effects/0000755000176200001440000000000015042206042011664 5ustar liggesuserseffects/tests/0000755000176200001440000000000013761730142013037 5ustar liggesuserseffects/tests/regression-tests.RData0000644000176200001440000006165613761730142017312 0ustar liggesusersX֨;@ (jr0 ALH Yz@2"9#9#H%]Os{<ϰWWWUBW(IjG#k p{DG%K&6FV&2a%ݺ #_(ֿgO41^bX PllnlmlolؐؐؐŒX[ fFdtj}kuK]oȿWw]OV.Q 9!IXw\KdEY!͘`7ʌњbk3x w?շt:ʆ5T3 ](-a /,/y i qѬ!sh# 重UpbH&9 /nE(U̖[Pўz2ԠiP-'+rh!ėAV^ap]Qȃ\Ů}Ymm\ dL vp4wzvnj$ %s亟탒N.{!?6szWc7򝇾w;ƋX@;+|ۻ~h+mQ&:ݬ|9b57U _.' fѷhm^C8{Ѹx+8|rFW℥=^"xֵ_l{eUR]ఆ;wrE˂%/׮CZO5eީżγJt&VN="8??T52GѢ|Js g>͒iGU bIG{p"Pv|J+ތ3Ug!zvv9F2G73l pYp!UD9p,#[gžRs4|X|OE#T- ; ]/˱!!zb%<^gjjtuiCF{ qW{ J Z2bnі$GCdluI2k^Jzu*-uגCJJh,ʢo?'27g$fuCv)J=evBk>"< ~mfHf}Kح@/H]{/ɛoAx6nP6wm"[[Y5drn.B^TmRe . 삅s"I𞍢`x_ UYCTns =(|%J:qPrQUHr/hmbIyeF(7*t'mĆn϶!D0ڸ@畂CPOyLHВӻ nx(|*3݂] "lAPfz2М򥅸v'赼g(}b<|>e-hἸؠ WC̰z+,Q >E6 1Lndn&o(l.\Cjcbns䒩Fcmjcr}G!$k߇l/Y3,7Lm]t䒉6V/0Ѻ-pkX?u̎ztɍ_R!:ܯA ?lsw5#mi@iebmiqLO*_03& ,KJ%h!ҍv]FfFhZXӳ3hr}nדsTRHZ冝0pO$eX@ҩԙ9C{۵F.ΚWz BY_y~=(īoJ:}Up`!0jWSN4t@~mD?8~.; 5Whz!8RWhHJk4zﲻꋠ*an >)wډm"YsReDy!Y6A˲[z]ha9~54Yd5Jfn~|mmV &UN@m !/8 PJCãk^P^? mnN%xN4]pZpuF*h+ve#ؙ<x$d wdC| Pbj E,A7;#5gsM-FRȄ]\]T^1fL]OPg  ~?HүBZʹYhZONh27oφ&C&;vvc..q.ՖN |hZ`(!*aj^\kQ.#I]FZ8ۡÚvUW;z:A`Xsтڜzo|?OSޱZPAt6[ǥ[\%čNf?a':uVC:2g/k|Erぞ G{ePn*eot¾[K!J=Tby-FNs~Vb #ڞ;ǎx=B0#D+hnQ;hÎ,ShS'Ԍ8 h_A6ҷ+/nd[𤒚.n3Ipt9XrkV{͗x_<.i,xI?B 5q"u:.u~ jo/ œ' Уc߼"yx\gUxk!!?!N _2F[L?Ճ_|zg\aߩ= ʟHpfI;YrǺr$9Ao:npH@} 9'aZ~?n*%{ܳBGChhM;^r%MHp `"苻:[bHL-t b=))j K$zhrU޶ODžATPE\ i,d:G.EFP"S!@Jř )d RHq̀l6}>Vb}|:wDFAt׶QB1Ȭ8}w(y)@\Ƒh;9M$rN_t۟BSAF%}l#}l>vd 7Vʟ4jAwuMQ[kQj,]&AO|57-S8!U44BcySֻ%V<RtXt ǭAҒ#cQK- r(7rO2z+"hA93V9hzlZZFSuPoLV ]}UԔMʓOmP~ 2.4ɘD_Xn6IC1Q:q+MZ*emq .ТMƲ`g{J}y= I>4 ?3d2p9 5ݲee SwWy Hf9vH_ > ;PfHy8ك0mk+4=_ó%FHm{}HWuܰ~F*$}U[]xy|(6JsHsk0X^b݉7̶đ@xwu'>FVAۦ" %9* "n4FnE蔹+Xuj 3 [S+]-|Yr6Ǟ%es5ɀ |iPYCu)I(7wV|\v&t?[lƓ/ʎr݃r"C4i- AiT{8=4wX;w'Gv*?ժ@*/hY+Bko| dPhZ4#:V?|T ZNq$E=c-Ww5*Ƒ$:;svQC 6cDХRأõjibhיRWF q%}x/~4UsqZc /ƻtxb/{O{M}(Ѕ͇Dr%Y箮xOR3"Fѥ"xl![r$Q(?\BI447DG'.ɏ57F*^Q [G `K+LVCwGQ ~W8hw9b(&_-xsh6'}E0p:FM âW(c\3#%Gy!+;ιt23IXW4(bx=+_yG1 x-v3+Pmri:i/ѺsΗжоUS8l$0G~Bk۩m=6U9Eϵ`X@G OݲJO-^hCP+ h_N|[3how=i.ޟr5uB:W2Nt\m?=cW<N :C.IXM΄Zd0EJ笔LѹrmxHiӕx#Qx7tx~l7]1xDW-qOe:MLIa<9 ,6H\ݢt- DP\ncA0H.opMVƂ,,Mml6 ?Բ6l/:Br [c0ljL6s.lM#Ί'&3씿1k П~fQLۤm6'i迩"֐A+^e1ya)0Gq/?S@_(0N x^X ÀڳvKOJ#(=0`k cm+WSA0 (ywpa0Y,rW|b r0`ޞMАty *,BU6?/|Rn'q^\B1 XA]`N乸=ÀҚ1 wÀuL1 Xpkz0s]0?]1 6̊0bp.r,GվEcЏYÀ/81 x77P=UÀeH|ΏÀ, 1 (qWÀ.Gj0 sݫn0n D0 a䔸aV3WuԨG=;̓uϤR@ٖT[` h9v]XaoS(ZZEdb)!|Kb"]ٜ0 &q À޴աÚ!M[?$##0KA|DD-+߾'BEg34/ ZD`izS!hǃcd0 xUA5̄aULc0XNP1UX%5À><J ÀY) n=`дj#>yAFh#}ٖFo0 sMS fۜs0+bmv0 lqÀa{1 8N&%VLr[0 LaܷKbPNÀҫYxkV곎 cpn_x2 CzY~ŀ_V. @s 7JA n(cPyDiÀO0ցW0 H5KÀuCHya'l1<?a$VsW %OaP+ÀΟÐ縒6UGZ>6ۘ`@gr aE^YBwÀbPQYÀo+g LlrBÀsg0  À*Aq0|?YA0 8~R>x V,;8 VEL n9% H~g Is&c x|Bs\7"0sq>1 ۮc0UNÀLdL60Vj+_}*0nj  jÄ/ȔDX  ^0 O10t Do<0+y2o0P c1ddo,1 8;À;bL[PJÀ0 x0,eC`AQ HaWfa@TS ^W0 s 9 Iqj|Si77}0`e LW@U0 fz VR0Ӏ1d3pY?0` cp'7}À`'}v8zw;TIe@u|QDf݉ Hmo0uPcP{^" ',$`? _0f :b0 .,ÀߞYcp׀ Ka}l~tĵiBޮ:Z,QOT"o0 Fq *r0`3Y0 D:a1 `PF5y0`_0}'1 XvÀ5硎a@0* Gbp) Zj-0|BE14p]h0`@]$|5 $vyacg/xaPYd6!Ks!ÀSL[obQ0 j؁a@PĹ oT}݌aց+JT?̆W!ZK폷 >#*jg(s[ tN0`T4_02?_ 0bݑa{1 Ea@!! ƛỉ?0v, Zh`>9-Ǡelv7~.m B'0`l9s1 À0`$?0ӁÀ#&PF(07bPp%}iml}4YhZ0&  TaڸtQ̼!S0`70U]<{3wCodbNf CW]0 ZBa<3 Bv,!j> eekS V"fw 10I^y/`P葽}$}7W @\$9 m׽l.@0d}"o [8ŒLE |Uy^ga Dp)@S _Ҝ3ÀCT1 hfvO᪚O=$Tax 0xc]h8۲0 OxÀ~LԫcG a0~e bPX:[||Àx0 ~7RxNw À紙Ѷ Hԝetx2:Sޛ) 0α"x ь펟0 `h_Zfn<ol0sX fwc0UÀw";0 ʰO  Ŀ0`X) ~;'?zN6 TI\\!`@Cٓ0%[EIa@9WL/y/k0ëB)y|ͦ ÀuN0jz}?0/i߁WUAYAMV|u u3NI~mmn(K X SnGG51k2u0 /O I`7pÀy41 X4)ĸ0^5@W'wqn$""=Uoķ^l{xrC^f~o8%X'g"v O}gpCBГq O1+MB盦 7++tZR5s;?uk (bo&賅|?SܥӚ!MUebHZNj#3zEf'@[z)" ȔJń!mik=cgv@ yǙ!wwTMů_ȐvYKF]a'y_iH,fAJviPIYga 9U-k  &?]ҎLx+ )^:Ete+/g/@nYp~{?Kj'WKNxJ[L~92$/zߺ**3c!ɝѦR*EN&YDE/t~A?%XO)A?x]LztDFϐƘ/ ׼z\"cx]xZ I DеeQd#?;?b(7GR䟔ܨ(X@񢡲0T&|u"4Y_NgP薏ǭrh*rN-HӍ3^ڸ AېAo7h+<tbл?Zٓ*m$ha[#Ft4=`<eq~7{OjwQ#$>/E4Ȱ, r5ÏO<+lz] m3$sa?Q~OX7/WKS.)B>iw3;QH._ub+C%!݋_/B-(%;0zTҏIe*"ܷeB|gL<]FHW;"(XW(hg͐x ]Q{KHbǐyt?<>?#yY?'9iSP Um-K7~Wx?u ;~0!< |IU^>CȖvШ"HNEB^迠n |'+$Z6띦n:X R`beya'[!2ߵYDH^zH,r~пY2,֘qy Lo ̶"!ե!ai&?>H &\,DK{{{C3ɖ>Ukyy(k5|ߋYvDue ወ e;ʈ93wLhǑUJpw/IJ>DwT'n"NvrMmQ JDMo@7\wXEIun#Uو60=#>hG_ly"# ^af> 9N{1\ADdam/޲#r 7˨=rDt="yh|"~O.*Q9i3 +'ڊH5w^C&2^ ߤ9\ rhxʹU6Tf?u< !R0ݨ; $z&g:_nENHZ_?¦^x&B^( z![0/3Ͳyd#Hm cç7ʇK'μp;03`tna2. {䕰t3p,n4۠/s "T3al`F$ 5/)հ[Wf\_*BaHW=KXȽ#kd3M9'oSj!+mZ#Jx&Ȯ'o!l 4k Wm齘f&Ga!+뽃왠r\}@E;[C݆Cj'ۑWη^";Yf \CΖ-컫BA11r}{1~k֍KmȮ # pנ6.0 B4| *#BJ%!lea({q ʯNRgWE00Qpټ5tZ{qsԻ̽a&/ 0OMދ:1*ZaYknR#t/{)L\sfQgJym-Ox #\^]ч>ty)tɞSO0@wɜCd0x: =b R;nKL-.Wt&-]i&S>2ܖA:1 !Tr\j> W:CvOg"&B4uvf"lϧI _!58zNdh4qad=\E;Aï5$V(!,Ok!+k kw1%^%w:= q6dWZmcOg.)a[D־Bc~kˆ?ç׹oȮd ~d]OhLt/%݋"TUa%xh P~HQq^AMn; >܈ԛI'N J-ZG(_62ze V[r@bDYL]4fcY7Gu>{jDa׀ k+̎*! x?rDeSQ^P֪fbDskkIGGDWfNw4d 7,#jdYesn#=ROfbC/T7:2MƊaFeUrTމD!-]?щp6%uJ*Qܟh0[3Y_4v8?<"nN?c{Dp䆝Pϒw|%~<9 ֪LITHm*JE}51PPR^&Je%cQ-H69Ԝ7^[0{sb$T(2G("?j@6ѐ_$TɱI\'km;db|`1qg_Vw 9Þsw\/s4j |7)61}I_6PCW$uQ'1 а/\N;V}mǩYPPr7|<`ČgPǣM\矬xvA[mPj$; =o'vATFZ3B#{Ѓ{2Phb ,j. f\3: =+*&D]@Rhd2YB Âד BrG5]ХGTϬǭ~BsLOy3]BWS5EU=LuwtXt;S8lSCO,s9/XCOu| scq]`Egnu| CkiJ݉a,b\́p=G - 7Qp%yz[㠣J. ?lG3&@݋ evQ t>mlnr٣1o7D=o#r3:~뙆L!ȣ?um! 9f7* ]̭.|xJ],1S eBgA:2_zм"N~tEB Щ'e+ISvoڃHt`t=;gt62:Ml6d4~mf!%$ZoS/i~:,:);Stą.|a%~ *(k߽]Lo+<MCCNUy:3^~K}gCd+P/'n~dCŹ6K {}ګ3}4w W ]ab/Լyr"hɮL[@}Ƃ@rcwd-dgh9[@*,O+ yPDkSNhxaM^DKY'H9@e^{MB*Zdz6)*OBzaAsI2dLPYx xne-,Pyk@WC?qkBt -X)ByG_We [_L]$ՌA/{Ç[DKP^ls7mM{ц|m\dK}P{d#4 y|k[ԑހ@V(uh/XVo 1Pz\`g&˷]Sn7$!yt ݑ{cُxu ͞G[!wqv38 jQƉ6DU|ʆo&ڂ .PB΃:nm Ivꑠ1zT'16$y%I)CI0xhxn}kB }iUзK%>͛.cvRϡOfg˗;њf z]~^]#nXxB;XaУ5kzt 'أQkpMF.CgUsжKʘ$cqe&+x~ﶺ|oPt& (=jEenծ NP=T~u,TjNG9/"Pk$f }$)PÏrګo/BV.ݭ:(Q +e潜CP<@*T>9tR{$`gŇWjR$(ו[,oPOn%ZM^ΤP1C~ ^DиmD0fʌTǭXq{~Moŝ=^DB!nuPg19u>t}' ՘&z=Gy$\!k 0h%i?Ș֞ t::0Jd? gi>;)5гdVyϨg7Qл6'\3K.h~C#}i G H|p8zO9["s*vV9%5%ʉjPP:vTB=#=~! u"#ou{nosD/Z]ɓu{N'} sƮ/ yMvz@; NjsCۚ^nhBe's7 ;\6qTܬ8N<0>O&ቐNڸ&<[ȇJ؞Ct>ΏϠn[s |Imk7ɀ>pF, (M .7 6'IZ65ՠV ,WȡtfƥG#4zrZ1ʰ`["uDT6]c֨.r')k!h}EPLrJ Oe{O=;T܁N^6/oO3}thE;FWP멨,']LF_FJ6DߨLSbbH5ߵptǔkMt].륭Lz%ctN:$K/+/yK /h ;$zbt$$XbwJ>O)(tvSX2:_{I0T't~~o-xrwL%r[w0<-*T9xg3Xƃ%WxJ- ֏9_|~sJxK * d 73#ɵė@PzH}|5d)O"[u\҃K3^AaEJJs7<ˢ|a%hhqMk GcBF.;5Rlw 2 ,AzYB{G?MkPzΚTtw#ϒRK6BcXf]כ-skt]};Ξ}km>>ɘmy:z]SDH@H$r32, Ue#~nX9ۗ棌~6wF'c~6KTyE w]G{C}ԨF}oho'iњ({ gf* [9=tDdT>7r|X-O!/DixBTp-!}Ew#Zs\Q2K[-5yr X GrmABwK#b^>I<qߍeux5_YN_]!俷{z1e._ d?23+V߶M[ӓwꡦ1 dD|:핟8sb{_)R# gvz?ő@;~l=9R3"-jW#x=ơ]^{ ~BWzP\T* PNBÒܣgRI ï?h?UAv MhY-}f!7 քQK6n6}>Њ+|uNKOHnA[䝤gpQu 5< t~;>Hk:vP9_yާJE-!S`-HM1쟄e@5+Oy2-㡑^ҦjF?S M~~i[,OO^g:֌x?B ,^߆HWA8{e"Zl7t8;%]V´UVr:ZW$ YGBk|:*q?:dm|!lQ3c[N2 NK6=ݎ|CNΙïn(]kt(:.:qw~&ӉhP57t@7_2#zXuJM"o?n7΂ǤCO>oB]Pq|L(Oٱ? xZ^Cڍ__%'\ Iٙ iJï@ށuCSH~d܌~g2}uZ"t)(gx Yϟy͕/$kmd~L]m,[geo'ؙk=+4fUE;<T t=tL /.ʊ1;M9UN3jH_] OK@&fȇu Sj5,k'!v]&O\9Z\޿[YVk*TVCږqҞPt!@b(e߱}!#%@eZ}̐V}sH~y~0KprJ[Vd% 44׹ _ϒZ6J'/6{;k/t;T=Q>7h<o%򝊡Z%1z!Lay9]*O: =EMrx-*"TqG9Ac_qˋJV$%R;nӚC}J/'pPr⬴*l!rr<=,PUXawɚ+VEgL&T")f9tb>2KBc?j45]SYG޾P:֟SxwērQBso;+N} )zw|;;;h  L+Mà~i> hLSI%Ķ)mx9;E#5Sf{ d8(C2/(k8 >ܮfu Rw>!.-/A3iNPRz0>kzwm̯|^i)J6҈i{3o]pi,kXaLj5}0p9Ӷ^G~yچDžAs\f;棚!;+8~?,Zu1f{Fh,djJE{"dc>v' Q>{,phy9[ IknK1MoZj3H4C]<TQyAt;r$,ͫg06 \E{= 7Gʸ/GsaقVlY ,KGERn.(-D9{(ѕN\TdxCݟ)6YE]3/ 誕H̋n<љǮ$S7<<й^ٛxx"Ю ODl:xKdb7J`.zU<+ >x.6]7Oz|c㰸f2Y Մ*9?^E=e^5nʂHdEGhE$?Z=yryN94M=OWa;}:"*_46Lz0ߺWӧ̠yw#_>uӇIoJ:mG0y<$"S.CH̎o#R[8Q?+[9d'`|u{k/?A$Z9 9Dl;jDWjS 3Ay|ע|%/"q$"Rt0b*";opއ7ν,it"8֓!/O}-g1JaעﲋEcY  r =ec7Uxf#)'d^#Yӏ0'M$ۡAt1žXȐRU as9 rО3^}2 ~b1m_Dt՗@q̲9Dq 1TI]DOEqSs6;9zG4z8w-jSCi,=f8qʕmC]D3]!R|?B+_IG1w$y.{!ʎ#t+" ʯ[B%., #=vzuQIS81aS,`B)>lbxF//{LxlP[@g#uND w{-{+"q]u0CoЍBdjjPקҌsu d#|}xɐb]\L;\%eGZKrKwFBjgbrf# sp_DȠeffects/tests/effect-tests-1.R0000644000176200001440000001310313761730142015712 0ustar liggesusers if (requireNamespace("carData") && require("effects")){ data(Duncan, package="carData") mi <- with(Duncan, mean(income)) me <- with(Duncan, mean(education)) med <- with(Duncan, median(education)) # (1) focal: factor, constant: polynomial mod.1 <- lm(prestige ~ type + poly(income, degree=2, raw=TRUE), data=Duncan) X <- matrix(c(1, 0, 0, mi, mi^2, 1, 1, 0, mi, mi^2, 1, 0, 1, mi, mi^2), nrow=3, ncol=5, byrow=TRUE) if (!isTRUE(all.equal(as.vector(matrix(X %*% coef(mod.1))), as.vector(Effect("type", mod.1)$fit)))) stop("failed Test 1-1") # (2) focal: polynomial, constant: factor X <- matrix(c(1, 0.4, 2/15, 10, 10^2, 1, 0.4, 2/15, 40, 40^2, 1, 0.4, 2/15, 70, 70^2), nrow=3, ncol=5, byrow=TRUE) if (!isTRUE(all.equal(as.vector(Effect("income", mod.1, xlevels=list(income=c(10, 40, 70)))$fit), as.vector(matrix(X %*% coef(mod.1)))))) stop("failed test 1-2") # (2a) As in (2), but without specifying xlevels X <- matrix(c(1, 0.4, 2/15, 7, 7^2, 1, 0.4, 2/15, 30, 30^2, 1, 0.4, 2/15, 40, 40^2, 1, 0.4, 2/15, 60, 60^2, 1, 0.4, 2/15, 80, 80^2), nrow=5, ncol=5, byrow=TRUE) if (!isTRUE(all.equal(as.vector(Effect("income", mod.1)$fit), as.vector(matrix(X %*% coef(mod.1)))))) stop("failed test 1-2a") # (3) focal: factor*polynomial, constant: polynomial mod.2 <- lm(prestige ~ type*poly(income, degree=2, raw=TRUE) + poly(education, degree=2, raw=TRUE), data=Duncan) X <- matrix(c(1, 0, 0, 10, 10^2, me, me^2, 0, 0, 0, 0, 1, 1, 0, 10, 10^2, me, me^2, 10, 0, 10^2, 0, 1, 0, 1, 10, 10^2, me, me^2, 0, 10, 0, 10^2, 1, 0, 0, 70, 70^2, me, me^2, 0, 0, 0, 0, 1, 1, 0, 70, 70^2, me, me^2, 70, 0, 70^2, 0, 1, 0, 1, 70, 70^2, me, me^2, 0, 70, 0, 70^2), nrow=6, ncol=11, byrow=TRUE) if (!isTRUE(all.equal(as.vector(Effect(c("type", "income"), mod.2, xlevels=list(income=c(10, 70)))$fit), as.vector(matrix(X %*% coef(mod.2), 3, 2))))) stop("failed test 1-3") # (4) focal: polynomial, constant: factor*polynomial X <- matrix(c(1, 0.4, 2/15, mi, mi^2, 10, 10^2, 0.4*mi, 2/15*mi, 0.4*mi^2, 2/15*mi^2, 1, 0.4, 2/15, mi, mi^2, 40, 40^2, 0.4*mi, 2/15*mi, 0.4*mi^2, 2/15*mi^2, 1, 0.4, 2/15, mi, mi^2, 70, 70^2, 0.4*mi, 2/15*mi, 0.4*mi^2, 2/15*mi^2), nrow=3, ncol=11, byrow=TRUE) if (!isTRUE(all.equal(as.vector(Effect("education", mod.2, xlevels=list(education=c(10, 40, 70)))$fit), as.vector(X %*% coef(mod.2))))) stop("failed test 1-4") # (5) repeat of (3) with medians rather than means X <- matrix(c(1, 0, 0, 10, 10^2, med, med^2, 0, 0, 0, 0, 1, 1, 0, 10, 10^2, med, med^2, 10, 0, 10^2, 0, 1, 0, 1, 10, 10^2, med, med^2, 0, 10, 0, 10^2, 1, 0, 0, 70, 70^2, med, med^2, 0, 0, 0, 0, 1, 1, 0, 70, 70^2, med, med^2, 70, 0, 70^2, 0, 1, 0, 1, 70, 70^2, med, med^2, 0, 70, 0, 70^2), nrow=6, ncol=11, byrow=TRUE) if (!isTRUE(all.equal(as.vector(Effect(c("type", "income"), mod.2, xlevels=list(income=c(10, 70)), typical=median)$fit), as.vector(X %*% coef(mod.2))))) stop("failed test 1-5") # (6) focal: factor*polynomial, constant: polynomial, using predict() & orthog. polys. mod.3 <- lm(prestige ~ type*poly(income, degree=2) + poly(education, degree=2), data=Duncan) if (!isTRUE(all.equal(as.vector(predict(mod.3, newdata=data.frame(income=c(10, 10, 10, 70, 70, 70), type=factor(c("bc", "prof", "wc", "bc", "prof", "wc")), education=mean(Duncan$education)))), as.vector(Effect(c("type", "income"), mod.3, xlevels=list(income=c(10, 70)))$fit)))) stop("failed test 1-6") # (7) focal: factor, constant: poly*poly mod.4 <- lm(prestige ~ type + poly(income, 2)*poly(education, 2), data=Duncan) if (!isTRUE(all.equal(as.vector(Effect("type", mod.4)$fit), as.vector(predict(mod.4, newdata=data.frame(type=c("bc", "prof", "wc"), income=rep(mi, 3), education=rep(me, 3))))))) stop("failed test 1-7") # (8) focal: factor, constant: 2nd deg polynomial in 2 Xs mod.5 <- lm(prestige ~ type + poly(income, education, degree=2), data=Duncan) if (!isTRUE(all.equal(as.vector(Effect("type", mod.5)$fit), as.vector(predict(mod.5, newdata=data.frame(type=c("bc", "prof", "wc"), income=rep(mi, 3), education=rep(me, 3))))))) stop("failed test 1-8") # (9) focal: covariate, constant: 2 factors and 1 covariate, 3-way interaction data(Mroz, package="carData") mod.6 <- lm(lwg ~ inc + age*hc*wc, data=Mroz) mage <- with(Mroz, mean(age)) mhc <- with(Mroz, mean(hc == "yes")) mwc <- with(Mroz, mean(wc == "yes")) hc <- rep(mhc, 3) wc <- rep(mwc, 3) age <- rep(mage, 3) X <- cbind(1, c(10, 40, 80), age, hc, wc, age*hc, age*wc, hc*wc, age*hc*wc) if (!isTRUE(all.equal(as.vector(Effect("inc", mod.6, xlevels=list(inc=c(10, 40, 80)))$fit), as.vector(X %*% coef(mod.6))))) stop("failed test 1-8") } effects/tests/effect-tests-2.R0000644000176200001440000001211713761730142015717 0ustar liggesusers if (requireNamespace("carData") && require("effects")){ # plots should show fitted values directly on plotted effect, and must be checked visually # numbering corresponds to effect-test-1.R data(Duncan, package="carData") mod.1 <- lm(prestige ~ type + poly(income, degree=2, raw=TRUE), data=Duncan) # (2) focal: polynomial, constant: factor print(plot(Effect(c("income"), mod.1, residuals=TRUE), show.fitted=TRUE)) if (!isTRUE(all.equal(Effect(c("income"), mod.1, residual=TRUE)$fit, Effect(c("income"), mod.1, xlevels=list(income=seq(7, 81, length.out=100)))$fit))) stop("failed test 2 (2)") # (3) focal: factor*polynomial, constant: polynomial mod.2 <- lm(prestige ~ type*poly(income, degree=2, raw=TRUE) + poly(education, degree=2, raw=TRUE), data=Duncan) print(plot(Effect(c("type", "income"), mod.2, residuals=TRUE), show.fitted=TRUE)) if (!isTRUE(all.equal(Effect(c("type", "income"), mod.2, residuals=TRUE)$fit, Effect(c("type", "income"), mod.2, xlevels=list(income=seq(7, 81, length.out=100)))$fit))) stop("failed test 2 (3)") # (4) focal: polynomial, constant: factor*polynomial print(plot(Effect(c("education"), mod.2, residuals=TRUE), show.fitted=TRUE)) if (!isTRUE(all.equal(Effect(c("education"), mod.2, residuals=TRUE)$fit, Effect(c("education"), mod.2, xlevels=list(education=seq(7, 100, length.out=100)))$fit))) stop("failed test 2 (4)") # (6) focal: factor*polynomial, constant: polynomial, using predict() & orthog. polys. mod.3 <- lm(prestige ~ type*poly(income, degree=2) + poly(education, degree=2), data=Duncan) print(plot(Effect(c("type", "income"), mod.3, residuals=TRUE), show.fitted=TRUE)) if (!isTRUE(all.equal(Effect(c("type", "income"), mod.3, residuals=TRUE)$fit, Effect(c("type", "income"), mod.3, xlevels=list(income=seq(7, 81, length.out=100)))$fit))) stop("failed test 2 (6)") # (7) focal: factor, constant: poly*poly mod.4 <- lm(prestige ~ type + poly(income, 2)*poly(education, 2), data=Duncan) print(plot(Effect(c("income", "education"), mod.4, residuals=TRUE), show.fitted=TRUE)) if (!isTRUE(all.equal(Effect(c("income", "education"), mod.4, residuals=TRUE)$fit, Effect(c("income", "education"), mod.4, xlevels=list(income=seq(7, 81, length.out=100), education=quantile(Duncan$education, probs=seq(0.2, 0.8, by=0.2))))$fit))) stop("failed test 2 (7)") # (9) focal: covariate, constant: 2 factors and 1 covariate, 3-way interaction data(Mroz, package="carData") mod.6 <- lm(lwg ~ inc + age*hc*wc, data=Mroz) inc <- range(Mroz$inc) age <- range(Mroz$age) print(plot(Effect(c("inc"), mod.6, residuals=TRUE), show.fitted=TRUE)) if (!isTRUE(all.equal(Effect(c("inc"), mod.6, residuals=TRUE)$fit, Effect(c("inc"), mod.6, xlevels=list(inc=seq(inc[1], inc[2], length.out=100)))$fit))) stop("failed test 2 (9-1)") print(plot(Effect(c("age", "hc", "wc"), mod.6, residuals=TRUE), show.fitted=TRUE)) if (!isTRUE(all.equal(Effect(c("age", "hc", "wc"), mod.6, residuals=TRUE)$fit, Effect(c("age", "hc", "wc"), mod.6, xlevels=list(age=seq(age[1], age[2], length.out=100)))$fit))) stop("failed test 2 (9-2)") # additional tests of partial residuals income <- range(na.omit(Prestige)$income) mod.7 <- lm(prestige ~ income*type + education, data=Prestige) print(plot(Effect(c("income", "type"), mod.7, residuals=TRUE), show.fitted=TRUE)) if (!isTRUE(all.equal(Effect(c("income", "type"), mod.7, residuals=TRUE)$fit, Effect(c("income", "type"), mod.7, xlevels=list(income=seq(income[1], income[2], length.out=100)))$fit))) stop("failed test 2 (additional-1)") Mroz2 <- Mroz Mroz2$hc <- as.numeric(Mroz$hc) - 1 Mroz2$wc <- as.numeric(Mroz$wc) - 1 inc <- range(Mroz2$inc) mod.8 <- lm(lwg ~ inc*age*k5 + hc*wc, data=Mroz2) print(plot(Effect(c("inc", "age", "k5"), mod.8, residuals=TRUE, xlevels=list(k5=0:1)), show.fitted=TRUE)) if (!isTRUE(all.equal(Effect(c("inc", "age", "k5"), mod.8, residuals=TRUE, xlevels=list(k5=0:1))$fit, Effect(c("inc", "age", "k5"), mod.8, residuals=TRUE, xlevels=list(k5=0:1, inc=seq(inc[1], inc[2], length.out=100), age=quantile(Mroz2$age, seq(.2, .8, by=.2))))$fit))) stop("failed test 2 (additional-2)") print(plot(Effect(c("hc", "wc"), mod.8, residuals=TRUE, xlevels=list(hc=0:1, wc=0:1)), show.fitted=TRUE, smooth.residuals=FALSE, residuals.pch=".")) } effects/tests/regression-tests.R0000644000176200001440000001302713761730142016505 0ustar liggesusersregression.tests <- FALSE if (regression.tests && require("carData") && require("effects")){ load("regression-tests.RData") regressionTest <- function(old, new){ test.name <- deparse(substitute(new)) if (!isTRUE(all.equal(old, as.data.frame(new), tolerance=1e-5))) { stop("failed regression test ", test.name) } else { cat("\n", test.name, ": OK", sep="") } } m.lm <- lm(prestige~(income + education)*type, data=Duncan) eff.lm <- Effect(c("income", "type"), m.lm) regressionTest(df.lm, eff.lm) m.glm <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial) eff.glm <- Effect(c("neuroticism", "extraversion"), m.glm) regressionTest(df.glm, eff.glm) m.mlm <- lm(cbind(post.test.1, post.test.2, post.test.3) ~ group*(pretest.1 + pretest.2), data = Baumann) eff.mlm <- Effect(c("group", "pretest.1"), m.mlm) regressionTest(df.mlm, eff.mlm) if (require(nnet)){ m.multinom <- multinom(vote ~ age + gender + economic.cond.national + economic.cond.household + Blair + Hague + Kennedy + Europe*political.knowledge, data=BEPS) eff.multinom <- Effect(c("Europe", "political.knowledge"), m.multinom, xlevels=list(political.knowledge=0:3)) regressionTest(df.multinom, eff.multinom) } if (require(MASS)){ m.polr <- polr(poverty ~ gender + religion + degree + country*poly(age,3), data=WVS) eff.polr <- Effect(c("country", "age"), m.polr) regressionTest(df.polr, eff.polr) } if (require(nlme)){ m.lme <- lme(distance ~ age*Sex, data = Orthodont, random = ~ 1) eff.lme <- Effect(c("age", "Sex"), m.lme) m.gls <- gls(Employed ~ GNP*Population, correlation=corAR1(form= ~ Year), data=longley) eff.gls <- Effect(c("GNP", "Population"), m.gls) regressionTest(df.gls, eff.gls) } if (require(lme4) && require(nlme)){ data("Orthodont", package="nlme") m.lmer <- lmer(distance ~ age*Sex + (1 |Subject), data = Orthodont) eff.lmer <- Effect(c("age", "Sex"), m.lmer) regressionTest(df.lmer, eff.lmer) } if (require(lme4)){ m.glmer <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) eff.glmer <- Effect("period", m.glmer) regressionTest(df.glmer, eff.glmer) } if (require(lme4) && require(robustlmm)){ m.rlmer <- rlmer(distance ~ age*Sex + (1 |Subject), data = Orthodont) eff.rlmer <- Effect(c("age", "Sex"), m.rlmer) regressionTest(df.rlmer, eff.rlmer) } if (require(betareg) && require(lme4)){ data("GasolineYield", package = "betareg") m.betareg <- betareg(yield ~ batch*temp, data = GasolineYield) eff.betareg <- Effect(c("batch", "temp"), m.betareg) regressionTest(df.betareg, eff.betareg) } if (require(ordinal) && require(MASS)){ m.clm <- clm(poverty ~ gender + religion + degree + country*poly(age,3), data=WVS) eff.clm <- Effect(c("country", "age"), m.clm) regressionTest(df.clm, eff.clm) m.clm2 <- clm2(poverty ~ gender + religion + degree + country*poly(age,3), data=WVS) eff.clm2 <- Effect(c("country", "age"), m.clm2) regressionTest(df.clm2, eff.clm2) m.clmm <- clmm(SURENESS ~ PROD + (1|RESP) + (1|RESP:PROD), data = soup, link = "logit", threshold = "flexible") eff.clmm <- Effect("PROD", m.clmm) regressionTest(df.clmm, eff.clmm) } if (require(poLCA)){ set.seed(123) data(election, package="poLCA") f <- cbind(MORALG,CARESG,KNOWG,LEADG,DISHONG,INTELG, MORALB,CARESB,KNOWB,LEADB,DISHONB,INTELB)~PARTY m.poLCA <- poLCA(f, election, nclass=3, nrep=5) eff.poLCA <- Effect("PARTY", m.poLCA) regressionTest(df.poLCA, eff.poLCA) } if (require(survey)){ data(api, package="survey") dstrat <-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) m.svyglm <- svyglm(api00~ell*meals+mobility, design=dstrat) eff.svyglm <- Effect(c("ell", "meals"), m.svyglm) regressionTest(df.svyglm, eff.svyglm) } if(require(nlme) && require(MASS)){ m.glmmPQL <- glmmPQL(y ~ trt*I(week > 2), random = ~ 1 | ID, family = binomial, data = bacteria) eff.glmmPQL <- Effect(c("trt", "week"), m.glmmPQL) regressionTest(df.glmmPQL, eff.glmmPQL) } } # the following commented-out code creates the comparison objects: # # df.betareg <- as.data.frame(eff.betareg ) # df.clm <- as.data.frame(eff.clm) # df.clm2 <- as.data.frame(eff.clm2) # df.clmm <- as.data.frame(eff.clmm) # df.glm <- as.data.frame(eff.glm) # df.glmer <- as.data.frame(eff.glmer) # df.gls <- as.data.frame(eff.gls) # df.lm <- as.data.frame(eff.lm) # df.lme <- as.data.frame(eff.lme) # df.lmer <- as.data.frame(eff.lmer) # df.mlm <- as.data.frame(eff.mlm) # df.multinom <- as.data.frame(eff.multinom) # df.poLCA <- as.data.frame(eff.poLCA) # df.polr <- as.data.frame(eff.polr) # df.rlmer <- as.data.frame(eff.rlmer) # df.svyglm <- as.data.frame(eff.svyglm) # df.glmmPQL <- as.data.frame(eff.glmmPQL) # # # save(df.betareg, df.clm, df.clm2, df.clmm, df.glm, # df.glmer, df.gls, df.lm, df.lme, df.lmer, df.mlm, # df.multinom, df.poLCA, df.polr, df.rlmer, df.svyglm, # df.glmmPQL, # file="regression-tests.RData") # To add to regression tests first # load("regression-tests.RData") effects/MD50000644000176200001440000000546415042206042012205 0ustar liggesuserscfbb629b0bab50ea297563eff7ef384b *DESCRIPTION 130de17ac9478e8e93e238ebcba2072b *NAMESPACE 3b77627586d17f4b75ece473b84339a5 *NEWS d1f92cdca6c7da281924ae7c85f831f0 *R/Effect-methods.R 0f8016554cab47c6a1ccb9da15d16af2 *R/Effect.R 5bfe0326fe788c44006406b359392ee4 *R/Effect.mlm.R a80b00308da234c0e29eab91ae30caa3 *R/effects.R 2d8ee8f8d9f81ffc4d2d9db7f57d2a79 *R/effectsHexsticker.R 4dc0a80d752645130eb921edebbb56b0 *R/effectspoLCA.R b4708084e524093860c2440282dfae7d *R/plot-methods.R 60cbbb54335426578c6dbac3570c6f7a *R/plot.effpoly.R c8496a8a3ffb497764ed1bf2ccbfccd7 *R/predictorEffects.R 93642c198ec49c37c0976f280dfcc11d *R/summary-print-methods.R 76efc8e78c120153923af3094acdd72e *R/utilities.R 1bf18d9c216b8d95033f0bd2fe2906b2 *build/partial.rdb badfe9bab39e9e2a4a8147efc523baa1 *build/vignette.rds 809fa4f25bbbd3e6d146c26d7ae3907e *inst/CHANGES ed8b460d1573500f7cd500d221721f81 *inst/CITATION 36db2232f79c04339ac664d5ea5cb8e3 *inst/doc/effects-hex.pdf cb53f2c0b269be9c31bf7b76474124f0 *inst/doc/functions-supported-by-effects.R 16f477bca2b3348d15745a4ea870ede7 *inst/doc/functions-supported-by-effects.Rnw 49016d8d5b2e42fb05dc54e5d3da212b *inst/doc/functions-supported-by-effects.pdf 050b8d5b725bc28fb6aa8be4314f0d31 *inst/doc/partial-residuals.R a12d0cd397ac0d93512f56f2627b638b *inst/doc/partial-residuals.Rnw db985118b2f328cd3a37ca180ec38517 *inst/doc/partial-residuals.pdf f125c7ca128e1f5ec995ce5a3edb3e71 *inst/doc/predictor-effects-gallery.R 380998eb9273bc58eca5c4506818cab1 *inst/doc/predictor-effects-gallery.Rnw 2fd917bd9abfb3bb7e9b9b7704666256 *inst/doc/predictor-effects-gallery.pdf 76f842b1ded93812932ce24783631774 *man/LegacyArguments.Rd b2a91528d0a2bf6bd3fe5341e83011a2 *man/effCoef.Rd 8003ee058f410d9ac06904cf9d52db35 *man/effSources.Rd b60cd351fca53d69796c877275094f4e *man/effect.Rd 140d8033c133239cd8538e69f2039ad8 *man/effects-package.Rd f54730485d1a6917ce4b7f2a7f2afaea *man/effectsHexsticker.Rd d0ae5771f15744474ac9219bc0946b76 *man/effectsTheme.Rd cfae5575ac3ee1cc31eccd868aa5b3ba *man/plot.effect.Rd 53bd61246819675d1ed4e98de319f7f3 *man/predictorEffects.Rd ad3cb8d8438a77d174fee28168135f19 *man/summary.effect.Rd c0e3bc933c20142624ff79e8f5ee6928 *tests/effect-tests-1.R 140e592dfb8c95c795863201b5e480e4 *tests/effect-tests-2.R 665333e5df1cb3d04e968aab925b7612 *tests/regression-tests.R 991fe7f80ee85c1f765f733ca217e24c *tests/regression-tests.RData 2ae04276c51f11eda70770f4081293b7 *vignettes/chicago.bst 16f477bca2b3348d15745a4ea870ede7 *vignettes/functions-supported-by-effects.Rnw 52dd8e54ca1391694c2936f07e489475 *vignettes/functions-supported-by-effects.bib a12d0cd397ac0d93512f56f2627b638b *vignettes/partial-residuals.Rnw a6cb29f8bc79527fdb6f4099a9319f6c *vignettes/partial-residuals.bib 380998eb9273bc58eca5c4506818cab1 *vignettes/predictor-effects-gallery.Rnw 4414ba31c49a8261876883dc29ee4e8a *vignettes/predictor-effects-gallery.bib effects/R/0000755000176200001440000000000014366314437012105 5ustar liggesuserseffects/R/plot.effpoly.R0000644000176200001440000013235615037507401014652 0ustar liggesusers# Plot method for effpoly objects # modified by Michael Friendly: added ci.style="bands" & alpha.band= arg # modified by Michael Friendly: added lwd= argument for llines (was lwd=2) # 2013-11-06: fixed drop dimension when only one focal predictor. John # 2014-10-10: namespace fixes. John # 2014-12-05: made key.args more flexible. John # 2014-03-22: use wide columns by default only when x for legend not set. J. Fox # 2016-09-08: added show.strip.values argument to plot.effpoly(). J. Fox # 2017-08-16: modified plot.effpoly() to consolidate arguments and use lattice theme. J. Fox # 2017-08-20: reintroduce legacy arguments for plot.effpoly() # 2017-08-20: introduced multiline argument under lines argument and as a "legacy" argument # 2017-09-10: use replacement for grid.panel() # 2017-11-22: added a check for non-estimable factor combinations with style="stacked" # 2018-01-02, 2018-01-30: changed defaults for key.args, lines 140-141 # 2018-02-09: Use one-column key for stacked plot. # 2018-02-28: Fix handling of rug arg (error reported by Dave Armstrong). # 2018-07-08: add cex sub-args for x and y axes (suggestion of Charles Leger). # 2018-07-08: add cex sub-arg for strips. # 2018-10-05: modified plot.effpoly() so that multiline plots don't show confidence limits # by default, and so that confidence bars for a factor are staggered. # 2020-06-01: plot.effpoly() no longer ignores lty. # 2025-07-21: rename range.adj() to range_adj to avoid generic confusion. plot.effpoly <- function(x, x.var=which.max(levels), main=paste(effect, "effect plot"), symbols=TRUE, lines=TRUE, axes, confint, lattice, ..., # legacy arguments: type, multiline, rug, xlab, ylab, colors, cex, lty, lwd, factor.names, show.strip.values, ci.style, band.colors, band.transparency, style, transform.x, ticks.x, xlim, ticks, ylim, rotx, roty, alternating, grid, layout, key.args, use.splines){ if (!is.logical(lines) && !is.list(lines)) lines <- list(lty=lines) lines <- applyDefaults(lines, defaults=list(lty=trellis.par.get("superpose.line")$lty, lwd=trellis.par.get("superpose.line")$lwd[1], col=NULL, splines=TRUE, multiline=FALSE), arg="lines") if (missing(multiline)) multiline <- lines$multiline if (missing(lwd)) lwd <- lines$lwd if (missing(lty)) lty <- lines$lty if (missing(use.splines)) use.splines <- lines$splines lines.col <- lines$col lines <- if (missing(lty)) lines$lty else lty if (!is.logical(symbols) && !is.list(symbols)) symbols <- list(pch=symbols) symbols <- applyDefaults(symbols, defaults= list( pch=trellis.par.get("superpose.symbol")$pch, cex=trellis.par.get("superpose.symbol")$cex[1]), arg="symbols") cex <- symbols$cex symbols <- symbols$pch if (missing(axes)) axes <- NULL axes <- applyDefaults(axes, defaults=list( x=list(rotate=0, cex=1, rug=TRUE), y=list(lab=NULL, lim=c(NA, NA), ticks=list(at=NULL, n=5), type="probability", rotate=0, cex=1), alternating=TRUE, grid=FALSE), arg="axes") x.args <- applyDefaults(axes$x, defaults=list(rotate=0, cex=1, rug=TRUE), arg="axes$x") if (missing(xlab)) { xlab.arg <- FALSE xlab <- list() } if (missing(xlim)) { xlim.arg <- FALSE xlim <- list() } if (missing(ticks.x)) { ticks.x.arg <- FALSE ticks.x <- list() } if (missing(transform.x)) { transform.x.arg <- FALSE transform.x <- list() } if (missing(rotx)) rotx <- x.args$rotate if (missing(rug)) rug <- x.args$rug cex.x <- x.args$cex x.args$rotate <- NULL x.args$rug <- NULL x.args$cex <- NULL x.pred.names <- names(x.args) if (length(x.pred.names) > 0){ for (pred.name in x.pred.names){ x.pred.args <- applyDefaults(x.args[[pred.name]], defaults=list(lab=NULL, lim=NULL, ticks=NULL, transform=NULL), arg=paste0("axes$x$", pred.name)) if (!xlab.arg) xlab[[pred.name]] <- x.pred.args$lab if (!xlim.arg) xlim[[pred.name]] <- x.pred.args$lim if (!ticks.x.arg) ticks.x[[pred.name]] <- x.pred.args$ticks if (!transform.x.arg) transform.x[[pred.name]] <- x.pred.args$transform } } if (length(xlab) == 0) xlab <- NULL if (length(xlim) == 0) xlim <- NULL if (length(ticks.x) == 0) ticks.x <- NULL if (length(transform.x) == 0) transform.x <- NULL y.args <- applyDefaults(axes$y, defaults=list(lab=NULL, lim=c(NA, NA), ticks=list(at=NULL, n=5), type="probability", style="lines", rotate=0, cex=1), arg="axes$y") if (missing(ylim)) ylim <- y.args$lim if (missing(ticks)) ticks <- y.args$ticks if (missing(type)) type <- y.args$type type <- match.arg(type, c("probability", "logit")) if (missing(ylab)) ylab <- y.args$lab if (is.null(ylab)) ylab <- paste0(x$response, " (", type, ")") if (missing(roty)) roty <- y.args$rotate cex.y <- y.args$cex if (missing(alternating)) alternating <- axes$alternating if (missing(grid)) grid <- axes$grid if (missing(style)) style <- match.arg(y.args$style, c("lines", "stacked")) if (missing(colors)) colors <- if (is.null(lines.col)){ if (style == "lines" || x$model == "multinom") trellis.par.get("superpose.line")$col else sequential_hcl(length(x$y.levels)) } else { lines.col } if (missing(confint)) confint <- NULL confint <- applyDefaults(confint, defaults=list(style=if (style == "lines" && !multiline && !is.null(x$se.prob)) "auto" else "none", alpha=0.15, col=colors), onFALSE=list(style="none", alpha=0, col="white"), arg="confint") if (missing(ci.style)) ci.style <- confint$style if (missing(band.transparency)) band.transparency <- confint$alpha if (missing(band.colors)) band.colors <- confint$col if(!is.null(ci.style)) ci.style <- match.arg(ci.style, c("auto", "bars", "lines", "bands", "none")) confint <- confint$style != "none" if (is.null(multiline)) multiline <- if (confint) FALSE else TRUE effect.llines <- llines has.se <- !is.null(x$confidence.level) if (confint && !has.se) stop("there are no confidence limits to plot") if (style == "stacked"){ if (type != "probability"){ type <- "probability" warning('type set to "probability" for stacked plot') } if (confint){ confint <- FALSE warning('confint set to FALSE for stacked plot') } ylim <- c(0, 1) } if (missing(lattice)) lattice <- NULL lattice <- applyDefaults(lattice, defaults=list( layout=NULL, #key.args=list(), #New default added 1/2/2017 by sw strip=list(factor.names=TRUE, values=TRUE, cex=1), array=list(row=1, col=1, nrow=1, ncol=1, more=FALSE), arg="lattice" )) lattice$key.args <- applyDefaults(lattice$key.args, defaults=list( space="top", border=FALSE, fontfamily="sans", cex=.75, cex.title=1, arg="key.args" )) if (missing(layout)) layout <- lattice$layout if (missing(key.args)) key.args <- lattice$key.args strip.args <- applyDefaults(lattice$strip, defaults=list(factor.names=TRUE, values=TRUE, cex=1), arg="lattice$strip") factor.names <- strip.args$factor.names if (missing(show.strip.values)) show.strip.values <- strip.args$values cex.strip <- strip.args$cex height.strip <- max(1, cex.strip) array.args <- applyDefaults(lattice$array, defaults=list(row=1, col=1, nrow=1, ncol=1, more=FALSE), arg="lattice$array") row <- array.args$row col <- array.args$col nrow <- array.args$nrow ncol <- array.args$ncol more <- array.args$more .mod <- function(a, b) ifelse( (d <- a %% b) == 0, b, d) .modc <- function(a) .mod(a, length(colors)) .mods <- function(a) .mod(a, length(symbols)) .modl <- function(a) .mod(a, length(lines)) effect <- paste(sapply(x$variables, "[[", "name"), collapse="*") split <- c(col, row, ncol, nrow) n.predictors <- length(names(x$x)) y.lev <- x$y.lev n.y.lev <- length(y.lev) ylevel.names <- make.names(paste("prob",y.lev)) colnames(x$prob) <- colnames(x$logit) <- ylevel.names if (has.se){ colnames(x$lower.logit) <- colnames(x$upper.logit) <- colnames(x$lower.prob) <- colnames(x$upper.prob)<- ylevel.names } x.frame <-as.data.frame(x) predictors <- names(x.frame)[1:n.predictors] levels <- if (n.predictors==1) length (x.frame[,predictors]) else sapply(apply(x.frame[, predictors, drop=FALSE], 2, unique), length) if (is.character(x.var)) { which.x <- which(x.var == predictors) if (length(which.x) == 0) stop(paste("x.var = '", x.var, "' is not in the effect.", sep="")) x.var <- which.x } x.vals <- x.frame[, names(x.frame)[x.var]] response <- matrix(0, nrow=nrow(x.frame), ncol=n.y.lev) for (i in 1:length(x$y.lev)){ level <- which(colnames(x$prob)[i] == ylevel.names) response[,i] <- rep(x$y.lev[level], length(response[,i])) } prob <- as.vector(x$prob) logit <- as.vector(x$logit) response <- as.vector(response) if (has.se){ lower.prob <- as.vector(x$lower.prob) upper.prob <- as.vector(x$upper.prob) lower.logit <- as.vector(x$lower.logit) upper.logit <- as.vector(x$upper.logit) } response <- factor(response, levels=y.lev) Data <- data.frame(prob, logit) if (has.se) Data <- cbind(Data, data.frame(lower.prob, upper.prob, lower.logit, upper.logit)) Data[[x$response]] <- response for (i in 1:length(predictors)){ Data <- cbind(Data, x.frame[predictors[i]]) } levs <- levels(x$data[[predictors[x.var]]]) n.predictor.cats <- sapply(Data[, predictors[-c(x.var)], drop=FALSE], function(x) length(unique(x))) if (length(n.predictor.cats) == 0) n.predictor.cats <- 1 ci.style <- if(is.null(ci.style) || ci.style == "auto") { if(is.factor(x$data[[predictors[x.var]]])) "bars" else "bands"} else ci.style if( ci.style=="none" ) confint <- FALSE ### no confidence intervals if confint == FALSE or ci.style=="none" if (!confint){ # plot without confidence bands if (style == "lines"){ # line plot if (!multiline){ layout <- if(is.null(layout)) c(prod(n.predictor.cats), length(levels(response)), 1) else layout ### factor if (is.factor(x$data[[predictors[x.var]]])){ # x-variable a factor range <- if (type=="probability") range(prob, na.rm=TRUE) else range(logit, na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) levs <- levels(x$data[[predictors[x.var]]]) if (show.strip.values){ for (pred in predictors[-x.var]){ Data[[pred]] <- as.factor(Data[[pred]]) } } result <- xyplot(eval(if (type=="probability") parse(text=if (n.predictors==1) paste("prob ~ as.numeric(", predictors[x.var],") |", x$response) else paste("prob ~ as.numeric(", predictors[x.var],") |", paste(predictors[-x.var], collapse="*"), paste("*", x$response))) else parse(text=if (n.predictors==1) paste("logit ~ as.numeric(", predictors[x.var],") |", x$response) else paste("logit ~ as.numeric(", predictors[x.var],")|", paste(predictors[-x.var], collapse="*"), paste("*", x$response)))), par.strip.text=list(cex=0.8), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, subscripts, x.vals, rug, ... ){ if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at) good <- !is.na(y) effect.llines(x[good], y[good], lwd=lwd, lty=lty, type="b", pch=19, col=colors[1], cex=cex, ...) subs <- subscripts+as.numeric(rownames(Data)[1])-1 }, ylab=ylab, ylim=if (is.null(ylim)) if (type == "probability") range(prob) else range(logit) else ylim, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], main=main, x.vals=x$data[[predictors[x.var]]], rug=rug, scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating), layout=layout, data=Data, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } else { # x-variable numeric if(use.splines) effect.llines <- spline.llines # added 10/17/13 range <- if (type=="probability") range(prob, na.rm=TRUE) else range(logit, na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) nm <- predictors[x.var] x.vals <- x$data[[nm]] if (nm %in% names(ticks.x)){ at <- ticks.x[[nm]]$at n <- ticks.x[[nm]]$n } else{ at <- NULL n <- 5 } xlm <- if (nm %in% names(xlim)){ xlim[[nm]] } else range_adj(Data[nm]) # range(x.vals) tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){ trans <- transform.x[[nm]]$trans make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n) } else { trans <- I make.ticks(xlm, link=I, inverse=I, at=at, n=n) } if (show.strip.values){ for (pred in predictors[-x.var]){ Data[[pred]] <- as.factor(Data[[pred]]) } } result <- xyplot(eval(if (type=="probability") parse(text=if (n.predictors==1) paste("prob ~ trans(", predictors[x.var],") |", x$response) else paste("prob ~ trans(", predictors[x.var],") |", paste(predictors[-x.var], collapse="*"), paste("*", x$response))) else parse(text=if (n.predictors==1) paste("logit ~ trans(", predictors[x.var],") |", x$response) else paste("logit ~ trans(", predictors[x.var],") |", paste(predictors[-x.var], collapse="*"), paste("*", x$response))) ), par.strip.text=list(cex=0.8), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, subscripts, x.vals, rug, ... ){ if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at) if (rug) lrug(trans(x.vals)) good <- !is.na(y) effect.llines(x[good], y[good], lwd=lwd, lty=lty, col=colors[1], ...) subs <- subscripts+as.numeric(rownames(Data)[1])-1 }, ylab=ylab, xlim=suppressWarnings(trans(xlm)), ylim= if (is.null(ylim)) if (type == "probability") range(prob) else range(logit) else ylim, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], main=main, x.vals=x$data[[predictors[x.var]]], rug=rug, scales=list(y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x), alternating=alternating), layout=layout, data=Data, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } } else { layout <- if (is.null(layout)){ lay <- c(prod(n.predictor.cats[-(n.predictors - 1)]), prod(n.predictor.cats[(n.predictors - 1)]), 1) if (lay[1] > 1) lay else lay[c(2, 1, 3)] } else layout if (n.y.lev > min(c(length(colors), length(lines), length(symbols)))) warning('Colors, lines and symbols may have been recycled') range <- if (type=="probability") range(prob, na.rm=TRUE) else range(logit, na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) if (is.factor(x$data[[predictors[x.var]]])){ # x-variable a factor key <- list(title=x$response, cex.title=1, border=TRUE, text=list(as.character(unique(response))), lines=list(col=colors[.modc(1:n.y.lev)], lty=lines[.modl(1:n.y.lev)], lwd=lwd), points=list(pch=symbols[.mods(1:n.y.lev)], col=colors[.modc(1:n.y.lev)]), columns = if ("x" %in% names(key.args)) 1 else find.legend.columns(length(n.y.lev), space=if("x" %in% names(key.args)) "top" else key.args$space)) for (k in names(key.args)) key[k] <- key.args[k] if (show.strip.values){ for (pred in predictors[-x.var]){ Data[[pred]] <- as.factor(Data[[pred]]) } } result <- xyplot(eval(if (type=="probability") parse(text=if (n.predictors==1) paste("prob ~ as.numeric(", predictors[x.var], ")") else paste("prob ~ as.numeric(", predictors[x.var],") | ", paste(predictors[-x.var], collapse="*"))) else parse(text=if (n.predictors==1) paste("logit ~ as.numeric(", predictors[x.var], ")") else paste("logit ~ as.numeric(", predictors[x.var],") | ", paste(predictors[-x.var], collapse="*")))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, subscripts, rug, z, x.vals, ...){ if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at) for (i in 1:n.y.lev){ sub <- z[subscripts] == y.lev[i] good <- !is.na(y[sub]) effect.llines(x[sub][good], y[sub][good], lwd=lwd, type="b", col=colors[.modc(i)], lty=lines[.modl(i)], pch=symbols[i], cex=cex, ...) } }, ylab=ylab, ylim= if (is.null(ylim)) if (type == "probability") range(prob) else range(logit) else ylim, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], x.vals=x$data[[predictors[x.var]]], rug=rug, z=response, scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating), main=main, key=key, layout=layout, data=Data, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } else { # x-variable numeric if(use.splines) effect.llines <- spline.llines # added 10/17/13 range <- if (type=="probability") range(prob, na.rm=TRUE) else range(logit, na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) nm <- predictors[x.var] x.vals <- x$data[[nm]] if (nm %in% names(ticks.x)){ at <- ticks.x[[nm]]$at n <- ticks.x[[nm]]$n } else{ at <- NULL n <- 5 } xlm <- if (nm %in% names(xlim)){ xlim[[nm]] } else range_adj(Data[nm]) # range(x.vals) tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){ trans <- transform.x[[nm]]$trans make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n) } else { trans <- I make.ticks(xlm, link=I, inverse=I, at=at, n=n) } key <- list(title=x$response, cex.title=1, border=TRUE, text=list(as.character(unique(response))), lines=list(col=colors[.modc(1:n.y.lev)], lty=lines[.modl(1:n.y.lev)], lwd=lwd), columns = if ("x" %in% names(key.args)) 1 else find.legend.columns(length(n.y.lev), space=if("x" %in% names(key.args)) "top" else key.args$space)) for (k in names(key.args)) key[k] <- key.args[k] if (show.strip.values){ for (pred in predictors[-x.var]){ Data[[pred]] <- as.factor(Data[[pred]]) } } result <- xyplot(eval(if (type=="probability") parse(text=if (n.predictors==1) paste("prob ~ trans(", predictors[x.var], ")") else paste("prob ~ trans(", predictors[x.var],") |", paste(predictors[-x.var], collapse="*"))) else parse(text=if (n.predictors==1) paste("logit ~ trans(", predictors[x.var], ")") else paste("logit ~ trans(", predictors[x.var],") | ", paste(predictors[-x.var], collapse="*")))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, subscripts, rug, z, x.vals, ...){ if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at) if (rug) lrug(trans(x.vals)) for (i in 1:n.y.lev){ sub <- z[subscripts] == y.lev[i] good <- !is.na(y[sub]) effect.llines(x[sub][good], y[sub][good], lwd=lwd, type="l", col=colors[.modc(i)], lty=lines[.modl(i)], ...) } }, ylab=ylab, xlim=suppressWarnings(trans(xlm)), ylim= if (is.null(ylim)) if (type == "probability") range(prob) else range(logit) else ylim, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], x.vals=x$data[[predictors[x.var]]], rug=rug, z=response, scales=list(x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating), main=main, key=key, layout=layout, data=Data, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } } } else { # stacked plot tickmarks <- make.ticks(c(0, 1), link=I, inverse=I, at=ticks$at, n=ticks$n) layout <- if (is.null(layout)){ lay <- c(prod(n.predictor.cats[-(n.predictors - 1)]), prod(n.predictor.cats[(n.predictors - 1)]), 1) if (lay[1] > 1) lay else lay[c(2, 1, 3)] } else layout if (n.y.lev > length(colors)) stop(paste('Not enough colors to plot', n.y.lev, 'regions')) key <- list(text=list(lab=rev(y.lev)), rectangle=list(col=rev(colors[1:n.y.lev])), columns = 1) # if ("x" %in% names(key.args)) 1 else # find.legend.columns(length(n.y.lev), # space=if("x" %in% names(key.args)) "top" else key.args$space)) for (k in names(key.args)) key[k] <- key.args[k] if (is.factor(x$data[[predictors[x.var]]])){ # x-variable a factor # 11/22/17 check for rank deficient models and if found stop if(any(is.na(Data$prob))) stop("At least one combination of factor levels is not estimable.\n Stacked plots are misleading, change to style='lines'") result <- barchart(eval(parse(text=if (n.predictors == 1) paste("prob ~ ", predictors[x.var], sep="") else paste("prob ~ ", predictors[x.var]," | ", paste(predictors[-x.var], collapse="*")))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, ...){ panel.barchart(x, y, ...) if (grid) ticksGrid(x=NA, y=tickmarks$at, col="white") }, groups = response, col=colors, horizontal=FALSE, stack=TRUE, data=Data, ylim=ylim, # if (is.null(ylim)) 0:1 else ylim, ylab=ylab, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], scales=list(x=list(rot=rotx, at=1:length(levs), labels=levs, cex=cex.x), y=list(rot=roty, at=tickmarks$at, labels=tickmarks$labels, cex=cex.y), alternating=alternating), main=main, key=key, layout=layout) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } else { # x-variable numeric if(use.splines) effect.llines <- spline.llines # added 10/17/13 nm <- predictors[x.var] x.vals <- x$data[[nm]] if (nm %in% names(ticks.x)){ at <- ticks.x[[nm]]$at n <- ticks.x[[nm]]$n } else{ at <- NULL n <- 5 } xlm <- if (nm %in% names(xlim)){ xlim[[nm]] } else range_adj(Data[nm]) # range(x.vals) tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){ trans <- transform.x[[nm]]$trans make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n) } else { trans <- I make.ticks(xlm, link=I, inverse=I, at=at, n=n) } if (show.strip.values){ for (pred in predictors[-x.var]){ x$x[[pred]] <- as.factor(x$x[[pred]]) } } result <- densityplot(eval(parse(text=if (n.predictors == 1) paste("~ trans(", predictors[x.var], ")", sep="") else paste("~ trans(", predictors[x.var], ") | ", paste(predictors[-x.var], collapse="*")))), probs=x$prob, strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel = function(x, subscripts, rug, x.vals, probs=probs, col=colors, ...){ fill <- function(x, y1, y2, col){ if (length(y2) == 1) y2 <- rep(y2, length(y1)) if (length(y1) == 1) y1 <- rep(y1, length(y2)) panel.polygon(c(x, rev(x)), c(y1, rev(y2)), col=col) } n <- ncol(probs) Y <- t(apply(probs[subscripts,], 1, cumsum)) fill(x, 0, Y[,1], col=col[1]) for (i in 2:n){ fill(x, Y[,i-1], Y[,i], col=col[i]) } if (rug) lrug(trans(x.vals)) if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at, col="white") }, rug=rug, x.vals=x$data[[predictors[x.var]]], data=x$x, xlim=suppressWarnings(trans(xlm)), ylim= c(0, 1), # if (is.null(ylim)) 0:1 else ylim, ylab=ylab, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], scales=list(x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x), y=list(rot=roty, at=tickmarks$at, labels=tickmarks$labels, cex=cex.y), alternating=alternating), main=main, key=key, layout=layout, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } } } ### with confidence bands else{ # plot with confidence bands if (type == "probability"){ lower <- lower.prob upper <- upper.prob } else { lower <- lower.logit upper <- upper.logit } if (!multiline){ layout <- if(is.null(layout)) c(prod(n.predictor.cats), length(levels(response)), 1) else layout ### factor if (is.factor(x$data[[predictors[x.var]]])){ # x-variable a factor range <- range(c(lower, upper), na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) levs <- levels(x$data[[predictors[x.var]]]) if (show.strip.values){ for (pred in predictors[-x.var]){ Data[[pred]] <- as.factor(Data[[pred]]) } } result <- xyplot(eval(if (type=="probability") parse(text=if (n.predictors==1) paste("prob ~ as.numeric(", predictors[x.var],") |", x$response) else paste("prob ~ as.numeric(", predictors[x.var],") |", paste(predictors[-x.var], collapse="*"), paste("*", x$response))) else parse(text=if (n.predictors==1) paste("logit ~ as.numeric(", predictors[x.var],") |", x$response) else paste("logit ~ as.numeric(", predictors[x.var],")|", paste(predictors[-x.var], collapse="*"), paste("*", x$response)))), par.strip.text=list(cex=0.8), strip=strip.custom(..., strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, subscripts, x.vals, rug, lower, upper, ... ){ if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at) good <- !is.na(y) effect.llines(x[good], y[good], lwd=lwd, lty=lty, type="b", pch=19, col=colors[1], cex=cex, ...) subs <- subscripts+as.numeric(rownames(Data)[1])-1 if (ci.style == "bars"){ larrows(x0=x[good], y0=lower[subs][good], x1=x[good], y1=upper[subs][good], angle=90, code=3, col=colors[.modc(2)], length=0.125*cex/1.5) } else if(ci.style == "lines"){ effect.llines(x[good], lower[subs][good], lty=2, col=colors[.modc(2)]) effect.llines(x[good], upper[subs][good], lty=2, col=colors[.modc(2)]) } else { if(ci.style == "bands") { panel.bands(x[good], y[good], lower[subs][good], upper[subs][good], fill=band.colors[1], alpha=band.transparency) }} }, ylab=ylab, ylim= if (is.null(ylim)) c(min(lower), max(upper)) else ylim, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], main=main, x.vals=x$data[[predictors[x.var]]], rug=rug, lower=lower, upper=upper, scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating), layout=layout, data=Data, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } else { # x-variable numeric if(use.splines) effect.llines <- spline.llines # added 10/17/13 range <- range(c(lower, upper), na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) nm <- predictors[x.var] x.vals <- x$data[[nm]] if (nm %in% names(ticks.x)){ at <- ticks.x[[nm]]$at n <- ticks.x[[nm]]$n } else{ at <- NULL n <- 5 } xlm <- if (nm %in% names(xlim)){ xlim[[nm]] } else range_adj(Data[nm]) # range(x.vals) tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){ trans <- transform.x[[nm]]$trans make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n) } else { trans <- I make.ticks(xlm, link=I, inverse=I, at=at, n=n) } if (show.strip.values){ for (pred in predictors[-x.var]){ Data[[pred]] <- as.factor(Data[[pred]]) } } result <- xyplot(eval(if (type=="probability") parse(text=if (n.predictors==1) paste("prob ~ trans(", predictors[x.var],") |", x$response) else paste("prob ~ trans(", predictors[x.var],") |", paste(predictors[-x.var], collapse="*"), paste("*", x$response))) else parse(text=if (n.predictors==1) paste("logit ~ trans(", predictors[x.var],") |", x$response) else paste("logit ~ trans(", predictors[x.var],") |", paste(predictors[-x.var], collapse="*"), paste("*", x$response))) ), par.strip.text=list(cex=0.8), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, subscripts, x.vals, rug, lower, upper, ... ){ if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at) if (rug) lrug(trans(x.vals)) good <- !is.na(y) effect.llines(x[good], y[good], lwd=lwd, lty=lty, col=colors[1], ...) subs <- subscripts+as.numeric(rownames(Data)[1])-1 if (ci.style == "bars"){ larrows(x0=x[good], y0=lower[subs][good], x1=x[good], y1=upper[subs][good], angle=90, code=3, col=colors[.modc(2)], length=0.125*cex/1.5) } else if(ci.style == "lines"){ effect.llines(x[good], lower[subs][good], lty=2, col=colors[.modc(2)]) effect.llines(x[good], upper[subs][good], lty=2, col=colors[.modc(2)]) } else { if(ci.style == "bands") { panel.bands(x[good], y[good], lower[subs][good], upper[subs][good], fill=band.colors[1], alpha=band.transparency) }} }, ylab=ylab, xlim=suppressWarnings(trans(xlm)), ylim= if (is.null(ylim)) c(min(lower), max(upper)) else ylim, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], main=main, x.vals=x$data[[predictors[x.var]]], rug=rug, lower=lower, upper=upper, scales=list(y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x), alternating=alternating), layout=layout, data=Data, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } } else { layout <- if (is.null(layout)){ lay <- c(prod(n.predictor.cats[-(n.predictors - 1)]), prod(n.predictor.cats[(n.predictors - 1)]), 1) if (lay[1] > 1) lay else lay[c(2, 1, 3)] } else layout if (n.y.lev > min(c(length(colors), length(lines), length(symbols)))) warning('Colors, lines and symbols may have been recycled') if (is.factor(x$data[[predictors[x.var]]])){ # x-variable a factor range <- range(c(lower, upper), na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) key <- list(title=x$response, cex.title=1, border=TRUE, text=list(as.character(unique(response))), lines=list(col=colors[.modc(1:n.y.lev)], lty=lines[.modl(1:n.y.lev)], lwd=lwd), points=list(pch=symbols[.mods(1:n.y.lev)], col=colors[.modc(1:n.y.lev)]), columns = if ("x" %in% names(key.args)) 1 else find.legend.columns(length(n.y.lev), space=if("x" %in% names(key.args)) "top" else key.args$space)) for (k in names(key.args)) key[k] <- key.args[k] if (show.strip.values){ for (pred in predictors[-x.var]){ Data[[pred]] <- as.factor(Data[[pred]]) } } result <- xyplot(eval(if (type=="probability") parse(text=if (n.predictors==1) paste("prob ~ as.numeric(", predictors[x.var], ")") else paste("prob ~ as.numeric(", predictors[x.var],") | ", paste(predictors[-x.var], collapse="*"))) else parse(text=if (n.predictors==1) paste("logit ~ as.numeric(", predictors[x.var], ")") else paste("logit ~ as.numeric(", predictors[x.var],") | ", paste(predictors[-x.var], collapse="*")))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, subscripts, rug, z, x.vals, lower, upper, ...){ if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at) for (i in 1:n.y.lev){ os <- if (ci.style == "bars"){ (i - (n.y.lev + 1)/2) * (2/(n.y.lev-1)) * .01 * (n.y.lev - 1) } else { 0 } sub <- z[subscripts] == y.lev[i] good <- !is.na(y[sub]) effect.llines(x[sub][good] + os, y[sub][good], lwd=lwd, type="b", col=colors[.modc(i)], lty=lines[.modl(i)], pch=symbols[i], cex=cex, ...) if (ci.style == "bars"){ larrows(x0=x[sub][good] + os, y0=lower[ ][sub][good], x1=x[sub][good] + os, y1=upper[subscripts][sub][good], angle=90, code=3, col=colors[.modc(i)], length=0.125*cex/1.5) } else if(ci.style == "lines"){ effect.llines(x[sub][good], lower[subscripts][sub][good], lty=lines[.modl(i)], col=colors[.modc(i)]) effect.llines(x[sub][good], upper[subscripts][sub][good], lty=lines[.modl(i)], col=colors[.modc(i)]) } else { if(ci.style == "bands") { panel.bands(x[sub][good], y[sub][good], lower[subscripts][sub][good], upper[subscripts][sub][good], fill=colors[.modc(i)], alpha=band.transparency) }} } }, ylab=ylab, ylim= if (is.null(ylim)) c(min(lower), max(upper)) else ylim, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], x.vals=x$data[[predictors[x.var]]], rug=rug, z=response, lower=lower, upper=upper, scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating), main=main, key=key, layout=layout, data=Data, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } else { # x-variable numeric if(use.splines) effect.llines <- spline.llines # added 10/17/13 range <- range(c(lower, upper), na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) nm <- predictors[x.var] x.vals <- x$data[[nm]] if (nm %in% names(ticks.x)){ at <- ticks.x[[nm]]$at n <- ticks.x[[nm]]$n } else{ at <- NULL n <- 5 } xlm <- if (nm %in% names(xlim)){ xlim[[nm]] } else range_adj(Data[nm]) # range(x.vals) tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){ trans <- transform.x[[nm]]$trans make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n) } else { trans <- I make.ticks(xlm, link=I, inverse=I, at=at, n=n) } key <- list(title=x$response, cex.title=1, border=TRUE, text=list(as.character(unique(response))), lines=list(col=colors[.modc(1:n.y.lev)], lty=lines[.modl(1:n.y.lev)], lwd=lwd), columns = if ("x" %in% names(key.args)) 1 else find.legend.columns(length(n.y.lev), space=if("x" %in% names(key.args)) "top" else key.args$space)) for (k in names(key.args)) key[k] <- key.args[k] if (show.strip.values){ for (pred in predictors[-x.var]){ Data[[pred]] <- as.factor(Data[[pred]]) } } result <- xyplot(eval(if (type=="probability") parse(text=if (n.predictors==1) paste("prob ~ trans(", predictors[x.var], ")") else paste("prob ~ trans(", predictors[x.var],") |", paste(predictors[-x.var], collapse="*"))) else parse(text=if (n.predictors==1) paste("logit ~ trans(", predictors[x.var], ")") else paste("logit ~ trans(", predictors[x.var],") | ", paste(predictors[-x.var], collapse="*")))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, subscripts, rug, z, x.vals, lower, upper, ...){ if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at) if (rug) lrug(trans(x.vals)) for (i in 1:n.y.lev){ sub <- z[subscripts] == y.lev[i] good <- !is.na(y[sub]) effect.llines(x[sub][good], y[sub][good], lwd=lwd, type="l", col=colors[.modc(i)], lty=lines[.modl(i)], ...) if (ci.style == "bars"){ larrows(x0=x[sub][good], y0=lower[subscripts][sub][good], x1=x[sub][good], y1=upper[subscripts][sub][good], angle=90, code=3, col=colors[.modc(i)], length=0.125*cex/1.5) } else if(ci.style == "lines"){ effect.llines(x[sub][good], lower[subscripts][sub][good], lty=lines[.modl(i)], col=colors[.modc(i)]) effect.llines(x[sub][good], upper[subscripts][sub][good], lty=lines[.modl(i)], col=colors[.modc(i)]) } else { if(ci.style == "bands") { panel.bands(x[sub][good], y[sub][good], lower[subscripts][sub][good], upper[subscripts][sub][good], fill=colors[.modc(i)], alpha=band.transparency) }} } }, ylab=ylab, xlim=suppressWarnings(trans(xlm)), ylim= if (is.null(ylim)) c(min(lower), max(upper)) else ylim, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], x.vals=x$data[[predictors[x.var]]], rug=rug, z=response, lower=lower, upper=upper, scales=list(x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating), main=main, key=key, layout=layout, data=Data, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } } } result } effects/R/Effect.mlm.R0000644000176200001440000000273113761730142014204 0ustar liggesusers# Calculate Effects for term(s) in a Multivariate Linear Model # 2014-03-12: Introduced allEffects.mlm(). J. Fox Effect.mlm <- function(focal.predictors, mod, response, ...) { if (missing(response)) { mod.frame <- model.frame(mod) response <- colnames(model.response(mod.frame)) } else if (is.numeric(response)) { mod.frame <- model.frame(mod) response.names <- colnames(model.response(mod.frame)) response <- response.names[response] } if (length(response)==1) { mod.1 <- update(mod, as.formula(paste(response, " ~ ."))) result <- Effect(focal.predictors, mod.1, ...) } else { result <- as.list(NULL) for (resp in response) { mod.1 <- update(mod, as.formula(paste(resp, " ~ ."))) lab <- resp result[[lab]] <- Effect(focal.predictors, mod.1, ...) } class(result) <- "efflist" } result } allEffects.mlm <- function(mod, ...){ result <- NextMethod() class(result) <- "mlm.efflist" result } plot.mlm.efflist <- function(x, ...){ x <- do.call(c, x) class(x) <- "efflist" plot(x, ...) } summary.mlm.efflist <- function(object, ...){ object <- do.call(c, object) for (effect in names(object)){ cat("\n\nResponse:", object[[effect]]$response, "\n") print(summary(object[[effect]], ...)) } } print.mlm.efflist <- function(x, ...){ x <- do.call(c, x) for (effect in names(x)){ cat("\n\nResponse:", x[[effect]]$response, "\n") print(x[[effect]], ...) } invisible(x) } effects/R/Effect-methods.R0000644000176200001440000001147013761730142015061 0ustar liggesusers# 12/11/2017: S. Weisberg. This file contains all the Effect methods that call # Effect.default. Excluded are Effect.lm, Effect.polr, and Effect.multinom, # and for now Effect.svyglm. # 06/08/2018: rewrote method for betareg, removing the 'link' argument from sources # 11/28/2018: modified Effect.gls to ignore the weights argument by # deleting it from sources$call. # 11/30/2018: fixed bug in Effect.merMod() specifying fam$family explicitly. # 7/5/2019: clm clm2 and clmm were not passing the estimated threshholds to polr # 3/22/2020: added Effect.glmmPQL (from MASS package) # 4/27/2020: require 'insight' package for find_formula and get_coefficients # so formula and coefficients are generally not needed # 2020-06-13: fix typo (omitted ') in an error message # 2020-06-23: All the Effect.* methods previously in this file have been removed # and replaced by effSources.* methods. effSources <- function(mod){ UseMethod("effSources", mod) } effSources.default <- function(mod){NULL} # lme, nlme package - default works # gls, nlme package effSources.gls <- function(mod){ cl <- mod$call cl$weights <- NULL list(call = cl) } # glmmPQL method 3/22/2020 effSources.glmmPQL <- function(mod) {list(family = mod$family)} # lme4 -- handled via an Effect method to allow for KR argument # effSources.merMod <- function(mod){NULL} # rlmer in robustlmm package, not really needed effSources.rlmerMod <- function(mod){NULL} # clm in the ordinal package. clm is not supported by insight package effSources.clm <- function(mod){ if (requireNamespace("MASS", quietly=TRUE)){ polr <- MASS::polr} else stop("MASS package is required") polr.methods <- c("logistic", "probit", "loglog", "cloglog", "cauchit") method <- mod$link if(method == "logit") method <- "logistic" if(!(method %in% polr.methods)) stop("'link' must be a 'method' supported by polr; see help(polr)") if(mod$threshold != "flexible") stop("Effects only supports the 'flexible' threshold") numTheta <- length(mod$Theta) numBeta <- length(mod$beta) or <- c( (numTheta+1):(numTheta + numBeta), 1:(numTheta)) list( type = "polr", coefficients = mod$beta, zeta = mod$alpha, method=method, vcov = as.matrix(vcov(mod)[or, or])) } # clm2, this is supported by insight package effSources.clm2 <- function(mod){ if (requireNamespace("MASS", quietly=TRUE)){ polr <- MASS::polr} polr.methods <- c("logistic", "probit", "loglog", "cloglog", "cauchit") method <- mod$link if(!(method %in% polr.methods)) stop("'link' must be a 'method' supported by polr; see help(polr)") if(is.null(mod$Hessian)){ message("\nRe-fitting to get Hessian\n") mod <- update(mod, Hess=TRUE)} if(mod$threshold != "flexible") stop("Effects only supports the flexible threshold") numTheta <- length(mod$Theta) numBeta <- length(mod$beta) or <- c( (numTheta+1):(numTheta + numBeta), 1:(numTheta)) list( type = "polr", formula = mod$call$location, coefficients = mod$beta, zeta = mod$Theta, method=method, vcov = as.matrix(vcov(mod)[or, or])) } #clmm in ordinal package effSources.clmm <- function(mod){ if (requireNamespace("MASS", quietly=TRUE)){ polr <- MASS::polr} else stop("The MASS package must be installed") polr.methods <- c("logistic", "probit", "loglog", "cloglog", "cauchit") method <- mod$link if(method == "logit") method <- "logistic" if(!