 20865 1477066
0xB00B1ES 20590 1208666
j3corre 20405 941444
Adrian.Schmidt123 20316 1281436
wei 19973 1745989
MaxKlaxxMiner 19850 1009176
rstoesser 19569 1293588
gopeto 19491 1174952
eudhan 19274 1283717
jundery 18445 1115855
megaman7de 18377 1067540
iisiraider 18247 1101015
ville 17883 1384026
chris 17698 1487385
purplefishies 17595 1092533
dju 17353 978595
DragonLord 17014 1162790
IgorLeMasson 16064 1147232
ako027ako 15671 1173203
chuckstablers 15289 891576
Nikolay.IT 15154 1068349
Andrew Grant 15114 895539
OssumOpossum 14857 1007129
Karby 14808 867120
enedene 14476 905279
bpfliegel 14298 884523
mpx86 14019 759568
jpulman 13982 870599
crocogoat 13803 1117422
joster 13794 950160
Nesa92 13786 1114691
Hjax 13535 915487
jsys14 13459 785000
Dark_wizzie 13422 1007152
mabichito 12903 749391
thijsk 12886 722107
AdrianSA 12860 804972
Flopzee 12698 894821
fatmurphy 12547 853210
Rudolphous 12520 832340
scuzzi 12511 845761
SapphireBrand 12416 969604
modolief 12386 896470
Machariel 12335 810784
pgontarz 12151 848794
stocky 11954 699440
mschmidt 11941 803401
Maxim 11543 836024
infinity 11470 727027
torbjo 11395 729145
Thomas A. Anderson 11372 732094
savage84 11358 670860
d64 11263 789184
MooTheCow 11237 720174
snicolet 11106 869170
ali-al-zhrani 11086 767926
AndreasKrug 10875 887457
pirt 10806 836519
basepi 10637 744851
michaelrpg 10508 739039
dzjp 10343 732529
aga 10302 622975
ols 10259 570669
lbraesch 10252 647825
FormazChar 10059 757283
stockfish-14.1.orig/appveyor.yml 0000644 0001750 0001750 00000005677 14136433513 015127 0 ustar pdm pdm version: 1.0.{build}
clone_depth: 50
branches:
only:
- master
# Operating system (build VM template)
os: Visual Studio 2019
# Build platform, i.e. x86, x64, AnyCPU. This setting is optional.
platform:
- x86
- x64
# build Configuration, i.e. Debug, Release, etc.
configuration:
- Debug
- Release
matrix:
# The build fail immediately once one of the job fails
fast_finish: true
# Scripts that are called at very beginning, before repo cloning
init:
- cmake --version
- msbuild /version
before_build:
- ps: |
# Get sources
$src = get-childitem -Path *.cpp -Recurse | select -ExpandProperty FullName
$src = $src -join ' '
$src = $src.Replace("\", "/")
# Build CMakeLists.txt
$t = 'cmake_minimum_required(VERSION 3.17)',
'project(Stockfish)',
'set(CMAKE_CXX_STANDARD 17)',
'set(CMAKE_CXX_STANDARD_REQUIRED ON)',
'set (CMAKE_CXX_EXTENSIONS OFF)',
'set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_SOURCE_DIR}/src)',
'set(source_files', $src, ')',
'add_executable(stockfish ${source_files})'
# Write CMakeLists.txt withouth BOM
$MyPath = (Get-Item -Path "." -Verbose).FullName + '\CMakeLists.txt'
$Utf8NoBomEncoding = New-Object System.Text.UTF8Encoding $False
[System.IO.File]::WriteAllLines($MyPath, $t, $Utf8NoBomEncoding)
# Obtain bench reference from git log
$b = git log HEAD | sls "\b[Bb]ench[ :]+[0-9]{7}" | select -first 1
$bench = $b -match '\D+(\d+)' | % { $matches[1] }
Write-Host "Reference bench:" $bench
$g = "Visual Studio 16 2019"
If (${env:PLATFORM} -eq 'x64') { $a = "x64" }
If (${env:PLATFORM} -eq 'x86') { $a = "Win32" }
cmake -G "${g}" -A ${a} .
Write-Host "Generated files for: " $g $a
build_script:
- cmake --build . --config %CONFIGURATION% -- /verbosity:minimal
- ps: |
# Download default NNUE net from fishtest
$nnuenet = Get-Content -Path src\evaluate.h | Select-String -CaseSensitive -Pattern "EvalFileDefaultName" | Select-String -CaseSensitive -Pattern "nn-[a-z0-9]{12}.nnue"
$dummy = $nnuenet -match "(?nn-[a-z0-9]{12}.nnue)"
$nnuenet = $Matches.nnuenet
Write-Host "Default net:" $nnuenet
$nnuedownloadurl = "https://tests.stockfishchess.org/api/nn/$nnuenet"
$nnuefilepath = "src\${env:CONFIGURATION}\$nnuenet"
if (Test-Path -Path $nnuefilepath) {
Write-Host "Already available."
} else {
Write-Host "Downloading $nnuedownloadurl to $nnuefilepath"
Invoke-WebRequest -Uri $nnuedownloadurl -OutFile $nnuefilepath
}
before_test:
- cd src/%CONFIGURATION%
- stockfish bench 2> out.txt >NUL
- ps: |
# Verify bench number
$s = (gc "./out.txt" | out-string)
$r = ($s -match 'Nodes searched \D+(\d+)' | % { $matches[1] })
Write-Host "Engine bench:" $r
Write-Host "Reference bench:" $bench
If ($r -ne $bench) { exit 1 }
stockfish-14.1.orig/src/ 0000755 0001750 0001750 00000000000 14163651400 013304 5 ustar pdm pdm stockfish-14.1.orig/src/Makefile 0000644 0001750 0001750 00000060460 14136433513 014755 0 ustar pdm pdm # Stockfish, a UCI chess playing engine derived from Glaurung 2.1
# Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
#
# Stockfish is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Stockfish is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see .
### ==========================================================================
### Section 1. General Configuration
### ==========================================================================
### Executable name
ifeq ($(COMP),mingw)
EXE = stockfish.exe
else
EXE = stockfish
endif
### Installation dir definitions
PREFIX = /usr/local
BINDIR = $(PREFIX)/bin
### Built-in benchmark for pgo-builds
ifeq ($(SDE_PATH),)
PGOBENCH = ./$(EXE) bench
else
PGOBENCH = $(SDE_PATH) -- ./$(EXE) bench
endif
### Source and object files
SRCS = benchmark.cpp bitbase.cpp bitboard.cpp endgame.cpp evaluate.cpp main.cpp \
material.cpp misc.cpp movegen.cpp movepick.cpp pawns.cpp position.cpp psqt.cpp \
search.cpp thread.cpp timeman.cpp tt.cpp uci.cpp ucioption.cpp tune.cpp syzygy/tbprobe.cpp \
nnue/evaluate_nnue.cpp nnue/features/half_ka_v2_hm.cpp
OBJS = $(notdir $(SRCS:.cpp=.o))
VPATH = syzygy:nnue:nnue/features
### Establish the operating system name
KERNEL = $(shell uname -s)
ifeq ($(KERNEL),Linux)
OS = $(shell uname -o)