(method %in% polr.methods)) stop("'link' must be a 'method' supported by polr; see help(polr)") if(is.null(mod$Hessian)){ message("\nRe-fitting to get Hessian\n") mod <- update(mod, Hess=TRUE)} if(mod$threshold != "flexible") stop("Only threshold='flexible' is supported by effects") numTheta <- length(mod$Theta) numBeta <- length(mod$beta) or <- c( (numTheta+1):(numTheta + numBeta), 1:(numTheta)) Vcov <- as.matrix(vcov(mod)[or, or]) list( type = "polr", formula = insight::find_formula(mod)$conditional, coefficients = mod$beta, zeta=mod$alpha, method=method, vcov = as.matrix(Vcov)) } # betareg from the betareg package effSources.betareg <- function(mod){ coef <- mod$coefficients$mean vco <- vcov(mod)[1:length(coef), 1:length(coef)] # betareg uses beta errors with mean link given in mod$link$mean. # Construct a family based on the binomial() family fam <- binomial(link=mod$link$mean) # adjust the variance function to account for beta variance fam$variance <- function(mu){ f0 <- function(mu, eta) (1-mu)*mu/(1+eta) do.call("f0", list(mu, mod$coefficient$precision))} # adjust initialize fam$initialize <- expression({mustart <- y}) # collect arguments args <- list( call = mod$call, formula = formula(mod), family=fam, coefficients = coef, vcov = vco) args } effects/R/plot-methods.R0000644000176200001440000013612015037511360014640 0ustar liggesusers # plot.eff method for effects package, moved here from plot-summary-print-methods.R # The plot.effpoly method remains there for now. # 2013-10-17: Added use.splines keyword to plot.eff. Sandy # 2013-10-17: Made ci.style="bands" default for variates; allow "bands" if multiline=TRUE # 2013-10-29: fixed plot.eff() to handle factors with "valid" NA level. J. Fox # 2014-03-03: modified plot.eff() to handle partial residuals. J. Fox # 2014-09-20: fixed plot.eff() to work with partial residuals when rescale.axis=FALSE; # added smooth.residuals argument. J. Fox # 2014-10-10: namespace fixes. J. Fox # 2014-12-05: made key.args more flexible. J. Fox # 2015-03-22: use wide columns by default only when x for legend not set. J. Fox # 2015-03-25: use non-robust loess smooth for partial residuals for non-Gaussian families. J. Fox # 2015-03-25: rationalized type and rescale.axis args to plot.eff(); deprecated rescale.axis arg. J. Fox # 2015-05-28: added residuals.smooth.color argument. J. Fox # 2015-08-28: added residuals.cex argument. J. Fox # 2016-03-01: move computation of partial residuals to the plot.eff() method. J. Fox # 2016-05-22: modified make.ticks() to avoid possible failure due to floating-point inaccuracy. J. Fox # 2016-08-31: fixed plotting with partial residuals with various scalings of y-axis and x-axis. J. Fox # 2016-09-16: added show.strip.values argument to plot.eff(). J. Fox # 2017-06-12: fixed bug in plot.eff() for multiline displays with many conditioning variables. J. Fox # 2017-07-15: modified plot.eff() to consolidate arguments and use lattice theme. J. Fox # 2017-08-09: small bug fixes, reorganized axes=list(x=list()) argument. J. Fox # 2017-08-17: tweaked layout. J. Fox # 2017-08-23: Fixed bug with the lattice=list(array()) argument in plot.efflist --- lattice was as # an argument to the next method twice # 2017-08-23: plot.eff, in key.args, set default for between.columns=0 # 2017-08-20: reintroduce legacy arguments for plot.eff() # 2017-09-10: use replacement for grid.panel() # 2017-11-03: Added a test to assume that at least one point will be plotted in a tile, else # draw a blank tile. Needed for rank-deficient models. S. Weisberg. # 2018-01-02: Changed the default key: see lines 240-241 # 2018-01-02: Rewrote find.legend columns, lines 41-44 # 2018-01-30: enlarged text in key titles # 2018-05-14: support plotting partial residuals against a factor on the horizontal axis in plot.lm() # 2018-05-29: lty was ignored for multiplot with factor on x-axis; fixed (reported by Krisztian Magori) # 2018-05-30: don't use hard-coded pch=19 when plotting a factor on the x-axis. # 2018-06-30: add cex sub-args for x and y axes (suggestion of Charles Leger). # 2018-07-04: add cex sub-arg for strips. # 2018-10-09: moved transform arg from Effect to axes=list(y=list(transform=)) # 2018-10-15: moved z.var to lines=list(z.var) # 2018-10-25: check number of points used for spline interpolation # 2018-10-25: fixed bug in plot.eff() introduced by previous modification to as.data.frame.eff(). # 2018-11-03: fixed bug in plotting partial residuals when a factor focal predictor had empty levels. # 2019-02-13: made sure lty not ignored. # 2019-08-27: correctly handle character or logical predictor # 2020-11-11: fixed bug in plot.eff when x.var is set for multiline plot. # 2025-07-21: rename range_adj() to range_adj to avoid generic confusion. # the following functions aren't exported #find.legend.columns <- function(n, target=min(4, n)){ # rem <- n %% target # if (rem != 0 && rem < target/2) target <- target - 1 # target #} # new version 1/2/2017 by sw find.legend.columns <- function(n, space="top"){ if(space == "right") 1 else { if(n <= 2) 2 else { if(n == 3) 1 else {if (n <= 6) 2 else 3}}} } make.ticks <- function(range, link, inverse, at, n) { warn <- options(warn=-1) on.exit(options(warn)) link <- if (is.null(link)) function(x) nlm(function(y) (inverse(y) - x)^2, mean(range))$estimate else link if (is.null(n)) n <- 5 labels <- if (is.null(at)){ range.labels <- sapply(range, inverse) labels <- grid::grid.pretty(range.labels) } else at ticks <- try(sapply(labels, link), silent=TRUE) if (inherits(ticks, "try-error")){ ticks <- seq(range[1], range[2], length=n) } list(at=ticks, labels=format(labels)) } range_adj <- function(x){ range <- range(x, na.rm=TRUE) c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) } # added, modified from http://www.r-bloggers.com/confidence-bands-with-lattice-and-r/ panel.bands <- function(x, y, upper, lower, fill, col, subscripts, ..., font, fontface, use.splines=FALSE) { if(!missing(subscripts)) { upper <- upper[subscripts] lower <- lower[subscripts] } if (use.splines){ if (length(x) < 5) warning("spline interpolation may be unstable with only ", length(x), " points") up <- spline(x, upper) down <- spline(x, lower) x <- up$x upper <- up$y lower <- down$y } panel.polygon(c(x, rev(x)), c(upper, rev(lower)), col = fill, fill=fill, border = FALSE, ...) } # modified by Michael Friendly: added key.args: # modified by Michael Friendly: added ci.style="bands" # modified by Michael Friendly: added lwd= argument for llines (not used elsewhere) # modified by Michael Friendly: added alpha.band= argument for ci.style="bands" spline.llines <- function(x, y, ...) { if (length(x) < 5) warning("spline interpolation may be unstable with only ", length(x), " points") llines(spline(x, y), ...) } plot.eff <- function(x, x.var, main=paste(effect, "effect plot"), symbols=TRUE, lines=TRUE, axes, confint, partial.residuals, id, lattice, ..., # legacy arguments: multiline, z.var, rug, xlab, ylab, colors, cex, lty, lwd, ylim, xlim, factor.names, ci.style, band.transparency, band.colors, type, ticks, alternating, rotx, roty, grid, layout, rescale.axis, transform.x, ticks.x, show.strip.values, key.args, use.splines, residuals.color, residuals.pch, residuals.cex, smooth.residuals, residuals.smooth.color, show.fitted, span) { closest <- function(x, x0) apply(outer(x, x0, FUN=function(x, x0) abs(x - x0)), 1, which.min) .mod <- function(a, b) ifelse( (d <- a %% b) == 0, b, d) .modc <- function(a) .mod(a, length(colors)) .mods <- function(a) .mod(a, length(symbols)) .modl <- function(a) .mod(a, length(lines)) .modb <- function(a) .mod(a, length(band.colors)) if (!is.logical(lines) && !is.list(lines)) lines <- list(lty=lines) levels <- sapply(x$variables, function(z) length(as.vector(z[["levels"]]))) lines <- applyDefaults(lines, defaults=list(multiline=is.null(x$se), z.var=which.min(levels), lty=trellis.par.get("superpose.line")$lty, lwd=trellis.par.get("superpose.line")$lwd[1], col=trellis.par.get("superpose.line")$col, splines=TRUE), onFALSE=list(multiline=FALSE, lty=0, lwd=0, col=rgb(1, 1, 1, alpha=0), splines=FALSE), arg="lines") if (missing(multiline)) multiline <- lines$multiline if (missing(z.var)) z.var <- lines$z.var if (missing(lwd)) lwd <- lines$lwd if (missing(colors)) colors <- lines$col if (missing(use.splines)) use.splines <- lines$splines lines <- if (missing(lty)) lines$lty else lty if (!is.logical(symbols) && !is.list(symbols)) symbols <- list(pch=symbols) symbols <- applyDefaults(symbols, defaults=list(pch=trellis.par.get("superpose.symbol")$pch, cex=trellis.par.get("superpose.symbol")$cex[1]), onFALSE=list(pch=NA_integer_, cex=0), arg="symbols") cex <- symbols$cex symbols <- symbols$pch if (missing(axes)) axes <- NULL axes <- applyDefaults(axes, defaults=list( x=list(rotate=0, rug=TRUE, cex=1), y=list(lab=NA, lim=NA, cex=1, ticks=list(at=NULL, n=5), type="rescale", rotate=0, transform=NULL), alternating=TRUE, grid=FALSE), arg="axes") x.args <- applyDefaults(axes$x, defaults=list(rotate=0, rug=TRUE, cex=1), arg="axes$x") if (missing(xlab)) { xlab.arg <- FALSE xlab <- list() } if (missing(xlim)) { xlim.arg <- FALSE xlim <- list() } if (missing(ticks.x)) { ticks.x.arg <- FALSE ticks.x <- list() } if (missing(transform.x)) { transform.x.arg <- FALSE transform.x <- list() } if (missing(rotx)) rotx <- x.args$rotate if (missing(rug)) rug <- x.args$rug cex.x <- x.args$cex x.args$rotate <- NULL x.args$rug <- NULL x.args$cex <- NULL x.pred.names <- names(x.args) if (length(x.pred.names) > 0){ for (pred.name in x.pred.names){ x.pred.args <- applyDefaults(x.args[[pred.name]], defaults=list(lab=NULL, lim=NULL, ticks=NULL, transform=NULL), arg=paste0("axes$x$", pred.name)) if (!xlab.arg) xlab[[pred.name]] <- x.pred.args$lab if (!xlim.arg) xlim[[pred.name]] <- x.pred.args$lim if (!ticks.x.arg) ticks.x[[pred.name]] <- x.pred.args$ticks if (!transform.x.arg) transform.x[[pred.name]] <- x.pred.args$transform } } if (length(xlab) == 0) xlab <- NA if (length(xlim) == 0) xlim <- NA if (length(ticks.x) == 0) ticks.x <- NA if (length(transform.x) == 0) transform.x <- NA y.args <- applyDefaults(axes$y, defaults=list(lab=NA, lim=NA, cex=1, ticks=list(at=NULL, n=5), type="rescale", rotate=0, transform=NULL), arg="axes$y") if (missing(ylab)) ylab <- y.args$lab if (missing(ylim)) ylim <- y.args$lim if (missing(ticks)) ticks <- y.args$ticks if (missing(type)) type <- y.args$type if (!missing(rescale.axis)) type <- if (rescale.axis) "rescale" else "response" type <- match.arg(type, c("rescale", "response", "link")) if (missing(roty)) roty <- y.args$rotate cex.y <- y.args$cex custom <- y.args$transform if(inherits(custom, "function")){ custom <- list(trans=I, inverse=custom) type <- "response" } # if(!is.null(custom)) type="response" if (missing(alternating)) alternating <- axes$alternating if (missing(grid)) grid <- axes$grid if (missing(confint) || isTRUE(confint)) confint <- NULL confint <- applyDefaults(confint, defaults=list(style=NULL, alpha=0.15, col=colors), onFALSE=list(style="none", alpha=0, col=NA_integer_), arg="confint") if (missing(ci.style)) ci.style <- confint$style if (missing(band.transparency)) band.transparency <- confint$alpha if (missing(band.colors)) band.colors <- confint$col if(!is.null(ci.style)) ci.style <- match.arg(ci.style, c("auto", "bars", "lines", "bands", "none")) if (missing(partial.residuals)) partial.residuals <- NULL if (is.logical(partial.residuals)) partial.residuals <- list(plot=partial.residuals) partial.residuals <- applyDefaults(partial.residuals, defaults=list( plot=!is.null(x$residuals), fitted=FALSE, col=colors[2], pch=1, cex=1, smooth=TRUE, span=2/3, smooth.col=colors[2], lty=lines[1], lwd=lwd), arg="partial.residuals") if (missing(show.fitted)) show.fitted <- partial.residuals$fitted if (missing(residuals.color)) residuals.color <- partial.residuals$col if (missing(residuals.pch)) residuals.pch <- partial.residuals$pch if (missing(residuals.cex)) residuals.cex <- partial.residuals$cex if (missing(smooth.residuals)) smooth.residuals <- partial.residuals$smooth if (missing(residuals.smooth.color)) residuals.smooth.color <- partial.residuals$smooth.col residuals.lty <- partial.residuals$lty residuals.lwd <- partial.residuals$lwd if (missing(span)) span <- partial.residuals$span partial.residuals <- partial.residuals$plot if (missing(id) || isFALSE(id)) { id.n <- 0 id.cex <- 0 id.col <- NULL id.labels <- NULL } else { id <- applyDefaults(id, list( n=2, cex=0.75, col=residuals.color, labels=NULL ), arg="id") id.n <- id$n id.col <- id$col id.cex <- id$cex id.labels <- id$labels } if (missing(lattice)) lattice <- NULL lattice <- applyDefaults(lattice, defaults=list( layout=NULL, #key.args=list(), strip=list(factor.names=TRUE, values=!partial.residuals, cex=1), array=list(row=1, col=1, nrow=1, ncol=1, more=FALSE), arg="lattice" )) lattice$key.args <- applyDefaults(lattice$key.args, defaults=list( space="top", border=FALSE, fontfamily="sans", cex=.75, cex.title=1, arg="key.args" )) if("x" %in% names(lattice$key.args)) lattice$key.args[["space"]] <- NULL if (missing(layout)) layout <- lattice$layout if (missing(key.args)){ lattice$key.args[["between.columns"]] <- if(is.null(lattice$key.args[["between.columns"]])) 0 else lattice$key.args[["between.columns"]] key.args <- lattice$key.args } strip.args <- applyDefaults(lattice$strip, defaults=list(factor.names=TRUE, values=!partial.residuals, cex=1), arg="lattice$strip") if (missing(factor.names)) factor.names <- strip.args$factor.names if (missing(show.strip.values)) show.strip.values <- strip.args$values cex.strip <- strip.args$cex height.strip <- max(1, cex.strip) array.args <- applyDefaults(lattice$array, defaults=list(row=1, col=1, nrow=1, ncol=1, more=FALSE), arg="lattice$array") row <- array.args$row col <- array.args$col nrow <- array.args$nrow ncol <- array.args$ncol more <- array.args$more if (smooth.residuals && !is.null(x$family)){ loess.family <- if (x$family == "gaussian") "symmetric" else "gaussian" average.resid <- if (loess.family == "gaussian") mean else median } switch(type, rescale = { type <- "response" rescale.axis <- TRUE }, response = { type <- "response" rescale.axis <- FALSE }, link = { type <- "link" rescale.axis <- TRUE } ) # levels <- sapply(x$variables, function(z) length(as.vector(z[["levels"]]))) thresholds <- x$thresholds has.thresholds <- !is.null(thresholds) effect.llines <- llines if (length(ylab) == 1 && is.na(ylab)){ ylab <- if (has.thresholds) paste(x$response, ": ", paste(x$y.levels, collapse=", "), sep="") else x$response } if (has.thresholds){ threshold.labels <- abbreviate(x$y.levels, minlength=1) threshold.labels <- paste(" ", paste(threshold.labels[-length(threshold.labels)], threshold.labels[-1], sep=" - "), " ", sep="") } original.link <- trans.link <- if(!is.null(custom)) custom$trans else x$transformation$link original.inverse <- trans.inverse <- if(!is.null(custom)) custom$inverse else x$transformation$inverse residuals <- if (partial.residuals) x$residuals else NULL if (!is.null(residuals) && !is.null(id.labels)) names(residuals) <- id.labels partial.residuals.range <- x$partial.residuals.range if (!rescale.axis){ x$lower[!is.na(x$lower)] <- trans.inverse(x$lower[!is.na(x$lower)]) x$upper[!is.na(x$upper)] <- trans.inverse(x$upper[!is.na(x$upper)]) x$fit[!is.na(x$fit)] <- trans.inverse(x$fit)[!is.na(x$fit)] trans.link <- trans.inverse <- I } x.all <- x$x.all if (!is.null(x.all)){ for (i in 1:ncol(x.all)){ if (inherits(x.all[, i], "factor")) x.all[, i] <- droplevels(x.all[, i]) } } split <- c(col, row, ncol, nrow) if (missing(x.var)) x.var <- x$x.var if (!is.null(x.var) && is.numeric(x.var)) x.var <- colnames(x$x)[x.var] x.data <- x$data for (i in 1:ncol(x.data)){ if (inherits(x.data[, i], "factor")) x.data[, i] <- droplevels(x.data[, i]) } effect <- paste(sapply(x$variables, "[[", "name"), collapse="*") vars <- x$variables x <- as.data.frame(x, type="link") for (i in 1:length(vars)){ if (!(vars[[i]]$is.factor)) next x[, i] <- factor(x[,i], levels=vars[[i]]$levels, exclude=NULL) x[, i] <- droplevels(x[, i]) } has.se <- !is.null(x$se) n.predictors <- ncol(x) - 1 - 3*has.se if (n.predictors == 1){ predictor <- names(x)[1] if (is.list(xlab)) xlab <- xlab[[predictor]] ### factor no other predictors if (is.factor(x[,1])){ ci.style <- if(is.null(ci.style) || ci.style == "auto") "bars" else ci.style range <- if(has.se & ci.style!="none") range(c(x$lower, x$upper), na.rm=TRUE) else range(x$fit, na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) if (!is.null(partial.residuals.range)){ ylim[1] <- min(ylim[1], partial.residuals.range[1]) ylim[2] <- max(ylim[2], partial.residuals.range[2]) } tickmarks <- if (type == "response" && rescale.axis) make.ticks(ylim, link=trans.link, inverse=trans.inverse, at=ticks$at, n=ticks$n) else make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) levs <- levels(x[,1]) n.lev <- length(levs) plot <- xyplot(eval(parse( text=paste("fit ~ as.numeric(", names(x)[1], ")"))), strip=strip.custom(strip.names=c(factor.names, TRUE), par.strip.text=list(cex=cex.strip)), par.settings=list(layout.heights=list(strip=height.strip)), panel=function(x, y, lower, upper, has.se, ...){ if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at) good <- !is.na(y) if(!all(!good)){ if (has.se){ if (ci.style == "bars"){ larrows(x0=x[good], y0=lower[good], x1=x[good], y1=upper[good], angle=90, code=3, col=if (partial.residuals) band.colors[1] else colors[.modc(2)], length=0.125*cex/1.5) } else if(ci.style == "lines") { effect.llines(x[good], lower[good], lty=2, col=colors[.modc(2)]) effect.llines(x[good], upper[good], lty=2, col=colors[.modc(2)]) } else{ if(ci.style == "bands") { panel.bands(x[good], y[good], upper[good], lower[good], fill=band.colors[1], alpha=band.transparency, use.splines=FALSE) }} } if (partial.residuals){ x.fit <- as.numeric(as.factor(x.data[good, predictor])) partial.res <- y[x.fit] + residuals[good] lpoints(jitter(x.fit, factor=0.5), partial.res, col=residuals.color, pch=residuals.pch, cex=residuals.cex) if (smooth.residuals && length(partial.res) != 0) { lpoints(1:n.lev, tapply(partial.res, x.fit, average.resid), pch=16, cex=residuals.cex*1.25, col=residuals.color) } } effect.llines(x[good], y[good], lwd=lwd, col=colors[1], lty=lines, type='b', pch=symbols[1], cex=cex, ...) if (has.thresholds){ panel.abline(h=thresholds, lty=3) panel.text(rep(current.panel.limits()$xlim[1], length(thresholds)), thresholds, threshold.labels, adj=c(0,0), cex=0.75) panel.text(rep(current.panel.limits()$xlim[2], length(thresholds)), thresholds, threshold.labels, adj=c(1,0), cex=0.75) } }}, ylim=ylim, ylab=ylab, xlab=if (length(xlab) == 1 && is.na(xlab)) names(x)[1] else xlab, scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating, y=roty), main=main, lower=x$lower, upper=x$upper, has.se=has.se, data=x, ...) result <- update(plot, layout = if (is.null(layout)) c(0, prod(dim(plot))) else layout) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } ### variate, no other predictors *** else { effect.llines <- if(use.splines) spline.llines else effect.llines ci.style <- if(is.null(ci.style) || ci.style == "auto") "bands" else ci.style range <- if(has.se && ci.style!="none") range(c(x$lower, x$upper), na.rm=TRUE) else range(x$fit, na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else if (is.null(residuals)) c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) else if (rescale.axis) c(min(partial.residuals.range[1], range[1] - .025*(range[2] - range[1])), max(partial.residuals.range[2], range[2] + .025*(range[2] - range[1]))) else c(min(original.inverse(partial.residuals.range[1]), range[1] - .025*(range[2] - range[1])), max(original.inverse(partial.residuals.range[2]), range[2] + .025*(range[2] - range[1]))) tickmarks <- if (type == "response" && rescale.axis) make.ticks(ylim, link=trans.link, inverse=trans.inverse, at=ticks$at, n=ticks$n) else make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) nm <- names(x)[1] x.vals <- x.data[, nm] if (nm %in% names(ticks.x)){ at <- ticks.x[[nm]]$at n <- ticks.x[[nm]]$n } else{ at <- NULL n <- 5 } xlm <- if (nm %in% names(xlim)){ xlim[[nm]] } else range_adj(x[nm]) # range(x.vals) tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){ trans <- transform.x[[nm]]$trans make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n) } else { trans <- I make.ticks(xlm, link=I, inverse=I, at=at, n=n) } if (is.null(x.var)){ if (!is.null(residuals)){ x.var <- names(x)[1] } else x.var <- which.max(levels) } if (!is.null(residuals)) x.fit <- x.data[, predictor] if (is.numeric(x.var)) x.var <- predictor plot <- xyplot(eval(parse( text=paste("fit ~ trans(", x.var, ")"))), strip=strip.custom(strip.names=c(factor.names, TRUE), par.strip.text=list(cex=cex.strip)), par.settings=list(layout.heights=list(strip=height.strip)), panel=function(x, y, x.vals, rug, lower, upper, has.se, ...){ if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at) good <- !is.na(y) if(!all(!good)){ axis.length <- diff(range(x)) effect.llines(x[good], y[good], lwd=lwd, col=colors[1], lty=lines, ...) if (rug && is.null(residuals)) lrug(trans(x.vals)) if (has.se){ if (ci.style == "bars"){ larrows(x0=x[good], y0=lower[good], x1=x[good], y1=upper[good], angle=90, code=3, col=if (partial.residuals) band.colors[1] else colors[.modc(2)], length=.125*cex/1.5) } else if(ci.style == "lines") { effect.llines(x[good], lower[good], lty=2, col=colors[.modc(2)]) effect.llines(x[good], upper[good], lty=2, col=colors[.modc(2)]) } else{ if(ci.style == "bands") { panel.bands(x[good], y[good], upper[good], lower[good], fill=band.colors[1], alpha=band.transparency, use.splines=use.splines) }} } if (has.thresholds){ panel.abline(h=thresholds, lty=3) panel.text(rep(current.panel.limits()$xlim[1], length(thresholds)), thresholds, threshold.labels, adj=c(0,0), cex=0.75) panel.text(rep(current.panel.limits()$xlim[2], length(thresholds)), thresholds, threshold.labels, adj=c(1,0), cex=0.75) } if (!is.null(residuals)){ fitted <- y[good][closest(trans(x.fit), x[good])] partial.res <- if (!rescale.axis) original.inverse(original.link(fitted) + residuals) else fitted + residuals lpoints(trans(x.fit), partial.res, col=residuals.color, pch=residuals.pch, cex=residuals.cex) if (show.fitted) lpoints(trans(x.fit), fitted, pch=16, col=residuals.color) # REMOVE ME if (smooth.residuals){ llines(loess.smooth(trans(x.fit), partial.res, span=span, family=loess.family), lwd=residuals.lwd, lty=residuals.lty, col=residuals.smooth.color) } if (id.n > 0){ M <- cbind(trans(x.fit), partial.res) md <- mahalanobis(M, colMeans(M), cov(M)) biggest <- order(md, decreasing=TRUE)[1:id.n] pos <- ifelse(trans(x.fit[biggest]) > mean(current.panel.limits()$xlim), 2, 4) ltext(trans(x.fit[biggest]), partial.res[biggest], names(partial.res)[biggest], pos=pos, col=id.col, cex=id.cex) } } }}, ylim=ylim, xlim=suppressWarnings(trans(xlm)), ylab=ylab, xlab=if (length(xlab) == 1 && is.na(xlab)) names(x)[1] else xlab, x.vals=x.vals, rug=rug, main=main, lower=x$lower, upper=x$upper, has.se=has.se, data=x, scales=list(y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x), alternating=alternating), ...) result <- update(plot, layout = if (is.null(layout)) c(0, prod(dim(plot))) else layout) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } return(result) } ### more than one predictor predictors <- names(x)[1:n.predictors] levels <- sapply(apply(x[,predictors], 2, unique), length) if (is.null(x.var)){ if (!is.null(residuals)){ x.var <- names(x)[1] } else x.var <- which.max(levels) } if (is.list(xlab)) xlab <- xlab[[x.var]] if (!is.null(residuals)) x.fit <- x.data[, x.var] if (is.character(x.var)) { which.x <- which(x.var == predictors) if (length(which.x) == 0) stop(paste("x.var = '", x.var, "' is not in the effect.", sep="")) x.var <- which.x } if (is.character(z.var)) { which.z <- which(z.var == predictors) if (length(which.z) == 0) stop(paste("z.var = '", z.var, "' is not in the effect.", sep="")) z.var <- which.z } if (x.var == z.var){ # z.var <- z.var + 1 levels.not.x <- levels levels.not.x[x.var] <- Inf z.var <- which.min(levels.not.x) } ### multiline if (multiline){ if (!is.null(residuals)) warning("partial residuals are not displayed in a multiline plot") ci.style <- if(is.null(ci.style)) "none" else ci.style if(ci.style == "lines") { cat("Confidence interval style 'lines' changed to 'bars'\n") ci.style <- "bars"} range <- if (has.se && ci.style !="none") range(c(x$lower, x$upper), na.rm=TRUE) else range(x$fit, na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- if (type == "response" && rescale.axis) make.ticks(ylim, link=trans.link, inverse=trans.inverse, at=ticks$at, n=ticks$n) else make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) zvals <- unique(x[, z.var]) ### multiline factor if (is.factor(x[,x.var])){ if (ci.style == "auto") ci.style <- "bars" levs <- levels(x[,x.var]) key <- list(title=predictors[z.var], #cex.title=1, border=TRUE, text=list(as.character(zvals)), lines=list(col=colors[.modc(1:length(zvals))], lty=lines[.modl(1:length(zvals))], lwd=lwd), points=list(col=colors[.modc(1:length(zvals))], pch=symbols[.mods(1:length(zvals))]), columns = if ("x" %in% names(key.args)) 1 else find.legend.columns(length(zvals), space=if("x" %in% names(key.args)) "top" else key.args$space)) for (k in names(key.args)) key[k] <- key.args[k] if (show.strip.values && n.predictors > 2){ for (pred in predictors[-c(x.var, z.var)]){ x[[pred]] <- as.factor(x[[pred]]) } } plot <- xyplot(eval(parse( text=paste("fit ~ as.numeric(", predictors[x.var], ")", if (n.predictors > 2) paste(" |", paste(predictors[-c(x.var, z.var)], collapse="*"))))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip)), par.settings=list(layout.heights=list(strip=height.strip)), panel=function(x, y, subscripts, z, lower, upper, show.se, ...){ if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at) for (i in 1:length(zvals)){ sub <- z[subscripts] == zvals[i] good <- !is.na(y[sub]) if(!all(!good)){ os <- if(show.se) (i - (length(zvals) + 1)/2) * (2/(length(zvals)-1)) * .01 * (length(zvals) - 1) else 0 effect.llines(x[sub][good]+os, y[sub][good], lwd=lwd, type='b', col=colors[.modc(i)], pch=symbols[.mods(i)], lty=lines[.modl(i)], cex=cex, ...) if (show.se){ larrows(x0=x[sub][good]+os, y0=lower[subscripts][sub][good], x1=x[sub][good]+os, y1=upper[subscripts][sub][good], angle=90, code=3, col=eval(colors[.modc(i)]), length=.125*cex/1.5) } }} if (has.thresholds){ panel.abline(h=thresholds, lty=3) panel.text(rep(current.panel.limits()$xlim[1], length(thresholds)), thresholds, threshold.labels, adj=c(0,0), cex=0.75) panel.text(rep(current.panel.limits()$xlim[2], length(thresholds)), thresholds, threshold.labels, adj=c(1,0), cex=0.75) } }, ylim=ylim, ylab=ylab, xlab=if (length(xlab) == 1 && is.na(xlab)) predictors[x.var] else xlab, z=x[,z.var], scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating), zvals=zvals, main=main, key=key, lower=x$lower, upper=x$upper, show.se=has.se && ci.style=="bars", data=x, ...) result <- update(plot, layout = if (is.null(layout)) c(0, prod(dim(plot))) else layout) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } ### multiline variate else{ if (ci.style == "auto") ci.style <- "bands" effect.llines <- if(use.splines) spline.llines else effect.llines nm <- names(x)[x.var] x.vals <- x.data[, nm] if (nm %in% names(ticks.x)){ at <- ticks.x[[nm]]$at n <- ticks.x[[nm]]$n } else{ at <- NULL n <- 5 } xlm <- if (nm %in% names(xlim)){ xlim[[nm]] } else range_adj(x[nm]) tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){ trans <- transform.x[[nm]]$trans make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n) } else { trans <- I make.ticks(xlm, link=I, inverse=I, at=at, n=n) } key <- list(title=predictors[z.var], #cex.title=1, border=TRUE, text=list(as.character(zvals)), lines=list(col=colors[.modc(1:length(zvals))], lty=lines[.modl(1:length(zvals))], lwd=lwd), columns = if ("x" %in% names(key.args)) 1 else find.legend.columns(length(zvals), if("x" %in% names(key.args)) "top" else key.args$space)) for (k in names(key.args)) key[k] <- key.args[k] if (show.strip.values && n.predictors > 2){ for (pred in predictors[-c(x.var, z.var)]){ x[[pred]] <- as.factor(x[[pred]]) } } plot <- xyplot(eval(parse( text=paste("fit ~trans(", predictors[x.var], ")", if (n.predictors > 2) paste(" |", paste(predictors[-c(x.var, z.var)], collapse="*"))))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip)), par.settings=list(layout.heights=list(strip=height.strip)), panel=function(x, y, subscripts, x.vals, rug, z, lower, upper, show.se, ...){ if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at) if (rug && is.null(residuals)) lrug(trans(x.vals)) axis.length <- diff(range(x)) for (i in 1:length(zvals)){ sub <- z[subscripts] == zvals[i] good <- !is.na(y[sub]) if(!all(!good)){ effect.llines(x[sub][good], y[sub][good], lwd=lwd, type='l', col=colors[.modc(i)], lty=lines[.modl(i)], cex=cex, ...) if(show.se){ if(ci.style == "bars"){ os <- (i - (length(zvals) + 1)/2) * (2/(length(zvals)-1)) * .01 * axis.length larrows(x0=x[sub][good]+os, y0=lower[subscripts][sub][good], x1=x[sub][good]+os, y1=upper[subscripts][sub][good], angle=90, code=3, col=eval(colors[.modc(i)]), length=.125*cex/1.5) } if(ci.style == "bands"){ panel.bands(x[sub][good], y[sub][good], upper[subscripts][sub][good], lower[subscripts][sub][good], fill=eval(band.colors[.modb(i)]), alpha=band.transparency, use.splines=use.splines) } } }} if (has.thresholds){ panel.abline(h=thresholds, lty=3) panel.text(rep(current.panel.limits()$xlim[1], length(thresholds)), thresholds, threshold.labels, adj=c(0,0), cex=0.75) panel.text(rep(current.panel.limits()$xlim[2], length(thresholds)), thresholds, threshold.labels, adj=c(1,0), cex=0.75) } }, ylim=ylim, xlim=suppressWarnings(trans(xlm)), ylab=ylab, xlab=if (length(xlab) == 1 && is.na(xlab)) predictors[x.var] else xlab, x.vals=x.vals, rug=rug, z=x[,z.var], zvals=zvals, main=main, key=key, # lower=x$lower, upper=x$upper, show.se=has.se && ci.style %in% c("bars", "bands"), # data=x, scales=list(y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x), alternating=alternating), ...) result <- update(plot, layout = if (is.null(layout)) c(0, prod(dim(plot))) else layout) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } return(result) } # multiplot ci.style <- if(is.null(ci.style) || ci.style == "auto"){ if(is.factor(x[, x.var])) "bars" else "bands"} else ci.style range <- if (has.se && ci.style !="none") range(c(x$lower, x$upper), na.rm=TRUE) else range(x$fit, na.rm=TRUE) # multiplot factor if (is.factor(x[,x.var])){ ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) if (!is.null(partial.residuals.range)){ ylim[1] <- min(ylim[1], partial.residuals.range[1]) ylim[2] <- max(ylim[2], partial.residuals.range[2]) } tickmarks <- if (type == "response" && rescale.axis) make.ticks(ylim, link=trans.link, inverse=trans.inverse, at=ticks$at, n=ticks$n) else make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) levs <- levels(x[,x.var]) if (show.strip.values){ for (pred in predictors[-x.var]){ x[[pred]] <- as.factor(x[[pred]]) } } n.lev <- length(levs) x.fit <- x.data[, predictors[x.var]] use <- rep(TRUE, length(residuals)) xx <- x[, predictors[-x.var], drop=FALSE] plot <- xyplot(eval(parse( text=paste("fit ~ as.numeric(", predictors[x.var], ") |", paste(predictors[-x.var], collapse="*")))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip)), par.settings=list(layout.heights=list(strip=height.strip)), panel=function(x, y, subscripts, lower, upper, has.se, ...){ if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at) good <- !is.na(y) no.points <- all(!good) # skip arrows and lines if no.points==TRUE if(!no.points){ if (has.se){ if (ci.style == "bars"){ larrows(x0=x[good], y0=lower[subscripts][good], x1=x[good], y1=upper[subscripts][good], angle=90, code=3, col=if (partial.residuals) band.colors[1] else colors[.modc(2)], length=0.125*cex/1.5) } else if(ci.style == "lines") { effect.llines(x[good], lower[subscripts][good], lty=2, col=colors[.modc(2)]) effect.llines(x[good], upper[subscripts][good], lty=2, col=colors[.modc(2)]) } else{ if(ci.style == "bands") { panel.bands(x[good], y[good], upper[subscripts][good], lower[subscripts][good], fill=band.colors[1], alpha=band.transparency, use.splines=FALSE) }} } if (!is.null(residuals)){ predictors <- predictors[-x.var] factors <- sapply(xx, is.factor) for (predictor in predictors){ use <- use & if(factors[predictor]) x.all[, predictor] == xx[subscripts[1], predictor] else x.all[, predictor] == xx[subscripts[1], predictor] } n.in.panel <- sum(use) if (n.in.panel > 0){ fitted <- y[good][as.numeric(as.factor(x.fit[use]))] partial.res <- if (!rescale.axis) original.inverse(original.link(fitted) + residuals[use]) else fitted + residuals[use] lpoints(jitter(as.numeric(as.factor(x.fit[use])), 0.5), partial.res, col=residuals.color, pch=residuals.pch, cex=residuals.cex) if (show.fitted) lpoints(x.fit[use], fitted, pch=16, col=residuals.color) # REMOVE ME if (smooth.residuals && n.in.panel != 0) { lpoints(1:n.lev, tapply(partial.res, x.fit[use], average.resid), pch=16, cex=1.25*residuals.cex, col=residuals.color) } if (id.n > 0){ M <- cbind(trans(x.fit[use]), partial.res) md <- mahalanobis(M, colMeans(M), cov(M)) biggest <- order(md, decreasing=TRUE)[1:id.n] pos <- ifelse(x.fit[use][biggest] > mean(current.panel.limits()$xlim), 2, 4) ltext(x.fit[use][biggest], partial.res[biggest], names(partial.res)[biggest], pos=pos, col=id.col, cex=id.cex) } } } effect.llines(x[good], y[good], lwd=lwd, lty=lines, type='b', col=colors[1], pch=symbols[1], cex=cex, ...) if (has.thresholds){ panel.abline(h=thresholds, lty=3) panel.text(rep(current.panel.limits()$xlim[1], length(thresholds)), thresholds, threshold.labels, adj=c(0,0), cex=0.75) panel.text(rep(current.panel.limits()$xlim[2], length(thresholds)), thresholds, threshold.labels, adj=c(1,0), cex=0.75) } }}, ylim=ylim, ylab=ylab, xlab=if (length(xlab) == 1 && is.na(xlab)) predictors[x.var] else xlab, scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating), main=main, lower=x$lower, upper=x$upper, has.se=has.se, data=x, ...) result <- update(plot, layout = if (is.null(layout)) c(0, prod(dim(plot))) else layout) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } ### multiplot variate *** else{ effect.llines <- if(use.splines) spline.llines else effect.llines nm <- names(x)[x.var] x.vals <- x.data[, nm] if (nm %in% names(ticks.x)){ at <- ticks.x[[nm]]$at n <- ticks.x[[nm]]$n } else{ at <- NULL n <- 5 } xlm <- if (nm %in% names(xlim)){ xlim[[nm]] } else range_adj(x[nm]) tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){ trans <- transform.x[[nm]]$trans make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n) } else { trans <- I make.ticks(xlm, link=I, inverse=I, at=at, n=n) } ylim <- if (!any(is.na(ylim))) ylim else if (is.null(residuals)) c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) else if (rescale.axis) c(min(partial.residuals.range[1], range[1] - .025*(range[2] - range[1])), max(partial.residuals.range[2], range[2] + .025*(range[2] - range[1]))) else c(min(original.inverse(partial.residuals.range[1]), range[1] - .025*(range[2] - range[1])), max(original.inverse(partial.residuals.range[2]), range[2] + .025*(range[2] - range[1]))) tickmarks <- if (type == "response" && rescale.axis) make.ticks(ylim, link=trans.link, inverse=trans.inverse, at=ticks$at, n=ticks$n) else make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) x.fit <- x.data[, predictors[x.var]] use <- rep(TRUE, length(residuals)) xx <- x[, predictors[-x.var], drop=FALSE] if (show.strip.values){ for (pred in predictors[-x.var]){ x[[pred]] <- as.factor(x[[pred]]) } } plot <- xyplot(eval(parse( text=paste("fit ~ trans(", predictors[x.var], ") |", paste(predictors[-x.var], collapse="*")))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip)), par.settings=list(layout.heights=list(strip=height.strip)), panel=function(x, y, subscripts, x.vals, rug, lower, upper, has.se, ...){ if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at) good <- !is.na(y) if(!all(!good)){ effect.llines(x[good], y[good], lwd=lwd, col=colors[1], lty=lines, ...) if (rug && is.null(residuals)) lrug(trans(x.vals)) if (has.se){ if (ci.style == "bars"){ larrows(x0=x[good], y0=lower[subscripts][good], x1=x[good], y1=upper[subscripts][good], angle=90, code=3, col=if (partial.residuals) band.colors[1] else colors[.modc(2)], length=.125*cex/1.5) } else if(ci.style == "lines") { effect.llines(x[good], lower[subscripts][good], lty=2, col=colors[.modc(2)]) effect.llines(x[good], upper[subscripts][good], lty=2, col=colors[.modc(2)]) } else if(ci.style == "bands") { panel.bands(x[good], y[good], upper[subscripts][good], lower[subscripts][good], fill=band.colors[1], alpha=band.transparency, use.splines=use.splines) } } if (!is.null(residuals)){ predictors <- predictors[-x.var] factors <- sapply(xx, is.factor) for (predictor in predictors){ use <- use & if(factors[predictor]) x.all[, predictor] == xx[subscripts[1], predictor] else x.all[, predictor] == xx[subscripts[1], predictor] } n.in.panel <- sum(use) if (n.in.panel > 0){ fitted <- y[good][closest(trans(x.fit[use]), x[good])] partial.res <- if (!rescale.axis) original.inverse(original.link(fitted) + residuals[use]) else fitted + residuals[use] lpoints(trans(x.fit[use]), partial.res, col=residuals.color, pch=residuals.pch, cex=residuals.cex) if (show.fitted) lpoints(trans(x.fit[use]), fitted, pch=16, col=residuals.color) # REMOVE ME if (smooth.residuals && n.in.panel >= 10) { llines(loess.smooth(x.fit[use], partial.res, span=span, family=loess.family), lwd=residuals.lwd, lty=residuals.lty, col=residuals.smooth.color) } if (id.n > 0){ M <- cbind(trans(x.fit[use]), partial.res) md <- mahalanobis(M, colMeans(M), cov(M)) biggest <- order(md, decreasing=TRUE)[1:id.n] pos <- ifelse(trans(x.fit[use][biggest]) > mean(current.panel.limits()$xlim), 2, 4) ltext(trans(x.fit[use][biggest]), partial.res[biggest], names(partial.res)[biggest], pos=pos, col=id.col, cex=id.cex) } } } if (has.thresholds){ panel.abline(h=thresholds, lty=3) panel.text(rep(current.panel.limits()$xlim[1], length(thresholds)), thresholds, threshold.labels, adj=c(0,0), cex=0.75) panel.text(rep(current.panel.limits()$xlim[2], length(thresholds)), thresholds, threshold.labels, adj=c(1,0), cex=0.75) } }}, ylim=ylim, xlim=suppressWarnings(trans(xlm)), ylab=ylab, xlab=if (length(xlab) == 1 && is.na(xlab)) predictors[x.var] else xlab, x.vals=x.vals, rug=rug, main=main, lower=x$lower, upper=x$upper, has.se=has.se, data=x, scales=list(y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x), alternating=alternating), ...) result <- update(plot, layout = if (is.null(layout)) c(0, prod(dim(plot))) else layout) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } return(result) } print.plot.eff <- function(x, ...){ NextMethod(split=x$split, more=x$more, ...) invisible(x) } plot.efflist <- function(x, selection, rows, cols, ask=FALSE, graphics=TRUE, lattice, ...){ # Next line added 8/23/17 along with lattice, also lattice arg above lattice <- if(missing(lattice)) list() else lattice if (!missing(selection)){ if (is.character(selection)) selection <- gsub(" ", "", selection) return(plot(x[[selection]], lattice=lattice, ...)) } effects <- gsub(":", "*", names(x)) if (ask){ repeat { selection <- menu(effects, graphics=graphics, title="Select Term to Plot") if (selection == 0) break else print(plot(x[[selection]], lattice=lattice, ...)) } } else { neffects <- length(x) mfrow <- mfrow(neffects) if (missing(rows) || missing(cols)){ rows <- mfrow[1] cols <- mfrow[2] } for (i in 1:rows) { for (j in 1:cols){ if ((i-1)*cols + j > neffects) break more <- !((i-1)*cols + j == neffects) lattice[["array"]] <- list(row=i, col=j, nrow=rows, ncol=cols, more=more) print(plot(x[[(i-1)*cols + j]], lattice=lattice, ...)) } } } } effects/R/utilities.R0000644000176200001440000006346015037506576014257 0ustar liggesusers# utilities and common functions for effects package # John Fox, Jangman Hong, and Sanford Weisberg # 7-25-2013 S. Weisberg modified analyze.model and Analyze.model to ignore # default.levels, and use xlevels to set default. Use grid.pretty by default # 11-09-2013: fixed error message in Analyze.model(), bug reported by Joris Meys. J. Fox # 2013-10-15: eliminated functions not needed after effect() methods removed. J. Fox # 2013-10-29: fixed as.data.frame.*() to handle NA levels. J. Fox # 2014-03-13: modified Fixup.model.matrix() and Analyze.model() to handle partial residuals; # added is.factor.predictor() and is.numeric.predictor(). J. Fox # 2014-03-14: error message for non-factor, non-numeric predictor # 2014-07-08: if no numeric predictor, partial residuals suppressed with warning rather than an error # 2014-10-09: namespace fixes. J. Fox # 2015-04-08: added setStrip(), restoreStrip(). J. Fox # 2015-07-07: fixed matchVarName() so that it handles periods in names properly. J. Fox # 2015-09-10: added a fix for class = 'array' in Analyze.model. S. Weisberg # 2016-02-16: fix Analyze.model(), Fixup.model.matrix() to handle non-focal terms like polynomials correctly; clean up code. J. Fox # 2016-03-01: correct and improve computation of partial residuals # 2017-07-10: fix warnings about 1 x 1 arrays produced in eff.mul() and eff.polr() in R 3.4.0 (reported by Stefan Th. Gries). J. Fox # 2017-07-14: added applyDefaults() and isFALSE(). J. Fox # 2017-07-27: added effectsTheme(); removed setStrip(), restoreStrip(). J. Fox # 2017-08-08: added .onAttach() to set lattice theme. J. Fox # 2017-08-26: added scheffe() to compute multipler for Scheffe-type confidence bounds. J. Fox # 2017-08-29: enhanced applyDefaults() with onFALSE argument. J. Fox # 2017-09-02: added nice() # 2017-09-08: small changes to accommodate Effect.svyglm() # 2017-09-10: added replacement for ticksGrid() # 2018-05-09: fix typo in startup message # 2018-05-13: modified Analyze.model() to support partial-residual plots against factors. # 2018-08-17: modified .onAttach() so that trellis device doesn't open, suggestion of Kurt Hornik. # 2018-10-06: modified as.data.frame, adding a 'type' argument and deleting the 'transformation' argument, using the mu.eta function from the defining family # 2018-10-19: added as.data.frame.efflist # 2018-10-25: as.data.frame.eff() fixed so that deletion of the transformation argument doesn't break plot.eff(). J. Fox # 2018-12-19: accommodate character and logical predictors. J. Fox # 2019-08-27: correctly handle logical or character predictor with residuals # 2019-08-30: further fixes to character and logical predictors # 2019-10-24: add color options (e.g., for colorblind palette, suggestion of ) to effectsTheme(). J. Fox # 2019-11-14: change class(x) == "y" to inherits(x, "y") # 2022-02-18: insure that levels of focal predictor in returned objects are in proper order (bug reported by Christoph Scherber, didn't affect plots or tables). # 2023-02-19: added levels2dates() and methods. J. Fox (request of Christoph Scherber). # 2025-07-21: rename to is_factor_predictor() and is_numeric_predictor() to avoid confusion. J. Fox has.intercept <- function(model, ...) any(names(coefficients(model))=="(Intercept)") term.names <- function (model, ...) { term.names <- gsub(" ", "", labels(terms(model))) if (has.intercept(model)) c("(Intercept)", term.names) else term.names } response.name <- function (model, ...) deparse(attr(terms(model), "variables")[[2]]) mfrow <- function(n, max.plots=0){ # number of rows and columns for array of n plots if (max.plots != 0 & n > max.plots) stop(paste("number of plots =",n," exceeds maximum =", max.plots)) rows <- round(sqrt(n)) cols <- ceiling(n/rows) c(rows, cols) } expand.model.frame <- function (model, extras, envir = environment(formula(model)), na.expand = FALSE){ # modified version of R base function f <- formula(model) data <- eval(model$call$data, envir) ff <- foo ~ bar + baz if (is.call(extras)) gg <- extras else gg <- parse(text = paste("~", paste(extras, collapse = "+")))[[1]] ff[[2]] <- f[[2]] ff[[3]][[2]] <- f[[3]] ff[[3]][[3]] <- gg[[2]] if (!na.expand) { naa <- model$call$na.action subset <- model$call$subset rval <- if (is.null(data)) eval(call("model.frame", ff, # modified subset = subset, na.action = naa), envir) # lines else eval(call("model.frame", ff, data = data, # subset = subset, na.action = naa), envir) # } else { subset <- model$call$subset rval <- eval(call("model.frame", ff, data = data, subset = subset, na.action = I), envir) oldmf <- model.frame(model) keep <- match(rownames(oldmf), rownames(rval)) rval <- rval[keep, ] class(rval) <- "data.frame" } return(rval) } is.relative <- function(term1, term2, factors) { all(!(factors[,term1]&(!factors[,term2]))) } descendants <- function(term, mod, ...){ names <- term.names(mod) if (has.intercept(mod)) names <- names[-1] if(length(names)==1) return(NULL) which.term <- which(term == names) if (length(which.term) == 0){ factors <- attr(terms(...), "factors") rownames(factors) <- gsub(" ", "", rownames(factors)) colnames(factors) <- gsub(" ", "", colnames(factors)) (1:length(names))[sapply(names, function(term2) is.relative(term, term2, factors))] } else { factors <- attr(terms(mod), "factors") rownames(factors) <- gsub(" ", "", rownames(factors)) colnames(factors) <- gsub(" ", "", colnames(factors)) (1:length(names))[-which.term][sapply(names[-which.term], function(term2) is.relative(term, term2, factors))] } } is.high.order.term <- function(term, mod,...){ 0 == length(descendants(term, mod, ...)) } subscripts <- function(index, dims){ subs <- function(dims, index){ dim <- length(dims) if (dim == 0) return(NULL) cum <- c(1,cumprod(dims))[dim] i <- index %/% cum if (index %% cum != 0) i <- i + 1 c(i, subs(dims[-dim], index - (i - 1)*cum)) } rev(subs(dims, index)) } matrix.to.df <- function(matrix, colclasses){ opt <- options(warn = -1) on.exit(options(opt)) ncol <- ncol(matrix) colnames <- colnames(matrix) colclasses[sapply(colclasses, function(x) "integer" %in% x)] <- "numeric" result <- vector(mode="list", length=ncol) names(result) <- colnames for (j in 1:ncol){ result[[j]] <- matrix[, j] class <- colclasses[[colnames[j]]] result[[colnames[j]]] <- if ("numeric" %in% class) { decChar <- getOption('OutDec') if (decChar == '.') as.numeric(result[[colnames[j]]]) else as.numeric(gsub(decChar, '.', matrix[,j])) } else if ("ordered" %in% class) ordered(result[[colnames[j]]]) else if ("factor" %in% class) factor(result[[colnames[j]]]) else result[[colnames[j]]] } as.data.frame(result) } # the following function is a modification of code contributed by Steve Taylor # as.data.frame rewritten, 2018-10-06 # fixed 2018-10-25 so that plot.eff() isn't broken by the rewrite as.data.frame.eff <- function(x, row.names=NULL, optional=TRUE, type=c("response", "link"), ...){ type <- match.arg(type) linkinv <- if (is.null(x$link$linkinv)) I else x$link$linkinv linkmu.eta <- if(is.null(x$link$mu.eta)) function(x) NA else x$link$mu.eta xx <- x$x for (var in names(xx)){ if (is.factor(xx[[var]])){ xx[[var]] <- addNA(xx[[var]]) # handle factors with "valid" NA level } } x$x <- xx result <- switch(type, response= { if (is.null(x$se)) data.frame(x$x, fit=transform(x$fit)) else data.frame(x$x, fit=linkinv(x$fit), se = linkmu.eta(x$fit) * x$se, lower=linkinv(x$lower), upper=linkinv(x$upper))}, link = { if (is.null(x$se)) data.frame(x$x, fit=x$fit) else data.frame(x$x, fit=x$fit, se=x$se, lower=x$lower, upper= x$upper)}) attr(result, "type") <- type result } as.data.frame.efflist <- function(x, row.names=NULL, optional=TRUE, type, ...){ lapply(x, as.data.frame, type) } as.data.frame.effpoly <- function(x, row.names=NULL, optional=TRUE, ...){ factors <- sapply(x$variables, function(x) x$is.factor) factor.levels <- lapply(x$variables[factors], function(x) x$levels) if (!length(factor.levels) == 0){ factor.names <- names(factor.levels) for (fac in factor.names){ x$x[[fac]] <- factor(x$x[[fac]], levels=factor.levels[[fac]], exclude=NULL) } } result <- data.frame(x$x, x$prob, x$logit) if (!is.null(x$confidence.level)) result <- cbind(result, x$se.prob, x$se.logit, x$lower.prob, x$upper.prob, x$lower.logit, x$upper.logit) result } as.data.frame.efflatent <- function(x, row.names=NULL, optional=TRUE, ...){ xx <- x$x for (var in names(xx)){ if (is.factor(xx$var)){ xx$var <- addNA(xx$var) # handle factors with "valid" NA level } } x$x <- xx if (is.null(x$se)) data.frame(x$x, fit=x$fit) else data.frame(x$x, fit=x$fit, se=x$se, lower=x$lower, upper=x$upper) } logit2p <- function(logit) 1/(1 + exp(-logit)) p2logit <- function(p) log(p/(1 - p)) lrug <- function(x) { if (length(unique(x)) < 0.8 * length(x)) x <- jitter(x) grid.segments(x, unit(0, "npc"), x, unit(0.5, "lines"), default.units="native") } ## model.response not generic model.response.gls <- function(model){ model.response(model.frame(as.formula(model$call$model), data=eval(model$call$data))) } terms.gls <- function(x, ...) terms(formula(x)) ## vcov method for eff objects vcov.eff <- function(object, ...) object$vcov ## [ method for efflist objects `[.efflist` <- function(x, ...){ y <- NextMethod("[") class(y) <- class(x) y } ### the following functions are for use by Effect() methods Analyze.model <- function(focal.predictors, mod, xlevels, default.levels=NULL, formula.rhs, partial.residuals=FALSE, quantiles, x.var=NULL, data=NULL, typical=mean){ if ((!is.null(mod$nan.action)) && inherits(mod$na.action, "exclude")) class(mod$na.action) <- "omit" all.predictors <- all.vars(formula.rhs) check.vars <- !(focal.predictors %in% all.predictors) excluded.predictors <- setdiff(all.predictors, focal.predictors) number.bad <- sum(check.vars) if (any(check.vars)) { message <- if (number.bad == 1) paste("the following predictor is not in the model:", focal.predictors[check.vars]) else paste("the following predictors are not in the model:", paste(focal.predictors[check.vars], collapse=", ")) stop(message) } X.mod <- model.matrix(mod) cnames <- colnames(X.mod) factor.cols <- rep(FALSE, length(cnames)) names(factor.cols) <- cnames for (name in all.predictors){ if (is_factor_predictor(name, mod)) { factor.cols[grep(paste("^", name, sep=""), cnames)] <- TRUE } } factor.cols[grep(":", cnames)] <- FALSE X <- na.omit(expand.model.frame(mod, all.predictors)) which.matrices <- sapply(X, function(x) is.matrix(x) && ncol(x) == 1) if (any(which.matrices)){ nms <- names(which.matrices[which.matrices]) msg <- if (length(nms) > 1){ paste("the predictors", paste(nms, collapse=", "), "are one-column matrices that were converted to vectors") } else { paste("the predictor", nms, "is a one-column matrix that was converted to a vector") } warning(msg) for (nm in nms){ X[, nm] <- as.vector(X[, nm]) } } for (name in all.predictors){ if (is_factor_predictor(name, mod) && is.null(xlevels[[name]])) { xlevels[[name]] <- levels(X[, name]) # accomodate logical predictor } } bad <- sapply(X[, all.predictors, drop=FALSE], function(x) !(is.factor(x) || is.numeric(x))) if (any(bad)){ message <- if (sum(bad) == 1) paste("the following predictor isn't a factor, logical, character, or numeric:", all.predictors[bad]) else paste("the following predictors aren't factors, logical, character, or numeric:", paste(all.predictors[bad], collapse=", ")) stop(message) } x <- list() factor.levels <- list() if(length(xlevels)==0 & length(default.levels) == 1L) xlevels <- default.levels if(is.numeric(xlevels) & length(xlevels) == 1L){ levs <- xlevels for(name in focal.predictors) xlevels[[name]] <- levs } for (name in focal.predictors){ levels <- mod$xlevels[[name]] ## reverted levels <- levels(X[, name]) if(is.null(levels)) levels <- mod$xlevels[[paste("factor(",name,")",sep="")]] ##reverted deleted fac <- !is.null(levels) if (!fac) { levels <- if (is.null(xlevels[[name]])){ if (partial.residuals){ quantile(X[, name], quantiles) } else{ # grid.pretty(range(X[, name])) nice(seq(min(X[, name]), max(X[, name]), length.out=5)) } } else { if(length(xlevels[[name]]) == 1L) { nice(seq(min(X[, name]), max(X[,name]), length=xlevels[[name]]))} else xlevels[[name]]} } else factor.levels[[name]] <- levels # x[[name]] <- list(name=name, is.factor=fac, levels=levels) x[[name]] <- list(name=name, is.factor=is.factor(X[, name]), levels=levels) } if (partial.residuals){ numeric.predictors <- sapply(focal.predictors, function(predictor) is_numeric_predictor(predictor, mod)) if (is.null(x.var)){ x.var <- if (any(numeric.predictors)) which(numeric.predictors)[1] else 1 } x.var.name <- focal.predictors[x.var] if (is.numeric(X[, x.var.name]) && is.null(xlevels[[x.var.name]])){ x.var.range <- range(X[, focal.predictors[x.var]]) x[[x.var]][["levels"]] <- seq(from=x.var.range[1], to=x.var.range[2], length=100) } } x.excluded <- list() for (name in excluded.predictors){ levels <- mod$xlevels[[name]] ##reverted levels <- levels(X[, name]) if (is.logical(X[, name])) levels <- c("FALSE", "TRUE") fac <- !is.null(levels) level <- if (fac) levels[1] else typical(X[, name]) if (fac) factor.levels[[name]] <- levels x.excluded[[name]] <- list(name=name, is.factor=fac, level=level) } dims <- sapply(x, function(x) length(x$levels)) len <- prod(dims) n.focal <- length(focal.predictors) n.excluded <- length(excluded.predictors) n.vars <- n.focal + n.excluded predict.data <-matrix('', len, n.vars) excluded <- sapply(x.excluded, function(x) x$level) for (i in 1:len){ subs <- subscripts(i, dims) for (j in 1:n.focal){ predict.data[i,j] <- x[[j]]$levels[subs[j]] } if (n.excluded > 0) predict.data[i, (n.focal + 1):n.vars] <- excluded } colnames(predict.data) <- c(sapply(x, function(x) x$name), sapply(x.excluded, function(x) x$name)) colclasses <- lapply(X, class) colclasses[colclasses == "matrix"] <- "numeric" colclasses[colclasses == "array"] <- "numeric" predict.data <- matrix.to.df(predict.data, colclasses=colclasses) for (i in 1:length(x)){ if (x[[i]]$is.factor){ predict.data[[x[[i]]$name]] <- if (is.ordered(predict.data[[x[[i]]$name]])){ ordered(predict.data[[x[[i]]$name]], levels=x[[i]]$levels) } else { factor(predict.data[[x[[i]]$name]], levels=x[[i]]$levels) } } } list(predict.data=predict.data, factor.levels=factor.levels, factor.cols=factor.cols, focal.predictors=focal.predictors, n.focal=n.focal, excluded.predictors=excluded.predictors, n.excluded=n.excluded, x=x, X.mod=X.mod, cnames=cnames, X=X, x.var=x.var) } Fixup.model.matrix <- function(mod, mod.matrix, mod.matrix.all, X.mod, factor.cols, cnames, focal.predictors, excluded.predictors, typical, given.values, apply.typical.to.factors=FALSE){ attr(mod.matrix, "assign") <- attr(mod.matrix.all, "assign") if (length(excluded.predictors) > 0){ strangers <- Strangers(mod, focal.predictors, excluded.predictors) stranger.cols <- apply(outer(strangers, attr(mod.matrix,'assign'), '=='), 2, any) } else stranger.cols <- rep(FALSE, ncol(mod.matrix)) if (has.intercept(mod)) stranger.cols[1] <- TRUE if (any(stranger.cols)) { facs <- factor.cols & stranger.cols covs <- (!factor.cols) & stranger.cols if (has.intercept(mod)) covs[1] <- FALSE if (any(facs)){ mod.matrix[,facs] <- matrix(apply(as.matrix(X.mod[,facs]), 2, if (apply.typical.to.factors) typical else mean), nrow=nrow(mod.matrix), ncol=sum(facs), byrow=TRUE) } if (!is.null(given.values)){ stranger.names <- cnames[stranger.cols] given <- stranger.names %in% names(given.values) if (any(given)) { mod.matrix[,stranger.names[given]] <- matrix(given.values[stranger.names[given]], nrow=nrow(mod.matrix), ncol=length(stranger.names[given]), byrow=TRUE) } } for (name in cnames){ components <- unlist(strsplit(name, ':')) components <- components[components %in% cnames] if (length(components) > 1) { mod.matrix[,name] <- apply(mod.matrix[,components], 1, prod) } } } mod.matrix } matchVarName <- function(name, expressions){ scratch <- "zAMIjw4RN3" # randomly generated string name <- gsub("\\.", scratch, name) expressions <- gsub("\\.", scratch, as.character(expressions)) a <- !grepl(paste("[.]+", name, sep=""), expressions) b <- !grepl(paste(name, "[.]+", sep=""), expressions) c <- grepl(paste("\\b", name, "\\b", sep=""), expressions) a & b & c } Strangers <- function(mod, focal.predictors, excluded.predictors){ names <- term.names(mod) if (has.intercept(mod)) names <- names[-1] sel <- apply(sapply(excluded.predictors, matchVarName, expressions=names), 1, any) (1:length(sel))[sel] } # the following is used by effect.multinom() and Effect.multinom() eff.mul <- function(x0, B, se, m, p, r, V){ mu <- exp(x0 %*% B) mu <- mu/(1 + sum(mu)) mu[m] <- 1 - sum(mu) logits <- log(mu/(1 - mu)) if (!se) return(list(p=mu, logits=logits)) d <- array(0, c(m, m - 1, p)) exp.x0.B <- as.vector(exp(x0 %*% B)) sum.exp.x0.B <- sum(exp.x0.B) for (j in 1:(m-1)){ d[m, j,] <- - exp.x0.B[j]*x0 for (jj in 1:(m-1)){ d[j, jj,] <- if (jj != j) - exp(as.vector(x0 %*% (B[,jj] + B[,j])))*x0 else exp.x0.B[j]*(1 + sum.exp.x0.B - exp.x0.B[j])*x0 } } d <- d/(1 + sum.exp.x0.B)^2 V.mu <- rep(0, m) for (j in 1:m){ dd <- as.vector(t(d[j,,])) for (s in 1:r){ for (t in 1:r){ V.mu[j] <- V.mu[j] + V[s,t]*dd[s]*dd[t] } } } V.logits <- V.mu/(mu^2 * (1 - mu)^2) list(p=mu, std.err.p=sqrt(V.mu), logits=logits, std.error.logits=sqrt(V.logits)) } # the following are used by effect.polr() and Effect.polr() eff.polr <- function(x0, b, alpha, V, m, r, se){ eta0 <- as.vector(x0 %*% b) mu <- rep(0, m) mu[1] <- 1/(1 + exp(alpha[1] + eta0)) for (j in 2:(m-1)){ mu[j] <- exp(eta0)*(exp(alpha[j - 1]) - exp(alpha[j]))/ ((1 + exp(alpha[j - 1] + eta0))*(1 + exp(alpha[j] + eta0))) } mu[m] <- 1 - sum(mu) logits <- log(mu/(1 - mu)) if (!se) return(list(p=mu, logits=logits)) d <- matrix(0, m, r) d[1, 1] <- - exp(alpha[1] + eta0)/(1 + exp(alpha[1] + eta0))^2 d[1, m:r] <- - exp(alpha[1] + eta0)*x0/(1 + exp(alpha[1] + eta0))^2 for (j in 2:(m-1)){ d[j, j-1] <- exp(alpha[j-1] + eta0)/(1 + exp(alpha[j-1] + eta0))^2 d[j, j] <- - exp(alpha[j] + eta0)/(1 + exp(alpha[j] + eta0))^2 d[j, m:r] <- exp(eta0)*(exp(alpha[j]) - exp(alpha[j-1]))* (exp(alpha[j-1] + alpha[j] + 2*eta0) - 1) * x0 / (((1 + exp(alpha[j-1] + eta0))^2)* ((1 + exp(alpha[j] + eta0))^2)) } d[m, m-1] <- exp(alpha[m-1] + eta0)/(1 + exp(alpha[m-1] + eta0))^2 d[m, m:r] <- exp(alpha[m-1] + eta0)*x0/(1 + exp(alpha[m-1] + eta0))^2 V.mu <- rep(0, m) for (j in 1:m){ dd <- d[j,] for (s in 1:r){ for (t in 1:r){ V.mu[j] <- V.mu[j] + V[s,t]*dd[s]*dd[t] } } } V.logits <- V.mu/(mu^2 * (1 - mu)^2) list(p=mu, std.err.p=sqrt(V.mu), logits=logits, std.error.logits=sqrt(V.logits)) } eff.latent <- function(X0, b, V, se){ eta <- X0 %*% b if (!se) return(list(fit=eta)) var <- diag(X0 %*% V %*% t(X0)) list(fit=eta, se=sqrt(var)) } # determine class of a predictor # is_factor_predictor <- function(predictor, model) { # !is.null(model$xlevels[[predictor]]) # } is_factor_predictor <- function(predictor, model) { predictor %in% names(attr(model.matrix(model), "contrasts")) } is_numeric_predictor <- function(predictor, model) { is.null(model$xlevels[[predictor]]) } # custom lattice theme # effectsTheme <- function(strip.background=list(col=gray(seq(0.95, 0.5, length=3))), # strip.shingle=list(col="black"), clip=list(strip="off"), # superpose.line=list(lwd=c(2, rep(1, 6)))){ # # current <- sapply(c("strip.background", "strip.shingle", "clip", "superpose.line"), # trellis.par.get) # result <- list(strip.background=strip.background, strip.shingle=strip.shingle, clip=clip, # superpose.line=superpose.line) # attr(result, "current") <- current # result # } effectsTheme <- function (strip.background = list(col = gray(seq(0.95, 0.5, length = 3))), strip.shingle = list(col = "black"), clip = list(strip = "off"), superpose.line = list(lwd = c(2, rep(1, 6))), col){ car.palette <- c("blue", "magenta", "cyan", "orange", "gray", "green3", "red") colorblind.palette <- rgb(red = c(230, 86, 0, 240, 0, 213, 204), green = c(159, 180, 158, 228, 114, 94, 121), blue = c(0, 233, 115, 66, 178, 0, 167), names = c("orange", "sky.blue", "bluish.green", "yellow", "blue", "vermillion", "reddish.purple"), maxColorValue = 255) # colorblind palette from https://jfly.uni-koeln.de/color/ (ignoring "black") current <- sapply(c("strip.background", "strip.shingle", "clip", "superpose.line"), lattice::trellis.par.get) if (!missing(col)){ superpose.line$col <- if (col[1] == "colorblind"){ colorblind.palette } else if (col[1] == "car") { car.palette } else if (col[1] == "R") { palette()[-1] } else { col } } result <- list(strip.background = strip.background, strip.shingle = strip.shingle, clip = clip, superpose.line = superpose.line) attr(result, "current") <- current result } .onAttach <- function(libname, pkgname){ if (!"package:lattice" %in% search()){ lattice::lattice.options(default.theme = effectsTheme) packageStartupMessage("lattice theme set by effectsTheme()", "\nSee ?effectsTheme for details.") } else packageStartupMessage("Use the command", "\n lattice::trellis.par.set(effectsTheme())", "\n to customize lattice options for effects plots.", "\nSee ?effectsTheme for details.") } # to handle defaults for list-style arguments applyDefaults <- function(args, defaults, onFALSE, arg=""){ if (is.null(args)) return(defaults) if (isFALSE(args)) { if (missing(onFALSE)) return(FALSE) else return(onFALSE) } names <- names(args) names <- names[names != ""] if (!isTRUE(args) && length(names) != length(args)) warning("unnamed ", arg, " arguments, will be ignored") if (isTRUE(args) || is.null(names)) defaults else defaults[names] <- args[names] as.list(defaults) } isFALSE <- function(x){ length(x) == 1 && is.logical(x) && !isTRUE(x) } # compute multiplier for Scheffe-type confidence bounds scheffe <- function(level, p, df=Inf){ sqrt(p*qf(level, p, df)) } # function to compute "nice" numbers nice <- function (x, direction = c("round", "down", "up"), lead.digits = 1) { direction <- match.arg(direction) if (length(x) > 1){ result <- sapply(x, nice, direction = direction, lead.digits = lead.digits) if (anyDuplicated(result)) result <- nice(x, direction=direction, lead.digits = lead.digits + 1) return(result) } if (x == 0) return(0) power.10 <- floor(log(abs(x), 10)) if (lead.digits > 1) power.10 <- power.10 - lead.digits + 1 lead.digit <- switch(direction, round = round(abs(x)/10^power.10), down = floor(abs(x)/10^power.10), up = ceiling(abs(x)/10^power.10)) sign(x) * lead.digit * 10^power.10 } ticksGrid <- function(x, y, col=reference.line$col){ reference.line <- trellis.par.get("reference.line") panel.abline(h=y, v=x, col=col, lty=reference.line$lty) } # for character and logical predictors is.factor <- function(x) inherits(x, "factor") || ((is.character(x) || is.logical(x)) && is.vector(x)) levels.character <- function(x) { levs <- unique(x) sort(levs[!is.na(levs)]) } levels.logical <- function(x) { c("FALSE", "TRUE") } # to support Date variables levels2dates <- function(effect, ...){ UseMethod("levels2dates") } levels2dates.eff <- function(effect, predictor, origin, evenly.spaced=TRUE, n, ...){ levels <- effect$variables[[predictor]]$levels if (evenly.spaced) { if (missing(n)) n <- length(levels) levels <- seq(min(levels), max(levels), length=n) } as.Date(levels, origin) } levels2dates.effpoly <- function(effect, predictor, origin, evenly.spaced=TRUE, n, ...){ levels2dates.eff(effect, predictor, origin, evenly.spaced, n, ...) } effects/R/summary-print-methods.R0000644000176200001440000002604715040202210016500 0ustar liggesusers# plot, summary, and print methods for effects package # John Fox and Jangman Hong # last modified 2012-11-30 by J. Fox # 29 June 2011 added grid, rotx and roty arguments to the two plot methods # by S. Weisberg # 21 Dec 2012 modest modification of empty cells with crossed factors # 2013-01-17: Added factor.ci.style arg to plot.eff() and plot.effpoly(). J. Fox # 2013-01-18: Added CI bars to multiline plots with factor.ci.style="bars" # 2013-01-19: Renamed 'factor.ci.style' to 'ci.style'. Added a 'none' option # extended to variate terms if multiline=TRUE, ci.style="bars" # 2013-01-30: scale arrow "heads" for error bars relative to cex # 2013-05-31: fixed symbol colors in legends in plot.eff(). J. Fox # 2013-08-14: fixed bug in restoring warn option. J. Fox # 2013-08-27: fixed symbols argument for multiline plot in plot.eff(), reported by Ulrike Gromping. J. Fox # 2013-08-31: fixed handling of ticks.x argument. John # 2013-09-25: moved plot.eff methods to plot.methods.R for easier work. Michael # 2013-10-17: added use.splines argument to plot.effpoly. Sandy # 2025-07-22: fix summary.eff when transformation is inverse rather than direct. John summary.eff <- function(object, type=c("response", "link"), ...){ effect <- as.vector(object$fit) trans.effect <- object$transformation$inverse(effect) check.order <- if (all(order(effect) == order(trans.effect))){ "direct" } else if (all(order(effect) == order(- trans.effect))){ "inverse" } else { "inconsistent" } if (check.order == "inconsistent") { warning("the response transformation appears to be non-monotone") } result <- list() result$header <- paste("\n", gsub(":", "*", object$term), 'effect\n') result$offset <- object$offset type <- match.arg(type) if (type == "response") { object$fit <- object$transformation$inverse(object$fit) if (!is.null(object$confidence.level)){ if (check.order == "inverse"){ save.upper <- object$upper object$upper <- object$transformation$inverse(object$lower) object$lower <- object$transformation$inverse(save.upper) } else { object$lower <- object$transformation$inverse(object$lower) object$upper <- object$transformation$inverse(object$upper) } } } result$effect <- array(object$fit, dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) if (!is.null(object$se)){ result$lower.header <- paste('\n Lower', round(100*object$confidence.level, 2), 'Percent Confidence Limits\n') result$lower <- array(object$lower, dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) result$upper.header <- paste('\n Upper', round(100*object$confidence.level, 2), 'Percent Confidence Limits\n') result$upper <- array(object$upper, dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) } if (object$discrepancy > 1e-3) result$warning <- paste("\nWarning: There is an average discrepancy of", round(object$discrepancy, 3), "percent \n in the 'safe' predictions for effect", object$term, '\n') class(result) <- "summary.eff" result } print.summary.eff <- function(x, ...){ cat(x$header) if (x$offset != 0) cat("\noffset = ", x$offset, "\n\n") print(x$effect, ...) if (!is.null(x$lower)){ cat(x$lower.header) print(x$lower, ...) cat(x$upper.header) print(x$upper, ...) } if (!is.null(x$thresholds)){ cat("\nThresholds:\n") print(x$thresholds, ...) } if (!is.null(x$warning)) cat(x$warning) invisible(x) } print.eff <- function(x, type=c("response", "link"), ...){ cat(paste("\n", gsub(":", "*", x$term), 'effect\n')) if (x$offset != 0) cat("\noffset = ", x$offset, "\n\n") type <- match.arg(type) if (type == "response") x$fit <- x$transformation$inverse(x$fit) table <- array(x$fit, dim=sapply(x$variables, function(x) length(x$levels)), dimnames=lapply(x$variables, function(x) x$levels)) print(table, ...) if (x$discrepancy > 1e-3) cat(paste("\nWarning: There is an average discrepancy of", round(x$discrepancy, 3), "percent \n in the 'safe' predictions for effect", x$term, '\n')) invisible(x) } print.efflist <- function(x, ...){ cat(" model: ") form <- x[[1]]$formula attributes(form) <- NULL print(form) for (effect in names(x)){ print(x[[effect]], ...) } invisible(x) } summary.efflist <- function(object, ...){ cat(" model: ") form <- object[[1]]$formula attributes(form) <- NULL print(form) for (effect in names(object)){ print(summary(object[[effect]], ...)) } invisible(NULL) } print.effpoly <- function(x, type=c("probability", "logits"), ...){ type <- match.arg(type) x.frame <-as.data.frame(x) n.predictors <- length(names(x$x)) predictors <- names(x.frame)[1:n.predictors] y.lev <- x$y.lev ylevel.names <- make.names(paste("prob",y.lev)) colnames(x$prob) <- colnames(x$logit) <- ylevel.names y.categories <- matrix(0, nrow=length(x.frame[,predictors[1]]), ncol=length(y.lev)) for (i in 1:length(y.lev)){ level <- which(colnames(x$prob)[i] == ylevel.names) y.categories[,i] <- rep(y.lev[level], length(y.categories[,i])) } y.categories <- as.vector(y.categories) y.categories <- factor(y.categories) for (i in 1:length(y.lev)){ cat(paste("\n", gsub(":", "*", x$term), " effect (", type,") for ", y.lev[i], "\n", sep="")) table <- array(if (type == "probability") {x$prob[y.categories==y.lev[i]]} else {x$logit[y.categories==y.lev[i]]}, dim=sapply(x$variables, function(x) length(x$levels)), dimnames=lapply(x$variables, function(x) x$levels)) print(table, ...) } if (x$discrepancy > 0.1) cat(paste("\nWarning: There is an average discrepancy of", round(x$discrepancy, 2), "percent \n in the 'safe' predictions for effect", x$term, '\n')) invisible(x) } summary.effpoly <- function(object, type=c("probability", "logits"), ...){ type <- match.arg(type) x.frame <-as.data.frame(object) n.predictors <- length(names(object$x)) predictors <- names(x.frame)[1:n.predictors] y.lev <- object$y.lev ylevel.names <- make.names(paste("prob",y.lev)) colnames(object$prob) <- colnames(object$logit) <- colnames(object$lower.logit) <- colnames(object$upper.logit) <- colnames(object$lower.prob) <- colnames(object$upper.prob)<- ylevel.names y.categories <-matrix(0, nrow=length(x.frame[,predictors[1]]), ncol=length(y.lev)) for (i in 1:length(y.lev)){ level <- which(colnames(object$prob)[i] == ylevel.names) y.categories[,i] <- rep(y.lev[level], length(y.categories[,i])) } y.categories <- as.vector(y.categories) y.categories <- factor(y.categories) for (i in 1:length(y.lev)){ cat(paste("\n", gsub(":", "*", object$term), " effect (" , type, ") for ", y.lev[i], "\n", sep="")) table <- array(if (type == "probability") {object$prob[y.categories==y.lev[i]]} else {object$logit[y.categories==y.lev[i]]}, dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) print(table, ...) } if (is.null(object$confidence.level)) return(invisible(NULL)) for (i in 1:length(y.lev)){ cat(paste("\n", 'Lower', object$confidence.level*100, 'Percent Confidence Limits for' , y.lev[i],'\n')) table <- if (type == "probability") object$lower.prob else object$lower.logit table <- array(table[y.categories==y.lev[i]], dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) print(table, ...) } for (i in 1:length(y.lev)){ cat(paste("\n", 'Upper', object$confidence.level*100, 'Percent Confidence Limits for' , y.lev[i],'\n')) table <- if (type == "probability") object$upper.prob else object$upper.logit table <- array(table[y.categories==y.lev[i]], dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) print(table, ...) } if (object$discrepancy > 0.1) cat(paste("\nWarning: There is an average discrepancy of", round(object$discrepancy, 2), "percent \n in the 'safe' predictions for effect", object$term, '\n')) invisible(NULL) } print.efflatent <- function(x, ...){ cat(paste("\n", gsub(":", "*", x$term), 'effect\n')) table <- array(x$fit, dim=sapply(x$variables, function(x) length(x$levels)), dimnames=lapply(x$variables, function(x) x$levels)) print(table, ...) cat("\nThresholds:\n") print(x$thresholds, ...) if (x$discrepancy > 0.1) cat(paste("\nWarning: There is an average discrepancy of", round(x$discrepancy, 3), "percent \n in the 'safe' predictions for effect", x$term, '\n')) invisible(x) } summary.efflatent <- function(object, ...){ result <- list() result$header <- paste("\n", gsub(":", "*", object$term), 'effect\n') result$effect <- array(object$fit, dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) if (!is.null(object$se)){ result$lower.header <- paste('\n Lower', round(100*object$confidence.level, 2), 'Percent Confidence Limits\n') result$lower <- array(object$lower, dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) result$upper.header <- paste('\n Upper', round(100*object$confidence.level, 2), 'Percent Confidence Limits\n') result$upper <- array(object$upper, dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) } result$thresholds <- object$thresholds if (object$discrepancy > 0.1) result$warning <- paste("\nWarning: There is an average discrepancy of", round(object$discrepancy, 3), "percent \n in the 'safe' predictions for effect", object$term, '\n') class(result) <- "summary.eff" result } effects/R/Effect.R0000644000176200001440000010244215041730016013411 0ustar liggesusers# Effect generic and methods # John Fox and Sanford Weisberg # 2012-12-21: Allow for empty cells in factor interactions, S. Weisberg # 2012-03-05: Added .merMod method for development version of lme4, J. Fox # 2012-04-06: Added support for lme4.0, J. Fox # 2013-07-15: Changed default xlevels and default.levels # 2013-10-15: Added Effect.default(). J. Fox # 2013-10-22: fixed bug in Effect.lm() when na.action=na.exclude. J. Fox # 2013-10-29: code to handle "valid" NAs in factors. J. Fox # 2013-11-06: fixed bug in Effect.multinom() in construction of effect object # 2014-03-13: modified Effect.lm() to compute partial residuals. J. Fox # 2014-05-06: fixed bug in Effect.gls() when cor or var structure depends on variables in the data set. J. Fox # 2014-08-02: added vcov.=vcov argument to allow other methods of estimating var(coef.estimates) # 2014-09-25: added KR argument to Effect.mer() and Effect.merMod(). J. Fox # 2014-12-07: don't assume that pbkrtest is installed. J. Fox # 2015-03-25: added "family" element to eff objects returned by Effect.lm(). J. Fox # 2016-02-16: fixed problem in handling terms like polynomials for non-focal predictors. J. Fox # 2016-03-01: recoded calculation of partial residuals. J. Fox # 2016-07-19: added checkFormula(). J. Fox # 2017-08-18: removed default.levels argument. J. Fox # 2017-08-26: introduced confint list argument, including Scheffe intervals. J. Fox # 2017-08-29: reintroduce legacy se and confidence.level arguments. # 2017-09-07: added Effect.svyglm() # 2017-09-14: no partial residuals for Effect.svyglm() # 2017-11-03: correct handling of rank deficient models, now using `estimability` package # 2017-11-22: modified checkFormula to work with clm2 models that don't have a 'formula' argument # 2017-12-10: Effect.default. Effect.mer, .merMod, .lme, gls have been replaced to use the default. # 2018-01-22: allow given.values="equal" or given.values="default" # 2018-01-25: substitute se for confint arg; make confint a legacy arg # 2018-05-06: allow for complete=FALSE arg in potential calls to vcov.lm() and vcov.glm. # 2018-05-13: allow partial residuals to be computed when the x.var is a factor. # 2018-06-05: Effect.default now makes sure family$aic is # set, for use with non-standard families. # 2018-06-05: A test has been added to Effect.default to chech if family$variance # has one parameter. If not, the function is stopped and an error is # returned. # 2018-06-12: Fixed bug with vcov in Effect.default # 2018-06-20: Added a check to Effect.default to handle family args that # are character or an unevaluated function # 2018-10-01: Avoid warnings when testing given.values == "equal" or "default". # 2018-10-08: transformation argument changed to legacy # 2018-10-08: new returned value 'link' = family(mod) # 2019-04-20: made Effect.default() more robust in fitting fake glm by setting epsilon=Inf. # 2019-04-20: fixed bug in .set.given.equal() in tests for model class. # 2019-07-05: clm, clm2 and clmm were not passing threshholds to the fake polr object, now corrected. # 2019-09-04: handle xlevels=n argument correctly # 2020-05-22: Removed fixFormula function. # 2020-05-27: Added effCoef generic that uses the 'insight' package to find the formula, coef estimates and vcov for methods supported by insight # 2020-06-23: Added effSources to gather sources for new regression methods. # Old mechanism of using Effect.method will still work # 2020-12-02: Allow cov. to be a matrix, not just a function. # 2022-01-29: Added warning or note about unestimable effects. # 2022-02-16: Make computation of residual df more robust. # 2025-07-27: transformation is no longer a "legacy" argument to Effect.lm(). ### Non-exported function added 2018-01-22 to generalize given.values to allow for "equal" weighting of factor levels for non-focal predictors. .set.given.equal <- function(m){ if(inherits(m, "lm") & !("(Intercept)" %in% names(coef(m)))) stop("Seting given.vales='equal' requires an intercept in the model formula") terms <- terms(m) classes <- attr(terms, "dataClasses") response <- attr(terms, "response") classes <- classes[-response] factors <- names(classes)[classes=="factor"] out <- NULL for (f in factors){ form <- as.formula(paste( "~", f, collapse="")) .m0 <- if(inherits(m, "glm")) {update(m, form, control=glm.control(epsilon=Inf, maxit=1))} else { if(inherits(m, "polr")) {update(m, form, control=list(maxit=1))} else { if(inherits(m, "multinom")) {update(m, form, maxit=0, trace=FALSE)} else update(m, form)}} names <- colnames(model.matrix(.m0))[-1] vals <- rep(1/(length(names)+1), length(names)) names(vals) <- names out <- c(out, vals) } out } # 2020-05-29 Use insight::get_parameters to get a vector of parameter estimates # for any model supported by insight. effCoef <- function(mod, ...){UseMethod("effCoef", mod)} effCoef.default <- function(mod, ...){ est1 <- insight::get_parameters(mod, ...) est <- est1[,2] names(est) <- est1[,1] est } ### end of non-exported function checkFormula <- function(object){ # clm2 does not have a formula, # if(inherits(object, "clm2")) formula <- function(x) x$call$location if (!inherits(object, "formula")){ object <- insight::find_formula(object)$conditional } formula <- as.character(object) rhs <- formula[length(formula)] res <- regexpr("as.factor\\(|factor\\(|as.ordered\\(|ordered\\(|as.numeric\\(|as.integer\\(", rhs) res == -1 || attr(res, "match.length") == 0 } Effect <- function(focal.predictors, mod, ...){ if (!checkFormula(mod)) stop("model formula should not contain calls to", "\n factor(), as.factor(), ordered(), as.ordered(),", " as.numeric(), or as.integer();", "\n see 'Warnings and Limitations' in ?Effect") UseMethod("Effect", mod) } # 2017-12-04 new Effect.default that actually works # 2017-12-07 added Effects.lme, .mer, gls that work Effect.default <- function(focal.predictors, mod, ..., sources){ # 2020/05/23 ... uses 'insight' package, else # if sources is null, try to construct it sources <- if(missing(sources)) effSources(mod) else sources ## formula formula <- if(is.null(sources$formula)) insight::find_formula(mod)$conditional else sources$formula # the next line returns the formula if focal.predictors is null if(is.null(focal.predictors)) return(formula) ## call cl <- if(is.null(sources$call)) {if(isS4(mod)) mod@call else mod$call} else sources$call # insert formula into the call cl$formula <- formula ## type == 'glm' unless it is set in sources type <- if(is.null(sources$type)) "glm" else sources$type # family fam <- try(family(mod), silent=TRUE) if(inherits(fam, "try-error")) fam <- NULL if(!is.null(sources$family)){fam <- sources$family} if(!is.null(fam)){ fam$aic <- function(...) NULL # check to be sure the variance function in the family has one argument only, # otherwise this method won't work if(!is.null(fam$variance)){ if(length(formals(fam$variance)) > 1) stop("Effect plots are not implemented for families with more than one parameter in the variance function (e.g., negative binomial).")} } cl$family <- fam # get the coefficient estimates and vcov from sources if present coefficients <- if(is.null(sources$coefficients)) effCoef(mod) else sources$coefficients vcov <- if(is.null(sources$vcov)) as.matrix(vcov(mod, complete=TRUE)) else sources$vcov # added 7/5/2019, next line, for models that use polr (e.g, clm, clm2) zeta <- if(is.null(sources$zeta)) NULL else sources$zeta # set control parameters: suggested by Nate TeGrotenhuis cl$control <- switch(type, glm = glm.control(epsilon=Inf, maxit=1), polr = list(maxit=1), multinom = c(maxit=1)) cl$method <- sources$method # NULL except for type=="polr" .m <- switch(type, glm=match(c("formula", "data", "family", "contrasts", "subset", "control", "offset"), names(cl), 0L), polr=match(c("formula", "data", "family", "contrasts", "subset", "control", "method"), names(cl), 0L), multinom=match(c("formula", "data", "family", "contrasts", "subset", "family", "maxit", "offset"), names(cl), 0L)) cl <- cl[c(1L, .m)] # if(!is.null(fam)) cl$family <- fam # if (is.character(cl$family)) # cl$family <- get(cl$family, mode = "function", envir = parent.frame()) # if (is.function(cl$family)) # cl$family <- family() cl[[1L]] <- as.name(type) # The following eval creates on object of class glm, polr or multinom. # These are crated to avoid writing an Effects method for every type of model. # The only information used from this "fake" object are the coefficients and # the variance-covariance matrix, and these are copied from the original # object so Effects plots the right things. mod2 <- eval(cl) mod2$coefficients <- coefficients mod2$vcov <- vcov if(!is.null(zeta)) mod2$zeta <- zeta # added 7/5/2019 if(type == "glm"){ mod2$weights <- as.vector(with(mod2, prior.weights * (family$mu.eta(linear.predictors)^2 / family$variance(fitted.values))))} class(mod2) <- c("fakeeffmod", class(mod2)) Effect(focal.predictors, mod2, ...) # call the glm/polr/multinom method } vcov.fakeeffmod <- function(object, ...) object$vcov ## This function removes terms with "|" or "||" in the formula, assuming these ## correspond to random effects. As of 2020-05-22 this function is never used. fixFormula <- function (term) { if (!("|" %in% all.names(term)) && !("||" %in% all.names(term))) return(term) if ((is.call(term) && term[[1]] == as.name("|")) || (is.call(term) && term[[1]] == as.name("||"))) return(NULL) if (length(term) == 2) { nb <- fixFormula(term[[2]]) if (is.null(nb)) return(NULL) term[[2]] <- nb return(term) } nb2 <- fixFormula(term[[2]]) nb3 <- fixFormula(term[[3]]) if (is.null(nb2)) return(nb3) if (is.null(nb3)) return(nb2) term[[2]] <- nb2 term[[3]] <- nb3 term } Effect.lm <- function(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov. = vcov, se=TRUE, residuals=FALSE, quantiles=seq(0.2, 0.8, by=0.2), x.var=NULL, transformation, ..., #legacy arguments: given.values, typical, offset, confint, confidence.level, partial.residuals){ if (is.numeric(xlevels)){ if (length(xlevels) > 1 || round(xlevels != xlevels)) stop("xlevels must be a single whole number or a list") form <- Effect.default(NULL, mod) #returns the fixed-effects formula terms <- attr(terms(form), "term.labels") predictors <- all.vars(parse(text=terms)) xlevs <- list() for (pred in predictors){ xlevs[[pred]] <- xlevels } xlevels <- xlevs } if (!missing(partial.residuals)) residuals <- partial.residuals partial.residuals <- residuals if (missing(transformation)) transformation <- list(link = family(mod)$linkfun, inverse = family(mod)$linkinv) if (missing(fixed.predictors)) fixed.predictors <- NULL fixed.predictors <- applyDefaults(fixed.predictors, list(given.values=NULL, typical=mean, apply.typical.to.factors=FALSE, offset=mean), arg="fixed.predictors") if (missing(given.values)) given.values <- fixed.predictors$given.values # new 1/22/18 to allow for automatical equal weighting of factor levels if(!is.null(given.values)){ if (given.values[1] == "default") given.values <- NULL if (given.values[1] == "equal") given.values <- .set.given.equal(mod)} # end new code if (missing(typical)) typical <- fixed.predictors$typical if (missing(offset)) offset <- fixed.predictors$offset apply.typical.to.factors <- fixed.predictors$apply.typical.to.factors if (!missing(confint)) se <- confint confint <- applyDefaults(se, list(compute=TRUE, level=.95, type="pointwise"), onFALSE=list(compute=FALSE, level=.95, type="pointwise"), arg="se") se <- confint$compute if (missing(confidence.level)) confidence.level <- confint$level confidence.type <- match.arg(confint$type, c("pointwise", "Scheffe", "scheffe")) default.levels <- NULL # just for backwards compatibility data <- if (partial.residuals){ all.vars <- all.vars(formula(mod)) expand.model.frame(mod, all.vars)[, all.vars] } else NULL if (!is.null(given.values) && !all(which <- names(given.values) %in% names(coef(mod)))) stop("given.values (", names(given.values[!which]), ") not in the model") off <- if (is.numeric(offset) && length(offset) == 1) offset else if (is.function(offset)) { mod.off <- model.offset(model.frame(mod)) if (is.null(mod.off)) 0 else offset(mod.off) } else stop("offset must be a function or a number") formula.rhs <- formula(mod)[[3]] if (!missing(x.var)){ if (!is.numeric(x.var)) { x.var.name <- x.var x.var <- which(x.var == focal.predictors) } if (length(x.var) == 0) stop("'", x.var.name, "' is not among the focal predictors") if (length(x.var) > 1) stop("x.var argument must be of length 1") } model.components <- Analyze.model(focal.predictors, mod, xlevels, default.levels, formula.rhs, partial.residuals=partial.residuals, quantiles=quantiles, x.var=x.var, data=data, typical=typical) excluded.predictors <- model.components$excluded.predictors predict.data <- model.components$predict.data predict.data.all.rounded <- predict.data.all <- if (partial.residuals) na.omit(data[, all.vars(formula(mod))]) else NULL factor.levels <- model.components$factor.levels factor.cols <- model.components$factor.cols n.focal <- model.components$n.focal x <- model.components$x X.mod <- model.components$X.mod cnames <- model.components$cnames X <- model.components$X x.var <- model.components$x.var formula.rhs <- formula(mod)[c(1, 3)] Terms <- delete.response(terms(mod)) mf <- model.frame(Terms, predict.data, xlev = factor.levels, na.action=NULL) mod.matrix <- model.matrix(formula.rhs, data = mf, contrasts.arg = mod$contrasts) if (is.null(x.var)) partial.residuals <- FALSE factors <- sapply(predict.data, is.factor) if (partial.residuals){ for (predictor in focal.predictors[-x.var]){ if (!factors[predictor]){ values <- unique(predict.data[, predictor]) predict.data.all.rounded[, predictor] <- values[apply(outer(predict.data.all[, predictor], values, function(x, y) (x - y)^2), 1, which.min)] } } } mod.matrix.all <- model.matrix(mod) wts <- weights(mod) if (is.null(wts)) wts <- rep(1, length(residuals(mod))) mod.matrix <- Fixup.model.matrix(mod, mod.matrix, mod.matrix.all, X.mod, factor.cols, cnames, focal.predictors, excluded.predictors, typical, given.values, apply.typical.to.factors) # 11/3/2017. Check to see if the model is full rank # Compute a basis for the null space, using estimability package null.basis <- estimability::nonest.basis(mod) # returns basis for null space # check to see if each row of mod.matrix is estimable is.estimable <- estimability::is.estble(mod.matrix, null.basis) # TRUE if effect is estimable else FALSE if (!any(is.estimable)) { warning("none of the values of the ", paste(focal.predictors, collapse="*"), " effect are estimable") } else if ((n.not.estimable <- sum(!is.estimable)) > 0) { message("Note:\n ", n.not.estimable, if (n.not.estimable > 1) " values" else " value", " in the ", paste(focal.predictors, collapse="*"), " effect are not estimable") } # substitute 0 for NA in coef vector and compute effects scoef <- ifelse(is.na(mod$coefficients), 0L, mod$coefficients) effect <- off + mod.matrix %*% scoef effect[!is.estimable] <- NA # set all non-estimable effects to NA # end estimability check if (partial.residuals){ res <- na.omit(residuals(mod, type="working")) fitted <- na.omit(if (inherits(mod, "glm")) predict(mod, type="link") else predict(mod)) partial.residuals.range <- range(fitted + res) } else { res <- partial.residuals.range <- NULL } result <- list(term = paste(focal.predictors, collapse="*"), formula = formula(mod), response = response.name(mod), variables = x, fit = effect, x = predict.data[, 1:n.focal, drop=FALSE], x.all=predict.data.all.rounded[, focal.predictors, drop=FALSE], model.matrix = mod.matrix, data = X, discrepancy = 0, offset=off, residuals=res, partial.residuals.range=partial.residuals.range, x.var=x.var) if (se) { if (any(family(mod)$family == c("binomial", "poisson"))) { z <- if (confidence.type == "pointwise") { qnorm(1 - (1 - confidence.level)/2) } else { p <- length(na.omit(coef(mod))) scheffe(confidence.level, p) } } else { df.residual <- df.residual(mod) if (is.null(df.residual) || is.na(df.residual)) df.residual <- Inf z <- if (confidence.type == "pointwise") { qt(1 - (1 - confidence.level)/2, df = df.residual) } else { p <- length(na.omit(coef(mod))) scheffe(confidence.level, p, df.residual) } } V <- if(inherits(vcov., "matrix")) vcov. else { if(inherits(vcov., "function")) vcov.(mod, complete=FALSE) else stop("vcov. must be a function or matrix")} use <- !is.na(mod$coefficients) # new # mmat <- mod.matrix[, !is.na(mod$coefficients)] # remove non-cols with NA coeffs mmat <- mod.matrix[, use] # remove non-cols with NA coeffs # new if (any(is.na(V))) V <- V[use, use] # new eff.vcov <- mmat %*% V %*% t(mmat) rownames(eff.vcov) <- colnames(eff.vcov) <- NULL var <- diag(eff.vcov) result$vcov <- eff.vcov result$se <- sqrt(var) result$se[!is.estimable] <- NA result$lower <- effect - z * result$se result$upper <- effect + z * result$se result$confidence.level <- confidence.level } if (is.null(transformation$link) && is.null(transformation$inverse)) { transformation$link <- I transformation$inverse <- I } result$transformation <- transformation result$family <- family(mod)$family # 2018-10-08 result$family kept to work with legacy code result$link <- family(mod) class(result) <- "eff" result } Effect.multinom <- function(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov. = vcov, se=TRUE, ..., #legacy arguments: confint, confidence.level, given.values, typical){ if (is.numeric(xlevels)){ if (length(xlevels) > 1 || round(xlevels != xlevels)) stop("xlevels must be a single whole number or a list") form <- Effect.default(NULL, mod) #returns the fixed-effects formula terms <- attr(terms(form), "term.labels") predictors <- all.vars(parse(text=terms)) xlevs <- list() for (pred in predictors){ xlevs[[pred]] <- xlevels } xlevels <- xlevs } if (missing(fixed.predictors)) fixed.predictors <- NULL fixed.predictors <- applyDefaults(fixed.predictors, list(given.values=NULL, typical=mean), arg="fixed.predictors") if (missing(given.values)) given.values <- fixed.predictors$given.values # new 1/22/18 to allow for automatical equal weighting of factor levels if(!is.null(given.values)){ if (given.values[1] == "default") given.values <- NULL if (given.values[1] == "equal") given.values <- .set.given.equal(mod)} # end new code # end new code if (missing(typical)) typical <- fixed.predictors$typical if (!missing(confint)) se <- confint confint <- applyDefaults(se, list(compute=TRUE, level=.95, type="pointwise"), onFALSE=list(compute=FALSE, level=.95, type="pointwise"), arg="se") se <- confint$compute if (missing(confidence.level)) confidence.level <- confint$level confidence.type <- match.arg(confint$type, c("pointwise", "Scheffe", "scheffe")) default.levels <- NULL # just for backwards compatibility if (length(mod$lev) < 3) stop("effects for multinomial logit model only available for response levels > 2") if (missing(given.values)) given.values <- NULL else if (!all(which <- colnames(given.values) %in% names(coef(mod)))) stop("given.values (", colnames(given.values[!which]),") not in the model") formula.rhs <- formula(mod)[c(1, 3)] model.components <- Analyze.model(focal.predictors, mod, xlevels, default.levels, formula.rhs, typical=typical) excluded.predictors <- model.components$excluded.predictors predict.data <- model.components$predict.data factor.levels <- model.components$factor.levels factor.cols <- model.components$factor.cols # n.focal <- model.components$n.focal x <- model.components$x X.mod <- model.components$X.mod cnames <- model.components$cnames X <- model.components$X formula.rhs <- formula(mod)[c(1, 3)] Terms <- delete.response(terms(mod)) mf <- model.frame(Terms, predict.data, xlev = factor.levels) mod.matrix <- model.matrix(formula.rhs, data = mf, contrasts.arg = mod$contrasts) X0 <- Fixup.model.matrix(mod, mod.matrix, model.matrix(mod), X.mod, factor.cols, cnames, focal.predictors, excluded.predictors, typical, given.values) resp.names <- make.names(mod$lev, unique=TRUE) resp.names <- c(resp.names[-1], resp.names[1]) # make the last level the reference level B <- t(coef(mod)) V <- if(inherits(vcov., "matrix")) vcov. else { if(inherits(vcov., "function")) vcov.(mod) else stop("vcov. must be a function or matrix")} m <- ncol(B) + 1 p <- nrow(B) r <- p*(m - 1) n <- nrow(X0) P <- Logit <- matrix(0, n, m) colnames(P) <- paste("prob.", resp.names, sep="") colnames(Logit) <- paste("logit.", resp.names, sep="") if (se){ z <- if (confidence.type == "pointwise") { qnorm(1 - (1 - confidence.level)/2) } else { scheffe(confidence.level, p) } Lower.P <- Upper.P <- Lower.logit <- Upper.logit <- SE.P <- SE.logit <- matrix(0, n, m) colnames(Lower.logit) <- paste("L.logit.", resp.names, sep="") colnames(Upper.logit) <- paste("U.logit.", resp.names, sep="") colnames(Lower.P) <- paste("L.prob.", resp.names, sep="") colnames(Upper.P) <- paste("U.prob.", resp.names, sep="") colnames(SE.P) <- paste("se.prob.", resp.names, sep="") colnames(SE.logit) <- paste("se.logit.", resp.names, sep="") } for (i in 1:n){ res <- eff.mul(X0[i,], B, se, m, p, r, V) # compute effects # P[i,] <- prob <- res$p # fitted probabilities P[i,] <- res$p # fitted probabilities Logit[i,] <- logit <- res$logits # fitted logits if (se){ # SE.P[i,] <- se.p <- res$std.err.p # std. errors of fitted probs SE.P[i,] <- res$std.err.p # std. errors of fitted probs SE.logit[i,] <- se.logit <- res$std.error.logits # std. errors of logits Lower.P[i,] <- logit2p(logit - z*se.logit) Upper.P[i,] <- logit2p(logit + z*se.logit) Lower.logit[i,] <- logit - z*se.logit Upper.logit[i,] <- logit + z*se.logit } } resp.levs <- c(m, 1:(m-1)) # restore the order of the levels P <- P[, resp.levs] Logit <- Logit[, resp.levs] if (se){ Lower.P <- Lower.P[, resp.levs] Upper.P <- Upper.P[, resp.levs] Lower.logit <- Lower.logit[, resp.levs] Upper.logit <- Upper.logit[, resp.levs] SE.P <- SE.P[, resp.levs] SE.logit <- SE.logit[, resp.levs] } result <- list(term=paste(focal.predictors, collapse="*"), formula=formula(mod), response=response.name(mod), y.levels=mod$lev, variables=x, x=predict.data[, focal.predictors, drop=FALSE], model.matrix=X0, data=X, discrepancy=0, model="multinom", prob=P, logit=Logit) if (se) result <- c(result, list(se.prob=SE.P, se.logit=SE.logit, lower.logit=Lower.logit, upper.logit=Upper.logit, lower.prob=Lower.P, upper.prob=Upper.P, confidence.level=confidence.level)) # find empty cells, if any, and correct ## 11/3/17: The code until the next comment is surely incorrect, but ## generally harmless. One must learn if the notion of estimablilty applied ## to multinomial models and figure out the right thing to do whichFact <- unlist(lapply(result$variables, function(x) x$is.factor)) zeroes <- NULL if(sum(whichFact) > 1){ nameFact <- names(whichFact)[whichFact] counts <- xtabs(as.formula( paste("~", paste(nameFact, collapse="+"))), model.frame(mod)) zeroes <- which(counts == 0) } if(length(zeroes) > 0){ levs <- expand.grid(lapply(result$variables, function(x) x$levels)) good <- rep(TRUE, dim(levs)[1]) for(z in zeroes){ good <- good & apply(levs, 1, function(x) !all(x == levs[z, whichFact])) } result$prob[!good, ] <- NA result$logit[!good, ] <- NA if (se){ result$se.prob[!good, ] <- NA result$se.logit[!good, ] <- NA result$lower.prob[!good, ] <- NA result$upper.prob[!good, ] <- NA } } ## End of unnecessary code class(result) <-'effpoly' result } Effect.polr <- function(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov.=vcov, se=TRUE, latent=FALSE, ..., #legacy arguments: confint, confidence.level, given.values, typical){ if (is.numeric(xlevels)){ if (length(xlevels) > 1 || round(xlevels != xlevels)) stop("xlevels must be a single whole number or a list") form <- Effect.default(NULL, mod) #returns the fixed-effects formula terms <- attr(terms(form), "term.labels") predictors <- all.vars(parse(text=terms)) xlevs <- list() for (pred in predictors){ xlevs[[pred]] <- xlevels } xlevels <- xlevs } if (missing(fixed.predictors)) fixed.predictors <- NULL fixed.predictors <- applyDefaults(fixed.predictors, list(given.values=NULL, typical=mean), arg="fixed.predictors") if (missing(given.values)) given.values <- fixed.predictors$given.values # new 1/22/18 to allow for automatical equal weighting of factor levels # new 1/22/18 to allow for automatical equal weighting of factor levels if(!is.null(given.values)){ if (given.values[1] == "default") given.values <- NULL if (given.values[1] == "equal") given.values <- .set.given.equal(mod)} # end new code if (missing(typical)) typical <- fixed.predictors$typical if (!missing(confint)) se <- confint confint <- applyDefaults(se, list(compute=TRUE, level=.95, type="pointwise"), onFALSE=list(compute=FALSE, level=.95, type="pointwise"), arg="se") se <- confint$compute if (missing(confidence.level)) confidence.level <- confint$level confidence.type <- match.arg(confint$type, c("pointwise", "Scheffe", "scheffe")) default.levels <- NULL # just for backwards compatibility if (mod$method != "logistic") stop('method argument to polr must be "logistic"') if (missing(given.values)) given.values <- NULL else if (!all(which <- names(given.values) %in% names(coef(mod)))) stop("given.values (", names(given.values[!which]),") not in the model") formula.rhs <- formula(mod)[c(1, 3)] model.components <- Analyze.model(focal.predictors, mod, xlevels, default.levels, formula.rhs, typical=typical) excluded.predictors <- model.components$excluded.predictors predict.data <- model.components$predict.data factor.levels <- model.components$factor.levels factor.cols <- model.components$factor.cols # n.focal <- model.components$n.focal x <- model.components$x X.mod <- model.components$X.mod cnames <- model.components$cnames X <- model.components$X Terms <- delete.response(terms(mod)) mf <- model.frame(Terms, predict.data, xlev = factor.levels, na.action=NULL) mod.matrix <- model.matrix(formula.rhs, data = mf, contrasts.arg = mod$contrasts) X0 <- Fixup.model.matrix(mod, mod.matrix, model.matrix(mod), X.mod, factor.cols, cnames, focal.predictors, excluded.predictors, typical, given.values) resp.names <- make.names(mod$lev, unique=TRUE) X0 <- X0[,-1, drop=FALSE] b <- coef(mod) p <- length(b) # corresponds to p - 1 in the text alpha <- - mod$zeta # intercepts are negatives of thresholds z <- if (confidence.type == "pointwise") { qnorm(1 - (1 - confidence.level)/2) } else { scheffe(confidence.level, p + length(alpha)) } result <- list(term=paste(focal.predictors, collapse="*"), formula=formula(mod), response=response.name(mod), y.levels=mod$lev, variables=x, x=predict.data[, focal.predictors, drop=FALSE], model.matrix=X0, data=X, discrepancy=0, model="polr") if (latent){ V <- if(inherits(vcov., "matrix")) vcov.[1:p, 1:p] else { if(inherits(vcov., "function")) vcov.(mod)[1:p, 1:p] else stop("vcov. must be a function or matrix")} res <- eff.latent(X0, b, V, se) result$fit <- res$fit if (se){ result$se <- res$se result$lower <- result$fit - z*result$se result$upper <- result$fit + z*result$se result$confidence.level <- confidence.level } transformation <- list() transformation$link <- I transformation$inverse <- I result$transformation <- transformation result$thresholds <- -alpha class(result) <- c("efflatent", "eff") return(result) } m <- length(alpha) + 1 r <- m + p - 1 indices <- c((p+1):r, 1:p) V <- if(inherits(vcov., "matrix")) vcov.[indices, indices] else { if(inherits(vcov., "function")) vcov.(mod)[indices, indices] else stop("vcov. must be a function or matrix")} for (j in 1:(m-1)){ # fix up the signs of the covariances V[j,] <- -V[j,] # for the intercepts V[,j] <- -V[,j]} n <- nrow(X0) P <- Logit <- matrix(0, n, m) colnames(P) <- paste("prob.", resp.names, sep="") colnames(Logit) <- paste("logit.", resp.names, sep="") if (se){ Lower.logit <- Upper.logit <- Lower.P <- Upper.P <- SE.P <- SE.Logit <- matrix(0, n, m) colnames(Lower.logit) <- paste("L.logit.", resp.names, sep="") colnames(Upper.logit) <- paste("U.logit.", resp.names, sep="") colnames(Lower.P) <- paste("L.prob.", resp.names, sep="") colnames(Upper.P) <- paste("U.prob.", resp.names, sep="") colnames(SE.P) <- paste("se.prob.", resp.names, sep="") colnames(SE.Logit) <- paste("se.logit.", resp.names, sep="") } for (i in 1:n){ res <- eff.polr(X0[i,], b, alpha, V, m, r, se) # compute effects P[i,] <- res$p # fitted probabilities Logit[i,] <- logit <- res$logits # fitted logits if (se){ SE.P[i,] <- res$std.err.p # std. errors of fitted probs SE.Logit[i,] <- se.logit <- res$std.error.logits # std. errors of logits Lower.P[i,] <- logit2p(logit - z*se.logit) Upper.P[i,] <- logit2p(logit + z*se.logit) Lower.logit[i,] <- logit - z*se.logit Upper.logit[i,] <- logit + z*se.logit } } result$prob <- P result$logit <- Logit if (se) result <- c(result, list(se.prob=SE.P, se.logit=SE.Logit, lower.logit=Lower.logit, upper.logit=Upper.logit, lower.prob=Lower.P, upper.prob=Upper.P, confidence.level=confidence.level)) class(result) <-'effpoly' result } # merMod -- included here to allow addtional KR argument Effect.merMod <- function(focal.predictors, mod, ..., KR=FALSE){ if (KR && !requireNamespace("pbkrtest", quietly=TRUE)){ KR <- FALSE warning("pbkrtest is not available, KR set to FALSE")} fam <- family(mod) args <- list( family=fam, vcov = if (fam$family == "gaussian" && fam$link == "identity" && KR) as.matrix(pbkrtest::vcovAdj(mod)) else insight::get_varcov(mod)) Effect.default(focal.predictors, mod, ..., sources=args) } # svyglm Effect.svyglm <- function(focal.predictors, mod, fixed.predictors, ...){ Svymean <- function(x){ svymean(x, design=mod$survey.design) } ellipses.list <- list(...) if ((!is.null(ellipses.list$residuals) && !isFALSE(residuals)) || (!is.null(ellipses.list$partial.residuals) && !isFALSE(ellipses.list$partial.residuals))){ stop("partial residuals are not available for svyglm models") } if (missing(fixed.predictors)) fixed.predictors <- NULL fixed.predictors <- applyDefaults(fixed.predictors, list(given.values=NULL, typical=Svymean, apply.typical.to.factors=TRUE, offset=Svymean), arg="fixed.predictors") typical <- fixed.predictors$typical apply.typical.to.factors <- fixed.predictors$apply.typical.to.factors offset <- fixed.predictors$offset mod$call <- list(mod$call, data=mod$data) Effect.lm(focal.predictors, mod, typical=typical, apply.typical.to.factors=apply.typical.to.factors, offset=offset, ...) } effects/R/effects.R0000644000176200001440000000414413761730142013643 0ustar liggesusers# effect generic and methods; allEffects # John Fox, Sanford Weisberg, and Jangman Hong # last modified 2012-12-08 by J. Fox # 10/31/2012 modifed effect.lm to use z distn for ses with mer and nlme objects # 12-21-2012 Allow for empty cells in factor interactions, S. Weisberg # 7-15-2013: S. Weisberg: deleted 'default.levels' argument. Changed and # generalized xlevels argument to include the function of default.levels. # 2013-10-15: eliminated generic effect() and all its methods. J. Fox # 2014-07-02: added vcov. argument to effect # 2014-12-10: Changed 'effect' back to a generic function. S. Weisberg # 2017-12-08: For compatibility with Effect.default, changed test for itercept i effect.default. SW # 2017-12-08: Removed unneeded allEffects.gls effect <- function(term, mod, vcov.=vcov, ...){ UseMethod("effect", mod) } effect.default <- function(term, mod, vcov.=vcov, ...){ term <- gsub(" ", "", gsub("\\*", ":", term)) terms <- term.names(mod) if ( terms[1] == "(Intercept)") terms <- terms[-1] # if (has.intercept(mod)) terms <- terms[-1] which.term <- which(term == terms) mod.aug<- list() if (length(which.term) == 0){ message("NOTE: ", term, " does not appear in the model") mod.aug <- update(formula(mod), eval(parse(text=paste(". ~ . +", term)))) } if (!is.high.order.term(term, mod, mod.aug)) message("NOTE: ", term, " is not a high-order term in the model") predictors <- all.vars(parse(text=term)) Effect(predictors, mod, vcov.=vcov., ...) } allEffects <- function(mod, ...) UseMethod("allEffects") allEffects.default <- function(mod, ...){ high.order.terms <- function(mod){ names <- term.names(mod) if (has.intercept(mod)) names<-names[-1] rel <- lapply(names, descendants, mod=mod) (1:length(names))[sapply(rel, function(x) length(x)==0)] } names <- term.names(mod) if (has.intercept(mod)) names <- names[-1] if (length(names) == 0) stop("the model contains no terms (beyond a constant)") terms <- names[high.order.terms(mod)] result <- lapply(terms, effect, mod=mod, ...) names(result) <- terms class(result) <- 'efflist' result } effects/R/effectspoLCA.R0000644000176200001440000000446413761730142014527 0ustar liggesusers# 2013-07-31: extend effects to poLCA objects. S. Weisberg # 2013-10-15: removed effect.poLCA. J. Fox # 2018-11-19: added focal.levels argument to predictorEffect() and predictorEffects() methods. J. Fox #The next two functions should be exported to the namespace allEffects.poLCA <- function(mod, ...){ allEffects(poLCA.to.fake(mod), ...) } Effect.poLCA <- function(focal.predictors, mod, ...) { result <- Effect(focal.predictors, poLCA.to.fake(mod), ..., sources=list(type="multinom")) result$formula <- as.formula(formula(mod)) result } predictorEffects.poLCA <- function(mod, predictors = ~.,focal.levels=50, xlevels=5, ...){ predictorEffects(poLCA.to.fake(mod), predictors=predictors, focal.levels=focal.levels, xlevels=xlevels, ...) } predictorEffect.poLCA <- function(predictor, mod, focal.levels=50, xlevels=5, ...){ predictorEffect(predictor, poLCA.to.fake(mod), focal.levels=focal.levels, xlevels=xlevels, ...) } # this function makes a 'fake' multinom object or 'glm' object so # effect.multinom or effect.glm can be used. # effect.multinom requires at least 3 classes, so if classes=2 use # effect.glm poLCA.to.fake <- function(mod) { if (requireNamespace("nnet", quietly=TRUE)){ multinom <- nnet::multinom} dta <- eval(mod$call$data) form <- as.formula(eval(mod$call$formula)) # find the missing data: omit <- attr(model.frame(form, dta), "na.action") if(length(omit) == 0) dta$.class <- factor(mod$predclass) else{ dta$.class <- rep(NA, dim(dta)[1]) dta$.class[-omit] <- mod$predclass dta$.class <- factor(dta$.class) } # end of missing data correction formula1 <- update(form, .class ~ .) if(length(mod$P) == 2L){ mod1 <- glm(formula1, family=binomial, data=dta) mod1$call$data <- dta mod1$call$formula <- formula1 mod1$coef <- mod$coeff[, 1] mod1$vcov <- mod$coeff.V class(mod1) <- c("fakeglm", class(mod1)) } else { mod1 <- multinom(formula1, dta, Hess=TRUE, trace=FALSE, maxit=1) mod1$call$data <- dta mod1$call$formula <- formula1 mod1$coeff <- mod$coeff mod1$coeff.V <- mod$coeff.V class(mod1) <- c("fakemultinom", class(mod1)) } coef.fakemultinom <- function(mod){ coef <- t(mod$coeff) dimnames(coef) <- list(mod$lab[-1L], mod$vcoefnames) coef } vcov.fakemultinom <- function(mod){mod$coeff.V} mod1 } effects/R/predictorEffects.R0000644000176200001440000002031113761730142015511 0ustar liggesusers# 2017-08-14 fixed bug in plot.predictoreff on passing 'multiline' to lines list # 2017-08-30 for compatibility with other effect plots, default # is now multiline=FALSE # 2017-11-09 fixed bug in setting the class for multinom models, and possibly others # 2017-11-17 added methods for clm, clm2, clmm in the file effectsclmm.R # 2017-12-08 modified predictorEffect.default and predictorEffects.default for compatibility to Effect.default # 2018-01-09 fixed bug in predictorEffects.default with log() in a formula. # 2018-01-24 fixed bug with minus sign in a formula predictorEffects.default # 2018-05-14 predictorEffect.default() calls Effect() with x.var=1 # 2018-06-07 predictorEffects now works with offsets. # 2018-08-09 removed explicit 'xlevels' argument from predictorEffects, so the argument is correctly passed with ... # 2018-10-19: changed class of predictorefflist to c("predictorefflist", "efflist", "list") # 2018-11-19: added xlevels argument with default 5 to be applied to conditioning predictors and # focal.levels argument with default 50 to be applied to focal predictor. J. Fox # 2019-04-13: changed behavior of xlevels default to match Effect.lm() when residuals=TRUE. J. Fox # 2020-05-29: use find_formula in the 'insight' package to find formulas. S. Weisberg # 2020-06-23: modified predictorEffect.default to get formula using effSources. S Weisberg # removed xlevels argument 8/9/18 predictorEffect <- function(predictor, mod, focal.levels=50, xlevels=5, ...){ UseMethod("predictorEffect", mod) } # removed xlevels argument 8/9/18 predictorEffect.svyglm <- function(predictor, mod, focal.levels=50, xlevels=5, ...){ mod$call <- list(mod$call, data=mod$data) NextMethod(object=mod, ...) } #simplified 12/10/17 # removed xlevels argument 8/9/18 predictorEffect.default <- function(predictor, mod, focal.levels=50, xlevels=5, ..., sources){ dots <- list(...) which.residuals <- which(!is.na(sapply(names(dots), function(x) pmatch(x, c("residuals", "partial.residuals"))))) if (length(which.residuals) != 0){ if (isTRUE(dots[[which.residuals]]) && missing(xlevels)) xlevels <- list() } sources <- if(missing(sources)) effSources(mod) else sources form <- if(is.null(sources$formula)) find_formula(mod)$conditional else sources$formula all.vars <- all.vars(parse(text=form)) # all.vars <- find_terms(mod, flatten=TRUE) # find the right effect to use terms <- attr(terms(form), "term.labels") # get the predictor names: predictors <- all.vars(parse(text=terms)) # predictors <- find_terms(m2)$conditional sel <- which(predictors == predictor) if(length(sel) != 1) stop("First argument must be the quoted name of one predictor in the formula") if (is.numeric(xlevels)){ if (length(xlevels) > 1 || round(xlevels != xlevels)) stop("xlevels must be a single whole number or a list") xlevs <- list() for (pred in predictors[-sel]){ xlevs[[pred]] <- xlevels } xlevels <- xlevs } xlevels[[predictor]] <- focal.levels # create correspondence table decode <- function(name) all.vars(parse(text=unlist(strsplit(name, ":")))) tab <- rep(FALSE, length(terms)) for(j in 1:length(terms)){if(predictor %in% decode(terms[j])) tab[j] <- TRUE} ans <- unlist(strsplit(paste(terms[tab], collapse=":"), ":")) ans <- unique(all.vars(parse(text=ans))) ans <- unique(c(predictor, ans)) # guarantees focal predictor is first args <- names(list(...)) result <- if ("x.var" %in% args) Effect(ans, mod, xlevels=xlevels, ...) else Effect(ans, mod, x.var=1, xlevels=xlevels, ...) class(result) <- c("predictoreff", class(result)) result } predictorEffects <- function(mod, predictors, focal.levels=50, xlevels=5, ...){ UseMethod("predictorEffects", mod) } # rewritten, simplified, 12/08/17, bug in formulas fixed 01/24/2018 predictorEffects.default <- function(mod, predictors = ~ ., focal.levels=50, xlevels=5, ..., sources) { dots <- list(...) which.residuals <- which(!is.na(sapply(names(dots), function(x) pmatch(x, c("residuals", "partial.residuals"))))) if (length(which.residuals) != 0){ if (isTRUE(dots[[which.residuals]]) && missing(xlevels)) xlevels <- list() } # The next function removes offset(s) from a formula, used for mform and cform no.offset <- function(x, preserve = NULL) { k <- 0 proc <- function(x) { if (length(x) == 1) return(x) if (x[[1]] == as.name("offset") && !((k<<-k+1) %in% preserve)) return(x[[1]]) replace(x, -1, lapply(x[-1], proc)) } update(proc(x), . ~ . - offset)} sources <- if(missing(sources)) effSources(mod) else sources form <- if(is.null(sources$formula)) {find_formula(mod)$conditional} else sources$formula mform <- no.offset(form) # replacement for next line # mform <- no.offset(Effect.default(NULL, mod)) # returns the fixed-effect formula for any method cform <- if(is.character(predictors)) as.formula(paste("~", paste(predictors, collapse="+"))) else predictors cform <- update(as.formula(paste(". ~", paste(all.vars(formula(mform)[[3]]), collapse="+"))), cform) cform <- no.offset(cform) mvars <- all.vars(mform[[3]]) cvars <- all.vars(cform[[3]]) if (is.list(focal.levels)){ for(cvar in cvars){ if (!is.null(focal.levels[[cvar]])) next focal.levels[[cvar]] <- 50 } } else{ if (!is.vector(focal.levels) || !is.numeric(focal.levels) || length(focal.levels) > 1 || round(focal.levels) != focal.levels) stop("focal.levels must be a length 1 positive\nwhole-number, numeric vector or a list") } if (length(xlevels) > 0){ if (is.list(xlevels)){ for(mvar in mvars){ if (!is.null(xlevels[[mvar]])) next xlevels[[mvar]] <- 5 } } else{ if (!is.vector(xlevels) || !is.numeric(xlevels) || length(xlevels) > 1 || round(xlevels) != xlevels) stop("xlevels must be a length 1 positive\nwhole-number, numeric vector or a list") } } # check that 'cvars' is a subset of 'mvars'. If so apply predictorEffect if(!all(cvars %in% mvars)){ stop("argument 'predictors' not a subset of the predictors in the formula") } else { result <- list() for(p in cvars){ flevs <- if (is.numeric(focal.levels)) focal.levels else focal.levels[[p]] result[[p]] <- predictorEffect(p, mod, focal.levels=flevs, xlevels=xlevels, ..., sources=sources) } } class(result) <- c("predictorefflist", "efflist", "list") result } # plot methods plot.predictoreff <- function(x, x.var, main = paste(names(x$variables)[1], "predictor effect plot"), ...){ if(missing(x.var)) x.var <- names(x$variables)[1] NextMethod(x, x.var=x.var, main=main, ...) } plot.predictorefflist <- function(x, selection, rows, cols, ask=FALSE, graphics=TRUE, lattice, ...){ # Next line added 8/23/17 along with lattice, also lattice arg above lattice <- if(missing(lattice)) list() else lattice if (!missing(selection)){ if (is.character(selection)) selection <- gsub(" ", "", selection) return(plot(x[[selection]], ...)) } effects <- gsub(":", "*", names(x)) if (ask){ repeat { selection <- menu(effects, graphics=graphics, title="Select Term to Plot") if (selection == 0) break else print(plot(x[[selection]], ...)) } } else { neffects <- length(x) mfrow <- mfrow(neffects) if (missing(rows) || missing(cols)){ rows <- mfrow[1] cols <- mfrow[2] } for (i in 1:rows) { for (j in 1:cols){ if ((i-1)*cols + j > neffects) break more <- !((i-1)*cols + j == neffects) lattice[["array"]] <- list(row=i, col=j, nrow=rows, ncol=cols, more=more) print(plot(x[[(i-1)*cols + j]], lattice=lattice, ...)) } } } } # print and summary methods print.predictorefflist <- function(x, ...){ for (eff in x){ print(eff, ...) } invisible(x) } print.predictoreff <- function(x, ...){ cat("\n", names(x$variables)[1], "predictor effect\n") NextMethod() } summary.predictorefflist <- function(object, ...){ for (eff in object){ cat("\n", names(eff$variables)[1], "predictor effect\n") print(summary(eff, ...)) } } effects/R/effectsHexsticker.R0000644000176200001440000000017513761730142015675 0ustar liggesuserseffectsHexsticker <- function(){ browseURL(paste0("file://", system.file("doc", "effects-hex.pdf", package="effects"))) }effects/NEWS0000644000176200001440000003510615042135307012375 0ustar liggesusersVersion 4.2-4 o Restore export of Effect.default, effect.default, and allEffects.default to avoid breaking code in other packages. Version 4.2-3 o Fix bug in summary.eff() output when the transformation (e.g., link function) is inverse rather than direct, as in a gamma GLM (reported by Natalie Nicholls). o Import version >= 1.4.1 of estimability to avoid bug in version 1.4.0 (suggestion of Russell Lenth). o Added levels2dates(), with "eff" and "effpoly" methods, for limited support for plotting "Date" objects (request of Christoph Scherber). o transformation is no longer considered a "legacy" argument for Effect.lm(). o Update \link{}s in .Rd files to adhere to new rules. o Various small updates to conform to R/CRAN rules. Version 4.2-2 o Added warning or note about unestimable effects. o More robust computation of residual df in Effect.lm(), to accommodate broader classes of models. o Insure that factor levels of focal predictor are in proper order bug (reported by Christoph Scherber) didn't visibly affect plots or tables, just order of levels in returned factor. o Functions supported by effects vignette rewritten (and renamed). Version 4.2-1 o Allow the vcov. argument in the call to one of the effect methods to be a matrix or a function. Previously only a function was permitted. o Fixed bug in plot.eff() for multiline plots in which the x.var argument is set explicitly (reported by Gerrit Eichner). o Small improvements to docs. Version 4.2-0 o Adding the use of the insight package to get formulas. o Added Effect.glmmPQL() for fitting generalized linear mixed models using the glmmPQL() function in the MASS package for penalized quasi-likelihood estimation. o Don't ignore lines lty sub-argument to plot.effpoly() (fixing a bug reported by Laura Adamovicz). o One-column matrix predictors trigger a warning and correction (following problem reported by Carla Hendricks). o Added regression tests for classes of model objects supported. Tests must be enabled in the effects sources at tests/regression-tests.R. o Rewrite of defining effect method vignette. o Minor changes to predictor effects gallery vignette. Version 4.1-4 o Change class(x) == "y" to inherits(x, "y") in code. Version 4.1-3 o Handle xlevels=n argument correctly in Effect() (fixing bug reported by Gerrit Eichner). o Add col argument to effectsTheme(), mostly to accommodate colorblind-friendly palette (suggestion of Sercan Kahveci). Version 4.1-2 o Effect methods for clm, clm2, and clmm models were not correctly passing the estimated theshholds to polr for computing effects (error reported by Stefan Th. Gries). o Updated "Defining Effects Methods ..." vignette to reflect revisions to Effect.clm, Effect.clm2 and Effect.clmm. o Make sure that Effect() and plot() methods work correctly with character and logical predictors (following bug report by Julian Gaviria Lopez). Version 4.1-1 o Accommodate character and logical predictors. o Make sure that lty argument to plot() is not ignored. o Change behavior of default levels argument to predictorEffect.default() and predictorEffects.default() when residuals=TRUE to match that of Effect.lm(). o Fix to Effect.default() to make fake glm fit more robust and fixed bug in .set.given.equal() in tests for model class. Version 4.1-0 o Fixed a bug in Effect.gls to ignore the 'weights' argument on the call to gls. o Added predictor effects graphics gallery vignette. o predictorEffect() and predictorEffects() have new xlevels and focal.levels arguments. o Removed the transform argument from as.data.frame.eff(), and added type argument. Made the transformation argument to Effect() a legacy argument and added transform as sub-argument to axes=list(y=list(transform=...)) in plot.eff(). o Rearanged man files. o Extend use of cex sub-args for x and y axes and lattice strips to plot.effpoly(). o Avoid warnings when testing given.values == "default" or "equal". o Modified plot.effpoly() so that multiline plots don't show confidence limits by default, and so that confidence bars for a factor are staggered. o Added effectsHexsticker(). o Fixed bug in plotting partial residuals when a factor focal predictor had empty levels. o Small fixes and improvements. Version 4.0-3 o xlevels argument now works with predictorEffects. o Added cex sub-args for x and y axes (suggestion of Charles Leger) and for lattice strips. o modified .onAttach() so that trellis device doesn't open, suggestion of Kurt Hornik. Version 4.0-2 o Fixed bug with offsets in predictorEffects and a bug with variances in Effect.default. o Support partial-residual plots when the predictor on the horizontal axis is a factor. o For nonstandard models like lme, the weights argument was obtained from the call that created the object. This argument was never used by effects, and caused an error with lme models that used weights. The weights argument is now ignored. o Fixed a bug due to new complete arg in vcov.lm() and vcov.glm(). o lty was ignored for multiplot with factor on x-axis; now fixed (reported by Krisztian Magori). o Small fixes and improvements. Version 4.0-1 o Replaced the Effect.default method so it is easier to write new methods. o Added estimability check for linear models and glims. Fixed bugs in plot with rank deficient models. o Repaired clm, clmm and clm2 methods that were broken. o Fixed a bug in predictorEffects with polym use to specify multivariate polynomials. o Replace confint and partial.residuals argument to Effect() with se and residuals; confint and partial.residuals now legacy arguments. o Small fixes/improvements. Version 4.0-0 o This is a major update of the effects package. o Moved data sets to the carData package. o Introduced predictor effects. o Reorganized complex arguments to plot() and Effect() into lists; legacy arguments retained as alternatives. o Use lattice theme for plot defaults. o Improve generation of default values for numeric predictors. o Methods for "svyglm" objects. o New vignette on partial residuals with contrived data. o Various small improvements and fixes. Version 3.1-3 o Fixed bug in using multiline=TRUE with effects with 4 or more terms o Fixed a bug in Effect.clmm, Effect.mer, and Effect.lme that caused failure with a data.frame named m o Fixed bug in Effect.clmm and Effect.clmm2 o Improved stability of handling linear and generalized linear mixed effects models from lme4 and nlme o Fixed bug in plot.eff() affecting multiline displays with four or more predictors in the effect. o Fixed warnings (new in R 3.4.0) produced by use of 1 x 1 arrays in computing SEs of effects for multinom and polr model (problem reported by Stefan Th. Gries). Version 3.1-2 o Fixed bug handling 'start' argument in glmm's. Reported by Mariano Devoto; fix by Ben Bolker o Modified internal function make.ticks() so that it doesn't fail due to floating-point inaccuracy (following error reported by Joe Clayton Ford). o Check formula for presence of factor(), etc. (suggestion of Ulrike Gromping). o Fixed bug in Effect.clm() and some other methods (reported by David Barron), which didn't pass ... argument. o A warning is now printed if partial residuals are requested in a multiline plot. o Corrected plotting of partial residuals with various scalings of the y-axis and x-axis. o Added show.strip.values argument to plot.eff() and plot.effpoly(). Version 3.1-1 o Requires R >= 3.2.0 (requested by CRAN). Version 3.1-0 o Corrected and improved computation of partial residuals, fixing bug introduced by bug fix in 3.0-7. Version 3.0-7 o Extends to logistic ordinal response models fit using 'clm' and 'clmm' in the 'ordinal package. o Fixed bug in handling of terms like polynomials in non-focal covariates (reported by Urs Kalbitzer). o Added package tests. Version 3.0-6 o Fix bug in Effect for mer objects with 'poly' in the formula (and related issues). o Allow "||" in variance formulae in lmer4 models. o Minor bug in handling class=="array" in the Effect() method. Version 3.0-5 o Fixed bug when the name of the data frame is the name of function like "sort" in mixed-effects models with lme4 (problem originally reported by Saudi Sadiq). o Fixed bug in predictor-name matching that could occur in names with periods (reported by Trevor Avery). o Fixed package imports to conform to new CRAN rules. o Added residuals.cex argument to plot.eff(). o Changes to work with pbkrtest 0.4-4. Version 3.0-4 o New default of KR=FALSE because KR=TRUE can be very slow. o KR argument now works correctly with allEffects(). o Mixed models with negative binomial did not work and now they do. o Added methods for ordinal mixed models using 'clmm2' for the ordinal package. o Moved pbkrtest to Suggests (wasn't done properly previously). o Tweak to handling key.args (suggestion of Michael Friendly). o Use non-robust loess smooth for partial residuals from non-Gaussian GLMs. o Rationalized type and rescale.axis arguments to plot.eff(); scale.axis argument is deprecated. o Added setStrip() and restoreStrip() to control colors of lattice strips and make beginning and ending conditioning lines clearer. o Added residuals.smooth.color argument to plot.eff(). o Cleaned up sources to conform to CRAN requirements. Version 3.0-3 o Made key.args argument to plot.eff() and plot.effpoly() more flexible (suggestion of Ian Kyle). o Moved pbkrtest package to Suggests and adjusted code for mixed models accordingly, to accomodate Debian (request of Dirk Eddelbuettel). o Fixed \dont-test{} examples. Version 3.0-2 o plot.eff() honors rescale.axis=FALSE when plotting partial residuals (bug reported by Alexander Wietzke). o Effect.mer() can use KR coefficient covariances to construct CIs for effects in LMMs. o Modernized package dependencies/namespace. Version 3.0-1 o Added an argument vcov. to Effect and effect (and allEffects) to select a function for computing the variance covariance matrix of the coefficient estimates. The default is the usual `vcov` fucntion. o Added a warning to the documentation for effect for using predictors of class "dates" or "times". o Fixed bug in Effect.gls() when var or cor function depends on variables in the data set (reported by Felipe Albornoz). o Small fixes/improvements. Version 3.0-0 o Added partial residuals for multidimensional component+residual plots to Effect.lm(). o Small bug fixes. Version 2.3-0 o removed stray character in a the mixed models file o ci.style="bands" is now the default for variates on the horizontal axis and can also be used with multiline=TRUE o Added ci.style='bands', band.transparency, band.colors, and lwd to plot.effpoly() for line plots to give filled confidence bands and control line width o Added Effect.mlm() for multivariate linear models o Interpolating splines are now used by default when drawing lines in effects plots unless the argument use.splines=FALSE o effect() now calls Effect(); all effect() methods are removed, but effect() will continue to work as before. o Various methods for effect objects now handle factors with a "valid" NA level (fixing bug reported by Joseph Larmarange). o Further bug fixes in effects.mer() and effects.lme() (following bug report by Felipe E. Albornoz). Version 2.2-6 o bug fixes in effects.mer and effects.lme. o added terms.gls() to make effect.gls() and Effect.gls() work again. o plot.eff() gains an lwd= option to control the width of fitted lines. o Added ci.style='bands' and alpha= to plot.eff() for non-multiline plots to give filled confidence bands. Version 2.2-5 o Added support for polytomous latent class analysis based on the poLCA package. o Modified mixed-model methods to all use in user-functions. o Changed the default method for determining number of levels for a continuous predictor; see help page for 'effect' and discussion of the 'xlevels' argument for details. Argument 'default.levels', while still included for compatibility, is depricated. o Added .merMod methods for development version of lme4. o Added support for lme4.0. o Fixed bug preventing restoration of warn option (reported by Kenneth Knoblauch). o Fixed handling of ticks.x argument to plot.eff() and plot.effpoly(), now works as advertized. o Adjusted package dependencies, imports for CRAN checks. o Changed name of Titanic dataset to TitanicSurvival to avoid name clash (request of Michael Friendly). o Minor fixes. Version 2.2-4 o Add argument 'ci.style' to plot.eff() and plot.eff() to allow confidence intervals to be displayed as lines or using error bars. Confidence bars are permitted on multiline plots (after suggestion by Steve Taylor). o Allow empty cells with crossed factors for lm, glm and multinom. o Added warning about logical predictors (suggestion of Kazuki Yoshida). Version 2.2-3 o Fixed bugs in axis scaling and xlim specification (reported by Achim Zeileis). o Small changes for compatability with R 2.16.0. Version 2.2-2 o Use asymptotic normal to get confidence limits for mer and lme objects o Correct effects.lme to work with weights o Added Effect.mer(), Effect.lme(), Effect.gls(), Effect.multinom(), and Effect.polr() methods. o Safe predictions simplified in effect.multinom() and effect.polr(). o plot() methods for eff and effpoly objects permit predictor transformations. o Added as.data.frame.eff(), as.data.frame.effpoly(), and as.data.frame.efflatent (suggestion of Steve Taylor). o Small bug fixes. Version 2.2-1 o Some examples wrapped in \donttest{} to decrease package check time. Version 2.2-0 o Introduced more flexible Effect() generic, along with Effect.lm() method for linear and generalized linear models. o Default is now ask=FALSE for plot.efflist(). o globalVariables("wt") declared for R 2.15.1 and above. o Small bug fixes. Version 2.1-2 o Offsets for linear and generalized linear (and mixed) models are now supported. o cbind(successes, failures) now supported for binomial generalized linear (and mixed) models. Version 2.1-1 o plot.effpoly() now honors ylim argument when no confidence intervals are plotted (fixing problem reported by Achim Zeileis). o safe predictions simplified in effect.lm(), producing correct results for mixed models (other methods to follow). o plot.eff() now honors type argument. o nlme and lme4 moved to Suggests. o effect() now works when options(OutDec= ',') (suggestion of Guomundur Arnkelsson). Version 2.1-0 o added support for 'mer' objects from lme4 and 'lme' objects from 'nlme'. Added 'rotx', 'roty' and 'grid' arguments to the plot methods. o See CHANGES file for changes to older versions. effects/vignettes/0000755000176200001440000000000015042141755013705 5ustar liggesuserseffects/vignettes/functions-supported-by-effects.bib0000644000176200001440000003253214263301065022444 0ustar liggesusers@article{FW2018, author = {John Fox and Sanford Weisberg}, title = {Visualizing Fit and Lack of Fit in Complex Regression Models\\ with Predictor Effect Plots and Partial Residuals}, journal={Journal of Statitical Software}, pages = {xxx-xxy}, volume = {xxx}, year = 2018, url= {http://} } @INCOLLECTION{Fox87, author = {John Fox}, editor = {C. C. Clogg}, year = 1987, title = {Effect Displays for Generalized Linear Models}, booktitle = {Sociological Methodology 1987 (Volume 17)}, pages = {347--361}, publisher = {American Sociological Association}, address = {Washington, {D. C.}} } @Manual{nlme, title = {{nlme}: Linear and Nonlinear Mixed Effects Models}, author = {Jose Pinheiro and Douglas Bates and Saikat DebRoy and Deepayan Sarkar and {R Core Team}}, year = {2018}, note = {R package version 3.1-137}, url = {https://CRAN.R-project.org/package=nlme}, } @Article{betareg, title = {Extended Beta Regression in {R}: Shaken, Stirred, Mixed, and Partitioned}, author = {Bettina Gr\"un and Ioannis Kosmidis and Achim Zeileis}, journal = {Journal of Statistical Software}, year = {2012}, volume = {48}, number = {11}, pages = {1--25}, url = {http://www.jstatsoft.org/v48/i11/}, } @Manual{ivreg, title = {ivreg: Instrumental-Variables Regression by '2SLS', '2SM', or '2SMM', with Diagnostics}, author = {John Fox and Christian Kleiber and Achim Zeileis}, year = {2021}, note = {R package version 0.6-1}, url = {https://CRAN.R-project.org/package=ivreg}, } @Article{insight19, title = {{insight}: A Unified Interface to Access Information from Model Objects in {R}.}, volume = {4}, doi = {10.21105/joss.01412}, number = {38}, journal = {Journal of Open Source Software}, author = {Daniel Lüdecke and Philip Waggoner and Dominique Makowski}, year = {2019}, pages = {1412}, } @Article{koller16, title = {{\textbf{robustlmm}}: An {R} Package for Robust Estimation of Linear Mixed-Effects Models}, author = {Manuel Koller}, journal = {Journal of Statistical Software}, year = {2016}, volume = {75}, number = {6}, pages = {1--24}, doi = {10.18637/jss.v075.i06}, } @ARTICLE{FoxAndersen06, author = {John Fox and Robert Andersen}, title = {Effect Displays for Multinomial and Proportional-Odds Logit Models}, journal = {Sociological Methodology}, volume = {36}, pages = {225--255}, year = {2006} } @article{WilkinsonRogers73, title = {Symbolic Description of Factorial Models for Analysis of Variance}, author = {Wilkinson, G. N. and Rogers, C. E.}, journal = {Journal of the Royal Statistical Society. Series C (Applied Statistics)}, year = {1973}, volume = {22}, number = {3}, pages = {392--399} } @article{FoxSuschnigg89, author={John Fox and Carole Suschnigg}, title={A Note on Gender and the Prestige of Occupations}, journal = {Canadian Journal of Sociology}, volume = {14}, pages = {353--360}, year = {1989} } @article{Cook93, author = {R. Dennis Cook}, title = {Exploring Partial Residual Plots}, journal = {Technometrics}, volume = 35, pages = {351--362}, year = 1993 } @article{CookCroos98, author = {Cook, R. Dennis and Croos-{D}abrera, Rodney}, title = {Partial Residual Plots in Generalized Linear Models}, journal = {Journal of the American Statistical Association}, volume = {93}, number = {442}, pages = {730--739}, year = {1998} } @Manual{Lenth13, title = {\pkg{lsmeans}: Least-Squares Means}, author = {Russell V. Lenth}, year = {2013}, note = {\proglang{R} package version 1.06-05}, url = {http://CRAN.R-project.org/package=lsmeans} } @Manual{visreg, title = {\pkg{visreg}: Visualization of Regression Models}, author = {Patrick Breheny and Woodrow Burchett}, year = {2016}, note = {\R{} package version 2.2-2}, url = {https://CRAN.R-project.org/package=visreg}, } @Book{Wood17, title = {Generalized Additive Models: An Introduction with R}, year = {2017}, edition={2nd}, author = {S. N. Wood}, publisher = {Chapman and Hall/CRC}, } @Manual{gam, title = {\pkg{gam}: Generalized Additive Models}, author = {Trevor Hastie}, year = {2015}, note = {\R{} package version 1.12}, url = {https://CRAN.R-project.org/package=gam}, } @Article{ice15, title = {Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation}, author = {Alex Goldstein and Adam Kapelner and Justin Bleich and Emil Pitkin}, journal = {Journal of Computational and Graphical Statistics}, volume = {24}, number = {1}, pages = {44--65}, doi = {10.1080/10618600.2014.907095}, year = {2015}, } @article{becker96, title={The Visual Design and Control of Trellis Display}, author={Becker, Richard A and Cleveland, William S and Shyu, Ming-Jen}, journal={Journal of Computational and Graphical Statistics}, volume={5}, number={2}, pages={123--155}, year={1996}, publisher={Taylor \& Francis} } @article{BlishenMcRoberts76, author = {Bernard R. Blishen and Hugh A. McRoberts}, title = {A Revised Socioeconomic Index for Occupations in {C}anada}, journal = {Canadian Review of Sociology and Anthropology}, volume = {13}, pages = {71--79}, year = {1976} } @article{Fox03, author = {John Fox}, title = {Effect Displays in \R{} for Generalised Linear Models}, journal = {Journal of Statistical Software}, volume = 8, number = 15, pages={1--27}, year = 2003 } @Manual{sas12, author={{SAS Institute Inc.