endif
### ==========================================================================
### Section 2. High-level Configuration
### ==========================================================================
#
# flag --- Comp switch --- Description
# ----------------------------------------------------------------------------
#
# debug = yes/no --- -DNDEBUG --- Enable/Disable debug mode
# sanitize = none/ ... (-fsanitize )
# --- ( undefined ) --- enable undefined behavior checks
# --- ( thread ) --- enable threading error checks
# --- ( address ) --- enable memory access checks
# --- ...etc... --- see compiler documentation for supported sanitizers
# optimize = yes/no --- (-O3/-fast etc.) --- Enable/Disable optimizations
# arch = (name) --- (-arch) --- Target architecture
# bits = 64/32 --- -DIS_64BIT --- 64-/32-bit operating system
# prefetch = yes/no --- -DUSE_PREFETCH --- Use prefetch asm-instruction
# popcnt = yes/no --- -DUSE_POPCNT --- Use popcnt asm-instruction
# pext = yes/no --- -DUSE_PEXT --- Use pext x86_64 asm-instruction
# sse = yes/no --- -msse --- Use Intel Streaming SIMD Extensions
# mmx = yes/no --- -mmmx --- Use Intel MMX instructions
# sse2 = yes/no --- -msse2 --- Use Intel Streaming SIMD Extensions 2
# ssse3 = yes/no --- -mssse3 --- Use Intel Supplemental Streaming SIMD Extensions 3
# sse41 = yes/no --- -msse4.1 --- Use Intel Streaming SIMD Extensions 4.1
# avx2 = yes/no --- -mavx2 --- Use Intel Advanced Vector Extensions 2
# avx512 = yes/no --- -mavx512bw --- Use Intel Advanced Vector Extensions 512
# vnni256 = yes/no --- -mavx512vnni --- Use Intel Vector Neural Network Instructions 256
# vnni512 = yes/no --- -mavx512vnni --- Use Intel Vector Neural Network Instructions 512
# neon = yes/no --- -DUSE_NEON --- Use ARM SIMD architecture
#
# Note that Makefile is space sensitive, so when adding new architectures
# or modifying existing flags, you have to make sure there are no extra spaces
# at the end of the line for flag values.
#
# Example of use for these flags:
# make build ARCH=x86-64-avx512 debug=yes sanitize="address undefined"
### 2.1. General and architecture defaults
ifeq ($(ARCH),)
ARCH = x86-64-modern
help_skip_sanity = yes
endif
# explicitly check for the list of supported architectures (as listed with make help),
# the user can override with `make ARCH=x86-32-vnni256 SUPPORTED_ARCH=true`
ifeq ($(ARCH), $(filter $(ARCH), \
x86-64-vnni512 x86-64-vnni256 x86-64-avx512 x86-64-bmi2 x86-64-avx2 \
x86-64-sse41-popcnt x86-64-modern x86-64-ssse3 x86-64-sse3-popcnt \
x86-64 x86-32-sse41-popcnt x86-32-sse2 x86-32 ppc-64 ppc-32 e2k \
armv7 armv7-neon armv8 apple-silicon general-64 general-32))
SUPPORTED_ARCH=true
else
SUPPORTED_ARCH=false
endif
optimize = yes
debug = no
sanitize = none
bits = 64
prefetch = no
popcnt = no
pext = no
sse = no
mmx = no
sse2 = no
ssse3 = no
sse41 = no
avx2 = no
avx512 = no
vnni256 = no
vnni512 = no
neon = no
STRIP = strip
### 2.2 Architecture specific
ifeq ($(findstring x86,$(ARCH)),x86)
# x86-32/64
ifeq ($(findstring x86-32,$(ARCH)),x86-32)
arch = i386
bits = 32
sse = yes
mmx = yes
else
arch = x86_64
sse = yes
sse2 = yes
endif
ifeq ($(findstring -sse,$(ARCH)),-sse)
sse = yes
endif
ifeq ($(findstring -popcnt,$(ARCH)),-popcnt)
popcnt = yes
endif
ifeq ($(findstring -mmx,$(ARCH)),-mmx)
mmx = yes
endif
ifeq ($(findstring -sse2,$(ARCH)),-sse2)
sse = yes
sse2 = yes
endif
ifeq ($(findstring -ssse3,$(ARCH)),-ssse3)
sse = yes
sse2 = yes
ssse3 = yes
endif
ifeq ($(findstring -sse41,$(ARCH)),-sse41)
sse = yes
sse2 = yes
ssse3 = yes
sse41 = yes
endif
ifeq ($(findstring -modern,$(ARCH)),-modern)
popcnt = yes
sse = yes
sse2 = yes
ssse3 = yes
sse41 = yes
endif
ifeq ($(findstring -avx2,$(ARCH)),-avx2)
popcnt = yes
sse = yes
sse2 = yes
ssse3 = yes
sse41 = yes
avx2 = yes
endif
ifeq ($(findstring -bmi2,$(ARCH)),-bmi2)
popcnt = yes
sse = yes
sse2 = yes
ssse3 = yes
sse41 = yes
avx2 = yes
pext = yes
endif
ifeq ($(findstring -avx512,$(ARCH)),-avx512)
popcnt = yes
sse = yes
sse2 = yes
ssse3 = yes
sse41 = yes
avx2 = yes
pext = yes
avx512 = yes
endif
ifeq ($(findstring -vnni256,$(ARCH)),-vnni256)
popcnt = yes
sse = yes
sse2 = yes
ssse3 = yes
sse41 = yes
avx2 = yes
pext = yes
vnni256 = yes
endif
ifeq ($(findstring -vnni512,$(ARCH)),-vnni512)
popcnt = yes
sse = yes
sse2 = yes
ssse3 = yes
sse41 = yes
avx2 = yes
pext = yes
avx512 = yes
vnni512 = yes
endif
ifeq ($(sse),yes)
prefetch = yes
endif
# 64-bit pext is not available on x86-32
ifeq ($(bits),32)
pext = no
endif
else
# all other architectures
ifeq ($(ARCH),general-32)
arch = any
bits = 32
endif
ifeq ($(ARCH),general-64)
arch = any
endif
ifeq ($(ARCH),armv7)
arch = armv7
prefetch = yes
bits = 32
endif
ifeq ($(ARCH),armv7-neon)
arch = armv7
prefetch = yes
popcnt = yes
neon = yes
bits = 32
endif
ifeq ($(ARCH),armv8)
arch = armv8
prefetch = yes
popcnt = yes
neon = yes
endif
ifeq ($(ARCH),apple-silicon)
arch = arm64
prefetch = yes
popcnt = yes
neon = yes
endif
ifeq ($(ARCH),ppc-32)
arch = ppc
bits = 32
endif
ifeq ($(ARCH),ppc-64)
arch = ppc64
popcnt = yes
prefetch = yes
endif
ifeq ($(findstring e2k,$(ARCH)),e2k)
arch = e2k
mmx = yes
bits = 64
sse = yes
sse2 = yes
ssse3 = yes
sse41 = yes
popcnt = yes
endif
endif
### ==========================================================================
### Section 3. Low-level Configuration
### ==========================================================================
### 3.1 Selecting compiler (default = gcc)
CXXFLAGS += -Wall -Wcast-qual -fno-exceptions -std=c++17 $(EXTRACXXFLAGS)
DEPENDFLAGS += -std=c++17
LDFLAGS += $(EXTRALDFLAGS)
ifeq ($(COMP),)
COMP=gcc
endif
ifeq ($(COMP),gcc)
comp=gcc
CXX=g++
CXXFLAGS += -pedantic -Wextra -Wshadow
ifeq ($(arch),$(filter $(arch),armv7 armv8))
ifeq ($(OS),Android)
CXXFLAGS += -m$(bits)
LDFLAGS += -m$(bits)
endif
else
CXXFLAGS += -m$(bits)
LDFLAGS += -m$(bits)
endif
ifeq ($(arch),$(filter $(arch),armv7))
LDFLAGS += -latomic
endif
ifneq ($(KERNEL),Darwin)
LDFLAGS += -Wl,--no-as-needed
endif
endif
ifeq ($(COMP),mingw)
comp=mingw
ifeq ($(KERNEL),Linux)
ifeq ($(bits),64)
ifeq ($(shell which x86_64-w64-mingw32-c++-posix),)
CXX=x86_64-w64-mingw32-c++
else
CXX=x86_64-w64-mingw32-c++-posix
endif
else
ifeq ($(shell which i686-w64-mingw32-c++-posix),)
CXX=i686-w64-mingw32-c++
else
CXX=i686-w64-mingw32-c++-posix
endif
endif
else
CXX=g++
endif
CXXFLAGS += -pedantic -Wextra -Wshadow
LDFLAGS += -static
endif
ifeq ($(COMP),icc)
comp=icc
CXX=icpc
CXXFLAGS += -diag-disable 1476,10120 -Wcheck -Wabi -Wdeprecated -strict-ansi
endif
ifeq ($(COMP),clang)
comp=clang
CXX=clang++
CXXFLAGS += -pedantic -Wextra -Wshadow
ifneq ($(KERNEL),Darwin)
ifneq ($(KERNEL),OpenBSD)
ifneq ($(KERNEL),FreeBSD)
ifneq ($(RTLIB),compiler-rt)
LDFLAGS += -latomic
endif
endif
endif
endif
ifeq ($(arch),$(filter $(arch),armv7 armv8))
ifeq ($(OS),Android)
CXXFLAGS += -m$(bits)
LDFLAGS += -m$(bits)
endif
else
CXXFLAGS += -m$(bits)
LDFLAGS += -m$(bits)
endif
endif
ifeq ($(KERNEL),Darwin)
CXXFLAGS += -mmacosx-version-min=10.14
LDFLAGS += -mmacosx-version-min=10.14
ifneq ($(arch),any)
CXXFLAGS += -arch $(arch)
LDFLAGS += -arch $(arch)