}}, year = {2012}, title ={LSMEANS Statement, \proglang{SAS/STAT}(R) 9.3 User's Guide}, url={http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_introcom_a0000003362.htm} } @Manual{FoxEtAl16, title = {\pkg{effects}: Effect Displays for Linear, Generalized Linear, and Other Models}, author = {John Fox and Sanford Weisberg and Michael Friendly and Jangman Hong}, year = {2017}, note = {\R{} package version 4.0-0}, url = {http://www.r-project.org, http://socserv.socsci.mcmaster.ca/jfox/}, } @incollection{ChambersHastie92, author = {J. M. Chambers and T. J. Hastie}, editor = {J. M. Chambers and T. J. Hastie}, year = 1992, title = {Statistical Models}, booktitle = {Statistical Models in {\proglang{S}}}, pages = {13--44}, publisher = {Wadsworth}, address = {Pacific Grove, {CA}} } @article{Nelder77, title = {A Reformulation of Linear Models}, author = {J. A. Nelder}, journal = {Journal of the Royal Statistical Society. Series A (General)}, volume = {140}, number = {1}, year = {1977}, pages = {48--77} } @Manual{LenthHerve15, title = {\pkg{lsmeans}: Least-Squares Means}, author = {Russell V. Lenth and Maxime Herv\'{e}}, year = {2015}, note = {\R{} package version 2.16}, url = {http://CRAN.R-project.org/package=lsmeans} } @book{Fox16, title={Applied Regression Analysis and Generalized Linear Models}, author={J. Fox}, edition={third}, publisher={Sage}, address={Thousand Oaks {CA}}, year=2016 } @book{CookWeisberg99, title={Applied Regression Including Computing and Graphics}, author = {R. D. Cook and S. Weisberg}, year = {1999}, publisher={John Wiley \& Sons}, address = {New York} } @article{CowlesDavis87, title={The Subject Matter of Psychology: Volunteers}, author={M. Cowles and C. Davis}, journal={British Journal of Social Psychology}, volume={26}, pages={97--102}, year=1987 } @article{PineoPorter67, title={Occupational Prestige in {Canada}}, author={P. C. Pineo and J. Porter}, journal={Canadian Review of Sociology and Anthropology}, volume={4}, pages={24--40}, year={1967} } @book{Scott15, title={Multivariate Density Estimation}, author={D. W. Scott}, publisher={John Wiley \& Sons}, address={Hoboken {NJ}}, edition={2nd}, year=2015 } @INPROCEEDINGS{LandwehrPregibonShoemaker80, author = {J. M. Landwehr and D. Pregibon and A. C. Shoemaker}, year = 1980, title = {Some Graphical Procedures for Studying a Logistic Regression Fit}, booktitle = {Proceedings of the Business and Economics Statistics Section, American Statistical Association}, pages = {15--20} } @Misc{Schumann15, Author = {E. Schumann}, Title = {\emph{Generating Correlated Uniform Variates}}, Note = {\url{http://comisef.wikidot.com/tutorial:correlateduniformvariates} [Accessed: 2015-05-21]}, year = 2009 } @book{Pearson07, Author={Karl Pearson}, Title={Mathematical Contributions to the Theory of Evolution.---XVI. On Further Methods of Determining Correlation}, Series={Drapers' Company Research Memoirs. Biometric Series. IV.}, Publisher={Cambridge University Press}, Address={London}, year=1907 } @book{Tukey77, author = {J. W. Tukey}, title = {Exploratory Data Analysis}, publisher = {Addison-Wesley}, address = {Reading {MA}}, year = 1977 } @article{Friedman01, author = {J. H. Friedman}, title = {Greedy Function Approximation: A Gradient Boosting Machine}, journal = {Annals of Statistics}, volume = {29}, pages = {1189--1232}, year = 2001 } @Misc{Stata15, Author = {{Stata Corp.}}, Title = {\emph{Margins}}, Note = {\url{http://www.stata.com/manuals13/rmargins.pdf} [Accessed: 2015-04-09]}, year = 2015 } @Book{FoxWeisberg19, author={John Fox and Sanford Weisberg}, title={An \R{} Companion to Applied Regression}, edition={3nd}, publisher={Sage}, address={Thousand Oaks {CA}}, year=2019 } @Article{Lenth16, title = {Least-Squares Means: The \R{} Package \pkg{lsmeans}}, author = {Russell V. Lenth}, journal = {Journal of Statistical Software}, year = {2016}, volume = {69}, number = {1}, pages = {1--33} } @Book{VenablesRipley02, title = {Modern Applied Statistics with \proglang{S}}, author = {W. N. Venables and B. D. Ripley}, publisher = {Springer-Verlag}, edition = {4th}, address = {New York}, year = {2002}, } @Manual{Christensen15, title = {\pkg{ordinal}---Regression Models for Ordinal Data }, author = {R. H. B. Christensen}, year = {2015}, note = {\R{} package version 2015.6-28}, url={http://www.cran.r-project.org/package=ordinal/}, } @Article{Bates15, title = {Fitting Linear Mixed-Effects Models Using {lme4}}, author = {Douglas Bates and Martin M{\"a}chler and Ben Bolker and Steve Walker}, journal = {Journal of Statistical Software}, year = {2015}, volume = {67}, number = {1}, pages = {1--48} } @Article{Linzer11, title = {\pkg{poLCA}: An {R} Package for Polytomous Variable Latent Class Analysis}, author = {Drew A. Linzer and Jeffrey B. Lewis}, journal = {Journal of Statistical Software}, year = {2011}, volume = {42}, number = {10}, pages = {1--29} } @Article{Liaw02, title = {Classification and Regression by \pkg{randomForest}}, author = {Andy Liaw and Matthew Wiener}, journal = {\R{} News}, year = {2002}, volume = {2}, number = {3}, pages = {18-22} } @Book{Weisberg14, title = {Applied Linear Regression}, edition = {4th}, author = {Sanford Weisberg}, year = {2014}, publisher = {John Wiley \& Sons}, address = {Hoboken {NJ}}, url = {http://z.umn.edu/alr4ed}, } @Manual{FoxWeisbergPrice17, title = {\pkg{carData}: Companion to Applied Regression Data Sets}, author = {John Fox and Sanford Weisberg and Brad Price}, year = {2017}, note = {\proglang{R} package version 3.0-0}, url={https://r-forge.r-project.org/projects/car/} } @incollection{ClevelandGrosseShyu92, author = {W. S. Cleveland and E. Grosse and W. M. Shyu }, title = { Local Regression Models}, booktitle = {Statistical Models in {\proglang{S}}}, publisher = {Wadsworth \& Brooks/Cole}, year = 1992, editor = {J. M. Chambers and T. J. Hastie}, chapter = 8, pages = {201--309}, address = {Pacific Grove {CA}}, } @book{Sarkar08, author={D. Sarkar}, title ={Lattice: Multivariate Data Visualization with {\proglang{R}}}, year={2008}, publisher={Springer-Verlag}, address={New York} } @Manual{Lumley16, author = {Thomas Lumley}, year = {2016}, title = {\pkg{survey}: analysis of complex survey samples}, note = {R package version 3.32}, } @Article{Lumley04, year = {2004}, author = {Thomas Lumley}, title = {Analysis of Complex Survey Samples}, journal = {Journal of Statistical Software}, volume = {9}, number = {1}, pages = {1-19}, note = {\proglang{R} package version 2.2}, } @Book{Fisher36, author={R. A. Fisher}, year={1936}, title={Statistical Methods for Research Workers}, edition={6th}, publisher={Oliver and Boyd}, address={Edinburgh} } @Book{Cleveland93, author={W. S. Cleveland}, title={Visualizing Data}, year={1993}, publisher={Hobart Press}, address={Summit {NJ}} } @Book{Cleveland94, author={W. S. Cleveland}, title={The Elements of Graphing Data}, year={1994}, edition={Revised}, publisher={Hobart Press}, address={Summit {NJ}} } @Book{BeckerCleveland96, author={R. A. Becker and W. S. Cleveland}, title={{\proglang{S-PLUS}} {Trellis} User's Manual}, year={1996}, publisher={MathSoft, Inc.}, address={Seattle} } effects/vignettes/partial-residuals.Rnw0000644000176200001440000004525315037504444020035 0ustar liggesusers%\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Effect Displays with Partial Residuals} \documentclass{article} \usepackage{amsmath,amsfonts,amssymb} \usepackage{natbib} \bibliographystyle{abbrvnat} \usepackage[margin=1in]{geometry} \newcommand{\x}{\mathbf{x}} \newcommand{\code}[1]{\normalfont\texttt{\hyphenchar\font45\relax #1}} \newcommand{\E}{\mathrm{E}} \newcommand{\tild}{\symbol{126}} \newcommand{\Rtilde}{\,\raisebox{-.5ex}{\code{\tild{}}}\,} \newcommand{\captilde}{\mbox{\protect\Rtilde}} % use in figure captions. \newcommand{\Rmod}[2]{\code{#1 \raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmoda}[2]{\code{#1} &\code{\raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmodb}[2]{\code{#1 &\raisebox{-.5ex}{\tild{}}& #2}} \newcommand{\C}{\mathbf{C}} \newcommand{\betahat}{\widehat{\beta}} \newcommand{\bbetahat}{\widehat{\boldsymbol{\beta}}} \newcommand{\bbeta}{\boldsymbol{\beta}} \newcommand{\xbf}{\x_{\backslash{}f}} \newcommand{\hbf}{h_{\backslash{}f}} \newcommand{\xtb}{\x_{2\backslash{}f}} \newcommand{\xbfi}{\x_{\backslash{}f,i}} \newcommand{\inter}[2]{\mbox{$#1$:$#2$}} \newcommand{\cross}[2]{\mbox{$#1$\code{*}$#2$}} \newcommand{\N}{\mathrm{N}} \newcommand{\fn}{\textbf} \newcommand{\R}{\proglang{R}} \newcommand{\yx}{\widehat{y}(\x)} \newcommand{\lvn}[1]{\mbox{$\log(\mbox{\texttt{#1}})$}} \begin{document} \title{Examples of Effect Displays with Partial Residuals\\ Using Contrived Regression Data} \author{John Fox and Sanford Weisberg} \date{2017-11-22} \maketitle <>= library(knitr) opts_chunk$set( tidy=FALSE,fig.width=5,fig.height=5,cache=FALSE ) @ <>= #options(continue="+ ", prompt="R> ", width=76) options(show.signif.stars=FALSE) options(scipen=3) @ The examples developed in this vignette are meant to supplement \citet{FoxWeisberg18}. \section{Basic Setup} We will analyze contrived data generated according to the following setup: \begin{itemize} \item We sample $n = 5000$ observations from a trivariate distribution for predictors $x_1$, $x_2$, and $x_3$, with uniform margins on the interval $[-2, 2]$, and with a prespecified bivariate correlation $\rho$ between each pair of predictors. The method employed, described by \citet{Schumann15} and traceable to results reported by \citet{Pearson07}, produces predictors that are nearly linearly related. Using 5000 observations allows us to focus on essentially asymptotic behavior of partial residuals in effect plots while still being able to discern individual points in the resulting graphs. \item We then generate the response $y$ according to the model \begin{equation} y = \beta_0 + h\left(\bbeta, \{x_1, x_2, x_3\}\right) + \varepsilon \end{equation} where $\varepsilon \Rtilde \N(0, 1.5^2)$. The regression function $h(\cdot)$ varies from example to example. \end{itemize} The following functions make it convenient to generate data according to this setup. These functions are more general than is strictly necessary so as to encourage further experimentation. <<>>= mvrunif <- function(n, R, min = 0, max = 1){ # method (but not code) from E. Schumann, # "Generating Correlated Uniform Variates" # URL: # # downloaded 2015-05-21 if (!is.matrix(R) || nrow(R) != ncol(R) || max(abs(R - t(R))) > sqrt(.Machine$double.eps)) stop("R must be a square symmetric matrix") if (any(eigen(R, only.values = TRUE)$values <= 0)) stop("R must be positive-definite") if (any(abs(R) - 1 > sqrt(.Machine$double.eps))) stop("R must be a correlation matrix") m <- nrow(R) R <- 2 * sin(pi * R / 6) X <- matrix(rnorm(n * m), n, m) X <- X %*% chol(R) X <- pnorm(X) min + X * (max - min) } gendata <- function(n = 5000, R, min = -2, max = 2, s = 1.5, model = expression(x1 + x2 + x3)){ data <- mvrunif(n = n, min = min, max = max, R = R) colnames(data) <- c("x1", "x2", "x3") data <- as.data.frame(data) data$error <- s * rnorm(n) data$y <- with(data, eval(model) + error) data } R <- function(offdiag = 0, m = 3){ R <- diag(1, m) R[lower.tri(R)] <- R[upper.tri(R)] <- offdiag R } @ \section{Unmodelled Interaction} We begin with uncorrelated predictors and the true regression mean function $\E(y|\x) = x_1 + x_2x_3$, but fit the incorrect additive working model $y \Rtilde x_1 + x_2 + x_3$ to the data. <<>>= set.seed(682626) Data.1 <- gendata(R = R(0), model = expression(x1 + x2 * x3)) round(cor(Data.1), 2) summary(mod.1 <- lm(y ~ x1 + x2 + x3, data = Data.1)) @ For reproducibility, we set a known seed for the pseudo-random number generator; this seed was itself generated pseudo-randomly, and we reuse it in the examples reported below. As well, in this first example, but not for those below, we show the correlation matrix of the randomly generated data along with the fit of the working model to the data. Effect plots with partial residuals corresponding to the terms in the working model are shown in Figure~\ref{fig-contrived-1a}: <>= library(effects) plot(predictorEffects(mod.1, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) @ In these graphs and, unless noted to the contrary, elsewhere in this vignette, the loess smooths are drawn with span 2/3. Because of the large number of points in the graphs, optional arguments to \code{plot} are specified to de-emphasize the partial residuals. To this end, the residuals are plotted as small points (\code{pch="."}) and in a translucent magenta color (\code{col="\#FF00FF80"}). \begin{figure}[tbp] \caption{Effect displays with partial residuals for the individual predictors $x_1$, $x_2$, and $x_3$ in the incorrect model $y \captilde x_1 + x_2 + x_3$ fit to data generated with the mean function $\E(y|\x) = x_1 + x_2x_3$, with uncorrelated predictors.\label{fig-contrived-1a}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-1a-1.pdf} \end{figure} The failure of the model is not apparent in these traditional partial residual plots, but it is clear in the term effect plot for $\{x_2, x_3\}$, corresponding to the unmodelled interaction \inter{x_2}{x_3}, and shown in the top panel of Figure~\ref{fig-contrived-1b}, generated using <>= plot(Effect(c("x2", "x3"), mod.1, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ Moreover, the effect plot in the bottom panel of the figure for $\{x_1, x_2\}$, corresponding to a term \emph{not} in the true mean function, correctly indicates lack of interaction between these two predictors: <>= plot(Effect(c("x1", "x2"), mod.1, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ \begin{figure}[tbp] \caption{Term effect displays with partial residuals for $\{x_2, x_3 \}$, corresponding to the missing interaction \inter{x_2}{x_3}, and for $\{x_1, x_2 \}$, corresponding to an interaction not present in the model that generated the data.\label{fig-contrived-1b}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-1b-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-1c-1.pdf} \end{figure} As a partly contrasting example, we turn to a similar data set, generated with the same regression mean function but with moderately correlated predictors, where the pairwise predictor correlations are $\rho = 0.5$: <<>>= set.seed(682626) Data.2 <- gendata(R = R(0.5), model = expression(x1 + x2 * x3)) mod.2 <- lm(y ~ x1 + x2 + x3, data = Data.2) @ Graphs analogous to those from the preceding example appear in Figures~\ref{fig-contrived-2a} and \ref{fig-contrived-2b}: <>= plot(predictorEffects(mod.2, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80",fig.show='hide'), axes=list(x=list(rotate=45)), rows=1, cols=3) @ <>= plot(Effect(c("x2", "x3"), mod.2, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ <>= plot(Effect(c("x1", "x2"), mod.2, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80",fig.show='hide'), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ The predictor effect plots for $x_2$ and $x_3$, and to a much lesser extent, for $x_1$, in the incorrect model in Figure~\ref{fig-contrived-2a} show apparent nonlinearity as a consequence of the unmodelled interaction and the correlations among the predictors. A similar phenomenon was noted in our analysis of the Canadian occupational prestige data in \citet[Section~4.2]{FoxWeisberg18}, where the unmodelled interaction between \code{type} and \code{income} induced nonlinearity in the partial relationship of \code{prestige} to \code{income}. The omitted interaction is clear in the effect plot for $\{x_2, x_3\}$, but also, to a lesser extent, contaminates the effect plot for $\{x_1,x_2\}$, which corresponds to an interaction that does not enter the model generating the data. These artifacts become more prominent if we increase the predictor correlations, say to $\rho = 0.9$ (as we invite the reader to do). \begin{figure}[tbp] \caption{Predictor effect displays with partial residuals for the individual predictors $x_1$, $x_2$, and $x_3$ in the incorrect model $y \captilde x_1 + x_2 + x_3$ fit to data generated with the mean function $\E(y|\x) = x_1 + x_2x_3$, with moderately correlated predictors.\label{fig-contrived-2a}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-2a-1.pdf} \end{figure} \begin{figure}[tbp] \caption{Term effect displays with partial residuals for $\{x_2, x_3 \}$, corresponding to the missing interaction \inter{x_2}{x_3}, and for $\{x_1, x_2 \}$, corresponding to an interaction not present in the model that generated the data.\label{fig-contrived-2b}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-2b-1.pdf}\\ \includegraphics[width=1\textwidth]{figure/fig-contrived-2c-1.pdf} \end{figure} \section{Unmodelled Nonlinearity} We generate data as before, but from the true model $\E(y|\x) = x_1^2 + x_2 + x_3$, where the predictors are moderately correlated, with pairwise correlations $\rho = 0.5$, but fit the incorrect additive working model $y \Rtilde x_1 + x_2 + x_3$ to the data: <<>>= set.seed(682626) Data.3 <- gendata(R = R(0.5), model = expression(x1^2 + x2 + x3)) mod.3 <- lm(y ~ x1 + x2 + x3, data = Data.3) @ Effect plots with residuals for the predictors in the working model appear in Figure~\ref{fig-contrived-3a}. The unmodelled nonlinearity in the partial relationship of $y$ to $x_1$ is clear, but there is some contamination of the plots for $x_2$ and $x_3$. The contamination is much more dramatic if the correlations among the predictors are increased to, say, $\rho = 0.9$ (as the reader may verify). <>= plot(predictorEffects(mod.3, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) @ \begin{figure}[tbp] \caption{Predictor effect displays with partial residuals for the individual predictors $x_1$, $x_2$, and $x_3$ in the incorrect model $y \captilde x_1 + x_2 + x_3$ fit to data generated with the mean function $\E(y|\x) = x_1^2 + x_2 + x_3$, with moderately correlated predictors.\label{fig-contrived-3a}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-3a-1.pdf} \end{figure} Effect plots for $\{x_1, x_2 \}$ and $\{x_2, x_3 \}$ are shown in Figure~\ref{fig-contrived-3b}: <>= plot(Effect(c("x2", "x3"), mod.3, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ <>= plot(Effect(c("x1", "x2"), mod.3, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ Neither of these graphs corresponds to a term in the model generating the data nor in the working model, and the effect plots largely confirm the absence of \inter{x_1}{x_2} and \inter{x_2}{x_3} interactions, along with the nonlinearity of the partial effect of $x_1$, apparent in the top panel. \begin{figure}[tbp] \caption{Term effect displays with partial residuals for $\{x_1, x_2 \}$ and for $\{x_2, x_3 \}$, neither of which corresponds to an interaction in the model generating the data.\label{fig-contrived-3b}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-3c-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-3b-1.pdf} \end{figure} \section{Simultaneous Unmodelled Nonlinearity and Interaction} This last example also appears in \citet[Section~4.3]{FoxWeisberg18}. We consider a true model that combines nonlinearity and interaction, $\E(y|\x) = x_1^2 + x_2 x_3$; the predictors are moderately correlated, with $\rho = 0.5$. We then fit the incorrect working model $y \Rtilde x_1 + x_2 + x_3$ to the data, producing the predictor effect displays with partial residuals in Figure~\ref{fig-contrived-4a}, for the predictors $x_1$, $x_2$, and $x_3$, which appear additively in the working model, and the term effect displays in Figure~\ref{fig-contrived-4b} for $\{x_2, x_3 \}$ and $\{x_1, x_2 \}$, corresponding respectively to the incorrectly excluded \inter{x_2}{x_3} term and the correctly excluded \inter{x_1}{x_2} interaction. <<>>= set.seed(682626) Data.4 <- gendata(R = R(0.5), model = expression(x1^2 + x2 * x3)) mod.4 <- lm(y ~ x1 + x2 + x3, data = Data.4) @ <>= plot(predictorEffects(mod.4, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) @ <>= plot(Effect(c("x2", "x3"), mod.4, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ <>= plot(Effect(c("x1", "x2"), mod.4, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ The nonlinearity in the partial relationship of $y$ to $x_1$ shows up clearly. The nonlinearity apparent in the plots for $x_2$ and $x_3$ is partly due to contamination with $x_1$, but largely to the unmodelled interaction between $x_2$ and $x_3$, coupled with the correlation between these predictors. The plot corresponding to the missing \inter{x_2}{x_3} term (in the top panel of Figure~\ref{fig-contrived-4b}) does a good job of detecting the unmodelled interaction, and curvature in this plot is slight. The plot for the \inter{x_1}{x_2} term (in the bottom panel of Figure~\ref{fig-contrived-4b}), a term neither in the true model nor in the working model, primarily reveals the unmodelled nonlinearity in the partial relationship of $y$ to $x_1$. \begin{figure}[tbp] \caption{Effect displays with partial residuals for the predictors $x_1$, $x_2$, and $x_3$ in the incorrect model $y \captilde x_1 + x_2 + x_3$ fit to data generated with the mean function $\E(y|\x) = x_1^2 + x_2x_3$, with moderately correlated predictors.\label{fig-contrived-4a}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-4a-1.pdf} \end{figure} \begin{figure}[tbp] \caption{Term effect displays with partial residuals for $\{x_2, x_3 \}$ (top) and for $\{x_1, x_2 \}$ (bottom), the first of which corresponds to the missing \inter{x_2}{x_3} interaction in the model generating the data.\label{fig-contrived-4b}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-4b-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-4c-1.pdf} \end{figure} If we fit the correct model, $y \Rtilde{} x_1^2 + x_2*x_3$, to the data, we obtain the plots shown in Figure~\ref{fig-contrived-5}. As theory suggests, the partial residuals in these effect displays validate the model, supporting the exclusion of the \inter{x_1}{x_2} interaction, the linear-by-linear interaction between $x_1$ and $x_2$, and the quadratic partial relationship of $y$ to $x_1$. <>= mod.5 <- lm(y ~ poly(x1, 2) + x2*x3, data=Data.4) plot(Effect("x1", mod.5, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80", span=0.2)) @ <>= plot(Effect(c("x2", "x3"), mod.5, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1)), span=0.5) @ <>= plot(Effect(c("x1", "x2"), mod.5, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80", span=0.35), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ \noindent In these graphs, we adjust the span of the loess smoother to the approximately smallest value that produces a smooth fit to the partial residuals in each case. \begin{figure}[tbp] \caption{Effect displays with partial residuals for $x_1$ and $\{x_2, x_3 \}$, which correspond to terms in the model generating \emph{and} fitted to the data, $y \captilde x_1^2 + x_2 * x_3$, and for $\{x_1, x_2 \}$, which corresponds to an interaction that is not in the model.\label{fig-contrived-5}} \centering \includegraphics[width=0.45\textwidth]{figure/fig-contrived-5a-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-5b-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-5c-1.pdf} \end{figure} \bibliography{partial-residuals} \end{document} effects/vignettes/functions-supported-by-effects.Rnw0000644000176200001440000004305415037504444022465 0ustar liggesusers%\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Regression Models Supported by the effects Package} \documentclass[11pt]{article} \usepackage[utf8]{inputenc} \usepackage{graphicx} \usepackage[american]{babel} \newcommand{\R}{{\sf R}} \usepackage{url} \usepackage{hyperref} \usepackage{alltt} \usepackage{fancyvrb} \usepackage{natbib} \usepackage{amsmath} \usepackage[margin=1in]{geometry} \usepackage{ragged2e} \VerbatimFootnotes \bibliographystyle{chicago} \newcommand{\x}{\mathbf{x}} \newcommand{\code}[1]{\normalfont\texttt{\hyphenchar\font45\relax #1}} \newcommand{\E}{\mathrm{E}} \newcommand{\tild}{\symbol{126}} \newcommand{\Rtilde}{\,\raisebox{-.5ex}{\code{\tild{}}}\,} \newcommand{\captilde}{\mbox{\protect\Rtilde}} % use in figure captions. \newcommand{\Rmod}[2]{\code{#1 \raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmoda}[2]{\code{#1} &\code{\raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmodb}[2]{\code{#1 &\raisebox{-.5ex}{\tild{}}& #2}} \newcommand{\C}{\mathbf{C}} \newcommand{\betahat}{\widehat{\beta}} \newcommand{\bbetahat}{\widehat{\boldsymbol{\beta}}} \newcommand{\bbeta}{\boldsymbol{\beta}} \newcommand{\xbf}{\x_{\backslash{}f}} \newcommand{\hbf}{h_{\backslash{}f}} \newcommand{\xtb}{\x_{2\backslash{}f}} \newcommand{\xbfi}{\x_{\backslash{}f,i}} \newcommand{\inter}[2]{\mbox{$#1$:$#2$}} \newcommand{\cross}[2]{\mbox{$#1$\code{*}$#2$}} \newcommand{\N}{\mathrm{N}} \newcommand{\yx}{\widehat{y}(\x)} \newcommand{\lvn}[1]{\mbox{$\log(\mbox{\texttt{#1}})$}} \newcommand{\fn}[1]{\code{#1()}} \newcommand{\pkg}[1]{\textbf{#1}} \newcommand{\proglang}[1]{\textsf{#1}} \newcommand{\class}[1]{\texttt{"#1"}} \usepackage{xcolor} \newcommand{\Comment}[1]{\textbf{{\color{red}#1}}} \begin{document} \title{Regression Functions Supported by the \textbf{effects} Package\\ And How to Support Other Classes of Regression Models} \author{John Fox and Sanford Weisberg} \date{2022-07-07} \maketitle <>= library("knitr") opts_chunk$set(fig.width=5,fig.height=5,tidy=TRUE, out.width="0.8\\textwidth",echo=TRUE) options(prompt=" ") @ <>= #options(continue="+ ", prompt="R> ", width=76) options(show.signif.stars=FALSE) options(scipen=3) library(effects) @ <>= library(knitr) opts_chunk$set( tidy=FALSE,fig.width=5,fig.height=5,cache=FALSE,comment=NA, prompt=TRUE ) render_sweave() @ <>= options(continue=" ", prompt=" ", width=76) options(show.signif.stars=FALSE) options(scipen=3) @ \section{Introduction} \emph{Effect plots}, as implemented in the \pkg{effects} package, represent the ``effects'' (in the not necessarily causal sense of ``partial relationship'') of one or more predictors on a response variable, in regression models in which the response depends on a \emph{linear predictor}---a linear combination of main effects and interactions among the predictors \citep[Sec.~4.6.3]{FoxWeisberg19}. \fn{Effect} is the basic generic function in the \pkg{effects} package; \fn{Effect} is called directly or indirectly by several other functions in the package, such as \fn{predictorEffects} and \fn{allEffects}. Table~\ref{tab1} provides a list of regression modeling functions in \R{} that can be used with the \pkg{effects} package. This list, which is almost surely incomplete, includes functions that are directly supported by \fn{Effect} methods supplied by the \pkg{effects} package, by \fn{Effect} methods supplied by other CRAN packages, or by the default \fn{Effect} method, which works with many classes of regression models. \begin{table} \caption{\R{} regression functions known to be compatible with the \fn{Effect} function. The name before the double-colon is the package that includes the function; for example \fn{stats::lm} means that \fn{lm} is in the \pkg{stats} package. In some cases, \fn{Effect} may support only a subset of regression models fit by a particular function. Effects for mixed-effects models represent the fixed-effects part of the model.\label{tab1}} \begin{center} \begin{tabular}{|l|p{4.0in}|}\hline Function & Comments \\ \hline \multicolumn{2}{|l|}{\textbf{\code{glm}-type models}}\\ \hline \fn{stats::lm} & Standard linear regression models fit by least-squares or weighted least-squares. A multivariate response, generating a multivariate linear model, is permitted, and in this case effects are computed for each response separately.\\ \fn{stats::glm} & Generalized linear models.\\ \fn{nlme::lme} & Linear mixed-effects models.\\ \fn{nlme::gls} & Linear models fit by generalized least squares.\\ \fn{lmer::lmer} & Linear mixed-effects models.\\ \fn{lmer::glmer} & Generalized linear mixed-effects models.\\ \fn{survey::svyglm} & Generalized linear models for complex survey designs.\\ \fn{MASS::rlm} & Linear regression models estimated by robust M or MM regression.\\ \fn{MASS::glmmPQL} & Generalized linear mixed-effects models via partial quadratic likelihood.\\ \fn{robustlmm::rlmer} & Robust linear mixed-effects models.\\ \fn{betareg::betareg} & Beta regression models for rates and proportions.\\ \fn{ivreg::ivreg} & Linear regression models estimated by instrumental variables (2SLS regression). \\ \fn{glmmTMB::glmmTMB} & Generalized linear mixed-effects regression models (similar to \fn{lmer::glmer} but accommodating a broader selection of models).\\ \hline \multicolumn{2}{|l|}{\textbf{\code{multinom}-type models}}\\ \hline \fn{nnet::multinom} & Multinomial logistic-regression models. If the response has $K$ categories, the response for \fn{nnet::multinom} can be a factor with $K$ levels or a matrix with $K$ columns, which will be interpreted as counts for each of $K$ categories. Effects plots require the response to be a factor, not a matrix.\\ \fn{poLCA::poLCA} & Latent class analysis regression models for polytomous outcomes. Latent class analysis has a similar structure to multinomial regression, except that class membership of observations is unobserved but estimated in the analysis.\\ \hline \multicolumn{2}{|l|}{\textbf{\code{polr}-type models}}\\ \hline \fn{MASS:polr} & Ordinal logistic (proportional-odds) and probit regression models.\\ \fn{ordinal::clm} & Cumulative-link regression models (similar to, but more extensive than, \fn{polr}).\\ \fn{ordinal::clm2}& Updated version of \fn{ordinal::clm}.\\ \fn{ordinal::clmm} & Cumulative-link regression models with random effects.\\ \hline \end{tabular} \end{center} \end{table} The most basic type of model for which \fn{Effect} is appropriate is a standard linear model fit by the \fn{lm} function; for example: <>= library("effects") Prestige$type <- factor(Prestige$type, c("bc", "wc", "prof")) # reorder levels g1 <- lm(prestige ~ education + type + education:type, data = Prestige) # equivalent to lm(prestige ~ education*type, data = Prestige) plot(predictorEffects(g1), lines=list(multiline=TRUE)) @ \noindent In this example the response \code{prestige} is modeled as a linear function of years of \code{education}, the factor \code{type}, with levels blue collar (\code{"bc"}), white collar (\code{"wc"}), and professional (\code{"prof"}), and their interaction. Because of the interaction, the estimated partial relationship of \code{prestige} to \code{education} (depicted in the \emph{predictor effect plot} for \code{education}, at the left) is different for each level of \code{type}, and the partial relationship of \code{prestige} to \code{type} (depicted in the predictor effect plot for \code{type}, at the right) varies with the value \code{education}. A linear mixed-effects model is a more complicated regression model, fit, for example, by the \fn{lmer} function in the \pkg{lme4} package \citep{Bates15}: <<>>= data(Orthodont, package="nlme") g2 <- lme4::lmer(distance ~ age + Sex + (1 | Subject), data = Orthodont) summary(g2) @ This model has a fixed effect part, with response \code{distance} and predictors \code{age} and \code{Sex}. The random intercept (represented by \code{1}) varies by \code{Subject}. Effect plots for mixed-effects models are based only on the estimated fixed-effects in the model: <>= plot(predictorEffects(g2)) @ \section{Basic Types of Regression Models in the effects Package} The \fn{Effects} function supports three basic types of regression models: \begin{itemize} \item The preceding examples that use the \fn{lm} and \fn{lmer} functions are examples of \code{glm}-type models, which express, via a link function, the dependence of a discrete or continuous numeric response or of a binary response on a set of main effects and interactions among fixed-effect predictors comprising a linear predictor. The \fn{glm} function is the prototype for this kind of model. As shown in Table~\ref{tab1}, most of the regression functions currently supported by the \pkg{effects} package are of this type. \item \code{multinom}-type models are multinomial regression models that arise when the response is an unordered multi-category variable, also modeled, via a suitable multivariate link function, as a linear function of fixed-effect main effects and interactions. The prototype for \code{multinom}-type models is the \fn{multinom} function in the \pkg{nnet} package \citep{VenablesRipley02}. \item \code{polr}-type models (i.e., ordinal regression models) are used for an ordered polytomous response variable. The prototype for \code{polr}-type models is the \fn{polr} function in the \pkg{MASS} package \citep{VenablesRipley02}. \end{itemize} \section{Supporting Specific Regression Functions} To support a specific class of regression models, say of class \code{"foo"} produced by the function \fn{foo}, one \emph{could} write a method \fn{Effect.foo} for the \proglang{S3} generic \fn{Effect} function. That approach is generally undesirable, for two reasons: (1) writing an \fn{Effect} method from scratch is a complicated endeavor; (2) the resulting object may not work properly with other functions in the \pkg{effects} package, such as \fn{plot} methods. The \pkg{effects} package defines and exports several methods for the \fn{Effect} function, including a default method, and three specific methods corresponding to the three types of regression models introduced in the preceding section: \fn{Effect.lm} (which is also inherited by models of class \code{"glm"}), \fn{Effect.multinom}, and \fn{Effect.polr}. Moreover, \fn{Effect.default} works by setting up a call to one of the three specific \fn{Effect} methods.\footnote{There are, as well, two additional specific \fn{Effect} methods provided by the \pkg{effects} package: \fn{Effect.merMod} for models produced by the \fn{lmer} and \fn{glmer} functions in the \pkg{lme4} package; and \fn{Effect.svyglm} for models produced by the \fn{svyglm} function in the \pkg{survey} package \citep{Lumley04}. To see the code for these methods, enter the commands \code{getAnywhere("Effect.merMod")} and \code{getAnywhere("Effect.svyglm")}, after loading the \pkg{effects} package.} The three basic \fn{Effect} methods collect information from the regression model of interest via a suitable method for the generic \fn{effects::effSources} function, and then use that information to compute effects and their standard errors. The required information is summarized in Table~\ref{tab2}. \begin{table} \caption{Values supplied by \fn{effSources} methods. In the table, the regression model object is called \code{m}. For functions cited in the \pkg{insight} package see \cite{insight19}.\label{tab2}} \begin{center} \begin{tabular}{|l|p{4.5in}|} \hline Argument & Description \\ \hline \code{type} & The type of the regression model: one of \code{"glm"} (the default if \code{type} isn't supplied), \code{"multinom"}, or \code{"polr"}. \\ \code{call} & The call that created the regression model, which is generally returned by either \verb+m$call+ or \verb+m@call+ or \code{insight::get\_call(m)}. The call is used to find the usual \code{data} and \code{subset} arguments that \fn{Effect} needs to perform the computation. See the discussion of \fn{nlme:::gls} below for an example where the \code{call} must be modified.\\ formula & The formula for the fixed-effects linear predictor, which is often returned by \code{stats::formula(m)} or \code{insight::find\_formula(m)\$conditional}.\\ \code{family} & Many \code{glm}-type models include a family, with an error distribution and a link function. These are often returned by the default \code{stats::family(m)} or \code{insight::get\_family(m)}.\\ \code{coefficients} & The vector of fixed-effect parameter estimates, often returned by \code{coef(m)}. Alternatively \code{b <- insight::get\_parameters(m)} returns the coefficient estimates as a two-column matrix with parameter names in the first column, so \code{stats:setNames(b[,2], b[,1])} returns the estimates as a vector. For a \code{polr}-type model, coefficients should return the regression coefficients excluding the thresholds.\\ \code{vcov} & The estimated covariance matrix of the fixed-effect estimates, often given by \code{stats::vcov(m)} or \code{insight::get\_varcov(m)}. For a \code{polr}-type model, the covariance matrix should include both the regression coefficients and the thresholds, with the regression coefficients \emph{preceding} the thresholds.\\ \hline\\ \code{zeta} & The vector of estimated thresholds for a \code{polr}-type model, one fewer than the number of levels of the response. The default for a \code{polr}-type model is \code{zeta = m\$zeta}.\\ \code{method} & For a \code{polr}-type model, the name of a link supported by the \fn{MASS::polr} function: one of \code{"logistic"}, \code{"probit"}, \code{"loglog"}, \code{"cloglog"}, or \code{"cauchit"}. The default for a \code{polr}-type model is \code{method = "logistic"}.\\ \hline \end{tabular} \end{center} \end{table} The default \fn{effSources} method simply returns \code{NULL}, which corresponds to selecting all of the defaults in Table~\ref{tab2}. If that doesn't work, it usually suffices to provide a suitable \fn{effSources} method. We illustrate by a few examples. \subsection{Examples} The following examples, with the exception of the last, are drawn directly from the \pkg{effects} package. \subsubsection{\texttt{glmmPQL()}} Objects of class \code{"glmmPQL"}, produced by \fn{MASS::glmmPQL} do not respond to the generic \fn{family} function, but the name of the family can be obtained from the call; thus: \begin{alltt} effSources.glmmPQL <- function(mod) \{ list(family = mod$family) \} \end{alltt} \subsubsection{\texttt{gls()}} The \code{weights} argument has different meaning for \fn{gls} in the \pkg{nlme} package \citep{nlme} and for the standard \R{} \fn{glm} function, and consequently the \code{call} must be modified to set \code{weights} to \code{NULL}: \begin{alltt} effSources.gls <- function(mod)\{ cl <- mod$call cl$weights <- NULL list(call = cl) \} \end{alltt} \subsubsection{\texttt{betareg()}} The \code{betareg} function in the \pkg{betareg} package \citep{betareg} fits response data similar to a binomial regression but with beta errors. Adapting these models for use with \fn{Effect} is considerably more complex than the two previous examples: \begin{alltt} effSources.gls <- function(mod)\{ coef <- mod$coefficients$mean vco <- vcov(mod)[1:length(coef), 1:length(coef)] # betareg uses beta errors with mean link given in mod$link$mean. # Construct a family based on the binomial() family fam <- binomial(link=mod$link$mean) # adjust the variance function to account for beta variance fam$variance <- function(mu){ f0 <- function(mu, eta) (1-mu)*mu/(1+eta) do.call("f0", list(mu, mod$coefficient$precision))} # adjust initialize fam$initialize <- expression({mustart <- y}) # collect arguments args <- list( call = mod$call, formula = formula(mod), family=fam, coefficients = coef, vcov = vco) args \} \end{alltt} \subsubsection{\texttt{clm2()}} The \fn{clm2} function in the \pkg{ordinal} package \citep{Christensen15} fits ordinal regression models, and so the aim is to create \code{polr}-type effects: \begin{alltt} effSources.clm2 <- function(mod)\{ if (!requireNamespace("MASS", quietly=TRUE)) stop("MASS package is required") polr.methods <- c("logistic", "probit", "loglog", "cloglog", "cauchit") method <- mod\$link if(!(method %in% polr.methods)) stop("'link' must be a 'method' supported by polr; see help(polr)") if(is.null(mod\$Hessian))\{ message("Re-fitting to get Hessian") mod <- update(mod, Hess=TRUE) \} if(mod\$threshold != "flexible") stop("Effects only supports the flexible threshold") numTheta <- length(mod\$Theta) numBeta <- length(mod\$beta) or <- c( (numTheta+1):(numTheta + numBeta), 1:(numTheta)) list( type = "polr", formula = mod\$call\$location, coefficients = mod\$beta, zeta = mod\$Theta, method=method, vcov = as.matrix(vcov(mod)[or, or])) \} \end{alltt} \subsubsection{\texttt{ivreg::ivreg()}} Sometimes it doesn't suffice to define an appropriate \fn{effSources} method, but it is still possible to avoid writing a detailed \fn{Effect} method. We use the \fn{ivreg} function (for instrumental-variables regression) in the \pkg{ivreg} package \citep{ivreg} as an example; that package defines the following \fn{Effect.ivreg} method: \begin{alltt} Effect.ivreg <- function (focal.predictors, mod, ...) \{ mod\$contrasts <- mod\$contrasts\$regressors NextMethod() \} \end{alltt} \noindent Here it is sufficient to set the \code{contrasts} element of the model object to conform to the way it is defined in \class{lm} objects. That works because \class{ivreg} objects inherit from class \code{lm}, and thus \fn{Effect.lm} is called by \fn{NextMethod}. \bibliography{functions-supported-by-effects} \end{document} effects/vignettes/predictor-effects-gallery.bib0000644000176200001440000000511313761730141021427 0ustar liggesusers @Manual{R-base, title = {R: A Language and Environment for Statistical Computing}, author = {{R Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2018}, url = {https://www.R-project.org/}, } @Manual{R-bookdown, title = {bookdown: Authoring Books and Technical Documents with R Markdown}, author = {Yihui Xie}, note = {R package version 0.7.18}, url = {https://github.com/rstudio/bookdown}, year = {2018}, } @Manual{R-knitr, title = {knitr: A General-Purpose Package for Dynamic Report Generation in R}, author = {Yihui Xie}, year = {2018}, note = {R package version 1.20}, url = {https://CRAN.R-project.org/package=knitr}, } @Manual{R-rmarkdown, title = {rmarkdown: Dynamic Documents for R}, author = {JJ Allaire and Yihui Xie and Jonathan McPherson and Javier Luraschi and Kevin Ushey and Aron Atkins and Hadley Wickham and Joe Cheng and Winston Chang}, year = {2018}, note = {R package version 1.10}, url = {https://CRAN.R-project.org/package=rmarkdown}, } @book{fw19, title={An R Companion to Applied Regression}, edition={Third}, author={Fox, John and Weisberg, Sanford}, year={2019}, publisher={Sage} } @book{sarkar08, title={Lattice: Multivariate Data Visualization With R}, author={Sarkar, Deepayan}, year={2008}, publisher={Springer Science \& Business Media} } @Manual{lenth18, title = {emmeans: Estimated Marginal Means, aka Least-Squares Means}, author = {Russell Lenth}, year = {2018}, note = {R package version 1.2.1}, url = {https://CRAN.R-project.org/package=emmeans}, } @Article{fw19b, title = {Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor Effect Plots and Partial Residuals}, author = {John Fox and Sanford Weisberg}, journal = {Journal of Statistical Software}, year = {2018}, volume = {87}, number = {9}, pages = {1--27}, doi = {10.18637/jss.v087.i09}, } @article{HawkinsWeisberg2017, title={Combining the {Box-Cox} Power and Generalised Log Transformations to Accommodate Negative Responses In Linear and Mixed-Effects Linear Models}, author={Hawkins, D. M. and Weisberg, S.}, journal={South African Statistics Journal}, volume={51}, pages = {pp. 317--328}, year={2017}, url={https://journals.co.za/content/journal/10520/EJC-bd05f9440} } @Manual{SarkarAndrews2016, title = {latticeExtra: Extra Graphical Utilities Based on Lattice}, author = {Deepayan Sarkar and Felix Andrews}, year = {2016}, note = {R package version 0.6-28}, url = {https://CRAN.R-project.org/package=latticeExtra}, } effects/vignettes/chicago.bst0000755000176200001440000011105014213403720016005 0ustar liggesusers%%% ==================================================================== %%% @BibTeX-style-file{ %%% author = "Glenn Paulley", %%% version = "4", %%% date = "28 August 1992", %%% time = "10:23:39 199", %%% filename = "chicago.bst", %%% address = "Data Structuring Group %%% Department of Computer Science %%% University of Waterloo %%% Waterloo, Ontario, Canada %%% N2L 3G1", %%% telephone = "(519) 885-1211", %%% FAX = "(519) 885-1208", %%% checksum = "26323 1654 5143 37417", %%% email = "gnpaulle@bluebox.uwaterloo.ca", %%% codetable = "ISO/ASCII", %%% keywords = "", %%% supported = "yes", %%% abstract = "A BibTeX bibliography style that follows the %%% `B' reference style of the 13th Edition of %%% the Chicago Manual of Style. A detailed %%% feature list is given below.", %%% docstring = "The checksum field above contains a CRC-16 %%% checksum as the first value, followed by the %%% equivalent of the standard UNIX wc (word %%% count) utility output of lines, words, and %%% characters. This is produced by Robert %%% Solovay's checksum utility.", %%% } %%% ==================================================================== % % "Chicago" BibTeX style, chicago.bst % =================================== % % BibTeX `chicago' style file for BibTeX version 0.99c, LaTeX version 2.09 % Place it in a file called chicago.bst in the BibTeX search path. % You need to include chicago.sty as a \documentstyle option. % (Placing it in the same directory as the LaTeX document should also work.) % This "chicago" style is based on newapa.bst (American Psych. Assoc.) % found at ymir.claremont.edu. % % Citation format: (author-last-name year) % (author-last-name and author-last-name year) % (author-last-name, author-last-name, and author-last-name year) % (author-last-name et al. year) % (author-last-name) % author-last-name (year) % (author-last-name and author-last-name) % (author-last-name et al.) % (year) or (year,year) % year or year,year % % Reference list ordering: alphabetical by author or whatever passes % for author in the absence of one. % % This BibTeX style has support for abbreviated author lists and for % year-only citations. This is done by having the citations % actually look like % % \citeauthoryear{full-author-info}{abbrev-author-info}{year} % % The LaTeX style has to have the following (or similar) % % \let\@internalcite\cite % \def\fullcite{\def\citeauthoryear##1##2##3{##1, ##3}\@internalcite} % \def\fullciteA{\def\citeauthoryear##1##2##3{##1}\@internalcite} % \def\shortcite{\def\citeauthoryear##1##2##3{##2, ##3}\@internalcite} % \def\shortciteA{\def\citeauthoryear##1##2##3{##2}\@internalcite} % \def\citeyear{\def\citeauthoryear##1##2##3{##3}\@internalcite} % % These TeX macro definitions are found in chicago.sty. Additional % commands to manipulate different components of a citation can be defined % so that, for example, you can list author's names without parentheses % if using a citation as a noun or object in a sentence. % % This file was originally copied from newapa.bst at ymir.claremont.edu. % % Features of chicago.bst: % ======================= % % - full names used in citations, but abbreviated citations are available % (see above) % - if an entry has a "month", then the month and year are also printed % as part of that bibitem. % - all conjunctions use "and" instead of "\&" % - major modification from Chicago Manual of Style (13th ed.) is that % only the first author in a reference appears last name first- % additional authors appear as J. Q. Public. % - pages are listed as "pp. xx-xx" in all entry types except % article entries. % - book, inbook, and manual use "location: publisher" (or organization) % for address and publisher. All other types list publishers separately. % - "pp." are used to identify page numbers for all entry types except % articles. % - organization is used as a citation label if neither author nor editor % is present (for manuals). % - "et al." is used for long author and editor lists, or when "others" % is used. % % Modifications and bug fixes from newapa.bst: % =========================================== % % - added month, year to bib entries if month is present % - fixed bug with In proceedings, added necessary comma after title % - all conjunctions changed to "and" from "\&" % - fixed bug with author labels in my.full.label: "et al." now is % generated when "others" is an author name % - major modification from Chicago Manual of Style (13th ed.) is that % only the first author in a reference appears last name first- % additional authors appear as J. Q. Public. % - pages are listed as "pp. xx-xx" in all entry types except % article entries. Unnecessary (IMHO) "()" around page numbers % were removed, and page numbers now don't end with a period. % - created chicago.sty for use with this bibstyle (required). % - fixed bugs in FUNCTION {format.vol.num.pages} for missing volume, % number, and /or pages. Renamed to format.jour.vol. % - fixed bug in formatting booktitles: additional period an error if % book has a volume. % - fixed bug: editors usually given redundant period before next clause % (format.editors.dot) removed. % - added label support for organizations, if both author and editor % are missing (from alpha.bst). If organization is too long, then % the key field is used for abbreviated citations. % - In proceedings or books of several volumes, no comma was written % between the "Volume x" and the page numbers (this was intentional % in newapa.bst). Fixed. % - Some journals may not have volumes/numbers, only month/year (eg. % IEEE Computer). Fixed bug in article style that assumed volume/number % was always present. % % Original documentation for newapa.sty: % ===================================== % % This version was made by modifying the master file made by % Oren Patashnik (PATASHNIK@SCORE.STANFORD.EDU), and the 'named' BibTeX % style of Peter F. Patel-Schneider. % % Copyright (C) 1985, all rights reserved. % Copying of this file is authorized only if either % (1) you make absolutely no changes to your copy, including name, or % (2) if you do make changes, you name it something other than 'newapa.bst'. % There are undoubtably bugs in this style. If you make bug fixes, % improvements, etc. please let me know. My e-mail address is: % spencer@cgrg.ohio.state.edu or 71160.3141@compuserve.com % % This style was made from 'plain.bst', 'named.bst', and 'apalike.bst', % with lots of tweaking to make it look like APA style, along with tips % from Young Ryu and Brian Reiser's modifications of 'apalike.bst'. ENTRY { address author booktitle chapter edition editor howpublished institution journal key month note number organization pages publisher school series title type volume year } {} { label.year extra.label sort.year sort.label } INTEGERS { output.state before.all mid.sentence after.sentence after.block } FUNCTION {init.state.consts} { #0 'before.all := #1 'mid.sentence := #2 'after.sentence := #3 'after.block := } STRINGS { s t u } FUNCTION {output.nonnull} { 's := output.state mid.sentence = { ", " * write$ } { output.state after.block = { add.period$ write$ newline$ "\newblock " write$ } { output.state before.all = 'write$ { add.period$ " " * write$ } if$ } if$ mid.sentence 'output.state := } if$ s } % Use a colon to separate output. Used only for address/publisher % combination in book/inbook types, address/institution for manuals, % and organization:publisher for proceedings (inproceedings). % FUNCTION {output.nonnull.colon} { 's := output.state mid.sentence = { ": " * write$ } { output.state after.block = { add.period$ write$ newline$ "\newblock " write$ } { output.state before.all = 'write$ { add.period$ " " * write$ } if$ } if$ mid.sentence 'output.state := } if$ s } FUNCTION {output} { duplicate$ empty$ 'pop$ 'output.nonnull if$ } FUNCTION {output.colon} { duplicate$ empty$ 'pop$ 'output.nonnull.colon if$ } FUNCTION {output.check} { 't := duplicate$ empty$ { pop$ "empty " t * " in " * cite$ * warning$ } 'output.nonnull if$ } FUNCTION {output.check.colon} { 't := duplicate$ empty$ { pop$ "empty " t * " in " * cite$ * warning$ } 'output.nonnull.colon if$ } FUNCTION {output.year.check} { year empty$ { "empty year in " cite$ * warning$ } { write$ " (" year * extra.label * month empty$ { ")" * } { ", " * month * ")" * } if$ mid.sentence 'output.state := } if$ } FUNCTION {fin.entry} { add.period$ write$ newline$ } FUNCTION {new.block} { output.state before.all = 'skip$ { after.block 'output.state := } if$ } FUNCTION {new.sentence} { output.state after.block = 'skip$ { output.state before.all = 'skip$ { after.sentence 'output.state := } if$ } if$ } FUNCTION {not} { { #0 } { #1 } if$ } FUNCTION {and} { 'skip$ { pop$ #0 } if$ } FUNCTION {or} { { pop$ #1 } 'skip$ if$ } FUNCTION {new.block.checka} { empty$ 'skip$ 'new.block if$ } FUNCTION {new.block.checkb} { empty$ swap$ empty$ and 'skip$ 'new.block if$ } FUNCTION {new.sentence.checka} { empty$ 'skip$ 'new.sentence if$ } FUNCTION {new.sentence.checkb} { empty$ swap$ empty$ and 'skip$ 'new.sentence if$ } FUNCTION {field.or.null} { duplicate$ empty$ { pop$ "" } 'skip$ if$ } % % Emphasize the top string on the stack. % FUNCTION {emphasize} { duplicate$ empty$ { pop$ "" } { "{\em " swap$ * "}" * } if$ } % % Emphasize the top string on the stack, but add a trailing space. % FUNCTION {emphasize.space} { duplicate$ empty$ { pop$ "" } { "{\em " swap$ * "\/}" * } if$ } INTEGERS { nameptr namesleft numnames } % % Format bibliographical entries with the first author last name first, % and subsequent authors with initials followed by last name. % All names are formatted in this routine. % FUNCTION {format.names} { 's := #1 'nameptr := % nameptr = 1; s num.names$ 'numnames := % numnames = num.name$(s); numnames 'namesleft := { namesleft #0 > } { nameptr #1 = {s nameptr "{vv~}{ll}{, jj}{, f.}" format.name$ 't := } {s nameptr "{f.~}{vv~}{ll}{, jj}" format.name$ 't := } if$ nameptr #1 > { namesleft #1 > { ", " * t * } { numnames #2 > { "," * } 'skip$ if$ t "others" = { " et~al." * } { " and " * t * } % from Chicago Manual of Style if$ } if$ } 't if$ nameptr #1 + 'nameptr := % nameptr += 1; namesleft #1 - 'namesleft := % namesleft =- 1; } while$ } FUNCTION {my.full.label} { 's := #1 'nameptr := % nameptr = 1; s num.names$ 'numnames := % numnames = num.name$(s); numnames 'namesleft := { namesleft #0 > } { s nameptr "{vv~}{ll}" format.name$ 't := % get the next name nameptr #1 > { namesleft #1 > { ", " * t * } { numnames #2 > { "," * } 'skip$ if$ t "others" = { " et~al." * } { " and " * t * } % from Chicago Manual of Style if$ } if$ } 't if$ nameptr #1 + 'nameptr := % nameptr += 1; namesleft #1 - 'namesleft := % namesleft =- 1; } while$ } FUNCTION {format.names.fml} % % Format names in "familiar" format, with first initial followed by % last name. Like format.names, ALL names are formatted. % { 's := #1 'nameptr := % nameptr = 1; s num.names$ 'numnames := % numnames = num.name$(s); numnames 'namesleft := { namesleft #0 > } { s nameptr "{f.~}{vv~}{ll}{, jj}" format.name$ 't := nameptr #1 > { namesleft #1 > { ", " * t * } { numnames #2 > { "," * } 'skip$ if$ t "others" = { " et~al." * } { " and " * t * } % { " \& " * t * } if$ } if$ } 't if$ nameptr #1 + 'nameptr := % nameptr += 1; namesleft #1 - 'namesleft := % namesleft =- 1; } while$ } FUNCTION {format.authors} { author empty$ { "" } { author format.names } if$ } FUNCTION {format.key} { empty$ { key field.or.null } { "" } if$ } % % Format editor names for use in the "in" types: inbook, incollection, % inproceedings: first initial, then last names. When editors are the % LABEL for an entry, then format.editor is used which lists editors % by last name first. % FUNCTION {format.editors.fml} { editor empty$ { "" } { editor format.names.fml editor num.names$ #1 > { " (Eds.)" * } { " (Ed.)" * } if$ } if$ } % % Format editor names for use in labels, last names first. % FUNCTION {format.editors} { editor empty$ { "" } { editor format.names editor num.names$ #1 > { " (Eds.)" * } { " (Ed.)" * } if$ } if$ } FUNCTION {format.title} { title empty$ { "" } { title "t" change.case$ } if$ } % Note that the APA style requres case changes % in article titles. The following does not % change cases. If you perfer it, uncomment the % following and comment out the above. %FUNCTION {format.title} %{ title empty$ % { "" } % { title } % if$ %} FUNCTION {n.dashify} { 't := "" { t empty$ not } { t #1 #1 substring$ "-" = { t #1 #2 substring$ "--" = not { "--" * t #2 global.max$ substring$ 't := } { { t #1 #1 substring$ "-" = } { "-" * t #2 global.max$ substring$ 't := } while$ } if$ } { t #1 #1 substring$ * t #2 global.max$ substring$ 't := } if$ } while$ } FUNCTION {format.btitle} { edition empty$ { title emphasize } { title empty$ { title emphasize } { volume empty$ % gnp - check for volume, then don't need period { "{\em " title * "\/} (" * edition * " ed.)" * "." * } { "{\em " title * "\/} (" * edition * " ed.)" * } if$ } if$ } if$ } FUNCTION {format.emphasize.booktitle} { edition empty$ { booktitle emphasize } { booktitle empty$ { booktitle emphasize } { volume empty$ % gnp - extra period an error if book has a volume { "{\em " booktitle * "\/} (" * edition * " ed.)" * "." *} { "{\em " booktitle * "\/} (" * edition * " ed.)" * } if$ } if$ } if$ } FUNCTION {tie.or.space.connect} { duplicate$ text.length$ #3 < { "~" } { " " } if$ swap$ * * } FUNCTION {either.or.check} { empty$ 'pop$ { "can't use both " swap$ * " fields in " * cite$ * warning$ } if$ } FUNCTION {format.bvolume} { volume empty$ { "" } { "Volume" volume tie.or.space.connect % gnp - changed to mixed case series empty$ 'skip$ { " of " * series emphasize * } if$ "volume and number" number either.or.check } if$ } FUNCTION {format.number.series} { volume empty$ { number empty$ { series field.or.null } { output.state mid.sentence = { "Number" } % gnp - changed to mixed case always { "Number" } if$ number tie.or.space.connect series empty$ { "there's a number but no series in " cite$ * warning$ } { " in " * series * } if$ } if$ } { "" } if$ } INTEGERS { multiresult } FUNCTION {multi.page.check} { 't := #0 'multiresult := { multiresult not t empty$ not and } { t #1 #1 substring$ duplicate$ "-" = swap$ duplicate$ "," = swap$ "+" = or or { #1 'multiresult := } { t #2 global.max$ substring$ 't := } if$ } while$ multiresult } FUNCTION {format.pages} { pages empty$ { "" } { pages multi.page.check { "pp.\ " pages n.dashify tie.or.space.connect } % gnp - removed () { "pp.\ " pages tie.or.space.connect } if$ } if$ } % By Young (and Spencer) % GNP - fixed bugs with missing volume, number, and/or pages % % Format journal, volume, number, pages for article types. % FUNCTION {format.jour.vol} { journal empty$ { "no journal in " cite$ * warning$ "" } { journal emphasize.space } if$ number empty$ { volume empty$ { "no number and no volume in " cite$ * warning$ "" * } { "~{\em " * Volume * "}" * } if$ } { volume empty$ {"no volume for " cite$ * warning$ "~(" * number * ")" * } { "~" * volume emphasize.space "(" * number * ")" * * } if$ } if$ pages empty$ {"page numbers missing in " cite$ * warning$ "" * } % gnp - place a null string on the stack for output { duplicate$ empty$ { pop$ format.pages } { ", " * pages n.dashify * } % gnp - removed pp. for articles if$ } if$ } FUNCTION {format.chapter.pages} { chapter empty$ 'format.pages { type empty$ { "Chapter" } % gnp - changed to mixed case { type "t" change.case$ } if$ chapter tie.or.space.connect pages empty$ {"page numbers missing in " cite$ * warning$} % gnp - added check { ", " * format.pages * } if$ } if$ } FUNCTION {format.in.ed.booktitle} { booktitle empty$ { "" } { editor empty$ { "In " format.emphasize.booktitle * } { "In " format.editors.fml * ", " * format.emphasize.booktitle * } if$ } if$ } FUNCTION {format.thesis.type} { type empty$ 'skip$ { pop$ type "t" change.case$ } if$ } FUNCTION {format.tr.number} { type empty$ { "Technical Report" } 'type if$ number empty$ { "t" change.case$ } { number tie.or.space.connect } if$ } FUNCTION {format.article.crossref} { "See" "\citeN{" * crossref * "}" * } FUNCTION {format.crossref.editor} { editor #1 "{vv~}{ll}" format.name$ editor num.names$ duplicate$ #2 > { pop$ " et~al." * } { #2 < 'skip$ { editor #2 "{ff }{vv }{ll}{ jj}" format.name$ "others" = { " et~al." * } { " and " * editor #2 "{vv~}{ll}" format.name$ * } if$ } if$ } if$ } FUNCTION {format.book.crossref} { volume empty$ { "empty volume in " cite$ * "'s crossref of " * crossref * warning$ "In " } { "Volume" volume tie.or.space.connect % gnp - changed to mixed case " of " * } if$ editor empty$ editor field.or.null author field.or.null = or { key empty$ { series empty$ { "need editor, key, or series for " cite$ * " to crossref " * crossref * warning$ "" * } { "{\em " * series * "\/}" * } if$ } { key * } if$ } { format.crossref.editor * } if$ " \citeN{" * crossref * "}" * } FUNCTION {format.incoll.inproc.crossref} { "See" " \citeN{" * crossref * "}" * } % format.lab.names: % % determines "short" names for the abbreviated author information. % "Long" labels are created in calc.label, using the routine my.full.label % to format author and editor fields. % % There are 4 cases for labels. (n=3 in the example) % a) one author Foo % b) one to n Foo, Bar and Baz % c) use of "and others" Foo, Bar et al. % d) more than n Foo et al. % FUNCTION {format.lab.names} { 's := s num.names$ 'numnames := numnames #2 > % change number to number of others allowed before % forcing "et al". { s #1 "{vv~}{ll}" format.name$ " et~al." * } { numnames #1 - 'namesleft := #2 'nameptr := s #1 "{vv~}{ll}" format.name$ { namesleft #0 > } { nameptr numnames = { s nameptr "{ff }{vv }{ll}{ jj}" format.name$ "others" = { " et~al." * } { " and " * s nameptr "{vv~}{ll}" format.name$ * } if$ } { ", " * s nameptr "{vv~}{ll}" format.name$ * } if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } if$ } FUNCTION {author.key.label} { author empty$ { key empty$ { "no key, author in " cite$ * warning$ cite$ #1 #3 substring$ } 'key if$ } { author format.lab.names } if$ } FUNCTION {editor.key.label} { editor empty$ { key empty$ { "no key, editor in " cite$ * warning$ cite$ #1 #3 substring$ } 'key if$ } { editor format.lab.names } if$ } FUNCTION {author.key.organization.label} % % added - gnp. Provide label formatting by organization if author is null. % { author empty$ { organization empty$ { key empty$ { "no key, author or organization in " cite$ * warning$ cite$ #1 #3 substring$ } 'key if$ } { organization } if$ } { author format.lab.names } if$ } FUNCTION {editor.key.organization.label} % % added - gnp. Provide label formatting by organization if editor is null. % { editor empty$ { organization empty$ { key empty$ { "no key, editor or organization in " cite$ * warning$ cite$ #1 #3 substring$ } 'key if$ } { organization } if$ } { editor format.lab.names } if$ } FUNCTION {author.editor.key.label} { author empty$ { editor empty$ { key empty$ { "no key, author, or editor in " cite$ * warning$ cite$ #1 #3 substring$ } 'key if$ } { editor format.lab.names } if$ } { author format.lab.names } if$ } FUNCTION {calc.label} % % Changed - GNP. See also author.organization.sort, editor.organization.sort % Form label for BibTeX entry. The classification of which fields are used % for which type of entry (book, inbook, etc.) are taken from alpha.bst. % The change here from newapa is to also include organization as a % citation label if author or editor is missing. % { type$ "book" = type$ "inbook" = or 'author.editor.key.label { type$ "proceedings" = 'editor.key.organization.label { type$ "manual" = 'author.key.organization.label 'author.key.label if$ } if$ } if$ author empty$ % generate the full label citation information. { editor empty$ { organization empty$ { "no author, editor, or organization in " cite$ * warning$ "??" } { organization } if$ } { editor my.full.label } if$ } { author my.full.label } if$ % leave label on the stack, to be popped when required. "}{" * swap$ * "}{" * % year field.or.null purify$ #-1 #4 substring$ * % % save the year for sort processing afterwards (adding a, b, c, etc.) % year field.or.null purify$ #-1 #4 substring$ 'label.year := } FUNCTION {output.bibitem} { newline$ "\bibitem[\protect\citeauthoryear{" write$ calc.label write$ sort.year write$ "}]{" write$ cite$ write$ "}" write$ newline$ "" before.all 'output.state := } FUNCTION {article} { output.bibitem format.authors "author" output.check author format.key output % added output.year.check % added new.block format.title "title" output.check new.block crossref missing$ { format.jour.vol output } { format.article.crossref output.nonnull format.pages output } if$ new.block note output fin.entry } FUNCTION {book} { output.bibitem author empty$ { format.editors "author and editor" output.check } { format.authors output.nonnull crossref missing$ { "author and editor" editor either.or.check } 'skip$ if$ } if$ output.year.check % added new.block format.btitle "title" output.check crossref missing$ { format.bvolume output new.block format.number.series output new.sentence address output publisher "publisher" output.check.colon } { new.block format.book.crossref output.nonnull } if$ new.block note output fin.entry } FUNCTION {booklet} { output.bibitem format.authors output author format.key output % added output.year.check % added new.block format.title "title" output.check new.block howpublished output address output new.block note output fin.entry } FUNCTION {inbook} { output.bibitem author empty$ { format.editors "author and editor" output.check } { format.authors output.nonnull crossref missing$ { "author and editor" editor either.or.check } 'skip$ if$ } if$ output.year.check % added new.block format.btitle "title" output.check crossref missing$ { format.bvolume output format.chapter.pages "chapter and pages" output.check new.block format.number.series output new.sentence address output publisher "publisher" output.check.colon } { format.chapter.pages "chapter and pages" output.check new.block format.book.crossref output.nonnull } if$ new.block note output fin.entry } FUNCTION {incollection} { output.bibitem format.authors "author" output.check author format.key output % added output.year.check % added new.block format.title "title" output.check new.block crossref missing$ { format.in.ed.booktitle "booktitle" output.check format.bvolume output format.number.series output format.chapter.pages output % gnp - was special.output.nonnull % left out comma before page numbers new.sentence address output publisher "publisher" output.check.colon } { format.incoll.inproc.crossref output.nonnull format.chapter.pages output } if$ new.block note output fin.entry } FUNCTION {inproceedings} { output.bibitem format.authors "author" output.check author format.key output % added output.year.check % added new.block format.title "title" output.check new.block crossref missing$ { format.in.ed.booktitle "booktitle" output.check format.bvolume output format.number.series output address output format.pages output new.sentence organization output publisher output.colon } { format.incoll.inproc.crossref output.nonnull format.pages output } if$ new.block note output fin.entry } FUNCTION {conference} { inproceedings } FUNCTION {manual} { output.bibitem author empty$ { editor empty$ { organization "organization" output.check organization format.key output } % if all else fails, use key { format.editors "author and editor" output.check } if$ } { format.authors output.nonnull } if$ output.year.check % added new.block format.btitle "title" output.check organization address new.block.checkb % Reversed the order of "address" and "organization", added the ":". address output organization "organization" output.check.colon % address output % ":" output % organization output new.block note output fin.entry } FUNCTION {mastersthesis} { output.bibitem format.authors "author" output.check author format.key output % added output.year.check % added new.block format.title "title" output.check new.block "Master's thesis" format.thesis.type output.nonnull school "school" output.check address output new.block note output fin.entry } FUNCTION {misc} { output.bibitem format.authors output author format.key output % added output.year.check % added title howpublished new.block.checkb format.title output new.block howpublished output new.block note output fin.entry } FUNCTION {phdthesis} { output.bibitem format.authors "author" output.check author format.key output % added output.year.check % added new.block format.btitle "title" output.check new.block "Ph.