endif
XCRUN = xcrun
endif
# To cross-compile for Android, NDK version r21 or later is recommended.
# In earlier NDK versions, you'll need to pass -fno-addrsig if using GNU binutils.
# Currently we don't know how to make PGO builds with the NDK yet.
ifeq ($(COMP),ndk)
CXXFLAGS += -stdlib=libc++ -fPIE
comp=clang
ifeq ($(arch),armv7)
CXX=armv7a-linux-androideabi16-clang++
CXXFLAGS += -mthumb -march=armv7-a -mfloat-abi=softfp -mfpu=neon
STRIP=arm-linux-androideabi-strip
endif
ifeq ($(arch),armv8)
CXX=aarch64-linux-android21-clang++
STRIP=aarch64-linux-android-strip
endif
LDFLAGS += -static-libstdc++ -pie -lm -latomic
endif
ifeq ($(comp),icc)
profile_make = icc-profile-make
profile_use = icc-profile-use
else ifeq ($(comp),clang)
profile_make = clang-profile-make
profile_use = clang-profile-use
else
profile_make = gcc-profile-make
profile_use = gcc-profile-use
endif
### Travis CI script uses COMPILER to overwrite CXX
ifdef COMPILER
COMPCXX=$(COMPILER)
endif
### Allow overwriting CXX from command line
ifdef COMPCXX
CXX=$(COMPCXX)
endif
### Sometimes gcc is really clang
ifeq ($(COMP),gcc)
gccversion = $(shell $(CXX) --version)
gccisclang = $(findstring clang,$(gccversion))
ifneq ($(gccisclang),)
profile_make = clang-profile-make
profile_use = clang-profile-use
endif
endif
### On mingw use Windows threads, otherwise POSIX
ifneq ($(comp),mingw)
CXXFLAGS += -DUSE_PTHREADS
# On Android Bionic's C library comes with its own pthread implementation bundled in
ifneq ($(OS),Android)
# Haiku has pthreads in its libroot, so only link it in on other platforms
ifneq ($(KERNEL),Haiku)
ifneq ($(COMP),ndk)
LDFLAGS += -lpthread
endif
endif
endif
endif
### 3.2.1 Debugging
ifeq ($(debug),no)
CXXFLAGS += -DNDEBUG
else
CXXFLAGS += -g
endif
### 3.2.2 Debugging with undefined behavior sanitizers
ifneq ($(sanitize),none)
CXXFLAGS += -g3 $(addprefix -fsanitize=,$(sanitize))
LDFLAGS += $(addprefix -fsanitize=,$(sanitize))
endif
### 3.3 Optimization
ifeq ($(optimize),yes)
CXXFLAGS += -O3
ifeq ($(comp),gcc)
ifeq ($(OS), Android)
CXXFLAGS += -fno-gcse -mthumb -march=armv7-a -mfloat-abi=softfp
endif
endif
ifeq ($(comp),$(filter $(comp),gcc clang icc))
ifeq ($(KERNEL),Darwin)
CXXFLAGS += -mdynamic-no-pic
endif
endif
ifeq ($(comp),clang)
CXXFLAGS += -fexperimental-new-pass-manager
endif
endif
### 3.4 Bits
ifeq ($(bits),64)
CXXFLAGS += -DIS_64BIT
endif
### 3.5 prefetch and popcount
ifeq ($(prefetch),yes)
ifeq ($(sse),yes)
CXXFLAGS += -msse
endif
else
CXXFLAGS += -DNO_PREFETCH
endif
ifeq ($(popcnt),yes)
ifeq ($(arch),$(filter $(arch),ppc64 armv7 armv8 arm64))
CXXFLAGS += -DUSE_POPCNT
else ifeq ($(comp),icc)
CXXFLAGS += -msse3 -DUSE_POPCNT
else
CXXFLAGS += -msse3 -mpopcnt -DUSE_POPCNT
endif
endif
### 3.6 SIMD architectures
ifeq ($(avx2),yes)
CXXFLAGS += -DUSE_AVX2
ifeq ($(comp),$(filter $(comp),gcc clang mingw))
CXXFLAGS += -mavx2
endif
endif
ifeq ($(avx512),yes)
CXXFLAGS += -DUSE_AVX512
ifeq ($(comp),$(filter $(comp),gcc clang mingw))
CXXFLAGS += -mavx512f -mavx512bw
endif
endif
ifeq ($(vnni256),yes)
CXXFLAGS += -DUSE_VNNI
ifeq ($(comp),$(filter $(comp),gcc clang mingw))
CXXFLAGS += -mavx512f -mavx512bw -mavx512vnni -mavx512dq -mavx512vl -mprefer-vector-width=256
endif
endif
ifeq ($(vnni512),yes)
CXXFLAGS += -DUSE_VNNI
ifeq ($(comp),$(filter $(comp),gcc clang mingw))
CXXFLAGS += -mavx512vnni -mavx512dq -mavx512vl
endif
endif
ifeq ($(sse41),yes)
CXXFLAGS += -DUSE_SSE41
ifeq ($(comp),$(filter $(comp),gcc clang mingw))
CXXFLAGS += -msse4.1
endif
endif
ifeq ($(ssse3),yes)
CXXFLAGS += -DUSE_SSSE3
ifeq ($(comp),$(filter $(comp),gcc clang mingw))
CXXFLAGS += -mssse3
endif
endif
ifeq ($(sse2),yes)
CXXFLAGS += -DUSE_SSE2
ifeq ($(comp),$(filter $(comp),gcc clang mingw))
CXXFLAGS += -msse2
endif
endif
ifeq ($(mmx),yes)
CXXFLAGS += -DUSE_MMX
ifeq ($(comp),$(filter $(comp),gcc clang mingw))
CXXFLAGS += -mmmx
endif
endif
ifeq ($(neon),yes)
CXXFLAGS += -DUSE_NEON
ifeq ($(KERNEL),Linux)
ifneq ($(COMP),ndk)
ifneq ($(arch),armv8)
CXXFLAGS += -mfpu=neon
endif
endif
endif
endif
### 3.7 pext
ifeq ($(pext),yes)
CXXFLAGS += -DUSE_PEXT
ifeq ($(comp),$(filter $(comp),gcc clang mingw))
CXXFLAGS += -mbmi2
endif
endif
### 3.8 Link Time Optimization
### This is a mix of compile and link time options because the lto link phase
### needs access to the optimization flags.
ifeq ($(optimize),yes)
ifeq ($(debug), no)
ifeq ($(comp),clang)
CXXFLAGS += -flto
ifneq ($(findstring MINGW,$(KERNEL)),)
CXXFLAGS += -fuse-ld=lld
else ifneq ($(findstring MSYS,$(KERNEL)),)
CXXFLAGS += -fuse-ld=lld
endif
LDFLAGS += $(CXXFLAGS)
# GCC and CLANG use different methods for parallelizing LTO and CLANG pretends to be
# GCC on some systems.
else ifeq ($(comp),gcc)
ifeq ($(gccisclang),)
CXXFLAGS += -flto
LDFLAGS += $(CXXFLAGS) -flto=jobserver
ifneq ($(findstring MINGW,$(KERNEL)),)
LDFLAGS += -save-temps
else ifneq ($(findstring MSYS,$(KERNEL)),)
LDFLAGS += -save-temps
endif
else
CXXFLAGS += -flto
LDFLAGS += $(CXXFLAGS)
endif
# To use LTO and static linking on windows, the tool chain requires a recent gcc:
# gcc version 10.1 in msys2 or TDM-GCC version 9.2 are known to work, older might not.
# So, only enable it for a cross from Linux by default.
else ifeq ($(comp),mingw)
ifeq ($(KERNEL),Linux)
ifneq ($(arch),i386)
CXXFLAGS += -flto
LDFLAGS += $(CXXFLAGS) -flto=jobserver
endif
endif
endif
endif
endif
### 3.9 Android 5 can only run position independent executables. Note that this
### breaks Android 4.0 and earlier.
ifeq ($(OS), Android)
CXXFLAGS += -fPIE
LDFLAGS += -fPIE -pie
endif
### ==========================================================================
### Section 4. Public Targets
### ==========================================================================
help:
@echo ""
@echo "To compile stockfish, type: "
@echo ""
@echo "make target ARCH=arch [COMP=compiler] [COMPCXX=cxx]"
@echo ""
@echo "Supported targets:"
@echo ""
@echo "help > Display architecture details"
@echo "build > Standard build"
@echo "net > Download the default nnue net"
@echo "profile-build > Faster build (with profile-guided optimization)"
@echo "strip > Strip executable"
@echo "install > Install executable"
@echo "clean > Clean up"
@echo ""
@echo "Supported archs:"
@echo ""
@echo "x86-64-vnni512 > x86 64-bit with vnni support 512bit wide"
@echo "x86-64-vnni256 > x86 64-bit with vnni support 256bit wide"
@echo "x86-64-avx512 > x86 64-bit with avx512 support"
@echo "x86-64-bmi2 > x86 64-bit with bmi2 support"
@echo "x86-64-avx2 > x86 64-bit with avx2 support"
@echo "x86-64-sse41-popcnt > x86 64-bit with sse41 and popcnt support"
@echo "x86-64-modern > common modern CPU, currently x86-64-sse41-popcnt"
@echo "x86-64-ssse3 > x86 64-bit with ssse3 support"
@echo "x86-64-sse3-popcnt > x86 64-bit with sse3 and popcnt support"
@echo "x86-64 > x86 64-bit generic (with sse2 support)"
@echo "x86-32-sse41-popcnt > x86 32-bit with sse41 and popcnt support"
@echo "x86-32-sse2 > x86 32-bit with sse2 support"
@echo "x86-32 > x86 32-bit generic (with mmx and sse support)"
@echo "ppc-64 > PPC 64-bit"
@echo "ppc-32 > PPC 32-bit"
@echo "armv7 > ARMv7 32-bit"
@echo "armv7-neon > ARMv7 32-bit with popcnt and neon"
@echo "armv8 > ARMv8 64-bit with popcnt and neon"
@echo "e2k > Elbrus 2000"
@echo "apple-silicon > Apple silicon ARM64"
@echo "general-64 > unspecified 64-bit"
@echo "general-32 > unspecified 32-bit"
@echo ""
@echo "Supported compilers:"
@echo ""
@echo "gcc > Gnu compiler (default)"
@echo "mingw > Gnu compiler with MinGW under Windows"
@echo "clang > LLVM Clang compiler"
@echo "icc > Intel compiler"
@echo "ndk > Google NDK to cross-compile for Android"
@echo ""
@echo "Simple examples. If you don't know what to do, you likely want to run: "
@echo ""
@echo "make -j build ARCH=x86-64 (A portable, slow compile for 64-bit systems)"
@echo "make -j build ARCH=x86-32 (A portable, slow compile for 32-bit systems)"
@echo ""
@echo "Advanced examples, for experienced users looking for performance: "
@echo ""
@echo "make help ARCH=x86-64-bmi2"
@echo "make -j profile-build ARCH=x86-64-bmi2 COMP=gcc COMPCXX=g++-9.0"
@echo "make -j build ARCH=x86-64-ssse3 COMP=clang"
@echo ""
@echo "-------------------------------"
ifeq ($(SUPPORTED_ARCH)$(help_skip_sanity), true)
@echo "The selected architecture $(ARCH) will enable the following configuration: "
@$(MAKE) ARCH=$(ARCH) COMP=$(COMP) config-sanity
else
@echo "Specify a supported architecture with the ARCH option for more details"
@echo ""
endif
.PHONY: help build profile-build strip install clean net objclean profileclean \
config-sanity icc-profile-use icc-profile-make gcc-profile-use gcc-profile-make \
clang-profile-use clang-profile-make
build: net config-sanity
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) all
profile-build: net config-sanity objclean profileclean
@echo ""
@echo "Step 1/4. Building instrumented executable ..."