\ D. thesis" format.thesis.type output.nonnull school "school" output.check address output new.block note output fin.entry } FUNCTION {proceedings} { output.bibitem editor empty$ { organization output organization format.key output } % gnp - changed from author format.key { format.editors output.nonnull } if$ % author format.key output % gnp - removed (should be either % editor or organization output.year.check % added (newapa) new.block format.btitle "title" output.check format.bvolume output format.number.series output address output new.sentence organization output publisher output.colon new.block note output fin.entry } FUNCTION {techreport} { output.bibitem format.authors "author" output.check author format.key output % added output.year.check % added new.block format.title "title" output.check new.block format.tr.number output.nonnull institution "institution" output.check address output new.block note output fin.entry } FUNCTION {unpublished} { output.bibitem format.authors "author" output.check author format.key output % added output.year.check % added new.block format.title "title" output.check new.block note "note" output.check fin.entry } FUNCTION {default.type} { misc } MACRO {jan} {"January"} MACRO {feb} {"February"} MACRO {mar} {"March"} MACRO {apr} {"April"} MACRO {may} {"May"} MACRO {jun} {"June"} MACRO {jul} {"July"} MACRO {aug} {"August"} MACRO {sep} {"September"} MACRO {oct} {"October"} MACRO {nov} {"November"} MACRO {dec} {"December"} MACRO {acmcs} {"ACM Computing Surveys"} MACRO {acta} {"Acta Informatica"} MACRO {ai} {"Artificial Intelligence"} MACRO {cacm} {"Communications of the ACM"} MACRO {ibmjrd} {"IBM Journal of Research and Development"} MACRO {ibmsj} {"IBM Systems Journal"} MACRO {ieeese} {"IEEE Transactions on Software Engineering"} MACRO {ieeetc} {"IEEE Transactions on Computers"} MACRO {ieeetcad} {"IEEE Transactions on Computer-Aided Design of Integrated Circuits"} MACRO {ipl} {"Information Processing Letters"} MACRO {jacm} {"Journal of the ACM"} MACRO {jcss} {"Journal of Computer and System Sciences"} MACRO {scp} {"Science of Computer Programming"} MACRO {sicomp} {"SIAM Journal on Computing"} MACRO {tocs} {"ACM Transactions on Computer Systems"} MACRO {tods} {"ACM Transactions on Database Systems"} MACRO {tog} {"ACM Transactions on Graphics"} MACRO {toms} {"ACM Transactions on Mathematical Software"} MACRO {toois} {"ACM Transactions on Office Information Systems"} MACRO {toplas} {"ACM Transactions on Programming Languages and Systems"} MACRO {tcs} {"Theoretical Computer Science"} READ FUNCTION {sortify} { purify$ "l" change.case$ } INTEGERS { len } FUNCTION {chop.word} { 's := 'len := s #1 len substring$ = { s len #1 + global.max$ substring$ } 's if$ } FUNCTION {sort.format.names} { 's := #1 'nameptr := "" s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { nameptr #1 > { " " * } 'skip$ if$ s nameptr "{vv{ } }{ll{ }}{ f{ }}{ jj{ }}" format.name$ 't := nameptr numnames = t "others" = and { " et~al" * } { t sortify * } if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {sort.format.title} { 't := "A " #2 "An " #3 "The " #4 t chop.word chop.word chop.word sortify #1 global.max$ substring$ } FUNCTION {author.sort} { author empty$ { key empty$ { "to sort, need author or key in " cite$ * warning$ "" } { key sortify } if$ } { author sort.format.names } if$ } FUNCTION {editor.sort} { editor empty$ { key empty$ { "to sort, need editor or key in " cite$ * warning$ "" } { key sortify } if$ } { editor sort.format.names } if$ } FUNCTION {author.editor.sort} { author empty$ { "missing author in " cite$ * warning$ editor empty$ { key empty$ { "to sort, need author, editor, or key in " cite$ * warning$ "" } { key sortify } if$ } { editor sort.format.names } if$ } { author sort.format.names } if$ } FUNCTION {author.organization.sort} % % added - GNP. Stack author or organization for sorting (from alpha.bst). % Unlike alpha.bst, we need entire names, not abbreviations % { author empty$ { organization empty$ { key empty$ { "to sort, need author, organization, or key in " cite$ * warning$ "" } { key sortify } if$ } { organization sortify } if$ } { author sort.format.names } if$ } FUNCTION {editor.organization.sort} % % added - GNP. Stack editor or organization for sorting (from alpha.bst). % Unlike alpha.bst, we need entire names, not abbreviations % { editor empty$ { organization empty$ { key empty$ { "to sort, need editor, organization, or key in " cite$ * warning$ "" } { key sortify } if$ } { organization sortify } if$ } { editor sort.format.names } if$ } FUNCTION {presort} % % Presort creates the bibentry's label via a call to calc.label, and then % sorts the entries based on entry type. Chicago.bst adds support for % including organizations as the sort key; the following is stolen from % alpha.bst. % { calc.label sortify % recalculate bibitem label year field.or.null purify$ #-1 #4 substring$ * % add year " " * type$ "book" = type$ "inbook" = or 'author.editor.sort { type$ "proceedings" = 'editor.organization.sort { type$ "manual" = 'author.organization.sort 'author.sort if$ } if$ } if$ #1 entry.max$ substring$ % added for newapa 'sort.label := % added for newapa sort.label % added for newapa * " " * title field.or.null sort.format.title * #1 entry.max$ substring$ 'sort.key$ := } ITERATE {presort} SORT % by label, year, author/editor, title STRINGS { last.label next.extra } INTEGERS { last.extra.num } FUNCTION {initialize.extra.label.stuff} { #0 int.to.chr$ 'last.label := "" 'next.extra := #0 'last.extra.num := } FUNCTION {forward.pass} % % Pass through all entries, comparing current entry to last one. % Need to concatenate year to the stack (done by calc.label) to determine % if two entries are the same (see presort) % { last.label calc.label year field.or.null purify$ #-1 #4 substring$ * % add year #1 entry.max$ substring$ = % are they equal? { last.extra.num #1 + 'last.extra.num := last.extra.num int.to.chr$ 'extra.label := } { "a" chr.to.int$ 'last.extra.num := "" 'extra.label := calc.label year field.or.null purify$ #-1 #4 substring$ * % add year #1 entry.max$ substring$ 'last.label := % assign to last.label } if$ } FUNCTION {reverse.pass} { next.extra "b" = { "a" 'extra.label := } 'skip$ if$ label.year extra.label * 'sort.year := extra.label 'next.extra := } EXECUTE {initialize.extra.label.stuff} ITERATE {forward.pass} REVERSE {reverse.pass} FUNCTION {bib.sort.order} { sort.label " " * year field.or.null sortify * " " * title field.or.null sort.format.title * #1 entry.max$ substring$ 'sort.key$ := } ITERATE {bib.sort.order} SORT % by sort.label, year, title --- giving final bib. order. FUNCTION {begin.bib} { preamble$ empty$ 'skip$ { preamble$ write$ newline$ } if$ "\begin{thebibliography}{}" write$ newline$ } EXECUTE {begin.bib} EXECUTE {init.state.consts} ITERATE {call.type$} FUNCTION {end.bib} { newline$ "\end{thebibliography}" write$ newline$ } EXECUTE {end.bib} effects/vignettes/partial-residuals.bib0000644000176200001440000000165713761730141020020 0ustar liggesusers@Misc{Schumann15, Author = {E. Schumann}, Title = {\emph{Generating Correlated Uniform Variates}}, Note = {\url{http://comisef.wikidot.com/ tutorial:correlateduniformvariates} [Accessed: 2015-05-21]}, year = 2009 } @book{Pearson07, Author={Karl Pearson}, Title={Mathematical Contributions to the Theory of Evolution.---XVI. On Further Methods of Determining Correlation}, Series={Drapers' Company Research Memoirs. Biometric Series. IV.}, Publisher={Cambridge University Press}, Address={London}, year=1907 } @article{FoxWeisberg18, title = {Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor Effect Plots and Partial Residuals}, author = {John Fox and Sanford Weisberg}, journal = {Journal of Statistical Software}, year = {2018}, volume = {87}, number = {9}, pages = {1--27}, doi = {10.18637/jss.v087.i09}, } effects/vignettes/predictor-effects-gallery.Rnw0000644000176200001440000025156615037504444021463 0ustar liggesusers%\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Predictor Effects Graphics Gallery} %% vignette index specifications need to be *after* \documentclass{} %%\VignetteEngine{knitr::knitr} %%\VignetteIndexEntry{Effects Gallery} %%\VignettePackage{effects} \documentclass[10pt]{article} \usepackage[left=1.25in, right=1.25in, top=1in, bottom=1in]{geometry} \usepackage[utf8]{inputenc} \usepackage{graphicx} \usepackage[american]{babel} \newcommand{\R}{{\sf R}} \usepackage{url} \usepackage{hyperref} \usepackage{xcolor} \hypersetup{ colorlinks, linkcolor={red!50!black}, citecolor={blue!50!black}, urlcolor={blue!80!black} } \usepackage{alltt} \usepackage{fancyvrb} \usepackage{natbib} \usepackage{amsmath} \VerbatimFootnotes \bibliographystyle{chicago} \newcommand{\x}{\mathbf{x}} \newcommand{\code}[1]{\normalfont\texttt{\hyphenchar\font45\relax #1}} \newcommand{\lcode}[1]{\mbox{$\log($}\normalfont\texttt{\hyphenchar\font45\relax #1}\mbox{$)$}} \newcommand{\E}{\mathrm{E}} \newcommand{\link}[1]{#1} \newcommand{\tild}{\symbol{126}} \newcommand{\Rtilde}{\,\raisebox{-.5ex}{\code{\tild{}}}\,} \newcommand{\captilde}{\mbox{\protect\Rtilde}} % use in figure captions. \newcommand{\Rmod}[2]{\code{#1 \raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmoda}[2]{\code{#1} &\code{\raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmodb}[2]{\code{#1 &\raisebox{-.5ex}{\tild{}}& #2}} \newcommand{\aab}[2]{\code{#1}\mbox{$*$}\code{#2}} \newcommand{\acb}[2]{\code{#1}\mbox{$:$}\code{#2}} \newcommand{\C}{\mathbf{C}} \newcommand{\betahat}{\widehat{\beta}} \newcommand{\bbetahat}{\widehat{\boldsymbol{\beta}}} \newcommand{\bbeta}{\boldsymbol{\beta}} \newcommand{\xbf}{\x_{\backslash{}f}} \newcommand{\hbf}{h_{\backslash{}f}} \newcommand{\xtb}{\x_{2\backslash{}f}} \newcommand{\xbfi}{\x_{\backslash{}f,i}} \newcommand{\inter}[2]{\mbox{$#1$:$#2$}} \newcommand{\cross}[2]{\mbox{$#1$\code{*}$#2$}} \newcommand{\N}{\mathrm{N}} \newcommand{\fn}[1]{\texttt{#1()}} \newcommand{\ar}{\texttt} \newcommand{\pkg}[1]{\textbf{#1}} \newcommand{\proglang}[1]{\textsf{#1}} \newcommand{\yx}{\widehat{y}(\x)} \newcommand{\lvn}[1]{\mbox{$\log(\mbox{\texttt{#1}})$}} \newcommand{\vn}[1]{\mbox{\texttt{#1}}} \newcommand{\level}[1]{\texttt{"#1"}} \newcommand{\class}[1]{\texttt{"#1"}} \begin{document} \title{Predictor Effects Graphics Gallery} \author{John Fox and Sanford Weisberg} \date{2018-12-19, minor revisions 2023-02-20} \maketitle \tableofcontents \begin{abstract} Predictor effect displays visualize the response surface of complex regression models by averaging and conditioning, producing a sequence of 2D line graphs, one graph or set of graphs for each predictor in the regression problem \citep{fw19, fw19b}. In this vignette, we give examples of effect plots produced by the \pkg{effects} package, and in the process systematically illustrate the optional arguments to functions in the package, which can be used to customize predictor effect plots. \end{abstract} \centerline{\includegraphics[width=1.25in]{../inst/doc/effects-hex.pdf}} <>= library("knitr") opts_chunk$set(fig.width=5,fig.height=5,#tidy=TRUE, out.width="0.8\\textwidth",echo=TRUE) #options(prompt=" ") options(continue="+ ", prompt="R> ", width=70) options(show.signif.stars=FALSE, scipen=3) @ <>= library(car) library(effects) render_sweave() options(width=80, digits=5, str=list(strict.width="cut")) strOptions(strict.width="cut") @ \section{Introduction}\label{sec:intro} Predictor effect plots \citep{fw19b} provide graphical summaries for fitted regression models with linear predictors, including linear models, generalized linear models, linear and generalized linear mixed models, and many others. These graphs are an alternative to tables of fitted coefficients, which can be much harder to interpret than predictor effect plots. Predictor effect plots are implemented in \R{} in the \pkg{effects} package, documented in \citet{fw19}. This vignette provides many examples of variations on the graphical displays that can be obtained with the \pkg{effects} package. Many of the details, and more complete descriptions of the data sets used as examples, are provided in the references cited at the end of the vignette. \subsection{Effects and Predictor Effect Plots}\label{sec:intro2} We begin with an example of a multiple linear regression, using the \code{Prestige} data set in the \pkg{carData} package: <<>>= library("car") # also loads the carData package Prestige$type <- factor(Prestige$type, levels=c("bc", "wc", "prof")) lm1 <- lm(prestige ~ education + poly(women, 2) + log(income)*type, data=Prestige) @ The data, collected circa 1970, pertain to 102 Canadian occupations. The model \code{lm1} is a linear model with response \vn{prestige}, continuous predictors \vn{income}, \vn{education}, and \vn{women}, and the factor predictor \vn{type}, which has three levels. Before fitting the model, we reorder the levels of \vn{type} as \level{bc} (blue-collar), \level{wc} (white-collar), and \level{prof} (professional and managerial). The predictor \vn{education} represents itself in the linear model, and so it is both a predictor and a \emph{regressor}, as defined in \citet[Sec.~4.1]{fw19}. The predictor \vn{income} is represented by the regressor \lcode{income}. The variable \vn{women}, a percentage between 0 and 100, is represented by regressors that define a polynomial of degree 2 using \fn{poly}'s default orthogonal polynomials. The variable \vn{type} is a factor with three levels, so it is represented by two dummy regressors defined by the default contrast-generating function in \R{}, \fn{contr.treatment}. Finally, the formula includes an interaction between \vn{income} and \vn{type}, defined by multiplying the regressor for \vn{income} (\lcode{income}) by each of the regressors that represent \vn{type}. The usual numeric summary of the fit of \code{lm1} is a table of estimated coefficients, which we obtain via the \fn{S} function in the \pkg{car} package that is similar to, but somewhat more flexible than, the standard \R{} \fn{summary} function: <<>>= S(lm1) @ \begin{itemize} \item Interpretation of the regression coefficients is straightforward only for the predictor \vn{education}, where an increase of one year of \vn{education}, holding other predictors fixed, corresponds to an estimated expected increase in the response of \Sexpr{round(coef(lm1)[2], 3)} units. \item Even ignoring the interaction, the log transformation complicates the interpretation of the effect of \vn{income}. \item The predictor \vn{women} is represented by two regressors, so the effect of \vn{women} requires examining two coefficient estimates that are interpretable only by those knowledgeable about polynomial regression analysis. Even if raw rather than orthogonal polynomial regressors were used, via \code{poly(women, 2, raw=TRUE)} in place of \code{poly(women, 2)}, interpretation of the effect of \vn{women} is complicated. \item Understanding the coefficients for the main effect of \vn{type} depends on the contrasts used to define the effect. The contrasts can be changed by the user, and the default contrasts in \R{} are different from the default contrasts used by \proglang{SAS} or other programs, so the coefficients cannot be reliably interpreted without information not present in the regression summary. \item Finally, the interaction further complicates the interpretation of the effect of either \vn{income} or \vn{type}, because the interaction coefficients need to be interpreted jointly with the main effect coefficients. \end{itemize} \noindent Summarization of the effects of predictors using tables of coefficient estimates is often incomplete. Effects, and particularly plots of effects, can in many instances reveal the relationship of the response to the predictors more clearly. This conclusion is especially true for models with linear predictors that include interactions and multiple-coefficient terms such as regression splines and polynomials, as illustrated in this vignette. A predictor effect plot summarizes the role of a selected \emph{focal} predictor in a fitted regression model. The \fn{predictorEffect} function is used to compute the appropriate summary of the regression, and then the \fn{plot} function may be used to graph the resulting object, as in the following example: <>= library("effects") e1.lm1 <- predictorEffect("education", lm1) plot(e1.lm1) @ \centerline{\includegraphics[width=4in]{figure/fig11-1.pdf}} \noindent This graph visualizes the partial slope for \vn{education}, that for each year increase in \vn{education}, the fitted \vn{prestige} increases by \Sexpr{round(coef(lm1)[2], 3)} points, when the other predictors are held fixed. The intercept of the line, which is outside the range of \vn{education} on the graph, affects only the height of the line, and is determined by the choices made for averaging over the fixed predictors, but for any choice of averaging method, the slope of the line would be the same. The shaded area is a pointwise confidence band for the fitted values, based on standard errors computed from the covariance matrix of the fitted regression coefficients. The rug plot at the bottom of the graph shows the location of the \vn{education} values. The information that is needed to draw the plot is computed by the \fn{predictorEffect} function. The minimal arguments for \fn{predictorEffect} are the quoted name of a predictor in the model followed by the fitted model object. The essential purpose of this function is to compute fitted values from the model with \vn{education} varying and all other predictors fixed at typical values \citep[Sec.~4.3]{fw19}. The command below displays the values of the regressors for which fitted values are computed, including a column of 1s for the intercept: <<>>= brief(e1.lm1$model.matrix) @ The focal predictor \vn{education} was evaluated by default at 50 points covering the observed range of values of \vn{education}. We use the \fn{brief} function in the \pkg{car} package to show only a few of the 50 rows of the matrix. For each value of \vn{education} the remaining regressors have the same fixed values for each fitted value. The fixed value for \lvn{income} is the logarithm of the sample mean \vn{income}, the fixed values for the regressors for \vn{women} are computed at the mean of \vn{women} in the data, and the fixed values for the regressors for \vn{type} effectively take a weighted average of the fitted values at the three levels of \vn{type}, with weights proportional to the number of cases in each level of the factor. Differences in the fitted values are due to \vn{education} alone because all the other predictors, and their corresponding regressors, are fixed. Thus the output gives the partial effect of \vn{education} with all other predictors fixed. The computed fitted values can be viewed by printing the \class{eff} object returned by \fn{predictorEffect}, by summarizing the object, or by converting it to a data frame. To make the printouts more compact, we recompute the predictor effect of \vn{education} with fewer values of the focal predictor by specifying the \code{focal.levels} argument (see Section~\ref{sec-focal.levels-xlevels}): <<>>= e1a.lm1 <- predictorEffect("education", lm1, focal.levels=5) e1a.lm1 summary(e1a.lm1) as.data.frame(e1a.lm1) @ The values in the column \vn{education} are the values the focal predictor. The remaining columns are the fitted values, their standard errors, and lower and upper end points of 95\% confidence intervals for the fitted values. The \emph{predictor effect plot} is simply a graph of the fitted values on the vertical axis versus the focal predictor on the horizontal axis. For a continuous focal predictor such as \vn{education}, a line, in this case, a straight line, is drawn connecting the fitted values. We turn next to the predictor effect plot for \vn{income}. According to the regression model, the effect of \vn{income} may depend on \vn{type} due to the interaction between the two predictors, so simply averaging over \vn{type} would be misleading. Rather, we should allow both \vn{income} and \vn{type} to vary, fixing the other predictors at their means or other typical values. By default, this computation would require evaluating the model at $50 \times 3 = 150$ combinations of the predictors, but to save space we will only evaluate \vn{income} at five values, again using the \ar{focal.levels} argument, thus computing only $5 \times 3 = 15$ fitted values: <<>>= e2.lm1 <- predictorEffect("income", lm1, focal.levels=5) as.data.frame(e2.lm1) @ To draw the predictor effects plot we recalculate the fitted values using the default \code{focal.levels=50} to get more accurately plotted regression curves: <>= plot(predictorEffect("income", lm1), lines=list(multiline=TRUE)) @ Here we use both the \fn{predictorEffect} and \fn{plot} functions in the same command. \centerline{\includegraphics[width=4in]{figure/fig12-1.pdf}} \noindent The focal predictor \vn{income} is displayed on the horizontal axis. There is a separate line shown for the fitted values at each level of \vn{type}. The lines are curved rather than straight because \vn{income} appears in the model in log-scale but is displayed in the predictor effect plot in arithmetic (i.e., dollar) scale. The lines in the graph are not parallel because of the interaction between \lvn{income} and \vn{type}. For $\vn{type} = \level{prof}$, the fitted values of \vn{prestige} are relatively high for lower values of \vn{income}, and are relatively less affected by increasing values of \vn{income}. The predictor effect plot for \vn{type} uses essentially the same fitted values as the plot for \vn{income}, but we now get five lines, one for each of the five (not 50) values of \vn{income} selected by the \fn{predictorEffect} function in this context: <>= plot(predictorEffect("type", lm1), lines=list(multiline=TRUE)) @ \centerline{\includegraphics[width=4in]{figure/fig13-1.pdf}} \noindent Because the horizontal axis is now a factor, the fitted values are displayed explicitly as points, and the lines that join the points are merely a visual aid representing \emph{profiles} of fitted values. Fitted \vn{prestige} increases with \vn{income} for all levels of \vn{type}, but, as we found before, when $\vn{type}=\level{prof}$, fitted \vn{prestige} is relatively high for lower \vn{income}. These initial examples use only default arguments for \fn{predictorEffect} and \fn{plot}, apart from the \code{multiline} argument to \fn{plot} to put all the fitted lines in the same graph. We explain how to customize predictor effect plots in subsequent sections of this vignette. \subsection{General Outline for Constructing Predictor Effect Plots} Using the \pkg{effects} package to draw plots usually entails the following steps: \begin{enumerate} \item Fit a regression model with a linear predictor. The package supports models created by \fn{lm}, \fn{glm}, \fn{lmer} and \fn{glmer} in the \pkg{lme4} package, \fn{lme} in the \pkg{nlme} package, and many other regression-modeling functions (see \code{?Effect}). \item The regression model created in the first step is then used as input to either \fn{predictorEffect}, to get the effects for one predictor, or \vn{predictorEffects}, to get effects for one or more predictors. These functions do the averaging needed to get fitted values that will ultimately be plotted. There are many arguments for customizing the computation of the effects. The two predictor effect functions call the more basic \fn{Effect} function, and almost all of the material in this vignette applies to \fn{Effect} as well. \item Use the generic \fn{plot} function to draw a graph or graphs based on the object created in Step 2. \end{enumerate} \subsection{How \fn{predictorEffect} Chooses Conditioning Predictors}\label{sec:eff} Suppose that you select a \emph{focal predictor} for which you want to draw a predictor effect plot. The \fn{predictorEffect} function divides the predictors in a model formula into three groups: \begin{enumerate} \item The focal predictor. \item The \emph{conditioning group}, consisting of all predictors with at least one interaction in common with the focal predictor. \item The \emph{fixed group}, consisting of all other predictors, that is, those with no interactions in common with the focal predictor. \end{enumerate} \noindent For simplicity, let's assume for the moment that all of the fixed predictors are numeric. The predictors in the fixed group are all evaluated at \emph{typical values}, usually their means, effectively averaging out the influence of these predictors on the fitted value. Fitted values are computed for all combinations of levels of the focal predictor and the predictors in the conditioning group, with each numeric predictor in the conditioning group replaced by a few discrete values spanning the range of the predictor, for example, replacing years of \vn{education} by a discrete variable with the values 8, 12, and 16 years. Suppose that we fit a model with \R{} formula \begin{equation} \Rmod{y}{x1 + x2 + x3 + x4 + x2:x3 + x2:x4}\label{eq1} \end{equation} or, equivalently, \begin{equation*} \Rmod{y}{x1 + x2*x3 + x2*x4} \end{equation*} There are four predictor effect plots for this model, one for each predictor selected in turn as the focal predictor: \begin{center} \begin{tabular}{ccc}\hline Focal & Conditioning & Fixed\\ Predictor & Group & Group\\ \hline \vn{x1} & none& \vn{x2}, \vn{x3}, \vn{x4} \\ \vn{x2} & \vn{x3}, \vn{x4} & \vn{x1} \\ \vn{x3} & \vn{x2} & \vn{x1}, \vn{x4} \\ \vn{x4} & \vn{x2}& \vn{x1} \vn{x3} \\ \hline \end{tabular} \end{center} \noindent The predictor \vn{x1} does not interact with any of the other predictors, so its conditioning set is empty and all the remaining predictors are averaged over; \vn{x2} interacts with both \vn{x3} and \vn{x4}; \vn{x3} interacts only with \vn{x2}; and \vn{x4} interacts with \code{x2}. \subsection{The \fn{Effect} Function}\label{sec:Effect} Until recently, the primary function in \pkg{effects} for computing and displaying effects was the \fn{Effect} function.\footnote{The \pkg{effects} package also includes the older \fn{allEffects} function, which computes effects for each high-order term in a model with a linear predictor. As we explain in \citet{fw19b}, we prefer predictor effects to high-order term effects, and so, although its use is similar to \fn{predictorEffects}, we won't describe \fn{allEffects} in this vignette. There is also an older \fn{effect} function (with a lowercase ``\code{e}''), which is a less flexible version of \fn{Effect}, and which calls \fn{Effect} to perform computations; \fn{effect} is retained only for backwards comparability.} Whereas the \fn{predictorEffect} function automatically determines the conditioning group and the fixed group of predictors, the \fn{Effect} function puts that burden on the user. The \fn{Effect} function doesn't distinguish between between a focal predictor and conditioning predictors, but rather only between varying (that is, focal \emph{and} conditioning) and fixed predictors. Each call to \fn{predictorEffect} is equivalent to a specific call to the \fn{Effect} function as follows. Suppose that \vn{m} is the fitted model produced by the formula in (\ref{eq1}); then, except for the ways in which the default levels for predictors are determined: \begin{description} \item[] \code{predictorEffect("x1", m)} is equivalent to \code{Effect("x1", m)}; \item[] \code{predictorEffect("x2", m)} is equivalent to \code{Effect(c("x2", "x3", "x4"), m)}; \item[] \code{predictorEffect("x3", m)} is equivalent to \code{Effect(c("x3", "x2"), m)}; and \item[] \code{predictorEffect("x4", m)} is equivalent to \code{Effect(c("x4", "x2"), m)}. \end{description} The \fn{predictorEffect} function determines the correct call to \fn{Effect} based on the choice of focal predictor and on the structure of main effects and interactions in the linear predictor for the model. It then uses the \fn{Effect} function to do the computing. As a result, most of the arguments to \fn{predictorEffect} are documented in \code{help("Effect")} rather than in \code{help("predictorEffect")}. \subsection{The \fn{predictorEffects} Function} This function, whose name ends with the plural ``\code{effects}", computes the values needed for one or more predictor effect plots, and by default for \emph{all} of the predictors in the model. For example, the following command produces all of the predictor effect plots for the model we fit to the \code{Prestige} data: <>= eall.lm1 <- predictorEffects(lm1) plot(eall.lm1) @ \centerline{\includegraphics[width=0.95\textwidth]{figure/fig14-1.pdf}} \noindent The predictor effect plots for this model are displayed in an array of graphs. The plots for \vn{income} and \vn{type} have a separate panel for each level of the conditioning variable because the default argument \ar{lines=list(multiline=FALSE)} was implicitly used. Confidence bounds are shown by default when \ar{multiline=FALSE}. The resulting object \code{eall.lm1} is a list with four elements, where \code{eall.lm1[[1]]} is the summary for the first predictor effect plot, \code{eall.lm1[[2]]} for the second plot, and so on. The following equivalent commands draw the same array of predictor effect plots: <>= plot(eall.lm1) plot(predictorEffects(lm1)) plot(predictorEffects(lm1, ~ income + education + women + type)) @ If you want only the predictor effect plots for \vn{type} and \vn{education}, in that order, you could enter <>= plot(predictorEffects(lm1, ~ type + education)) @ Similarly, the commands <>= plot(predictorEffects(lm1, ~ women)) plot(predictorEffects(lm1)[[2]]) plot(predictorEffect("women", lm1)) @ all produce the same graph, the predictor effect plot for \vn{women}. Predictor effect plots in an array can be a useful shortcut for drawing many graphs quickly, but can lead to problems with the displayed graphs. For example, the horizontal axis labels for the plot for \vn{income} are overprinted, and the labels at the top of the panels for \vn{type} with conditioning variable \vn{income} are larger than the available space. These problems can often be fixed using optional arguments described later in this vignette or by plotting predictor effects individually. \section{Optional Arguments for the \fn{predictorEffect} and \fn{Effect} Functions}\label{sec:peopts} This section comprises a catalog of the arguments available to modify the behavior of the \fn{predictorEffect} and \fn{Effect} functions. These arguments may also be specified to the \fn{predictorEffects} function. The information provided by \code{help("Effect")} is somewhat more comprehensive, if terser, explaining for example exceptions applying to \class{svyglm} objects or for plotting residuals. \subsection{\ar{focal.levels} and \ar{xlevels}: Options for the Values of the Focal Predictor and Predictors in the Conditioning Group}\label{sec-focal.levels-xlevels} Numeric predictors in the conditioning group need to be discretized to draw a predictor effect plot. For example the predictor effect plot for \vn{type} in model \code{lm1} consists of a separate line, or a separate panel, for each discrete value of \vn{income}: <>= e3.lm1 <- predictorEffect("type", lm1) plot(e3.lm1, lines=list(multiline=TRUE)) @ \centerline{\includegraphics[width=4in]{figure/fig21a-1.pdf}} <>= plot(e3.lm1, lines=list(multiline=FALSE)) # the default @ \centerline{\includegraphics[width=4in]{figure/fig21b-1.pdf}} \noindent The numeric conditioning predictor \vn{income} is evaluated by default at five equally spaced values, when are then rounded to ``nice" numbers. Using the three values of 5000, 15000, 25000 for the conditioning predictor \vn{income} in this example produces a simpler graph: <>= e3.lm1 <- predictorEffect("type", lm1, xlevels=list(income=c(5000, 15000, 25000))) plot(e3.lm1, lines=list(multiline=TRUE), confint=list(style="bars")) @ \centerline{\includegraphics[width=4in]{figure/fig22a-1.pdf}} <>= plot(e3.lm1, lines=list(multiline=FALSE), # the default lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=4in]{figure/fig22b-1.pdf}} \noindent The argument \ar{xlevels} is a list of sub-arguments that control how numeric predictors are discretized when used in the conditioning group. For example, \code{xlevels=list(x1=c(2, 4, 7), x2=6)} would use the values 2, 4, and 7 for the levels of the predictor \code{x1}, use 6 equally spaced values for the predictor \code{x2}, and use the default of 5 values for any other numeric conditioning predictors. Numeric predictors in the \emph{fixed} group are not affected by the \ar{xlevels} argument. We use the \ar{layout} sub-argument of the \ar{lattice} argument group to arrange the panels of the second graph in 3 columns and 1 row (see Section~\ref{sec:layout}). See \code{help("plot.eff")} for information on the \ar{quantiles} argument, which provides an alternative method of setting \ar{xlevels} when partial residuals are displayed, as discussed in Section~\ref{sec:res}. The points at which a numeric focal predictor is evaluated is controlled by the \ar{focal.levels} argument. The default of \vn{focal.levels=50} is recommended for drawing graphs, but if the goal is to produce a table of fitted values a smaller value such as \code{focal.levels=5} produces more compact output. The focal predictor can also be set to a vector of particular values, as in \code{focal.levels=c(30, 50, 70)}. Used with the \code{predictorEffects} function, the \ar{focal.levels} argument can be set separately for each focal predictor, similarly to the \ar{xlevels} argument; see \code{help("predictorEffects")}. \subsection{\ar{fixed.predictors}: Options for Predictors in the Fixed Group} Predictors in the fixed group are replaced by ``typical" values of the predictors. Fitted values are then computed using these typical values for the fixed group, varying the values of predictors in the conditioning group and of the focal predictor. The user can control how the fixed values are determined by specifying the \ar{fixed.predictors} argument. This argument takes a list of sub-arguments that allow for controlling each predictor in the fixed group individually, with different rules for factors and numeric predictors. \subsubsection{Factor Predictors}\label{sec:facpred} Imagine computing the fitted values evaluating a fixed factor at each of its levels. The fitted value that is used in the predictor effects plot is a weighed average of these within-level fitted values, with weights proportional to the number of observations at each level of the factor. This is the default approach, and is an appropriate notion of ``typical" for a factor if the data at hand are viewed as a random sample from a population, and so the sample fraction at each level estimates the population fraction. A second approach is to average the level-specific fitted values with equal weights at each level. This may be appropriate, for example, in designed experiments in which the levels of a factor are assigned by an investigator. The latter method is invoked by setting \code{fixed.predictors= list(given.values="equal")}. You can construct other weighting schemes for averaging over the levels of a factor, as described on the help page for the \fn{Effect} function. \subsubsection{Numeric Predictors} For a numeric predictor in the fixed group the default method of selecting a typical value is to apply the \fn{mean} function to the data for the predictor. The specification \code{fixed.predictors= list(typical=median)} would instead use the \fn{median} function; in general, \ar{typical} can be any function that takes a numeric vector as its argument and returns a single number. Other sub-arguments to \ar{fixed.predictors} apply to the use of offsets, and to the \pkg{survey} package; see the help page for the \fn{Effect} function. \subsection{\ar{se} and \ar{vcov.}: Standard Errors and Confidence Intervals}\label{sec:se} Standard errors and confidence intervals for fitted values are computed by default, which corresponds to setting the argument \code{se=list(compute=TRUE, type="pointwise", level=.95)}. Setting \code{se=FALSE} omits standard errors, \ar{type="scheffe"} uses wider Scheff\'{e} intervals that adjust for simultaneous inference, and \code{level=.8}, for example, produces 80\% intervals. Standard errors are based by default on the ``usual" sample covariance matrix of the estimated regression coefficients. You can replace the default coefficient covariance matrix with some other estimate, such as one obtained from the bootstrap or a sandwich coefficient covariance matrix estimator, by setting the \ar{vcov.}~argument either to a function that returns a coefficient covariance matrix, such as \fn{hccm} in the \pkg{car} package for linear models, or to a matrix of the correct size; for example: <>= e4.lm1 <- predictorEffect("education", lm1, se=list(type="scheffe", level=.99), vcov.=hccm) plot(e4.lm1) @ \centerline{\includegraphics[width=4in]{figure/fig23-1.pdf}} \noindent This plot displays 99\% Scheff\'{e} intervals based on a robust coefficient covariance matrix computed by the sandwich method; see \code{help("hccm")}. \subsection{\ar{residuals}: Computing Residuals for Partial Residual Plots} The argument \ar{residuals=TRUE} computes and saves residuals, providing the basis for adding partial residuals to subsequent effect plots, a topic that we discuss in Section~\ref{sec:res}. \section{Arguments for Plotting Predictor Effects}\label{sec:plot} The arguments described in Section~\ref{sec:peopts} are for the \fn{predictorEffect} function or the \fn{Effect} function. Those arguments modify the computations that are performed, such as methods for averaging and fixing predictors, and for computing standard errors. Arguments to the \fn{plot} methods for the predictor effect and effect objects produced by the \fn{predictorEffect} and \fn{Effect} functions are described in this section, and these change the appearance of a predictor effect plot or modify the quantities that are plotted. These optional arguments are described in more detail in \code{help("plot.eff")}. In 2018, we reorganized the \fn{plot} method for effect objects by combining arguments into five major groups of related sub-arguments, with the goal of simplifying the specification of effect plots. For example, the \ar{lines} argument group is a list of sub-arguments for determining line type, color, and width, whether or not multiple lines should be drawn on the same graph, and whether plotted lines should be smoothed. The defaults for these sub-arguments are the choices we generally find the most useful, but they will not be the best choices in all circumstances. The cost of reorganizing the arguments in this manner is the necessity of specifying arguments as lists, some of whose elements are themselves lists, requiring the user to make sure that parentheses specifying the possibly nested lists are properly balanced. In addition to the five argument groups that we describe below, the \fn{plot} method for effect objects accepts the arguments \ar{main} for the main title of the graph and \ar{id} for identifying points in effect plots that include residuals, as discussed in Section~\ref{sec:res}. Finally, the \fn{plot} method for effect objects retains a number of ``legacy" arguments shown in \code{help("plot.eff")}. These arguments have been kept so existing scripts using the \pkg{effects} package would not break, but they are all duplicated as sub-arguments of the five argument groups. The legacy arguments work but they may not be supported forever, so we encourage you to use the newer argument groups and sub-arguments. \subsection{The \ar{axes} Group: Specify Axis Characteristics} The \ar{axes} argument group has two major sub-arguments, \ar{x} for the horizontal axis, \ar{y} for the vertical axis, and two minor sub-arguments, the \ar{grid} argument, which adds a background grid to the plot, and the \ar{alternating} argument, for changing the placement of axis-tick labels in multi-panel plots. \subsubsection{\ar{x}: Horizontal Axis Specification} We introduce another linear model fit to the \code{Prestige} data set to serve as an example: <<>>= lm2 <- lm(log(prestige) ~ log(income) + education + type, Prestige) @ The default predictor effect plot for \vn{income} is <>= plot(predictorEffects(lm2, ~ income)) @ \centerline{\includegraphics[width=4in]{figure/fig30-1.pdf}} \noindent The plot is curved because the predictor \vn{income} is represented by its logarithm in the model formula, but the default predictor effect plot uses the predictor \vn{income}, not the regressor \lvn{income}, on the horizontal axis. The \ar{x} sub-argument can be used transform the horizontal axis, for example to replace \code{income} by \lcode{income}: <>= plot(predictorEffects(lm2, ~ income), axes=list( x=list(income=list(transform=list(trans=log, inverse=exp))) )) @ \centerline{\includegraphics[width=4in]{figure/fig31-1.pdf}} \noindent The transformation changes the scale on the horizontal axis to log-scale, but leaves the tick labels in arithmetic scale, and the graph is now a straight line because of the change to log-scale. This plot has several obviously undesirable features with regard to the range of the horizontal axis and over-printing of tick marks. We show next that additional arguments to \fn{plot} can correct these defects. A more elaborate version of the graph illustrates all the sub-arguments to \ar{x} in \ar{axis} argument group: <>= plot(predictorEffects(lm2, ~ income), main="Transformed Plot", axes=list( grid=TRUE, x=list(rotate=30, rug=FALSE, income=list(transform=list(trans=log, inverse=exp), lab="income, log-scale", ticks=list(at=c(2000, 5000, 10000, 20000)), lim=c(1900, 21000)) ))) @ \centerline{\includegraphics[width=4in]{figure/fig32-1.pdf}} \noindent We use the top-level argument \code{main="Transformed Plot"} to set the title of the plot. The \ar{axes} argument is a list with two sub-arguments, \ar{grid} to turn on the background grid, and \ar{x} to modify the horizontal axis. The \ar{x} sub-argument is itself a list with three elements: The sub-arguments \code{rotate} and \ar{rug} set the rotation angle for the tick labels and suppress the rug plot, respectively. The additional sub-argument is a list called \ar{income}, the name of the focal predictor. If you were drawing many predictor effect plots you would supply one list named for each of the focal predictors. All of the sub-arguments for \ar{income} are displayed in the example code above. The sub-argument \code{transform=list(trans=log, inverse=exp)} specifies how to transform the $x$-axis. The \code{ticks} and \code{lim} sub-arguments set the tick marks and range for the horizontal axis. This is admittedly a complex command, but it allows you to fine-tune the graph to look the way you want. In specifying nested argument lists, you may encounter problems getting the parentheses in the right places. Be careful, indent your code to clarify the structure of the command, and be patient! \subsubsection{\ar{x}: Horizontal Axis Specification for Date Variables} The functions in the \pkg{effects} package, such as \fn{Effect} and \fn{predictorEffect}, support models with numeric, factor, character, and logical predictors. Date predictors must be converted to numeric for these functions to work. We supply the generic function \fn{levels2dates}, with methods for \class{eff} and \class{effpoly} objects, which can be used to properly label the horizontal axes of effect and predictor effect plots by translating numeric dates back to dates for the axis tick-mark labels. \fn{levels2dates} takes several arguments: \begin{description} \item[\ar{effect}] An \class{eff} or \class{effpoly} object, created, e.g., by \fn{Effect} or \fn{predictorEffect}. \item[\ar{predictor}] The quoted name of the numeric version of the date predictor. \item[\ar{origin}] A quoted string giving the origin date (see the examples below). \item[\ar{evenly.spaced}] If \code{TRUE} (the default), the tick marks on the horizontal axis are evenly spaced; if \code{FALSE} the tick marks are taken from the levels of the numeric date predictor in the \class{eff} or \class{effpoly} object. \item[\ar{n}] The number of tick marks; if missing, the number of levels of the predictor in the \class{eff} or \class{effpoly} object. \end{description} Here are some examples: <>= data("airquality", package="datasets") airquality$Date <- with(airquality, as.Date(paste("1973", Month, Day, sep="-"), format="%Y-%m-%d")) airquality$Date.num <- as.numeric(airquality$Date) m1.date <- lm(Ozone ~ Date.num + Solar.R + Wind + Temp, data=airquality) eff.date.1 <- Effect("Date.num", m1.date) plot(eff.date.1, axes=list(x=list(Date.num=list(lab="Date", ticks=list(at=levels2dates(eff.date.1, "Date.num", "1970-01-01"))), rotate=45)), main="Date Effect") @ \centerline{\includegraphics[width=4in]{figure/figdates1-1.pdf}} <>= plot(eff.date.1, axes=list(x=list(Date.num=list(lab="Date", ticks=list(at=levels2dates(eff.date.1, "Date.num", "1970-01-01", n=4))))), main="Date Effect") @ \centerline{\includegraphics[width=4in]{figure/figdates2-1.pdf}} <<>>= eff.date.df <- as.data.frame(eff.date.1) eff.date.df$Date <- as.Date(eff.date.df$Date.num, origin="1970-01-01") eff.date.df @ <>= m2.date <- lm(Ozone ~ Date.num*Temp + Solar.R + Wind, data=airquality) eff.date.2 <- Effect(c("Date.num", "Temp"), m2.date, xlevels=6) plot(eff.date.2, axes=list(x=list(Date.num=list(lab="Date", ticks=list(at=levels2dates(eff.date.2, "Date.num", "1970-01-01", n=3))), rotate=45)), main="Date Effect by Temperature") @ \centerline{\includegraphics[width=6in]{figure/figdates3-1.pdf}} \subsubsection{\ar{y}: Vertical Axis Specification for Linear Models} The model \code{lm2} has a transformed response \lcode{prestige}, and ``untransforming" the response to arithmetic scale may be desirable. This can be accomplished with the \ar{y} sub-argument, which has two sub-arguments named \vn{transform} and \vn{type} that together control the scale and labeling of the vertical axis. There are three options for drawing the predictor effect plot for a numeric response like\linebreak \lvn{prestige}: <>= # default: plot(predictorEffects(lm2, ~ education), main="Default log(prestige)") # Change only tick-mark labels to arithmetic scale: plot(predictorEffects(lm2, ~ education), main="log(prestige), Arithmetic Ticks", axes=list(y=list(transform=list(trans=log, inverse=exp), lab="prestige", type="rescale"))) # Replace log(presige) by prestige: plot(predictorEffects(lm2, ~ education), main="Prestige in Arithmethic Scale", axes=list(y=list(transform=exp, lab="prestige"))) @ \includegraphics[width=.33\textwidth]{figure/fig33-1.pdf} \includegraphics[width=.33\textwidth]{figure/fig33-2.pdf} \includegraphics[width=.33\textwidth]{figure/fig33-3.pdf} \noindent The first plot is the default, with a log-response. In the second plot, the \ar{transform} sub-argument specifies the transformation of the response and its inverse, and the sub-argument \code{type="rescale"} changes the tick marks on the vertical axis to arithmetic scale. In the third version, with \code{transform=exp, lab="prestige"}, the vertical axis now is in arithmetic scale, not log scale, although that may not be completely obvious in the example because $\log(x)$ is nearly linear: Look closely to see that the axis ticks marks in the second graph are unequally spaced, while those in the third graph are equally spaced and the plotted line in the latter is slightly curved. The help page \code{?plot.eff} provides a somewhat more detailed explanation of these options. As a second example we will reconstruct Figure~7.10 in \citet[Sec.~7.2]{fw19}. In that section, we fit a linear mixed-effects model to data from the \code{Blackmore} data frame in the \pkg{carData} package. \code{Blackmore} includes longitudinal data on amount of exercise for girls hospitalized for eating disorders and for similar control subjects who were not hospitalized. We transformed the response variable in the model, hours of \vn{exercise}, using a transformation in a modified Box-Cox power family that allows zero or negative responses, explained briefly by \citet[Sec.~3.4]{fw19} and more thoroughly by \citet{HawkinsWeisberg2017}. The fitted model is <<>>= library("lme4") # for lmer() Blackmore$tran.exercise <- bcnPower(Blackmore$exercise, lambda=0.25, gamma=0.1) mm1 <- lmer(tran.exercise ~ I(age - 8)*group + (I(age - 8) | subject), data=Blackmore) @ This model, with numeric predictor \vn{age} and factor predictor \vn{group}, is a linear mixed model with random intercepts and slopes for \vn{age} that vary by \vn{subject}. The response variable is a transformation of \vn{exercise} similar to the fourth root with adjustment for zero values; see \code{help("bcnPower")}. The predictor effect plot for the fixed effect of \vn{age} is <>= e1.mm1 <- predictorEffect("age", mm1) plot(e1.mm1, lines=list(multiline=TRUE), confint=list(style="auto")) @ \centerline{\includegraphics[width=4in]{figure/fig33a-1.pdf}} \noindent The plot clearly shows the difference in the average \vn{age} trajectory between the \level{control} and \level{patient} groups, with the fitted response for the latter having a larger slope. The graph is hard to decode, however, because the vertical axis is approximately in the scale of the fourth-root of hours of exercise, so untransforming the response may produce a more informative plot. Because the \fn{bcnPower} transformation is complex, the \pkg{car} package includes the function \fn{bcnPowerInverse} to reverse the transformation: <>= f.trans <- function(x) bcnPower(x, lambda=0.25, gamma=0.1) f.inverse <- function(x) bcnPowerInverse(x, lambda=0.25, gamma=0.1) plot(e1.mm1, lines=list(multiline=TRUE), confint=list(style="auto"), axes=list(x=list(age=list(lab="Age (years)")), y=list(transform=list(trans=f.trans, inverse=f.inverse), type="response", lab="Exercise (hours/week)")), lattice=list(key.args=list(x=.20, y=.75, corner=c(0, 0), padding.text=1.25)), main="" ) @ \centerline{\includegraphics[width=4in]{figure/fig33b-1.pdf}}\label{corner} \noindent The response scale is now in hours per week, and we see that hours of exercise increase more quickly on average in the patient group for older subjects. We use additional arguments in this plot to match \citet[Fig.~7.10]{fw19}, including moving the key inside of the graph (see Section~\ref{sec:key}), changing the axis labels, and removing the main title to the plot.\footnote{The code shown for this graph in \cite{fw19} uses ``legacy'' arguments, and is therefore somewhat different from the code given here. Both commands produce the same plot, however.} \subsubsection{\ar{y}: Vertical Axis Specification for Generalized Linear Models} Transforming the vertical axis for generalized linear models also uses the \ar{y} sub-argument to the \ar{axes} argument. You typically do not need to specify the \ar{transform} sub-argument because \fn{plot} obtains the right functions from the regression model's \ar{family} component. The \ar{type} sub-argument has the same three possible values as for linear models, but their interpretation is somewhat different: \begin{enumerate} \item Predictor effect plots in \code{type="link"} scale have a predictor on the horizontal axis and the vertical axis is in the scale of the linear predictor. For logistic regression, for example, the vertical axis is in log-odds (logit) scale. For Poisson regression with the log-link, the vertical axis is in log-mean (log-count) scale. \item Predictor effect plots in \code{type="response"} or mean scale are obtained by ``untransforming" the $y$ axis using the inverse of the link function. For the log-link, this corresponds to transforming the $y$ axis and plotting $\exp(y)$. For logistic regression, $y = \log[p/(1-p)]$ and, solving for $p$, $p=\exp(y)/[1+\exp(y)] = 1/[1 + \exp(-y)]$, so the plot in mean scale uses $1/[1+\exp(-y)]$ on the vertical axis. \item We also provide a third option, \code{type="rescale"}, which plots in linear predictor (e.g., logit) scale, but labels the tick marks on the vertical axis in mean (e.g., probability) scale. This third option, which retains the linear structure of the model but labels the vertical axis on the usually more familiar mean scale, is the default. \end{enumerate} We use the \code{Blowdown} data from the \pkg{alr4} package to provide examples. These data concern the probability of \emph{blowdown} \vn{y}, a tree being uprooted as the result of a major straight-line wind storm in the Boundary Waters Canoe Area Wilderness in 1999, modeled as a function of the diameter \code{d} of the tree, the local severity \code{s} of the storm, and the species \code{spp} of the tree. We fit a main-effects model and then display all three predictor effect plots: <<>>= data("Blowdown", package="alr4") gm1 <- glm(y ~ log(d) + s + spp, family=binomial, data=Blowdown) @ <>= plot(predictorEffects(gm1), axes=list(grid=TRUE, x=list(rug=FALSE, rotate=35))) @ \centerline{\includegraphics[width=.9\textwidth]{figure/fig34-1.pdf}} \noindent The \ar{rug=FALSE} sub-argument to \ar{x} suppresses the rug plot that appears by default at the bottom of graphs for numeric predictors, and the \ar{grid} sub-argument to \ar{axes} adds background grids. The \ar{rotate} sub-argument prints the horizontal tick labels at an angle to avoid overprinting. Interpretation of GLM predictor effect plots in link scale is similar to predictor effect plots for linear models, and all the modifications previously described can be used for these plots. Because the default is \code{type="rescale"}, the vertical axis is in linear predictor scale, which is the log-odds or logit for this logistic regression example, but the vertical axis labels are in mean (probability) scale, so the tick-marks are not equally spaced. The next three graphs illustrate the possible values of the argument \ar{type}: <>= e1.gm1 <- predictorEffect("spp", gm1) plot(e1.gm1, main="type='rescale'", axes=list(y=list(type="rescale", lab="logit scale, probability labels"), x=list(rotate=30), grid=TRUE)) plot(e1.gm1, main="type='link'", axes=list(y=list(type="link", lab="logit scale, logit labels"), x=list(rotate=30), grid=TRUE)) plot(e1.gm1, main="type='response'", axes=list(y=list(type="response", grid=TRUE, lab="probabilty scale, probability labels"), x=list(rotate=30), grid=TRUE)) @ \includegraphics[width=.33\textwidth]{figure/fig35-1.pdf} \includegraphics[width=.33\textwidth]{figure/fig35-2.pdf} \includegraphics[width=.33\textwidth]{figure/fig35-3.pdf} \noindent The first two graphs show the same plot, but in the first the tick-marks on the vertical axis are unequally spaced and are in probability scale, while in the second the tick-marks are equally spaced and are in log-odds scale. In the third graph, the vertical axis has been transformed to probability scale, and the corresponding tick-marks are now equally spaced. The predictor effects plot for species would be easier to understand if the levels of the factor were ordered according to the estimated log-odds of blowdown. First, we need to recover the fitted values in link scale, which are log-odds of blowdown for a logistic model. The fitted log-odds are stored in \code{as.data.frame(e1.gm1)\$fit} using the \code{e1.gm1} object previously computed: <>= or <- order(as.data.frame(e1.gm1)$fit) # order smallest to largest Blowdown$spp1 <- factor(Blowdown$spp, # reorder levels of spp levels=levels(Blowdown$spp)[or]) gm2 <- update(gm1, ~ . - spp + spp1) # refit model plot(predictorEffects(gm2, ~ spp1), main="type='response', ordered", axes=list(y=list(type="response", lab="probabilty scale, probability labels"), x=list(rotate=30, spp=list(lab="Species")), grid=TRUE)) @ \centerline{\includegraphics[width=.55\textwidth]{figure/fig36-1.pdf}} \noindent The separation of species into two groups of lower and higher probability species is reasonably clear after ordering, with paper birch more susceptible to blowdown than the other species and possibly in a group by itself. \subsection{The \ar{lines} Group: Specifying Plotted Lines} The \ar{lines} argument group allows the user to specify the color, type, thickness, and smoothness of lines. This can be useful, for example, if the colors used by \pkg{effects} by default are for some reason unacceptable, such as for publications in which only black or gray-scale lines are permitted. The most common use of this argument group is to allow more than one line to be plotted on the same graph or panel via the \ar{multiline} sub-argument. \subsubsection{\ar{multiline} and \ar{z.var}: Multiple Lines in a Plot} Default predictor effect plots with conditioning predictors generate a separate plot for each level of the conditioning variable, or for each combination of levels if there is more than one conditioning variable. For an example, we add the \code{log(d):s} interaction to the model \code{gm1}, and generate the predictor effect plots for \vn{s} and for \vn{d}: <>= gm3 <- update(gm2, ~ . + s:log(d)) # add an interaction plot(predictorEffects(gm3, ~ s + d), axes=list(x=list(rug=FALSE, rotate=90), y=list(type="response", lab="Blowdown Probability")), lattice=list(layout=c(1, 5))) @ \centerline{\includegraphics[width=0.75\textwidth]{figure/fig37-1.pdf}} \noindent Setting the sub-argument \code{type="response"} for the \ar{y} axis plots the response on the probability scale. Setting \code{layout=c(1, 5)} arranges each predictor effect plot in 1 column of 5 rows. See the description of the \ar{lattice} argument in Section~\ref{sec:lattice}. The predictor effect plot for \vn{s} conditions on the level of \vn{d}, and displays the plot of the fitted values for \vn{y} versus \vn{s} in a separate panel for each value of \vn{d}. Similarly, the predictor effect plot for \vn{d} displays a separate panel for each conditioning level of \vn{s}. Confidence bands are displayed by default around each fitted line. These two graphs are based on essentially the same fitted values, with the values of the interacting predictors \vn{s} and \vn{d} varying, and fixing the factor predictor \vn{spp} to its distribution in the data, as described in Section~\ref{sec:facpred}. Concentrating on the graph at the right for the focal predictor \vn{d}, when \vn{s} is very small the probability of blowdown is estimated to be in the range of about .05 to .3 for any value of \vn{d}, but for larger values of \vn{s}, the probability of blowdown increases rapidly with \vn{d}. Similar comments can be made concerning the predictor effect plot for \vn{s}. Setting \code{multiline=TRUE} superimposes the lines for all the conditioning values in a single graph. In the example below, we reduce the number of levels of the conditioning variable for each predictor effect plot to three explicit values each to produce simpler graphs, although this is not required. The \ar{xlevels} argument changes the number of levels for the conditioning predictors, but does not affect the number of levels for the focal predictor. This latter quantity could be changed with the \ar{focal.levels} argument, but the default value of 50 evaluations is appropriate for graphing effects. <>= plot(predictorEffects(gm3, ~ s + d, xlevels=list(d=c(5, 40, 80), s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response", lab="Blowdown probability")), lines=list(multiline=TRUE)) @ \centerline{\includegraphics[width=\textwidth]{figure/fig38-1.pdf}} \noindent In each graph, we kept, more or less, the lowest, middle, and highest values of the conditional predictor for the interaction. We also added a grid to each graph. Multiline plots by default omit confidence bands or intervals, but these can be included using the \ar{confint} argument discussed in Section~\ref{sec:confint}. By default, different values of the conditioning predictor are distinguished by color, and a key is provided. The placement and appearance of the key are controlled by the \ar{key.args} sub-argument in the \ar{lattice} group discussed in Section~\ref{sec:key}. When the conditioning group includes two or more predictors, and certainly when it includes three or more predictors, multiline plots are almost always helpful because otherwise the resulting array of panels becomes too complicated. Suppose that we add the \code{spp:log(d)} interaction to the illustrative model. The predictor effect plot for \vn{d} now includes both \vn{s} and \vn{spp} in the conditioning set because \vn{d} interacts with both of these predictors: <>= gm4 <- update(gm3, ~ . + spp:log(d)) plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE)), lines=list(multiline=TRUE)) @ \centerline{\includegraphics[width=\textwidth]{figure/fig39-1.pdf}} \noindent This plot now displays the lines for all conditioning values of \vn{s} within the panel for each level of the conditioning factor \vn{spp}. Compare this graph to the much more confusing plot in which different lines are drawn for the nine levels of the conditioning factor \vn{spp}, obtained by using the \ar{z.var} sub-argument in the \ar{lines} group: <>= plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE)), lines=list(multiline=TRUE, z.var="spp", lty=1:9), lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=.7\textwidth]{figure/fig310-1.pdf}} \noindent The \ar{z.var} sub-argument for \ar{lines} selects the predictor that determines the lines within a panel and the remaining predictors, here just \vn{s}, distinguish the panels. The default choice of \ar{z.var} is usually, but not always, appropriate. We also use the \ar{lattice} argument to display the array of panels in 3 columns and 1 row, and differentiate the lines by line type and color using arguments discussed next. \subsubsection{\ar{col}, \ar{lty}, \ar{lwd}, \ar{spline}: Line Color, Type, Width, Smoothness}\label{sec:line.color.etc} Different lines in the same plot are differentiated by default using color. This can be modified by the sub-arguments \ar{lty}, \ar{lwd} and \ar{col} to set line types, widths, and colors, respectively. For example, in the last graph shown you can get all black lines of different line types using \code{lines=list(multiline=TRUE, col="black", lty=1:9)}, or using a gray scale, \code{lines=}\linebreak \code{list(multiline=TRUE, col=gray((1:9)/10))}. The \fn{plot} method for effect objects by default uses smoothing splines to interpolate between plotted points. Smoothing can be turned off with \code{splines=FALSE} in the \ar{lines} argument, but we rarely expect this to be a good idea. The number of values at which the focal predictor is evaluated is set with the \ar{focal.levels} argument, and it defaults to 50. In any case, more than three evaluations, and possibly many more, should be used for a reasonable spline approximation. \subsection{The \ar{confint} Group: Specifying Confidence Interval Inclusion and Style}\label{sec:confint} The \ar{confint} argument group controls the inclusion and appearance of confidence intervals and regions. This argument has three sub-arguments. The \ar{style} sub-argument is either \code{"bars"}, for confidence bars, typically around the estimated adjusted mean for a factor level; \code{"bands"}, for shaded confidence bands, typically for numeric focal predictors; \code{"auto"}, to let the program automatically choose between \code{"bars"} and \code{"bands"}; \code{"lines"}, to draw only the edges of confidence bands with no shading; or \code{"none"}, to suppress confidence intervals. The default is \code{"auto"} when \code{multiline=FALSE} and \code{"none"} when \code{multiline=TRUE}. Setting \code{confint="auto"} produces bars for factors and bands for numeric predictors. For example: <>= plot(predictorEffects(gm3, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response")), lines=list(multiline=TRUE), confint=list(style="auto")) @ \centerline{\includegraphics[width=.5\textwidth]{figure/fig311-1.pdf}} \noindent In this example the confidence bands are well separated, so including them in a multiline graph isn't problematic; in other cases, overlapping confidence bands produce an artistic but uninterpretable mess. With a factor focal predictor, we get: <>= gm5 <- update(gm2, ~ . + spp:s) plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE, rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto")) @ \centerline{\includegraphics[width=.75\textwidth]{figure/fig312-1.pdf}} \noindent The error bars for the various levels of \vn{s} are slightly staggered to reduce over-plotting. Two additional arguments, \vn{col} and \vn{alpha}, control respectively the color of confidence bars and regions and the transparency of confidence regions. Users are unlikely to need these options. Finally, the type of confidence interval shown, either pointwise or Scheff\'{e} corrected for multiple comparisons, is controlled by the \ar{se} argument to the \fn{predictorEffect} or \fn{Effect} function (see Section~\ref{sec:se}). \subsection{The \ar{lattice} Group: Specifying Standard \textbf{lattice} Package Arguments}\label{sec:lattice} The \fn{plot} methods defined in the \pkg{effects} package use functions in the \pkg{lattice} package \citep{sarkar08}, such as \fn{xyplot}, to draw effect plots, which often comprise rectangular arrays of panels. In particular, the \fn{plot} method for the \class{eff} objects returned by the \fn{Effect} function are \class{trellis} objects, which can be manipulated in the normal manner. ``Printing'' a returned effect-plot object displays the plot in the current \R{} graphics device. The \ar{lattice} group of arguments to the \fn{plot} method for effect objects may be used to specify various standard arguments for \pkg{lattice} graphics functions such as \fn{xyplot}. In particular, you can control the number of rows and columns when panels are displayed in an array, modify the key (legend) for the graph, and specify the contents of the ``strip" displayed in the shaded region of text above each panel in a \pkg{lattice} array. In addition, the \ar{array} sub-argument, for advanced users, controls the layout of multiple predictor effect plots produced by the \fn{predictorEffects} function. \subsubsection{\ar{key.args}: Modifying the Key}\label{sec:key} A user can modify the placement and appearance of the key with the \ar{key.args} sub-argument, which is itself a list. For example: <>= plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), rug=FALSE, axes=list(grid=TRUE, y=list(type="response"), x=list(rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto"), lattice=list(key.args=list(space="right", columns=1, border=TRUE, fontfamily="serif", cex=1.25, cex.title=1.5))) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig314-1.pdf}} \noindent The sub-argument \code{space="right"} moves the key to the right of the graph, overriding the default \code{space="top"}. Alternatively the key can be placed inside the graph using the \ar{x}, \ar{y}, and \ar{corner} sub-arguments, as illustrated in the graph on page~\pageref{corner}. The choices for \ar{fontfamily} are \code{"sans"} and \code{"serif"}, and affect only the key; the rest of the plot uses \code{"sans"}. The sub-arguments \ar{cex} and \ar{cex.title} control the relative sizes of the key entries and the key title, respectively. Finally, any argument documented in \code{help("xyplot")} in the \code{key} section can be set with this argument. If you use the default \code{space="top"} for placement of the key, you may wish to adjust the number of columns in the key, particularly if the level names are long. \subsubsection{\ar{layout}: Controlling Panel Placement}\label{sec:layout} The \ar{layout} sub-argument to the \ar{lattice} argument allows a user to customize the layout of multiple panels in a predictor effect plot; for example: <>= plot(predictorEffects(gm3, ~ s + d, xlevels=list(s=6, d=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2))) @ \centerline{\includegraphics[width=\textwidth]{figure/fig313-1.pdf}} \noindent Here, the \ar{layout} sub-argument specifies an array of 3 columns and 2 rows for each of the predictor effect plots. \subsubsection{\ar{array}: Multiple Predictor Effect Plots}\label{sec:array} If you create several predictor effect objects with the \fn{predictorEffects} function, the \fn{plot} method for the resulting \class{predictorefflist} object divides the \pkg{lattice} graphics device into a rectangular array of sub-plots, so that the individual predictor effect plots, each potentially with several panels, are drawn without overlapping. An alternative is for the user to generate the predictor effect plots separately, subsequently supplying the \ar{array} sub-argument to \fn{plot} directly to create a custom meta-array of predictor effect plots; this argument is ignored, however, for \class{predictorefflist} objects produced by \fn{predictorEffects}. Suppose, for example, that we want to arrange the two predictor effect plots for the previous example vertically rather than horizontally. One way to do that is to save the object produced by \fn{predictorEffects} and to plot each of its two components individually, specifying the \ar{position} or \ar{split} and \ar{more} arguments to the \fn{print} method for \class{trellis} objects: see \code{help("print.trellis")}. Another approach is to generate the plots individually using \fn{predictorEffect} and to specify the \ar{array} sub-argument to \fn{plot}, as follows: <>= plot(predictorEffect("s", gm3, xlevels=list(d=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2), array=list(row=1, col=1, nrow=2, ncol=1, more=TRUE))) plot(predictorEffect("d", gm3, xlevels=list(s=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2), array=list(row=2, col=1, nrow=2, ncol=1, more=FALSE))) @ \centerline{\includegraphics[width=.65\textwidth]{figure/fig313b-1.pdf}} \noindent In each case, the \ar{row} and \ar{col} sub-arguments indicate the position of the current graph in the meta-array; \ar{nrow} and \ar{ncol} give the dimensions of the meta-array, here 2 rows and 1 column; and \ar{more} indicates whether there are more elements of the meta-array after the current graph. \subsubsection{\ar{strip}: Modifying the Text at the Tops of Panels}\label{sec:strip} Lattice graphics with more than one panel typically provide a text label at the top of each panel in an area called the \emph{strip}. The default strip text contains the name of the conditioning predictor and the value to which it is set in the panel; if there are more than one conditioning predictor, then all of their names and corresponding values are shown. For example: <>= plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response")), lines=list(multiline=TRUE, z.var="spp", lty=1:9), lattice=list(layout=c(3, 1), strip=list(factor.names=TRUE, values=TRUE, cex=1.5))) @ \centerline{\includegraphics[width=.85\textwidth]{figure/fig316-1.pdf}} \noindent Setting \code{factor.names=FALSE} (the default is \code{TRUE}) displays only the value, and not the name, of the conditioning predictor in each strip; usually, this is desirable only if the name is too long to fit, in which case you may prefer to rename the predictor. Setting \code{values=FALSE} replaces the conditioning value with a line in the strip that represents the value: The line is at the left of the strip for the smallest conditioning value, at the right for the largest value, and in a proportional intermediate position in between the two extremes. The most generally useful sub-argument is \ar{cex}, which allows you to reduce or expand the relative size of the text in the strip, in this case increasing the size to 150\% of standard size. \subsection{\ar{symbols}: Plotting symbols} Symbols are used to represent adjusted means when the focal predictor is a factor. You can control the symbols used and their relative size: <>= gm5 <- update(gm2, ~ . + spp:s) plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), symbols=list(pch=15:17, cex=1.5), axes=list(grid=TRUE, y=list(type="response"), x=list(rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto"), lattice=list(key.args=list(cex=1.5, cex.title=1.5))) @ \centerline{\includegraphics[width=.95\textwidth]{figure/fig315-1.pdf}} \noindent We use the \ar{pch} sub-argument to set the symbol number for plotted symbols; you can enter the commands \code{plot(1:25, pch=1:25)} and \code{lines(1:25, lty=2, type="h")} to see the 25 plotting symbols in \R{}. The sub-argument \ar{pch} can also be a character vector, such as \code{letters[1:10]}. In this example, we set \code{cex=1.5} to increase the symbol size by the factor 1.5. Because only one value is given, it is recycled and used for all of the symbols. We need to change the size of the symbols in the key separately, as we do here via the \ar{key.args} sub-argument to the \ar{lattice} argument (see Section~\ref{sec:key}). \section{Displaying Residuals in Predictor Effect Plots}\label{sec:res} \citet{fw19b} introduce methodology for adding partial residuals to a predictor effect or effect plot. This can be desirable to display variation in data around a fitted partial regression surface or to diagnose possible lack of fit, as the resulting plots are similar to traditional component-plus-residual plots \citep[Sec.~8.4]{fw19}. The predictor effect plot for a numeric focal predictor that does not interact with other predictors is equivalent to a standard component-plus-residual plot; for example: <>= lm5 <- lm(prestige ~ log(income) + education + women + type, Prestige) plot(predictorEffects(lm5, residuals=TRUE), axes=list(grid=TRUE, x=list(rotate=30)), partial.residuals=list(smooth=TRUE, span=0.75, lty="dashed")) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig51-1.pdf}} \noindent The partial residuals to be plotted are computed using the \ar{residuals} argument to the \fn{predictorEffect}, \fn{predictorEffects}, or \fn{Effect} function. For the numeric predictors \vn{income}, \vn{education}, and \vn{women}, the plotted points are each equal to a point on the fitted blue line, representing the partial fit, plus the corresponding residual. For \vn{income}, the fitted partial-regression line in curved because of the log transformation of the predictor, but the partial-regression function is a straight line for the other two numeric predictors. The dashed line produced by \code{lty="dashed"} in the same magenta color as the plotted points on the graph, is a loess nonparametric-regression smooth of the points. The sub-argument \code{smooth=TRUE} is the default if residuals are present in the effect object to be plotted. The sub-argument \code{span=0.75} adjusts the span of the loess smoother from the default of \code{2/3}---an unnecessary adjustment here specified simply to illustrate how to set the span. If the model adequately represents the data, then the dashed magenta line should approximately match the solid blue partial-regression line, which represents the fitted model. For the factor \vn{type}, the points are jittered horizontally to separate them visually, because the only possible horizontal coordinates are at the three distinct factor levels. Smooths are not fit to factors and instead the conditional means of the partial residuals are plotted as solid magenta dots; in the current model, the magenta dots and the blue dots representing the fitted adjusted means of the response at the levels of \vn{name} necessarily match. The \fn{plot} method for effect objects has a \ar{partial.residuals} argument, with several sub-arguments that control how partial residuals are displayed. In the command above, we used the sub-argument \vn{smooth=TRUE} to add the smoother, which is the default when residuals are included in the effect object, and \ar{lty="dashed"} to change the line type for the smooth from the default solid line to a dashed line. All the \vn{smooth} sub-arguments are described in \code{help("plot.eff")}. For a second example, we fit a linear model with an interaction to the \code{UN} data set in the \pkg{carData} package, modelling national \vn{infantMortality} rate (infant deaths per 1000 live births) as a function of \vn{ppgdp}, per person GDP (in U.S.~dollars), and country \vn{group} (OECD nations, African nations, and other nations). The data are for roughly 200 nations of the world and are from approximately 2009 to 2011: <>= options(scipen=10) # suppress scientific notation lm6 <- lm(infantMortality ~ group*ppgdp, data=UN) plot(predictorEffects(lm6, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25), y=list(lim=c(0, 150))), id=list(n=1), lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig52-1.pdf}} \noindent The predictor effect plot for \vn{ppgdp} conditions on the factor \ar{group} because of the interaction between these two predictors. Several problems are apparent in this plot: The \ar{id} argument is used to identify the most unusual point in each panel, as described in detail in \code{help("plot.eff")}. Turkey has higher than predicted infant mortality for the \level{oecd} group; Afghanistan, in the \level{other} group, has infant mortality much higher than predicted; and Equatorial Guinea is clearly unusual for the \level{africa} group. In addition, the smooths through the points do not match the fitted lines in the \level{other} and \level{africa} groups. We use the command \code{options(scipen=10)} to suppress annoying scientific notation in the tick-mark labels on the horizontal axis, and instead rotate these labels so that they fit without over-plotting. Log-transforming both the predictor \vn{ppgdp} and the response \vn{infantMortality} produces a better fit to the data: <>= lm7 <- lm(log(infantMortality) ~ group*log(ppgdp), data=UN) plot(predictorEffects(lm7, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25)), id=list(n=1), lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig53-1.pdf}} \noindent Equatorial Guinea is still anomalous, however. Rescaling the vertical axis to arithmetic scale produces a slightly different, but possibly useful, picture: <>= plot(predictorEffects(lm7, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25), y=list(transform=list(trans=log, inverse=exp), type="response", lab="Infant Mortality")), id=list(n=1), lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig54-1.pdf}} Partial residuals can be added to effect plots for linear or generalized linear models in the default link scale, and to effect plots for linear or generalized linear mixed models. \subsection{Using the \fn{Effect} Function With Partial Residuals} In most instances, predictor effect plots produced by \fn{predictorEffect} or \fn{predictorEffects} visualize a fitted model in the most natural manner, but sometimes in looking for lack of fit, we want to plot against arbitrary combinations of predictors. The more general \fn{Effect} function is capable of doing that. Recall, for example, the additive model \code{lm2} fit to the \code{Prestige} data: <<>>= S(lm2) @ Plotting partial residuals for the predictors \vn{income} and \vn{type} simultaneously reveals an unmodeled $\vn{income} \times \vn{type}$ interaction: <>= plot(Effect(c("income", "type"), lm2, residuals=TRUE), axes=list(x=list(rotate=30)), partial.residuals=list(span=0.9), layout=c(3, 1)) @ \centerline{\includegraphics[width=0.85\textwidth]{figure/fig55-1.pdf}} \section{Polytomous Categorical Responses} The \pkg{effects} package produces special graphs for ordered and unordered polytomous categorical response variables. In an ordinal regression, the response is an ordered categorical variable with three or more levels. For example, in a study of women's labor force participation that we introduce below, the response is not working outside the home, working part time, or working full time. The proportional-odds model \citep[Sec.~6.9]{fw19} estimates the probability of a response in each of these three categories given a linear combination of regressors defined by a set of predictors, assuming a logit link function. We illustrate the proportional-odds model with the \code{Womenlf} data set in the \pkg{carData} package, for young married Canadian women's labor-force participation, using the \fn{polr} function in the \pkg{MASS} package to fit the model: <<>>= library("MASS") # for polr() Womenlf$partic <- factor(Womenlf$partic, levels=c("not.work", "parttime", "fulltime")) # order response levels or1 <- polr(partic ~ log(hincome) + children, data=Womenlf) S(or1) @ The response variable \code{partic} initially has its levels in alphabetical order, which does not correspond to their natural ordering. We therefore start by reordering the levels to increase from \level{not.work}, to \level{parttime} work, to \level{fulltime} work. The predictors are the numeric variable \vn{hincome} (husband's income), which enters the model in log-scale, and the dichotomous factor \vn{children}, presence of children in the household. The model summary is relatively complex, and is explained in \citet[Sec.~6.9]{fw19}. Predictor effect plots greatly simplify interpretation of the fitted model: <>= plot(predictorEffects(or1), axes=list(grid=TRUE), lattice=list(key.args=list(columns=1))) @ \centerline{\includegraphics[width=.9\textwidth]{figure/fig41-1.pdf}} \noindent Unlike predictor effect plots for generalized linear models, the default scaling for the vertical axis is the probability scale, equivalent to \code{axes=list(y=list(type="response"))} for a GLM, and the alternative is \code{axes=list(y=list(type="logit"))}, which is analogous to \code{type="link"} for a GLM.\footnote{The logits plotted, however, correspond to the individual-level probabilities and are not the ordered logits in the definition of the proportional-odds model.} Confidence bands are present by default, unless turned off with the argument \code{confint=list(style="none")}. Numeric focal predictors are by default evaluated at 50 points. The plot for \vn{hincome} suggests high probability of full-time work if husband's income is low, with the probability of full-time work sharply decreasing to about \$15,000 and then nearly leveling off at about .1 to .2. The probability of not working rapidly increases with husband's income, while the probability of working part time is fairly flat. A similar pattern is apparent for children present in the home, with full-time work much less prevalent and not working much more prevalent when children are present than when they are absent. \emph{Stacked area plots} are sometimes more useful for examining polytomous response models; for example: <>= plot(predictorEffects(or1), axes=list(grid=TRUE, y=list(style="stacked")), lattice=list(key.args=list(columns=1))) @ \centerline{\includegraphics[width=.95\textwidth]{figure/fig62-1.pdf}} \noindent For each fixed value on the horizontal axis, the vertical axis ``stacks" the probabilities in the three response categories. For example, with children absent from the household and \vn{hincome} set to its mean, nearly 30\% of women did not work outside the home, about 20\% worked part time, and the remaining approximate 50\% worked full time. Some ordinal-response models produced by the functions \fn{clm}, \fn{clm2}, and \fn{clmm} in the \pkg{ordinal} package can be used with the \pkg{effects} package. To work with model objects produced by these functions, you must also load the \pkg{MASS} package. The \pkg{effects} package can also draw similar graphs for the more general multinomial logit model, in which the polytomous categorical response has unordered levels \citep[see][Sec.~6.7]{fw19}. The details of the model, its parameters, and its assumptions are different from those of the proportional-odds model and other ordered-response models, but predictor effect plots for these models are similar. As an example, we use the \code{BEPS} data set in the \pkg{carData} package, consisting of about 1,500 observations from the 1997-2001 British Election Panel Study. The response variable, \vn{vote}, is party choice, one of \level{Liberal Democrat}, \level{Labour}, or \level{Conservative}. There are numerous predictors of \vn{vote} in the data set, and we fit the model <<>>= library("nnet") # for multinom() mr1 <- multinom(vote ~ age + gender + economic.cond.national + economic.cond.household + Blair + Hague + Kennedy + Europe*political.knowledge, data=BEPS) @ There are nine predictors, seven of which are scales with values between 0 and 5 concerning respondents' attitudes; these predictors enter the model as main effects. The remaining two predictors are scales between 0 and 3 for \code{political.knowledge} and between 1 and 11 for \code{Europe} (attitude toward European integration of the UK in the European Union, with high values representing ``Euroscepticism'', a \emph{negative} attitude toward Europe); these predictors enter the model with a two-factor interaction. Drawing all nine predictor effect plots simultaneously is not a good idea because the plots won't fit reasonably in a single display. We therefore draw only a few of the plots at a time: <>= plot(predictorEffects(mr1, ~ age + Blair + Hague + Kennedy), axes=list(grid=TRUE, x=list(rug=FALSE)), lattice=list(key.args=list(columns=1)), lines=list(multiline=TRUE, col=c("blue", "red", "orange"))) @ \centerline{\includegraphics[width=.9\textwidth]{figure/fig42-1.pdf}} \noindent We use optional arguments to get a multiline plot, with a grid and no rug plot, and to modify the key. The color specification for the lines represents the traditional colors of the three parties. Interpreting these plots is challenging: For example, the probability of voting Labour decreases with age, increases with attitude toward the Labour leader Blair, strongly decreases with attitude toward the Conservative leader Hague, and is relatively unaffected by attitude toward the Liberal Democrat leader Kennedy. In general, a positive attitude toward a party leader increases the probability of voting for that leader's party, as one would expect. Of course, the causal direction of these relationships is unclear. We next turn to the interaction between \vn{Europe} and \vn{political.knowledge}, this time drawing stacked area displays: <>= plot(predictorEffects(mr1, ~ Europe + political.knowledge, xlevels=list(political.knowledge=0:3, Europe=c(1, 6, 11))), axes=list(grid=TRUE, x=list(rug=FALSE, Europe=list(ticks=list(at=c(1, 6, 11))), political.knowledge=list(ticks=list(at=0:3))), y=list(style="stacked")), lines=list(col=c("blue", "red", "orange")), lattice=list(key.args=list(columns=1), strip=list(factor.names=FALSE))) @ \centerline{\includegraphics[width=\textwidth]{figure/fig43-1.pdf}} \noindent The \ar{lines} argument is used to specify the colors for the stacked areas representing the parties. Both effect plots are of nearly the same fitted values,\footnote{Not exactly the same because in each plot the focal predictor takes on 50 values and the conditioning predictor 3 or 4 values.} in the first graph with \code{Europe} varying and conditioning on \code{political.knowledge}, and in the second with \code{political.knowledge} varying and conditioning on \code{Europe}. Setting \code{strip=} \code{list(factor.names=FALSE)} suppresses the names of the conditioning predictor in each effect plot; these names are too long for the strips at the tops of the panels. From the first graph, preference for the Conservative Party increases with \vn{Europe} for respondents with high political knowledge, but not for those with low political knowledge. More generally, voters with high political knowledge are more likely to align their votes with the positions of the parties, Eurosceptic for the Convervatives, pro-Europe for Labour and the Liberal Democrats, than are voters with low political knowledge. \section{The Lattice Theme for the effects Package} The \pkg{effects} package uses the \fn{xyplot} and \fn{barchart} functions in the standard \pkg{lattice} package \citep{sarkar08} to draw effect plots. The \pkg{lattice} package has many options for customizing the appearance of graphs that are collected into a \emph{lattice theme}. We created a custom theme for use with the \pkg{effects} package that automatically supersedes the default Lattice theme when the \pkg{effects} package is loaded, \emph{unless the} \pkg{lattice} \emph{package has been previously loaded}. You can invoke the \pkg{effects} package theme directly by the command <>= effectsTheme() @ You can also customize the \pkg{effects} package Lattice theme; see \code{help("effectsTheme")}. Finally, because \fn{plot} methods in the \pkg{effects} package return lattice objects, these objects can be edited and manipulated in the normal manner, for example by functions in the \pkg{latticeExtra} package \citep{SarkarAndrews2016}. \bibliography{predictor-effects-gallery} \end{document} effects/NAMESPACE0000644000176200001440000000573015042141506013113 0ustar liggesusers# last modified 2025-07-29 by J. Fox import(carData) importFrom(lattice, barchart, current.panel.limits, densityplot, larrows, llines, lpoints, ltext, panel.abline, panel.barchart, #panel.grid, panel.polygon, panel.text, strip.custom, strip.default, trellis.par.get, trellis.par.set, xyplot) importFrom(colorspace, rainbow_hcl, sequential_hcl) importFrom(grid, grid.pretty, grid.segments, unit) importFrom(lme4, fixef) importFrom(nnet, multinom) importFrom(graphics, plot) importFrom(grDevices, gray, palette, rgb) importFrom(survey, svymean) importFrom(insight, find_formula,get_parameters,get_varcov) importFrom(stats, as.formula, binomial, coef, coefficients, cov, delete.response, family, fitted, formula, glm, glm.control, lm, lm.fit, loess.smooth, mahalanobis, make.link, median, model.frame, model.matrix, model.offset, model.response, na.exclude, na.omit, nlm, predict, qf, qnorm, qt, quantile, residuals, spline, terms, update, vcov, weights, xtabs) importFrom(utils, menu, browseURL) export(effect, allEffects, Effect, effectsTheme) export(predictorEffect, predictorEffects) export(effectsHexsticker) export(effCoef) export(levels2dates) S3method(plot, predictoreff) S3method(plot, predictorefflist) S3method(predictorEffects, default) S3method(predictorEffects, poLCA) S3method(predictorEffect, default) S3method(predictorEffect, svyglm) S3method(predictorEffect, poLCA) S3method(effCoef, default) S3method(Effect, default) S3method(Effect, lm) S3method(Effect, poLCA) S3method(Effect, mlm) S3method(Effect, svyglm) S3method(Effect, multinom) S3method(Effect, polr) S3method(Effect, merMod) export(predictorEffect.default,predictorEffects.default, Effect.default, effect.default, allEffects.default) S3method(effSources,betareg) S3method(effSources,clm) S3method(effSources,clm2) S3method(effSources,clmm) S3method(effSources,default) S3method(effSources,glmmPQL) S3method(effSources,gls) S3method(effSources,rlmerMod) export(effSources,effSources.default) #,effSources.gls,effSources.glmmPQL, # effSources.rlmerMod,effSources.clm,effSources.clm2, # effSources.clmm,effSources.betareg) S3method(print, eff) S3method(print, efflist) S3method(print, mlm.efflist) S3method(print, summary.eff) S3method(print, predictoreff) S3method(print, predictorefflist) S3method(summary, eff) S3method(summary, efflist) S3method(summary, mlm.efflist) S3method(summary, predictorefflist) S3method(as.data.frame, eff) S3method(as.data.frame, efflist) S3method(as.data.frame, effpoly) S3method(as.data.frame, efflatent) S3method(plot, eff) S3method(print, plot.eff) S3method(plot, efflist) S3method(plot, mlm.efflist) S3method(print, effpoly) S3method(summary, effpoly) S3method(plot, effpoly) S3method(print, efflatent) S3method(summary, efflatent) S3method(allEffects, default) S3method(allEffects, poLCA) S3method(allEffects, mlm) S3method(effect, default) S3method(vcov, eff) S3method(`[`, efflist) S3method(levels2dates, effpoly) S3method(levels2dates, eff) effects/inst/0000755000176200001440000000000014165373010012646 5ustar liggesuserseffects/inst/CHANGES0000644000176200001440000001147013761730141013647 0ustar liggesusersVersion 0.9-0 initial release to CRAN Version 1.0-0 o Rewrote summary.effect method and added print.summary.effect method. Version 1.0-1 o Blanks can be inserted into or removed from effect names without causing an error; thus, e.g., "poly(education,3)" is equivalent to "poly(education, 3)". o Name spaces of lattice and grid packages are imported, as required in R 1.8.0. Version 1.0-2 o Added ask argument to plot.effect.list, and row, col, nrow, ncol, and more arguments to plot.effect, to support graphing an array of effect plots. o Fixed bug in plot.effect that caused xlab argument to be ignored in certain circumstances. Version 1.0-3 o effect function now works if na.action is na.exclude. Version 1.0-4 o Fixed small bug introduced in version 1.0-3. Version 1.0-5 o x.var and z.var arguments to plot.effect now take names as well as indices. Version 1.0-6 o A variable specified in xlevels can be fixed to a single value. Version 1.0-7 o Made effect() generic, with a method for lm objects that handles glm objects as well. Version 1.0-8 o Small fixes to the help files. Version 1.0-9 o Small change to compile without a warning in R 2.4.0. Version 1.0-10 o Standard errors of effects are computed using t rather than standard-normal distribution for models with estimated dispersion (as suggested by Brian Ripley). o Small fixes. o Objects are now named "eff" and "eff.list" rather than "effect" and "effect.list". o Data sets now provided by lazy data. Version 1.0-11 o Replaced obsolete \non_function{} markup in Rd files (reported by Kurt Hornik). Version 1.0-12 o key.args argument added to plot.eff() (coutesy of Michael Friendly), to allow conrol over, e.g., placement of legend. Version 2.0-0 o Jangman Hong joins project. o support added for multinomial and proportional-odds logit models, as fit by multinom() (in nnet package) and polr() (in MASS) package, following results in Fox and Andersen (2006). o added the argument given.values to effect() methods for finer-grain control of displays. Version 2.0-1 o Fixed bug in effect.polr() that prevented computation for a model with a single term (reported by Paul Prew). Version 2.0-2 o Fixed bug in print(), summary(), and plot() methods for polytomous logit models with a response with numbered levels (reported by Paul Prew). Version 2.0-3 o Fixed bug in all effect() methods that caused error when na.action="na.exclude" (reported by Tracy Lightcap and Rob Goedman). Version 2.0-4 o Palettes from the colorspace package are used by default for stacked plots. o Fixed bug in handling of typical= argument to effect() (argument was effectively ignored). o Added Titanic and Wells data sets. o Small changes. Version 2.0-5 o Added examples for Titanic, BEPS, and WVS data sets. o Arguments ... (e.g., digits) passed through in print() methods. Version 2.0-6 o Fixed small bugs in print.efflist(), summary.efflist(), and plot.effpoly() methods. o Corrected error in missing-data handling that sometimes surfaced in effect.multinom(). o Added .Rd file for package. Version 2.0-7 o Fixed bug in handling of given.values argument to effect(). Version 2.0-8 o The S3 method print.summary.eff is now declared in NAMESPACE (as it should have been all along). o Added CITATION.txt file (courtesy of Achim Zeileis). o Version corresponding to John Fox, Jangman Hong (2009), Effect Displays in R for Multinomial and Proportional-Odds Logit Models: Extensions to the effects Package. Journal of Statistical Software, 32(1), 1-24 . O Fixed [pgk] markup in .Rd file cross-references. Version 2.0-9 o Applied patches contributed by Ian Fellows to allow logical predictors and various coercions in model formulas to work properly. o Fixed name of CITATION file (was CITATION.txt). o Small changes to docs. Version 2.0-10 o Backed out Ian Fellows's patches because of errors. Version 2.0-11 o Small change to eliminate warnings produced in R 2.12.0. o Added nrows and ncols argument to plot.efflist() (following suggstion by Michael Friendly). o Small fix to docs. Version 2.0-12 o plot.eff() and plot.effpoly now return an object, printed by print.plot.eff() (after a question by Michael Friendly). o New effect.gls() method, various changes for compatibility (after a question by Oriol Verdeny Vilalta). o effect.lm() now stores the covariance matrix of the effects (after a question by Bernhard Kaess). Version 2.0-13 o effect.multinom() and effect.polr() now use update() to refit the model rather than calling multinom() or polr() directly; update for effect.multinom() sets trace=FALSE (after suggestions by David Armstrong). o Added [.efflist method (after a question by Andreas Roesch). effects/inst/CITATION0000644000176200001440000000566415037512453014023 0ustar liggesuserscitHeader("To cite effects in publications use:") bibentry(bibtype = "Book", title = "An R Companion to Applied Regression", edition = "3rd", author = c(as.person("John Fox"), as.person("Sanford Weisberg")), year = "2019", publisher = "Sage", address = "Thousand Oaks CA", url = "https://www.john-fox.ca/Companion/index.html", textVersion = paste("John Fox and Sanford Weisberg (2019).", "An R Companion to Applied Regression, 3rd Edition.", "Thousand Oaks, CA", "" )) bibentry(bibtype = "Article", title = "Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor Effect Plots and Partial Residuals", author = c(person(given = "John", family = "Fox", email = "jfox@mcmaster.ca"), person(given = "Sanford", family = "Weisberg", email = "sandy@umn.edu")), journal = "Journal of Statistical Software", year = "2018", volume = "87", number = "9", pages = "1--27", doi = "10.18637/jss.v087.i09", textVersion = paste("John Fox, Sanford Weisberg (2018).", "Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor Effect Plots and Partial Residuals.", "Journal of Statistical Software, 87(9), 1-27.", "doi 10.18637/jss.v087.i09"), header = "For predictor effects or partial residuals also cite:" ) bibentry(bibtype = "Article", title = "Effect Displays in {R} for Generalised Linear Models", author = as.person("John Fox"), journal = "Journal of Statistical Software", year = "2003", volume = "8", number = "15", pages = "1--27", doi = "10.18637/jss.v008.i15", textVersion = paste("John Fox (2003).", "Effect Displays in R for Generalised Linear Models.", "Journal of Statistical Software, 8(15), 1-27.", "doi 10.18637/jss.v008.i15"), header = "For generalized linear models also cite:" ) bibentry(bibtype = "Article", title = "Effect Displays in {R} for Multinomial and Proportional-Odds Logit Models: Extensions to the {effects} Package", author = c(as.person("John Fox"), as.person("Jangman Hong")), journal = "Journal of Statistical Software", year = "2009", volume = "32", number = "1", pages = "1--24", doi = "10.18637/jss.v032.i01", textVersion = paste("John Fox, Jangman Hong (2009).", "Effect Displays in R for Multinomial and Proportional-Odds Logit Models: Extensions to the effects Package.", "Journal of Statistical Software, 32(1), 1-24.", "doi 10.18637/jss.v032.i01"), header = "For usage in multinomial and proportional-odds logit models also cite:" ) effects/inst/doc/0000755000176200001440000000000015042141755013417 5ustar liggesuserseffects/inst/doc/partial-residuals.Rnw0000644000176200001440000004525315037504444017547 0ustar liggesusers%\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Effect Displays with Partial Residuals} \documentclass{article} \usepackage{amsmath,amsfonts,amssymb} \usepackage{natbib} \bibliographystyle{abbrvnat} \usepackage[margin=1in]{geometry} \newcommand{\x}{\mathbf{x}} \newcommand{\code}[1]{\normalfont\texttt{\hyphenchar\font45\relax #1}} \newcommand{\E}{\mathrm{E}} \newcommand{\tild}{\symbol{126}} \newcommand{\Rtilde}{\,\raisebox{-.5ex}{\code{\tild{}}}\,} \newcommand{\captilde}{\mbox{\protect\Rtilde}} % use in figure captions. \newcommand{\Rmod}[2]{\code{#1 \raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmoda}[2]{\code{#1} &\code{\raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmodb}[2]{\code{#1 &\raisebox{-.5ex}{\tild{}}& #2}} \newcommand{\C}{\mathbf{C}} \newcommand{\betahat}{\widehat{\beta}} \newcommand{\bbetahat}{\widehat{\boldsymbol{\beta}}} \newcommand{\bbeta}{\boldsymbol{\beta}} \newcommand{\xbf}{\x_{\backslash{}f}} \newcommand{\hbf}{h_{\backslash{}f}} \newcommand{\xtb}{\x_{2\backslash{}f}} \newcommand{\xbfi}{\x_{\backslash{}f,i}} \newcommand{\inter}[2]{\mbox{$#1$:$#2$}} \newcommand{\cross}[2]{\mbox{$#1$\code{*}$#2$}} \newcommand{\N}{\mathrm{N}} \newcommand{\fn}{\textbf} \newcommand{\R}{\proglang{R}} \newcommand{\yx}{\widehat{y}(\x)} \newcommand{\lvn}[1]{\mbox{$\log(\mbox{\texttt{#1}})$}} \begin{document} \title{Examples of Effect Displays with Partial Residuals\\ Using Contrived Regression Data} \author{John Fox and Sanford Weisberg} \date{2017-11-22} \maketitle <>= library(knitr) opts_chunk$set( tidy=FALSE,fig.width=5,fig.height=5,cache=FALSE ) @ <>= #options(continue="+ ", prompt="R> ", width=76) options(show.signif.stars=FALSE) options(scipen=3) @ The examples developed in this vignette are meant to supplement \citet{FoxWeisberg18}. \section{Basic Setup} We will analyze contrived data generated according to the following setup: \begin{itemize} \item We sample $n = 5000$ observations from a trivariate distribution for predictors $x_1$, $x_2$, and $x_3$, with uniform margins on the interval $[-2, 2]$, and with a prespecified bivariate correlation $\rho$ between each pair of predictors. The method employed, described by \citet{Schumann15} and traceable to results reported by \citet{Pearson07}, produces predictors that are nearly linearly related. Using 5000 observations allows us to focus on essentially asymptotic behavior of partial residuals in effect plots while still being able to discern individual points in the resulting graphs. \item We then generate the response $y$ according to the model \begin{equation} y = \beta_0 + h\left(\bbeta, \{x_1, x_2, x_3\}\right) + \varepsilon \end{equation} where $\varepsilon \Rtilde \N(0, 1.5^2)$. The regression function $h(\cdot)$ varies from example to example. \end{itemize} The following functions make it convenient to generate data according to this setup. These functions are more general than is strictly necessary so as to encourage further experimentation. <<>>= mvrunif <- function(n, R, min = 0, max = 1){ # method (but not code) from E. Schumann, # "Generating Correlated Uniform Variates" # URL: # # downloaded 2015-05-21 if (!is.matrix(R) || nrow(R) != ncol(R) || max(abs(R - t(R))) > sqrt(.Machine$double.eps)) stop("R must be a square symmetric matrix") if (any(eigen(R, only.values = TRUE)$values <= 0)) stop("R must be positive-definite") if (any(abs(R) - 1 > sqrt(.Machine$double.eps))) stop("R must be a correlation matrix") m <- nrow(R) R <- 2 * sin(pi * R / 6) X <- matrix(rnorm(n * m), n, m) X <- X %*% chol(R) X <- pnorm(X) min + X * (max - min) } gendata <- function(n = 5000, R, min = -2, max = 2, s = 1.5, model = expression(x1 + x2 + x3)){ data <- mvrunif(n = n, min = min, max = max, R = R) colnames(data) <- c("x1", "x2", "x3") data <- as.data.frame(data) data$error <- s * rnorm(n) data$y <- with(data, eval(model) + error) data } R <- function(offdiag = 0, m = 3){ R <- diag(1, m) R[lower.tri(R)] <- R[upper.tri(R)] <- offdiag R } @ \section{Unmodelled Interaction} We begin with uncorrelated predictors and the true regression mean function $\E(y|\x) = x_1 + x_2x_3$, but fit the incorrect additive working model $y \Rtilde x_1 + x_2 + x_3$ to the data. <<>>= set.seed(682626) Data.1 <- gendata(R = R(0), model = expression(x1 + x2 * x3)) round(cor(Data.1), 2) summary(mod.1 <- lm(y ~ x1 + x2 + x3, data = Data.1)) @ For reproducibility, we set a known seed for the pseudo-random number generator; this seed was itself generated pseudo-randomly, and we reuse it in the examples reported below. As well, in this first example, but not for those below, we show the correlation matrix of the randomly generated data along with the fit of the working model to the data. Effect plots with partial residuals corresponding to the terms in the working model are shown in Figure~\ref{fig-contrived-1a}: <>= library(effects) plot(predictorEffects(mod.1, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) @ In these graphs and, unless noted to the contrary, elsewhere in this vignette, the loess smooths are drawn with span 2/3. Because of the large number of points in the graphs, optional arguments to \code{plot} are specified to de-emphasize the partial residuals. To this end, the residuals are plotted as small points (\code{pch="."}) and in a translucent magenta color (\code{col="\#FF00FF80"}). \begin{figure}[tbp] \caption{Effect displays with partial residuals for the individual predictors $x_1$, $x_2$, and $x_3$ in the incorrect model $y \captilde x_1 + x_2 + x_3$ fit to data generated with the mean function $\E(y|\x) = x_1 + x_2x_3$, with uncorrelated predictors.\label{fig-contrived-1a}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-1a-1.pdf} \end{figure} The failure of the model is not apparent in these traditional partial residual plots, but it is clear in the term effect plot for $\{x_2, x_3\}$, corresponding to the unmodelled interaction \inter{x_2}{x_3}, and shown in the top panel of Figure~\ref{fig-contrived-1b}, generated using <>= plot(Effect(c("x2", "x3"), mod.1, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ Moreover, the effect plot in the bottom panel of the figure for $\{x_1, x_2\}$, corresponding to a term \emph{not} in the true mean function, correctly indicates lack of interaction between these two predictors: <>= plot(Effect(c("x1", "x2"), mod.1, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ \begin{figure}[tbp] \caption{Term effect displays with partial residuals for $\{x_2, x_3 \}$, corresponding to the missing interaction \inter{x_2}{x_3}, and for $\{x_1, x_2 \}$, corresponding to an interaction not present in the model that generated the data.\label{fig-contrived-1b}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-1b-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-1c-1.pdf} \end{figure} As a partly contrasting example, we turn to a similar data set, generated with the same regression mean function but with moderately correlated predictors, where the pairwise predictor correlations are $\rho = 0.5$: <<>>= set.seed(682626) Data.2 <- gendata(R = R(0.5), model = expression(x1 + x2 * x3)) mod.2 <- lm(y ~ x1 + x2 + x3, data = Data.2) @ Graphs analogous to those from the preceding example appear in Figures~\ref{fig-contrived-2a} and \ref{fig-contrived-2b}: <>= plot(predictorEffects(mod.2, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80",fig.show='hide'), axes=list(x=list(rotate=45)), rows=1, cols=3) @ <>= plot(Effect(c("x2", "x3"), mod.2, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ <>= plot(Effect(c("x1", "x2"), mod.2, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80",fig.show='hide'), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ The predictor effect plots for $x_2$ and $x_3$, and to a much lesser extent, for $x_1$, in the incorrect model in Figure~\ref{fig-contrived-2a} show apparent nonlinearity as a consequence of the unmodelled interaction and the correlations among the predictors. A similar phenomenon was noted in our analysis of the Canadian occupational prestige data in \citet[Section~4.2]{FoxWeisberg18}, where the unmodelled interaction between \code{type} and \code{income} induced nonlinearity in the partial relationship of \code{prestige} to \code{income}. The omitted interaction is clear in the effect plot for $\{x_2, x_3\}$, but also, to a lesser extent, contaminates the effect plot for $\{x_1,x_2\}$, which corresponds to an interaction that does not enter the model generating the data. These artifacts become more prominent if we increase the predictor correlations, say to $\rho = 0.9$ (as we invite the reader to do). \begin{figure}[tbp] \caption{Predictor effect displays with partial residuals for the individual predictors $x_1$, $x_2$, and $x_3$ in the incorrect model $y \captilde x_1 + x_2 + x_3$ fit to data generated with the mean function $\E(y|\x) = x_1 + x_2x_3$, with moderately correlated predictors.\label{fig-contrived-2a}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-2a-1.pdf} \end{figure} \begin{figure}[tbp] \caption{Term effect displays with partial residuals for $\{x_2, x_3 \}$, corresponding to the missing interaction \inter{x_2}{x_3}, and for $\{x_1, x_2 \}$, corresponding to an interaction not present in the model that generated the data.\label{fig-contrived-2b}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-2b-1.pdf}\\ \includegraphics[width=1\textwidth]{figure/fig-contrived-2c-1.pdf} \end{figure} \section{Unmodelled Nonlinearity} We generate data as before, but from the true model $\E(y|\x) = x_1^2 + x_2 + x_3$, where the predictors are moderately correlated, with pairwise correlations $\rho = 0.5$, but fit the incorrect additive working model $y \Rtilde x_1 + x_2 + x_3$ to the data: <<>>= set.seed(682626) Data.3 <- gendata(R = R(0.5), model = expression(x1^2 + x2 + x3)) mod.3 <- lm(y ~ x1 + x2 + x3, data = Data.3) @ Effect plots with residuals for the predictors in the working model appear in Figure~\ref{fig-contrived-3a}. The unmodelled nonlinearity in the partial relationship of $y$ to $x_1$ is clear, but there is some contamination of the plots for $x_2$ and $x_3$. The contamination is much more dramatic if the correlations among the predictors are increased to, say, $\rho = 0.9$ (as the reader may verify). <>= plot(predictorEffects(mod.3, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) @ \begin{figure}[tbp] \caption{Predictor effect displays with partial residuals for the individual predictors $x_1$, $x_2$, and $x_3$ in the incorrect model $y \captilde x_1 + x_2 + x_3$ fit to data generated with the mean function $\E(y|\x) = x_1^2 + x_2 + x_3$, with moderately correlated predictors.\label{fig-contrived-3a}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-3a-1.pdf} \end{figure} Effect plots for $\{x_1, x_2 \}$ and $\{x_2, x_3 \}$ are shown in Figure~\ref{fig-contrived-3b}: <>= plot(Effect(c("x2", "x3"), mod.3, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ <>= plot(Effect(c("x1", "x2"), mod.3, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ Neither of these graphs corresponds to a term in the model generating the data nor in the working model, and the effect plots largely confirm the absence of \inter{x_1}{x_2} and \inter{x_2}{x_3} interactions, along with the nonlinearity of the partial effect of $x_1$, apparent in the top panel. \begin{figure}[tbp] \caption{Term effect displays with partial residuals for $\{x_1, x_2 \}$ and for $\{x_2, x_3 \}$, neither of which corresponds to an interaction in the model generating the data.\label{fig-contrived-3b}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-3c-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-3b-1.pdf} \end{figure} \section{Simultaneous Unmodelled Nonlinearity and Interaction} This last example also appears in \citet[Section~4.3]{FoxWeisberg18}. We consider a true model that combines nonlinearity and interaction, $\E(y|\x) = x_1^2 + x_2 x_3$; the predictors are moderately correlated, with $\rho = 0.5$. We then fit the incorrect working model $y \Rtilde x_1 + x_2 + x_3$ to the data, producing the predictor effect displays with partial residuals in Figure~\ref{fig-contrived-4a}, for the predictors $x_1$, $x_2$, and $x_3$, which appear additively in the working model, and the term effect displays in Figure~\ref{fig-contrived-4b} for $\{x_2, x_3 \}$ and $\{x_1, x_2 \}$, corresponding respectively to the incorrectly excluded \inter{x_2}{x_3} term and the correctly excluded \inter{x_1}{x_2} interaction. <<>>= set.seed(682626) Data.4 <- gendata(R = R(0.5), model = expression(x1^2 + x2 * x3)) mod.4 <- lm(y ~ x1 + x2 + x3, data = Data.4) @ <>= plot(predictorEffects(mod.4, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) @ <>= plot(Effect(c("x2", "x3"), mod.4, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ <>= plot(Effect(c("x1", "x2"), mod.4, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ The nonlinearity in the partial relationship of $y$ to $x_1$ shows up clearly. The nonlinearity apparent in the plots for $x_2$ and $x_3$ is partly due to contamination with $x_1$, but largely to the unmodelled interaction between $x_2$ and $x_3$, coupled with the correlation between these predictors. The plot corresponding to the missing \inter{x_2}{x_3} term (in the top panel of Figure~\ref{fig-contrived-4b}) does a good job of detecting the unmodelled interaction, and curvature in this plot is slight. The plot for the \inter{x_1}{x_2} term (in the bottom panel of Figure~\ref{fig-contrived-4b}), a term neither in the true model nor in the working model, primarily reveals the unmodelled nonlinearity in the partial relationship of $y$ to $x_1$. \begin{figure}[tbp] \caption{Effect displays with partial residuals for the predictors $x_1$, $x_2$, and $x_3$ in the incorrect model $y \captilde x_1 + x_2 + x_3$ fit to data generated with the mean function $\E(y|\x) = x_1^2 + x_2x_3$, with moderately correlated predictors.\label{fig-contrived-4a}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-4a-1.pdf} \end{figure} \begin{figure}[tbp] \caption{Term effect displays with partial residuals for $\{x_2, x_3 \}$ (top) and for $\{x_1, x_2 \}$ (bottom), the first of which corresponds to the missing \inter{x_2}{x_3} interaction in the model generating the data.\label{fig-contrived-4b}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-4b-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-4c-1.pdf} \end{figure} If we fit the correct model, $y \Rtilde{} x_1^2 + x_2*x_3$, to the data, we obtain the plots shown in Figure~\ref{fig-contrived-5}. As theory suggests, the partial residuals in these effect displays validate the model, supporting the exclusion of the \inter{x_1}{x_2} interaction, the linear-by-linear interaction between $x_1$ and $x_2$, and the quadratic partial relationship of $y$ to $x_1$. <>= mod.5 <- lm(y ~ poly(x1, 2) + x2*x3, data=Data.4) plot(Effect("x1", mod.5, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80", span=0.2)) @ <>= plot(Effect(c("x2", "x3"), mod.5, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1)), span=0.5) @ <>= plot(Effect(c("x1", "x2"), mod.5, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80", span=0.35), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ \noindent In these graphs, we adjust the span of the loess smoother to the approximately smallest value that produces a smooth fit to the partial residuals in each case. \begin{figure}[tbp] \caption{Effect displays with partial residuals for $x_1$ and $\{x_2, x_3 \}$, which correspond to terms in the model generating \emph{and} fitted to the data, $y \captilde x_1^2 + x_2 * x_3$, and for $\{x_1, x_2 \}$, which corresponds to an interaction that is not in the model.\label{fig-contrived-5}} \centering \includegraphics[width=0.45\textwidth]{figure/fig-contrived-5a-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-5b-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-5c-1.pdf} \end{figure} \bibliography{partial-residuals} \end{document} effects/inst/doc/predictor-effects-gallery.R0000644000176200001440000004213015042141752020604 0ustar liggesusers## ----setopts,echo=FALSE--------------------------------------------- library("knitr") opts_chunk$set(fig.width=5,fig.height=5,#tidy=TRUE, out.width="0.8\\textwidth",echo=TRUE) #options(prompt=" ") options(continue="+ ", prompt="R> ", width=70) options(show.signif.stars=FALSE, scipen=3) ## ----setup, include=FALSE, cache=FALSE, results='hide', echo=FALSE------------ library(car) library(effects) render_sweave() options(width=80, digits=5, str=list(strict.width="cut")) strOptions(strict.width="cut") ## ----------------------------------------------------------------------------- library("car") # also loads the carData package Prestige$type <- factor(Prestige$type, levels=c("bc", "wc", "prof")) lm1 <- lm(prestige ~ education + poly(women, 2) + log(income)*type, data=Prestige) ## ----------------------------------------------------------------------------- S(lm1) ## ----fig11,include=TRUE,fig.width=5,fig.height=4,fig.show='hide'-------------- library("effects") e1.lm1 <- predictorEffect("education", lm1) plot(e1.lm1) ## ----------------------------------------------------------------------------- brief(e1.lm1$model.matrix) ## ----------------------------------------------------------------------------- e1a.lm1 <- predictorEffect("education", lm1, focal.levels=5) e1a.lm1 summary(e1a.lm1) as.data.frame(e1a.lm1) ## ----------------------------------------------------------------------------- e2.lm1 <- predictorEffect("income", lm1, focal.levels=5) as.data.frame(e2.lm1) ## ----fig12,include=TRUE,fig.width=5,fig.height=5,fig.show='hide'-------------- plot(predictorEffect("income", lm1), lines=list(multiline=TRUE)) ## ----fig13,include=TRUE,fig.width=5,fig.height=5,fig.show='hide'-------------- plot(predictorEffect("type", lm1), lines=list(multiline=TRUE)) ## ----fig14,include=TRUE,fig.width=7,fig.height=8,fig.show='hide'-------------- eall.lm1 <- predictorEffects(lm1) plot(eall.lm1) ## ----eval=FALSE--------------------------------------------------------------- # plot(eall.lm1) # plot(predictorEffects(lm1)) # plot(predictorEffects(lm1, ~ income + education + women + type)) ## ----eval=FALSE--------------------------------------------------------------- # plot(predictorEffects(lm1, ~ type + education)) ## ----eval=FALSE--------------------------------------------------------------- # plot(predictorEffects(lm1, ~ women)) # plot(predictorEffects(lm1)[[2]]) # plot(predictorEffect("women", lm1)) ## ----fig21a,include=TRUE,fig.width=5,fig.height=4.5,fig.show='hide'----------- e3.lm1 <- predictorEffect("type", lm1) plot(e3.lm1, lines=list(multiline=TRUE)) ## ----fig21b,include=TRUE,fig.width=6,fig.height=5,fig.show='hide'------------- plot(e3.lm1, lines=list(multiline=FALSE)) # the default ## ----fig22a,include=TRUE,fig.width=5,fig.height=4.5,fig.show='hide'----------- e3.lm1 <- predictorEffect("type", lm1, xlevels=list(income=c(5000, 15000, 25000))) plot(e3.lm1, lines=list(multiline=TRUE), confint=list(style="bars")) ## ----fig22b,include=TRUE,fig.width=5.5,fig.height=5,fig.show='hide'----------- plot(e3.lm1, lines=list(multiline=FALSE), # the default lattice=list(layout=c(3, 1))) ## ----fig23,include=TRUE,fig.width=5,fig.height=4,fig.show='hide'-------------- e4.lm1 <- predictorEffect("education", lm1, se=list(type="scheffe", level=.99), vcov.=hccm) plot(e4.lm1) ## ----------------------------------------------------------------------------- lm2 <- lm(log(prestige) ~ log(income) + education + type, Prestige) ## ----fig30,include=TRUE,fig.width=5,fig.height=4,fig.show='hide'-------------- plot(predictorEffects(lm2, ~ income)) ## ----fig31,include=TRUE,fig.width=5,fig.height=4,fig.show='hide'-------------- plot(predictorEffects(lm2, ~ income), axes=list( x=list(income=list(transform=list(trans=log, inverse=exp))) )) ## ----fig32,include=TRUE,fig.width=5,fig.height=5,fig.show='hide'-------------- plot(predictorEffects(lm2, ~ income), main="Transformed Plot", axes=list( grid=TRUE, x=list(rotate=30, rug=FALSE, income=list(transform=list(trans=log, inverse=exp), lab="income, log-scale", ticks=list(at=c(2000, 5000, 10000, 20000)), lim=c(1900, 21000)) ))) ## ----figdates1,include=TRUE,fig.width=5,fig.height=5,fig.show='hide'---------- data("airquality", package="datasets") airquality$Date <- with(airquality, as.Date(paste("1973", Month, Day, sep="-"), format="%Y-%m-%d")) airquality$Date.num <- as.numeric(airquality$Date) m1.date <- lm(Ozone ~ Date.num + Solar.R + Wind + Temp, data=airquality) eff.date.1 <- Effect("Date.num", m1.date) plot(eff.date.1, axes=list(x=list(Date.num=list(lab="Date", ticks=list(at=levels2dates(eff.date.1, "Date.num", "1970-01-01"))), rotate=45)), main="Date Effect") ## ----figdates2,include=TRUE,fig.width=5,fig.height=5,fig.show='hide'---------- plot(eff.date.1, axes=list(x=list(Date.num=list(lab="Date", ticks=list(at=levels2dates(eff.date.1, "Date.num", "1970-01-01", n=4))))), main="Date Effect") ## ----------------------------------------------------------------------------- eff.date.df <- as.data.frame(eff.date.1) eff.date.df$Date <- as.Date(eff.date.df$Date.num, origin="1970-01-01") eff.date.df ## ----figdates3,include=TRUE,fig.width=7.5,fig.height=7.5,fig.show='hide'------ m2.date <- lm(Ozone ~ Date.num*Temp + Solar.R + Wind, data=airquality) eff.date.2 <- Effect(c("Date.num", "Temp"), m2.date, xlevels=6) plot(eff.date.2, axes=list(x=list(Date.num=list(lab="Date", ticks=list(at=levels2dates(eff.date.2, "Date.num", "1970-01-01", n=3))), rotate=45)), main="Date Effect by Temperature") ## ----fig33,include=TRUE,fig.width=4,fig.height=4,fig.show='hide'-------------- # default: plot(predictorEffects(lm2, ~ education), main="Default log(prestige)") # Change only tick-mark labels to arithmetic scale: plot(predictorEffects(lm2, ~ education), main="log(prestige), Arithmetic Ticks", axes=list(y=list(transform=list(trans=log, inverse=exp), lab="prestige", type="rescale"))) # Replace log(presige) by prestige: plot(predictorEffects(lm2, ~ education), main="Prestige in Arithmethic Scale", axes=list(y=list(transform=exp, lab="prestige"))) ## ----------------------------------------------------------------------------- library("lme4") # for lmer() Blackmore$tran.exercise <- bcnPower(Blackmore$exercise, lambda=0.25, gamma=0.1) mm1 <- lmer(tran.exercise ~ I(age - 8)*group + (I(age - 8) | subject), data=Blackmore) ## ----fig33a,include=TRUE,fig.width=5,fig.height=5,fig.show='hide'------------- e1.mm1 <- predictorEffect("age", mm1) plot(e1.mm1, lines=list(multiline=TRUE), confint=list(style="auto")) ## ----fig33b,include=TRUE,fig.width=5,fig.height=5,fig.show='hide'------------- f.trans <- function(x) bcnPower(x, lambda=0.25, gamma=0.1) f.inverse <- function(x) bcnPowerInverse(x, lambda=0.25, gamma=0.1) plot(e1.mm1, lines=list(multiline=TRUE), confint=list(style="auto"), axes=list(x=list(age=list(lab="Age (years)")), y=list(transform=list(trans=f.trans, inverse=f.inverse), type="response", lab="Exercise (hours/week)")), lattice=list(key.args=list(x=.20, y=.75, corner=c(0, 0), padding.text=1.25)), main="" ) ## ----------------------------------------------------------------------------- data("Blowdown", package="alr4") gm1 <- glm(y ~ log(d) + s + spp, family=binomial, data=Blowdown) ## ----fig34,include=TRUE,fig.width=6.5,fig.height=6.5,fig.show='hide'---------- plot(predictorEffects(gm1), axes=list(grid=TRUE, x=list(rug=FALSE, rotate=35))) ## ----fig35,include=TRUE,fig.width=3.5,fig.height=3.5,fig.show='hide'---------- e1.gm1 <- predictorEffect("spp", gm1) plot(e1.gm1, main="type='rescale'", axes=list(y=list(type="rescale", lab="logit scale, probability labels"), x=list(rotate=30), grid=TRUE)) plot(e1.gm1, main="type='link'", axes=list(y=list(type="link", lab="logit scale, logit labels"), x=list(rotate=30), grid=TRUE)) plot(e1.gm1, main="type='response'", axes=list(y=list(type="response", grid=TRUE, lab="probabilty scale, probability labels"), x=list(rotate=30), grid=TRUE)) ## ----fig36,include=TRUE,fig.width=5.5,fig.height=4.5,fig.show='hide'---------- or <- order(as.data.frame(e1.gm1)$fit) # order smallest to largest Blowdown$spp1 <- factor(Blowdown$spp, # reorder levels of spp levels=levels(Blowdown$spp)[or]) gm2 <- update(gm1, ~ . - spp + spp1) # refit model plot(predictorEffects(gm2, ~ spp1), main="type='response', ordered", axes=list(y=list(type="response", lab="probabilty scale, probability labels"), x=list(rotate=30, spp=list(lab="Species")), grid=TRUE)) ## ----fig37,include=TRUE,fig.width=9,fig.height=12,fig.show='hide'------------- gm3 <- update(gm2, ~ . + s:log(d)) # add an interaction plot(predictorEffects(gm3, ~ s + d), axes=list(x=list(rug=FALSE, rotate=90), y=list(type="response", lab="Blowdown Probability")), lattice=list(layout=c(1, 5))) ## ----fig38,include=TRUE,fig.width=9,fig.height=5,fig.show='hide'-------------- plot(predictorEffects(gm3, ~ s + d, xlevels=list(d=c(5, 40, 80), s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response", lab="Blowdown probability")), lines=list(multiline=TRUE)) ## ----fig39,include=TRUE,fig.width=7,fig.height=7,fig.show='hide'-------------- gm4 <- update(gm3, ~ . + spp:log(d)) plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE)), lines=list(multiline=TRUE)) ## ----fig310,include=TRUE,fig.width=7,fig.height=5,fig.show='hide'------------- plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE)), lines=list(multiline=TRUE, z.var="spp", lty=1:9), lattice=list(layout=c(3, 1))) ## ----fig311,include=TRUE,fig.width=5.5,fig.height=5.5,fig.show='hide'--------- plot(predictorEffects(gm3, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response")), lines=list(multiline=TRUE), confint=list(style="auto")) ## ----fig312,include=TRUE,fig.width=7,fig.height=6,fig.show='hide'------------- gm5 <- update(gm2, ~ . + spp:s) plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE, rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto")) ## ----fig314,include=TRUE,fig.width=8,fig.height=6,fig.show='hide'------------- plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), rug=FALSE, axes=list(grid=TRUE, y=list(type="response"), x=list(rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto"), lattice=list(key.args=list(space="right", columns=1, border=TRUE, fontfamily="serif", cex=1.25, cex.title=1.5))) ## ----fig313,include=TRUE,fig.width=13,fig.height=5.5,fig.show='hide'---------- plot(predictorEffects(gm3, ~ s + d, xlevels=list(s=6, d=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2))) ## ----fig313b,include=TRUE,fig.width=6,fig.height=10,fig.show='hide'----------- plot(predictorEffect("s", gm3, xlevels=list(d=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2), array=list(row=1, col=1, nrow=2, ncol=1, more=TRUE))) plot(predictorEffect("d", gm3, xlevels=list(s=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2), array=list(row=2, col=1, nrow=2, ncol=1, more=FALSE))) ## ----fig316,include=TRUE,fig.width=7,fig.height=5,fig.show='hide'------------- plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response")), lines=list(multiline=TRUE, z.var="spp", lty=1:9), lattice=list(layout=c(3, 1), strip=list(factor.names=TRUE, values=TRUE, cex=1.5))) ## ----fig315,include=TRUE,fig.width=7,fig.height=6,fig.show='hide'------------- gm5 <- update(gm2, ~ . + spp:s) plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), symbols=list(pch=15:17, cex=1.5), axes=list(grid=TRUE, y=list(type="response"), x=list(rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto"), lattice=list(key.args=list(cex=1.5, cex.title=1.5))) ## ----fig51,include=TRUE,fig.width=10,fig.height=9,fig.show='hide'------------- lm5 <- lm(prestige ~ log(income) + education + women + type, Prestige) plot(predictorEffects(lm5, residuals=TRUE), axes=list(grid=TRUE, x=list(rotate=30)), partial.residuals=list(smooth=TRUE, span=0.75, lty="dashed")) ## ----fig52,include=TRUE,fig.width=10,fig.height=5,fig.show='hide'------------- options(scipen=10) # suppress scientific notation lm6 <- lm(infantMortality ~ group*ppgdp, data=UN) plot(predictorEffects(lm6, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25), y=list(lim=c(0, 150))), id=list(n=1), lattice=list(layout=c(3, 1))) ## ----fig53,include=TRUE,fig.width=10,fig.height=5,fig.show='hide'------------- lm7 <- lm(log(infantMortality) ~ group*log(ppgdp), data=UN) plot(predictorEffects(lm7, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25)), id=list(n=1), lattice=list(layout=c(3, 1))) ## ----fig54,include=TRUE,fig.width=10,fig.height=5,fig.show='hide'------------- plot(predictorEffects(lm7, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25), y=list(transform=list(trans=log, inverse=exp), type="response", lab="Infant Mortality")), id=list(n=1), lattice=list(layout=c(3, 1))) ## ----------------------------------------------------------------------------- S(lm2) ## ----fig55,include=TRUE,fig.width=8,fig.height=4,fig.show='hide'-------------- plot(Effect(c("income", "type"), lm2, residuals=TRUE), axes=list(x=list(rotate=30)), partial.residuals=list(span=0.9), layout=c(3, 1)) ## ----------------------------------------------------------------------------- library("MASS") # for polr() Womenlf$partic <- factor(Womenlf$partic, levels=c("not.work", "parttime", "fulltime")) # order response levels or1 <- polr(partic ~ log(hincome) + children, data=Womenlf) S(or1) ## ----fig41,include=TRUE,fig.width=6.5,fig.height=6.5,fig.show='hide'---------- plot(predictorEffects(or1), axes=list(grid=TRUE), lattice=list(key.args=list(columns=1))) ## ----fig62,include=TRUE,fig.width=6,fig.height=4,fig.show='hide'-------------- plot(predictorEffects(or1), axes=list(grid=TRUE, y=list(style="stacked")), lattice=list(key.args=list(columns=1))) ## ----------------------------------------------------------------------------- library("nnet") # for multinom() mr1 <- multinom(vote ~ age + gender + economic.cond.national + economic.cond.household + Blair + Hague + Kennedy + Europe*political.knowledge, data=BEPS) ## ----fig42,include=TRUE,fig.width=6.5,fig.height=6.5,fig.show='hide'---------- plot(predictorEffects(mr1, ~ age + Blair + Hague + Kennedy), axes=list(grid=TRUE, x=list(rug=FALSE)), lattice=list(key.args=list(columns=1)), lines=list(multiline=TRUE, col=c("blue", "red", "orange"))) ## ----fig43,include=TRUE,fig.width=10,fig.height=5,fig.show='hide'------------- plot(predictorEffects(mr1, ~ Europe + political.knowledge, xlevels=list(political.knowledge=0:3, Europe=c(1, 6, 11))), axes=list(grid=TRUE, x=list(rug=FALSE, Europe=list(ticks=list(at=c(1, 6, 11))), political.knowledge=list(ticks=list(at=0:3))), y=list(style="stacked")), lines=list(col=c("blue", "red", "orange")), lattice=list(key.args=list(columns=1), strip=list(factor.names=FALSE))) ## ----eval=FALSE--------------------------------------------------------------- # effectsTheme() effects/inst/doc/predictor-effects-gallery.pdf0000644000176200001440000256315415042141757021201 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4445 /Filter /FlateDecode /N 84 /First 710 >> stream x\[s۸~[ ;Ngg$vvv،,e%y7wPM|I;8<83ń(fJ(fYVX <0`BktLXIMLrdR+QL:* L̴t Ǵ(=3/ ap(0gR1Oj`,zͤe^brLz ~+*P V8RP@P7KtCiJ`qhh¬[Mxq#iy0#Z!