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) $(profile_make)
@echo ""
@echo "Step 2/4. Running benchmark for pgo-build ..."
$(PGOBENCH) > /dev/null
@echo ""
@echo "Step 3/4. Building optimized executable ..."
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) objclean
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) $(profile_use)
@echo ""
@echo "Step 4/4. Deleting profile data ..."
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) profileclean
strip:
$(STRIP) $(EXE)
install:
-mkdir -p -m 755 $(BINDIR)
-cp $(EXE) $(BINDIR)
-strip $(BINDIR)/$(EXE)
# clean all
clean: objclean profileclean
@rm -f .depend *~ core
# evaluation network (nnue)
net:
$(eval nnuenet := $(shell grep EvalFileDefaultName evaluate.h | grep define | sed 's/.*\(nn-[a-z0-9]\{12\}.nnue\).*/\1/'))
@echo "Default net: $(nnuenet)"
$(eval nnuedownloadurl := https://tests.stockfishchess.org/api/nn/$(nnuenet))
$(eval curl_or_wget := $(shell if hash curl 2>/dev/null; then echo "curl -skL"; elif hash wget 2>/dev/null; then echo "wget -qO-"; fi))
@if test -f "$(nnuenet)"; then \
echo "Already available."; \
else \
if [ "x$(curl_or_wget)" = "x" ]; then \
echo "Automatic download failed: neither curl nor wget is installed. Install one of these tools or download the net manually"; exit 1; \
else \
echo "Downloading $(nnuedownloadurl)"; $(curl_or_wget) $(nnuedownloadurl) > $(nnuenet);\
fi; \
fi;
$(eval shasum_command := $(shell if hash shasum 2>/dev/null; then echo "shasum -a 256 "; elif hash sha256sum 2>/dev/null; then echo "sha256sum "; fi))
@if [ "x$(shasum_command)" != "x" ]; then \
if [ "$(nnuenet)" != "nn-"`$(shasum_command) $(nnuenet) | cut -c1-12`".nnue" ]; then \
echo "Failed download or $(nnuenet) corrupted, please delete!"; exit 1; \
fi \
else \
echo "shasum / sha256sum not found, skipping net validation"; \
fi
# clean binaries and objects
objclean:
@rm -f $(EXE) *.o ./syzygy/*.o ./nnue/*.o ./nnue/features/*.o
# clean auxiliary profiling files
profileclean:
@rm -rf profdir
@rm -f bench.txt *.gcda *.gcno ./syzygy/*.gcda ./nnue/*.gcda ./nnue/features/*.gcda *.s
@rm -f stockfish.profdata *.profraw
@rm -f stockfish.exe.lto_wrapper_args
@rm -f stockfish.exe.ltrans.out
@rm -f ./-lstdc++.res
default:
help
### ==========================================================================
### Section 5. Private Targets
### ==========================================================================
all: $(EXE) .depend
config-sanity: net
@echo ""
@echo "Config:"
@echo "debug: '$(debug)'"
@echo "sanitize: '$(sanitize)'"
@echo "optimize: '$(optimize)'"
@echo "arch: '$(arch)'"
@echo "bits: '$(bits)'"
@echo "kernel: '$(KERNEL)'"
@echo "os: '$(OS)'"
@echo "prefetch: '$(prefetch)'"
@echo "popcnt: '$(popcnt)'"
@echo "pext: '$(pext)'"
@echo "sse: '$(sse)'"
@echo "mmx: '$(mmx)'"
@echo "sse2: '$(sse2)'"
@echo "ssse3: '$(ssse3)'"
@echo "sse41: '$(sse41)'"
@echo "avx2: '$(avx2)'"
@echo "avx512: '$(avx512)'"
@echo "vnni256: '$(vnni256)'"
@echo "vnni512: '$(vnni512)'"
@echo "neon: '$(neon)'"
@echo ""
@echo "Flags:"
@echo "CXX: $(CXX)"
@echo "CXXFLAGS: $(CXXFLAGS)"
@echo "LDFLAGS: $(LDFLAGS)"
@echo ""
@echo "Testing config sanity. If this fails, try 'make help' ..."
@echo ""
@test "$(debug)" = "yes" || test "$(debug)" = "no"
@test "$(optimize)" = "yes" || test "$(optimize)" = "no"
@test "$(SUPPORTED_ARCH)" = "true"
@test "$(arch)" = "any" || test "$(arch)" = "x86_64" || test "$(arch)" = "i386" || \
test "$(arch)" = "ppc64" || test "$(arch)" = "ppc" || test "$(arch)" = "e2k" || \
test "$(arch)" = "armv7" || test "$(arch)" = "armv8" || test "$(arch)" = "arm64"
@test "$(bits)" = "32" || test "$(bits)" = "64"
@test "$(prefetch)" = "yes" || test "$(prefetch)" = "no"
@test "$(popcnt)" = "yes" || test "$(popcnt)" = "no"
@test "$(pext)" = "yes" || test "$(pext)" = "no"
@test "$(sse)" = "yes" || test "$(sse)" = "no"
@test "$(mmx)" = "yes" || test "$(mmx)" = "no"
@test "$(sse2)" = "yes" || test "$(sse2)" = "no"
@test "$(ssse3)" = "yes" || test "$(ssse3)" = "no"
@test "$(sse41)" = "yes" || test "$(sse41)" = "no"
@test "$(avx2)" = "yes" || test "$(avx2)" = "no"
@test "$(avx512)" = "yes" || test "$(avx512)" = "no"
@test "$(vnni256)" = "yes" || test "$(vnni256)" = "no"
@test "$(vnni512)" = "yes" || test "$(vnni512)" = "no"
@test "$(neon)" = "yes" || test "$(neon)" = "no"
@test "$(comp)" = "gcc" || test "$(comp)" = "icc" || test "$(comp)" = "mingw" || test "$(comp)" = "clang" \
|| test "$(comp)" = "armv7a-linux-androideabi16-clang" || test "$(comp)" = "aarch64-linux-android21-clang"
$(EXE): $(OBJS)
+$(CXX) -o $@ $(OBJS) $(LDFLAGS)
clang-profile-make:
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) \
EXTRACXXFLAGS='-fprofile-instr-generate ' \
EXTRALDFLAGS=' -fprofile-instr-generate' \
all
clang-profile-use:
$(XCRUN) llvm-profdata merge -output=stockfish.profdata *.profraw
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) \
EXTRACXXFLAGS='-fprofile-instr-use=stockfish.profdata' \
EXTRALDFLAGS='-fprofile-use ' \
all
gcc-profile-make:
@mkdir -p profdir
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) \
EXTRACXXFLAGS='-fprofile-generate=profdir' \
EXTRALDFLAGS='-lgcov' \
all
gcc-profile-use:
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) \
EXTRACXXFLAGS='-fprofile-use=profdir -fno-peel-loops -fno-tracer' \
EXTRALDFLAGS='-lgcov' \
all
icc-profile-make:
@mkdir -p profdir
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) \
EXTRACXXFLAGS='-prof-gen=srcpos -prof_dir ./profdir' \
all
icc-profile-use:
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) \
EXTRACXXFLAGS='-prof_use -prof_dir ./profdir' \
all
.depend: $(SRCS)
-@$(CXX) $(DEPENDFLAGS) -MM $(SRCS) > $@ 2> /dev/null
-include .depend
stockfish-14.1.orig/src/benchmark.cpp 0000644 0001750 0001750 00000015062 14136433513 015751 0 ustar pdm pdm /*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include
#include "position.h"
using namespace std;
namespace {
const vector Defaults = {
"setoption name UCI_Chess960 value false",
"rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1",
"r3k2r/p1ppqpb1/bn2pnp1/3PN3/1p2P3/2N2Q1p/PPPBBPPP/R3K2R w KQkq - 0 10",
"8/2p5/3p4/KP5r/1R3p1k/8/4P1P1/8 w - - 0 11",
"4rrk1/pp1n3p/3q2pQ/2p1pb2/2PP4/2P3N1/P2B2PP/4RRK1 b - - 7 19",
"rq3rk1/ppp2ppp/1bnpb3/3N2B1/3NP3/7P/PPPQ1PP1/2KR3R w - - 7 14 moves d4e6",
"r1bq1r1k/1pp1n1pp/1p1p4/4p2Q/4Pp2/1BNP4/PPP2PPP/3R1RK1 w - - 2 14 moves g2g4",
"r3r1k1/2p2ppp/p1p1bn2/8/1q2P3/2NPQN2/PPP3PP/R4RK1 b - - 2 15",
"r1bbk1nr/pp3p1p/2n5/1N4p1/2Np1B2/8/PPP2PPP/2KR1B1R w kq - 0 13",
"r1bq1rk1/ppp1nppp/4n3/3p3Q/3P4/1BP1B3/PP1N2PP/R4RK1 w - - 1 16",
"4r1k1/r1q2ppp/ppp2n2/4P3/5Rb1/1N1BQ3/PPP3PP/R5K1 w - - 1 17",
"2rqkb1r/ppp2p2/2npb1p1/1N1Nn2p/2P1PP2/8/PP2B1PP/R1BQK2R b KQ - 0 11",
"r1bq1r1k/b1p1npp1/p2p3p/1p6/3PP3/1B2NN2/PP3PPP/R2Q1RK1 w - - 1 16",
"3r1rk1/p5pp/bpp1pp2/8/q1PP1P2/b3P3/P2NQRPP/1R2B1K1 b - - 6 22",
"r1q2rk1/2p1bppp/2Pp4/p6b/Q1PNp3/4B3/PP1R1PPP/2K4R w - - 2 18",
"4k2r/1pb2ppp/1p2p3/1R1p4/3P4/2r1PN2/P4PPP/1R4K1 b - - 3 22",
"3q2k1/pb3p1p/4pbp1/2r5/PpN2N2/1P2P2P/5PP1/Q2R2K1 b - - 4 26",
"6k1/6p1/6Pp/ppp5/3pn2P/1P3K2/1PP2P2/3N4 b - - 0 1",
"3b4/5kp1/1p1p1p1p/pP1PpP1P/P1P1P3/3KN3/8/8 w - - 0 1",
"2K5/p7/7P/5pR1/8/5k2/r7/8 w - - 0 1 moves g5g6 f3e3 g6g5 e3f3",
"8/6pk/1p6/8/PP3p1p/5P2/4KP1q/3Q4 w - - 0 1",
"7k/3p2pp/4q3/8/4Q3/5Kp1/P6b/8 w - - 0 1",
"8/2p5/8/2kPKp1p/2p4P/2P5/3P4/8 w - - 0 1",
"8/1p3pp1/7p/5P1P/2k3P1/8/2K2P2/8 w - - 0 1",
"8/pp2r1k1/2p1p3/3pP2p/1P1P1P1P/P5KR/8/8 w - - 0 1",
"8/3p4/p1bk3p/Pp6/1Kp1PpPp/2P2P1P/2P5/5B2 b - - 0 1",
"5k2/7R/4P2p/5K2/p1r2P1p/8/8/8 b - - 0 1",
"6k1/6p1/P6p/r1N5/5p2/7P/1b3PP1/4R1K1 w - - 0 1",
"1r3k2/4q3/2Pp3b/3Bp3/2Q2p2/1p1P2P1/1P2KP2/3N4 w - - 0 1",
"6k1/4pp1p/3p2p1/P1pPb3/R7/1r2P1PP/3B1P2/6K1 w - - 0 1",
"8/3p3B/5p2/5P2/p7/PP5b/k7/6K1 w - - 0 1",
"5rk1/q6p/2p3bR/1pPp1rP1/1P1Pp3/P3B1Q1/1K3P2/R7 w - - 93 90",
"4rrk1/1p1nq3/p7/2p1P1pp/3P2bp/3Q1Bn1/PPPB4/1K2R1NR w - - 40 21",
"r3k2r/3nnpbp/q2pp1p1/p7/Pp1PPPP1/4BNN1/1P5P/R2Q1RK1 w kq - 0 16",
"3Qb1k1/1r2ppb1/pN1n2q1/Pp1Pp1Pr/4P2p/4BP2/4B1R1/1R5K b - - 11 40",
"4k3/3q1r2/1N2r1b1/3ppN2/2nPP3/1B1R2n1/2R1Q3/3K4 w - - 5 1",
// 5-man positions
"8/8/8/8/5kp1/P7/8/1K1N4 w - - 0 1", // Kc2 - mate
"8/8/8/5N2/8/p7/8/2NK3k w - - 0 1", // Na2 - mate
"8/3k4/8/8/8/4B3/4KB2/2B5 w - - 0 1", // draw
// 6-man positions
"8/8/1P6/5pr1/8/4R3/7k/2K5 w - - 0 1", // Re5 - mate
"8/2p4P/8/kr6/6R1/8/8/1K6 w - - 0 1", // Ka2 - mate
"8/8/3P3k/8/1p6/8/1P6/1K3n2 b - - 0 1", // Nd2 - draw
// 7-man positions
"8/R7/2q5/8/6k1/8/1P5p/K6R w - - 0 124", // Draw
// Mate and stalemate positions
"6k1/3b3r/1p1p4/p1n2p2/1PPNpP1q/P3Q1p1/1R1RB1P1/5K2 b - - 0 1",
"r2r1n2/pp2bk2/2p1p2p/3q4/3PN1QP/2P3R1/P4PP1/5RK1 w - - 0 1",
"8/8/8/8/8/6k1/6p1/6K1 w - -",
"7k/7P/6K1/8/3B4/8/8/8 b - -",
// Chess 960
"setoption name UCI_Chess960 value true",
"bbqnnrkr/pppppppp/8/8/8/8/PPPPPPPP/BBQNNRKR w HFhf - 0 1 moves g2g3 d7d5 d2d4 c8h3 c1g5 e8d6 g5e7 f7f6",
"setoption name UCI_Chess960 value false"
};
} // namespace
namespace Stockfish {
/// setup_bench() builds a list of UCI commands to be run by bench. There
/// are five parameters: TT size in MB, number of search threads that
/// should be used, the limit value spent for each position, a file name
/// where to look for positions in FEN format, the type of the limit:
/// depth, perft, nodes and movetime (in millisecs), and evaluation type
/// mixed (default), classical, NNUE.
///
/// bench -> search default positions up to depth 13
/// bench 64 1 15 -> search default positions up to depth 15 (TT = 64MB)
/// bench 64 4 5000 current movetime -> search current position with 4 threads for 5 sec
/// bench 64 1 100000 default nodes -> search default positions for 100K nodes each
/// bench 16 1 5 default perft -> run a perft 5 on default positions
vector setup_bench(const Position& current, istream& is) {
vector fens, list;
string go, token;
// Assign default values to missing arguments
string ttSize = (is >> token) ? token : "16";
string threads = (is >> token) ? token : "1";
string limit = (is >> token) ? token : "13";
string fenFile = (is >> token) ? token : "default";
string limitType = (is >> token) ? token : "depth";
string evalType = (is >> token) ? token : "mixed";
go = limitType == "eval" ? "eval" : "go " + limitType + " " + limit;
if (fenFile == "default")
fens = Defaults;
else if (fenFile == "current")
fens.push_back(current.fen());
else
{
string fen;
ifstream file(fenFile);
if (!file.is_open())
{
cerr << "Unable to open file " << fenFile << endl;
exit(EXIT_FAILURE);
}
while (getline(file, fen))
if (!fen.empty())
fens.push_back(fen);
file.close();
}
list.emplace_back("setoption name Threads value " + threads);
list.emplace_back("setoption name Hash value " + ttSize);
list.emplace_back("ucinewgame");
size_t posCounter = 0;
for (const string& fen : fens)
if (fen.find("setoption") != string::npos)
list.emplace_back(fen);
else
{
if (evalType == "classical" || (evalType == "mixed" && posCounter % 2 == 0))
list.emplace_back("setoption name Use NNUE value false");
else if (evalType == "NNUE" || (evalType == "mixed" && posCounter % 2 != 0))
list.emplace_back("setoption name Use NNUE value true");
list.emplace_back("position fen " + fen);
list.emplace_back(go);
++posCounter;
}
list.emplace_back("setoption name Use NNUE value true");
return list;
}
} // namespace Stockfish
stockfish-14.1.orig/src/bitbase.cpp 0000644 0001750 0001750 00000013341 14136433513 015426 0 ustar pdm pdm /*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include "bitboard.h"
#include "types.h"
namespace Stockfish {
namespace {
// There are 24 possible pawn squares: files A to D and ranks from 2 to 7.