`Ùda\ӂYċBx @td)% E7`hcbYZ@V(1 r@ U` Z`- k5l8n36^, n9"X0 Ȁ&@+h v6:L59@vcj ( ' 3N3h \2Pp{"+?,?*rMrwϦDx>f9O>>?]Go5<^5Bo_cLfð{7˫ٜ d,O&ɂ{#9sՏy9:+߳?+vy/o8mw<]ܜwx^|eIg\g}No><_g夤4dz(41ƨ2:E(bŅ_lh,T+RHL %JǵgR="Mc) N#NCkzU\m}ITR(qIԞXW$FSS^Q$J "H[*"0KeĴ N܆Oeg<%]D"IFs -z~xp?=],mbj4'1 Jz8(6He.Ø4hg l<= l0+`^4hW\AR_^UU,-m^8?u~g(?/2ƿU>'u>glZ_y2_^2_1oo0ohc G&K2W4}߳к.oBmqn E8paYV!bR;g "zƭLݴ޳}|t"vUyt&C|X暂fAna/&cV"-N'fǛ1;^ԍꡬ4@$QN;]alV8mQ,2jd'$A(6$Dk)ln&Kn(LhCn- Lr9x0+n:!INq7 9G%e-Ry{S#=QI5l? 37tcu͎rYczi) C c;.|g]vt& &M\w4fvB\iMF<_6msWwΞīIC#=x*?S+[pb*s?apѷNJqyxwi y:ŭAK(M!A;=شn 7kxFY(k%VaԄw# 7ɋ.nD }2S8!g\{$s&kXa̮!0 BlUx֊'?>i0}]&M׽ Uendstream endobj 86 0 obj << /Subtype /XML /Type /Metadata /Length 1388 >> stream GPL Ghostscript 10.04.0 2025-07-29T08:51:58-04:00 2025-07-29T08:51:58-04:00 LaTeX with hyperref endstream endobj 87 0 obj << /Type /ObjStm /Length 3768 /Filter /FlateDecode /N 81 /First 754 >> stream x\m6~P 4ٴ6.j{MDi(Z)r晇Z#gDHF<'J / g.h5Z I-õ#3ᕃ$p"Li'b *d(V!<9#YI8|¡x-E䨐pBi}0*>=lǀ2Xhb=ŀ `S@ )آAN`9OZcYI!P#O)Dv>o o+ m (/ rʂp5dqrjjb۾,j{Q;;QAeZ_6@aF*hh€X#|F *L<&{U T>;<'{N7lsllVzz²)$gQ{+ 9{We'9&tzO\CW OlR_x1BB%^I #c{%s#agD8Ew?eB9N-yq$`mհG"ģW,yuJܒ=j}Ƞ;ջª\p8j$lWExa5եq:+sY|O)s2IjbS/aښË4Pa#)y"URC,}Qr; K/|icW6 $U6֐Ka!\w>%N1qI\zFacva L!a: z2. ^Һ)^C{ OhT1V'yKGЇzS=QDl^1 x3+Ipm/;Tއ.b_`rS%`J.tb)3X#92+@H+F]>)K|g]SI'05#Q Cs{I{38a 5 OrTRT~ԟNi臲+D3D*ʝ/0G1y$@v*j߮ؐSOJ\4닱lL-S!s$5;7d1 z>:]O1l,xW💽>{׆bH<iI1Pzרr6¢(('~”%VQk}Hr҃h]FE*tEqÉvj=Yhh6RAU% 0Ƅ}W}qd7YtHFn'(dFNPU\[5v}69؜Lx |NNc )?&sq93 s)Y+{ݟDYK9FE t5rg'Ӕ42w8y"4_j\7TȲC=[j`0@U&1ڑc0G+Xn9-U\9s-&b u;H B9cz,5\^^طJƜ*~4yOY0uڗOwg<8G02i!$AC5UdtON%3LɅJϨ0NǼ!?a, .CS5Lƫj]L!?B:\.7eJc4 I" I*XKԴl~ `xQ rD-\,OE&I8nc9ΩgP=߀Zӗg/nM n۷-xFvulFBH.lMQ<|ڽÍF [c$ZJ{v<("|5w݁ Xca~P7%r2 n{q]z6^dyL)GG+՟a w҆BWIM] $ %zQF&tfR7o.Wr".m7@o߶k`fݬWȸom~4vSEvJQS3zw Nܴ^ ~@o1#E ԃtT( FXjkl>Mum\Z 8Ś'X *@fS+9)/(V.@Lx)6\9@+ֳ5C. ~dAHiFt0LZ^IUu281CX,%(!$gI tY5qd`j㾤`&\0aӒ(g:%p]C+`QaVKa&8֢͌)\!CT*Į`NR\%A'%u~f&:4rp$ F d翘\Ŗ:`S|KEBLH( 6Q徔 I!x:Tu^Ѩ$0>9* 3c5.yvib1|QiV&60 S`r|MWi/0I7`_Up^QxL'&׭AldqqVX[3rb.7&Li_IO.- Xa0T `u`(y/i YZ]].nc`Aa62rr*F+q(- o+2VB5 qP`vb`9T-W> _$N.RPU!r Ha| K/AVr ''uD~nq^lWJ5{xoT2yʼ_-ۋgQڄ/-,?FQm7e~OgYc|]>Y͉ Ɨڇ/3ßi:dэ*pJ #2Hq:`ϺDp2iB\l0A~s}r B\iK ^=|8 ؓHSfSWeź?IoëH ^lxo;~H tm!4`?w[FQ0 Bv8_bxVg5 9u'y}".IT%G67㵉&zםmóvj/}|l~// >͂1s Q+1pࣜu\|0n〙nDQy_^1bysJ >z0Ru#E-0?ݡ2SW?aըendstream endobj 169 0 obj << /Type /ObjStm /Length 2265 /Filter /FlateDecode /N 84 /First 754 >> stream xZn}WE8ܼ( qҦhvIRA;Bɐ MH3YҌ"ppŽ$%@F'FzNĥ)?AQI*1wgQ!Eèޠb/:F~Q{aHCjtJ(nPi* #'&x4NV1F 0)%aqE+֛ 3P_yr%gs?Q8M.& ZKG/W dŲL0H<*,$ G("<(QhIJkimDPV j Ƌ<DĕWIQP641Hxƈh"z XƣhDLЩ)~D`>4:Me$fF$5L/N@)B{ xI5Z2]9(/񖙬G[RU?H㏢x>O3gf(^Lr_M[&_юxhv0ESQ(g/r&W';{;\_stQ=%=ߗ]5X?g^os]:r>y  T/T*tcr }Snt^GxlnVc U k]Tf*ҨUirN֌)r^ qʸ9<5[ [ꞐZBj!](}ɢdmcU-31=ĵV;-gY?/ί~?\:{"Yr|=ﲷ[3/> brv='V FY\~7LbXIq_ܳEmuzq0_ lakkL m`x.調ZxoM9̢Ɠ_u«w?p^$bI0шlA d烒>rȒ}lr65 B+N6H&|~T`/-oDFSvسJ0(pASz6D6uǙr!+.-X 9F: KWzZ:%Q:҉.rt(ړA%tV?͛Nji/fOo m=lVdKəJ_MRrf}1 f߭[-[25#gxs[1.[wME{#\p; o>/ǙmkÃZE:=;T)vԪ*[JtZPMS{t}ʣW;١{'U2lg}rfݫ;-wҸ|j'yZJu 7CB,ySd #_iو8( M=LlSXbsZ!f07nWk̇I(،p1yPOG|ݴeO-u̐)EH>lCz̑_aKwOcL#F*+4N*\!puVN|$&;, S$t:HdTJ>6Pza<jH! 8PmmMvrK6;W`\oωtumpN㄀|B :I ^\o7j#fpFa"58<Rb=l 堗]<)48jlHȥopIGiq:jKuQWTr4xqwBl?dmc?u[)mަ?Iendstream endobj 254 0 obj << /Type /ObjStm /Length 1781 /Filter /FlateDecode /N 84 /First 747 >> stream xZn7}Wc+pq۴6m ?H$JKc%#X.9<3څ@\ALڏ#Sل'q1@WJYL\*Gr W2LLONWC/aB HF'X]$jh$!>3 fGf! ٓOyfEs"_a { Lӡ.ZiEW/ U 1D4DUIc T+8-DCxC+`BTz[HNc 9r `H.% YhSC E Ӣ03zp@ ;cJN9Jugy$m  lITTw)酲J 4{UPP?1jã*KzDCFfգG9 p:!YREu5=}?W+9Dyc(ٸn5ݎՄTγ.iU;Z= ko{/ǣE5˧gyU}BhRGZBU*CAD^~*JBŶ-T~ U8 ePP5TxX]󴚨 "[B*!F>ι \2& ^`MPٔP+yq`wd8MCøu%_ \d6oݹhb 6DWn<*8G [F/3+j(+F Ce4#:*8H d7S16!q"?*.,YYhv.kouj7^ ]2R/)i)%Kk)YMzzW?ۋWlVu :Ód|p6Oo{cx~:coebgpyΟy=@( ړI_{?o.Rs;V༩ݰnz8aky4>h-rlpSӥ꽫w3jƋDݯJ+XkᰠR>PaW> AP]4SnsIy!jUg2ZRo9ԡjRrZ7˵]i0ec= 9Fc7RQtd?7kv7~px! &eu٠gn{}s9[Ŋad*я 6LvaLүhAAdґ 8ZZ`KN֏jyGqȫLXåAYPׇ۶F!HrqnѲW-2f&d,y o qC~#Cd:7Ǫ1ݒU|JZap%-|g vU6endstream endobj 339 0 obj << /Filter /FlateDecode /Length 4566 >> stream x[Kq_( %u'eJ XavV=zI̶GFfCȈ/iUjUw{)rG?O7>q,VU^yWw7QbU"/L;޼zSiE=5 &/Tz-=뼪*xL.{A XVᲾҜ(cH P/О]*PJW]}3Y~Dހ*E  G(h@\I>LpiE!JOœtp3+Kg[K*+75`mP1pen<;BN/EEose˙X zHj{gBn+= 3-_s68Հ Cs+Be#r0/kl9}^5bW/o.`5"C>ؒpIʓc# `Dk!@*n>{Fh™++ gE)8JEaWr@N UֿCsɗpxv~p`dKbrL %+DL3si7Cǯ؜K\+> rb^+#163*ǧvٶN!X"k· ғ @~2A 81&.&Cg C6^>O7ڃ90B  ̢kV]ЀtL=Ӈ 1TjQ@44yPj{XXc*1~~Ɔ]v>M^7zB4,H%LUL:j ǯ Cae HQ,`p$a!UZC4'1i21QKt QY}!̭RbMp~ 3e _,y/' Y3"Ykxs . xgz}1wbJ[ 1.h@.lfięc;;.jMh]ӹ@p1uva q@Q27#JWԭ%NͥG.,9271B_  Xƾh$&ZGv H?v^_rf-$.k@;ȊBCӝ8|D"C@%r"HF(QV cOaWH s`I,g ҏ`m9TwЊ+@``zä'Q*0 vԣ=P?"ql5yfepz;qƑh5s_u~d3VCQq  ,XS4l \ӧBc5Ab=qbB,0I}@ALI{$4>8H_sl1ǂ*QB( IM~qʳ,bvi\G肌 @a|1eRR;+ä@O4ecdVFZh,5?oLcI`*cH+1#?ao< 5XDI1($4_* GxQy.?%e䡴_uJHi"d-]$n:X\:ke2`+zC-+,H'٘)P7ph@?ؗ<Xq `#(CRFFqcXL鰲Goa jy6@04k5xbyfHIlPS]J7@ϤK`Tw8b+ ^Y-o{ BnB&7A^!6:XZ 0I`13V`ױ=GWb4%H1rڱ1xs"z4wT˼D]E$ک* jA`k}^ދ''J.k҃fQ[ĀMT3G v#- pt4龁͆$5WT>]ݽg`i0q89v:]? b7$8RMN(&x7? /"BĿl&5eJmauw"d>G-tq54*[NQߨfw\)& |>?d@qUC&M)1En_ӎP6L;P\kަ YYc슉oC (Im TEkRUYTrtsI,#9BD޵4Sc{|2p0@N-Ji j1 R)^ 4 9"Vxr!d dC9rr Z\s0*| aM xU”pF0 xKD-p~=g8m/LK3P).2*7-rB4SNQ'wڸ'QYؓK2V/k,79iT >YQ6|]G漵k\K al2.xqP,*he /8TCG_PlKa 5K pi6̕ C8[wۥc@Ư/ ah6`P~ IHka2MJiKE#вD/@ְAΣ|}6FX@S'l,,Y憙SCSi8?ZƏ1L3SMvU? pKrHѥ4n!~ f:s>8y\L+MO a:ٵx갴 %_N h5E?gIw%^$Rm+C:kPCP(XC#6!3NĨ%ʜ\$rTGJC| 1½a<*Nb%>q-ˑOs/3{J8Zr/sc8rGvu?X/KHrfo7++IR~;IqC]SnnB)t؞:yib+V.ZoxRyY:> 84xv@|\~b8ϥt B}>{ 76!}TYL6Opc>*PWi=t ~|U(uU d4&HS i>,ra*k.J "ފiDB@؊!ʈttH#G6^Ci)E|V/s*PU;eH|;f/vx96_%^y s8OChye.y[ȐTF2+ n2UYN=w4jb FtP0ֱUt퐎%}*K0p!`-VyŲ?<ƀc#3lm򭳜/Vl!_ƺ"e#o^oUt=n#@|bql>F90gq.a(xZ`s MC3.$>B-)ƼtjB;ਮ #aqE V"UhZX`Iendstream endobj 340 0 obj << /Filter /FlateDecode /Length 5158 >> stream x[Ko$/ },c| .ڳ2|!ʮx0Hf)=c4*2?^n7Eg_~z_=J*LXo~ =׷:) ی@u/aOol1*& qV0̧M2Ÿ^)]GE=l/qcZ>YAQP_Zџ?)? !t)ntv&)a~}€"G4e<)Kmy5-3Czu͠VJ9Z F}sbJnܽN(R$x!T h.$nD:nq7p<>.mwZ&t__wJ}RNyтe>ݍ'yA? OMw3KX1:m󴤝6P!Ƙ\Cތ//0 L7xd p]2Sk|5MZM3W:`ߍl"3RqOA whpu=s4ړK;^I0d xYht|`2[v2B" v}AԠxj 7>*e`ii1UQaԓ5x~h,cf)(dIA V^޼# \җq1fr3(z[uw6eGi糌QX/dSޔpԁ;iELjn\[ J5 !)or$u\v^aW)f:;mcƤ1_Umo8>`7kc6Q3N?cI>c/k=M4C DQ1"+9$Qٚ+oMFTCU&9XF7P(f_m24'Ӏ vk@XxRbaF ,迥2 _yl`$O?>lJh_pos?h{ u2-l~w&WŞ)xBWf[ p{u.mnڿ.[|~ ˀ~w'9`Ȁ9g<CAp[P[o @aYl$ [=o3 YFk욅 Yv7 >!@ UTV4T*=1aH=Dq0^ݑD1# N1#;fD OO!H>ʆ T ze`mP'fmҊ6]Dso|Kfd0 3򖠚-dd*UTaT_ZaA>B cs:k%Iv>QPEZB@P+`P5`iL Z%Ȋ n\ x8+zT@y-=C;4.UAnopΈmq 9hDWrpT)sp{sSEJ #aa#p7Q^;psʭ xs{#mC -S遁৅rd H- ZlȠ Ph)=⚃=G%bo0\i\@<p-)s6`! ( ZfuuXMǡeZ#5`)Fܹ}cPbGvv`sT`[Mt(|؅H9\j'Mj n"Ձ, +ö26OQm dUkvnW`W Q̵r UvpHq rvȰ- S4vrx\5,`E Ǻböpi+ AFma m5mMShgvB!2 s\'ak{Y ! b.\@PSk̑ @s-f.x+q 6>]9\KO<@*&22un7.¡CvR 3|BQb~3=fZ`G KT1+ Ama mvHTv@cP` ؑQ;|6l7n](2l iWS!! QDFa0bǺb˩ v;WťzAQ pEכN t+lMG;T &`}Y>Qfc*rbR8 Sx)rb5VT MB{%?+Ceh#_Z3l._)18g(6Cۨ!|B)?P0#77EB!RfWzlvu*=N`FYUCi *spUV(DJ MAaRD/*p(m8ٸpa>H!"epfv(PVO]`4i }l(8Hd QQ,R R8ؼkBX\z2TE"Pdu i$!Q\ R8HTUz9xm)eH|[*ǿM27vn;-_2AGM멂[`Co/م) 0u'̎+>n^\C7 ^v7|86Ԃ#tX4=#4岼D4WumgٿVH|K>:n;s&)LӉm,-z~i^DPvYXC;Mx/.rfWevXt_޴ܵҍ5M*FZ+` ^GnKK&ǀOU&}X$r4Y4VbHՖ! .7`浗gzAڪ$ "l׋4`Ǭmc|9A ^.pdˁ[ϥm^lb0OQ\zIJJрLqf\kO(U̟\G^^z>ǭpN OOPDZ,2W;+j{ N.knAfg41]sJ\=}GK!Fwe/q<͹&kD|;[b%C1}kc8|-Q"8[؇H!I~-fqTWYrZx)`:|')zdTWO+ǁx`;pxn.;VdmY폍66NC:[q8 ?f9Or ZYn ~-9-*~+ؐĺ!19t|"xT{yU'695);oN狌:_ex@ TQ?!c3d{fӶ5x1 e$m%pF6KPM?ʡ p<:$xvaarx~|@shJ!2^| ;FJn[$rw;|ǐ"x:D! JFG S ^-Q1W8',S}v؂I8xPCįC聼!:VN^e1?oА*r^}[[^P^`YC@.V wmT!yƜg kȄltLWTy x S> stream xZK8 9t-1+ f wtU5~l<$YrV E-Y::òŲ[4˧ Aoz7sr`]?. BסqK'Qny[՝^WtuWCmpB_ts!~}a|n[|ruvéڡ_H.JJ(8fQ}[ޭV>ֵ ZԷ7K0@p7#ivw21fj$N:|wBsw[X)魮ޯFh+iߝ]͏m!|c0}3L-T07nx6!k! ?RNrnrtX媧n矕FFr-bbM\$dGWSxHOզyө=>"]942GPtJc$,TqF0>xǑo=8;2{E#k+Du*Y3+KdƝdKej#Zki?V`x\)WN#ikWʇ|ؔ=?oȹ|8\UScwyWMVS< qx^|%DS jYv[m)~3?05O! KB!Cw wr<ƠrI as{槦1'Z@]/qmI 8JV*+ae/ L7W>wiv0P*4bwIf 9 IbXQvXqSP쫏ۆDA& KBP0 #009 ED4O:]1 ov"gL+A):w+O B8T Rdd|.;dd˚ᬀȶ"wOdb2&(=xmH4N#/t4mN,-2Ija^L9LA(NȣD_pt{_AkW>G '9:HA9Kۼp;UZ2 S$R:џu~5j$ם$xC '^Qwi }eK_7炁4L1 ]U.LՄA3 HX $w}D2BUH@C`c0wχ~2 P3tL @'. iԩ-hQEeHp-֝YSB4)-f)bm$Y]#_r9Cg9Js駬Z~(|. ( 2s8U i\1IQ_WXH |NqAFWBX 3E<}0DJG eĘ4ژG+Qiy5v:X=T#}ܜ{Vu r2&˩HL503I8|A )]X*)-T,.q CTBQ:)(цCbpRUͅAu]K*Tak|Hu0.޼zp={p_{@J -lfܙ I#hO*W]&,uPcrHp\DEQ# 8lJ0j?b%;+5[~5R&kȡ[9[FU DFROMfm~HdgtI{:S`|m/4,h*L3~rf^mwO&#W(:xqUb/#/Y}Q:*!`$ñ~ r,8%SS2%u[Н)}1d)# -i.\+fVQL%vmzRY\gG4fkf&b*W\{!a- r!z(IBm7ҼQ$rV uZ CzY5 kwuS=5'iT{9/cq 2jNئd<t2L9b' CN,cO@; F:o4]b]א:v]_.ZO"Jd`fqlG-Pjζ@!aU@QZ\FD`BŴ9o`,FSnCN֧q,F}h齧ߟCȬ- hA4&(l;\V.#-θsơl$V b,'^ok`_z ixSf. ^XՆ#EbD R*2 ڐ?ݾO$ X E [HcQ5T耝R;/|YG +ǞxV"˻ܯZ ؈( YߏpI?́$*Nk+3 S!_st[W!yw13j\/@ثS %;I'fnо`&Zǘ Lt&Q=\NnGly^lt',S^n!iXh@m$[Ho^xN}A7UV]ꍠށ l"8xn*G`ј_+O%ఌ8u 5H7JMua}A80!C- |%> k9!3 A3YHM{,PMG]Ņt:|ёd΃-](/ø)N*TSթ0E/UZq\RxijW~ߵeb ݐ"!JRW7+:4#t)ј `6Pa= IO܁{ +8$GQ҅:~y!0AM֕ /rJKjkNbw+jKJ1)5&JNS}O.qCƲ>Uz.&uJT!8҈F/]QJ FKR %4;~FR0u̗U#A_D Mq̑9uzML ;N/_Ǻ/cH=|5'A1&u,dx>E80\&QDpXCZH'Ǒo ]yQ[ ~Pۇ RMO[n>JyS;U7\>P?&֮sS:8hjHa ΐ[ 3q"WJޞ6OB\h؞ڇ~CpL ‹Im7l rj1;`L4_tendstream endobj 342 0 obj << /Filter /FlateDecode /Length 4247 >> stream x[Kc/LBg$@&$T YU^T,Bn¦4K3x 6/2@<2_JCwY3ΫUA>RKΕ/mhm\m@63៷kRci<|)G1D,V/ܭ O|^-}GUvkfr@ h,Ur_vY1З~!SCvmX|=K}X*/iD~prQSYjsD3q4cgyۍ R poZMa"v+~~۰v_,i+W)D׍?Sx½@ 5}lcR H ʱBlݥ8x'x _#]>v5^^mqep|$xu9dtTCʤbw7xO "vؔ6s&sK&?q=*q|,7\TV,|]?{e8SB`c ^fAz;n ,@ܮRhmkŽB!An0Ss;,Gr~:?.82>)lL@ jNcnB;2i!e~B<^ ,uT+AGv-LPB_8ރ}P& "/@2یy`ƀ_R']G1kj0%7h!NM>UzYOY-h7W&݊86 ZY PP-(†+e, BJ!t"1@@0[ GE l~=} PbnGBF j6FM0"HVHxX{Ʉ2V,bDI~'62QDT")(:8W8+Erc.w}˽^ NC1:Fs[eY PP/X v'"S:K0qaXMCDcDr/ 6?Jl?f&'VɘUueH6֕{5AM}2^M,mc3V2+sr6JqAMد>U{V ?&-aHGRhϨ~,<8xdfgRoF9_ZĦ j` pHgEt #<N!#F"q@{ 0UC㱥,u&>7w`JLƃ@^xƑV dȳy=>t4@ &`e~x]_$ ;͗r[HDt}l8Z༹ۿ$0od,=qT,3 '۶xz)T'W{DtQ5L@U /X-#E7XtttO}KL[ 70fw]- v [:nrpH>gSa J̿癏MˀYyL+0)\mKCp:çQncr CLXn"9v/+Q*7|yq+ U>ru0.|:6)ٕA.Dw}.Oh%MO\8%eWըMDqtLd3[J-5Ux*IҊV8~)1}q l:&Fey@9O3Yܳ`Rm}ݲbblǜ]4M I,d*OS݊\Ɔ̕fO*E7㕻7Xwk>r-fɤ8ip /eԊ{^Od_h|T*ڡ%yEwn{Wa6} mslj3'8= >vܔ7[ )ːM\3yw_7sgҽduio;ws=㟟CK`ȯܠ8Jh%\~}_v-.߾/f`MI3jn<\Ï Ø7usz]q`>)crxH|CHa(g {_BaH/1(ϟ.0fB0(3c 89żi`rM_3]UVZ.o64\e2 da|GbBddH,LeZ)/L<uea : tģ7cJt&V,{av;߬apgtˑi!zrTrdTψ#0w|c^kZ: Lga1qURZ`EEE4I}} SRh' ACr󷐫:AC56omkUr0lEЬ 8i^%hCc`[8,ƏT]ؕa[UT`%[tv(6S/&v!v_V`&A;. #VU4v0]A'`[Eԋ5b켏MƲ kqsg[\;WNJk=Z#3Z82jYGkg*Aiu0pY\[7`Mjpm=5T SbkaȨf %Epj`p\{Cf5vl(L7ZPhCQWt@8U j4LW\ Cz1Fopq,=8{G L7 "Ah iQU X%16N/nR7֦`cki+!VU4`8כV XL{P=]ׂ=/M1tlȰf CH1MB+!(^L-x P} l/P?V  &HfI!azK4 #CHu4NC`s:L7.bep;Bэ #\r\LWp C(4h->h#4j`ppG'|w dCp G(4hau -N na(6S/&<ֈ >Ի'A?yK!>[O)q ڷF2N=K(E/6Kg]ĵ_:J }zǹſR ġܿ]pz|]yPX6)MrZo(v􇬚ZxV1S6f{a \h@GkKJLc2C¡a@i%SV`z2XQH׳jE(Vf 7~08JRdx,dqpWYGTYTӍQnXa)(+]Ղjd;n}I eG^X_ՑWV 7~Ny䎬d &0_ F8E8Ć*DBŲ1(2FEX("aՌ/ɲqXTc*‘ $JơH8dp+>cDa{F_F2~^8+wW(;Kn9i-/endstream endobj 343 0 obj << /Filter /FlateDecode /Length 12891 >> stream x}KIޝaPFIT;| Y i aZdU,Yn.{y[d=X=>sոsW#o^W^#JyO_]>_~p w5ƫ|=] !ϓ?_bӏN[؍. OG2<?ܾj]Hk2|#ɻqt0軳z=:piJt{L"n*W/Ք7{~߰b>Fr!)p 0O=Iwtf=:/.߿x2?]Lp{wśfpma?cf= d K=ąok7ߝGW?݊S1Qzǁ,]q;rq,:>_ߝH%La}O%W}@W>{,PW, CRDgSq:ϭ7unjJ&}w~|x :7}MwFoBq߼tFp<|s<h rinz5ht(o &'@~UF8^] W1ʻ<^Wz|] WpՊ> BSv&ipk?b|E5wAy nwN~Wpjڥұ(]#1'߮npq|sNY+ޝ_] Fpm`DN0p0# 4~ `d%ӴsYK sAB V bPB BqDi!APNN}h V.;l%C̰CFlu \ {ø :g,* 6>" a7]@I͈+YFIkUHp/'Ӣ+0%P2\ 9>G!xhTxӻgdkXigd`AL"nYw򙑚K. WH~f d w$a"2(HdC!;.LEF /0v' B%bjbUUF9~M8ӥ_]AQt FqX=oȝ$*b@*u/  <|IDКc`VC]E_e 1S2.:Q' l8&K9 QIԙ&e5c H r$Tq;i y {Fؔ&IyXxx|}^`C^ư jW(~9jŃzX-μw;b1;b9]kc$kGkkcWYNm$`H6M[`4Y|f9N˯-O.7tߧ/lN钎J6smd7\PW+::aoDq2? pɜbVbn#@ H6d+Et6,vEsU uF_|_S`/d͉bcFF ) U%VKUEMdcix^绘s a@":s#2[((HQ 3^m"8Li%< ,B1¶5#.XkR[:`f||ğSZ$@]Ԥ AY<- |[dw;c1";j=akc(kKkokgYPm41J6 X`6YfyrO˱-W>7ߧ3l^L6{md8p|Beկ7H5VH!G5PL!bW"_׿*duټyA+DB!9 J->!rhDjg zu6YL zu )@8P!WPn "av^-C(HQkT:JFՐ~Rհ =[5竆M٪azj؄Tr n%uXR_o/A~r˝ KϗmA2A\=QE0Hr BT`*g [VC .0„ῢƠ U1(YYЉ8ڪvE#.!)CS8N~xk@hQ]#[Z:'|"S*?W> ˸Wd&~|CZ̘jY"SJ. *@Va 3I^AO /s [PK.4˪)58nDE4 . Yf58ܦ+bp# y[r;켴3Չ0;0~UMw&`{yM4PS& R7W(3n'FjiVe7S-ʌs:K}l=Rm |3( :囗u:D:Nv t6 PBMh7pVC Hw405xpR̉ (!AJ[hbG)H0QeنF̰bz%Gea6lؘqgcƯ q)62e%\ Z44jrqזӷx?ly*l$vQU:xw8+pMV9Wϵ*] AԢSB#z'ĩ)?} a ȈSD;xF#5^[fV7W!@cF98cMH*xU iB/qOq):.l\h"H6#rbE*p9i\]#V,΁|K$〴HLd!ENT :25bHœ-%i. ߪI:Nwj36l1l0e Fcɲe8C' |s-gl.ʤ4ڂU3E v5VO!28"kb5*D6xp4PxBē420{Bk" 52bH! xH nPBc4B4aila<:m̩aW+IZc7zp2P HNш:rB^sVcl@vEHWc,vEHWc"]uZUP/VR iZr!VcTw*vcmi]ujuXҵֆjLZJT3U[ܾ6LCTTWR3}%5#j׫y\.n_8jZ/ 1#zaO+O\G:>E X55=>|U;e#]<|ą#]'OvшڋxND^:=yrXxI`́^|(F)!^7!R ތ_TEWAnY&dc|/  BkُU!yqsJ-`*! yn)yOVT& l01hcjf"ShRrU$%`dzDT;01`@N`9E5Z&(@Ds L_la.F)s;x[X{CI%"}L'u8 6e̡Xa&}cz60f26`}fïY>lF O6l\5m9`' XdY2e?ːE-Z6 P`sI/6,e3v"rN]]#wIԶ-ZcAm4T2ƱV'JXUp.˥@n`MR᳗$H\yR vRG挈N :b}?# @bQg1AxkL .! @D 14v AF%Hsf ewĖ }6#SZyӸ7ƩRy8,l"<Hsl1J-_"<90pjr8y Y w2[7}Ս՟ձ11 7ec6LؘqgcƯq\a2e%\,ZLj2rOچ7$?LYf*lkڮRBx M(N * )$woyB"BŇB$4kŢBrR iHkĭm׸C!/ RF\7w z mjh^?+D8\!h |) pj@ѹ.fj] 5+lWqUBU\!]*JH`R5خ⪄VuK幕Jby7`Tl(v{T`1r]`{`VUAV5S|*&L;b=>J;bAi)*1h7DUoe JjFAI͈`]+$:*MJHU\6%0&Dfґ٤lR]\ufkN#ysky$ yz'mmoFμJH4''xM|I 7h,<2V>}c6ڳV4^aq?֋hcF >|moe &q,+YfPeQ˴-coe~lYf"l>9OTIriĶCݻҿ>WYITbJrPUL8?dl 37Um{,!Sޝ4u7ԅ̠3UB΂1پ›.nD66af h@d_T"S=,{dzeuTOq$ʮi& Hh5-Y^?pUNa{>qٱX Z-[KXkY[ϰc˸RmDبeh67e:,{Y3$hh2e[Ȗ7ݲ6LcIX6ټ sy]q{+DBd+Y_ .HӻB6q `'PBė4ވO*DV!WiH,8 ^-"qkF\4ژJ!LfׯϜM^52O˘y\!h J[VQdHvROO$)mٹ<\Wef%+\]yZUBҬt+5+URp%unX7/ඪ.g<\a]]/f|Y+!߽9 t_4e|9B8-z|& :(}Xf~ ew~lՎnjeCwVN֖ܝ;b=jgZ5nBF$m&"݈i,X09敍cғ`6ɴp./"4L\V;Cv?fǪ@uآ^ c.",I+IIƦcz`Uޣgc{1śRB 9A5a?D|ʮouZ}8G1vĺy6O:F"Z,tB -"|ꃊDԲ%Z#ʚ\B t,{0r~Ec:c Dg' KѹQ=:D3E"B޸vvǤ8vI2ݑyI;̃s;T :. ˂pRAH {~ܡٝf+F/vLfV7:v4&\wUgzqr6Rl4و3QمF\ط`9"W m0eO˰-S2|os6llDZ`J!ܰ <L]|օBX] *$v;g(DB BėRGBO*$uOfVB$F:f27Ѫhp+iA vQN~YjA+G\3*wܭi9@!Se% |~8g-03/гFz؄-56gKMH/V2v+uźo|N?<_y ]|WTn\5IZ!+{Cd%κߐ_ISۀ4d/R dJjF XI~E׌T 2H#̖e)LF>57bF>omD+_9<ϋ^#3fn'B"h,h?=VxD#GE|MOZ3#OҬw1BDCTZ,r,DėDYd7)PF7(2q7Rg;.W,qĥ , )VpzEutk>Z W't|$+)o{?ltef8vV+VsVJֶ֒a8=ևX0Q6ldnY2a8d˲e@CF-Z66mY 6cU&ٌ'PJE&]*p@Ƚ'WjNb9עi SK@+)AVRXXՄ2 0 Y$}QU[>(QR %ԀEaZ_7/\Juc_GŜZ3Kͼ0K)^hR /4) YjYJ,5,_v_^[~~"l&Fڙ =Sk͡*DMlCgual|(eT<o5ʼnI<㬁_{*HE2mG,Uޗ95a"8BG#KEGBwhP@W8? 2*oI_3z}x~GCq6䓜q(Ά|(4/<8OeqW'93J;i0m=/cRKMOCVmWN|̀_9*UG.mB ://|}o gω r 4k=R|(&郆/T*NI$z_= Zݤ3~X\M\.D*i+tjш`(w6}l_l{mb6lĘqgcį 0Ta2!%[,0ܝgO-V<<g `|9Ng( )-Lxj-yx{[ }j 9xǏPA<+pe玎qB'Ǎo|VV7 ~:vu  `|qCŎ۳j~Fİ.}ĮU)AXuh Lsn:VqNygOrAŸKnOha-]]n4pxzB푷m"ҵOZhv!pϯ~/ի+v٤O·skpjp1rőVآĺD|C ~b ;?kFt_gu?¯xRH z>ȍ|c Dñx~NDo[IɹKOf Q_ٽxfy|?;?7(}}pք¤ ~{8ow .uͩ J2O=4GAdvQ Ghw*ԫ/N?J@%I<:\[G?b0+.Poh; &5|Ѓ ANNӓ\J<>ɭ_GT[Yu 9~T΍t?I/)emVu +y(͹7aC| t"\M'X)ݜO2dABEcM(l N ӕ0ɴꄀM9|_r#r:[9LhvXW-=HĪ H0mI./针~&[п\>Q2k6@$@nē7P3LռSWn~|Md?Gw|0\ʶ3<$y&+ Mpu hmidt?֔*j?cqK mGnlלx,[O7!Z۬k{p9YO7L[Ӽ3!vmj-;|'K`M5cwa\Bk/-*)0e`a̢l{AxŃ1?O2xI-vsCvx|Vz`_>VWZy;1uG;=)81t`"$aʓ\Z =X% Czʋ[ 1~ًSXQ_Vq%^SՂս$)HepǏnJ'A!|:?7/ڱ, OOL d?iR!-`iB32*߾ۼtn` 0C㩢k`BUeETVqbOy^}K<ßi&VMaSKwyҺ_mry<qd`VtƹwTKkYY{\R!_R#`{oS¹2Uf7O-4\s{OO4Tg~8H}q%% d|I xX kܯ5G.}<1uәW:%Xv|P<\:($KQ4 `WkfyL4HJE_l6q _p{w;-lHo,{Z}OG-~'(t[ l4٭><3#>n$)e)ڢ|¶qp;_Z0;Rźc~ ˴`kJU>ojt9&E.X:otT{?8s > stream x\M{6/牰&n4nE\;~$E;3 mF0/]^o']??NOFM0RNN#tF5ǚRScf'?UM$Z|_B(TrLA/ȖKFUi7gz笺{&5)] 'LcX }y^2h ek #J9S n(]wϬ3p!RtVV+Q z7 VCg|a/ i`n 0(H ~PlAͳBmeM)CUvE~ɷyhO/ߌ!s$L(L $} ÍsjiHo=0L(3$ if@!O'Kj?N22Ԑ x€Iw07UiWn)jTwb/x ";FDHg얃aA0h1Fzc8eCEmKK4|! q;ڏH; aZ0 y*-P.u¯ =/ۺƱ>GӃLe/23kh6֘ԛL^* e^<[P {҉F'7sFF/5~[ћ &'_ㄨ Tr[rH!-)R8( (} <^TN8hT~z j{5}T2(؎%[8# 6$)( JGď\vIZ(Y i q_#HPd&z^g?qc艶$Ueh;GO5\)AQm>@WB|cx_BE~b{Ư` S0}}Dw66G}#p*DGEN$>tX rȮb;`JA1ڼB'VDF/ qYǓŌl׃F@y5WO^bQyT>_7-=M8`7<SeYZy>H13["kiRK,fxWB/r(5xXSu}&F[,njiu›vxJfzg%ӽ }_*`(kt4F< ǡs>! @h+Q2qGNky.3xx[~NdJ@Mvxblʗv/dz} (x]qh DʁO5鹿\^u,H@ cM(8z[øijЋ6Pr9p^fGvA`˪B/iXGTl҄vC-`J܅*]:!-l"R#@×]dd]2C9ZyS?MF>m 2(뛍$rLYU[+yi;S엍MeٗtdreUP4fҴ(*S<bV7:<}_d\tGG:8LwԀ*I炆r>8nGPQ[Ƽlr`|U7N* P,X, #"&Ν e1&a$_EgC[OQ!j1;۞AF՟ Q^ԭ(pdQ]{\ݰ'MI·0M:˾u:| f__bMuU-2F-V˱aX^R H)ie1Tu㥞 0Ѽ/`v(>u# U{C|ZK=9^e֧'āvյݾU} D4z{YzDe}2*°"Vg Sp9’&rC"\zHk]iXK{ Ae۶<Ҧro 8ۃQX՗U7@&QAEZin 4WQwBSXi:%]Z Hϣr:t`jBPlzl`SMܲETqkv|p[nQKaZ0)FCb?Ʊ-<^c&#3Ho`(3\EMg:+:?HYnOK}b{ ;Q8ydUQT*(>yg)3<}us> stream xmW TS־aȽԩ@ho|8֡ڪ#"Idȴ$  0TQVZZZS߫R =eVgop8N}m;oۋVw;kC?Fhk?8qzpYI Q|"R'-K䝕>(j$d/TkQ~bb7l0w_NQBRӨ?@mޢQ`ʋ|9rj.ZIKSk(_j-L yF.GT.uaG)~aM[/røZ-z/3pI4/6ft1c1e\W{$ꩱ|84ZMc!څ7aC3{Ш y/J ﳶcpAވgn cGbTͩ@IiM1` +HU, }ZuA9nqFGcn;=xW4/A=ٯ/v>-ЦLwo7uMvL . vK%WRia p$4޾khy=1[[<44(xjDt v 232Dq sE;"1Gh& T7lFȘHL9vIߛ`'ޅw?{ɕyh ^)FbT jLKf{gCK۱@CoBV0% wVh/C`da., -$Yb?v2!gZٳdoLi&͟RVV}P9 @'#0TҲ3aR*ʒ5Bg3'?:t?Kr4]ޓrUk s3@ŠATUSfYFg}) 똥+K*M)*PX&4(T21EUZ-iʵ؜Q`υw-zӼonF.$$Ni ;-9 }n ,Q4 JVIXԎ&Ӽ<mGf~$ &\| Mʒ &m*? ༡z+ZܗM,1 c0C: Ek]Ld|Uj:CCdʁpmq `;!YBgDML_}7x»fZg۴6`Nxxސ'C =qGNOFmsR33 5,x_n,՘S0? j367v4kv ?ϤWfy"Bێ=Evw$(mXoalX~0Z{Q8hb4c1Lk ;S;3֭,IiAimu 1>/˄f餾n]1ghY^epljU7SihUi$(0J%LmuqF=9<Iul9kO(a]ޖ尜9+/Rmy-fAInQ~Fִ`r9ު@Nh|s\(x 2ֈ">b^'G['zbQF7;=Hп{>&yRo225yyƊa=8}٣Qe2E4C8y[pR0xC'WUWUx5Dڀ6N;)I|MA|t[]BԦ<3?7.\> a ޸cmde%P 5Y<)msF#YfAe pPs]o0vi_ &⤮U>7/|ΊHfμsiI]G`oBvD`{hT4AQu6edGLxmyV 9X0u:J$ќnlon8`񙓶,A*+6%B $9x @4.bZgOx~GX8R4$@8%!%8.:}*ZC{?lC Χ.AOu7]x qQ IE` }s{4Q3XB|U>0[c huҒcm)FASESeZ^؝W__ΘԔ+JfJRI`W+*exEkݧifԞ- wTUкЪ**`pO >K<6]{M"80>?ݡX))7+5E'ݹGՠhd; H\< 'sl^xZ!Z0|Bn>17qX bGsWR, 1" 3h /ODߑ1 }/wԻCuኖ }nL\aRȏd nsJ5%՚/pccJg0s->3b[ ]8f#'u}=؟;|dNerzdaVsIHixxIr(dHn8@:~}f9BVم Q|o==i-qəz= Yr\ xB!$/&A-fy 0Z- s$5@h"TJ6(+ !Z[w-.%QpAP%-H+ZwzTS94+Rbcc`f^c> stream xXxSW}G3BY` {7rý"*֯jInWFl ! 'Ld2!b.1~kz9PÇQgϚΙ={0D5Oh=pFwd>8P8䤐Ic! 1VF'NK E[2n5k%O ژ)} 񖐭wD쌌{L9;w{xRdj+BmRoR>4j'KMvQ3 j&ZIyQ{U7GfQkZjZOKmRMfj>zPc)wKxԫŧ<9# CisR2\2|\nY|FQ4⫑#U2і11n:J8qj8w;}n\&W'UH|7 i {msrSn,4v㉐Do2@IT70] UJ# \}%Bh :"qںmΫWOG*QooZ2$U"$r/ѨѸa9}d{/Z6R ={[y*{V-ė5"d֠$h.!|e  :Қb ?u u#˽F;[rRt;ƷsZxdB]Pc/W_>(b),>6qϭd|C3][*7˽,}mW9i!<3!i%7,6 ~s_V^q,d0+MORXZ}RG\- ;RSihMw=]㶊>DUWZ}M`7.p˓ɞK>丏e̮l6Y+8fWpoh#CV].9,ts Y]EtJ~+ $}O9B;jI{r >Dģ 86o btrs'ϹP z#nC f0Q!I "!}ό@ 7'?2R6m5rN_uPkG5CG8xvj{xʶ Q A}. 5yl!drzpo#i@E"<&>9+OAA՟ʒ!ݰXz5A(T+3 rx4M^Q렪IAՔѥl'p|EЧWyӇPg-S5ЕZs[XiIN2-Y:۫OKѦxro 1ׇ|펑viD 4x5\kQeV[)1 /φД̂Eٻ-?KsNr#hJя旿Mdk"]VHΘnrRAd\!aBȍJmgjBM8f&.nuie5W\ Fl?mav3Ev4σ{-~ oA ~~[h8m63}eP&ѡ; ݎ!TCvI.;* Rgw쭿1  ʎNށ TL1UpsCbP]5z.*5s7 4]d:1IwH`F,s}'1BYBwURW }DXG n&[Eڎi9zp;R)vNc;OtcxuԻ(E XeGq98uszb /5B3qRHxT?e'(8Dܟ ,^ASiD} J;qͺsU]*0"씺 4QP) C,J`ШIIk{h*YYv)6U[dd`E覝΅u6Ԓf]Ӳ$+K,([tv1"K/1kً'C!8>sN=4z0;5 2We iDTfZJRjrjR\T"ƺ/#~U,B4^hƿy^R`>~^rp݋60R&;>8ܕ(+ XŐ>+{bH%;0"'V]X)T]/ݽۏDhIc$5-7 Յ`Զ FD@ ضU,!,M:BU- \\CrSaO~h^yc~poP[}x3*\;-R(V  R$q;SI*H*aì6Jrk$3+Ëeׯٰ6m9s>pmb~4 أw}\q×v]\gtaI֑Y9;\ '*NGp63;ţ3p޻md`'[N&l~ɿ$"穈>@,r ҃y1"9v;FCJ/j0 !>9p[}WNZv@ Is?{Zt>DBZӰL$ W4"r,6_N/ zO=GcSpUcIB<@2$8&,9P< E646d ;rA+B{y)$F7jfr_(A;$gEKSqDƾAGj([ Eԣ` NflMlaM̨*oh8(PrVB$ACAY< a{ZX nc]e}*9[e8rZ>/>n_R -SߋV;[ǽΒ0kT㡱 4d5ƜnauXfXsB.(-;PsM80~ĸqB ?#Ƴ>i[oJW(UUd|T,s="k)ې]xꦭkkhx }ؿЪ%z;/hU$h# 6dK#Kkz>~B4'B0esx'xM)HZ l!ZsY@.7W7j*m`%Z%I0eԴԠ@H ].''륵D_\^ Ã>8?pcŁ>$}zq-ׅEm%R&j#Ik7t$uΒ`AJ-[xnN%7C#Yl=Ӄ"Nƚu y-h]>=yI[ڤU1m [W :3b$4^~owE2s,!A?iTVt^t▤I[*R# 5%m$^*F 7__.K5)ռ53U,!- 0xf( yuͺFEv F ,0ktgv}U&GfY*,R*4ٜh :P['R%\WIQuGkL!~l4Ɔ tbz/)/Fs'x>JPlǓw2UIRT"l|4ΑjAS$pASWx%~yb)/ZN(D4Ḋl6ɱB $*B>!'aųG |h*~ ^#ŀ)6:ۖl 7 ^rq˽y1d$ /=By껊E~Eji6I؞hcnlo)D-v=ET 5Lپ0~"a=4 M)OmnXIZ{ڡ+'zL9 KΞ6-.Ԉcw!u4NEk >ñ.UZRٓ@o=W+df7w5@ھA09E:Ͽ#xZbڂ쟄m}z{ m CdKb?8EzU<($)!L|&Rt/L&5endstream endobj 347 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 9458 >> stream xz tS)msADAQTA*Ry.ڦi6I43OMIЖ2ydժ(8p՝O[{uZjWsr}}O^DTTT3$0vX!"SNM, Ƹ^}w?+*ӳ2yIYSE 2 E ONZ>={FΛ yogIfK'oSTqnjy,H[(c`IA#q S 8W{s1H&&gPb1XH*p5{okd:OPF67W1ܐe^KK9nGV/w\G# &4  ';,4[,+Y 9'&~[w-8| O}3xn7x@mkԧ0dj.M%-I\3?bMb$]n?"5D[*5| } oN}ĄEEPLH u <$h*urN=yUH0{=%JP3o U(2,knsBEd'=Eػ~- Bh^l!ox/){s_m Ir.LN*7AOΨpu'&(@#t%/EzZ [ @5= |N@S~w~zꔅ 4YV1FFQRU•UYkzVmPQfs<뮭rҺKP0/ZB:ctN'Sx~w}˒ŀBЋh"Zh \˜!g,`gtZ2셉( W]p. .3DaS jUjuz"]fR5F6Z#ᡨ,ȦF#U.9 Xr2s Zᄴ }Gz/Za3sO8dqցm J) f [CoE3@gֳ@;1;w"}W<= r=_C "K!(E,~@zpFg@ Geq'Qc QlpI_\Wd]2xgh֬a֯jˮEGYPR&i ݕ"2+W~ )1EىK[(n ^Do8dP|#_z,pO$HjRiT Ѻ윱„v),[ f AwPts?f+r }"lY%f1ϡ8R _`JP"d J}bL?P c(y~Q[3fd]EYaMpP09$P`WP/1\GVxr'[RfL}>_ا//+ (] GodFF)8t,QdKLwDX#즵#*ͬ2߮%͕GVu:KmmbGq$~eKJ@ŵm'8~қ9텹ؖ 39EdHTbgA7Byrϋ/]ƞ<DPI?ͪuƬ֫h_W/)4zY{Q04]f te6^SljqfȣPxOii~k.~D7xFC'#=  -8RM`[c/uCodwU7c2E4w&"l̫ȦaF+6PΪmƶޱacQګ7ՉQ*cQ.t`UxJ|>/LT[۞wY.GaSf2/KO+A.z (LҒ2_z@RlE{ :Ntu~mWk;CE"NW0„ ]u b.&\,8.z (Q(K@$E ʮʯo*4NRu|,O.^v:.C+Sʵt k̃A/|X^^i;"N=9l' H9;YS&s^X g,C╺huhW:eSQr& _\ G; ]F[v|e>83|[lw,7uM q]ќQccP?NR^~D<j/P 7E>cO4UBq: 76e8ԥ+uhJR ddק3^(K cηjuRgaG "dދ7ޜ;#c C7p$  p;HDl#ެ<« $0)nGYCسump=yǫ3|ܶ^Vl f20JþPMїa4F-NИɎt 8yO~PBw!'zxKǼ&+ @>S]X0vְ ؉ѓw7Lneup 9?:KqoZd@7]1K VeL;Vl63W/u?Bc'k8*~N{h<[%S3k׀U(LF-H7xa zo%Pc96Vr ReRWm÷o0r`ͬ@N+JJŁ-ih4 f̠:qmoҜLw^Z46ݟY .=No2ȥZ6 M22u0M>F9zYc.A<睳4^ iY)h R#4{]W[SFV2`J&5ېEvQb)wrj||[AMX횯z7Hx Τ&S 7ܴtRQ(*P@sQC>_y5*W}"t|f :5Uh)>Acu^OJJC `vz>b[wۺ:j5[ txa)kD '܆@Q̢&q`.HcWGC ܊}减Wu M1-ٚk{.vkϖ617>Lerid,a56ZM@ܧKVu5Ȩ7MBRJ=fCHޡQ4ZeZ]ki{{I~Jǩtl5t"AP ucd96ԀQ\K8y܅gsw?{(ȹ*X"㝓xH~v-zҶP!N}HcĔf9b# ]lXN8Ic˖pmw R~sB58궎[ǂq2E=lVz 2_Q0=Hwr FŲ0k|A;_,n>*v )P۷ߚ- Ub&3G)"= Sg[4[a{Q8 gjP)x-*~ ]>xcͼlxf6p;[tcsK&#Cbw0DR%R٫jZ4K|giq4 zP8t_s¤+0|wtlMśi4&'')V毌wc_wZM#59ӔN̈Nfs[ryRl$5{~5 M$QoD{rV欆<B_94 -pDXjJm}:G#mԑsEC'oڵn/tI'aYTfU6d+8(m:֤S /HFI|u*[UܢڮlM}77FM'@T <ڙW5e¦Oo(N#9R.OWa3}D;|n..3EvEnQ*ńm[RO&]Rdذ܂Ȇ~ʬ*~=Y"6&Bh"~% zlaUm#.έʫ)Y'yezx/dLB$f~ @S$4-^ U<ޢ]hB+MF)C(]`?W~z)ͽ)L˯/+w= U0E4+ J@8ڡ: 3&Cir>pO5QP(^h7YlIop(4=61#dwF.?0o%j4NڐAs]G Jnx!_yߧJ yKێ_|;uJ #0k֮b7{6'6jOlQ$Vwht{4 8g}`7U' d{5/Op+8gTPlŴ+IZsyԯف[uq&~7~iʳpofi ŝ@ՇJBYy\#&\\S߇X{^= OcVxq`S'v.͐LfFȿv~v]aO^4d!+R"SY )i.mrKQG̿ i}}Ҩcah(V_9bҡ7ZM$N&Wf'T]uU]&GX ~i2e7j-}$ܹÉMȓgĭ ~pHژ+vo%,ͪ-52FkVdv"0$5II :P䛵.9y1՝v3gg22/r,5Bk@pA=s(YdA];t)S-⫊ %n]WignuX/~+c& ,+ͫ Pq2"_88~um2ob00zy?|m1C{K&oi4pReIMKf81h%`!b`^Y2Iu2:g<;@[Áu\(s|'$/]Lk9K틏.}3eeMw !e Ȇݪt@$,$mᖤu nKpj9N,nh?pN]Kz}:ZNe#&PgX:w5L5{f.Uxt2asN nS65l)-,ͯM] ]ްiC^1IpYqvr]S̞;{Ȳ9v.LldX& NG1LFl>/VN/4!%V+W w蝴Sb))q0 ؟90 s&3;M=8@so[H0'衯HpuO)lSW+0sɩ̯k* ZR!-S^Cz;..S:ž\gRrFkP6j* H/.PQhHrARG6z ƱL&?OY;  SM.߼m[z0 |~[-+;}jcMۛ /lIendstream endobj 348 0 obj << /Filter /FlateDecode /Length 612 >> stream x];nAМ? &6 X.-*J4ELbO//6,W |\cpy tLjms?=iu2ί}ltj>7?f'5 1z :C >0>6 #4#iS NǦA<2A쌧Acop6|"nqˈ&`o" &`4M4k&kFg hp&hFC9EK94.SиDNC9EK9N$8:;;;:;;;:;;n t [    8?O%S TH,&rgM83unęs&L<7rITHHH){J*U;y݉Ή-6d~"`M&7'ob-XKޢ`-yނ-z ֒-XKޢ`-yނ-z ֒-XKޢ`-y, |h^9|aX> uWz[fK>endstream endobj 349 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8478 >> stream xyxAP06 QXP@@P@${{{IOMrB";4 z(`okswͦ=Ͻ~Czrrrhcƌ3$S+@g6_~<·2땓SԪjAjUoW^$^-G/`6)US_n`PT*^9Gjy_nEnXز/9j'O>|z3ώ2 L&?aCW#l(cñEثأkcbl 6[MFbc/ae4l426{ĞfaOcl.6&b{^,[Q} ݏ`@,Ɗ|ykקawOhOwRu VԻhVQk\`;=><C:3ao;jV2']*ҙDϺyz)‪S.]jk\u`ɃOު eMmuxS Zg1C>&P+ךƋo |Ћ 5kؑzAl04<.Ȼ4Lp:'dxRkW*jxai1 8{u8|C~ sidž! vG,G6"+˥ƛgkpt# oPS]ĔsMZ%pE:j=._͞ȴBR"*t} E<1KHԁ:Xeơ`=Y3bQW+}.+MJ$ =b'8Qch/h9}}Whيc6=j:OC[B>B4i54{7.k W6=ުS$Ҁ@EsVq%wBaEج j*?i%>ohq^܅X\8GdBS`)WDsA4 BZZX2RMz8%'+2Tf¬H*AJP%+kMj@FO#̯8&*zWQ"IΥ!ιܬz! 6n_&CH& IqP3w?_@=G ˖rBːAވKNE79ϖ4\Ud>-@tF JƦqj ;k^x@T:I-Y*m܃ZDJE`َ]?n}/6ӛ!3Q@&xޑ9DYSq$|qZ݁=@ϐ/{`JCJEʐq9dv{& FY* 4;9{?uFYVC.}go>Av/1WBkp!0 JY*9O|ώm2i6 ;#9 d3@Pke@:@r*kι..P60ZknQ[*ѝr' 5~:9Cz]ΏcFApd*:f>^ f Iq&IcѐfԬn5HHvm!Փ) \X o^+(>׮[UIGLgx#XElzo~*@WK#CSV1 NI[S߂Jgy!wBXr8!}(oZ_ڞO=es7rU _x̓J}"fi&'4!>Z)C \"E-L2I٬i3}z7&Uc[1C'Aă$_L$Yu -6`'mۃz\i"i urm:q M$:^Q `gAڎw^ZBo.{6om3ٚc퍔 &ߐ.i=,·~kfLاF&p>+YF ?JX5ǰ , KJ=ˮm$(|䲨u'y'}C+Iٗx̾tӒ \ȵAAM=[ƃeG4ަ:%leZ/p{QRU_ivlXst6k1䍅q84(.W ºFdҠW]/RjH56Է)IkMjBY^? w*>};~я疽?Nw-_;;JM5[1`d)Sh֒5EE9|eIwkIqj6{Y֎rHB O|VsNNn@6 |GU@Hf>E %S4XsнcOhdfQ@1|i@7!31p4RX}8ÂdfCda>Nԥʘ1 Ov(p(35]<qda?Nph1ҡa, jl'[)_8 7ƾBa bMEs{,`Bb PFvUd7:ZZ r,t:ȤwȗLb}֌Cp\+XvDBՃlU2l .W(eVKV-b cC no[Aq;Tċ=a"tqPk 1@ Ue1_!'n ~"2P&d0s#|.,Er,-v/ sw9;Nx7Ӂt0m:Q :V uJ!3fX2ԙ.y`03Ee'r ^U7D+*ʧH)Iꈞi7*e͚fFS+UV ezHIYP|ǁ"G\TFXBRƛ<(&V]!mM`<Uen:\ڈf_c1.~2.R4z]! -6t2L ӬJ`ĆnpQuD,Q*$ؾFѝ߀rfX!K5P d!yBӏV|ʬZ_w7氶a)Bv)c?;C$C-εUɫ*mJ0SN"4mj--~]2]W(* J]TDi螿zח~WaJF!M4-?(go|Z.*+f?w}>N{p88 'X=p:PXk-9E^g:lhHj;LS/+*P҂ZqMGyٌP`1fdDY _^\c[EM._ˌ4ImHXkjiʲZ} ]ʠ)H7h o2&^HI+BƜkZ?@g-Y5D-B^tCd2.0|[9- 73jO?vC'$?ST-dcXE"h^~s̰?4mS^fii\!҂:*e*Bc#I$ *PE/?soJOL Jljz~v%˗蘵~PJ8Mm:5>l3|}>'2vESUTJ*@q@lwŽ@?=ˎBӽ71SYB0JioJZ&֫T>VkN $E^h}. )iVe[QWNz!#+|zQX#5?OgD:w} {Y)qFƢfPQ_(gB4.n f*;3'+5xЉe|)H5Z'Dyܔ;G zVjAjLN>3}6  %.~aKvsNG2ANY0%gSQNfJ$3\rgy,o[ 9I"7NX1$#-empy8`-U)b/ŹomK]==0~P?9k$CrϴszÕvNo!oO8;\vl ytiC2;%>uwZbe3$yɲW<1q}t QxS?~4d[]?\%r j/+t kͺ=x3a!a pMhp:{I!u^j+Zkw?8d;8}G"! S"d`,6YU [y6:8x|sEᗆ(lr t endstream endobj 350 0 obj << /Filter /FlateDecode /Length 176 >> stream x]O  h%]2#b B}t`K;[>D#zDu:귨N0[Gjҡ"a(0س8v Df 3Fpom%g&ݥ3gD \*bYYWE3YJendstream endobj 351 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 544 >> stream xcd`ab`dd v 6400qH3a.)3eҏBY``bdr-(-I-ROI-SN+VN-LCa```v f`Pb0f0qF_L}O8íqyX/`[ywN{l 7Ϗ)7;/L,Ѽc^U73[[Wg[W[o}9~$fhh*o-}3O]| nƺI%H|g}5 \<}aߺ_/~We٥~G`Ë%'|g~\}JmOmwm7oD~uЊnU e~?bEEݕ 6ohԲEw= L=-~5>ٍ9fW-sRI}K.^=rDiaڿ~]u_,X{oaV7H6z6n%[Z&Ljbf%endstream endobj 352 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5580 >> stream xXtTeھdT5 )E\)BH-L%$3^-dH duAA9`$r}}r XV+ӧM 1?"B0/d>`xaPT 43lHȐYCo=ezGa=s7TjM}Vٓ|s="q$_SCI|h-t䋑$1MY4= ÝfHWwtU;Un^u[ah~hK4lH2*{m4D+صxlai6]> ERXxw迂ҮJЛ8(q⋫ޕZ}_cxw|4\8KC2/['WÑvCGnkڻ΍d/ayw!4͔ӊ 'z*7eoψmMQzlƏs.E)8-9;< X<WgdG{mmg\"$6-Y)  KZ3_Œ*= 񙤡gѨaKGTm|yL&_CSѠ7~“"&EG .ݑ6fޞ1?!EhD/{|4 >7JP-WLT/iRdRсA8-Ycͅ2j+h4f%qmF24.hUmXO0ڎfKn?_yL4FJ$42Jnew4d tZc6o5AnQhC'k<f~w>?QQ -0S6V P3Bq.F!SvĿ"*qESNBm@DFtTWle:UƤh2:,/ fZi8l[Ej*K{ZuuЌ諫)ƌβ\v9#,hK>4VfVTDR) hYZ:ީz0AIoritZ^h.gâa5tTe'Hl"ƛCk? ؇ƻx48Z=A 9o2UPwHXd Ŝ\uYs ÅӦ9'̲4H&AW3 5Nab"H)c5TA5NwN~ }RRk[V>|8QJK}:_!cV[uN޷$&'s,Y gUm*]U&`}x)&MhU]F$ZUVfJ+8u&pP^um3]n1={MV{k8tesd|g!1e1g;`+9Imjf:(M1SFՓjN%H[$c1Q7Zs1*U>ٟ^fdk4?obl z`OI,J($S>f9Vc)8 *ہ=C[EZgHMgw 5,`Lƻkcض]~fZEW+rЭ5<Q[ y_osNQl Dq2ѝ[ZN5hX#iJM!\uNT/)bǤX <+FʹF"bwAM[J+zO =3:Z1q=~?餜 nqJ,z9`9הu8$jƣ?ܜku?ѷ&>VOfJI ўE (AeTSw ~=O۔#`<1%ěh/a>~gʡjeIrD؞IfI~DAĕ0+,vx奵Wl۝(]+<@l/Xަ.+Z feDTU*n G.<8nܰNN'~&xT2jI{_g,+Wl(ZQ@Lc,!R#TR03ƥ#?DWE\ :-H/ \ydM $eZo /!B)ks}L`8J`Vqd䱅S G;j˛Mp4$ZuVIBl4iQa!ľ9opTy4iAo`ࣳtYS<󝈼Ѣu1a Ǡh_oheJ,ۘ+nl$uSU/ >%FW.{-wMP`.8®GOw_Fzq*%bB>a7:HeKht7q6E\O}k&><Ҳ{?pa~$,=4E-~1{^PIwI H<$tB<[q<;>E076;YѰqShc,QonC]mEy^4OhOχG MYfRrUӌ.$f\&9XתuuFҙMo5uUgVWזW4f6YHJ\AՒa) CqƈG,Y!ZbȮUH:At{S&w2:+G꘹r#L)A?!7?.Y$ٸV7aOnsՎ du,ZiuwyD?(~Q*"@w.3E`њ I<|O8CNi xS.Irhh7qk_lgv7~ ܍S$ xl.b~V}(j6Y,DY(f>U:ŋo|2 9\GEc#>4ݨ**I ivI 22A78>%.w% `߉-Aە4@)@o?/`xx7Tus+4HcyWw6WviI*xFvfKO5qP e{ Zk$hs F8~`v?65T_"(NJ5X$??bj-yjZjR:v*m6~s G?mm^`#_>511,llwA>2i|>ѽ4 ixH4fb2klHon~R|Nh0h: jn7:Z,ř|*ɜ%;4[ݐ">8#Y۱Y gn,jHvڪڠݛ/NJhBo'tUjXvr~R`-05]yDۦ͙}RPlkHjllH4sbPt A(݊Q'1G&#o)] ,PIVdWZ <|L #.}MzwT$ \hMؑ7e5T4|Ůx?mͅ),{d%.;\6'Ycj!:j3l( YcјԠ,>ZebaK$7WA"yC6LZ_PKHQƽ7m/KF?Ywގk7Ĩw'zLr,%Id xDvҋ:Ǣsx74/*V(+vgV&;HL <Lniendstream endobj 353 0 obj << /Filter /FlateDecode /Length 624 >> stream x]nPD{}@}ـpq Hue0%rNb -~zy~ϷacLm8/ԇC=ϫn8gszӷϵA?4]:N}׾o6m:Uݮi6<iћiiqlđ4Ʃi'c { vS jol6x"nq`c22lLFF#hd4XMXp5} &_k5ș9Q g4 :] NKw)8.ߥTp ^bv2;Zs)^bv2;x].f,ĵR -%~H!)!B?TT=X{7dd2bd F#Hb$RIB #h1dQ*I(5Ul` 2 RCcH𦘓̉S='{NR 8sDǩ=:.\Z-\KE߂kɷ[p-} %ߢo[-|גoѷZ-\KE߂\I(X)ɫu~xx.0},Kow> stream xzUnT-=VPP1 $0dfĞ994$(0DAT]u=_T6} aXcb$FaVrz\2߬~spqQz5 s_~使_ >${:w?#ow qGpWz|׏%T?JKaazlcO~y៌IȼMO4g}v{G=;2 {^e[{ =DŽᯧ O aolmyp~"HaXE.]1eOwt}amE~2fbi$ @ixtJAРr)05.jIBQoWA2HRIGH8m<|,ɞ(sN81WhZ@1Jߥ{BR$ ǃXDRvsC?:wv%(F!ŧ <=_ 8lx*M1%I{2p`3b?) բU=3sϬ9;3y<"A8Kг~x~@ ")tBA|gqW O&pug_~P:Sz=9ߟ-grACd/^9ĕ?8q=>?rhw.bF2z$2 ,&. fwy}^ 1Ů $ 2&'hu$rn 3qAQ'M,  L[4&5۬ɘ |f `-qW jVf,7kfl@k7 t|lO&g_~\7ťf Ȉ>NޕxcLnX0 bE#x,h+~wiG{h$Z)D*'係b!eŔ?Ft·v҇FQ&oe]v[<?ZEW-x%FZd-[)vk\YB'U 1Myt o/=}p ttc%*Fg3" @/e6|D\2Ŏt.Ayڇh苌UUU%b@H Aa 6-&_ͦr4l_i)TBG5S(D(h@Gg?CڐFGq!;"t̀du/syxWGizR@'a2IaӄF_ Za8Gv]fOt>D!G* Wx$בZsk}1A?ZCGɅ0B3ƛcQ2ٰdz+*+:]u e'$ѷcػǐth"~T`tC_ISZUYA֨ ªaeހU QTQe$3G>ynjZz(')j"U/x t<~T%7NCp sm&@S/R)K~r\3U4Zcuǣ^~HF۹IHFjκ#H1e#{E""w}g{V!UPn%ǥ=2 }쎐r{B21f7 I@&v/s?i#4*4YY"))zjVQ *H>U+np]{G)KF clF\4i Z8/ok_qA:j3 Y05wͼ8^LnBl[ RdTt?{eΜ|t8`'DnIX#jm5 ޙ⟯]14[nWcrf葡FQ~Tկe-!G%V_@Yy׻󮻘k9Z@ bZ;.~wm(g 7sD( ?3D] *fry+WW*jdjۊjjhp{*@LEҬ;S1́3FCE<>n+rFk2MyDf( Q{wYJW"-tIיH:Cp? h"r jnv%b@@x=G\uCY842{3ޭ_\] C߫'4,01D@OYlև I#%0/2lV2qH_U:ѽ Aa@̬8sSXl13O8Z\T,k21@hwЯ|GGJH1G\ˢ(ц' PbY CF7uiST ^ʆko#G!'gӹ%;qwhtl4鼫awSn+d K jIVlĔ`QƓ9 wZSwu r.˅_( Џ4)Y -B5xnbicDž'OOS`Yro @Gz40VhHЄV|}}T+/}v@nI "R[ vzzS"-lF*@+:QT)I xyP1pgFR@tlio F@|fFB_P` ֖FudVF ۛ-@T`&Cń& q1__+i 9= Ρ8k>;L$cD@M~ n^;v/T/Rfecכ&pO?&]h됢k`w۳g(HҊާF}ԓC/}!i8e(Jr6L|>5/qm*3g[@ .WgH\~2g*H kůVWu!1 @RUB#TdEB|hԙ|sab%͍f;dO7 u$l1Mn}OBv'#Hb0 dpx~f+OgvGA&BĪb[I;iTT"-YҶ2\ghbo|oyя2afޜx fOjc(rJ@HJFXF%P hC9q£;'q ,%}e.ژ ScA& ;XyN%Md*=z*38F]Fү"V')8?$=7[K#"zeP;9IT"< \Y0ӷ}孎xځTy|;+B:H &mEgFo@'`C1G; d4/ ua_Rh~* 23OGI,B+t<s% Q >7uR)@Ѧ SefЁJ qnC1ODnӁq?2ů0&R hSTK?&x9M~-`gZB$H uCr8)&fA2z8ǰPTIKŠL6\eT1GZ;c=jVf{+OBQ2tֽ2DGR=E*}~cxcJ^uQM1r8U,k™'óͱ~ݏޛnED_$CjD>w!/`9[*%>En'5,ަdFrZꀔ܈0H>mfWֿͨ9s00Y;;eknL S$Dyc\ 3KH.{\x=%!L;RI:[\-`;)"۫B@)Ո0dJ10d^ CuZKvq-jdV[VDmD}ӵ-D7NqE\G RJUb-v -4V_sv1#6KH5 °:I5Oҿ@&)̷[3°ΩAsRo'u=a#DS$sLQ } H79ѺhmTBHXߠFYIx%Ib+RI@WGnKt:2utՄ8mo [m-MFIį )CD"H?UEkm6qRTjDQ\*m^M>yH6+ nBu}|sn<$I -O޲<KiofE(`p-M";/.AcpQFQ} 7KM2T*B @j6l&k dsJ PROְ#Eg?W%z~fEW `M> 8ejAb f}׵2ś*5N+pP"XWo 9{"j)쵈#Lcu'oxܞm1) <Wp2]Z@WDKA$-87; > -Ir) 6,QtgOidT]R`N M[I؂da[MSE_)+~c&GdR5瞤C=U +EjD $4 鈟eX4@(Bts?< =Y4z81z'$d>N|M,_A 6`/G ȎR&LZ.ݒ3i7_{əqf5\p:-΂d Cvxow%32j[A9Bint{Aے҈nq=e@y`-C`9̣Vor47ibkv.#ȴ6Vgq=T@VOǝ1[\[hBT[^ 4 @oW/%Dm%Bvp`i}ըnocp,BtHU˃uoy {jSX!ZQXM7K떸`tDǒ%c^0@ HG7*Fs/]lXmGHs,l<+]n{nahq) hTJ '㏶pk[ߦg҃ERʄ,]VVyٽžt | X!\SA@7^ȫ9p:mN 8-!w-[=c s'¤'\?N?It!M H†VWS\9p:|C~',SDfb2xuCuƹe!BGЇ"1h? W >{V{nDy+˜U# }Ht)~&^{IXU|XH^ @hَ9=|d6p30Ni9zS{51[ O>x=e,Zz̜kFnH<6ՃFZp А5Ƶ5hW mw}}yw{wBƹoq`1 B"p!38%OO-hp؝6M D>$TO9QmwmxCA ~&CƜӑ](|cڤhXlǩ\G-kW(tLLN|Q8 J+N8|5=&o.PdڎE f=z8DVgn4zZQUq0GwW&|ѯc, "y@@w1g)ڈΠ#JRbZ1I@.zRUQQiPϮ8]AF2ޭdn΅3S8JPtmΦ&{ʐ r}1tGP)Ra=N-[o+nX˔ELHEVc‹ZH$AD>U#!<8^#8 Xݡn7(ZFg{':I{95U~uh%M:lTwg|o4-lt{JAa>9ݹ*B p{9q`G ™ mY=j4F/z^Xn"W#Eq҆/ ZF[ # Beɾ]t3S]2 V; %қ,uɫ?>d嘫T+df s΀(36G(֖<d@/͸8 u%g46}fFXvapʲ+_ 2*9QO|5yA#\SKM0(:N3Kv%_.j闋|:h(Irv׌}tI"4tKd2 hW4MZwDܓ Oh}d!g{Ut-ri<&ª]}2aGgpnZiQDSANE^';E.(JoV>@V(dRQTPWy̪*+-@dğ!T7ݒQfC?NPPpTVz7>-|[]Cp=HzD5ԗs d}{S5JƯ8s  W_'S@~yQp䵿MX: F'؝nƥ,`\[cwOTuendstream endobj 355 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7968 >> stream xytWѤqv&^H$%:n ]{ͨK% mJ0/@*&쾼l˞ͻbwNvs=2˯o^G~as3r7 [T|%\^rY2}ÿ(wje.+-kꊒD"y^ƦJ–m%K4ewxju<~P"]LrdN ]ْ$$s$%k$k%II^(y@AAIe|+W%s% %IK,<)Y*F2KKBR )̻Z ~XT}^vkʏ\r7rU3zҫvGƮv/?ug>>Y_|)E fw‡nyW_S鵷κuێqʆ$mfKجEZ-r]XM\i䁵U+M i!F99Z8lx}.2.ҭzCR6joI+"]f}źPXV!vyi[] B i۹TR>>+ qhzFiԓ 'x+ޅ_= ~=+GKѧi+c>*ӹyMQ'o 5i 8FtC%!I*M֪M"X M!hH:jh{?c |n~{yͯҖS#ԓEk?0X~#l>QuR +7 7q..U֮헰fS gg.d#=ϣ>mȔnlR8BX,94dfme[(:4YFSi"d$,>y1 OIJh0bXlֹ yz= j.azBl C ސ7Ȇ iy/|mXDϺxzom[- H\OA3΢|R+ݝ ߌ>*L["?O7]:']e-ϕw\rdK=\ח899?֓KLv,-q2hw%yޯ/\ʓ7߳f+챥 $?nG Td_pv UV{WG4] )G'R@8tZи4pNy!?ވ/ꉐ^Y5pl/2+MhØ%B{w t՗sw45l9FyPe)e\|;Ra 8DRF?"եsiF0m:{ iH{ =&SDžcjPnBj`yxE3?Mȉ kR\xV&,͆|!OhݡBXLLt%ݰ6&g0&]]Zp!/͓]._pq%iaPxy JJm͚yA@[" ]-\yÝ.!!sJIxt ۔Z^,iac,8r8nug܋kR?dѮ,2ҫAѧ9B;<8=2 O+vH-aʛ)/)x-l`\wFSo9#:P҂@3P`Ʒ8fs:"d/̀(μ>ypzmJRoZCtڗaidfC/Ip >%vJM-J[y^X/_W}:߂JJqNu_V^,w\еԄ7GT6l.{hRQ!0t0񸏊sWXYAkЧp "8 } iS;œ<ig$%zgyh>qZݕE[+45/$mFRަ&8߷mRVkEDOGZtn^xt&WVcAln4Ƌӻ3fԺ'?4w ?"9"47)^(;R)e,5B8.i[ =jqp[N eP}E -Yfs3'" >@F'duOUs@36[l gk̡[8 a-h"njmfeܠ~~*ov+[}?~׻tCl_W(Ly|Tt83y#ۂfuzRrMtIRPS<$9~x[ؚg UxyŶm)ouҁ?60n i ̪z1$\Rnխ$LCbpJo19M.spepkFF5u:FSRdz8 o%}=ٞifL۟YZ?[?@[:6}\I2zh vuSm {#8aG$)RUQmYۙ`MXd,v4ʼn 'tFJ,FtS25iYyi+v3VK.>GTblqUj6m06`ğ{0&J3H+{Bz&{<$X7X:WέwXPy@閺uNS00ׯ.G3Oݓ۶7RyrWRyU܊bEgbe<:BǤРqEpg<‹jW^S^;Wt2=4JJQdaA:Haсv09<菇S#vj` qbf.hf{XA$3rG*Dggɖ.]w ڿ&.JwzWs qt!7GC$Kkh?t _f66ÆB(j EX!* d"\] c=ONo ̜Kؕ0u^%D=ؚ -‘ˠFlZ13_Ckѯ W"j(lvmAT.ŦrW^^0J9I 6eh-<)_!cx>L|ybMBDn=;:"gryNU G:W AGO` Ya+e'L.kEl[b'6:PFX] ;o#.Bvq/N (^+fixb'{arsSX!TN.w\3j(*Yl.< ڧYo4U4& ) `wF7禝r6nwV62,#BňdT겸%c c.;ܦUMu>:]o,&`'h')X^EXTFOgLIA(ܢ#*ysЌ95ByE%b7ٜ+K^rE˱6_/GtW]E˾ܐ]G>s:gp\.o>+鬩CY }EGuObuapG"vTBu{,`PƟJ@/١Ե M#_"vItu"=qw_ ?(LZ|1~AC27;Tj4mgOgX"̙J1,?޵8uM`ͤ\¦jU8"h&_sc{ d.U#Fg}q"p";0F{#Ex BI9=4QjU wlPRzn𳟏uQmp]J^CŶ:Ym&'Gá=t%xH1ZU??|HhO'b|=MuB(-vmQKe`" 7.?^\LkPIŻG>,귵2'e(nXXe}^:7>G~1me;D}%* Yt8eg.:7MDE9#gK*wihsٕڛM7oڹ7G')lc0@yH;N@ViNFO2e6ſ"$+9cs}Ӻ`]Apk5SC 7^Z45tǼa ]@xjBY&c@'Gggc a8DEtIr)½4JQ.M_TVn0a}.t|FłfsVoP7+5PNJPq:07=s~Mlhw;IMMɝ0@6ΣJyDuLՙdgVJvэKpzHo{   蚣ݴ!}ce)8-—^xnq1VU88 \Rth))1>fj9(!xo]QXw[ZqLm6ݲ!1XGtv.Sa8dž-k2`N_On]4QqC֐&cߎE)v?yצX5h_*¾$ȐzC]뺋"&k yɿ|.ѩTC=VtoBT=Oq]9bE7{P;ln(-yGaFqJݭVZqA%QK/ЛPὑDt`C/=+6IvfJSFc:[kuYv;M`{{H_ *£o1E֡eCXR zP yL&0ZEGhȸv>V ;B >qgh}k xQ 5l"*o5),AV]ZݒǷȥE|8V#DE^F67:Z' kK-hSc= $!,ym:50PH1ٗ<Kkr |% K:5{{;a&Ԉ8cq y}{@ Aɰ(ܕL;a5A!. v Y3ka͡يpuD*,^U&wS55|_ߠF55p(aܘwx|{葏'\|9ԑfya2sIWS0r69$yתb6XҰHdY3S2qc2&n=W}m8[c; F;X!+߻I[ {>ްpo@j=ɔ7в?ھw_>gG :VE.O;GIctCWwLgߎG'Kn+#˾c2F7 t{[ |.| om|ڏ !ocjd[ J%qԻ2j. r7%+T83>1_ 3eC:ClhrknB:^iM{:RIʓƄVXau=8V3Tbb7zb;S'1/DxO*A֠ o4o6ݛݿ9[|ͯMfW)ؘPC Ӑ' JZ;~wXMwY*nkv:?<ګ$ jeendstream endobj 356 0 obj << /Filter /FlateDecode /Length 260 >> stream x]1n0 EwB7TV\%Cl ˴W*{lFLq;>HkK߆ga 7~~xGn39m"ס\魥>gj-m1?^Ie-*@*Ap$p1Wd-*Б =^0 SN2٣שoH T(I}>2# $\]‘x˪YKSZE\j~oSendstream endobj 357 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1903 >> stream xMT PWC UD!n5f@DXumE,h[*(BIN^$ZW.UvR'2uƹ3w|.x<`CАb</B>G)_>z.}5pl[6dRɮU!I* ]fu!!k$(}ItIL+e&ٖOɛ YhTo\jeʬ uʺ,A>BU%Wȓ%QR.*4xjߐTekjItF\NQ U<%mаUKQT,GMT4QT5%Q)ʛRP/yy-q>>qzbuî{|w*gpΒLHxğ0ϗ4 $bAjSUU胓pms6 D9@|4{4}~݉Av#1l7W׻}Q!YI~Y[!eE_M(uI&d{I[O"UNwm 'ڝ}ϙh0Ӡ4f84Pw @eEt`x:a|P9ˤ2OE\\8a 3vr`~4C' ~m+R`[K JK UF:MedsS8i2L= ϸq+0-`BKGpZZ-#,EkBQk@380O)C&=%(0  8yv{X:3pF£5M2=Q6 =q!lwU߆$\g!֑H| W0Zwg<kYZ "`3 *wO]٪9hy0m`ֈ? TlR}q85Mky.n=^0Sd_"V+N7GzmďsE{5ػa/otZwA94ϳC qRVs^m,3fʡXnZ4BxPp2 *]tݧgIC{y31 w7~FO^Op 8?Ӊ,gP; )bZSX=lW dh7A$Y ` X2$̃fKMpSů` uyM{ɰdɲf&@$lbhkw/R' DcgPr . v.yV=J|uO3ɲ r7~I907 H8'0g$t#Ŋ?&^ń!09zk,.ZÙO Z+Ѓ%}$ H^.MsUk'>';ٟendstream endobj 358 0 obj << /Filter /FlateDecode /Length 1925 >> stream xXMS||a;쮽(6gD$YUuhbDGuu{岠/e엯֋~.Cr"nP,KY.leCp7C Y[,"qbߙyQ#le0YJl/ծ?аσbsþɼb~r Q?>EG8V JYuR=]8؅ Lʋah6q\ALywǗ}=ykxsUW~P>^}Bߛv_Z[iR˕yV*-7թ.`sa@W;zCYv۴ $ЅK3J?JrbŃ]=(yu); ( ~c_ |'[>.ueM\n3Na.$n>%mL,]^(=U%ɔWmsåW5n~8^Iz;vfvAUZuǜ:&mAzڕYPgTkКtl4Ɉ8nK]yf>_*BJB^X"Aiso[)(egWӄ?dݭ_$ =/h{YdOծi:C|9гam0/@n+.3#sZh >)ELvxHgn]paGBv vP%=bDeO^i@nhHixjD5[DS%j T|9* Y8i4_ T-E\Ipf-XMQrT|y1HZaSj0xq/hR,rtwH>}lƐzf ?4I˳ "E@U#KLMLAasbLK=ehJ1^4/g;wMwk 4HZe9+뻦ێ!Ԩ9#r2fY&ىYq)fn7- H(!k1 b$Ȁi?M)\s5>ގ;Sx1R+'Դ,0"Z2!^Mo:t^ !_ˊ㹑L(OmBݍт@z6;ܞcVWC[еy蒾tDSXh .)PI(m} e4"MQ 9&PuTjy5mm#yb<h]6̷6brd^).sSH:AQuW͙vӑQ<(0H5adyM4YT >V^$07x -/4bMvTDjO-2K SD(s-\ћw$8$o-V6:NPћc|?WXi=ڈ^bvCѹ;b:v-s[n6MG ?Oaxuꁥ>@G Ԙ$Q+Vg4iMP|O ӷJoOMopQܳŹ\9;^{B iS,q"V*Չo`=%KR[.X$5욡!JLxUhez~oUͳUTYӏ?4Q\rŎ-rˈ"wxBiWY2!S7'?Qendstream endobj 359 0 obj << /Filter /FlateDecode /Length 3435 >> stream xZK_̑mO+C p[=#G-JO`䜟z3Y%pg:f__}:쯿kyk_;gv׷w׫uLoDw?nYW2ҩۿ^~N|W+Lv.+|VDFjCkuoƱR ?K~vl.zp\޾Y.:Z5Xwj87т-R'_wfNƸĬR&}5'@<Pl$/6hkv.KJPx%[Tnm%,)Pb 3jX"+1=i*ŀ1 |Br#?`9[#FH)RCUs m#* Q ۙsߵOu}TB(|f }.G@l7l_ ua4o7hƵM>C=RAo;2H'A5JYp-D ίb.x5BaV*|~-did ~Q's: oHrR`m` SU6uh ,V g!M؅ a~QNj,94$?eXǮb'u\ OL)14;$5]?ό)8Pp25ݜXPm0&%4kn= 69$5TC@paa,3 0 r7C+N?xZ|RcZfZ7c ACih_F L8ȍ`.i ΡqcTyx;>~ 8$X)DtT]~>- ~GT;Keű1 Sbo: y  tNaLi+2$fMU؀҅ց7xQ%G7;ϥ]Oummg☀{v1jx޾B;UWc3ISu jP^c}mr<@"PP'z~傼F/8\(֭QS] FǯnzYƾ_)Hz.k 囎 P=q7VREW!7 èKB'TP/2)%_l#Rqs Oݶh゚/^@XMMHy#zT4\||Nu 3%8^Pe[rY%ٸ;́j< ՘t0EIQW]0Rif[Nln]*g !U5nv^5sͺB}"p:#>9ߧr^$6`<ڧNm]hTL[:L_&K1\C 9Ie uʳ¶m> ֲꕂ7<YsGH6k0c/\yL՜^,E=~RR˖ЧfӬIVwY=s!)s)YtuWj3랅6%Vz JJQ2N T-*tۂE&"Mڅ~[[XI i8²,Ϛw<*|1}Eet:4) Mzcc08Y S6NIv(P)` g SQI;h#4ㇰA1IKaPO΁|:x>l4x8ˊu5 )jv@t|)zuvN̗iBiޅ5#?Ђ:RE( #֠MBZ_m-dx^LqA_uu\ s2SI32t\CKj_؇/H#5UySvx.BO!3F0if8/-DN(٥z,~ VIұBuvQ=Vy1q:i9y|fmJ!WVуgJZ^dKFAH)¬@^C֑: -cll݈*lLKܮ_Xa O6+2x{i~UiϥL3;h"8(9*hxP!Q@IꥥŻ|1]½wF y";vHsc5oE4VzBb8"c0y048.wnxMٵ`gl>r)9 ╀/o|D98EaYl4!Ld>lj !> stream x]O10 ЅUqP(/ Ct;,:\<Fn,逫 pjɵXX(pSwՂyi8WAь3gHO*g2O%ES&-&%=O)}5SBendstream endobj 361 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 175 >> stream xcd`ab`dd v 5400q~H3a#ewo_ 0012:)槤)& 2000v00t;gu`Í ʅ|(YQϡ;çg /xk76i>9.i< `D> stream x\Ko#Ir/x`.r  _v=LJjRϬ{b0*3222^_٘n '=ݘ/7ionG⦎5ypÏM5lh|޼{y_х4Nô5H1w~7֎5Fy_7idÓq4& rtO.8?>>Yr,Ó ׳8%,wGBrfBŹ+l7as6x4R#㼓aCEׄ/~["D\t2$ʲbIH) FȄ:Zb Nƭ (83,Șn%bQp8恭fJ}=fS$ztJ\{L+1gm ;Eǘ"ї9a3D- e0`N%zT$Q__z i/ph9nʸïF~} 1~BQLXI)\ZeX/78xP" Ve^8TV(7.L/"H !Qx"a7Xa,L,5Q`=bH؅P"q7X8mDx4b XY/s:NZ*j 4h,'u\qEKѣK)$2ct\x\e-.Fx-ˑfJUÚK)TݙW:nF鹬[Q:.tN]]/zQz.蚹 X3ˮ>S XJªC#t#i]噘)(.ʂk3+*gJo1mo1J\^LV=* {#o B0ų6J?Y{FL3J &#yO|GskB*ĕ4J/y+;n|YYLREQg5W,u( ʌg7z#l8VFgJo3_#ul @8=ΘCYP2C>kg T5w F __LjC,v)UXd8B 0@z^ Y`[[,b,0[ ZP-e`ߊZ`[GV"m*lpV!r!iXa 쐳 [-B>j,ZjVE=iEuZDVE4eE-Zg]@h":m+h.hSA(vN-@ 20X1*!/TjU ZĢ3)jKbi;EeTEAKSD]?jTcQ+jb-iciJ!ʢWn9G&E:s`hnA]STYkVPa9KPT6QuP1w)q9*={1g@Cvm%d'ZӮHz@5Fe4e%jIK-_x/Ȇ:L#ǓC/Z w_Vh!28tivYI0.&>tzdwō)uqL4 ;M3JtC-Mc~wL2^?3}@!(ĺ2̄W6ĔObU8Tk\.g\HƷO1PpY;M}>N{h~-0,`wL߱2J|1 ~|BFx@ ,6 HqfSbiCC}_/D~D;vϏ>ض߭ ջA I7 m(v)`Y,B-Ot[v7]γχ)^%ϔ7$e;L㱲gTl3l)"a`!=OqOK_gEdp $(Cem q7Y?<_$C_-^wwk{?? nU&ѬWv4pƛBb>Y >wõ*kTxp mX*E5lUqx.Q{G^w;]:U Q2#!a~6#-o*3>Ho 1؀cI~т%щ]&̌MI@_gvC~h]6v^`:"AHQJd6FL|a﷔FJf%!/==HO5)>>M﷿۶ |~>?ϳo_N.lnoY<Õ-Dt pA\]'~8p_𗔧 ŀ;[E1_7z/Xuse\g2)Lwӕ9l k9{eazIW5:Z:$`Āa$4+Kf[3i'T')u` * r%UHP7R(]b$RrE<{(5x|ZRNv~Ue|N>MO3c${fG]O}~fײґ ):uprzuW#@v5or.CH3ՠA@!lhAƬ, 2 jLlY ;r>?M$-jjBpYͥP=s'BW=0:nj@s5 zlg2|b_l ST7|:b7Ù< S"L:_)ʄu]vX_/t}2}3+"/^d~{TIId2gdȮeWfؔڀhL| @R9v9sX^~޿B-h1o5 `"o]:BשnN9Qe"PU%`xendstream endobj 363 0 obj << /Filter /FlateDecode /Length 2872 >> stream xYK_XAZA lYGAF"OUu7p9 ꮪW+|Ww? Z]ݯ9ҮpB<_9 j{{Ϫ~\tӋWSpnةkVq7= ;o K ,;?_L^86goܲcD 9s $F),te_Jvms.Rf };(yY^ [4&5d CQ QTeTHq^RS$<Zx| ( 4ArM2]ˡ`pkobV)1`W`T$fIBwCt=di1fZRܡ (-${;L~!vsݬ1߳k]GA Sn{/ ʊHBwLe t~UNLݯ.,Sɒn/ wA~~'55YWࢡ >^h}B@]~g R>CoﶿZe㿇,R&/@cs7$lf|XNL{f (eQ“k2!3LƪwJ,2Eiu2eZbhNw_h1CB #_H:4롞8h͟3.O_Q}u` ޶Ou4׺Qxӏc{mIǔfW%bPwAC_uP8_fvTԽ\ e*d$sWdŁ*S]vh m\  ^:4iakN걼!> 2T1މy00bTxȊ X(@9)V.c5|bH`JhH8(X j3nNDuNt0g^T"jQmtBX9xteTN[i.V GuǼ uh#H%>t;7P9/H%X!։J,O"ҿvƹDpJ:]}M|7Lz@X DÉ!A~t;(5=f;'U}؀=PuqC'|04:|e.RpK|e}֡ 8wjWH/Y}i 4I+]n뒓Bol¬/4bCLM 3%.e@}Ƈɕ o&S/,1]&kְ|9=kZtCCW]kP-n:\/t&P0=&?ofc=rUh[b1ql Tw_-L''{lOm@xTQ*OL3 !pD7[[B-p0#¹Ǵy9Jƒm^Ő BC*%;M`8zWq^rLNu13#q>j$CSʆJ*=M4i m`>81G0y(U,c]"?8DDݺ&)9 ĬN{] kp{x˺ʼnx1)vyH%  lk0A0yǛ?Ճi9C>W-eO;UV^|jTT ן.JD 1Ic(`}P"2fX[@aKy|!!CH$)ɪ s'БꇍвNCH@Ҧ_L>^0Fgb$<|)LP*H\Nbx'ʒ6q7s^DX@j9KiNᢠ0r>^Ou9{Wᷛ7) ǨvzYwm@zƿ$*^*g=f"!Dv2~`Tz(;/I_}uc,Ư:XO>њ}>=ǚ5fjhbҳ*c¾PIȕr^`N}c>\ v/[GsGGQ N9<ͅ0endstream endobj 364 0 obj << /Filter /FlateDecode /Length 5555 >> stream xI%7r+xLJݰ|0 a2aCUZZ1%ɬ ; ̧Å[>]pỺ_7|o ,mkKsKns,.>~ctyRݜ_O?^^߿]=~{o/װOWPVOZA\_/aW[#$8vk V}Y=NV e>[+7O} =␟_h8閇ZT ǻק痯Ph^OZ:/׽%ŜV6椏%TE=\rR/wdL<=]R{7'5ALPݖ|2whOl)@QK]jaݏ}<8qh)x>ahit}H׷;VGvgz/Xv~t4ߞ_v[ͼ:<&˿h7#緾l7a6y*Rqs_bherg+WχqJ ݧΏ0Bi?H<j+9 U\T̀"5}W h넽]=r[6ޞn^[y|t~2Ň[~>^^o٧~'] \_p<Y6׿+pz{kr7K}LGg/X+^'sd*if_s;>Cͯ8Pu0YSj=*G낱2}jj&*vS]qu>u|B@3`-5-2alܫ_l5>4roƽYP^_-Zi>fKLRqlݛͰ 3S)0:k6u/CQKM>NrY/Oywy":8%sx^ev2g@*f4xQr{19?nPcpR ̖1ٕѡ(x3w{!rjm1l1>W\V9 n y$~~~&(CB sSOPRZkZƽ B ]hDnh94<ٶZ9a7g#wõw\ðz͎^ϸ0m~IdLH0Wc\L{oݾD;g4:v(sxY?\@֏__ MȡHᅋ~z@L`W:[wiXsio,BA|)+SJzXs{vz-nN2 aA14lc:a?w#5Z;#>jZonޞ@u-hH||zys>W|l C\Fm|g3y ys+/b鮻=^{:z%T|n}ۿ|}pn?O,<[h 4|FOxt'O`ZF<PO [16]#G9y@DiBl=oo~XS2dHؗDcTe(U;NL}_ 2ѡoîCZL6͇1eX=}d֮1P2 65ePC ś)Tʔqvޭzfc;hǕoh0*hgXzW1?rxb[s<+8gο@_3>uKr:n4ltRϝhYf*:§}7L.cWR 2s$12xƑHW=*TA\mM̓ǧZ@ .T^ XWt$\o1cn#`% Y)%R).GCp!ѕ28Yr4HZ״4:)+бY jTfOFM'Bw2L>@0GGBl#s׵ɰ|OW6F~O <%8Vr,1@]Re AW) Ni7ǡe9\.!gW̟kqdqZ^G\4V8;-vWGM-EVПy-s͑')DQm8tc98X['؁ ,Q#8J\ mp8"\xp- zB@a9D > H/L{ ve^l? xIJJ+0IYBzԜ%Dpz М(ڟ"+5ˬ+o,A;)8G}* %%lfnE|='7s\1%X-@>lBvEE«:$Y:'Q+E"Cj$C/-P<_[tC E\0^' Ջ3;qVi5$7&VLIy*kȉb+EN0n*HtV7addgv 6N6NĘ;"cUIiǁ"Sb3Dҹw:HT _"F)2Wz#mʑG"LIΚ&$'Z9]d(;Y6 * EzZ/B<8tD`vF)z"}k".HFFH!HIP iWEGtUV >J"h =2Bzv%Hf9 ٗ2$ΠB+AnFz~PtϏ"$zX ˳e`HS)H0R 3$yeH"21d!郓01d` .Y [C{0$nN FR[(1w#q82'uGFyD :E!2 J\d5EV$ \-PIRLN^B&2ek!nƐ #SgBU$dTVLCJ)YȔ̥`db.HJq#ٛ#S]A1_`jdB3L-#B٩+Ef'`weH"QdAdBv)! !sTXȦxTtLAa4!H.,Cf$G{@FhRߝX2j_5d =eO3Y;bȬa"[% $' =Y$r֘ d|cjb=IK?:AK?:ͽYKӏ6іCSS;_j t, ҵdQZ R^FH}e)Ȩ.)h(9HAJ RXǜ  s\hl|Ǝ(_*<:GX RcdcJUhG Ǫ=1x7z4`6zl6zlM!TӏNkG'r?:=XQQ葨Vz,^c~HOQFabG Ž;*P3 ]-F?1rZDtߊ`+y'з@UΦhǘǔù=GҦOp#ްbJ}ӼɲOUkendstream endobj 365 0 obj << /Filter /FlateDecode /Length 169 >> stream x]A EТMæn\hz: ҅5ş3O?၉[G&Vr }\0D zBqv婭%Y4V1$󷒵0؟dT1R߂Rf8,1"^2#-[|{VYendstream endobj 366 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 386 >> stream x%NKKQױ'b*MXDТEB[ EƑ֠-5* >2HlU.Sʴh,{,>.!DB@.9]|AˋC#Piv2ŒLzDt2EP\ZB(/I miEΠLRXcNС1ln,/\Pӓ[/KH:92*F=):j g.oeP]~~̣=g8;UBRl^Xնgqv4Uz!;t|,b+MA]muc٫,tlPoZm+b4}N:+|o΄~fӂcѥO~oܽ mIendstream endobj 367 0 obj << /Filter /FlateDecode /Length 302 >> stream x]1n@E{N XcKhq(Jr qϷ"zC?y\cҗ0~t[';e?AEJ|`Ý߻UM|JSo׹KtlEà߫z{?q֯ʄ )92@6/ʄYqLZ`Uul6&ȫ2H1)L2% .W۲X^t.w9f/iS%RQNendstream endobj 368 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2840 >> stream xV{pSUm蹷%F`[XA|*EP!CQ^˻iswMs64[j.Q삻*+3.‰s="3;{OTH??sѢ8136*ݩpcmNnnC=5)_*,(P;cm uٳ[V-UhՕ(j䖭۞VWhU⚵*7m{(9jO=O-SKԓ2jzzI͢PRT1UB"R4,p,/7C9T[:mԞ-`a4}Ri.EsЋW uO2rHC2M{񬿃F(U?4}T伞Fo#l-:-ݮ "7)hh06h: Xt+znnU t#lt7h>~H9fv5БJdnX9T_D4 '-7K-1[d* 1µveZ*6Q䪀樰]h[#9xhI EBd&њȤG`2A•`+<[[4|G^h [c˿-jlvRl, ~ j*0V6$5%d [s.Ol3o_ 8fq&\e^NwlkƱL&Mea+~,).Gcm6wB#+oȣU4Yңntnߵ}`C0OT$;&#?;UZUG(/D)ç̇ǡxQ#A9a1d#͡&QZA BCtev-zwӢGAlOFj ξQJ+Q˦T"ĝyaӂ+p1 alN.0)߰٣iq=|aߗ㾄'0ݐv1h^qt{Ȯ}K '6Wv3l:1UvB ݍ{3]]?v2XΡl"YKVޮ5H_7f'd- mVf=Y1)/c4-QƗ ,A +> stream x]1 EwN R%]2^/8I u.SHA SI-iΓ|VHpS@K؝jOn \J}0٣k$R UITcꞚ Hgay]C.ZD\Fendstream endobj 370 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 636 >> stream x]]HSas;3rLZhO`Z"EI9qgbmN7uF*'f?[?lZN3 R!A], 쇾3`F^u Ağ(,j4ZAJ;)dr(B qTb*֥m$G &mszN,W % n_l4s`$:1ɼrf{?SV83&5zMB pXzaƊn gRv[[4V8+"׿s„4…^NF5yOVUW[,*S<"CTEӭn"H`=͋w3s b^fg3eD?55$,#1*f9w Ӥñg7fLԖjKmjdAw?GЀLJ .,<):\_ۥQͺi8;v*2Ugĩ8u%+r`H~x|?,Er~0 6< KY\%®>y~CkDA^l?nG] G1Izdur^9mjkQz\pb 0??!?8endstream endobj 371 0 obj << /Filter /FlateDecode /Length 180 >> stream x]1 EwN "tЪj{&b B޾$:|Ko6ѻL#L&N0;OAX"aM'- `wS >5IkT3s[+ x%vdή(K-JTb'QB ~{j3 [J3kZwy hJ\Hendstream endobj 372 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 657 >> stream xcd`ab`dd v 5030qH3a.qk7s7ˤBߙ?``bdSu-(-I-ROI-SMCd```1426a`bfae`ΐq"3%}cTVS\҇x'~{= 8LdN..H~.aw`6Ⴝ˻ʺ9&q}Vˤʺln-=~x; X'ᕧ9.=Rh`!QSS]Ýmw4ּ궶ʮn 6.nG/|ǻr|W-s7o.KWZx՚rm{Щߛ>|g] ѕqdgG|Ls،ܞIWل_?jhe3c_ډtX]8;2/oSZgkwo8iKΞ}6PЪ 8?\ugwfW͐|Ū-XuaϦdS@n)%[ZfkFuMOw\wVخ#)wsE@\+[IwcI}uo.Z[9O~}q1Od`u[endstream endobj 373 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6060 >> stream xY xSUھmɽ" ø vPZ6)-.i%M4M޴I[.@iY hGFQpsy38|^"qXDD_0~gDҲQq(0i7@"#"Z*+f HXȝ=GXT ޴]>^bzͲ m&EdQ_pFG OcPkv=HД e \FYJBk7c/y3Ή#9_0I$qZsV=@nZ:pOeD O^YbhZt~UWch~֟Aqʻie@aT2G`CXYD\rIAogW⺍e4c~.޿a=`"0#_ JA!jn]`_-2A>쀍<%+vUI b R;̨Y>ؗiKo#;p>s)}-1]aYo(=}}V;8}I׳S5`z}eZe*v[hn:BJ+2̌^h&&, |?%kE_xWJf,W2dZ%-UNgFvnsL+.I[0 .b'Φu 9:AsђCGRS)(%-Y$:JC|4> ald^GMM`.堌d7 įm~K> |||B`ql7la /=yLKhٙP=K|oPop)̮!N[s=0^j+uWU߭c-{Oj0]YS $A@EDUfih}Q8Qҩ J҈kͪ sІm N=AuպUz@)*)CD)J)oWVЇNvo; 9OcV/CKa|~Ss"n{`K`eS&ɳ-'[+؁if"_҈.뇏<4"wOQX`.v.Q:Ƥol8pFG62Qf9("<HXW.ٹq5-)NIL],d*"+O!N@\*+xp:+NBα*pT)7: eM S M?fjl0 i"@E3}6$v=gN6 4zZC]|HTkmTR7mۋ@8$(yv^ 1r7qoj4phrohsTA&?k(۟wjl&34w`Ʌj4t8v__b'WnJ?wNIYo'Ze Sr@.:j*A+"I=9W~jX2)T-UI+e 8}n^('s梼E @< Bu= >J4J<>S`8;mlv;ِzR%cv؝p'j,ET !H)_~P=@}UΫQP}u FIFd2y岓CYBZ3AH[Mww5Vzmp)lIh-:dyD­K6 5C ^C:+;c~F Z 8l@X^M,pVoWMްw#,aƵej )^!d@$qaGSuD)TJTBܾ!J2X-Pu3'\Lk"vlhw{S5;ŞdcaL[ڡsJ`Ǧ`#H~ƭ@^1y{[56`#O{NswKhA4t@P[I궛/șr ΦCHUX++ Ւ2!.l?1tTFj'Pfe`v:8dUĩ ظbê*O1-m7[_x3Hm\yHm uM=;(IgL5ojFׇ]z ![%%@'( =Mm4h+T^o S DOoD ,Y1\t:,o;DZ.^j<=!1Nt4Y:H߾<̲dZP؈r?fY.u-1 ,_'@Vuոk]jKO?diFJwe|vI$Q555}'.G4 UTRrE +1j=DoLaƝcȤmYdÎDӢ{~!Z CMZOP[M\=/OnIYOP](y w62arMp[Ҳu`-x%(J/f<h efK[%sҠfk0dBd-ʂ|gvf\'~gY  d^gxl^Hu'7w\*=q|yxpXaIrT%ҍmdvGWѳNLD} ȎAlm +^g֙u@/UK5ٻfg>Ȓ{{27$`V?ڑADn Y׫pӗKN`Q(! pY:x .%Tf1lXv PDrvR~߼z=MJJ#>ڊ5uBۺ缒A E ],17XcZ.X%ZyV5Q&]gGUߺ %9"i9BD"j@If KkFR:(J*5H)>nfIa#;|ΑmF^Ф u9a"7ihF6kG v|(̾ |F;z4:xFфF&G~CopFಉv`,&Ŀ_8@\0_0*][6pHGBdɓ= .88>6aFq vjdRbrtpNc%$ZpHީ"ЬO3Wb}v<45Jjo|nal XFK}raB||  f.\mTi!O];q,;A#Av܉"~JHL;q84܈IX@^_/sp"rxclRIDU3v`pfhZ5R}qy6G[A:YcA*΀NcD^]ܦrT8hCҎf'-^Fgp`1߭W, VWlڦ*5h*LA]߁c'=6<~nSAޭNHX0M}c&sdBkLchީX:LqĆҕ Mj9o^p8LɔN&%% g/n=NK`#W&q*4zr̥[VkpspI\(0]4Л[lN-t:-rҪ-}?fk;t=*8^p`9{?;.Y.`3lxZ%M@(oOT|Vv;JM!#4k; ;Fg 0 MJP_9g nOXn|ikF(ހQ%hC ~|x:[Or%e0_sCpuTx%JjJVc[]m돁*~K?e0 &c>.xC6ӎ) !)ϔK;d) L[3H񮆶v%>/J|ne%/D( e9U} _dW{l:Hp՗6N̄|b8 Nr8\K%i!*V Qoh zdڀB%z/` +dvZPrRmVk*ȅiH;0}tХ  sǴEohQ= zu!K-<*. Y^B bHT\+CY--" uJkd4=!jendstream endobj 374 0 obj << /Filter /FlateDecode /Length 236 >> stream x];n0D{7Zq $A˅oNbx8vig]·6> stream x]pu7 ,4hO9:DGaQr )`m߆$mMڤo0x0R-jE9*'y/̏os7;3P*j'Ͽ8G dW~uE)hՠC?ނnO9URTfcۖU;7oiQYgi"lSN EQڝ͏5n޲uܻ)j u'QSOPRӨ 6QTJSWxʹERYEکe^i̝VRG6|L8XǏ%HED͋/ZH}Ï4|5~%8N7+R0xf-VoA(03 ELbZ͖>~ƵӢidO{l/pEEE75 N;SىWb)smALY‡a <7z9?10zO ^W@`#y4+.p֙ E`w wH9`ƾx嫐20uDdDM&k㺖@8ld*yb.,pF̂4yvقÂX2 1i .nz^55M XRs<]=is.ҋ2A |Y[`ЗmkNc#ETt`sv#0wT##4hpdo`y&k3I't7-cf 8=J6YRBCN֭vWkΆ5 KߠFp C^UqFe^oTm8x0dhpS#C"qgԲg]qVq+;<{c'tw}2u]kAEp+X&c]"wm.ʳm}{@}-,p+h9%<9̱;^8gd ߭4*X$调l7pp<5BV@Bs EFc\#x|Vv2x'v82v}-+P%f`&5ȳV[eV_(nG.~ɽX(xcxz>\Y@0k"# ĥ>kG;t5dV%.^%,&Z e@n]KfcǾ|{G_F'^WUȓҋ(s37q%ک_#endstream endobj 376 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2117 >> stream x]UypSkb 琶PBv >|lmz˒O6D 4 p@I() Ve>Ny3owvQH$N[_]ˇcxUv%RtKRAfEI-B7 c֌mpRdGrѓ!|AZ"5=ݖLY&@F`AMd8We k]F*86đ_ܝ*< mDIҪ,K$ey$5<<5rM ]dB&LzK<ԃ"c 7Vt$LX"|D3cbxiw VR31UٙE7Vuo1ho8>=kwq]C8tK]9?1-0n8#2Ϝ6‚!+q5ONN`i{?+?qq4y*%E=-]&n.k7fΏ tu ˭[Pr^K=gJwt%rXY q8# P'اƎC׮aCx^e=64lRIE@*hu]Lܘ^wʼY2U” 0$'B-"2n;c Q|{L.X%yq> stream x]1n@E{N X0ڒ5ݸH%^€0.rS+=y;t<Ú˔laM%Y~0fewCZ5]9+o3[{{ⳮ?Mi6ɖvXA}ݿqVI;epBKec r(8nnwwZ +UiXRMT@A!!2ڱQ8x_AUaeae ŝBgqg/GrĔc W0nqE?QBFt}_gy/+s07S4~Ǧendstream endobj 378 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3458 >> stream xiTSwdNXIs{ޣZ:u8 "$@ Ivߐ@ B" PDZVRl{֞7ZosVt͗ {g?1$xCǭ̙7Dž!_Oׇ|8b}hhG/a<ޟ&.fdsٯ%I3IC Iem$M}]ޜ6s[#Xb-OL&bXF,'> VokH"MDBeb 1&HBAy;ywaC§"`R@C_:cxppFd=/bDaW9!2Jo .Ij@Zy8J29Df=Hd_Ç׮85Sb̠ }/2HAYٔӱ"&mj)dDG!3}"2pv`UʹN Ghp Frc(a7c`qK\-g?p<5q`A}F'xƳ+I{\7Ldj%N8(T`tg}nbC4kL{vXw$:/Ozh7aI\Pxhu(3zV0-H$9E1i*?ʝL={VNFvmo={Cّ $.FʽBkf',,wuvDRbHٝw&Nۧ歜/~OR=5uyU2 rBћ'&yex}}EUT x@W g[Z^˨p+j,z"M+O@HSՍ8XZ']6]j*?N 䑛ҳ< o: EvM4NJo>1&7 D%a9J9z*IxfWUEl,yd܂IW crVˡ9 |4B:$pج'~q#x}owuz]=uxp Ԇ"pW)sO.o+~zrl1eg_/Uf<?#H.)fmF2 e & 7cKG1z T^Ie +b@+ T-w`1@an)wԂϟq_wWLHY%Ώ;P׷&!\ lQ=3M8ܧs~VCk+ګ/vul94rMJ&m^ǡj; ::ih c:tqs#\Ja]z44Ϣja10&^mܛƍsHCTs*W"Mٌ&kM6 9Vd Z>ZR-2k >xT߾`5Y0mΚCQЮ1#?;[krВ}s"Fܽ/>5+";n!*Nqq,SJb(U |/A[%x k mQǿE]g' 8%~/6{<:OcFUCn*tc~hxO^t~].h4˩ɠA@=?¿[L;vZϞv׺.mܙd>V! 0>;;kŢ"I_0hH8ѪFP.xU4G~l~ZUQ(p:UvPB >;w2('V\I:o%Q"σu,z6kI]0 V'1 .+fŀ/%/.H%)EB1&h̫rlj]6z^d,MxYΝyXb,͵LB%ci\ziۗ{/V^]SҨ4V&aO3~LhjZ|3H̀u WjP/x5B G %IJ!endstream endobj 379 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1359 >> stream x]TkLSg>(ӞuANx_!88(Rq)sBZ[9-_KtܬJh'Lq:cn?t:Pyˎ ;y='ayBBbB|dz<f PbgC;ofa!<$DYZI+)Y_(qJ^\(/%aaUy Dzl=mRyX8g#0w6D2O NR,r_7YRGER⇦PrW"%*v85N%RxO#sYՐҷ#KWbװ`z^i֢G$a @n>V{9bjHI}oI)aF)ToD㿴\Ր}ށ=]M< K5ifDeBӼ}JE-<}b\Q^̸B]1r%)eW3E[hYxI@zDy"-Asy>f#Sak`kAk52+-ӳ3œc]Wfr@u̽ii9UkH=&&AO4ꝺkIiĩmƥe!g}ƦM[h,u*<6's3|`R +phhΥo*[_j84*%o_ X-7(zq]Aߑ ]3nO> #l.2%{K"DRVO~nskQ=7ד7008 a頇?P05PɁ,ޒFl2ì;ozij%MFBєdRDeH278iNMBhh|·8jnmWʍ*ss%tAM s5}+G;:dnڴHUZl:IQn羳jOYt zDڠ1p1M@ûb@(Y#;ɥ¥n#L?L$Gp ;{`{n7#;0ܬ8“*}{u{LTFc4 Ҵ2{lLb} > stream xX TSgھBvVmqjq jYBooFX Eubm^ulδ~qEL|>{91 ٲzsE>XaBLkl CSILp=B.JΈ'$JE36D'AϊĒՙYke9qy{6&MIGϝ/h bDFg3,!1,R$t ԕkD1l ,22}Q\R$2w U:] Q.>{|m1y}¹Hc9J?u Eϡ4&pϣv:l[룸W>u1ȺT680 w?3VA͛݌Gn;Qpo zܓR鰃|#%%R uj_!x4ψȗXv̄$ 5n8vH^X UK}φ,Հڨa&4#3(xej>&ApKN6&2b!Or(МvK;th ;-enmV1{:7 34R~ʳ&;~9c986sAv46O.pK@iğ@јm5.gb#u[JLCI$RQq**Shvlȟ =z[6'x|q< G7|jS BFCTrZ4V8$?{\H8+A]A-)bK-*Rk ux۷1n`x0yaqЌoQ'p? R Ԓb!䣊Xt<(@T;t3jL"J+)خ5A.ЫP92Js=hCQ6SE(Cp8}ޒ>}1Rؒa+[[ };3ƨLJ{vNPʮw( R(a TmӘeLWzHpHu8K (=_W@M!rJ)`y6-(UT8*m6jm6wK}(*'b-Oafw[K4Fw`hqU՗>-o|5}(md\^ urP "A DO)q8;L hvE/JO7 ?#^:)_~4 ˗H.WilxHŰ `"~VTt/аmԞ`*"c1B6@m@|@10v.>8kbkQ-4buOۈbۈV[^]qb,)&"R N,H77dGɛʦ )N]3صv([a|_{vR'=}Un.vR֏CeD #*tH%Vy5SRs?mj4>5!bAdUgnE&z g?1>6ZXEu@:ެ@M(PjzUv~ζ7e{]K.ShFZqK:4O%^ B|^ ې^/6 !Σ)TiFӯEPSߜx;~q %$ S M`Ũ33NIqj Ze,+YԚ؍Ú k?ǩeP#k5d ]m4Lظs+@ cx~:+7PX &;aȜjƠId)~Y|}>BVi? pfojck T]k*TFAc*86|7;MSrO_ {8b6- ]Gp(oFtj hh]kmdZzGݧ81=G$MoPNkEEU) <8xQ72=T/ƛ[Fj `33nX Ɓy/؅{X²ΤYC ?+Tx ͠1B3vln?+xվkz,d,I.V !+9(<o&ɹtf#8ZK߫v&0)BtG.-TV\P,av*|cG7nNþ O[j놭6mRt(~.APǙv$jF%"(DH0%g=g-ifcԦ,_kSS[KnKNF݃BI?^mBsѤB}0o5bE=;Ž%dXo0m@> /Filter /CCITTFaxDecode /Height 600 /Interpolate true /Subtype /Image /Width 518 /Length 612 >> stream &l/ g =< O< =A< xO< A< xO< =A< xO=A< xO=AxA< xOAxA< xO=xAxA=xOAxAxOAxAxAzxAxAmaXamaXaaXamaXaa[ aXaa[ aXal,0[ aXal,0[ aXal,0[ ,5Xal,0 ,5Xal,0 ,5[ ,0 ,5[ ,0 -0 k ,0 -0 k ,0 -0 k ,endstream endobj 382 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /DecodeParms << /Colors 3 /Columns 187 /Predictor 15 >> /Filter /FlateDecode /Height 217 /Interpolate true /SMask 381 0 R /Subtype /Image /Width 187 /Length 10977 >> stream xXIM)"+zg/(ر""JQPD,g9=b=Q!!M1MȆ$ܲNf&̼3;!XeW@S l1cD+V9]!uBhWfϞpleF-)==p 6jN1"j֤N94h|mԛ `>w/ Lm4WWHLT:իʫPcj zϯ}oV-8gs;#QfXXʪP~%`=}eeضd G (d0˜sw(sV rr|OCֱm4%XqG)snF'[o@1E3OC3/Gm`@3K C; =zP'ݱ͓rAuk^ɔ *ŠgOHIN+.5~uJЪoCG"Yh}ϏY˧Lia>)JFKC } L^^x Cߟ:M(dڶM 7WMU 2LLhMonwjG=k$#yzDix{f5MU G  rۮl҉lAGDXL=w'B*Μ>}TV)EPkŜ8aQ!T(OLQ1H"\.g?eѰ?dܘ՚<TP#PGP,(w7PYY}ⓑaIҠYXFF*-K1XY=̡PUb\&~I003a*UՉ uQ#gdXhVJ3x yܼ)ڲY騅b茜UwU2 :72e͚Ce.KU+c,qbrm5Y{|IIA6S*M1'Of9 wO/BeJ(NZ3,wu 8CF7 QYDZ1"UJ=|\vB'OQ#HLg]Is*sfI%+fX:YKAGEWA>~̳$U0z Ub:u˗町`5،nǥ(FVDvJTBL~ZC)ŕf5I˞-Y,ϯ.ʞ0?oS㧥_O//&uĜڭ uRb߇~&o\xǫUls8ft<)m(J Xko<ٻwTQHQ\17v¥G-a1}l>I{& 1ubˉm)b \!uHȵkE+ gE눔arB>U%ٻ_}gz*~h%d<(?'ߦs ד Yu}cdpe[1tY749'pE̒vbǃ[nٰ$sbHbĴj8BJuۖ@^\i?ky\ `NКC0'}gbR ʼnxb?!0SXīdڅׯEtLJ:#c] q84D"0<;>=0ԍ>u9sĀQouc%Eb*;vМnm2w<@V;˽<@__unVneGxêVbD`PsXʄBL]dOo Ό̌j7ݨC#>ԭlAlok)_kkc07"R"ŜO?dYI%YymZ`,nݏ? x/ 205q0 C&'(-BŻ q]Z12BU7jҩIƵs>dC~v+z̠6ypPͥ [~ /rr,l|.'80$` 5_L>ϯZ~$_L_ %AM!!ցEc~'5xcyt뇯 t)З_XbJK2))0 ay)r2$7IJJMՍ%m3_fJe$Hj)3dȦ G_ :0Viu(Ii,:vء氘_M! ױ {2e.pIDFRɹYz~zOXe_Y7?U})7⛹*͙Av EbǠW6RdYJSBv *HJ&iݧYUr`.&`"Iټk2_7'4W TmIqbzztBρH[3ƌƻvڛn/;;E's)vڶu8L( _B%Z q]cn܎.kW̕Ҧc%!2B [$89ރ 4_K>{(3+IYF!f&%A2?^:q:|pZu$9h۔)7Cw^Ln=L*au[% vMb{"W m/ǾC^'(i+/k_o;,R~c,U\żg:e?ACc PP^J"RbDQg:8J^0ˎ-*CRC+eE0gQ:Ex,Wbb DCF_2N}eg8\z[^AG1WbAP)WlD-U+,\YUL^&l`l[᥇̢ Mŀ^l?@FֽTb .7?{靦τbУs4f=9egYh#%?cQdBzi( %*'`yeSP+| D4*FB.䆤mc#5I@3+3Z%<}Vϡ퓷XّW "4-Զ-qmٗ]3qz׃-;I7ktC`PS WhHĵ4bJ|߿pN9 dDŔ(E/}/~Nؓc̴~~|zVY/>_(|otgBBS"Sd$]AgK!O0zCم'-H1ûf*[^/gG 6Hfqğ))o Ap9 cXgˏCd0OǢnvb>,2-4)lHؙg>o\ћۤ 9lnv O,2o9ŤOߢ}"bqakEVmX8E7K9#AE1=ZJVnI[oξ;_ϛo7G+he '1 Ǽ{N'ju$R,9P$?Ѫg+lYx;,tEP# SӼzjIJwWF}eȷz$1iDZ ߵdΖZTɄ^?|M"bSͣwm^AM% jߥ{|qؗO^4)kji*e36 pىe&&Mr-UBimid:?<1$1R\2/ZtnȯAJ,^gee~\EZQ]&Ա>kǮE*Z.?{z"@vfO"gE>^S5GS)F|C>t!:btȇv(gAP4sŬ_4NaAÁدn>#7XC8quFhbw}  ^Mk[UV̹+~nV'=qƦz 3 U2f+,we*-wt/VtFhbROڍgSDRWIa?MȞ|@bY;#| d!V BSR2ъZZ 5  AFOi8 WzA+F!|ϹcʝNjh0=,$t? ڈ(XP;C;QhSgJ\ENqu>:) jA-%“A:X'x6&+aj7ZQ$45v؞`0{0 ΃ S1nkXS%Ibptͅ?:Gh&̔v* '}YEP`Y " 0-#7 @Hlv*rk]Q D]+*(3 }MIS Z׉ڰ0_b ,E_Wޔ WpB#AXA5sz/`0I!2ZPe9uSH3J_lͧU ZbDlֶ8z\X&"CumY1`Uh1#? XV+*W>>mmBk -$7,{h;S)+=`T کb] K'a}xoDR i!ĥc󌟽o3!\u)F3C\eYUK~s1]t[AX6.MVd&3J  ~V<hbA8 zQe scL̀nGqC 7'SSVL(w5 ;0b+dj"-b6GFUB֥\y׿U2>dN ts!׈ AS4 xCF3Poޜ4[wNPNOKkL*q%a[,wf\ [)S9R7;/u\륏 <gzHBZfen`!L.4[1]8Ǯ5=}dwn )*p6evrيABa?c=bodui~r_V_! S(KDOn/.:{Ih@S!/{Y2ZN䝄dl R0YVTm{ AFKT::Ŕpٶ*_+C=n8$մFbbJ@~,֋pd֮~C*bAx31jA8fZCbc*Fra뱵aZyjN1\3}0B0Lĉ0RzALSw \`-JVSMtbӤC1F)1[" +v|m$rg:H6NfgO߭BBi8MHA# f)ko6>&K=L<5)Fo:s\L@a,.:+[fEDS2 BŨbd@4 ^yk  ޚe#4~- ~Ӯ;Fp{sobd/{*<1jPkSX)Ј u\:FH(cKV722q!&C? Ert)|gr}/wP'ArJX3:Ŕ d=DC\9XM hS {Yts ?"]w\θTȚ ;QEjZt!=,')r3$M}֤;hI:Ő)N0(΁ 鐰j)E8ifАE ,0ʟ2A62 z|ȔQW ="/Uhc~ͮv7֋8]L$"uN=ޜFS/iX !EHr(1CFײNI\Vԅa#O)b}"^;k"&K$S '˝jft Ju,cp,3!SYy1#pE '\KmsԊA,ny 4SzYS4[+T3606y'W#XVu$拏 Cyaj?yuuxj.TaW:N[$]_.<q x -L0>p ybc16i?̈́?WKpIHN<#'L̙o AxX7 }<0z22FwH՜ݸޘ@!2U~ы iSӟ Y>s'Rϙ}҃7ܦmj׆ׯ1&gnq0Pfzte*(9>w^Rr3`PTP$g0: Ɂ^*1oj `tj)Tbk`p,3_gfb֧['_O.IVimz_HkQ(bbח0oC``4LJ'HK20Ka}[?{anmkۧ> vm'OٳгRT7.mo~ V tEc@$& :J[-<<,ozwW{G'_v9)Sմ 8IPlxZI5T,>ڱ]kkr UP 烺vLd2o|xLmtkc* g [!l5LZNSa8GH i%'>bo')ouWfZaW"P7o!3+y=ݿxA0tIby$ouC7¤ 3 sZ -YYO}u toիճW4Njk͋7gDH8:0~U'J7{ɂ9fЀ:jh@_+_08 ÀzϙuxӣSY) I磜l!Z G(\ٞƆ;_DmΌ-t9pʮԭ]7:]ӑt#faé֢ ysv63nϧ ;VM}7L%-*׭z2/X\7+Θ>/wDz&)4 -=t]owo>ߘ=|w?W(LX7 E)\ U\6H1?]w4I$O}:M N5j p`haeΜB8 TQ5ĨQ(d情q포=wFD\qY!$Mc{CiiЪE %;96Ml[:fꆐtv9-OYgÔMLCC(d~TuAMefp>uʕ^$>?) ٺVZaw®$^Y3$r  ʃ:*!r(&g]]Y>&zAqftH@x`}8wߧ}"7;Mm>JI *-hbV3N 1r"a<sFkߩ~"onބvhb$DD\)q~㫏߃76d0X'5T -)mCuLݿ\Kָ}l-ӄt掆ү%=2c[O,rXԴSS`俘b3ĻwPUY1h:j7~2xOH $BMiOP.UB1t^$r7(w"I4YMQbP'^j>nܦ8/vvSeMTŋa|d0**A/$DFBPj9T](> >> /Subtype /Form /Type /XObject /Length 107 >> stream x 0C{O ,  > -r / u*N3 ggˆ G᝛ҋQG<5֡GSCO?vFRzkU;)iendstream endobj 384 0 obj << /Filter /FlateDecode /Length 2082 >> stream xXK{|b7Aut@K%XVUwD!C_U_gb_Z}^ ]ǿi^[i׻*k׹WzwZwcf3ZgBZ vvjΛ>\C>cewKc✷#|%=+ ˆ&s Q_LOR ǎM<5uZ-վoĤg7Cw\m([!2o|@v$ilqW֜8RjI0gQrkŊH Fh+H`*i\n>{!%7GLڂF'[UQdqx[`Yy@iۄjP wŞ3#mH7Q [7.5|F^˒oh\T2hUG7*hGIVԠ4TSS-,d3ꃕ 3lDn$$>Dͽ6S*L9P]T_&h Ao[M?sig ka.mƵM|95Wt|S@ jY xhb8NS%sG}8k\398A=%ujpJIBۭ~YPm_r!P+3p`Fk@/%rL rPނOrNgܳp}G#( CZz _4mťmU²0"x3Ra.[˴1³'ml(A~ gܡJ- fE=M ]1\"h ^!jFM]&'"LB] 3䤚 V p!jFMPcDPȈ ԡykyP@=nJ23Uv 5z)m i3e eҼ0qXtTQ";!@aOM/cjKs#?Aʺm#49o# ZH# @Zx\lUq*@.a (̦) _\5gVbvx%(vYĒMkTvyL5?Swh15pdIEC%(wK](Sv( UFLW^t ="6 &KN=8rb >*qw73h\TttÝ:\lj%xj)zyz+2PíWlRqS=JPFܒtϤkyq.!|Cd@zNihRخRFGZ^FCK3|Mp {I]hH(+uڟh3  i6 ;l&γxAy[+H,᠍H(kE-b \ 5_iA>it/S%dzh1{(IdR@9&[Ze3ӾTR"KC*YGE=]ѹ,F 3EIs8A_jʴʜz))2(e&/, ʄl=‰'8uwc_/Wj> A BuI WZmƅӬzYjƍzjs]21n%{ċ2Y0ה5$N\Þ v*<a1/KQyRD(LkӬyN.ׄSrAy 4 > NM;#)ءS7ssHvmjK0O" NWɧ{d5&QDlj4VV˥6<3^$~|3e;5-endstream endobj 385 0 obj << /Filter /FlateDecode /Length 5218 >> stream x;Ɏ$u>N >kk<)=xKZ)x @&wr62k|5\t&;@5չÈO џtB?EC@+/; t¥P ւX@ɲ=$& -#H`"24W4kO*)OdЉA` :5"(̧+פ Gо%(;-RAױDӂBzZO~&І' ;8h`!^ "C*3+>u 캤Z2jD0peBk3ԚՄ /?$R5g D&Nפ3E򊐘| _Y#O 1;VU0x7_HíZz<՛խ5^Pl~S dBnk!GQU/;S7 *82AM;%@b R qt/$aʁy΁%;3Hwj(4=  se@kқ WF[p9CD;/;侜qY@flCej0O|l0 ocr# ?kcl@As5uPޓ{9Vc؜E(;5Ah(% R4Kl*|Hy 7t{> TT5B s֤k1ܹrq ([ޠN՚"$ kNrAd /4B3AY`;EHίȏ-XV^õ, } ;Dށ AP劼LC.$WLX<$.f7M>;d/3GsYy *arTZy_ 8f%S`Xe1~v5i•W#̲L_AJOPq[h̬t5u!'rlICč6OAeq1^TP {ͼøxON˹W1𼅒ԋ!P΁s01B6>EIByt9Ec!àe5F Q~ |(;\4[9厼;2B s>(0x7ݭ^kQU#,?W$v{g 2YHP4ndM.YQg6%td XAZ~@!"2v N۠Q3i(EOY,:+DX/zp"ϕR/n93sN"0MY !U{**=\yaO*0!rt"ffL-N_\nN9] =+cKK<:p+&f͞ @)UhQ(HhPfC&%1*Mrz*LC%Y|/ ~iuH?eGDOLBAoT8poH񋾦}73  X[Tf_ tZUe1-,^%  !|Kն,1fcۅ 1X9h1BTjE] $a)d"[pzgrk`;*XXup]bz9s%JEf/n\')̈́[u׻Oѵ49ΘxHACjUp Pfa1= wàfC:W۪JX9p̄`: // R9nw ͅM~8VMvWr1ig-T^.P `w,btT*_fyjtmP*vrIGátvj5r|Ks nB!@tGP"$şrsY:Ρ'w\wE|[o꥽'8g7\iRR(5i`%4[w8-dt%:O2!(Զu@zLT]ZS pot>fF\D- K.^ZV\f0jPgi̓'LRixs8=9  S14Y||:JxH[Ab`]*^IgVG+4XZvx$ofwxM悥4DQ]2F]1G-*>1g:"m|0f=P5ai$s+Л7i6T~ ˎ¥1S@26== 048ld(d^BxtdfـWBT;n16?LTlI"e0"q ~~;uuuR+2.qZsFHwpSFₚÂiČ}N_A9ז&VD/obƾ))(+VQ(QDc㥎K_fG8;~F9-BelP81聉r<_zf,Ds-f%H=ܑv8A(^$Y E&B-p]XI"SgOri?Í_  xk($C9!V_z)~X(lkK r]\r! ٔՀ. ۔ p Ah sO5Q~6[~-F*SD|\Ҏ|P((ql\c[v$DG>Hlv%;mfӏ\sTQTF?U"OjrGLgؿ3P_Kԋ'zc<:y:s#r?=דˮϳ1@~ f/oPF)ߟ|VO> stream x\[o#Gv~SZɈe7`x$kOvhGb,2I9bUC~>]u\]O>^ՏWЕ}\û:U]+~®Yekջǫa=Owseú`W7֮kv7>ue:ӭ~l]&LvGwmLN{lӴv>0}GR|ͺ$L\ups|79xlb |Z #~<\Xh_p Z^p8A2xi/%t$w \5uȢ6}^lջvlD ot>KNphpI v<OA|,I5[!AN AMM͑4ݽσq>݃]W\M-Yﯴdz pOn\:k=vOw%xvO0Ƿ ntͨna~Z뚏o-؇wy`L J77U_Qu]w`xh-[ O퉠it'&Dt\HnwP" -^W-EJ1GCZQjT ؃VPp z=kEGzOLQ3~Cgɴ OK.(5e, - :ڂ R5|y:"Xi76O.K_0__+6Z8T M/fYR?#%k4qnee3",9Trs s 9MqnboU3,;tI^SKiS@BJvm#zt'}.Mϻ-FW(; Q5/9 i StTKv<ΛPX9zg)F>#y=Vi#Ti5/izvRq֔lhY׉LK~&!}'Hqv̑xy#×#|HjYBնnO;x]i),n~V:— -WFoz=;{|V"D ]# tO)!U< 9yz3Qv)% vF~8ܽhRnuKi:̧S{{9Gx p_Yb/hlE7K|1uWwIpO`+6sA%Y*sq7-7II/4Khd <إM!3_ Y9Hl `ھ/ϗL])Ix L?^~=XGwǙe˕}_='?qX <^Vӯ=$Ȕ{K +gTcshȸHNj6 6Am7|迬69.m56:}p8)OqZ<ˡ}amg"I韟PpK3(~7C^p1'`KβnFa([mSuӖi|6ɛyڐ,JXm10eI2]}բ񙗁h;PgIϢӬ\MȅJFW% TK.af?9w1/_)(]zHTo8, | y Ho|NwK*-h %`%Do2R.!,qhP"U<~o춢x#Z&Rˋ 8OZE9ng_^C@x hR͖6lzϿz1==]1#y9WGVAv!c^6 G~i޿hRJ@qf{U:Qc(I$.>,9JLsܾl9Wc 9'Qr|C'iS2E >,,QT-7QЏ|8v<:MpC2P"9 =>[2#':Tїt,՟pPYklAbVJa^x,\?KupC i P֬VpkKN hAj>x(kbQ5Tr| BMmIk8DžA,utV$Wwǫa?]2%:)DVW߀A\K"5Ta\:~"*sO!c#fE 24`X[$@ĻE T9_$(, 0,RH\5 Q%CVBRoXE\1\ X1.ta]Kuƺ "p9fRE"kDikЭ5JuꌜW}Ix$tplB-ph'3<8tv@%ip3DZ y0%BC9!f$`$0K+BN-W#Ckc$", %aJS^("%?΋RH \JKP"7TfDj(-ѲP DJxK %H "5!!'*Ró(Xjx4FH NH"Hf-*VJ$ $GBR$Z&%PD`s`F@ (,("HP5*_rlZ@ !o$ fbLDR8E`oD jXID1, geD&@XLHax"J@tlKBt2alCb%6xH,50FI{L橿FHdA8%\2Yj4N <] K<)"5, g/1"!a`$-D ,@,3Dt/"Vb'L:PO# |̖/q G*A5{XcABOiFT>0zCY%RK BG*0UT>Dj ÈD*.|vBp|B@"tSTC #(CK$F}ytXq_9ݗGoM3"ˣ%ċ ޏRlHO˧M 0ׅ*2o)ņ+Q`[Z"î򰄾0I1xxf'+\;tGS3w,j0.]|`PmO#,2 l\xEzZ WőqmqF ])үr%`TR_ X !êlFOА} ܆ 4W?"5dEnqsKA[RZx(E>$7ZDCZ-]a_aׄKCKOc ޱ%Gl\Pd &/#4E,y30U Qdy =Vd_ȰhoTdո/E:iY(2EfܐFo^0}2oȠ3Ju%V#cZ\ -YmKZԢMwZ"kZԢZ"(ZRE-U8n"7uj-~N-jkԢ66!c lrVCtlJތ- -q.["չæP$d8,[M\8c8D @ GeOP:Ʌ.K'PHc_DhOap̠dnA3chlA Yc WX$6z٠M,BQ+҉EhPuth8BF(j"jpi# 50^8t#:I,:@"6֐y3ӄ6Vx3 < df,ɧ,C),R :EJ:%ЙE,6hB"OStfjZ,r;,nC uhѓ)o^[T<} # &&jb9(3ReQQH+b}+ Y(,y0BS-Gbk!p) Gf@d( \P4tCBo[|6?@dz*&JWjgd/n;_/A7"j?mK/M:Jy1V}A@t*.lޝ+ǵXD+!Q?M¼& -^܀Fp@35!bJ'1 IG,NhG U ӑ H(b"DʚiA/l<1s$cDg$@/[ih^LqOAỞIYMzOBu02>E v (7-ҋBYKv(kzw~zo $.nO9+"޳kTYv*vJnc`ˆz wJ$7zv9,> stream xZK㸑ww8*&ahE/:v_CL9нĒ8#Rrw@RrxCQ$ d_&}Y}{'}9_:uP{P;Yvǻav(CwJ'p>+j }4!8h]6+ľ]U_.M v> '/٦Zt8_u7j4ɦmpϋ$F x~}[6MZ]%o?BzqwRZy𧻇x/ih'E餸P[>cs' Be]ߍmT(J:{gه[VpVؼ^2Y =nڪ־eQiYEO7{D31L7Xu8,%}+ޔ5.l-Go@y+l__;T!c+Z@nIևX'2ݡE yy^ mxw=FkG,Ne b,@pi_ce]a`ܣC =U6)rsDi OR!2!I =ަZKS`فgۀNhK|׋84߲d 70"LOn~l.&: Нr˾}>fi+Y~%D} foq?}qW @W_Pxk0 SJp*/ :,㏖r'gh@GN,ůzr 1C++%h++ػiqt@Z D=:!F|0wsli?ze/B:#;'vUdB +NրA27-`. tsU&/% *+~??2is=!K*)`Tq!-mPH{sFE{P"b)E4\7Y= 4$銇Es M# 3Lw7pp V4 ́Qv\›@Q 4malid a4hy"ղaHGВ&~LJZZ(57G{ mɈ 0u핈, vL3 PZ&) sqPK63K{Je/A~q쵁 I&QiwD |8pjic [oȪhR4TiSwV&zph^}/xRy6 " J( K@=\ s @İOK>!a|y/mrVnҦY5/Rz& ]a"zf [hb[ps;>wבqÔ(rbh9$Ϣ Y|#(pMfS3y98j! lΠv<l"fk!k9~-11БwqhO/-LҒ̊a&ݤ( &1Еk[,&u|_:ʞ&v c3Ŝ#G;{k>thxeUTFX^=v{SwdA|܃5}jJGx>Q}O_М^J z3:8!_GRr )鸺xc,zA}_"tv]*I.8i1V@oa؍\]0!B @O50 D!_$Ϥ8$w}2cל>aP0cG Ct=p  9X B(7δɐR^.6uKϐp䩕شzD^S6V$/b#MD9[H,ceZXMuO'2Q 1~KMݴ85 ^A<dž8@ B?=H aE)(X$ `t|R噑'~ Ĭ947Ï;Dޏqh@-2!!r[d}3#ma0?ӌ 9If-&Y Y,zAS& [%ިmwR^NH6FP!%Ct=$bl8Ԍq$6mB@$ 0/?L `4- *"ā"xŠc^fv'ε9Ϥn)oS88tx}Ĭ3͸!6J}(-O3&w1y ;h^Dz|槀jl69 g_ DAbYc @jiH#%iɘ0:L>21Dy&##P$)ɨ9p#m,dKf8e["ڂ*n ^&?-@jf΁C\)u_wc+U u,|0\:!3 ěOF |b?.צY0 ^@R [R"8f^&Ր &kHXt&[ͷaZ4KcUOɬCWѝ2ކ]!OQ`^\9i0BT SО h \#Q>6@f 5o/תּU~ l$2K}/%]Ú|2:^&r妉w}73 _d bJ זx/x'/?`{ϸqvV |CMZ`s&>- 3񄳯3YY3u T8+.TG(_}|Qt$W|%.X 7gjR_Z^jkIrbؕ<^>ަzjy~!߯A'Tzpendstream endobj 388 0 obj << /Filter /FlateDecode /Length 3822 >> stream x[[sGv~_>X &}ngUNYS.L\[b`…@K|ogN$ >u~7 ?obvBFt?nW>8fWw 9 b6H =̮eW#iBhWn/Nh{N fX͵ģi/7ݗG{!mV7,Okqlw?*C[˟6BF2yq{К$ֻ2jyV{hZ^j. `}ws:+6J77s屚s~Ks)TސD.dYojdy[ݜy޳Vc{e޴n=2в{ Zuih8Vis]1@ ݮ6IυkC(fKv|]7XNY@KKvNuo yRmr@CFھR16*iAIxӨGB(us6tiu;N{ڏ#3Lo_^(:>$Wo Jix1M1DaBRGlw"6br.S;Bzð۬~Ө[l?^IT6-) !f"vSd3xkJP].Ϭ R߯2DskkkÍ,IX y|'`Q&{:g  }HA7]~&DZbJ|<lt4"G:?GeiٌŽcM.kFe!yRN+)ߜ|.sfNXAYIt:,w *:4ш3ƯQXO12Mވ|!7:#hkI%%-PXa'SOwq6YmtH,?poV<5?侨Z®=cҫTvןjY9vJNː 7'sHHLV?8S<85:vN2 x1KYa&>)E'^p2W)LYҾusQڲS7h?7 s} N:WaY਍ YsFoVZJ$kQL}(T|<">Qk"Tc\%J|vyzyItNLj9L Py-WfLr qq)àߝg}LK*69]^E.>.>%EO7UVE(KU ~Ow(Xm+K?ԛŨf{}BWy8JU~<>_qM8e;pʹ}xQ8>QE,ᜳ "4ΗEOC(wN:^Uer>!cuK!_F.:2˚ U =UYV\_,_8+9a/Mqج=. >.l]"뫋V)1>sX~~]Z=.]u اOߵ] 5$cԐ*RI[F҈, "T|e$H%=cftL{eb\Bxv3qh/_Χ٢|!3&C5RL2,d(ms$zf41Zj:uN4SXcVV%夆TT o/D"yV>٧2ԣ0Vԣ,.zAN*REM*RET T"&"'"eyE*IEcIEH2'6WA 嫊0j,+&դ"%'դ"0='%qP,*#} - =҂0X`+҂0$IUB rt XOrmA(^S+XAY\[ [#]Rlz"CA x(cy , $j X8)c+@AN0Ngt;a,.{FbUԤ'ciq̤'cIOT&=QE+iYRΩ#'SEKOa,7*Xh'SE87,֙\h)k,ouPa b0nnX|b7P\{lH/;'b=nXl몗,7,&Rd1^%IwP% |טeԫtߒH{{#,.I]5'MbU1LI\VB.Ƣ핕*TMT~ۂC~~܍@g*I3?yg' + v~RjJK]_P_7endstream endobj 389 0 obj << /Filter /FlateDecode /Length 9034 >> stream xMo%9ZyY\7Wv:H#OcN؋)/ԙY̚¿˒*Q9J=zn yr EOWeYNH5Exw_W鍈~dypWw!S,뫶p)]N_B.WzOw߼~}˲O?\W-a?^\o-~{~OkSl˒6,qN7^=^~oB9#_J m'^R?o͋ȧ76م%ӟ`IO7Wax L4¡m\r %sw:_hSƿk[SS7Gak:.EvX5m Np9˾cH >נy/rSQK8.;=,YWP$O7zUoBqe){S] {;qYءq 1m Q.岮IV{ Y^^y*x9Vi%(3l+ْSA"-HIc(rWɧCNr8$$+C%-9K()*KJ}eDo"I$\t8J"#'e+$v!{Q!)ȕR&1`e?HUBp5:.밤3N~f2V\:r;_> %$9AK"儬 ZF:^ph9AKe_rVY-"[N:dA+f]%wuN/S48@g9r,AK.,􅝠%pd Y"ZQ"-'h(h9AHнV2.xI5D'h%:AKPhu.Iu]b脬R6վ-'h8&ޫrVYބ.C 'dzW#Z2rMY2@i,cr S.$AK-'hɭte Zؚc3 KF S4 VatrB N0Z9r8Z:@g_ZCB-'dI tAK1-Ӯl9AKn6 YrF'Z,U䔱,9i-#`I`NU.agZrMl9AKF9;[N:.KfZyNe3 Z2)l9A#dy섬M:A+ Z2t;!kNҜIБ’ (AK0-'hmIRr־ScN*s  ? <(s hc0=I<{l9!Kr2%l:@gM Sh΁:oz"-5h'h9:+/suBϭ KS?~8'p rṄb<١15@ Qp8 oQJG  ڲ> #5U7AB+ Q !} lXXF7Bvܞ[rk m"~J?h3B-ejHEW>cѠ嶼ermIe KJ?b`XɲXr"-X-Bwomg%2%md`;>yt.FQ]?Wyyt\nw_uʻ܉Pߚ}Qr}#+y3/?dS?v&H'`IYnWH۾r]v~^ôkzk.j#CzrRKhm՚yUV2m=>F퀬#K?ks*kr Z~qL@,ɅcXʥn&V=OʦkU_I_\]A*W!p IY"'|OZN?OGQqIȵ- 9oБ`'d@4ȷNВ'%AK;WNWl9!K/v%COJ =W%Cύ-'dz+ Zz` Z2Ll9!K`T h-:۝%r3 Y;'TAk#0j'hŢx-ku- Y{Lej4)N*S 4 hIOiAtB)AВaJwNЊSK VZb72ֺq2qrd hQ~ː7b\8AKnj[N16%AKFFiф9FaCV"f1X-OQh AkcIA*˅9'+ʽ%cDJ BV h` Z2ڡd h]9%wȖ|;!k>ם%W' AKF[NȚc'h6%Akc'dd\D)AVN0 7:CrVcVy hɃ%A+Α Ye:A+͑ Zk h良N:.:{)-y+l9AKF1-'`%A:et[NЊ{gNȚ֕˃#?QBV hiވ-'h2#Z QLt6;҄AȚ넬9:AK/q%cOK;H$}@9Nזyq cˆyM 6^[O.=@lz? Z{;u3YZq3iyz蜑 %`݀[c݀[p[}@`@ʁnҁn݂]t VE6kvQr5dX^Ym[KX?Tۋ^ի>(%IWUڳz$Cn܅^;U;ҡguTu ª75UB.Vnfv'X֎^o\5e۔AC.޺v X۫94UKA^"'k_NYB.8 - u4#s:AK{rg}1;YӌA:Uu,ӌA: hidY8GD'h9":!k2ֺr{4zi~ dZf9U9r:A+ϭ Z^ Ze];Ȱe-9Zq;Z)rB| 'AAk8!>X!n-3[NZă栠mnNȚ[:-'h3 ALK8_o:Ǐ74uU:YeNzvJ%##:Akc'hy섬}:Abf4JcA A+Ns/A+Ms/Ak͜v<%Z2jXr>c;Y];@:xJvNVf@'hsu朸A|Iߓ82՛$qGNőmM\,QHőYP[^fq|4%[si=q{e->e/aa ۲YMO M~ $ l=KHDv>@2@.ടQK+h;H+&@ !_\5%byzxBڲCH1X!$t,ȚLmM[!N Cd'#Bj$k 5yEH}9]Vǖ9rȴ%1B솾j&e4Fv#17OR2jd\Sr YUK9t : *dV9-#l)d5BVZeSrBVjYr ZFjS2B:ǃIh0@6Ev;!UNAZV9,'d)hajV9-#d)h!UNA[uYeSrBVpBV[ Y[}ZeSrVYr ZFjS2BVڃZeSrVAV#d)h!NAv9SK;uhNR#d)h!UNAYmqBVc X^9eXh脬V9-#lM Y )9M8Z“V9%#d)haVN!r XNjS2BVZ*eZ9FjS2BV;A*儬V9-#l)d5BVZUgYy 'd)h!UNAY9NjS2V}7BV#hYrBVrBV-R)(aZ*eV9-#l1脬cA'd)hasO'hY*eV9-#l)d5BV-R)4@N-N〜m'NjS2N*s9A*儭[;복TRÊCgb-|CkC.7Nxb*HXSɇ˶>/XJE"#hӗy_!W$!-}׮[6*J*_ n#뇇4XN{ qţ<;%~)SO`~uXŚ<zWVȑzVͥ@ɚMhWq["`kcbuɵi,t.X2}VCBZ+o0Hv(}c5`䚋m뀄cP֢NS3½ ޷ݭ|AY J Sx$`V%#l ZV,'d/h!|AY ZFت%_jV-#d/h!@[ YJeV-#lՒ/d5( Y ZFj%_2BV+vwB6G XNj%_2BV Y|AYNت%_jV-#hYUܟZJe,/2Nj%_2BVZUKY ZFj%_2B%ۏZi%_P2BV+ XNj%_2o+:!+N Yi'd9Je9NXpBV+j`W'hYJeNj%_2BV+ZJe2k'l ZV,'d/hak>Nj%_2B:G'l Y ZFVΌwBV+ZUp| Y ZFȊs8aLW9Nj%_2BV+ aԚ/4@NN8vBV+Ze%_r,2%;!|AY ZFؚ Y ZFj%_2Vx'd/h!|Arjt`gP䴒/(AJ儭9J(uBV [s9!|Ae=W肖ym%/ z"gөX"g[t0SĶDN9VȺ'r3 ȑ{qLNTBHLyjyKlGHQ%N#R9:xrg/V?'4_sʞ#%h]:VS`GJj7ZG*6gZb, 'NJvBV+| e}>N:脭}Ҝ e-+Z! eO./tWwӻ#f|~uwZR<(a_osE4am__% [e)ulAM ~.YRfy{QA9Y9zUaηE?$ʑ}/qǻtu4݇loaWt}G ;1x|-/!Фu=FM)r}u.r]-__7_޾ɍۗ/?Br֖Zfh?}x*VlN֭, #.}K8߿c뮤+zO6}!]%ofL홾Y}zpߌ}om/ahN<'mwM"_O:b߶8?~eȏ[/{cH|mEpwR݂7&i"ޔ~p|7 zw}rr񏎒^w}s#|[;RebҿwM'g v;2kwO i> stream x}o$q<.n>kڕi@ ~% 陡HVUUl]vt}dEFFzwt岟cR?O|5]kݧ_ߺ1_}spj=\ǘ7~:NS 777_7x1|B z/?~G̯^?<_a8 n+?Xu?$9}~ݕOӌ߮jQ5TsT,G0˴|\>#ha9d2y:#ӕ||d}P1ud})A"Y}~}JA"YTéZ$<|,r@H`awM$M߾:(lEq+Jh3Edjq.8ǩ)]lpuT\$Qd!q={|6H^+pL3L -r&$A7ߡcqtp>:, Jjk#p׆,=j8QmuVՖG;jT%h [F`嚅܏'ǣ (Ϊ)db&xQ9Tb-/xkya7wcm2Q%J ۱ǝXѰYUcWJO&j~lz7:e4'-4"6"1?]I$qvh yA*,!Li6t~54k yF3l4;h4ϛaYdǮ-Z*0Y߷H:_I.UC``}s|ƚF ;m6m!&m MVXN,$Qy+d7{kcy&oIά&!E\?YšZE5#(rޮb`g"6E5[ \8$lW%[w2X-~PeQs 䒌,o=ȱM7k>:GhFmdZvck8T6=x1[QɆcl a9I.JW br]5UK4:- e7eq {(K*cm#>Fy(?s>_VTzL0YƮ6f]ٮLS>ƦʞMeiC,@&ҫl֖h>SIMrI4v{Z]̽zXw:_¼*+kڸƙָlJ-$om'}HP%lz7g&5Rc״P0bUrJqM`b\G*cX§|cSWFz t &c0UG1TĎOJn4o=͵d?*#c1̲*f.ZħG v{GEbES+Mb4JIGKdmGXrIvGh:V6il XȦ`?k1XEierĎ}vяU * صzf,.ڮf* jG=*c+wq]Oюfܱͱ^;m-f_}변1O5:c=t#=<3oph4"UrId٪J6Qbos;Vˍ6]c#]rt̸g=iv'J.l?MPwΰ-C9Y;TыVI.ǣȑx&sqrjURi7D۲N=jV,_M倂5㌹om}[|ʦ匓MrI^=/X\$e#ݍ@awXn4҆NOfҊx jXW7lۭ11槆6(|ClQ%b+5<_X[څ4n;9vdTr 뗢e޽F{f۩>uuQZH`],$o<ݶdUb}~P;.闦Qɶ6k-nlJŌC ,{tlY>h?\r  ytC] #v7dr&w^hFNamh wm X0w5 -ywn7gͤL֝Q=0TyW˹x:VUb5}=b|8o^獼ucM&4qFRlJ^# _lUD%xh:P~Xhdy7ۛ3\I.þ#l<ߌiR{ƫV;c]5yN\:תͿTb8ewzǦ86c}#\-3W\Џ#+,`,7ō_K@2AiNc,v>LmPg,kViS6_d@kf?'ZIl{GޥoI.VF}yc}T7xA~@ikӱ#qlz^n:ϾFv MAݷALC܍|#o`09=0I.c2D%&{(Ø]s Coեw❾~ñ7Í I.{\J6V`*;~DH3YJ%CyX]2ʎۣo=[{/za4XIl36 Я>^Cu? Bm 0^ $:gHlqU8= CcqξlkX}\Gi@ͣ޽X-Qm\܀M3Z9;Eo4f[\FzP;nz#ImݥI.  