// Positions with the pawn on files E to H will be mirrored before probing.
constexpr unsigned MAX_INDEX = 2*24*64*64; // stm * psq * wksq * bksq = 196608
std::bitset KPKBitbase;
// A KPK bitbase index is an integer in [0, IndexMax] range
//
// Information is mapped in a way that minimizes the number of iterations:
//
// bit 0- 5: white king square (from SQ_A1 to SQ_H8)
// bit 6-11: black king square (from SQ_A1 to SQ_H8)
// bit 12: side to move (WHITE or BLACK)
// bit 13-14: white pawn file (from FILE_A to FILE_D)
// bit 15-17: white pawn RANK_7 - rank (from RANK_7 - RANK_7 to RANK_7 - RANK_2)
unsigned index(Color stm, Square bksq, Square wksq, Square psq) {
return int(wksq) | (bksq << 6) | (stm << 12) | (file_of(psq) << 13) | ((RANK_7 - rank_of(psq)) << 15);
}
enum Result {
INVALID = 0,
UNKNOWN = 1,
DRAW = 2,
WIN = 4
};
Result& operator|=(Result& r, Result v) { return r = Result(r | v); }
struct KPKPosition {
KPKPosition() = default;
explicit KPKPosition(unsigned idx);
operator Result() const { return result; }
Result classify(const std::vector& db);
Color stm;
Square ksq[COLOR_NB], psq;
Result result;
};
} // namespace
bool Bitbases::probe(Square wksq, Square wpsq, Square bksq, Color stm) {
assert(file_of(wpsq) <= FILE_D);
return KPKBitbase[index(stm, bksq, wksq, wpsq)];
}
void Bitbases::init() {
std::vector db(MAX_INDEX);
unsigned idx, repeat = 1;
// Initialize db with known win / draw positions
for (idx = 0; idx < MAX_INDEX; ++idx)
db[idx] = KPKPosition(idx);
// Iterate through the positions until none of the unknown positions can be
// changed to either wins or draws (15 cycles needed).
while (repeat)
for (repeat = idx = 0; idx < MAX_INDEX; ++idx)
repeat |= (db[idx] == UNKNOWN && db[idx].classify(db) != UNKNOWN);
// Fill the bitbase with the decisive results
for (idx = 0; idx < MAX_INDEX; ++idx)
if (db[idx] == WIN)
KPKBitbase.set(idx);
}
namespace {
KPKPosition::KPKPosition(unsigned idx) {
ksq[WHITE] = Square((idx >> 0) & 0x3F);
ksq[BLACK] = Square((idx >> 6) & 0x3F);
stm = Color ((idx >> 12) & 0x01);
psq = make_square(File((idx >> 13) & 0x3), Rank(RANK_7 - ((idx >> 15) & 0x7)));
// Invalid if two pieces are on the same square or if a king can be captured
if ( distance(ksq[WHITE], ksq[BLACK]) <= 1
|| ksq[WHITE] == psq
|| ksq[BLACK] == psq
|| (stm == WHITE && (pawn_attacks_bb(WHITE, psq) & ksq[BLACK])))
result = INVALID;
// Win if the pawn can be promoted without getting captured
else if ( stm == WHITE
&& rank_of(psq) == RANK_7
&& ksq[WHITE] != psq + NORTH
&& ( distance(ksq[BLACK], psq + NORTH) > 1
|| (distance(ksq[WHITE], psq + NORTH) == 1)))
result = WIN;
// Draw if it is stalemate or the black king can capture the pawn
else if ( stm == BLACK
&& ( !(attacks_bb(ksq[BLACK]) & ~(attacks_bb(ksq[WHITE]) | pawn_attacks_bb(WHITE, psq)))
|| (attacks_bb(ksq[BLACK]) & ~attacks_bb(ksq[WHITE]) & psq)))
result = DRAW;
// Position will be classified later
else
result = UNKNOWN;
}
Result KPKPosition::classify(const std::vector& db) {
// White to move: If one move leads to a position classified as WIN, the result
// of the current position is WIN. If all moves lead to positions classified
// as DRAW, the current position is classified as DRAW, otherwise the current
// position is classified as UNKNOWN.
//
// Black to move: If one move leads to a position classified as DRAW, the result
// of the current position is DRAW. If all moves lead to positions classified
// as WIN, the position is classified as WIN, otherwise the current position is
// classified as UNKNOWN.
const Result Good = (stm == WHITE ? WIN : DRAW);
const Result Bad = (stm == WHITE ? DRAW : WIN);
Result r = INVALID;
Bitboard b = attacks_bb(ksq[stm]);
while (b)
r |= stm == WHITE ? db[index(BLACK, ksq[BLACK], pop_lsb(b), psq)]
: db[index(WHITE, pop_lsb(b), ksq[WHITE], psq)];
if (stm == WHITE)
{
if (rank_of(psq) < RANK_7) // Single push
r |= db[index(BLACK, ksq[BLACK], ksq[WHITE], psq + NORTH)];
if ( rank_of(psq) == RANK_2 // Double push
&& psq + NORTH != ksq[WHITE]
&& psq + NORTH != ksq[BLACK])
r |= db[index(BLACK, ksq[BLACK], ksq[WHITE], psq + NORTH + NORTH)];
}
return result = r & Good ? Good : r & UNKNOWN ? UNKNOWN : Bad;
}
} // namespace
} // namespace Stockfish
stockfish-14.1.orig/src/bitboard.cpp 0000644 0001750 0001750 00000017265 14136433513 015614 0 ustar pdm pdm /*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include "bitboard.h"
#include "misc.h"
namespace Stockfish {
uint8_t PopCnt16[1 << 16];
uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];
Bitboard SquareBB[SQUARE_NB];
Bitboard LineBB[SQUARE_NB][SQUARE_NB];
Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
Magic RookMagics[SQUARE_NB];
Magic BishopMagics[SQUARE_NB];
namespace {
Bitboard RookTable[0x19000]; // To store rook attacks
Bitboard BishopTable[0x1480]; // To store bishop attacks
void init_magics(PieceType pt, Bitboard table[], Magic magics[]);
}
/// safe_destination() returns the bitboard of target square for the given step
/// from the given square. If the step is off the board, returns empty bitboard.
inline Bitboard safe_destination(Square s, int step) {
Square to = Square(s + step);
return is_ok(to) && distance(s, to) <= 2 ? square_bb(to) : Bitboard(0);
}
/// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
/// to be printed to standard output. Useful for debugging.
std::string Bitboards::pretty(Bitboard b) {
std::string s = "+---+---+---+---+---+---+---+---+\n";
for (Rank r = RANK_8; r >= RANK_1; --r)
{
for (File f = FILE_A; f <= FILE_H; ++f)
s += b & make_square(f, r) ? "| X " : "| ";
s += "| " + std::to_string(1 + r) + "\n+---+---+---+---+---+---+---+---+\n";
}
s += " a b c d e f g h\n";
return s;
}
/// Bitboards::init() initializes various bitboard tables. It is called at
/// startup and relies on global objects to be already zero-initialized.
void Bitboards::init() {
for (unsigned i = 0; i < (1 << 16); ++i)
PopCnt16[i] = uint8_t(std::bitset<16>(i).count());
for (Square s = SQ_A1; s <= SQ_H8; ++s)
SquareBB[s] = (1ULL << s);
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
SquareDistance[s1][s2] = std::max(distance(s1, s2), distance(s1, s2));
init_magics(ROOK, RookTable, RookMagics);
init_magics(BISHOP, BishopTable, BishopMagics);
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
{
PawnAttacks[WHITE][s1] = pawn_attacks_bb(square_bb(s1));
PawnAttacks[BLACK][s1] = pawn_attacks_bb(square_bb(s1));
for (int step : {-9, -8, -7, -1, 1, 7, 8, 9} )
PseudoAttacks[KING][s1] |= safe_destination(s1, step);
for (int step : {-17, -15, -10, -6, 6, 10, 15, 17} )
PseudoAttacks[KNIGHT][s1] |= safe_destination(s1, step);
PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb(s1, 0);
PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0);
for (PieceType pt : { BISHOP, ROOK })
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
{
if (PseudoAttacks[pt][s1] & s2)
{
LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
BetweenBB[s1][s2] = (attacks_bb(pt, s1, square_bb(s2)) & attacks_bb(pt, s2, square_bb(s1)));
}
BetweenBB[s1][s2] |= s2;
}
}
}
namespace {
Bitboard sliding_attack(PieceType pt, Square sq, Bitboard occupied) {
Bitboard attacks = 0;
Direction RookDirections[4] = {NORTH, SOUTH, EAST, WEST};
Direction BishopDirections[4] = {NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST};
for (Direction d : (pt == ROOK ? RookDirections : BishopDirections))
{
Square s = sq;
while (safe_destination(s, d) && !(occupied & s))
attacks |= (s += d);
}
return attacks;
}
// init_magics() computes all rook and bishop attacks at startup. Magic
// bitboards are used to look up attacks of sliding pieces. As a reference see
// www.chessprogramming.org/Magic_Bitboards. In particular, here we use the so
// called "fancy" approach.
void init_magics(PieceType pt, Bitboard table[], Magic magics[]) {
// Optimal PRNG seeds to pick the correct magics in the shortest time
int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020 },
{ 728, 10316, 55013, 32803, 12281, 15100, 16645, 255 } };
Bitboard occupancy[4096], reference[4096], edges, b;
int epoch[4096] = {}, cnt = 0, size = 0;
for (Square s = SQ_A1; s <= SQ_H8; ++s)
{
// Board edges are not considered in the relevant occupancies
edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
// Given a square 's', the mask is the bitboard of sliding attacks from
// 's' computed on an empty board. The index must be big enough to contain
// all the attacks for each possible subset of the mask and so is 2 power
// the number of 1s of the mask. Hence we deduce the size of the shift to
// apply to the 64 or 32 bits word to get the index.
Magic& m = magics[s];
m.mask = sliding_attack(pt, s, 0) & ~edges;
m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);
// Set the offset for the attacks table of the square. We have individual
// table sizes for each square with "Fancy Magic Bitboards".
m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size;
// Use Carry-Rippler trick to enumerate all subsets of masks[s] and
// store the corresponding sliding attack bitboard in reference[].
b = size = 0;
do {
occupancy[size] = b;
reference[size] = sliding_attack(pt, s, b);
if (HasPext)
m.attacks[pext(b, m.mask)] = reference[size];
size++;
b = (b - m.mask) & m.mask;
} while (b);
if (HasPext)
continue;
PRNG rng(seeds[Is64Bit][rank_of(s)]);
// Find a magic for square 's' picking up an (almost) random number
// until we find the one that passes the verification test.
for (int i = 0; i < size; )
{
for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; )
m.magic = rng.sparse_rand();
// A good magic must map every possible occupancy to an index that
// looks up the correct sliding attack in the attacks[s] database.
// Note that we build up the database for square 's' as a side
// effect of verifying the magic. Keep track of the attempt count
// and save it in epoch[], little speed-up trick to avoid resetting
// m.attacks[] after every failed attempt.
for (++cnt, i = 0; i < size; ++i)
{
unsigned idx = m.index(occupancy[i]);
if (epoch[idx] < cnt)
{
epoch[idx] = cnt;
m.attacks[idx] = reference[i];
}
else if (m.attacks[idx] != reference[i])
break;
}
}
}
}
}
} // namespace Stockfish
stockfish-14.1.orig/src/bitboard.h 0000644 0001750 0001750 00000032216 14136433513 015252 0 ustar pdm pdm /*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifndef BITBOARD_H_INCLUDED
#define BITBOARD_H_INCLUDED
#include
#include "types.h"
namespace Stockfish {
namespace Bitbases {
void init();
bool probe(Square wksq, Square wpsq, Square bksq, Color us);
} // namespace Stockfish::Bitbases
namespace Bitboards {
void init();
std::string pretty(Bitboard b);
} // namespace Stockfish::Bitboards
constexpr Bitboard AllSquares = ~Bitboard(0);
constexpr Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
constexpr Bitboard FileABB = 0x0101010101010101ULL;
constexpr Bitboard FileBBB = FileABB << 1;
constexpr Bitboard FileCBB = FileABB << 2;
constexpr Bitboard FileDBB = FileABB << 3;
constexpr Bitboard FileEBB = FileABB << 4;
constexpr Bitboard FileFBB = FileABB << 5;
constexpr Bitboard FileGBB = FileABB << 6;
constexpr Bitboard FileHBB = FileABB << 7;
constexpr Bitboard Rank1BB = 0xFF;
constexpr Bitboard Rank2BB = Rank1BB << (8 * 1);
constexpr Bitboard Rank3BB = Rank1BB << (8 * 2);
constexpr Bitboard Rank4BB = Rank1BB << (8 * 3);
constexpr Bitboard Rank5BB = Rank1BB << (8 * 4);
constexpr Bitboard Rank6BB = Rank1BB << (8 * 5);
constexpr Bitboard Rank7BB = Rank1BB << (8 * 6);
constexpr Bitboard Rank8BB = Rank1BB << (8 * 7);
constexpr Bitboard QueenSide = FileABB | FileBBB | FileCBB | FileDBB;
constexpr Bitboard CenterFiles = FileCBB | FileDBB | FileEBB | FileFBB;
constexpr Bitboard KingSide = FileEBB | FileFBB | FileGBB | FileHBB;
constexpr Bitboard Center = (FileDBB | FileEBB) & (Rank4BB | Rank5BB);
constexpr Bitboard KingFlank[FILE_NB] = {
QueenSide ^ FileDBB, QueenSide, QueenSide,
CenterFiles, CenterFiles,
KingSide, KingSide, KingSide ^ FileEBB
};
extern uint8_t PopCnt16[1 << 16];
extern uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];
extern Bitboard SquareBB[SQUARE_NB];
extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
/// Magic holds all magic bitboards relevant data for a single square
struct Magic {
Bitboard mask;
Bitboard magic;
Bitboard* attacks;
unsigned shift;
// Compute the attack's index using the 'magic bitboards' approach
unsigned index(Bitboard occupied) const {
if (HasPext)
return unsigned(pext(occupied, mask));
if (Is64Bit)
return unsigned(((occupied & mask) * magic) >> shift);
unsigned lo = unsigned(occupied) & unsigned(mask);
unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32);
return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift;
}
};
extern Magic RookMagics[SQUARE_NB];
extern Magic BishopMagics[SQUARE_NB];
inline Bitboard square_bb(Square s) {
assert(is_ok(s));
return SquareBB[s];
}
/// Overloads of bitwise operators between a Bitboard and a Square for testing
/// whether a given bit is set in a bitboard, and for setting and clearing bits.
inline Bitboard operator&( Bitboard b, Square s) { return b & square_bb(s); }
inline Bitboard operator|( Bitboard b, Square s) { return b | square_bb(s); }
inline Bitboard operator^( Bitboard b, Square s) { return b ^ square_bb(s); }
inline Bitboard& operator|=(Bitboard& b, Square s) { return b |= square_bb(s); }
inline Bitboard& operator^=(Bitboard& b, Square s) { return b ^= square_bb(s); }
inline Bitboard operator&(Square s, Bitboard b) { return b & s; }
inline Bitboard operator|(Square s, Bitboard b) { return b | s; }
inline Bitboard operator^(Square s, Bitboard b) { return b ^ s; }
inline Bitboard operator|(Square s1, Square s2) { return square_bb(s1) | s2; }
constexpr bool more_than_one(Bitboard b) {
return b & (b - 1);
}
constexpr bool opposite_colors(Square s1, Square s2) {
return (s1 + rank_of(s1) + s2 + rank_of(s2)) & 1;
}
/// rank_bb() and file_bb() return a bitboard representing all the squares on
/// the given file or rank.
constexpr Bitboard rank_bb(Rank r) {
return Rank1BB << (8 * r);
}
constexpr Bitboard rank_bb(Square s) {
return rank_bb(rank_of(s));
}
constexpr Bitboard file_bb(File f) {
return FileABB << f;
}
constexpr Bitboard file_bb(Square s) {
return file_bb(file_of(s));
}
/// shift() moves a bitboard one or two steps as specified by the direction D
template
constexpr Bitboard shift(Bitboard b) {
return D == NORTH ? b << 8 : D == SOUTH ? b >> 8
: D == NORTH+NORTH? b <<16 : D == SOUTH+SOUTH? b >>16
: D == EAST ? (b & ~FileHBB) << 1 : D == WEST ? (b & ~FileABB) >> 1
: D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == NORTH_WEST ? (b & ~FileABB) << 7
: D == SOUTH_EAST ? (b & ~FileHBB) >> 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9
: 0;
}
/// pawn_attacks_bb() returns the squares attacked by pawns of the given color
/// from the squares in the given bitboard.
template
constexpr Bitboard pawn_attacks_bb(Bitboard b) {
return C == WHITE ? shift(b) | shift(b)
: shift(b) | shift(b);
}
inline Bitboard pawn_attacks_bb(Color c, Square s) {
assert(is_ok(s));
return PawnAttacks[c][s];
}
/// pawn_double_attacks_bb() returns the squares doubly attacked by pawns of the
/// given color from the squares in the given bitboard.
template
constexpr Bitboard pawn_double_attacks_bb(Bitboard b) {
return C == WHITE ? shift(b) & shift(b)
: shift(b) & shift(b);
}
/// adjacent_files_bb() returns a bitboard representing all the squares on the
/// adjacent files of a given square.
constexpr Bitboard adjacent_files_bb(Square s) {
return shift(file_bb(s)) | shift(file_bb(s));
}
/// line_bb() returns a bitboard representing an entire line (from board edge
/// to board edge) that intersects the two given squares. If the given squares
/// are not on a same file/rank/diagonal, the function returns 0. For instance,
/// line_bb(SQ_C4, SQ_F7) will return a bitboard with the A2-G8 diagonal.
inline Bitboard line_bb(Square s1, Square s2) {
assert(is_ok(s1) && is_ok(s2));
return LineBB[s1][s2];
}
/// between_bb(s1, s2) returns a bitboard representing the squares in the semi-open
/// segment between the squares s1 and s2 (excluding s1 but including s2). If the
/// given squares are not on a same file/rank/diagonal, it returns s2. For instance,
/// between_bb(SQ_C4, SQ_F7) will return a bitboard with squares D5, E6 and F7, but
/// between_bb(SQ_E6, SQ_F8) will return a bitboard with the square F8. This trick
/// allows to generate non-king evasion moves faster: the defending piece must either
/// interpose itself to cover the check or capture the checking piece.
inline Bitboard between_bb(Square s1, Square s2) {
assert(is_ok(s1) && is_ok(s2));
return BetweenBB[s1][s2];
}
/// forward_ranks_bb() returns a bitboard representing the squares on the ranks in
/// front of the given one, from the point of view of the given color. For instance,
/// forward_ranks_bb(BLACK, SQ_D3) will return the 16 squares on ranks 1 and 2.
constexpr Bitboard forward_ranks_bb(Color c, Square s) {
return c == WHITE ? ~Rank1BB << 8 * relative_rank(WHITE, s)
: ~Rank8BB >> 8 * relative_rank(BLACK, s);
}
/// forward_file_bb() returns a bitboard representing all the squares along the
/// line in front of the given one, from the point of view of the given color.
constexpr Bitboard forward_file_bb(Color c, Square s) {
return forward_ranks_bb(c, s) & file_bb(s);
}
/// pawn_attack_span() returns a bitboard representing all the squares that can
/// be attacked by a pawn of the given color when it moves along its file, starting
/// from the given square.
constexpr Bitboard pawn_attack_span(Color c, Square s) {
return forward_ranks_bb(c, s) & adjacent_files_bb(s);
}
/// passed_pawn_span() returns a bitboard which can be used to test if a pawn of
/// the given color and on the given square is a passed pawn.
constexpr Bitboard passed_pawn_span(Color c, Square s) {
return pawn_attack_span(c, s) | forward_file_bb(c, s);
}
/// aligned() returns true if the squares s1, s2 and s3 are aligned either on a
/// straight or on a diagonal line.
inline bool aligned(Square s1, Square s2, Square s3) {
return line_bb(s1, s2) & s3;
}
/// distance() functions return the distance between x and y, defined as the
/// number of steps for a king in x to reach y.
template inline int distance(Square x, Square y);
template<> inline int distance(Square x, Square y) { return std::abs(file_of(x) - file_of(y)); }
template<> inline int distance(Square x, Square y) { return std::abs(rank_of(x) - rank_of(y)); }
template<> inline int distance(Square x, Square y) { return SquareDistance[x][y]; }
inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); }
inline int edge_distance(Rank r) { return std::min(r, Rank(RANK_8 - r)); }
/// attacks_bb(Square) returns the pseudo attacks of the give piece type
/// assuming an empty board.
template
inline Bitboard attacks_bb(Square s) {
assert((Pt != PAWN) && (is_ok(s)));
return PseudoAttacks[Pt][s];
}
/// attacks_bb(Square, Bitboard) returns the attacks by the given piece
/// assuming the board is occupied according to the passed Bitboard.
/// Sliding piece attacks do not continue passed an occupied square.
template
inline Bitboard attacks_bb(Square s, Bitboard occupied) {
assert((Pt != PAWN) && (is_ok(s)));
switch (Pt)
{
case BISHOP: return BishopMagics[s].attacks[BishopMagics[s].index(occupied)];
case ROOK : return RookMagics[s].attacks[ RookMagics[s].index(occupied)];
case QUEEN : return attacks_bb(s, occupied) | attacks_bb(s, occupied);
default : return PseudoAttacks[Pt][s];
}
}
inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) {
assert((pt != PAWN) && (is_ok(s)));
switch (pt)
{
case BISHOP: return attacks_bb(s, occupied);
case ROOK : return attacks_bb< ROOK>(s, occupied);
case QUEEN : return attacks_bb(s, occupied) | attacks_bb(s, occupied);
default : return PseudoAttacks[pt][s];
}
}
/// popcount() counts the number of non-zero bits in a bitboard
inline int popcount(Bitboard b) {
#ifndef USE_POPCNT
union { Bitboard bb; uint16_t u[4]; } v = { b };
return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]];
#elif defined(_MSC_VER) || defined(__INTEL_COMPILER)
return (int)_mm_popcnt_u64(b);
#else // Assumed gcc or compatible compiler
return __builtin_popcountll(b);
#endif
}
/// lsb() and msb() return the least/most significant bit in a non-zero bitboard
#if defined(__GNUC__) // GCC, Clang, ICC
inline Square lsb(Bitboard b) {
assert(b);
return Square(__builtin_ctzll(b));
}
inline Square msb(Bitboard b) {
assert(b);
return Square(63 ^ __builtin_clzll(b));
}
#elif defined(_MSC_VER) // MSVC
#ifdef _WIN64 // MSVC, WIN64
inline Square lsb(Bitboard b) {
assert(b);
unsigned long idx;
_BitScanForward64(&idx, b);
return (Square) idx;
}
inline Square msb(Bitboard b) {
assert(b);
unsigned long idx;
_BitScanReverse64(&idx, b);
return (Square) idx;
}
#else // MSVC, WIN32
inline Square lsb(Bitboard b) {
assert(b);
unsigned long idx;
if (b & 0xffffffff) {
_BitScanForward(&idx, int32_t(b));
return Square(idx);
} else {
_BitScanForward(&idx, int32_t(b >> 32));
return Square(idx + 32);
}
}
inline Square msb(Bitboard b) {
assert(b);
unsigned long idx;
if (b >> 32) {
_BitScanReverse(&idx, int32_t(b >> 32));
return Square(idx + 32);
} else {
_BitScanReverse(&idx, int32_t(b));
return Square(idx);
}
}
#endif
#else // Compiler is neither GCC nor MSVC compatible
#error "Compiler not supported."
#endif
/// least_significant_square_bb() returns the bitboard of the least significant
/// square of a non-zero bitboard. It is equivalent to square_bb(lsb(bb)).
inline Bitboard least_significant_square_bb(Bitboard b) {
assert(b);
return b & -b;
}
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
inline Square pop_lsb(Bitboard& b) {
assert(b);
const Square s = lsb(b);
b &= b - 1;
return s;
}
/// frontmost_sq() returns the most advanced square for the given color,
/// requires a non-zero bitboard.
inline Square frontmost_sq(Color c, Bitboard b) {
assert(b);
return c == WHITE ? msb(b) : lsb(b);
}
} // namespace Stockfish
#endif // #ifndef BITBOARD_H_INCLUDED
stockfish-14.1.orig/src/endgame.cpp 0000644 0001750 0001750 00000071214 14136433513 015420 0 ustar pdm pdm /*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include "bitboard.h"
#include "endgame.h"
#include "movegen.h"
namespace Stockfish {
namespace {
// Used to drive the king towards the edge of the board
// in KX vs K and KQ vs KR endgames.
// Values range from 27 (center squares) to 90 (in the corners)
inline int push_to_edge(Square s) {
int rd = edge_distance(rank_of(s)), fd = edge_distance(file_of(s));
return 90 - (7 * fd * fd / 2 + 7 * rd * rd / 2);
}
// Used to drive the king towards A1H8 corners in KBN vs K endgames.
// Values range from 0 on A8H1 diagonal to 7 in A1H8 corners
inline int push_to_corner(Square s) {
return abs(7 - rank_of(s) - file_of(s));
}
// Drive a piece close to or away from another piece
inline int push_close(Square s1, Square s2) { return 140 - 20 * distance(s1, s2); }
inline int push_away(Square s1, Square s2) { return 120 - push_close(s1, s2); }
#ifndef NDEBUG
bool verify_material(const Position& pos, Color c, Value npm, int pawnsCnt) {
return pos.non_pawn_material(c) == npm && pos.count(c) == pawnsCnt;
}
#endif
// Map the square as if strongSide is white and strongSide's only pawn
// is on the left half of the board.
Square normalize(const Position& pos, Color strongSide, Square sq) {
assert(pos.count(strongSide) == 1);
if (file_of(pos.square(strongSide)) >= FILE_E)
sq = flip_file(sq);
return strongSide == WHITE ? sq : flip_rank(sq);
}
} // namespace
namespace Endgames {
std::pair