K|*d1 $y$C`彞Foپ:Mztpvqo͜_`dl/>_žK{FqAV%svAXxc $N>c<]#Yj HuGyCX&,O=WenTrq~{FG&jK.~k*'۽*D1Wp}J^G9=FyXfEsbj4MrAۉKlL'M_˼0{}7J.jfLUrYzvC& mnѼ3NT*3WۣRwD:;Nl]5?}MmfPvt" Ǻ溃ۡ_,P%ⅇ7M7L{o[[gcbej/~6^~/7v~3i~{!Urwz໮GbNsY[0Q_M k5QaQUv5;|n͂8<%wyJTKHtdH)1H/wzOP"oE &R ضke% ߭0qBQ>ACjDz){?P}a͒IQAD%c͓EQce$IlzZ ɲ qO$SG2ᣮr%nSx8Ug\DVB I|RMHf=)Qw Hiv/Y0MӳxHǃ E 2<V\pK#_8VS|HMټE$Ew"@%Q$8'P3gVC  %5":A/:BJ~qd-(gRv% 7rY-M.)#%6PZJzVR_!&ƐO,KrH))Q)Nų(3+irii-152s$I%)ȕT&X먈ϥtT=lTr_Dp|ʛ!A \f3u%0EN #7Ҏ>@HQ.\k;YT l" ?ʒߏ\.zOG>#vA}t3@ ž ;._?#}x6CC p5G E8Vja6$!x71 )V6&оF 6Rh'1apbdIjF;8 l!ngEwN`.Zp#HZnUp#Gn\"F(7RL! p.RlfqBQ@G 25xwb`ѳ =(b$ +B $H2X L&ЋJFB P _1$F@b CCRxV>bHQ4bNB PBϩ %(LjDX 1c M,QpȢ#Ȫ!ȪK!GVÎWMjt X5F7IPs4ԈFO%)h;A^+܈~? lt(V6VaoH6:ͽntAFJQѧG7SB Ŏ.1蒢&E.5NZ.g:.+f}En[mͪnѠ+]$ t:NbGW ;:| (|>G? 5; !$h>zaGߌT#D7yh4|G|Y)IѣE#D9# 9gMУ^G@G߬M#렣O L t@GVD<"G/_ nf }$E~V(xEACHoMT?O W9aH_"$wj 24&6 DXO Dzh_ 8"0$x !x0dhR $qB{Wr32Iռ a)q$aM)kMQ7%+]O(AnΈq5$XBA^HfH\Yg$ks&mm$lH9IfX-+$UGҨ\ JD޸A$E4YC]k\%YRvWD[v蔠#~$Mҥ!{%N߉@?.ޛVa 9jX`# k@Ѹ•7kC*'N'W@Z"%Ly=D^;:1 cґ_+ )#.dZbc*#cnK%}fnJYZ5d$Om} 3&QmJ),~hdMfBd7eɮ1e(Zar)YK?e\ GAace$E\Wnau=fpº Y\%0w QH9 J-N A79, tsL7ghMa}cCznGl͎$ԺȤXclvʘ-qnRdkk(R dd'mlekVS1~٪֚iպU[:iU\[ dnQ!m B-6YY:MբG7iέ9Nt%kGI/iDk]ŏnnټGBj T\$"`~}+V& !ћt w*-1Y hB( D5VG7NZ+ $H+yM^Dd:%ìƬPm %!I1KAZd.%8%cRdP20PךdpO$eJ-)uI ԨLEf-HEIMUdY%o}%itP2KР$r\K<) 89;-+9 Nj[ K{jœŷz8U'KjEjenEE;p^N*pj[ɪ=-&v ̭Xdn}U '@Ttu%;c׋NfLdFWCCO*-p2cxܳ8' 9OfdZ8c4b{58#QDf](C[3(@ ,UDuFC1:9# ʤ>!ʤyEC)9E(!J4!Jv=XU%@"P&pQ 촴 ' "8N T>IAeɦG2ʓ'-"a$DU[ARZmu XFVPRq5!Tl udf:IvP&(K{&JV_}KEs֟Qpm㺢 ^?lU H2 ҽ9iϱdsY%YN š|SkŖ5W-JKWN͸[m\` j:RZ%壭2dM!j*U+}K)|,['12XbCY6W#bvjm-f'ӴZvlh,hy-(5 Eyhefa'[Z)iIVSl&۪m߅VeWRVj5IZƹTgJVʔbvjjj3R9iD[9*y֊Q V՟\ƟW|K)YQjncj*LQa` B upx:=!P??wnڡpQtxWߋt*zt>||D'WpD SI8Ǜ7}Xp ?~~Nm\|jc7o78,e# C,t;ۉۜ4:/xswAdI@N:tY߱.S:tJxa?B x=L\1zoohx3] D퇓sCG;P}*)*9??>Mcf> f:χ?^7on7+\ )S-w_?>×O2.g:~ztQ7}yKçۗ;~oPviI^ _/7OP /$XRT~ֺV]F#+JRGu怞zNy$elՅ_{Edثz&;GUV<0M1,/?c-XX@p7woytVw~@EtasE ɍ><\ɼ:͕3^;O)$CY- ,|u]]Ѓ_5eeZUldu36aW Vwf!#zAX_)n|2 \D04ߡ:|ݒ"گO!= gD |mŹXimO֟jX2c6U2x65y՞ڞJ?kA#- <6 S/1,wD!LLU\u֩fO|>a将sz_M9uq!;];OBҴy~~ؑxEn3dέa`:~!ۙ#Z-?|lPE|?=~Zpy ~x:}D♼`&ϻzSg{aϞaQX'F2.Q{YN{6 n/~,ȟ3[c\UK?<~:WğN%;1oĂ &} i,}^gN7]v:74χwqɁ30~A{ ZtPbE"Bn5O?޾NOQ4'R)# ,&ҨÙŦzӻr¨uxߝX%w/Ei;&D$_L?g;rVΑy07R\|ÛϔIB ]}ǕQrRxOU FsoL0ʸu(h[]Qߙg9cjÝ)~4u H9%ǵ(J`3eU??Ssu %qcv1wա9QW̉`^:gѣ:<#%s*/QNi4ğfH;ÿSpm??,19{yAw;f"؝gr©j)5Vs[VᾇOYw_>758 "h bWŻ_AoB7oLPa o|d3ېe-D]zl2s4$K  |+v_m#/+,3dYBq{&3[YC}o<$.-1ɑ PO!G|>-硿 ͙0@Ћ ;e1db^< Ɋ뗅Qx;n"zUmQQkQ]\͇]X%Ź:n7+EkjhW$`R"w0=#؁5TÔ=C 3߻;乐d=AwZs[rdѷbwvMǸBi`>D-[ `ڃ|u}{24 m5) R/0E; , ^WVuy L} b`i}ڂqsݭ`D4=`+Ov< X|Hs5~&%]( *˻u&`š@#Uh['DTF}e EHcvr.s]+|[GJt`f>Elt o㇣!BLHYvƎys%S蹡GkH=a& IQ xOO~;(Kdr3]4\]}SQ)}kWbMa^o_8*k?c"-& bLŖ[E v0"3O AxJ=A+2f#*/R(|C˖|raw4nZą8|A7"J_Krؤq>"r<n.2a*)eEtK5#)X{ 23/X2ku\[<:esE:޾^2A$ |מ4fspsQUԭ" q?>P}1R]$:'jYy~ԭ^st'rI:0C8tR"#ME2X5^ٌf@p7W. sA" W/pp{?+ZDaҩ~k*R.UOL]| ݗ;A\y!\$1fT{^R`'Z GӶD.ro:endstream endobj 391 0 obj << /Filter /FlateDecode /Length 7076 >> stream x\Ko$q$Cc/nr嫪R Y|Y䴶;_ ,Ns+ dDGDFFFƫU߹Us{ە_}7Uqq8{pկAȬ+=տ}RX{7]`)v)nitowq5].zޞWO I)uoSXZ7X%R8 4. ?WfiuKi r9.08V#K\y?nl I%*j.`*UpC *&RLC5VTcb*:njU1M~솴JnpH6 J|CQ#v_ >F,DXpCC 4OwHJd! na.^B-+ru}fsCoyfuBD](bAYc"C,/+"DꖕH-ye!2ĂH)%{`+:!qIzr[ ޭDgFvi~9<ć~?mݑIRHbɷמBrz~:=o!3G̘;O-1z;nD$~=f]Ki#}F'O7MWLjL02oPPd|U8 hR%Lvô0 $,{KT,l0y(Pa먌EJoq&FF8 C*8`P% )QFtMygC E ?%=iᣃ/>SiىCCA6Ϯ`qVU0 SR,w!is1LHpGur8[( 0kCY&`W v4C J'd#E#Yo[DI5F`PZtd"!/5K0zA?7} 匩6DU1g5R\1 Ed'j|M 3PDWE@-4+ (LGŖsSvH;ҳ)~RZc(n + {h$,K0b.$R0-B4MB?֡P5M܄:](_RUC ,>6 5C0.'PF;*k( բPEr[.,ZDF` $ꝗ+LrWWF-鈵Wr##-)<9DCJYIuFq3E)ߡr5-lc$039apvPVJr RXJAfLJPZw\* ʲStq(+0JDTHR0*[T\č29MF{T,aAEG,zSqy|#S8.$ *`Jq(|tYwxQy_J:P)N9UPOnR #T= *d\0B8|:.K)%.RҚVelBC#`^AjDt & T0S, %vxD(S邡B0rVy0V2SC@掩P`^ = )-TWP ѡP&` 0Б\'9 UF snU)` PPa(}/z  s{!J , [ZLQ)s2 9=6L9dP X$,7@FX1 #_CF`faQ)`` OYC`pFaZ>cf=do.\p܄ё0 y#@@]􊠫} m )m#70L@pF.N1Y!.a`i b[-jaIXC M$j<,YejB:)2{ ze p Oϓ0-ضSגK.̰T:+hQ:Uz;<:T _+0bj:HyOCPw(\2kzͰZ{&B%Q*FZ -d?a4U' TyxLfDQ=Sh!8aDbbr8 (J\Oȧt"X`n21 0糩{]C`n0T 0-E}H1F9WR8{K2LlLJP^5Iqm a kQ)*am38ـӗGALX^@Z 榡Gv0zn$K0"ܗȭs]B`~TJ)i.C:cC񉟷LtR#/`7obtT%,k0b0Ŋ*YAЛhMHF^0 {ȅ'n88 2xU gU@.!0wQUriD9edDQQ6kRԇF8 CgQ Ge ȪF`:.rx %wyG`?Gg =&}JiN\D1'x DY'M1s+\*o̟jF9 0%sp5q+ I̡>˴$ ^asр(m $`ļ0_߄/xxDv|ʼ>Wq5ưwυŭ6>?ix_HNGh_D@VѴ~wFi}Ot4>q.~h凔0777λwqo` j=?<Ҿm6ai/χAH>h#Lh`%CByUAd4 0FC6{Y>>z?ǽ3gt}c6ؑJFr;WLXWκL&P=-9'Z{3)͊iiWqpz"z~T$[]DZ4M4aԬџď Ѕx~c˄2=l0Ϸ|~|:=;r(EZK|Esˏt~OtxBKՔMaNQ8G {P\#i j/Ƽ#2.yk(ٝtюͶ\/϶h#'ۗ-$Ʊ VY?;|DT9Dv ì;2 x2lIa@vOyQr%>L|H>^}Bqty-!/bjI.eSzmh[|m;2ڻ "</%}w kVeZv[nv}&ߑAfR^MHǟ.S#@99Wξ p?;&7Kƅwם>z.ƣb܁iJ^N]9r5 y|imG覾&zn{ʲ)j `;]{[wgbXF׼k f9!,Hnfr|>oww)sHlyΛY~sD10qP2BO(ڧ1u4Нڭ鶹݋YqIM\E~>]iD G"jO/9]CIʥW꼝a>xO-(:v5J[!oݚu9/]*HJ. 6ʿTA!{s?rOA]vSBOPV _ 1-uV(ӄ"{!% !QA? e͑䃛cώ0xqߵSGbAJ\(=RCGXH.G·hq;!{. gIc(?O_hη?ޝ)`."(ab.5j܀(7GT 5iCN*:7gMj7eI{2.fj`9쁚M Zr?s(_ :tom,)B ]Kᝮ\.߉uւKIc>#HDNc nrAeu=|DOǝS"1b}MuSG'Ji{tv~3|H#K^ڨNCnw}{=:i: !H+U l@'.k"aVtcrͥ>_?n(mB7RֳP0፺5^-` sɓTuy|~nA{F(r%5yMM G>J{ɼtܟLSJDNb#( ה_#`(_6)+|Nrb5=uّCIcK9r^BK?/56w [qw~:]RjD`>Dwx 1}_H]*iKU\RL|(t@3;Y/"aCGAaۇ[ (w9d~2 O{Hs%<$QiFףR\culE`l,>Yġ 8i9 6!āz[Q~gäR~oj|%!xN]jb1@Rf !~~ST_νQ|]Pȇ/K2,NoY>$gK/q:wO_{՞%'>}ܶ2Q48ڴ:ʛl<瞁s~̈a6tR/ (eʼTȎ"-JEQbqRqe4 lKS%qX㥹6\I7Md'>sT=]N^Ĝ1V2#o+F.1 E~4N6uH*x敃Neez(ff9QtN/<5 11?*=n3ǏS#kt_xN-OeT ɽ"viע]Co׿M|="5/thg P@V[Qp6Dyy8P88nFȓ' x2f nh^*{~Uf= I'IţV4L,wn󋛷;ك$ӼgMĚ(FNC-s*6ot~]|ܖ},vN^c산gP!}ia> Sضbv~n/E 1ƿOL a}|귿㛯냏͏-y]aWo˒?~/OGi <>"qiy~|s|> stream x\M9r/eӵ(ݐ#֎ ;;+#(-qDvvD[㘘Pge"$Uk3ڵʿʬ?~^Y?_߬~ua]\[]goNcny}؟/oΗ/Wë7XY;_Voy尹\WZ>Ӈsi,lJ9^O/w{՛;HϯK`!o؂koy8c֧ޮ}~)ſyM;?>OЖ7exxmtZ1[c)uaַ.qJ_7?h[v , 8|!ϔT*XU[?0됃1dG+qX}eSG{T4ہ*ÐUN1]PU9 Iq:O2:e@P:ס[+I{gy4V̈́R#?P@ex]*&Rܣ P/;/-q6'8&I'3}-nGS=Z6t.g PPC2:LqT98hRmPH8hRmi_t0Wl:L!3Y0 ֿg8 g؜wll9' y_?n,v%d>?n`vDZ3L +JQǘ(^'({ʸ6ǹcyܝG0M!ME 0-y9?7F  "$ۜ?T59d*x2xRQ5TTO*Ɠ≢Z_\Wzl}:caԋK3ʷWz)p-0/գ^\ ky1pbGeEE4Q` 3sqn :<- 깄[ڞD!f4(-crPBs0AX|Ʃ-{`2: ĉVЦ +bAsㄵʍƠ)q1!v1Xp૙E#|ChP+VrYj rqq"&;Q|PzK|Tw7e PVB5X!1& Eóyܨ8PD9Lt|gă@.)=R%b)N2I([ɋyCBZR5,,R,o(򿖽;Qlſ(]qe4j"u )#0Zj8 gj@\S 8D[Ss!z%SC pY{Xs"N1p:VmNb#U] Z6l47Wq3gB*Ir%"xb&] *mq!I (Dx* GPScuƴZV28 EU{eY*wR Me#%8ZJ.&GQΕ3SX*wR MK\z"R#wAJr`$Ң% ;3B4Dj|l$`O:^/_@'&- RBMQNQ^)ͽ45Ai$LWBUMt*BZR5,Q `t,ƠnZpzVh "^C^2I('+B5`ϣb"`1mw5$V5J<tڳêê8a6FЮ)ϛbjDQ|`M$Ph_A O%UnKmuG(;z+GPScuRGc,6ܓvXu6aFJB$TH*h;DqYV:^GqiMy{DO| ӡurJ\: "Xwn,ȯ81= .8QbjGLP!FzmjtAVBw3Q,g-qz,n\z}eF9ߔyqws9ynS> ͜01awVp _py( NFD2;.>6M&A9tX9Oٻ1&mW5,ߪjKxyxh1~L9ڤᏇta+iva2Q"r-4Yl7^mw<剟+ *Qx96 O=/X2Z?V:Kű>_[ |+^ҴKė*lu=8ߣqUңh>w+jo'Ch?;˦asisr\h?0r󧲄_]aEî}ׁW A[z \<%$C*P7bB6yy)ݵPd3[/^sC3&S(#\N<M{8P}>,Eq8E}\49T,y?#ΉU7ԕLnV2Eo; WM>IhwBbyWyPE9}/$%{Fa%@QÓ>+ 촛Z"G[".2/6L!oZ P q9IDܾeR)vYzA~ǖkQvv8J'-,&~⶿o]hđ;!Ô!&).Hi$&^5K7Oh=RY} M]1buXaҲyr>ycOztKbYv؉*|S#0%W֜؟{hTgqsO͉K8wᰓ2w#Y[n8<L(3|4Ѝ7_k_asS/OkZ)5X,o8H;psߐJ*7<)_orMSrpD+`?:zt,˱H:b5!rv$LvZN=6=(G, v줬#sI=&qz*ag/?}B=~xYj}aNx?/e8?|_t? c{'wu_~rWSϯTszO߿WSNPQE! _B+X7۷.Q)*UG" U3~7ca.^\+s;!רָm3endstream endobj 393 0 obj << /Filter /FlateDecode /Length 5465 >> stream x[M$7n_{qN'ILJ oa5;=hPSSʮVU4쩞VPt $<̜C+5 {mV 8קqjX33 ?iw}Y+aww+Q}0>~7Ώx]xwI}J1n]֏ewgv'agh,AtmuESМ vIzkiy5y{5?aVV 6vaϙfk[TR[JLF0͔9k*efJOadun77Sf&#=l*2)R?Ô>Ji`S2e‚ݫS,}lxT(X[aWɰ 40ƆhB&\) M lltf*'eT(-WˆP3W\3Bik6\pߜ*pJ7Nݧq6ޥnf ~U->=?t k ̤=nb:hf?5}>?67p|v##׽Vٍ[V q/Ø4m ?>u(qyD>Vix`cipn{b19pIku%bIajT,L T%iƒ3cIaj8?̐#RQ{%51YJOaK\/-sS_: sX%| <"ւUj^G׫zZk*b\TYK{ `;~0uDߤ_;:d>L+Lv=$𺦀 T X.4e 7̼`*Pd 6id{e3Y,CՙYѲ`T¥" =<&1>:hkR,QrD TcOX+KtHr"  ? .ޓ'@\ѤXA/F!e.:"Prt]lpFUDqeikt@Kbkl ̢]VThYlBjfG#hP R4f.tԾB_\%YU@[3dJ@)sm(N ;*!eij4N I0J(*کpӆK;_)UhYrZ] c. \p꽮*,9r@xGɫ6?L 1Vhʴ,9r9qeCJaB˒,*1ꀕ|>F++WbIU sZfF1+jjVC"X[(]M+(K.h79k:9HP(uSu.RŎS7!V)(ɂYŴϹ( _XfD^ 6yLQ4/a~.+{}Y 1PPx gLR 1>X(C37n]őF =/vˆcsLa5# a5c a5Áa5a5;aX1Vve/Vm QA[pRr!,9rzkԱ1NܸifK+%7L+S[*VԆ[z(ꗆ xG*92-KN\%‘|`k΄Jd\jQʴ,9r* LI:s)BIAHӑiYpbrǒKܱda}E4JChErr ]&!)xuJ C(fx,˔JV m ʔ@5{ϮDԼJ1P2rBF 5? FE?_J@ET5y*CY]~~j#_`U)U4(r 0IXrW/Iv@K|MyJuuOgVbw8"m"HSI[nPm|趧i|9JR&5XVxYF*vgQgOn l>ln3%ٻjhӤ"aC7n$}AomGt4mnҋ@ gKӢwkܠϣ!M9υ7qb+8Lr?,clq|󛏿yeV t>ZcO쪝v[o>ýkfC& pZx*v]Vyz{=L_Tvx˵hKTvӿmaL]|R"s{8H-ݾ+vۼܘ(݉VR=EWN5nSLZEK)JÈX;S_/,L#[s|(q5XqY^ qC_#@EƯO\50*rP~v7 \ :TI_ iܞe.|y~.Н[Gnm~F3>*vq}ۥc6B@cj5+|2!2t [;sn/a @9['gp{K&/A#tHi[R(MRQ}]N&X$!$YKb-ZJkJTTt%"VrsyɜCzQPһ1JY+ \@l?MNi-MAA}HXvS gzޞ[ƺ%JnTVȘt|o?J'O|>T?3x%+N(Fr):j$VMn1?Ǧ8z6+A>l,j2lS,Oe\;ʴ??U i?lOv vO'l NQ'DMtdy aTiYeX_ l8> stream x]_L[eƿӖsak=٢^̤f$ZaCY8nݜZt~-= Z7M,qB1F%07#1F]iv}'/2DQTF_g]F-hػ=]8O1%<HFQ{Ҥ;f3[u%6Ywai4[{"r5B'P:ʨ]ȈA?R/Qt2C]~ PpȻp}NXe6R&W!Z{*Oo'K=`^n_CҮS+Fo9c>%eB!z nOnM rB?Ex 2p3<C# հ'NGW`L;3BGc_?l뉸!Zjr-VʔK oCޝB(ޭzaM v 5n<ܽ_Mߏ85wWV캵3btH" ܍=C]bC|CIU;y^ lÍF? ŎK. 7ڤ zw?}#/endstream endobj 395 0 obj << /Filter /FlateDecode /Length 254 >> stream x]n0D )KzɡUYGb,]zhCu<Ҳ꣬74؞$S7v^ poSlqӕ϶CaeJ6s4HSs|\m^H8 8ێTkR9H<yzzR xeH* 1x98! =Vu T|!>k^ Mr%k/8endstream endobj 396 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1811 >> stream x]}Px]T^qzv7`:155 (QcU!1 ;{yC@HMDXbejlG1f1c3;8iL3_Cdrrm\neET]pex(-k]F%&12'eZM]*39AU,} +Ԛ#/(,.] v{^"GFd[mD6E$ dIA1Kc~4Tha$b59Q}m|:2ynזv(yVŕaXߜH h2_CFt4ߨeVduZjժ%18wd>ӘM:n_Gwp 9PcDCWwh.Us{27ut#\rџ^ئzT"0;H Er$yXHx2t}6.#sS8ګiuݍ=P)zJ;-'/)lA"UGE=:d$siU &cQ-⼾\>JΙwKUHAxcz㱍$S6t^cc<-fHC]h-Vc_xrv` Q ܅>!7kSc"sUg,#n]~ՍXLรe׶ӊf1]:s[^c!_zt=N[Sܮ4;C(ϏLi)VQl ZJ6Dw{60$ )F2DkIUuw'3?̺?=;z3dp: +,3Ri4)2sP (߱vdJI◾$xAg){ H$|$2SaȌSl}vRpޫ/Y_,yoX J,Op3w*mxe@W2lvMUe Hu/> stream xK&7%н˫ћ0ZDBшT$j3}x̎IWP ,w;·ю=z }տ ՟5j~OW{u\O=||<|z˅ϛWBx<<8UF _}xǷ_w}Ƿ_{黏opFͧȭxj-TܹŧBx2[1ou/_/рy2Co?|zǯ^ܿK9b,^R ٤JLOcB6O#[r OԮfXZ1iqvmޅRj24!Th!v O}8f7SO. 4AZmu hGUIΕ4G<>hKrd~u>0H>7frU£z՜ Wy#=%\5|P%/^,jE_`Ү ȋP؁{R.KphᎥI}I [V#>wY)Չ̶0pڅ_hDWhJfsӜ5. ]م2!(S|`9=UWA䎥.˫ٴ {mv>?7V>_U}~ \5ׄWzͭ cs{sH (ҟ:< J \h 2[UZp):Gdn. eU'2|:9hX[8}}kn7j4 I} s\5{cUI֊2gAA0^szʻ}Ԁ7R% 2evegpTJ 6)<}8z2u"s>a.O/]0U>i»&bwHR/$zNzq}ڇshʻ燗wAD,,y@LָjΘ93%9B\0doS\ 1]2&2؇i+TlÄ=e>; _ Tbұ^00V>LXqUÄW@[8Tƀ{^?>Xq+Mz>8م/ d.>ҠWE75Y`OOskfN}=VSUM64a9^eL4{C0c}>, % Tn B{Ns}> ޚZfb_h#NDD Xgw^4W,=_l}Nهsw1QźqN5 5TbŞOϳڇ&3BZXb>s~h֜|1{cH kh"}XbWg-8uN?BK}K!ðm" r Cah#[O>B|ng~w>ݪ9-=RpJ>&0:xj|,Y*߾'aNSZvzh Fo m u![M]&瘚l#8i1٧f_Gv;p׾\u#\Άl'IN_;B @*5[dhYY9 mv[K+uP<٢y>C_CcxXi֨iGu*nR2-c2>lTƲ{ы16Fe d,C1$ޘLF=oC&j"2}pSZLFCQzЈ ^DFWFdÍchʐZ+KA"O'1"mdL%zKh,dL[3#x2&cچ 1沧dQȀ(A"c/R"c~z1Dzg#2@4%ȨXNdLSȘ:M$AC"c"MMUFdTIdLՈz)wB !DFNdka+JdLЌI"^S N"c"3sǘg]5åW1G"DkaT`;x "h嶏)js$:ohNUn6װOh|l:?Wy\֞e H5 @޶XM-hS!g^p[±xNsשaC5x*NcW [a.a_aA |6re8lYnElʕmcPxƱՅdmpexq۶ uKIuzCb3\0 _8]:VW)k |Dt?z@=ה:.M@ӠK6ate2}*9Pmp0S]eGr. UT-$M4ΪN$D:O7CJ<u{mCϣtT\dO$<ġ^pʡ e&Z`מ0Q%mT :wGP\l,݅~ƌb8ӐGZ GWr[u7{,DnH"9s6̮liěu‚Wцf+ym 7GD|/o5G߾2J}ۗo 7XErමkCn+zNI_, Y,YRh.MKj!T\6)G6) cKʑM#[%`C=鱥lam'rHO7].%%nRR8COV9Z|NB3l􎈚]Q6X#+z>&ddل7!C6!~MȐMȃX\ȐvuPCĿ~LJυq.O+'w'aG> ]ʇKmФ04}Cچ!QoXx5]Ojֽ񤕰`. PAVF$]D='lc d&!qS.a;IՄ-S6BmU6B+lC@)놝]Tz <&lY!yyk4ߦ2C,!gf9%]\u8A3@ ԓohsbM*Î2Ѓ"2) ϪI}"rBK Pۚ<.$Wt9f&hOrQ fQQ} kՎ#k[=6!]&o=#nF[8D.0jʫCWoC?j,5=$3ɸcA:Gu H8^fS<[]TjN2敞 y>w}q¡E 8Xe*NlE;K M8U@a۠q%T++㴘vwKUI8KP]5`8X5Chĉd}T?I ޶˔pglXuN%F~7I F2 #I^vD)/QG@sS#^a62L 8;II9FBh(}6`.lbGXa%ˑRu>#UB2 1 g{ƚT4~O;qW KYvA9tVU3G`i3 Ll\$,Wa’ _}lYrT Lq]\xm Ȱɱާlь7l7㝇PLrؗco 5POb!(eo8-@b\Gʣ>_FC\UE}a f-DN'KX3,8?{UN[`d`΃pau|2,BGYbib@SpIBK\PĚ뷼(,bqE n6 ]d3žFM)0Nl lt-,d=}![?/?j.d&4q!5ks!g=l/o֍/dS.d?[B~g$BPMȑ%Ԫ'#{(]wm8q:/dkW[B c~8ܭ gI>?B%\Xȶ(lT轅l}hgB&7G2fG6(68rd{]B4nBl-3"a!4p9%"[r z{pd 1_x#P GT?|fW9E(~7>GdLn] 3Uc_>'}u\wÎvQ,dW*C " \K7G/-x![Wr+  c -Y(}Q6dW shDNSv䳧w:nxᆻOb!-}!Pi҂mm0d oaA+Æ[E:B>q:B-ݖ G~E ?9 74 @Bf?@h]u$c$ZNg-jOcPpRkCg-j?Π܋6՜HF'2HP@|m&CHSUMW,ʼgpLS,jc 9:Y ,*Bx gSjUrp4΢"2 ro*C΢ڃh1AY@aq` QCNJ6ؑ80#-esҢQa,Zx蜅,6Y` 4=}i : ^瑑| jr4֢Yĕ d-6c-R(m%#oqUjove-X9oѣޖbmn`-zf4-z%p7-:i !h  o;o@Ț=EG -2VeR$.$ $.@~!qؕ q1`F â@r-F% Fgې@z7E@z7e[ta[2>ExEBbMb"X-=-$FizMoE0Pڢ)`"o@KBBtNPb⎬!kQ֪N֢eXJ(k1E XZuE3Ң_E+gEsj 1ۚBbk!)t- kQ#Hmt1"]LLĈ_|HaF[ !mt!#h >JQm#h99m0ZP"5ߕ 96";aQBbEx)@B*KaKyO#,wL5|@6+\_!M _N+p 5b  ti0£g -c*Ycڀ.|d¹3E'59TJʃO%[[D.%fiqHvI?DK: m\ߓé $>nMwCv \F͡/ ȵO6Di<1-#,X0.L%3 !+IcNEcWJ^ 8mt1Dn5'*'{ᣬpoHWqvb~:ύ|FcmF"d"FbWw#y=;WtsNj P6k!Tf]j<%`~ 4~?).IEvC)r+ڧ'k;ᴇ󈌞z[<uq{ݏ21hzD5GԺn}nHЄ:+̐:e7E`xh&4 %j.Lj("e~S fARzҔ3&f h0=Dj6\DRF{h~Bx`ͬX.Aj ̗A3ZހD;uOQitV>,M_}H 7aN51cf|1.eUh~k \-R'w߾[ |s$QFobDωb %DyĊ!ɥkvN&L$RDT4M 5[)pH: 9TgMnț;&"2H+2YV,=jJ\ؘN X~\ݱ9NVSoh% I͇̠K9I<4;drdBn݅ X2ZȒ̏sr"f0庮/OE3<~=FVڋSBERƁ9\2lyNKCN ) #+ݤS@f!$FB }%ǜ0D֪LyNR |-8M`,G ޗ+. J(H,P hHL){nF #Y4/BƟߠp{\Ty#cBz* f0z EuDA#!q-5&bJDb xbOsp] HӬj8Rdz"&!3G&"DAZZZ t r]RWBp1`SpA&kwS2"cQƧa>V5gz2b}3oj,8O2XG8 X%P% UU٤jHb"Ji 2<|h0 H8`iVGl2$hAgTǃ0`Ug+=T肱]jWHB1'RtyΈ$C+sldqAHb KG)E/! T+%U$D eHTG[ jBPE?n`Ø I,yeNW%TB7FxZZ&BJ'r"-%DN R`+Qc {=+E M#fŹ^->P,cf$/2#w&gg>+Kf-A%W"ɦR%鈠:l([90 OET?d硿DjB_$R$V}d(oѢ.T٥$x9t|"T"@ϣ"Ȭrc2{)r FV2jڅy֪D)Eq/"gۃdZۮȳ[Yգ9Bݥ9.P m?)r1 .1/9U%8 r~Uy.^k_@&%9)AnR{'c-k?}gۈ tmwgGcD rk}Ens(t4"~Kw; r[WWjrDnU`<[? m}nLH[Ƅי稜 Q΄0"B4Hy'B˲/"1+"BZ6ňf)i=,Dr8n΃t,_ɦ;%+B3(%s1ؠ帔.͹}V*2rVb3ZE 0 يv3zU:5߰P`cKѣHoY;]G}ޮbY;.^}H-jˏ}L\!x~jn< ^Crc4lIG\d2a'vddSxT2 n@~B7KrqLƸfa@,kjh:,t/|y]b5/nI*~[}h ~n* ̧Is\fimaxi =[%eBk,, }\Y蠜,Ei2H?0e죘Id6FQ"j♩j,Hcav-G`\_ڂi.B`追p}CKAч+?bf_MD}qz,d Rxp ٤ۤ٤p9=2٤V`I'-&"WL͒%bj\cj\jq)q-ƥ,ƅVLxL m15KbjԊq)q-S#^NH8(@.#'w^ΈA%uKpESRyISVŠuII?$ڢ.b3l#BgՅZA߀Ѓgf+&=]?.wbV(^9 -'+堻2jmvb>d'JL@4$E6C`. 8'Zr.ItVԈy܊V аʛOBӢ2HHܔȱ/ZlDϢ{#QG_D9Q \d8IGAUE8ĖbpȆkV#+ڝ[Qbރy5aB 1z% F&\U󴊗E5Zȱ+# Pu+MZ,+ۼÉʌcѕűhcka9aWX6i)HO $"4E׸nD-3- ,.p q 斓2B0ШO LzO2 Q\4D>FZӰjEWlѦJn _|gi 3*Y}o D-0&sdT|ۊKX`iS kJVk\ XEƯ\2TiZ$tF+4#į;P) iR(EDh +KKLgDlj]8z 9D؅8ekyDNΈC)+"8} 9@gObޟȳvNtOho!T̻"542~zrJxzBrHTr;*rvzr%W9䰑3 Z< 9uI½]zU,G)Ag"(6;RCRRz⺍{"fݥ9R!h^56&j)U`#܅8@C)i)h)m6+ݿ"OqCn!TՋm|z qo"v:N6MDnu{G"1!|ǘ63:Ðێv_q +NPe9V/hdw+窪^CnX+"s-!r}tKBl|^\}'Ɗw噧}RҊ"oSNO}Cn+u E:= -RᾗK]E8s(rp~RDnR*5 #쉷m, EreAnOnmi!Z Q-3*^z"72KgHmu3MqרFt35F]/Xb\`8{ȭ'l}ϯΨ%C&ȳ|bxQos>[WMO%%|ŝNDkkXM3~cA9 : I,FOCihA" 4HxQ$uPFldiiut$c+,hs^4HI^AJ3xJ/Ńy49]- mNr ,A`WK )0iXO|R%xE&q| Au3?9 ,NdfZ4/D=/MF΂hF v hح 0$ƂbAཡ + q YNe$; /#A`y9F 8!AJƁEq YHo$HbNLrcA`%C6Xj" Ƃ`fcA`E4y&ɣ2-P|d1zYvjXLBJ-?b{> Rd.2(t2WJe4P\nbLn9K6ם˸nw00|qh9]W>=eGK88:FL[~S:JP## [܀ź"ZЖ?p(bvԉV%C8x#>U x Q ;ƙ*vZX:ᠩcNei<rxE cifﰓk,gN;xl:?a~aK,Ռ X*z7BM4bIfK̦%"*R7˚!šotZD,ƲDFx, %dʲ W70!\wY3mg-1d'ѫ2%ܥڡh ȥڵ \7șAcz8ȽC4y.%M]jIfRJt?v>^kC/0ab|Go_&I#W3+-<|k7lRlR 6ܤ٤\&dj Kh!۝,"ieFZ{Ԑ`M>I9ۤRJRQgIrH m"rJ ݥz7)lG{ڧ[ţ֒ZR[.Kyo[&zˤr)-zkIYo-[.eB>sysl)B,P /\ [r# g{TAm#Qm2H#kzph5yݘ:X'Av(7F\U7AeB %K~ՇYDC.&`ؠrcLR3p /ʼnxE1f$L`, tF ̲;iD* 5rȸ|h5L46s"i42j L)Kc@U,AK%[i2+i"ѨBKEfd`,  \?;#YipDjmFHd ĝH@b ֝H&Лi0Y~e~Yj/~FOR0By"TQiK'2,`Z2t+,[PuEJɞqKȈT+ע5f5`O21\,2g(o)$^*K-|VrFE SX0O#5>gΞ`K@le\m|1~". HjyqYske22ydh* X Vٚ`" )&@eEЪ3qc,VD{-)X"r@0Z"'BV!DSF,}f!YF5fȢk^ N!`J mH[0fRR_!1'}l692(_+cg qXCƜ!!$#,ш LӥER K}4IK):2e"V,ELVpXeF2iE3L3h6AXSD3}yO 3RYASk񊖀&#<ګJ)&t=thAƞa+ËOIR80D{KSLGKUdRi)~2cG ,*H ƽ̈ {ܴ'%DML\m(P~a&pJ{-Aڞak"U0 }OؔeF';gs|P0}RAřD.g+j))WTti4y~ҖW&ʒtɴ$QDdZtb꭫HC ;氞,` y9,!v!YBlBVKdۀN,%d~'-%n߻ ,n-:&deD\ȁ٬"mFҸw"[؅XBd  i %ߛq![!iwb.u'!߉C֝ ue*LgýrȚ)lw!~'v! YB gِpv!fu_BB, ;wBgdv'(Њ!( 8 7`+; \2Lu&]Bǝ矅BK`R!Kud#\l#1PڭEܺ2[Wg΁!4܁cp*BU?֔šbA1@ cM nP 9+ z>Xd{;7cpXp| > ckmMckumjpd&dA\ȁ㳤s9ptANBۊ_#d@V 8V'N>wӰJ ǖxo4|gM!OɁc* JGo1^F%@2OVن/6T 8fK>U,nQ?dgv5qn ƱD;pK~mmQdԼi%Me?K`xXci<5Wk~lѦq_nߵyM|~HԽ`qbeWs9 QL++G1_HQMH"BQU}E.pSf-XIE]5Q(%ue3IHUލL4GKTi,ERrD9K薓ihUha5)pJ)`!4E,s5Ŭ]fm [?a9Y X5OX اV]j,5g3Ubٞ9,Lc"e d)X 100VbI'K pSȊ XoLLJBI x@#)s"Wq9Z 99'$E.^$ELNRdq$EfERIQ')*A96T+nB:l(Va9 ۜ6rfl\$E5GA+S8EQ.9aEc.Q9ͨnEFRj͍@^I,=J8Kу=XnpfX-)9Y quHnu#6dVNYuLw2R 'Y dsg1bT{K)F)M11)o43(_i $HM7)өkd)SN9)" $)d'ψe rp#B"2@~|,ABK(IOtH_$$Q,fW"l Y qYT,gY "&RD7X B&d,3"_6g)"^d(K@6 g)bd|g)mke(JlH7$KWh4Q@&%=HS ^7@ې+(F"DATDے3^= Q,,zZ5I\tMuĨŤ\jre/oB:TN@wٻ z:󃁐ϡbjE,]'SAuĺ,Ή.0XdeN]̍眚kλ낍ky;@p~A5i,nYڂc'$ F}t *ҳ8lyv{``$.BLDrl5B֗+a۪ d'Wn tV)N{7w#P$N Vr9;^k'*˾Ѽ@ұ_K 5u >ˏÏBR{%4 o6$J SiU@9A ;~*jg@256L|ST\>V-R ♕w'OȠZ .B¿#Gu[בtdC]^Gcǯ~;ٱj4z Ե_uXmp0g!~E%C?6}yV.Skb}K~qDߛ$dye., K `H3usVnȁ{|36vR c$3PvR [>+20R =:hj)*]( pR K M/;óLk> ̗90f;_b 3u;Z ߹O}.W :rdx=~o^.39 !cC9fEh~ͧ>>/dlo|zweĪO%giwo sIBޤpe"rJIq]Ֆ6Ą 9c9]!zoH#2(2k-bq{Ŏ04 }UN_Ȫ5ؤ٤Fg6,6䞘s|ee}t\wXKZ$y~[d ӘlǿwKGSJ5.A.ő"+?{yk0tb#Qe _u܉+$z𤒘%UT!z/bún yȣ5oPk?a.%UԐB+Iv n7П/$m~q7.]škwؚF@Кr.ɐ.᭩iS0=ڰ! vlw(۟q$v=@N7d"ZSq*=D`uO0;Hz<Juy?[ߦ^wCZJjWBXE[Rx|>RͮT~EӰT 6!kϻM )OL YR1 yvu-[+bڿ-q) iaúny;ĭ/$G7)8B0ytGT/wbJR ŝRQ##w)D%G^xuvF$琒t$-6?cb' ϡ .Y|0DS|o\VpQ #qahG~JݴKԢJ[ JoF#7F5pt͖thTw kQ Kχ"ʵK~#p!QAfWX+L/f[`\UՀ+(~qziEj\5Rz}yo($<~<(~iDimHw8^&E#A/U9*w Bn19ԹI ڄ ڄye8"~64B~60B~6,Q$g5(nE*w6$۳ !bx݇u~' JR5$eRy MD~~'U۾>lHg,HW~i@?n^ange`||UK5(4 c>WyTZ߸ZaJmiː+gIs9!2/,|.Ւ$3ϐ+;` lm/!/֘\;@K c\{>tU%?P]'iz` oaI1Cl¿^ Ei-KS6_ ʄ ̛#ћ#"H!ӳoBD)#aH&K)[ 9k"T젛C !=!to6#2fRj4d7fڕ˘y>?o>`enBb͒iW-KqE1m,Z- -vdLfG1ܘi-{3+ SLqr$Y˚LɟR7sK`i;,S^%u-XLqkBLk˚$H1S|֕ 23%O}`e\j\7e̔2u͙.`M+mWMfg Fn͹bk|F95>"EۖU` YۚY B6)6)Ggv1kΊZT ATۋ3 {^B^RԶڋMjߋKj.{Km{K^Bk/Ll OMuįc2~οnlȶ+){ {%Z&p^,۝|*} r߻ں ߼}l]8sδbRj6d~ەWX%B5XC-͟7^mY-')[cP^%aM;%F4!kiFg`1$԰`-B|Xw LKZiw8c}H-O"䣋{Ie{~#[EwH$H{ _w5~3s=lS :ŋ$izAQDq->X<6\f}0cG dkn[WOo|_FxSvm{FO}z$}{`tʏ?]_?p-wD|K^{oq|7E o߼4ϱ ㇷOz|۷?w?|ywz/$ú8W~|>|ݛwcJA~/5&}o0>x0gvs&FNZ߾]Bt~ 2}D_9[cBgGJ5?zB+S/ __K,y2fݚ?|2|<ݧ|Ǐo߿7׽O?娠z7;l/_lx+n%J?Ir {[: FQcl=Dn"tË/sZO?/&l%؋{B} 泿RVdoK휇 ,~\:z_s `J'"x539vwsCWX>0e?`6kL҇Pxcm.l[[ԅ9G>B>o$s pO_zUJ{SWZ֕of~៿~0M/<Ց߼Ǝ _օ]/S m|7^ؗ틴}g}/_>y&~juo^ց| KLn˾M*+#-Ry[QEdf|?>EZO_0+qr㋃KAJD|е=`lšS c>{ Y9(|;lvyXendstream endobj 398 0 obj << /Filter /FlateDecode /Length 4884 >> stream x[Oo%7~=zSk;@fA.`98/޳;;|%%ݱiMG(Rdb'qg3SXKYr\0`৛N7;3Gdvt76,<]\b;hd6]w|O﮷ۻiuuV_0}8>Ueb 4txkwv89j׸abvK aoUu"jwq +WM%u:~3s}Qx`Bg@dh58*&N3R+EoP&ǼAAԧZ o~.%Խi{9 J%[}UF;`V6NvN4ot>%Bq'J8r0h"Bj`;1^ՃQgǾd ?RR/, LoҗŴǮ-P#cӺx>Yf_OPXͩ(i]m>91Pp5 .Y#B50ƨ1wV4Ē1F Bl%k&>׬A&!d!BCH;Y>dr2'aaQY +Qpkӹs>8LQ*pmHUk3FJmƨJ1Rh3Fٌ21f  56#f8/bfb - {G.uoEC``rh1wNC$]N? . e .vx$yrJׯc%1]Y^=^p 0! %iAh#K!~wFY!R49+ֺEi gm!Z֖ fp)ncsb]F l%kUu})D%֋ADwFo V8U8@h lbh`6qN#e4ߟaOdc8c#N LU2|ZYPTM+p:KJ ڻP6C*PPKнd (!N( ([Mf΀Fg@Q(∻j@pS7=S;z'@MOj N'K砋}-*5/MOMAS+& a*T o2G9Ppw{dz#w L1zRQ"BIDgGaxV)7l5Šwf#w<AL twzH{z}r}r}SOW"&OX+-l{\gBz8@*jJ]L&q E0Z_.9-h Ah́фk0F{\b%i8nL0Gy&D/{#Zk`[ )L]-`+Y8"׬@oܗk:zJ|L_(8O.rz۾O=Eڶ n<=P7gpKY>L`JN&gVuno]?\\߼Gmymk`:aDDfo] .Ww=/~tϗw͠R21/wd=s'l./֗|re+w<07q.-PA=_ 6ߜ{< #Ǜw8ʀ=ym^r:b*DlE:\WR+(h mcqW$M:.4#4|ł 1|d%k J Hb&W9N[h;ʘz5M[TL3U]'C|sbjʼno6k^aOn}s fv6Ep-=8%jun{wS ]\]|w>; J"8u(뫫v~oV_}U3 մ;v87i}ٶnnTx{U+۷d7o<b52^_oϾE`\XKW7$R]~9_Q#94(#]!M.14 H}p zY 1>BuŢJ~]Nr j9a]m,1s:*X8M1!\gPrA<ӎXr+;'c9;Q?g)u64,rVmY0u>> uG yFuOavAJWEP,RRktvuZLg&st*pmԇ^]ecNzΜŎX G]i `` B;~)[ۮvc4$ FdB x!g$](e[!~CIcIAh,`ѝS[w 7(60md,W\((jUdc}/lsXhŗ(Yh  “cۮs:y`R}+cd#Jp2Z2޳G5k+qy&GsȮQ9=ASQ#cSĶڽ.=:nD]sx$yrJN;}fp>j iDa9MWQ䴮A7he] {ItyوN=LD[s4: R?qDc +!vyljWaښ꼩ji<mnW@4 :'S h "#]cSAlubMyD'<pv|uOZ:{Zmm'_"vEc jFQ0΢ yǾbm]P5n,ߘ,1T洸A<U kk񵊼n_.9!>?2or2b)Đg9&GeN&#b?F@8"(aݎ@69839ch"qGֳ$G'38<}~vpk}Mt[c︷FnMj~o(9Sg!Tpp5~|vxj|p:h Z?B֩w Twendstream endobj 399 0 obj << /Filter /FlateDecode /Length 9412 >> stream x}K]IrޞAZ޲|?Ȁ ofD@i/"YVSUiix}q2Oqz܂aAuݸqdFFFFqǫp7|[ WevW)rtwW_߄O ?r޽ǚbIW>"6䘮z7]]tǏ1܄/?ʘj4zB>7Mבo ? =ݏNFWߴ?ӄ7Oh#ϛ,QnƸzxOohfc$2Bs]@8xJ/tP9Ő臵rS)~ԧda2B'1 )3Y2DV&0_)T44I*3diFzX!q,!rZ &l-U!j0p`p/L <\A)ǛA)бճzUCocᦌK @{pM[>"ĒZYr7il\εh'ת\~:+s- ? 2'Z1HG25SIVo5+$Y~O6wVaUM&T[ 3ǏLqPmA)NyLmV|S &AI4uU d;EFMs,fF#%OiMJdB+[T)MYHFfĄQ2i +hĩ7o2G;` >(ʋ3Uݟǔݟ%#JaO* %,$ &yrɴF" M񨴌?I.&e[B`̚(< dtjP')%JI)E:LAi@"iBK -=X-a+?o@G-[tKZƒlͭۓnSQ8/1bܓ.1dK[ZӋ,12*KL0&L9D& V-h 6P24 G׍i|RZt6[F0CeeBi>44I|`beؒIJ[F!Ct,csIm 1ǡ?܂jXUQ oMˤ2;?ʦS,@N]Lo#cY ݤVȩ;VXlXӦFABAu}t`ء ,rhtŌMW\.5W\]afjršMإkדIKlv2κVI5TkVMI=.S|a=:Y`$2梓eTJD5,3كJߐV o&'>Z[=$!@א |ܳ]%ݰ^lXMPٹj|!Xz%fNrꉒgQȐ#64>d$LKEPu JQ 5cD0GԪEὪ?Mmb$ ެZa.6ͪ&IS疧GfY.d"t9sGmEWH!w^wΤ5-˿~ ;`%1'JUlc}#ϙ%L[̲%[ljtm,:@nPd}%t]"zJDm2)V.I\"؂I"TLp!%l=YPeMǃ K(+׬,HQta( WfAQά4>+i)ebk0reD#l#;a)lW%lqSUlciU:NYF-۬@YgI55:\2.fpR֓CnOոSVz>YNΚE^iulc}r> !V6J]1ʦ%l:7IvJWӛ8ek9e+œ%eKm,O mvt6N6 ]wzRjj'e׈y>Pvw)(sI"딊a{^8Y*ls[k3Q{ynoP\碟umwJ? s{Rs+=d+(W' rE N.P6 mc#lݓY8c#Vi]lav,v&a|΍q|HqkgϩzTirj@\+3&vPvN76('yAٞNbRHFfu8ʫe3(|eOk{K=F|v?)w(}KaWYr"i_w,($i'eb1O 虱W#8jL1p H`8i M=YFpa4bpa 508b91k=Ss q@#F0_C#ZN AjG$ZղHPw@H40HA%ЬID$ $b7#E$N1   @$\H 4PD X /H~H" 6+"AS%; -vg"1&  ȡ0H}$r%8?o<K 4X-|*)8@0P8(%Jp@ S/@ V}(M$ '$8+[@$J6!> 4TS '(Q0X06,R?p mD (0уA\%:p}&*&x!E &z 0ѓ|K㢘=77p^=p.ыm2`^ sXW;Ձ %z rX -` Knaޫa%zWa>#}.'&\OS>: /;OJYR9!%YOψɳjo7hQX^LLl 2QhHeTY80Ts5=]{oQ%1(XM܀3æĤ߀L9YpL9+yajp(錃b7;rkG~!چ[%X[pp=Zɴ%¢e`1 #o3f;ڛهy:Vde@n/r '8Cr{n#_g/uvf;X~r]vCQ춖B~ڝo`/E":^焼SS /^*.{C<^۶}O]7u<ƣG:ytkQb <{.;s0)234{4TLrvS{e1(19ew[ER*K) 枣Jw1)"EۣN(M?ٕHDViW{@pmQ:O#Ce&fHi|!m\<*,ڋ5"0=-j%"<2f(O9Eu: 6/`Z0,b03Br @!B7}@EadmE=¬ $4HC@dDkʄwJYR^ Qrd4*N*uRsEY6iz+D@~ EbW ؒh Uhki5ŵزy&dy2DY2gzɫ^Rj-ٿ֕Bb u^k'=(U}~˶8yro?]N}'d.wo=_|~K`,~rx5N.2Muor9g֕L+6ti?"\Ո]_sp/LJO2p_ǧ/פ+s~p,m |uF"RLGtx>sK%)${ph 3*_v+)/˻p;Ŷ|u4zWv}Owh}1e@.o ۈ$[:ā'R+0_~0.Kdɯ.σn+jUwpY樌\x#=1./mڬ_L 7D~odruB.o?} NIjA+SmVC'볨-`QXV"cӷ?ɹ:^X1I>헟|4УJ{:Ulnxx>Nm9O:^rIS])<.PݒLwǜ0^]Xr9$Ktrc1!61?LdGE?^/!d[ƏjeJz?޼OgRƅt9g 'i3xtd(gƋh {z_~?,3'?uÅݛnEgA@Y~dN_or0B\<[*T09`lWSZ℃<8X)hheeؘ25 ht4 Qa^Z;KAw6j4etE#_Ek1mP6kS8d(&,\\ Ƕ~ae B6%ڰ3l?x(~bkJNvFNEDS檔Z\V:s-j\ε%ת;zD!W("HиEѫD3^[@ JUtHj!*M A~Q@!L '] E!Ph ,IUAR䒇3LKҊs!'5mg"uh]h\s|Ԗǔ甚&?ih[!S ;y04#]EAEbigCR/*lXLRUa#$mrVh.10sD׋Wh/J戒bZ-HrSFO(" 8<*gX@9Hi5,1*rϞUc̡pܵ& TVP/:6;:U\ZS7_Eɼy-D[E0gGY7@sL+PL6y8dBqi|n%SѶ4IhjnO)#B4J`wtJfN gGzP8"^P2X 7Y^+ag w0qFX5II K,"l2K( ۓKh:9&FE2c?Vx!Q! PBQL$ż2OZ!CNSZcGO,by_j ]%xpʈNjR)p @9rw{,c9eʯk@唅=m #돶"l @Yz6QeM) {r&%v6)eø2a뜴e(~EFXe x @Y5E}US@Y4(5>eu^ll':e=3$j}恲pM-)^ps N9ejq*(kj<(X[ 'k*sPV JE#j8ai2S;e@Y.Xn]}VNY%.E<̍J=ӃszwPFrՓaӕu*u-Zf* QVK6J<4 UWJ۟tP;a8eI#u(P۸dW939e(Ve{:II(}=(K:(+W:Y΃pm[N ;)vj˪lVl[$_SyypoC}K*f)+W'I8eeυ;a{auP֧Sv~qPy ULdy8e觱Y+t:q/Jᕶ0N g۫ўjt Y«K;e(mwn~ms*|O+-+ȅwZ_G*r$#ܖk 9" "G/3"sUZp Nk8E.hPiq;S2\nh|y ^5 0"{W' nؐ HC*J8C-w[" ?0[+6$,( @*x7wx"ⵏ*J _gx1P4Kt U~@ET1EULd:T1ؠ/TQ:AUTw무yK*JhPEEc\-kn4o4TT+

7a));LS4;Jѐw;brbSLJS1@*HZ!=E TtkPѫ7P0$ HEO)6a sb }C)FB(MJ1W bx'%PQfߩm2vցRLh̏|<`)7#;;Hi`0Vb6ZSp}o8Fd=Tp @5˜ZT RA!VXXyF)*ȠTE d@THEEK;b u1"8 "K@ 5DF 9P"PX~A(tT ~[P$``Ppri  @A8H*RV@ 2K(=(ޠEZF-^QhZE7D8F3`oU"W;A(2*#fLGd(FԧŎ&Ghy,{aBm!jYuC֎Htͪcˈ*4 צc]躠f;SMU[ɪ`Lќ.RO})ڠZ ʊR`.쥙q0r> dӒ1i1D]@Uns 5lvE /_pb(0k/UC;VdwŦoa7Bqv+uƵ%uz17; vD\x@Oe %8AA44UƹP+8楴ɴet 5w/[jeu-e!{lx7JK'E^1Ua πE6i z8\c9ooſNqEupeB{%QbzQ:׍P7s$:Cb.bb c"AJR1xeQQ/sBh^ג!xKy. f S+Y 'Y{֫5˪3^ +wjZ-J,<8V҇i*^}d 4 ޛ=O=<|A8SHZj kD D"X3I"|pOp#p-"L, ksA2;VrjٟQ hR/M2OXX \4K^|4Vh1k%H{,doZHhDލ5lU-ޖ#୶,@-Y5NWzq/JB_"2ʯ"--t s~ݾ?~Ur{iϷ_?q"Ai~~pwpېv9λ?^S[ywqN(wpwvtnV/:m]ZMy}[=.[闯?z5^8mϺ;sH_puyF:k/7rh #xv?~Cߧl Q* ٧;Hm; Hweqj+眹ؔirKr2DY#$Mf{mФ'tUMM\> ̑XY"tzm[uxkSX'-\l?jY4UP._)_%ܾدl|pGb#.-*g[Eϝj ٨=nIHPhYǧ'i–gMi~FݷrNoQGEׄ9]y=;=,魬Dq}!W}=LE|Wo9$[F~K=endstream endobj 400 0 obj << /Filter /FlateDecode /Length 5572 >> stream x[ˎ$u/X27ζ~@ 21 )j酾]"zj(87=q3[ۇ+J}XտSê{ eÕloOCxc7ix+=gokM(!a{|ջ𰽛EVJ~w斷}Tݽ}\/?isھKZrw㟿>ۖUTzgA#?wrg 07=B~% a7~ՅgOfwSpνqή#of/op0o}_HSl/x褯]" 5uIК1+|+I@N!(/]N'5C+mh\QvH^BXʴU Axڳmz^a ׶NԥTNiw4eiռ?^'(ӭ I >5 \׾#=sX|zMԖ<+f?,&yN a^.V.* u`#I)nI6T\Vl,'lФ/Gm *V1u<3u"g9)!P`Y kXr2iͧ1z,prDF KI6.sz1}:&/*wxrVrФ5׵cuW56Ѕ &Coz7uq7f87aOL>`w٢)E:fHjPYPFYXFY`]#cL{X pczbxr1W_b6\}m 2 `鰜tXN0ӧ+bh)QdXߣ04d, [%`@B \ZB#X&4 =z:4 키ϊ\)CEzDUJ4Bn95#cxMsZ/v.J7mбjC)7R2w-p̱MTC%T83DܨҜLpBYV8@0[*Y07%a) @Sg7BS ^JfZû:-q(A j,lgZ|"RtA $ e8RVϗqդjhJ^MbҮ9o@ʞoeHkAıf X Ai-Gv@CZ+Z,H3! /xֺ8YZ̺Rwb66*Fe ̴ yʴ %ڑcA"p?sF@gR6o$(e d l-*lJQʖ$ T:IFV& :٬f :Iշ-dk}te QdwyT:Ge6:IܨnA'{l'c=26ٓId/IՂJR66I|*NH> 0C)Ẍ́ KqJWɜf^%L$U2 egUv|d &A#FU"L%e`F*oSV 2z;AA*JTRG(;t4REJ`g;)E)9bP>hR7 `E(e"x0 F'I-t1:Y :ٔ 6IMF $19eJ&IQ62I)$ؚ`#Ԣ(MSF''0#+%)̉#0=2kJ"`>LvD7^ ^?xe7SPDh<6g2Gc=+ d)hJ"eVVd1ZVgh%0 :EY`%Vc*K2U#eDض(K/CQV'teqC!5ٌPV5d̓s*&d!f|vaZN6g#Hޠ-V:٬2dƾN6k :I1:IdHGNzI*:|Gl'`=wR٫U-ڈJ*|BKVfVf獼)EϨe&cG.+]1jBč’Y"LĘeb#l]%Jb%٧A>Xf#/F,/FXf`jf7c*3ؠu0XԻg|"-ƈ{KҠƥV#JW.EpEIzaiDġ1- 4P&81x2v(AaA#Xi1 F,NsSaឫ1}K\4֨闳vFf+#sTX[FE1DAB$·!a8Y ^B[b qxWPJNU6فb22L&|&5ԧ{VֳC˘= UhJf\pYXZ,eV F;1K%_np];zK1ZBiP2&>۱&3>`1H V!#>} Ei) ocQ98ͅh]R͋RF,zJFϤW9.Xm+ZVʮ[Ai7zXXIcn:fiA{;b888%:rJqQcnmoJ38Rq gڮSDj&DN]8)K=X[- JxCO|rsd$#o|xYhU_VTloIZk6NkۘY[4gzY|jVHrQxT=^!LMg-ܴWtD[GTluzK9 |qt?P0ZX6mdI8Zak+k%IZ*zзue@zr(j^k٣sh?{)hFE`E çW˟# / ̛|!kzEܙ7DRˑ/ xwze';\ {}isy>d{մS"싿G-3Fo"NOD]4D 6M>^߀y$rN^.G'$/7q M7BO>n/+KR=S冢!oƷ疼˴;7Z6cD-}ڝ>괎YLmӧd/o xJZW *w/#/G[8MOlr@aLx?}ߐW ]35ަ.l4$\~v~,@ WeU'6-u:mt"*Db(Fv-_u?I({dMǩ_Ў?iG^0=G,;zM OF]`ݒFL aKEt5ChVm,)cW&Aum;?l%MRk ]Dž$FmB3Wb9,JHmLIb aIF\Z; P`x: cܲdǙ 3JX-v(|c܀sb !*'N.籧8gܼL_1ArFpD[@꜎jJRQ:i>9jr>l/iQx\ν}~в:noF > sSu{p>CTTZ%j{D<)P衎QG:OWbcendstream endobj 401 0 obj << /Filter /FlateDecode /Length 185 >> stream x]A Eִ6vMa!Eo_.$):XiN Rm 5H#LƒȸV9 O&て ų>3|*7t /$a' cӚ ;ORwI,RMpT&cQ [~{r# k`#sZcww>ha]endstream endobj 402 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 847 >> stream x%oLuGKӐ:L5ݙe debtTE ]+z[[ = ->-E v,CŒٌ24^;Xƛy/'7u #FcG`<i08Y33.651Hq9V߽ )X{ǃ]> stream xMo$+B= !"@ZcifD6^ߞ"Y|kve@J|,U'̤FOo77no SQ%8]7WTVڥn]^wϗxTVWф4+jrO7OD~\Ep6Fi]o?^mUB0?7_|?ySv~wu|~{2/ηO4L|և?k#g$ӆ~^'?o1ĒbtVPڤ؞<.훯/6ُVO.G\lz0}7 7ќX\:O1K^35+h4M YL}xZN++;J$]o7Ԯwu 2` n_>jIa<\>Lo6q,jWXc*v.[U!xyۍʹ\0E@,-GO 8NM>b:),(GXV`bR.(ТDVA@9Г# EeP}׿Ieg鹽-+G|ÅO5f>Åw(AE P uw` 6qtD)ww-Zw Gvl-o2!l+S௝)tXae=)pN ,c-kdMj5hi4 #-uBE06%i7ŢɰdY6DAV%иdh\͜oOm9UVG^%ȕoH0ehE|:g逪q4y:7E\#W 4Jz3m)Tl)&PGfu*:ڒ+W650Uw 96ktmF`nv0ZZi;pDgb.Ram[ρ+m am ɍ@Lݬ81,S|u`0h1 W dmAnb y`L$FY$9]jm<HK >-`gX ]G }&<`(TP=d\X'V`+@/c P1QcĞm (fb? b?*p~0Ί4`|9` ݬm r;>`~8G[|n,G&0]&Scyj a00AC&scdqnp"ύ! ED!c1`<7L0YCFx( qfq#-y dz 0t/ea0Q;,Som 0>HdN bS k{.»X^Edoy7`BQV( dy&"! &ӡ-"- Xditq^0AG /gH0= ,C/b'K2^Lw!ŝ@$y03^ky/0VKndDy/0IK ]0 1Z] w!2`$eԴEi x| O^G"~sQ̌9BGfDAD$g QDdAF{$=Mѓx-beˢ,)-=1ڷ(=w邶 죉rt݀>%;4Z[1LPDJ-gj"4q5eQAUeC$ZvKulr}\+$en|qw*Zhuz慮ը哥bt2T-I\/jSmWǛ$լ߰e-$E[9Zǡ徸^++uj3[=}ؚa?{Wtj!w<׺(uXԘ׌]VǙ.ŹveM&mC Qj+},ڗ!ؔO ;?Wsh@A>iazD'40=xj@aT`TCqT_ a)Q:5ਸf](ojxZ}p_R]ڜuȜBw{7]_RK+g_ǧ}|qq{u~9on>5O|g =Í>mjIr<-uf>tH+uViz5cI>ϋsejg|\j<> stream x}]\q; H rѾy )$#$=~h  ~WUfIZtNuUݪ=ܿ9\]o}9wۛ7/a/^k.p}yd&Z6fL.>?|{l߼;]?{F,y;~u7cWmmyAKh=ZOZ/Z걦TiFsw߿ݭ\^ͦoEo帴.WXЈgzvl{/I.^6y^bД1Ѿ@蟚#cvY9Ph֤8=K-eeCRi\\=ͳ$s=IV9r.[eÿV&G,uVcKڏ[wIhշJ%նfmjU>/V͍D6?_C#\2]J˹dr۱dQr쓬vnCXB26_|kiASy\'hcj1`j:0`42FC05R \0}ղX z,{{xI#ӴпS4CNüR\~A[>zI룷Z }V>z+Go4qAz dg3>2(п&RtBY +$+$g?1Sg$8l5CRJeIBʉL\WX /d "gP};%Ћ|.$;M$b6+h)'ږzlҦ {C[lr/$tCQ7RIcKt*JظFIHRk΃tXhkk{n/ f]$^#pYw1d,Yel.ߢ6|%Mװ| NjVbM:续IZ:I]X Z,Nk[0ړdW!~Nc)x;-\t6Z*.w^N `utXR NcZc!7r " _U|[VHH[iGF&=lIx:1bA2U:I 4'CH6Iȕ'_ib&JWFޥWZ":='XMIa*[JdtL낑G]!K3-IjZ b$Hش] N+:w"0gLd*Wus轈Bt,Ad79$p:enhP.\9ѯX zU!xp\, էyd\tLÃゔ'x{g"KcIU$r!k!ӚYe3sD$*tBF*L05"Ui6*et&&sd0'R}nd8'.N0+s h+{ӊ`n!Xw*sBT372AhTS#FdpHa1Iy1UzB 1w$C?tpqSrؑG[ _EWPAԣ m#ؐÉ 6ʸTF"E΋h"]"*u25y#|Э4=' `x =>=hrhLѭ_]Rp- bOlDeV&aH^qv bAx.2 4"aNrͧmI]+,O& 0mw7|ּ[QOQapAFݯ_>1pEz".̍%]?&WNMsԡ= F6zcШp 4$C4 LIy9,#RC FϡΉ WAhD`- bn6Dl DVitX%FT[&&p>ZH 6*`nd[od04m.AdtEh* I< ifh siM3< %NNZ$x 3)gs"cEUsboR5|9c&ODoAm:6 FCוSJא%`J~00b(`2ȒW,W(@ Xi"#l`J0i&+$ @"KNJFlQ4iɽ!"O%hFKHȅJЈ I+ @hچ= F#R@34)M A#PAЈ̽q ذւ(̬$8 g '8AipȕզdpF󒼭$LpĆ$h GOW8vIau;ѳA G4 `pD_ 08468bܳk} GR՟-t !y#P |C$F^ :#pHɎHTHˢ`A;_" w1l#Hh Ֆo)$ IrHGHXf!Z$)8 `$HJ$Z{ Ia"$ѫ4$2anĺqLI -%J?$Y3QL#.kL/tBPL$$8[/OI6ItL( oU1DbAUJ !OĦJPSI];*AK9P ҳP wHd@1Ң&P"%7^H]I0,,$ PK ,K$t3$j;,AFC"%tHn+核фKZ\"/z7\"LDN]&2.?LD&l qȗ((3+([7lCAL˞$YD RD^%dв Ja1P"zM:(w@ NP,z;(Q=n(Yo[%Ja/e% D|'P_dpE%J+G @ _fTnR,t#m]K; 3D&ȧ&/]bk]ڼ#3ۧ{f͸Lj ZgmI4nVK.{ȓnU!{Tf%%<s''_=u>Ѹrd/aju^nɴ0TPQdV4Xݐ"}0s[vs̞UP˗s2 7=nt f?@E$HXθHyhep+6]H$Y&ENq"\}$(vM J-Kn x9knٲB/ I5y^@E T.D^;me؇`k0H$:dnS*=p)D mԹ+'Km%KxVwr ) 2EB )\eT>=[H`U@ByPj-&^qTʊbGZTyVI-rzWQ.E #nklGWUAqH4Z)""6b iDu!CE+s=W8MKTmjhĢT.Hv5qߕe^>Rke~X) J~ \֨BYqDQi-WԼMD _~8@=شS ͡r K6] Kp>̊iq,ZjA (԰\ME L,ub1K4aJ2 (VZ{jIsEB~XM^,U V]uͱ5[dpMõj`kutiAd$k.89lH|5prՀl:H1&(dVhV~O<zsmel/?)q&sԙH-_{g ]x}|M2?AAm4G=ZA0&3"\E LS1DS)( \2BD[dnZdnIf `[hk*ML7_J%F:S+̭zc4Z$`٩; 3}S7LQ \rc2 tA֌'CdY7aVk-q੘x!F.F.F.ø3_rg:B3HgN3 e,xߕ|jR2zIhfe, edhc S|5_&oN IįrL8n8a$O:a&`fV:Jɀ%։00'b z'LF~&L暐u0f2Mq>Lubd E1 F3R&L)M1Ę3LFgᦙ3Ue3Q"qJ!ΕNɬ|mdDٛ5LF~`m2SdKD)HU+cF)KƼcpi61f :L1 Iva,4-f ։0Sb39l8YP=3fHJ`dlUb0c̔e_T Ie5)3)u̔D<͔Z6SfHELI42SP 7O(3'$ E G̐d*2SP|QfHSLA>1f y(3 i2Sr:ep!h(3% BAJɼN(i{e ͉ K%4QfJ{2e$WE2S%coc ך։2:2SoD)cyZAIo)e`;c"Θ!ζ3TLa.M85̄RH fHIR6f9 &u I8;3.OR'1CCcԜ2 IȘ)61f pc0E1S*}fq43$~e)U2[1C.f ։4SzI3$YytL볷5S:mc)k$]7cE(k IR5SHaHX3n 3W6C [%3X3]5CURcdrw5S[fLY2V&LY^ k 1'LA I3iή&Ȕl̍pCG9PW邹 <s# ~ u `hPꂹ='#8Ӊ4Nr"i|՝H;D<:u4'Nq]r"i\'HjDWmcҸ;O3i9O3i$:i<;ϼsi. .Ҙy\3AΥ1+54fƬݠӨAlMcvui:F ӘuLc U14v 2]9Lc dF/A;ridkAFqyiF!iFiFAiFфiFaiFi>44yR2Wƥ0ƽ=ҸGdLcsit.Υqָ4:]aҸ\Qc\Qqff"fT+fT4ƋK3ꢌK3jKUFQiFcT!ƣ(x\ƜKsi\7{m>3O&#C0* F F#o4S#}2_Mi8)cBѤ eV2/ZؾPFo5)#L?>S2,q55$x ~i'`kkפfK6Wݛ6L/@Z:njw5~R7'}]E0"T2V.ʿ6|wcyҘy] [(BZJ-K|WLgc׌ZνJpF=$+NREiE0(6a!^ˉDsI-8ҤlM2 9k {tE#`mep"L'y&Zɾ IuSɯYU5`ᰶe760>5j%$$fHoqӛ 4^1,^3K "YK\E+p.1 -Jy#"xEnyd2* . A_(Jyb 2ܖ.c .=~%qSjpu܈if5"Kנr.ڔë]8/ b5p \nm3>5im.V_pÞGPה*V X D/~TsZ.[]07#<oD WQrAؒC Wq)sع '4 ӥXtШ_8aFy l.FK  ]-[̏ ,k]sBJc +hSzr ⬼WK NV@q1S F %.Uԛ :! *0\?hA! 8PA 1Ah/rAq< 'H )F*Fx|M07[ ?بǭ5A<[IuJǸLx~OR A.) 6ɹH?pAXY#;*, zﱑ pRO= ` ax! &^1l0؄|glW;6ѻ!MMwp4R5\aĪucX7Ͱ6Y: Xd~Nl88>12OJĮZ(';2* ~ubPTȮ30߾(jHuU̍{“oQMXZjX=DE^]QbQFxMM0C"~U_y:jG`|G/F׀z# rH`r間%Zjsm& I۽R(MKC<PR1x\!UUU8SFm yz4"zhβ hѴ%#M'Xf~ro P<ɘڦߞ_, J?OK9|z8-Q^֦7$A]>|kɚ隗w{wj:ܟ/^ד=Ɔkcrw7?| CBЬvua 5 //Ow?_o^K9!ɝ|ýԙw5, uxE4wtv;;+ٟWy`h.Yoqo/˟Hi&[z.`{v9e|tX Y[sҥPKMku'f+W?@Œ=o(ƥN*I S GZ7-r 62{z^.+=Jf$i<]=|{,K{@]]L_IlOKjT&oqP1~SXytu~8_J9ܾ'װ:wes}coI{G rR{l!]]VZ6+ĕu;}wZ#qDŴ*ÛFKK nȥ^X(^ԘyβEyQA%Q͖%|Z\7ӝu'=/ [z~;أO=+Gڟi%sO%x.2o>l0njˊ0lmmk?.wv>N:ݝGoο|csG0$N￁to/۸)==!.g23~m{:<5-R7n|5f+:⫴Pg>T=~D_ӯe/7&% >C+ ;}{:g擺W:ҷO6zt}tEb^kpY'ڹz}{ &ۏͧh[O:ݘ?cͦ]dzo?Q\dBs8ZӕpJ?-𬨷.?~@vfɍ#q2);8I/S0cxj"Za.yVt&Eّܶ?`߂|yVMYqWN ,4-w#OMf֩b~<%n9;ږ7/!3S^~Xr HAܲ?S7<v;:k߿<^[Щ;|5)>^ۧ]\W_٨t=d>ܝcS?MsY7زE;-+t:d"_/L.iGoypG); gv)y\޼Չ no>^>|~y6ovOu{}y+;E%_Gr򇏗wW6tp7;"H™ GL=&J\^_^&YNߎ+KBIǍrqN6&3\Y괲NPūˡn-l)f>rG|]-_7x]3|kf;^HK7۠^Bޣ%O$9.lZ$N^ݨlʽ}8nßE}D1;9;lX t:aoFNK&=9@ikȻ}w=\Y<6?OwA?hfO0< Yr|nž?~ ژ+sUk^_6#(.0uֿ-7pu@2/ǟ7/~ħOaG?˛yC13{bJ4Жx;o% HeW`Gȴ~!~T=k/=О>mQdNry8q?m0L%sdo=07Ivj= zfW #")G^杋Pcz^{s N6)yK3M_,׿hԶ$cՁIn;gH~IxMGAIOLuxK(|ϟyfȢ@Ojt2hc'dǹxcDQ60" sX[9: 4{v`o=0\(sW?/5_|0ؕOZjDdQLۼhWyJoJRa>u.i ;O[+pʑ6X#.0#84꓀|ٗg[򨿧K=\p-K3'& Ž6.t.騷[co7__~fk^t#`8~J=%^R(-f Ap[p%hהyrr_gendstream endobj 405 0 obj << /Filter /FlateDecode /Length 11422 >> stream x}Mdݾնǣ#" +qH=ӣH{#$[L67ɨ}qU03՝%RavoDnfw下+<*n91 +5C"2$9!IhU]2f1q0`4.o%R+7i%}`yHzIZLjMZ &'VJHҵDZs}48 K_u.!}\,6In&äWA2hoH1+jI{ǵ‚Q(dNJMH9Hݥ#Md aK'qu?23="sr]ˣiCD[K D.D<|g^jfi2D8y57`V+S;ev+*;,hu%dsX"Nv^گҳ̾LE#,).ֲuu&&U@i1I^؏+rkc$RZLLv%ؕގ B_v;?18HTd7f辆K /תk+Hk@ 9~[u|kS?kDE@2hEMDgѻ)7Ir +v,!'͞aޖ3;x{ǯELw ?Di箣e쉄:af~`Z/y}S3Q%Nxbd{%2?f6@x&]-LKfWjN%SLҚgX\~!R/Kki+}aBӻ-(.$ssX+9VP-^Ɖ矰z:;8'u5kk++KZD !r<:VVR0iHc7V:SzV #l"œ_oqc $B󠄿DH!˫VX gZdX5Z!\W QZhvx9Br +.c ˞ڙgZ+ۧA lBr9,̧3x V%ZȉȨimeτDi7;PW4db'@kǯs{-zI.O3tnU/׊YvD@e~v[fH\y9;>;>%LDue% q1X[ W"K\쟌(u2/)&j;H7Z.{U9d/r_JFVX8ngnOqfd NPZged0pou)>_\` @2JZ.v җV>gTsGkxΠؾƽCXyk}tBoH_r"yJ!ы=^.Ka.BVwڧ3N6B|G Ev\ѼԹV[ $D5 Vg|sSB6 ]'kZ6G|o%_X_D^B9^fдcUT{YXUSH<Yt5xjg ]F̂k-R(7,/Iž GXcNcدV/ga*W-GUy7`#]r]j΀"wuo\^%X~G]QNl!3[s1Ȟ/H5vZ*`K2>ukok_F1I zwyqR׀DZ þr=/k\{xՓ]"<:Hx*1#:.b3ױ{ފϵk.'HL6sleFd;W\AkY\l2r_J C|HmV9_T7g,FYY.ΒXx+xxܵ#u ŭU+.jr^ HT:W{X֛{fWs´%ղv.<,Ƨf]r 3ROK]k{.RӴq k"#W2zޞ[Q`5hT{KK8v/xy$D0"{\@·ؑK .nqN2,< |K_ dyA0ԾgK 6+DÎ9<$byk Ss?xaiW?JSri?Z'$׭,, 55O[< &A"—/\>YgdjRjy9ri_{)vPXY9DzXW]b]?+us &\ξ}m!HZ;a]f{E7Fp^$9PԧM{,[nH*ga@[%`$QCDD3uXSn6 Wv Rݸ ul|v4uwB$;Nl"FP=;jcµi| ;Hm l4Q._7ׇ ' =nh,X*#S{oڀ!C$fh\h;xA!dGPם#DpQhq~ЊQ- FD!mqVNcC0!xM@*—梒X?S Tv;eG,;TI'M¸QZK0W%¨X%*b􁭩Ԕ:Q0NtCo@} AB^=PlMraÁ Z8ʣhiqL} \Ky)מ)8ӞթsG"g yTK/U'*ڞ4ʢxTWY ( ee,ʠ܀gI9IdOUPHm^`cA*L6%v֢-E"E@zxPߚ{eSܖ jHpzߥG/fɬR̓! ZU H虻*N"-rz&+ LI2ȹX.zE7h_Is2(`1j3wxV[A^‰饲޻H8|V6rҩ8U=ApwuC<$QFY|[΢ nYB2+ܮӅN>udl{;<% >: J: zwb!;Ҳ,$ ٫Ν LYB2s"!s:sA`;V{FAÀ{& Y/g-z1ݙĶ݉ T$Y5>ǁFJidV\J",A%79q$m^5 o@1#'1~p^A"& Xɧ^f< 8FdUڂAm:Jl I;@@!aeR ~Mmnñ(i3΍9 ')hrd2D ʀ2t22d k5 ,RF@M Q^^=dRȐ2&f{(cf2)/کsƌ(鸔ew舒\FGQ&'S;dJCnp2ePހlY8 %'A9t8 rLbBf3:@:@(sٺ :OѲŅP N2;Զ1\h+Q ʀ2hem[@4!S )u'R^@J,ҨR CJc Hi DI^o*Vr)MDv(6SV J). 1GHi=WI(O0LRXہ:]/nN)aQURw4V:+]tq.qJ{qW(2@DJƌ+Ё%A7ch k ~gw wնL:Ë <Ҷf/z;T uۦMC:mgN+nj>*"P%JHݯ[ ha= *س$0yq4e{:O+G, iwwsEpw9FQ&^,O_5wbKT(s_B6;|hZǟ޵#)E.2d@U^y6e>pz|*OoX$à|܎w7\ZoeD ̋d/dD:?W[ ^L~|.ҎӾB藜}?ųB1^~x}S]f [1Vzʧ!7wץ|ȯK S3́η2&Ϗt%Vmq~EQi^~W ުTVͧGIJfXEr;mybWv-=,*SG]snf8U\ZjsgoosJ,lTx$#m!){0dΔ 7Zˏ=qTʧ>-^T #WV kw?9> %^?7; [cn}XG?U3(%d7OC{U &gۊJU`$?J`#6VݡnWHH1~sy_}[ª݇$<2uJ;6MD˫͟]+}mJTnRLjCQ>|#F>.{|Ow迕U@_#}M?p_G~ۇG_;Ǟ-wƽe |y mK1L[0{[6>%$yomzDm+6˧'87۷Kgzn-/Wo:6=ˡ@Br~O}>~//aD딊tM"/ߖVw?~7"CEϻz)N2zNcqd7]Nendstream endobj 406 0 obj << /Filter /FlateDecode /Length 3788 >> stream xZK_EpV'ۊed$ onL[="uƊbꫢz~FT-o~MWFM*kݴ:?M[=O?}?}'\V&(4NUhUwi|ۦ|:7$v<տu55&k/1f Op./ռq%4v\W;q_|W1|ӶTXT6T}cu/$V5V7hJTD%IĮJTdۛ^,)P $ʘ@uob$)PMX1I=JWoiht] +;*0QPBA&JJ38E ^En-NW^h8 XEt8ߒPg}B BGBcX5QןF]Jc@%I1V$82*K T$*XJc@%I1V$~mYwЂ)-“'4aws XZ ?NH!WKN^t À0]FbY Rly&tJϛ[3)J z+6v^ )ީ4su;oR30`@b( @$HEQ9QU,Pd%JO8ӷf6\ɫU[#^U>Y^:,P*,P*(D$ sԆmftQ-:L!rKTg%d~gm#ey-vuR4fBD, 4oC]Jˊ[DQ$ 4ԕP+x|\YжKN˒8s畺85E2mr"HKdI@EYJ]"T.]瘜Ab,eI@EYJ]hF_IbJgZ&K*}W⤥ӸEE%˒0qeM}&A%Kk,'ބ[KnqR3UE* f؊,58A3D F a A$v!(D@U5Dԋe ckp[DsV6}a %<7ipD[׈cHheҰ܇[ y OIҵHmhĊ; {thKpX@w~Hx6 gxr~WZw6tnT${JUf0ƪ]B ~Bo=YnK1`#6.6lUO^#I#R1  ȚDq d 섰X kqXψh!k>"{l%kXMi(d"tA,ȭ0| XUYO |hK`R"+]DӌhBV܃ߗʷ5k X L.Sa5 Ju}ynYy1~|~K5fP%5%3*A; \v=)|_jqXfTS5˜f`+Yr~o=B҅ ,68}ZL%77TG@K<K LmWe EFӌhFVŦ$" U( S~#NEwhhʽbL)r1k(zʭJ41LO|Yo}.}kXVFPOwOj h;4x}}|gjd=Vktp73}4h];y/+x?SwNMx>>Ŧ#4`pKO jQE_m"x6m_"Xuy30yEZ!8p?֛i Hezxxp4xގ  ?.O4%Z].ɟOf<]v*Ȫɇ6|:=zW:%Vbp<[Kfxu]FF!Z]y] i[zG]?($N˂_NԻI>j]b~]JKuᚽH0]Wi\֛VBiĕڶ2{ش+k ݳ핂E6nw!:+"E>fARrgBYsozpAmZtDO5ש)ùGvXd٫tM-6Pv()}XnQa#FB˳ Z1(Տaa(9ėhU͂Qs(ZzCbMXB⸐Ql9+z+ 옺[!\/q9GL㍋PWb݁/Q."{8z*1qGOEofHD<0"p; ׷S:T|p (-Zhv{G7_cWm/G{k6L}}QU}}ZHLRbQ&FXe.ۮΗ-9BG`^\1C]jA3;Ǒ_vX)3oEۥnQ&mvWn3sϒJUOgǏ>+U3i\v1n!? /}-Aڐܕ2*Pm6a˷7 "endstream endobj 407 0 obj << /Filter /FlateDecode /Length 26655 >> stream xKr9_/Ne#$cuUʪL鲭5C؃G@P2.;w/{.?oPr]x.]1Pww7ݏx<}?}(?~2zKw-\^/~~o=Ó+zϯ~x?v=Dyr=0Ciw߽œa0?P-oN߬P~GxP]WzݫoM\{Q9[K\u l!9Phy室0嗝g~J:ib̆3ZD !:8(A ^oJOAmbȕŶ+ѿ+=:aha< 2Vrw uwbs]Fz Av.n>>߱&|e|F9}Ƿo۷K-hY|qM8R|1sN^~[>ghG> cH0[(sF2f  5<̩s8fd|g+^~0k. yo!AU Iw)JRнC̟O0wOS);+OeQw9,~Ee2=Q4"N%EEhlFdQA1ۋ0:? ^QQy^F`Ql (`QKNYT4Ř,Yΰ ,*J;`TzШ(i@*M[RQL&M( RQ@ RQ"HU-<*ɣ\ T,xT0(2 < Q#b;*v8QQl'e(QUm1*QU4%FEhӂ0=FUV Db"EEI Oc] 0*J<`T`(* QT ya/PT0HbBŘ.2EE/EUn XT #`tS00#R*Ew`BȢR1,+"30#FM0R` AtSD7 +a$`D7$*dDMJ?@_VyIstH0(:0覀Awc8P3tWƃ+`PQ`Mn tW `7t*F= k Awa* Awc*t +ぎ tWƃ+`PQt`Mn tW &C<|B7bSnBAJT tW:€!tW:F+@]>(ٻ0isPP1E1|*#wC*~vtXnDP@ri!p&GqHf] Ze^MQ35 B3dHh :AR C ^*~Χϩ8~V 9i"?Rh~Ns>y!~N!a*~NSiVϩВVdSbt?B V#OϩS#(s*;{KƞS# |w3TTJmY?PU *>'P*eϩd~mOU@S)pOUNUT eIϩ4{YmH Ć S;[OUv'Ta@ J'%}rЧ**ԝ>U5΃gX LaOUld>UiP{*|bw5Ч*z@*V4TeYeC=MvSiJS{4Te_UkiΞc=U&T"Yl=M13+4Ln H iTΧѨ0n9[p ۀ #`,*5NVd$4`$4:A&p4z,8:!?qtr8*ZrhtAO G;<eZV8:wO9 lGTɈ:p46-$>GOQ9'h ɣQXjHHdD'iN,4MHӜ|/g'<.>JH\P H Ju M1x4bQOA1hrk4s~ 878PJE0>Rߔ }\@a|~*f2>.0:)xl~ Ǿ /@v'CRmtmC>& bKap~) o Kap~S~7H >4JI}P@a|~S~7e8v(7M>0D)GM~) o YJ ͷ驅+/O?+/y+-Y+-9+/+/F e6J E e e|2n36˭P&ǭP­PfP氭PfP䣭PfP>Ps=19b+1t)L =ӳVV(3VZ(]Ji兆3.VZ(sVZRʅڽ-j%2i%.\(*ws)w?Bw?WMH~Wΐy!%,Zt'C;K>(x*ꊻ!z?n.{HPhRYRh^'9z}b^'9YKڢ=Q!j/ KPgbS禀:BP+\ 31ɓ'\?JBMF%҈.)p;va*$2'KimhuI*SIH |CGgEqgOOqILQrJ=SXϚns ZҧOT>Ae}>W"}J?kJ9τ?=s*Ƅ,ʪLOd ᳮPTYbS׉kx?Yۙ W"?+/??kJ=ϊIɟ@/!Vis^ZZY}=z g@@ΟSIZYS 'i^Ο @+'?'vKgA͗?/!~60gs#~O9?)??9>m>>>?[@=o9y$y!hÃgg#gcgÿgA)}o9OslJ.[,))*=E8ϩ`ٳq=r=\9zmʹ8I,*"yr:SI{:*{6 $VژXQT2XU VTeUDi6Vs MD^b:%&O|{ -omP@|q@R8|>z _/恧(qyP뎡n@;rB0܈,:kJrOh`Bh$ iΡsΡ|Ρ)Ρ5E9@h`zS/jp Lu )N Lw ] )40)t)hɒBB ,)446!t `Pё% *ˍ MbF0RȠBХBE1 t :N] 4#RK!n (4L ] )tS@ B7n (TK@]T\" RȠK!n 4T_0+Π] !4pCR] !tSK!MХB7RR] AT.CP}PiBu0 ݔ @7RRHSɧ/aTMa ʊ/:_JAq ݕP+wCKa(/𷇚_JnBKa(/x*+?D2|l$iEi/7%-YݏIs9Ҙ?~'v[ MYk5ꖲu[Ii}˫;O{Z;$嬴6Z¶,a[%la|#FS#%zd!BhiDQjDQ+o=\k𕷍\Y+oɈ3qc~ۂt6zbvضzbvX[=1n;`l[m=1n;`l[=1y/hk/dk/`#6AducL?M JNCu> :/oRW{܆= Jm>*tG{9`Pݍ#+t $ ;N]BBP3 TZmHkeF]EyT(AUM@"T;*;b|:bцT@ mAU !XTT=PmXw6vu@U;jƲ6n ;b#:,_'2v~e'P*xgCPw6UeM!Ά29/6 iQ8@TG DUhâGq v4ZkJm C$0TM1 CWIb U- ՆvDU89ش զơ*CWKrvU- նӂ2 F6(/97zcBgaQ4w 2vR 򲛢5'&ADMњϚ9E?YƊOm3S{.D -5wFg[`=[ ŽڙPU@3 *s*Z?ݢO+os+ܪ]iz| >U~ ]%izCWwڡ^n*N7tQJ z4CWr9U;fM3% Ȝu+tW>cJ+tWR+ëśgH+tS`b't 0B7zx`cyvؠ0&\*.>t> wRZ|?])>* ݕ ݕaJq1+tWEx.T%+BwFc)6na />^Vˆ`/f%{fK2%N>^'_la/#ceom/b%{bK0ea+ leee d { _/^6Зt.%]^xY_d { _lmH)7Rؔvp+p*w-Щܕ_J`w+p*w-\InߝJfwt nX$ݛЯbKh/ AVH8XQ"*6ȤЗb(aŘі(O:xQ_e+5HuZ݀ qQ%8Ub(qx;N⺛ `8tq$Ƌx!ԁ1c`jF)>1r[8BĘ+LSEZB֜3:2fvNpdxqb,}'ƂBFpc,sqd3V1+,ftęzpn3cEb x1ce8Ι]0 Ɍ9xȤ@llx:66 \ ll)UI 5̂F7GI 16^_l$-`dn80v)_/ ";{%gE`쑎.G,c"!0Ewj%ew-UH^',vwG =#,v.vڜeA#7^б3݉%@NŮMgH(\ɇElZ`{0<6 )RyC\I`e*E`b̎S&!.썁r&:$.t8/s춎zQ'(.&t2s(Z/.흶 a3G;c/$ȜZTꞟ);6.05[` L,.eSťQťl󸸴RZ>&KB,eȅh3TJ'jQ馀J;Jc,*]Seq+>tns:/iHdE%uKpt t s1^3@TK, t ԝH5ba\X@/=. ^W72^/`T𹤿FK> %i8ZjLQkvsɬ;N+ @~AB赱C6""{:X!*9GA],G HF}%3޼-91&Do}Do@Z˼ye}xћ)TL7} \DoK,xq[Cȏ1Atl- zt!ѥ!2DoSDoA~1*(zxEWg|Qtud|zE~ ="#2GJ#:EtAzρdžzϙz&ދc.B0tI2[ޡAƑqgѩ$B"ɐ^S)A߁AސKATѻ<݁QQǣ[!^;z iymQͮG' |gǕKM0óD 8#Hu ȇ[e5"D]XGI84:\X|q"qtLPv {}E]#>rd+2#aaa#F\˜裠Gѥ*B:tsFdчd_&i ʧ_Ggރdѥk*AјY(YQE\BXCBҌ5(:M(:NaE<>o K9 #m_m'Q]Z[Ng5\+{zNgA^,HWɴ_gF$R^ E3饛4dHEJ,+:):FfV|:=:,Nu^Kx'\5 U|O g=3=S;^aer"9+3pvIv΀gvJU;fv.xB|ebg f&vFybgÂ'vFڨi23X|*ewI5aX_eS23+s;#E팴 =3olHsw ;ʺMHws41Ks$طI퍓GT@q VVAeѝDuһ@Im,$XIhc_GƚmN EŶ&y6_PKm=zuW+:,Rt6 ,d6Ftԟ!|k׫i\D-CNp4t&!9׫k>B{dfBMnCО|;;A&k A=߬qlvh'k@{v3BϚ*N<jm O݆󖈟f΁b=J?OqW }aSOmgo\O. ~E}O-|s}%2+==M\Cx)azた}XSO?EыŅic(F/HxJjUw)$+Eb3H91N-+1B+)1+)t`]BZ/US*5 T 1hM̝$֜y@P'"+:n TH1{;kV{~E.)]$$RDIŹ0y\bP80t6mIDVܓN@[sTʝ2z)UH@P '~1C: .魧vh_IN!\{L2#@K ن ڹH *l;Tg=_Tz@}C$v.sp= TCX+!T&KJxء2`A?%JȺJƟJ޹}ncQ4ڌO)g9݆Y)58FR ލ,z%Rx|+zedyTew\+߄i7DUhJ1UT+F-UbC%OKXWe,3E";N9L [2CHHXsE0J+z3 Eq"Yd/&Uv pf^9HNyhpERӇdpd^"Wԋyhh EC`;Ec&2 :$3UTfVGT?K-lLSa0sE +*#W4$Z E[L ,&0&,* /f/lѰQds*36yhޛyhyl=4M =4Ͼ~ޯgSY{Z{\{]{^̳}9潱G=3 ^{cγ7 gOdp>+8E; gKh.QQnb|fb٢zl8̆Cl8D%yQNCTtU9hT|E10Г-Yَ0qfS`QQCTEu,R6v0*)`66-4?3i{Tl L&rE6vL*J=ȚH*ˌ-l \,X4{Ǝ JEvv^ ;PQEhn;6JC0CU9MI \=T_1&L8М=ѳ#+Tdq|uJhP GͶ)E$%+TuIRU68+Tb|?)C@]2%p&!)] B" J M/:yZɎ`=2%jKi+RbVDkHYDr %O+5T>JkӚCD*NdDY|g%JhK]GD'-/ %J4%J dA,QbD!%WጸJ4(D YYcBֱJȫDk(KiU~!*~8,Rbs4)a E*%*%^DVHق|KlUJ'$=)4iL F0%J,ȕ%cEʪPLIBYb5V!W^J}vҐva| %RPO*RRl4KN@*LUJ\2KK!wWҀPԜV}`ji@asQYn=Vn fJ Sm*QmJ b[6&Pm$=Ft [,[%vD]j#s_%JX%JtI (PًΧh(;rwrD20(R@%J*1%cJ{:>e(Jt{Ih[i,{XĆ@lѫ^v82H!YܤCIFI3`TH3,QbCRJDInH/^7$K+ Ug^ja|&(s?tMr |C,JqT2=u" TvAW7'lcP.P,$hwU@ZA]MAcZbV~dXqhi+ȡ_4Z$nPM?ny"2WjA00Ԗ- 4{d)+N9ZFF|ﰓafCơRwCDq>ѕAY$ Q<9Jxt<\B ;D%ӡ$*;`b(zy"%NlD!.@T @4hL 7B ,l$*|hHlPG $xHL CCA(Rh\F GK X *,04x9bhg੫PQ-؎ /$Jz@T#2wMC%DDpsh M84DJ  94fsuN}Xv󘃨<D *~qhg S;@TF ehl(j *!th $*Q%H4v2EQQT"Ovd8@,84[JN M{A:(4]H &pm :h3h *MKA%DVzD7GPr jA⁠|k TBAijGM MƜASY41_T M\vM ?:&v@ˠ 4N?ASA ,GP;XM@rNp>I҇0KdFٹ Zm 2Ae2:/-UJ\&ITcT\]iAaja|P>>p#4{Q&HPFp#[@]胮 AWumP>`Cax衰Ň+4B7{dLJ+B7=>\jE˲w/^O{ |w>%˾w/Nd&͹)ޑnmΥܔrS}M7ܔzS}Mi7ܔ~SߍMx@N禌nu.V禔nun ;xBsSYY8vpv禰+;7ccٝ2αΥܔrwn ;xBsSαMigexn96㹔=\XR7p܌ <7;~P) )fl) c/sSnƆ۞Kĕq36\J s\ԛ}Mi7c}M|MM7cÍM7cÍϥ!\Jϥܔ!v36! "N;L@u*04|rMHffBs>"sF343h¢fGЄXhf*' NUΝ@# 2i XwtmVntm,h/9vp\fڱ TBlw;NP^[1:BP.vΟ>?}͵Www:펟^`:ƹ3W+_VD`Σ Jr)8-6 {'b/@eŨ,Z0I SF}Q*+@,J { NX ekAjJ\meQ#-EgxギŨe.e.\]樐Q|Յc.RV|CxՕzQY= \ϴz>覤t.exzR0a53ԅN|P8]J[7p~>opGw8ut)c=poR|X@q8]Jr(xӥ4PNB8t)xat)SWNR|l?t)(K~@q8]Jt) (K!RYpcc讌ӰӥӰt)էF჏۰+Ki݉w!奘GMQNaȼwvȼ@yYGH8"R |GX^2z+r;jpEbz8RlLZFsayk}2I%&p0I/"v( ncR VI&%ev$R]*viv4Dn10H#QHSLPCR0NO4|#i,\C& &X8}K ȎP ~ƣ:x4y4yIDQPG%TP܈ shsQ#9T& GSa~qT(hѻFu}6p4yQh Ԛ+\M^€<:>y4y4Y˓FT #Q,G>$Xn>]ȧ<ҊQ\B@@V#P3PO$jhY < S05eO+:_tB< O: 5zYQ4z% *a5H &9\crF)sFg2gILMʄфz+a4Ui2g4!m%fzhNL*sfiX@D4j&dڻL%q|vXU*{FN{ɦ6] dS!~c|N, QcSI60sa9 SFJF01T2ˑ8*vG:Gc7 qSAq0P*(dX@i (&R*F/ϹdHLiWy腀J i,޿Fa=mӋ=m4=s4pyhgL+s4xh HT-R)rwB@QLzwH gwrub/HDx9>#n^Nit#)'gQ빀^bE-ҋk"\ibmZR v,iY`=Rtl':2pb!L S[pJeNT%iiιHT~:I F*s4q;h&v9p4Ur'tJ;^ʝ†z [wJ ׭({7J+d'Bm&OژX@Mz Ri$Q4u&ѐD::΋ *fo8|4W oCv>79TKmOz}+W~8WuڤI/,]6){.4Dm+蓆ᓆCOʅ'eF'fR暻F.M:~ڤqgMqG{gHAt!M\$M>% Ҕ tH;.4UUCR!uwj3b/?/?fG39ؤA9D `МeBGs%͕G}Ɨ?q.miGѩ =ZQ[Yn"fY*h!};Zq}qhe-s4GQeyd7uGFIZ(8es-šū%C}laߨC L_Z*z3\_A Lȩ3h/ qRjFen(ˣ-NZ)8Ρ]06-16DIZzQN'qㆊR;4yv1Erm D[ ~Dve-ޮjjhk@506YI9N-y&hK$LE-{$ZqD-X*ݎ͍Lb(x, m߀*ڐ;PYtC[ci'r(׃/m'J)S"q mPvQh*> n( .'І2_ *C)!4w aAeB8<>0./?ÁE.zA$>]tmXJc S)v_E/zz\¤]|,J輧jd˾DX^RZSt9S}-#,_#K0,_#a1,_K2D>5[1*_tGT^NTr 6idTz0F奙1ӈK3cx/ʰ B!ms@&Yfhi TtQhil2C z BBxraQ@v*@1hir4Jp/ T_{\^=mt* 0(4 .E/e ՎHZ5 վekıۡrc*b ph1Щ8T0m jM{m/"j7DPhjK^ DWz IT{a"#5tEzA03 -=iiI;NUMjsAVSIHm\^; .fN! Qxs`QUtηd]/;"SP"Xt*\faQKE1 %9d+ad-#xbh 6 ):ZI;Q -%dd0PaT;Lf0:rN5Ռ+aj,ZhsODu]Rk2 F0 AS1PTK[ZnJ+L&mNţ34 E6Tɬyw/k-sMe`mptQ0'O/[9霐I>jsR{*C˼ ydً<^yG qwSǏ?|JV!OY"qۗ;lY<cV/=pDxb;7^|կOA5e<ÔG߼p/zWY_m\{s~w/}x3"~e~|&,)oc#^  ; Ҽ| '3"k 껂298?;J|5K-{wwlOc:Ƽ."] 濓So_}|=Eam}V\nrry_C~1|pyqش3oZG7v՘檦_V Y(o"CaK??yu~rE{ms'}NhrA"c=yېs̛u Xg81f%9Ol[Z1 [ ūbw=ƻu exiO,%; iѾUn=Wa o=灗/>z6F9,Syϩ LzaLr/ʞPg{#}Ѿszq [/ubjkL:׼ȣvQ3L2zM'(:^$/nWMUrO>|ϲ@nUy[m y|2iJPp%|'SgM҆qw1I;^$Wp~h~HF_7/x%#c|z>JzmwA{1g?< ?{OR/y)7yUZۏ|Q돏}hjm|?Aqyy(^w\%F &#nUru|j_ϫ~Pp9b/LKWO>7vōOtgyҠMƒ s]Ώ;ꟻȷƕR&:c"f#ׯ'_b-A?ToKlw[>5ˢK׏~z tp,Uўj#y{y圖~/ |x Ai*A?L} oG~VW&*;,Ws߾2ÛwO8??΋E'ɍjyn;(xy{?| #$֟pK'7k_2cM̬ۿC>?_0['rʓO s=vFuoT:|3H2QDI%d/" a[1VE& }m4adF8{A>G}O/Su]4}^}|coz+|6OO/i [5(BW.l~Ͼv0yQƈOgL ҌEuh8ɼ!?sP3irKC=ydczB`2q77D,eR@3wӳ7<ݞۗo߼#9Hdl/BVk9T)U>w췓Pٙm7yUO~7Ͼe;ƃlmRu[Q5tg_Xc 1<{zHŘw?=cm]_!gK{zMⳇ._}7P^k|iSYR&<>ïs^'΋?ۿ_jH̷"B ry--_H]Y4]ߎ}_}Tϭ̛ڡ nb)OYv&˥^W}Ւ'=w>/Hvb懗o>|<8K~]ͷ\wwo?u̹<;vJoy9lѳwި OC|f]s xX'c+@.yL46gs>|2χR~~}y͛gcJb޽t J{ e<՜o&oz{zϐ[WڨsuJ@+w6y}%񻎟dR2ozW*f贮o&# ?<y_Jg:o^|$YD D;=0oP^o4I|BϔL?k4I|[N3ջYSzq(O5V`EjWg?<[-=^=~eJ\BZkl6Ǧ|kkñkyE|f4(&>Y9~qԭ: J _tMO+jB?kOZVg~߀U5_&*/&߾A&9N_ϲ|a翏-<_ wC-]/IprϜ-a磭r8R[m ZqEsdHsJV>N; ǗSiY -idL \6|Ү4Xg}gO0'3cFUˮ|4yٜ1F7J8o.ud8g{{&mO|]FqwO9>'?ٔ7Ss ]Ǐ[ !ku#O/t⏟:_'^ozۻ]sp(d㰽qz2^>q\Ps~OWv-ï??~ L}:[Jt^}B쬿Dk9endstream endobj 408 0 obj << /Filter /FlateDecode /Length 36514 >> stream xˮn;?O{l-H6`ܑ27  '] 1*)pB`p|~GYu~z~iXOw?o_k}u+?.?Y8_so?O9~_fZ_(?~w?__o{bjO%~qE?׏t?Tj>Z=nEg>GG9yFF|zg0x?v?^E{K=olw/˨_DZ?zJ˫UwZ[F*J˫|\1-_rpz:=Ͻ iƗ)X1li KWo~{QǮ Z?\?#>=?/v>RcY_s4-a*,`_-ly]Ѧ|le|h5|: :,|n_;Xp. 쯲`9n[SYoS cY_2W͙ x,),bL_gjaXgp t؅Yep{^#,,k`Pj!6~|vfZ?ӥxca_ g£:̈?j_Dwaofs,xRsFwy|ѭm3-.6f?-n~kr' ב0xNy7, cի2caԣM>%nXΐa_oa~>-+-S },}}pXv_,cò21,O Kg41xgl`sXaiyVu-ּRa1ga<-;>{.G8QF˾eӲ_\2Lɾ-f11"-VBΟo%a9s p@3c7BKt*,I3bD3 e2P1$%tq^tX0&43 q|*0(G,,`31*})FH,wƸ#V0.Ut98 97 g^ X9բ͙qi*sdG΁9J=>Zg%_$>a` g1$\Kw,vVys`$f=e`X6sK;H9=U9.}=X|ٰ`\"Ѧs\/#fp\#ˤƁiDɁ)s Jm2܂i>44_J~@2c%Ѧ`t؅< O[|փFKZ;ǧw,I+,.< J,־4X<9>YPb܋ӹ }NX^ Ƨǁ}Nx0-3cbl3bN; =^h1<} O_z4~j/x\<7} FJgF籐 Eg&$}~"l?}E$q g`O=<PgtYF,")4Ey dKgɟdğ\HϦo(Xu&ٿ7ɟDzȨPhNht-@ϪB#YRz2*K=K&oRڻڇ`Xz,ChQlZXx!Y %CKQ'~ NL#E( ?e~'~-i!~шWy,D>AJ X!$s!IH?F &ɟʟ_jrIAχ@|DPSz j!1`eIzfB*HLs $P'?|v)Dz <v@= ^ZFN=Á?#u@`oD"$)*D,=*=#t)>@M.yI?0@WM=C+=BG^K\SbfD.z>Lg+ p3X5"Q‰DD ,9ިX%ޜ+0%Ud L8hFCV:d4$_v#~IaVҽpk&'HwΒ I)9]7-.tHX -$.H/)옞{Лhbo9VSrE4M 9@MԕNR qˑC:[}wv ܺ3uZ+=̝t!kZr3+Z'tWN\*F[/S;\tϿ 7rYWxfgd_=:y7@@8XnpB߷|$igJa"Td07c% 7À(g2 Knf n2X΀Σ0a}|q@z&i>72(qK=S{ˑa'#} [ x9X!鳭Em+|àbǶmMږ𥝛q?,Om~WMyǴQ?O?\?rf<;~1~73~5"(Oax Z^#y#-V .۪>mu-V⵼ZUWV9d lę9k7D̆/=Ri=jRs O%0[W((>c%f,cR- GН{&!nb!]ѧ ;4M40Q6ƈaI_wN^mK:+<:@@Й0>[ȼ:ט/?"4{hw=,+&31b\3bʭl zBƁ` &ZLrN\$ȝ:ݍkocܻv,V O|rH@pEbv߾x' ,tUl}Qe Ѐr +psn?q>3NL.otsKp ?ya3FKbXv tcXc 8+(س{mÿQh28A}6,}Ȉ{ !>vtL({/Ľa0 DDZ,tL1SDz}6 @gH>H$I֧byX( tye!u&_n]ܭ>#i&|,y}zÇ֤e;&z|r KG}&Bk3ֳp*ȂhôcY~qYt V!Rp)_D[ K+[:]mkc~}Cn⫈yב9\=Wֽqb@ˌ.ܖhc1!Dg~yp}>Đ>T/%mZ|-6%2>űLt >UMx—9SMzm >knX& \ )Hc%>3VMs/ja8/41ǝub 3ǃT!cA =vp>j%.S!u0,Ja&ZOCp\W_TqSX6H[|Q6 N6X"kĬ_S/0S8sDF?4/?3i˟30<\9?gW]AIG>A7~**s)B']M=@ϔɛ$P|D$M  dЭS@ q~I7G;mcm \U[h$dpKhjj ŋ@MH` yZZx@,t%6=Voְ~^=3;Xj".*77 TI;y"Ю8ugAy"P%)bnAt<<ND"P(tпDPm%oZzz'%!ODD x!(3/ϙ% t6!trŠ̆|1(ˠeE zQ (_a2R% B7w.&Zz: t ] EBb rBPgB5I!&] -]P, -ZZMVfU^=ǤZ;?j!QhǤ$CQh+DPYPw>U3KжtuQg^KI~ Rhwah7ݻ0cI P~B m5P0CqYqG4ġC}jD$aNqپ *K+)9tr :\:7[r*oɡ;eD˧ $[ژ1/n=\L `U O^̊3#(KpDkN4E:..µ̋NfIʼ z9Qk.a)ul~s//p & oe:{D<{*.kbtN<֚I }-%u?lE& [d"R+ى49X!llanbD[cf\5mdD&æUM2 w,9Cc' AՑ An $8<{$#W9iu(醷u6U? ӉiSn ]!|뻜WOב9fUg,wSt,nAM.jne㔷퐞OBNc[ Aqٞ:@Ǜ8֧.wߩ|ۛ~у"  7J FZږ܍[JNӆːSƷC7H}zGw ǎ=4|E6g3avƮ2}vf xq"#  o e*^Fϝh? <3V>teE%96UnT /|T8UcLXW;8{g;ʉhg㸖W>gǵZ |\1-VNGZyP3#-qG@RG-@ө>Q{d+d6WOGz:*tKO綢mz:&tKO綢mz:>dw/}R@Q&@Gu?_>ǹĒccg =[-8~晁ݥVHRԡcуSb_<{} X]O@! T"GA547c/<<{ra@~@>p7~܃.e0lao/@\;( ,[kfqcّ$cԣ˕b{'Dz1f+ڸ_|m(1!X6] ({X ]/: Om>_ٟ?>N/=8| <_M{Ekh:\^kk9M_=z' qIYpS=B<$[wO:a.eKt?2~dGw?G$;PV6@}tv?W%CCkje3zעk@wѺƨEtѻka;d;҃_l2!:Jz J4+0r܆b#0jlE$Cwx Z;p>B,X~ ;Gf8ӗVFv?0$̇8C3Cw̙yHqQb'J#;VZACL;ND\wl{|)11z͗+,3y Nx#$1X`'`ۙq 1NxX7/ae5x+a-D2:rMXy,8ĉal:B.B(FQr2=0yYQ,4mq+X BI{یX(*0W1Q l”ỵRy77eD9&I;>m:Ch>wŞC6-t8iOdD;~cFQGJǏ(*塄6<~]C#^u"=&tS-ҼTWEF_  h⇯t:@6&Jz:B<3ޤA/@4(He @' u0f) %P%IuDuu M85hTY@s.Gw)Uh+ P'AEDɟ~3?GQwC[g IX@N`|ni$@mğƓɟNNƼϗ?ų q]#h& @Jmn\ڛN=OY\!VR@#C-]S?Mhz4"P?zVl&*fnCheh]zh{ĭ"FHmC$͌ ^wP _ @ğ]ɟC 9ʓ?>1,ğiTK^ψ?'3)Mt%snݕsx?sJ^\9EK+?н8@#K |k 4@ {(;4|@=N">e~ ЪP'-ЪЪ ЦG"h!J(v~hQqMh+c"MPQ^С7:F@ @M 6]Pj:W:&2@g/]Lw.m' aD;=DтP:Aw4,-OU E"8IBˣ31ɥ]zkp[׏}_g5ate](};Ѻ>&?.nݵ^]+9 TiDggs+jm?]axѩ;o|~ هwX?!l0Ĵ ̱tFtu,Ja{O{ph"43,1FYq{}Ț{i(0 gXb*)CS'2a+c" [WĆ?-dNc3rAL8EsL-mZX}B i[ i0#yW(С~igPD5Y%ttL<~K&FNS6e2Pkd3EWd[\ɪ&]U*K^;!%ESUyêBɝKgdO}O}Jp4 *A݉.Wzߙch14+<3e{Mu9CZ BRf2&eXy{pKΙmEY^t,3yV9F9K tHDu\L/n{Qy]K;+]/_tpˏ ~41!eT!ZCm:Tt斤EkL92RgT) 5 0"y~Gw) ᧏8GG$Vb<,ǻBZUV|!BnU)KF!Tt^=xuź "e|pt,SX f!5IPR^$*B%"bFb*;!KO$u,!"e.Fv(M wmFu|RzQ|UR*e2KX֕J%-)?Gc&p?X9P ^aꨇ藅B̜o jt Se-f=e)?vܣ(;90Z(:e!wfG|4bdHuCXt,,F@sb4w<>tӏE eI2ֹY*RRjҕDsgPU4!],ч81<$(/9D.VrHIǔH_ ?gX"(%C҆IA8A ]LsBޚ{L)e!icޣDP3ca>m踉@ͽrVd*k(F7UR?%LED9=Thlc\1j)TWECTf5jP5+W↔j-L`R;d͕q?fsÐ5մl(!Ҷ"U+ߚG(mcQ9 R|Rf:&9c%{ͥ%Y_3ﱤ;EYf11CfdtNaBLZB,&I"}QhH ]ҿ. &.ՓBB#`R B Bwօ$nԑAɠ= T0s!uɠoUAYE Z@F Z(ߗA=hU DЪ٪A!A['@*%[vzKMB"ЮSaI]}chtHX:f%tlU%@M (tv1%NR{$@ADsQHQ}PE/. Jm^X{[% B%,P{@TP>*BIT1SאAH`PSeТ Uo.!vКt+ U&H ޅЦ -1^ڳ(tB%p)o QPѳtCOO xIhD&֤PKvRBTe)}ЩBB蔾XB-Q.UiN 2Cw,bPg R):fCuwV֝y 6Tj4wuٳmR=+j eYM"[Z|UdԲl&w5U߉fa1M5 )irc-,iXw.)nsU(̅I o.@O"dy-dbWѣF#r%S:v:V>4Z{" 7/xOYyPq-CqЧؔ/!/%lg0HM2JʬnCձvC_n'!Y"GgvvjIZYS@9vE@MS2:kz{G\|j_/Pߦ!קW08Îi&iz/EpJ\$Qz4ҙz3HK'{lo]Nt|AD HwmvJnMEt2D^3Y&q=pM[79F g`:B .!&: e`g.6xM?HZ< ,8ʭڬXKZf<UOk[^y?B~C1A ͸ 2YJ)t!ce2ǝt'7_S%|\j_瑵3%)]]wHŠ=ViybŞWVs[]˫_jŊ=Vi0%6==Ǘ0 Iy=yׅy $TG:CyAF JkU"AY*1ExCjN P|YlQ'*&`X(G6kB]|-*g9R*$"QnXE t8B AWjToaYP+X?ȡ ,`gݣ0"O=|ːJ(EB C S,"g˃Pǿ v ka3t5s7(GjA.G :@1@'>蚢tǢ nomS+wSF/4."RF/(bP;NT3~z\\DY(tPPDV[`02:-_wJC١ah wM 2HE1:v>U4 <(/8#ܙ{hFO2H.p#E%cF`lDLpH񋲻AҼnӡ|/Er8T#$(.Ϧ:PFԄ8IbxAǢh7p(ౠEȔU V>(ֲYsdG 5#;!O>H?Gv,Aڼb)ʌE,M2m~Jx Vmだu$C@&CHx x<6#K= #CP;B/CTo^~-?Kܼ4NQ<"й9/-KTݦ<$ݣ#%!aC/ Wzm &¥)!' B`)!Oz ]2 f:|!T .FN~iBi9M L 5*$Z)tuR褚NR BvS~ KQARfrB$.EB_ЭН7LuUo:)ԃjTbc+C$lC=&PQX:\N ^ZJ CҢЪLI5$B[zw&f.Fb]NЮZЮM (CG8t4+ .Y[CwCMPSLo6'AtdkTv@t.zD ԋCWސ847CIC0T{+ʶM [;'zEP\bbo*Am@G@6P?A0%ˆ_*bhS)Km$sBRQh/)wUvK.%v[&CuCTbbbDoBmE (4'ά( m(T;ӗB4BURbЭ3I[3[G3C¿QN u^#C:މ:BPϏFa茓x?^ >Vy;1I+1I~!1K#,9K29K 9rP!AˡҶK 59%!CMR^3R::ʉ BWSQ蒄obדb|^[D(JE~EzHY:)O xI^MW.Eת)U\"pqbr噱E#2HK9EtR&$C|\|5N=D7$+sR<Rvã_/'Wb7Il)LjƑe+.hY/UcfV'㸶Ys6tgoireRT5[U2ͷ\3x~67э纕p@_*AI]s uϥQ 2m&Yʹ37RLJ m.$ڍ%qBN T,ŭ`dn33(/x^ Jep$Ĕk\O:6tI~1d1Pbr.H}TCG}Ѝ\:?_Uq;i#+ i*>N+Ntӗja\2?C^[Q_}vׅfzR ~FD&IѥYXnkG?C }Y 4嘛NRSrj>?^QOZr쏙2vp}n4E# -CFZC x.x7(Ӳs|ZCRP1PQ ,US+ȿ?mtwu#mo"F8t [:EfMt"^! 5o }X(d*Pʐ)uX2Zab^VPnEeMP݊{A+6`l]W(E^?Ʋ$TRG lH zdR13ĎTfUtx5>Z`C} yˬ =o8JyȵA IȦyQ pUx\އ\쪰OH'VTV !v B/h*9 W U&_xK;}B9t)!$o0(D$&=;J& !w$T$bPI%l"$FPa`܇Md$͔`d$d2⃤%)e< aF +@,3Ώ 4DAͫL"͗?Ma3heB3J[4J$qL(|:%#C x`1*:?TKI{PbԊ5')OyKas Sb Myk?{ImJ` d}}Rr~Rܾ)nG=|(0g "O)2!e`i2Oyl,,HU)q>Nmt7I|_OiOeiw#RZ-C-wYxh$@otL[hV &J$ 4H@M%D*I.BP_LBPJN='CJ=2{'б$u^ZeDKkm"B$lEͤ[R̉$A?ɟ5C]/*T?%O>Y:4LIY3jrOCLGYRY7C٪FtO?}z -Md  [S:TU:LCIP+TxLOS9y )AׄS{SU(?Vw񓅄5 k[ ['ss(E3d$!WΉ(Ğ#$'gdH4#'{z*TON],N[-ly&6ᳩEgWBmgo|v9 ]"3>j<&}9Ii…O/..YI9ĝ9QTa$s5sK\*):xsO3EO'71ӕCO)$}NLt)$K٩ϙIDi7ҧg.ta%gYޒt& 3`?%~.~JrDC>u|gxL>MJҧ)$s>z?gsrs*q!sr_LEI\!I*U8sgJT!}^{ѧ3^D1Cd%}O߁&tB53*k * sQD\MѮɬ=ߖbߦ|՗};Y-5Y|:55(_:pj3H-?SD9=Kn>G@#jtFI[H|-{DXuwy~Rszi.g"gM9c&p3cuM ޻&gzMH-ޣhߊ{Up]N \H7R2U2W^?J90Ůj. f*m֭ZisagDUW2'$:$sjsoe$=IWGdi-O<<6Wt]"MbT@DM8O 3åY+Cs$3:UfS)^0<]$uy_a ӆ|Sm7 U _х{t-u洬*WJ]j<Me]W<]{ymYX]-r(WâG:w߄>fJ7QF)Gj:^"jr=Js"rMq~wHܣ,E]Wǘb@Tw'krk"0hLimdEs7`X${0]2PO?9=+(2OܧDب5>s3:1{dЋ1.Vf peJ*#iўm6  "vr$#׶3zؐs=-tny3LDPWM/j@ͷzCS6;|;wyht~Ga?ӿE~=s^9.jw?)5|{V~?Eb Eݖٱ;mZ3hʠi^9/+- *3q,xg u+HɋOWx/,i[G1 RrO׵P1ݎ%BӀQs&d#r9|_Й~ƥG] KDT>S AhCH1JaǕB.TGCyɝ8?,ݫsctc^Է;:8\:֡gutS^ϭyцy-M49ou}sA M(=stY&Lj 4H6[?S3%dL ps-px] [H,K1U,O/]fpȫ y͘mjS} \&L66f@iz?1Iòp/Mgv >m ܹnCɬ̀a]4CDzMxd-C6;F:)s_ekd#5>]Xwjqxwp5Ypen;=X#+Z(LX0Fć%7_`}6zo1z:,ҊҖ&̠0`1 mZP),oaawe5u?Yoov#Me@ q6}0[I]f 8%6Ͼ-L32PtOt ~'Ň& x>GT'dÂbaaGC[aw(!zpkDV a`6| tťVA;?/K *_sY,{.FAn *Wtf*\w'etrz~zPt"-trpx,Q$#{w5;%S?Y;sX_;gSu<{Rw=ANqk4薏3ҝ >'휸{SFs{'yZ.i*ҙjvWըW\\Ҕw=Kc{vvԼk$m5e3e<ʹi 4zыS'E\)6ѩ/=VӵZ%G(VhyTsb.N,S!nRx6_C"`c]̋m„MM#\$mZ["gIo%%!*nwvIMIm&3KeȚߦB ;A6u0"4Qi#gF^x;>ѱpB~Snȵj];rB颵qzL= 6AhzM1*h٪wr{R{(KEaŒ@KFP*y].b|߻}41e` k7>4{(җa>C75;Å>]s!EF05ȗB>9YE~eKm]kտ2Q?^XnŵdE/=Tt^ryywrHn"{&-(,\g_"bׅĊcic ns|UfHyM/b1a#54OFZ?^(w1ܛGy6o2)ٱcܘ.Va}Do&dZ9m?mkrTʽÔ={}<ŷ:B Ac.DZ`'L\XE*t/}񱬘UWaYUDP@ e!tUX35e V(x,}֧ZfElseXbE _\?ZT]²h cZ/ϕb2߻7 3&z`" @+7Ye?D-QQKgs$*/)2aXxǰKP~bpɻc °lp/)X:XX&bnP]na?[ ^V0acXB1,O !$> z]6DoA\s OgQ^t#',k 6u{螸{|tOǣZ5<~Do;'v;VF4]ʂߙ0@d#xvǀ.%Ghx0C2"QqDܐm_~Rb f ?MR~&c wC!c>KQ͐ >ֶBv,~]*~f./upnXcJ"t? xǛЏt62E$~$#z<(r ?h ZlDD' IOZ 3 Z/U"Ihn'.Y$1ԗ$Q?H~ *CuAHL$:EI8At25947CƗCP8tU1P 0tQb2_b%'yr64/n-ɡ{p&JS l yQ< P QR9Qg8@E !D0%RE"u"2MI~D ZqATD e.V*\ ]K ZS Z;.&$V} :Lhz9.Ć.&$& 94%9T:?C[C@C[Wġmšm|f"\qh|6lC _ iԋ6C{ C{cO U׋u>" rC{WC;kCnɪ>>NɌˡCs1M3=dUxDQQ?_ CnqDft"ѡ$:x`V%QM3FKk$:&$:`$:x@}ѱѱE$Q%QXZ1DHDMC5IԘW$jM'C$j\/hI5I jzz'໩CoKJaT*OQϩ2~qUV˭㮤;ja1"w*g#V}Փs֪KCZi9kQ5)Ԣsި{>r9Tl٩,NN`ek+,F`dCaˉa°j:{tyyOǷ]? e\ Q޵ Z b5t.jT\xXKՊT>A-$$<Rŏ ~&G<[<3(Lv+D35"ިAR]R|J|J|]Pt,OS Vp4ri 8ZI/~X<r=IR IBh.ৗqw䉸Mowh:HesSAr*=[n[NH5]^KjrL{KV, ߽%/SsݗQw tH:=$tᗜ$PproH)0g/[h)|71<܊'vn=aE5oHD1rЎ)QnCl Fvfi(W!Qkk3VEʛؘėoXzMˬ5H^MW.]Y3UX(s9CE6E'n̨D閿6\ /k}t?lRr-|~SV{?Hxk(fnh3#6JXA c_w1m=#iR&[aè[&[:LzVR:LJulRV^0>gL_BV,>qM*LBVL}yX&i%c2ngCJ8ҪXEH wRc?Ê s]]rT\l2A+ډ.#3, Y +Xߑ,k d2 \e;F%~_GSʎTbZztǕ'K™hͿB^lgId##U;#u%rNq(xg@--u":ϝ>e0I9>p?l3+CSw1C )g5p%hRD[˃k[#ra"0M [ $vedyؔbeD xhu5 I06OmY܈-[ezUSꕋ%z{},v1'ocՊI3;xhaw b -c=jw4̫IF.(} Ctty.Cho鑲?s=[Ӳ/bN=PDN|L&8Uakq/LEx݂<ޣHAn/3O7:Gg!Е`X0xmh/we쯲itOv_tݩv?7y{ˊnƀ$-]ĜmH*z\ cQQ~B}ysB/3B݀$uDIHaR#QF(t?_ u(|* ՑJ uiBKBPqВ(4FZx!(\ZY&bhU204I%1V=cbhm.C~Z)|q1*BZ$VX$VP Z8 <J] U_qh{ĂѦQռ Jm@$69 IfF ITU\/_6m'6V%z1$ژ:{Q)*QiC|:Gc'Ӂ?}9ݰN\5^\ }omcɽZJK7ʕJ~KwW5Kܕvwnн;b r3>]<ۗn| o$T:ҹkvlQ38'>3٧w-r7NݱS+)E2gK Ef Ho7Nune3$u33?"[ ^.s3&I\h| Jᵃ(YŮ(m TPqʦ[_{TdG9߫.gc__2QOl@z>֟eK?W,] v[ B .j ~HȼԍB(Z;i"E9 C7)5- R KǒJJh2T&ḑ?jQA|(h|6 T,U)Is;Ne>M$zO[\# 7 !,:),sM0j:CBY|TFڌWwE7_R;;%$Rn̆ΦHb ~EHQXB.u4Z,o)qA⣢M6Q"7oaɋc!қgCQQfStYy| ;|X3ڄ]૲K3}3$ QQD燴pĚAقޖ.Un͚{hwjFfjBX$IۨV ^!k>3ٍ񚻼l(v"AZjziթ.9JYK$92aQ嚐6eC;,<I 7//)fcεs)K~U4/T֒\J *nڈBЍEД' 4]E ʲ~'}f1))K҂OZ>-Sk^ҧ}j)b \§VDJ H0鳨&dȤOfT_ Y>t/}&5>%\qIj+캩Dޒ+ɞ5/{vL*b)˞eE{)]2W.|ZA ?u8eE!m=.ϙՂBtEOUe%d%dЕ5kdiRRŞЕ٢P^ w ̥-НetDDЭ I{ЭiP{$$ 5m%RCBTtXE%:6񗉡M'>CP$Dqrh`RC$\CuP+ka" -kah|bahr~К*N Z2ɡUhZU $9.LhSyѦF p@ɣMmvNm@"$$6e.6MX(T6BQbITqIIRyOCHDV(-%vUv(%/O!G,G b$,#MBEG DiȲ(dёe[ĢcEGEĢXT2&Y v."vɢTMG,-_,jrEm6Ţ8AVinKKYܯ9Ջ fsRʻ(Zbz>ze$UͧZ"+|åm#PN>ܚ| ˻R, >[?k/f͝KVX=! |Ed&HwF\mFד]PSԣͯ'k<ƺFbdW|gdķWD/}F=\'1o}PAj1LU@-OOQ{Gz:6q)fxL %>jӖp]ͻAxtV2Kj;\:vS}Ve$vkڮT1N.0qe:&J#v҆xLKt;J F&!Qݲ#[Ơ[K'VXVbgTAnYxx {K3؀2 SSdT!*9׼4ƪg^DLJ/ Y.fb踪놳 xד{mqZ 3*H 0$M[3Qb8y!LQaj4/ ^IBYc3 2Cy8h|\CicrQtV夐DB!41 e;Q5T;1QO2 gVzy 4zD_1F2D ,m(' #hKcE%Iy\Aj/\Y8!C xv+TS'@DRRk MKУB5K*/VVvXJĬ\`r!nIn卛<}#TAp`?^ LaWi憇k0u%q1WJi(YmWgcj3tL>g.&s?jI5V*i5F,hAf#ԭbfZ238TxsϕҦ s=T4U'1 W3܄BFOрeRȢپQ8xqQϾ`?֬ MX$y3DT+Y`ll«)')4*0H 먜uK SK@՘DMpx2hawk)#wpJ ,c (*$}+t+Q6ˉ%Sbh2vapXp`k;< k2@)* mT>iNp /5j9zb/d,}gó& Q (ք-tMg[;Ș|K0[ok/y,*ʖ0|XdgO"ĭljKp Zvg[X>Mu-4l)LcN}8gOrSeK‰<[jx& @iqkbG64)}:nn۸E >{yPM2GP'Щ!RN#t @*&@] E+"S^υ}sa*`|ϕ" APk @7.TM ƀ ohR[[$@H6"aI:0Utz(8+{#tYto0 tR"NBЉ~bЉNNWYI3}E3Bb4H(4AoA `M [RhrfQh2KQh(43f BV ABA2ABw A؀e F$\A) ]LDr4)tM(t< tB\AhK *FnĠrA B:SAB23ԡE` ! ( 5XvjD(asAi! 깏c'S"z6x PC02 }@;^>A˱A]Ӫ"kԆ@)Ad@V;8@}I-@-=x|A8Nş|?'FI, ,?ȟ?'N9\ )*ş3|?}Ľ9 63S>gF2sVMt ORWit$|9 TЧMzmHsBDlmmb+ES[c\ nZ82oJv -}Me6JxNBX )ޞ [ Jv: .QjTf%P#-wQwHc[iPC >|CVҷ[Kr\W=[ b/LNE rOksfF蛙0\q:+++clI/ 4h3"JX?+I )#U2HT.%+$:IzH̯"y"ѮLFJL#Cs*J8"R#1˪5K֨Ft&ҨBES j4] J@%9JW%!mLKk"Q k68*sƙ( %PfY]BŦΗV&X_el>}9F} }Zk2҄B.~n^L5s*(%rc{m1=fے!a]T^o&1 #pQr♰ƒN^bao &_  / @Na]rM|I0Ι9_ҥ~Wu=' 5`3a[. <s\W]F@70%[b0sE0' arTa櫵`Wfi`0T ӵ lx,<`Yy?alR\s( 0ˀhJ.F8q͙9`;rI^~_0ҋ)^L5B̲/(IXqe0 u( AײqDC8Ud =mzuTT8#. 3B$…wN7c;'C"4, 75g:kpIWӇGe3 XsץPrn=]BZssycl.Ú6V͹>]]yi|uyTϬ+qDl%j]16"цm)hᛛm 'ɥd`0Ͷ ^y F FQj3s8/ lYLpyAxBW S[,nE\Js\BN7l`33^ڜmapv5u ܟ:.mޝ"XUp-l W0:ۋ׼rTVz3Zlu%lv6<[m^E2F|gLQ|iQ1sMy}V llZ<[5o[g[H;pc "9ύIg2gRne0 s?Ǖ&OK8[?E%46vğ++.b-E@7/nbH[j=N%2H2:&% tP!2A'CAe/Yiwf2!j4+y&4̈D]UAE%@]'.`S+sWAAP 8#݄Dm`P#@lF]H< 5©2҄zLG1yd?8@:Nvl A'ZA'!NL%UZ!̑#1ybЙoT :/ :Î2h0-M MŠA?m1A͆T 3A3GĠcLkAhi~@:R$tO ]ЕuBW>BQʙpЕU IE[ԎMЍšX]DՓDm>03Htcu`QK+Q% j&PZCW  r{aC}Zf &` t 5$iPE@ p:pZ 9ԮaEIp+$8G đ6:jwL%PQ0 wj'"'i`g 5;e+.}\(t͂A-2AWB"؃j(p<.BWzB=-^# Լ}pu3% )  jP cK Z[J 'L@ϛ]cSI 9 >39iVx`Nz;fNWXQ52z1LTd>LR33e(MSuR\}eSfFnSRn6r' m؅ T  }[jzT9Ү9X6u}b2@v'A'&!(u d^r&ܢb/7yÊqr0Z8l" Q6{..srVIrΜ"Y:Crg3̩GR3{I%OD%=q*]zfK7O`{I;) "1f65J͜o2ŁLPQӻNj2BIG K5UK&f)"0 \CQ-BA}+B{_ % )#MLhH2anMH>_A<4qg#5 [ ):U,PT' @MZ5gR5L1kb]tFX@5UښS=DgW1#FW~h^x34Jmbos#S\R69r|u'زikK~uI+Z^u]V'TYRxwrm=|8Ef /~xfndI?|?u?^^\̋qKw{xs1Z77[]gImkw|sW{;wwYOVV:)uw݅AOɃX2ptK뇫ku~;㕠<&.u|fh~ows2B\zSm??fK-P.,/۝Y:vor%DZ;mKۖ|}RO?[v=w޺>$su&u_;;_Ǜ7W͞6&=w6V l>sTR?Ge#;{yŔj7VJ0֧p|ᛧ޾M½\OL 麫1غ!jj,^/}iAJeKؕ}?e3mØ;;p\NtWB3U \ei{&z%%Hޕ=ܼ>x%5q\;oղ}H5}Zm\g 7V ֱ?aa.{Mnq[o;#65z]5x~ha֚[ZpgV^opu#5>@{tW7z{|̷㵝{35>y=rmo' o;!m ׇj/,RiM.nnxwsx({:yʭak6?Fuj2reӡ)Xs.c #[bRMf~Zv=9 AZxl>{~rwK>'~ںOO|.T='NjPE>шݹMpok̓WQ*ξ}vd.nONK}lZ=n:VgLz~׏=|{Գ󟦨K`ҿnpzpl+]66 ځΉ<&o}WbnJhv56i^[lݩMo +oǖ.Uϟx{;l"LKbwk iK[`񗶾|,- #f4,Zop;mWǛG#TND-Җ@1EܞɁ匿h.m D||ӣ'~MO<"m& =R&7/a~8] < pDg fwV/ ?/{я1ww{/p;=Bnyij#>p͟L< Rgg46zXC՛D0hb[Cp^־Gq9R?"5b9ݴr3ѺKwwv.w.MECruQsxfuU۩r擄oWbt{}d\߿,ι/Q6KsTb 9Fy@?1ޠxQ Gey.~29qS99²t`}ץwzs8jΩ|9<?>yWOw| VVZk{!s9-90 ߙSQ,d-? [dCP??Le.3<,v&a=Q{dF9jgٖFOy޵1wbҁ^Z4ra-Ņ(_} P*@xPYs} ,sqBm l44koC me<8X/o}Mӷر\/ǟJLuWߪ;[/G˫뺏=$;=jjy@<TV?yë7;/W_jn? nLcG. d캿¡B=ϞXv|sx !y+5G;j.ؚ7?ؖ7k>'x/.oVu.~QW+U{.5!4(tl;endstream endobj 409 0 obj << /Filter /FlateDecode /Length 35629 >> stream xK67?b|4x@@Ón HB7>uU͈Vϭ$S_}dO\>w#g~>Տ=l??V>gz)9Ƕ7}cyG[F}_?wuyKۗ_O?˩>ڬ峬?oEkT/s{-Qe{hwo`ˣm=aknG~?Ÿs͏=ކf^ߣr*|t 5}{_r-}u5g5*,g[Sܟ#t>nb޷,s+X*-gL7zL1-3kcz7ֲ}Տffң7m){T7c[gfIe^͒?;9 ,e<|vmO#1{Ifi_be|V² +}va9%3,g?[}W:,{6=(M5}ے?l-3R}~5_j_UĘ}gf+][py;]pHKlG²>ݛisX&ƴa[=!gOWgˑpYZia[5Ş1 ?kR ݊>;.y?n- 3;aY9fɿiqKPwW[lu~"07aȞnN/cl٫3Ц \=Yfe7w[g%7mX,cui-{nwςi׼Z5_2qa%#ae?b7cdl۲[ Z^f_i4mi=UV @,OݲnƾPucQ5,`ݖ`5[1f?Ǿkoc]ӶE+ڶ`1m6X ~|EA3߇4)ue7c߷Clb2Ud?fr-6Ši}0d_\웖V`1abwT,mcJ,^&`&{kvُho/X|Uq6-X ~N_oa%h9epڶ쉝Rm1^Q-շ|L/,G&WX݂'˶,[@WI p6K{-4a-k~}@,krVnhjS ՗3,a훛S:s&-}?²,j7`XW[Ͽ;k{粽,X͉@u_Ge+Co/ۂ5kmiFY/`>p˰Y -vl=5 XƞQO֢2'm*Uչ K7$7U#;b( lMZy,s2PVc?'۪jʻ=7_C99U+0Ӿk 0l-6ʺ?Âsd b(Pt-Qt[0E|` ݗ(jU/Pt[BQ)Qt[N"E^`}ÈIbmnxt0EgEM!yEeɢaŢۂ:`W1`<8)a4'`t)awދ=3x/]a~ѱOW(m!ŠF7am N=$X(b=N@"$8 FbW |{! Fe= cgڔ0:{K# FwA,^`7n E^6Xtv;Ytrdw !n8Xt=Ot<=74D7G7 Ab1I4%ƛ Y 9HE@ "5rz-V^$zȉ$jD$'=LYx$Q@I$Q$`A0 _ j [@Ԡ$Eu&D 0!EHD@"M<4DƌW 懻LhN"i˱ ]ncfA3A{r$Jxy6G]!C7k9m&W,~67u7c[ ffzG1@w[k_f0s=qE2&A1QTgzHu.^5{f?YKfLxCޢG1xӞG9NkV9^o~)8<^ ^d"eM+tl% sLEpiX1_Q%,ܪnL3 pjvaT-h OSΉ]ikr{m_iř4A=Jroh5 V녕ڳ̀m贗{7 dfވwY۳yfЕBkc!( Go E" GA%"xⴊ;KmI h2|M89rD#G``؈Gn R,/Sв.wۏ ߿fz]pl?ʕ"p7̹~QNKW0(. g+}!r"n־튡E>\&5D~ǽTb*EBt3oԪ.|٪M^o#Wx „g]+}WGx"~A'dW0 ?-3pE1 )읺s`c7l;&uOeD\pϲ%^S>C!H2mw?^ 3?=9?Z=&%?OBя֣<7M~O)نo^kU 욼JԾ4hj9kTXΨ셠rJ{z S6~e3&M[1:a\i*iIfDi3S ;ȿN+νbM.L ܗ]i̤=0ȤeD1;%_(" Z1j,fKـ AwD¦8`qK.z DCHb ˝{hpj=X4-n!, n̹eoeѲM 1ykr߰JbBAUX*u,U}UL=B@ʜ)aiu/Y;E=c7 AX#3~p={ݢXl`^a $ۛGUX&aou mNoNsr[rny>)K,7 'e]MCml?tCuGj{ mKnI)_׶dp/< N܆-{j%VJ1bp6aaߌGۢIնiHo4'ӂB n[9έ3\ m-؁Geޱo,p΃mhRn&@)ܹФa'' 0׆KY/})k`](Rfa~(//n B.)L[y tcqi|D;1Oƺl;3WnmZ7cmӅv换=уݯ-(<,B=5x']@|AѽN9cc I.9_^:XH#GK"?Rw0{U^rit?{n~}=Hݓ@|c$փd8=^-{i}J!i?X 4yz޳'hk\ڬej^2r,Wy/Pmv9…W>dzSDߏXѴjqwὀ}A,x1c#8){wz5(Ҡ'mY]Wlkm6pk]wA]iE1mnوh Ɔ^Y6ZZn(֣M|a8_RjA2{ i>k)ӯ8\e {*eV\D9LP&V\ϬhbHx}fDV K>qDpi G^n^E0xLhLX̪yWGx |o4~'[CP@R\ZG3"o8.i0t^9.0tmڶ1vQIB q$y MD$Yv#đ>Gac6'g(٦p#ÈKҡXXYFndUg*˨QG)7#&F +feΚEUzeY{FdcVYՋr϶e㓕=Q1F+Aȑ8w"Jٗj9_?V?zK^@F~p5YB ߭ 5uFe3^3*,רUdgTXΨXc%B-Y!珊II IKK$ڶ[%SlͻubTĨK^'FNubTĨK^'FNu(QG^'FNum-ER rZ|*W\XיyX.~!aOWdi Kh +>xE$g噢N3"V?0K:aZ$ Jƞ0\{~o, 0 cs Yb0jY+J_faZc̈p҄SQU,LWަ`0 [-XZK<@"mu?h{Kqn"57Js'=6Aj/2"[+uX<]; ̂|q<҈[Z D*1,<Ŏ)duKuf s">%2+"LǾWY+ L@e;fb6 ζ0I7p`1m\N.fx#q?`xfH^p)a1mG>rCPƶ,?Q((2*/{NS*s/S~̽Lf,^g8s/2:s/Ka5WY#7Eb= bc0 C< _,0.gyM0!Ä'bg?nXfXLn0ʼ}33B,3#Bg|N o,:جEˆ˫WXqVO8"4i~nK|̓l@( xe% !-㥟/$a 2W5{k+-~x9.Lɹ>\VB^tdPZ .|j#yO|wG*z}Qi[v8!7[)0OT(3*fX}{ ˉ2iko&l5T\+deM_7*0 Z|3ȓFvs kKmqum'\±O.-5[|&nG`&n&t^ؖ-_J 툦:9{P)s X!oD?ƲKF{zόn +7"?:!բYnz`zzap,+vPe1DhԹo1йo6b:2}Ӣk0;+ vZ!Ʊi 8JiG4%vڙ7v`gWX5.VaЄ v&sP0'nϷ9lt?tNE@ٲÜA9aΥ=9 y-t:,H`N͜IulQ=i >Xn1g ÜY`B택uӸBgQV\Yqu3Jk:}3v: MQg"JQgΡƃ:\BbWAC*z;(63jĝ:v;#BvN8 s`zlUu½ÝK^&&?i0,o6U~Nf;Oj`gRJ`gһؙn3FYnYx.P'`gQurpgU2ܩ}c;v6lZQ:2A]JA:|N;ΡTuP`XPeqɢɔf@TN ::W3-rPsQ$@Bxt>Ai@W,4#:GRŮ^OA%Ө G&3;K* z΢ ΢VϪ*Ϫڞ vi"$QgS wgϘ<$ggW{rK< t>o\<}s(Zbb)sg"O_P$PhxaڽDܶ, ܛzߊĕܮ4ڛ"9yzz~nfê3S-1%5Ƥ4R_Us3:Hb3b+-_42ym[C6O87oy{i0˔|Yalƾoq{,Z_7\>xSz;b˕ol%.Z+_v5PU@Uqnl{b)Zc1ڏ|س,^Zf `BB6fSGw() J kOYf/3H7<c58nBV"./ʶv)Dfƛ`wdq>EO|rP0OTqY1iWzpkA@^ 䨺 n<_ jEQd%^@: ^ נ3!NH +93o' 8xMoAUN}%U؅T^\1V?J (·zᙚMΫ9~пue4['z%~*E<4G'OI)f䤆"̍0 (G~G+*"Ѵ+ѪHq"RIH`jQFQAZ VxPȉEx-JYBĞ2N|*+1GK %%@(K::e'&{e?Wǥ0@jaC!⌡H+AhJf~1#3_[DեHŌ15*fLM~km{V:{9mт=tQܣC%==tQܣ(w:(YQ~ z5,Qv݃`x w(YޣlQF^5רԼEk k-#pnEi]"Iu״H{k[:E )`K"J?bIA5mˢj55գԆږAGu+2AbږвPUϏf(fխ ^wխ䝲Y8 ٬m HY[)}{[ tmCWcxuч\v)E~)+)s0uǺvzmT#"hu;? Zb!HmK˩u; euS\빇v8Dٶ% ۺ]99)-R\ЃH\Bq<0XKn8 I9n?GۖFi#j,5ul u|vvWmQ/uUahش Q1CC0B&{v`7D5Av\yCİ]a7}8`S Au &vWk7ŏt;A3Pf` n}Qc{?nnXXMP4N)eݎJw@t$-@be3X?]jρfGu r݊qœT==A)Pu+%Aq%! ]>Oz"^M >!Mr,{\7eq;au7Gk{S-IJ{ K jwEn)iQxbtw0 Aݻ[ng,= $-h5j|eʘC[}"彅+ͻ報HQhxCn@/7ټgYo]Ҡ 0C-yA8Ԡ: PrhNi 5$ξ84'NP;WNjGAR`yPUFڡ!<* Uc2hà%z%A$ʼnAֽ`КoBЪUn߈(?љzsŭxe[Bgvd+OuٹA9Vyss$1n 摽^k6Zh{ZhfYn4=Kz9 %]8yh{~Yll"pLM; ݋+ܪS>^_mn}+d8Y"f+bs,ra- ڛƏ,BL&5_d[&Ʃ, BY]ih$fOXۡzRzJwoLnZ"x$mD$&>G:Fh NG(R2(m{~:3m{A`d_߶ǚ[٢`ghOiٗ}*u@`@إ%5J]zΨܣЦD=]zAܣإ%5o}c6/[_u_^[ 3\/w/Dz yڋzdmʝCbi[:K0PjD^(%(>yvPP+ah@A9۲v()~F10Sf~1Pb^΁c{ek )yP/ th;jC&m[n ) V+R8HQnZ(44WjƛBCms CC240з'M)8TU9áQ"qh~FphSӝsȡcġc{DGd DGf_ѩSSǫD DY{8tINjWrh䩃CZ:jG$zK-9n8&>. N062h-K8)5i1V.BAs0hӭV0h?v AzAGtAR'1k# F4ti. A/{A]_rBWr ;9p`@'KaK#vj jjB fb3šMJGq88ophObUqh,Yt'mJɺ'lU$^AI54<ށ\+t /C5O ,3lF*w&rgvF`3q\#VMۦcec^z-1tiD$K- Mݯ""a[]4t"QDRI͊hoS qlEx=h:fS []SϦ 3ĨRtW$ah$yXy@K0P$xI ͈_=o!{يiY #oγUCV%?RrEd`s4b#GJGޟ[jY# o&`P [J^_ 砬p?h)66IهP 'GZ^QR3<lyWI"P%=Ҟ!DSIޞIi<\Xڪv>9f9;k e}9WGid_)s3;dP@Y"DRWv${8XAjzxBrs" KT֜D oQ%gD$*U"{$yԈ鱈Ǥ㣘 ̤NR)f~E|q!=E-řU[++XeGa+I^;bV2)C,q׬ a0HF*D0o#l(׼tP[FI6bP7FLN+RbNLwkIAKI':5EdAܣ/%=Qܣ(w~AgTX^ȡ-$J 9tɡQC9J 9uɡĨCQJ 9uɡσ]]!KjZ,YJdE~dk%JoWlNd5Y]?xګ>D|%|VC^YCM'h1ye -5ye A+k^q 5^Gyi pjLyi ȉ:TqTթSGk|āZayV܊YAZ~~R\LӨĹ\%4B%E_a˝,ML4¼Ui4*4M u(#"}3%МQQ%9F퇸 KOE6n:*E6?M[\"ݼu"~:cʔ-r)RCͭ2*=ĘcyR[,*Rs2;^y7X݅ $VA9Kb縝n?G|);CV#yu #=IR(F II(9xA U'4M|)x\t? e2—CL?J+f0!yUP%+fB^0<К<'+Gn%*s$FLYKNP@j^uL%]S=pZBӽuۉT$A=C eC=8PHG(!Z H*ﻲ+1)> _er.R؃TlO6@<$.6̔"f.wkUE"LfdUnqg5S| +Dw;H!n{]kCᘍp9 jm7"4f0j>Ա=ӂslϳP!93cbrf̈:OA%anfNC7I$)pn ] #NR(Kǘ s3+7NR6I3G31/vLQWnrMgF=|&3Ǻ(N{EN~,U-=z{*Y>hMmg)l#ɡޅ{Ͼ YM!vv?R#l?$ ?p፟:vskx H{Hݐ>jdҧM&8wҧHV(ChҧBC<3^13DDh~LEYТjң(I j+>F ZU Zt+i A[46t@;KШ}( LgßUw?J\G(? h~z:&?THZ[?CH"Vr !5& HSnJ9gMmP&I*eg٢SgKDQ9%"s.s*n|.-|.5$%|Z鱺>}# >m#xçBEi̅5Wi̅!O{ >m_>mc%]FF!}?]E%olVxgBTj]~>έ0 )sQج~Nް7,,|ՠ,@mg|3+.?v߭l;j1E>dFK] 1A?j _j:ErJHɢ ix]q #<F7_aKūP<^̮bZwXE>ZBP'V) N~yVÆ\ f:U5Nka FL2N8O21+uVtogV !:;޻Ye[pi!:Pv=OelEiH)pH JvC(~s#+-.\KꊂmRD ?) ~D¨Zi$rmژ# M۰ySy4toA/}TO:ԲiQrw`9EV&">p+"ܓ#Dܦ: [ӏzYvh9S FWyUIQ$<""r2_pr7ɝZBG& tpC[Z~xw:rGI|9 ŇiGٲ(뼊*qiCZ&~8z)&wՎ%BsnC݃^c,Ͼ=רl5*)pJeHרz95{T^mGwXH[d: fJhDA_ fRQlj?Y0sU0mX̕|*\dtdתk,g,cG.?b/vC3}lO(?Ͱ ]2>q7aony {-+Ak[*V) Geu&ePvbnaVn S QT~,>co#HlePӏz?*uePO\@ T-(C݂uc2<, ҫ)u˺LEr:u^ʡnV-J/(eUW†VguKµ< PYmX XdBSHΖ1F'YZkK-[( bQVBJ-/]PTۢTu 6W)j53-`[c؏ CvK g\,n7A mQc9J+݂_ m"өJJnܧ[e_ˌ2]%lN>!b1tg~[$z-hCl7`R$iCM-[ӝOWPv q[mQO8*Nt "󊽲3$es`[؂ no:eQg-_*;$vrtu`6,(.`4eHfjԻбw ^"j8C-PHd[^܂nYW~zCEB%?t0TC C4NSp趔7:gNm'":>/M@h&R4:łQ̯oGt#G3;Ҷ H<:GӂG$GePɣEGK"GKTxH=xԨcģ%:[GגGqG+GǃGkʣVV]"%sx4"x*QKC-/`I3`[fwV6|65 mƖ,XpXj,^+ZJ$ևBE{:PnhDXhBѮc}hvH& $}Dǣf$ѡu!HtH4Htm(t%呰Ƈ$:(](:$(:Ԯ8P 9(:Q(ꀃt|"7G]Q7'h4 Y+U E$'uJr[EqۅS~E'EAή~Sb9e@ӂ9ƂɒsfѨ=F\ht=LAKpb=gRQ f]9 EFN.։z@:%7.x]M OK-F # ]H?,E97E)]]ݙ-lCMϣ;JMj 5X$j j5 Q$d Cӣ H*PP3Tb'84.@4EUY@P3ɡLP04jФ7OZ[x,@0~un .=H^Py'SYosy܌]dQ%< ƂL;{q ŬZz3+ޞ ^¬UvЪeۧ}C cV%-b\}t\Lje0kя2w\Rdcհ^|7 X|m9)m&V2~6LiطrSkm!'G죙'^k|Ņ{<>zv3ǮOeYT{#.!9PA`;E<)W9 Tf~Ĝs fugb"ʬ03RӬƍc=P9I[5p:iM N,MZ0sv! CK@_0|gT*;F1fmٕX&_ful4[>)Ha4 K: rr{ خ U<ǿ.|1;J֡D#trh <(tQ2,xEY%߹ͦ<yJI# E?1An'~!汢v zh B|塼CX+ H38uJDP.{ڢV EFDR1Pm8A#V<1)Dzăw>O42i*Qn II҅8_ EK y)K'-IPP]E?ZF)Rs[TdL%On݁t"[PWLP~J-!Q[tWL(a+M[ʜM)-I[쏩oEUs]ruReup[ڮۢ)u j뗉v!Wͺb2y&znyIn){v4<;nNXSb-x(û-\Ψ~n su˸Eƛ[--ʅ:HS n>TEͯsZ?v~r1B#NbTTo.DT҇³[FSXcQJEgK(&퓎Mlw ŤI]LAvNR-u6PB[p-Ҷ[|!K-IxO ]WWw R>|[Kb-S*9v2w ΋!;СMk/[1P_w%]} w7P~1,߲zT-s!wKP$e[3)LPJԪC M1Pt} :4ТТN@Z Cs 5 : m<~0eFC[UCPu6?*604ʢC;FmJPkS EPC  Ɲ@C0bU@UaTp504򚁡jRw0tХI`h C CWӯ.ջZIhBtܨ؅ffn)#:-W5գ?G%MLEY}be)dlrռ'futYcg$OkbY=J5TW5K8^ܯedkEHR6U#MTʒ$5L* Z,[Z蒤b1L] LKž.NKsj|c*:3#VkIED-vazkSKRվ S>SC}ةJ& ^;80cpãJh"CĂP)o<-(;{P/Y%\ꑂJ`#@' Zo {`M$N@G9h(,A3\5VՈ6T xZοQ , Ƚ Mh{^՝x33 +B?ĜF],|#XgD-lE)jͰb2E5}CԹfD/S?/]KB4R|QR0rG4PdM;ro  /a4\ZӠPߡQۡK&&H&&211蒉Q!.3J21gԑQ!.:21u\aQ.y`<ם"J&Ñ/gl S8"(_]:BL# NyyuT렮t|SʷB5"*BҭbW΍YN bJd_*\'-(`0trZrS7S[ a[5L)+K˓Usɴ+)MU+L+Ku6|Q7dpaX%+ 8RMΕ<9o19nR sHPBtdo!.I);pE!P#F^a߷ Ԟ F@σz㖆\~DQB(zc\,^Y8nR(w4I.q/=I!vd(B zo o$^kSgmr;>- D<'wSg>Y%uVu*Pg!jJxsD "bP Nva=:o.Dŝ9bΪϤIIP)ER,;΂FvVuzd[`hb$#9+{lj[)t. :U يԞŜ 9"9y -Y)1ZŜs*s)MhAxnR9$79, 茼c@P&sE@@ mQycT>M9;;o:1 ;%yڔbs黃;O GܹTܹT7ܹ$ɝKΊӻ4 :ӈCtug!wpᶓ;Nwq M|I#v&x.pin4=3w?"ǧL%x&ByNL"ϴ"D"gV}gV>1bP$Kg@Ϭ,[Y"HQ;* mQo,i1tП3&س bYgrYw ,LzzVe=R`ϪQb,wgU$"г|-г}4E$ȳF'O!Ϫ0Dg & FuC4يڊ< DEKɳAgS˲ & 6t=Xi DQgHSt$xL wZ)<{;- !NfNeA36t3@wJ9/^s<1B9%OUV[!}pћ_m z]]_#"s'rcGRݬtu7M6xj!Kt-˅[6g*͐>kueT j_&|R\I/NBy‰gGo0E.Ʃ^DYqd$e%F,=)o|/IJZ5q ߤwқ 骬ԋrztW+etn5E!%v:g]Sw8MQp y`ٴƅiXog.OZ<gފo D+ʑz8#FJ1@e'qa T+|ˆ,LRn2-*7<& ],INwE@jYɧ22#:;0-:\c$P~byUeF $†GĤGDH2+@i51^3I#KX7n!snD?//՞kTs /g v9dQ٤fHȟ6 DKCBؗb^x}s`8@x4lDLyz;7@>~큾"dSقZRR jo'(cc*.B}$;V+Xτdr9X !Lȁ/oCZi45,=^Og5/Cv`fu%nzz qVoQMuV+)=US!a.h5'CUSCյ>C1j]ցiJ||*NkS!Z^I]tVaʣBwz9>ڬOzZ-}LshVnu`w@+Z:& vւPVF4FI2XȖ)qC"7o![]ڭ.Do;V Yݘ|tW a`')\,!~_*ٸ.q!hD[h@VP СNoATA#@GWFe1FDD^8"CG")&tJ9ԺԂDSBAK^H(7]$J@b!ХF"Ѓ1"P? N$|BB§ FZȟϬ~vEo?|wvF5ȟ ßEkBgAş6AYJ1'rgV4ՐnYU*?-4&$~,*)j YY&}Qj߃Jk +zbD~lljg,OpyL7+}`}?CUnyAO^΅4&o'ŏʧk^7zMG;rƚNgm.e~l~4^ھV^s帎V8rnGt)w܋+ {I;}I\wԍ@dbV0 D"PaV`U[qoIfymDԕ{{ZGE5Q hǭ5e5fwrг7*j`Uڅ~2"`*/.x*TSDUQjWج%]ۉ JW{na`͐h0ZEt9MEֶlKnK?Jl7#3i3g aӧO'u oQ0BRV)&'y$.3RTnӣ;\FC$BcF ޠB؈]h>$]bBcIX"مnJdJEfDX=O$s>Vʇ r܇Kko"y! a._9B ED#XۏlD5Ze>Nd"xR~:,QQLq2X; GIyDD(+wK=%[q5 >*%E*YŰICS$l.ᜄ-3NDm1xDFVd?߮]waD(n(ܘ'BΡa˱+vɼ4_Y8J64?}Q ͩPϙ{{ΜA2܃s jdmwg@%mWEٯB&E)G&@ǽǭ[K?ǠCA">Hh:lu5o$(dxVJ񻨳dX%@ajQy)AaX^9XLl(8\ } M *9+(cǏ)X r:a';㰣 DpA b_Q?#!a G)>vQ-)cȯCv :g wqC 7FWʮ_wJD7%q*Ts/^ܿ@VfZƑ$ a/[E*3>v!>z-v.dKEH;#,3; 0bv}fNj/ѳRh!$]Cڡy"=8FJhNEOW1 tEFyV,Dt<ZFA V钒ҩ줱vKS'7v,S FyT0^!L mbƮA6:kruLO3lWh1opOiQ*hn Q`t댊^39 E*u+SsISGV*bVWOhuU}kʍhp_2b=~Ka''g ]*Šm{3 PַΊeq.M+ @V4C+p\QphpD7$yEBV2ʾ2] X_R}/@@(/`b5ް:'jKK&Xb_&!~-DZ@͢HxECгBg:.-=5BBډHͰN[ $]Z,rj.kpk0I X1lQӑ-:=d}:q,7_.- a)m `A[t FŲE ".,]tI M06 1W@48 'Ji\TBTE ZT":ĠFObE(I 2b(0Z$L5 A7F+c:P9E>a7:L.!z"hb[ Ј  hf@2R&TTT=m@K29@e :'@=mG3M@NE"ЅqAA(D"";D): EaH"-7ZƐK p,†8 Ps*8"`Uo.*8V60hfM H,0h$|8"yfz4oğEj?b ??eٗi)ga %٣3gaBuBݛ37H(Os^3}\0\&;%?C %}.T "~'5d>WD7R%#=יBFyJϕu|W%Tr{>7 |nS#bS|OEIHbtt aOKEi3>]Ci?Z}Zb^4E9HOG8=ЧIѧx(ѧrޟDhq*B3~jw"&ܰ=O%},~\ k.C!OՇaIFǟށ?Uf*{ uPӾΫ{싛`=Q=F`O8ĞҊ{ yÞ>%|j,^ سPҊسP&g&^ w`Ϻ"سHO7ɚb,K5]W;N bҗ1.4諮S[pi]N&XA[l fPsYڂBlCP* p@6sM3L&@eJ?UMm꧳o@~QP̺ nջ72ߨz,ovnxyеna i0]I/Qfw8[~6QԯVW}(Do$VF/MiIfv*nBOź^` &}FnNË ]}eGkR'}h#ctQ]=@L٢U]S!6S"~^ ) 'B89R- 8t@&#`.;}HkHZma+>Hc*[:ߴ ` yo4F C S+XЙ!*JP!hyD5~$Q5H$9Ñ0*m5t?0bb,epBֈ>Ʋl;#\v`͆(}A6'j' ' ؍jyoݛ!430(:EAcҤ2é2#9jYAM,; vԀ, w¼pYϮBVGI,.DJ2 &k9!7|N_(| Ў7?LM`C"7 6M; A,rE CXB?$C:!Q75v CAM?$ 8'EVi_'wM ,E :4E5E ʺIx[/ޢPk"K'eCIk^| Cwv@lH?3$LO7v)Z7.!kdB-w#3 u$M 6 E!֤9TN '݀k^<$wdaVFITPSE8.PeNvt tY~~e^0zQ-,GˌzB8']8|jo3,2 3ZKYC1m_ s[֡iW63*ލ#Y\ ͌e0.֒)&l^׫:͵ZԶ?]_eQ΃שk:Բ3#o`rwfg4A5ϸ?ąp {Fm]o(F .ʟ7s!@cvZ =Ai9(t Kks s?4 nBD|;sQEw e"14F M1?z;s# F1C%=:3*P]9"л4>ى,Hb{C܈TveMwꛢq[il1U<Q OQ}.jp_ALj`Ȝ|4:JE̍ yS#z!oj .ڱR5%j\k8\q=VQ9nh B[:3/Ї52@U֙Gx-ע5Fz:M[Qk<ފ2cJzK 犊Awe~2 ZHYFOp,4ҍ$0?#R',AD=Ñ?:v(ƒv 2$Rbr)gP[-%-tL46 8λPv-^ʼB3H*AZ4G͛{RD -7xR6DT-|Ylrϕŝ(LlQ^7Aik˴W25\ b!(al*ߵV+ז߈j'PI7AqQ&qWj*f$Us4ezi;iyV?GG,T.; RY(sfY@hse@ L"Amꑧ[@Ss*zR3n̜<3Ex ea DΙWEjY vFoΕ;s+Q19Jܩ4,g;Um0 kN)3p&;zqgIܙ vyc`<5YA;B9ZVs.QsJ@Kb"ϥy. H!\y@_s L17Fy} =ہ9zjt="2||inE@Os:T( ieYP OEE8ӑ¢ԑ l< aJ)gJp1炫4iϛ@72&`3u*9Ki|.2#gMpo-n R7t#ՏQv6IxFue8nU#p>V[x7]UWn7<=| c8vm5mDp9⍶d`?5<⬇rzo=os]RSdk|zzÅ7><TOĹ2|<^Wbi}Y"qQ1[]%OOW?iK62zՊGbQw_߆ q]TZknO3k'N?\-5˼#R-?j*uXQ*{_?fYÓO#,OتOٖXnP>V.aQϥգ{|w8UӞxo/Y8-u8hhNwGNuy`X7f;jE7\jgۉn c5E]wlTuo%bRiV{tA?vElCT ﮬ4|T/6n3A?𗫺|9ޝ컑anZa]02?\.o̖m|7PO?@H9o:Qo_Ehx++,nMi8X{n:^_(T/oݝlP{o s6+mkR\K]R:W'}-ݖ7ij|@u?_t[)՛kQ6i᝿fK_ΟIo;smEpΉN<>ݨWx?Gܭ>apӱ.Wv_.oU~]Rj8}BuYwɛ}QӅםyy>Qv]q%xzWZ폍s `~zOֺ~I|.Ru@_c?=qiekwvek~䞉YJ1 l]5?vv5/m}6Oe>p?_٪W̓?Ȱrw?<(yp[.?Dj>Oe{xs90|(y|Wip]񧺈ӹ^懡ݩ`{;pnS_>ַ^l_~O'{¥.w^Ƿ/×wW:R!Yznw9w>?5+:=sZ^*4kκ BԤendstream endobj 410 0 obj << /Filter /FlateDecode /Length 25940 >> stream xѯF0|kuM23I2f0;aLCTْJSUiv8'2ݚY 0{?~d2Ȉ~lco؏<Ǘ|}{\巟ӿyӻ߽Ż?^mC]}z/W)O?|7oLmcx?o[?7~~}Ͻ[Ooz/M_?|<k˾z=}7wd/xoџnUԿ~_7g(uKr܏LJ7ݟ4 ضYu}Ûw=|+\}OoOvde}W-ۍ]s)~|~ן=} _9qǿQ\z=-gb񻏟zZ2s\>z[yۤ:_vܯTVW[j<[*~eG-beَPz>[ފʲsVTVm|VRy<%oEes;VTϏehTp<:1caYc1i~&)\<jOݿF8|!S>e̍BIqx8:FRFT㢜~ۘ12TVmN 4^(m};)L~&|{ō'8/ xm|lg|lϏvտ0t~v,[[wWe\qg,6ĊNPng{n90|>qޮyÇj3;<!!vl2.xC~. e<]p~ -gƧwٟkƶ_Uʅa;G~;S7Jߞ >5&~j<ƶa4{~܌'PmdVO]_S1=7) _1RwPƎ]1_>ф6m{8{R0 M=*qR67c6W ǑlhOøl<枡{n(=c̔]P pe;/ݾ㴙rc Wl#1Tۦqvٰm8&ۇƸ/wu&c>,Օӆmqcǥgڧ*w V AϗmqL6WSo3N^~4dž*~? MƝv7v|ܾPƶ> &v\~>Fa]myvFVؖJ겛 nnT]q1±5۞ s}8B?k;Cj~r~06S7nc@m5.5.=9p'n?Q0@9p8>>Ry͏1]ڰ{6cMusb7՘Hmj=)6n{)MCe0yƌpb[HٰJp݌ cm+~)cN`1Nσ\$h]ֺ+qg9Wm̆v&nԡ|}1BݕNM1milgávK| 9t*S@SS 9S]{#6=cbqI7xbBY6=0Fm2BTR]T.N̷<40dЁO̽5W|wp )hcȎp(~3`8ll YTG H Msjec>x6pp^0j䤍#l” xڼ e 6 yf^iRHYy_ DI!BG"ӤLB2giHI!x!&h=ci.=B!B畳iY lj#v=$L!LB0M 4+'·QiVLB0I0͊iRft*BӤM &г iVM+4+I!&h ;vMB4M ]DӤt=Mr e * MhiRȦP 6 l=`R'1m{f~ҶݒPuiRP:Zq:6s6pGVꓼq]O*mPB40Jl7q(mΒΤ _L`9I.ؙ*I,%Jg3P`\JBP.) >36[o}bBip26~ &Ğgrp'63JgΩLmrބ} Dƥw;X&_|0m۽3OB-\ =8.BUB;&]RGԽD}\bD}ŖC~Gkq<ԽEZAx N%CJD'R}B7CοC*3 x:mu:KHH=n{OH=Ɲ"HcIR9Ab$q<&_L-zY@LprSKS8ۂt9TR/Ү0@ Zl?ajuSbT3 s@Y(ũH i9?NƋ{pjO-C2'J%"@HWKZ;mu:~;AK"V 5^5ZZBq*~!IA"ɐZ HP)#Vdu[U$T Tj$`*,!"_u \֪h;AGȩ#a*m: T\BLM/@TdϝS+nGT11 GcTdѠ%<=`!NE]|%VXNԊK N` XZ/ TdȩFɩ)G IZ ?ũQ8S"}Sl6l6}'Nw-N9زq:ST%/"08u S.LسopoA\1u a*\NKAb+ B'μ5T\ U\*"Uq}`OAq}(B͊CQ¸TGf\?)ɥOaՇ EaT*w%FT?)OEQ5FTՇ0TO DX(a0?E~RŲTO #SQd*OE0?F%~RڏOExh OE\1pTOC9IPh?)g\eqcݙP(;n-*OE0?1?&fqdNAq)1hרzTM]pTL?)OE1(TOE{{l= BQT?)OEQ(FCTO SQT#I՟IOGTOYOSQ\* '(?TO SQ`* 'KiRO D`* '(?TO SQ`* wzTO7C~RJԬ(TO RZ2TG꘎^m^b뚇zC|C}FCk~xiUjkPʒz M\P#[3`9_g&f*mqSpV$*r&:RF #g #g !g kf1TbLPLP+2Pl2P32Ph##Y)Y)9)sԪ |dV,XYUidz]JBP,PP" U.LBe[JBJd9.RfRf2f*fj2<%l*k*k栆9JӊT[PTzP"U O3ULBU2LBU2LB %P#5/)D ).RPD T5,3ULA=<8RPCP"JA=^2Ń:%rI# 5HB=V'u( 7P$P" uHBPw3 5HBPw.$P" u*LB%7PC$ԩ0 CW)5@ Z3PD@ %RPCԩ(ugFA %rPԝkfTJ䠆9\xrPCP"u*A29DTJ.#u*A %rPP"uײArPCP"u=sPCT)3u*A %rP7#fTJ䠆9SQ,+5:k zw-9"Q@­`Q\YYt\$H(:ޖ>^}M,-2"yX'ղЉ73OJ]iN4z+1"h{ѤFK9ћQICQS*9o S/g8:ѤG6GMiRGS)pTģS"~}sEI!N4 L>](Vt*Ѥ8BX'E<(`]5hȣCɣS&<KGB %xţI!NE<:eTDS+"t*"ҤH<2N<pTB*4:TDI!yѩFBht*ѡ95+ѤF".J i4ѩFBʞ#Y&it ѩFoNA8j[t*"Ҥ؟tAH@"t*"R( H""4)$ҩHB" AS&D:TDI!D:k%ҤH""4)$ҩH<2  A8:hĢS Q&(:TI!NE(:gM QTʟYD :*Hm|f&U䐩&{. Hm*RRmƥ*HmZf6-W RGM壂Ԧ%QAJU.f)XLRZvyQ@jg, ԮQAj ee- Lֵ%v?B9(SV0Hvw$B B9sʩ)rjʺTJ]|R(L$B~`S(RC PS(JBu0.0E&B(9Ԕ>ܙL!+uQO ŭ5)WC&܋QZ%Ejߒoj _J!%WN 蛐JTZ\Yʱk]BiK8J!pʝEsiQEP XlR(eY.P \Yb5JK-2/ %Ԕ}S%,%&Җ>%r0r/`Zr*E,ʔ} ר#*RJ[Ԕ#JR(ײPʒojJ_<wDP$#B8*R)\oT qY~i FQ)ڳR( Ͼ,GSR>JMYʱPI*QrHT 1ԩʹՇ1uB TJPjye+KDsA)}R(R}SrƩ)%2.KSN.r&r1ՙF%1){YQ)RD?dr)})")8P25!2.&iHSS> ]Ƨե΁R>V/Ƴb #?xTf_wTall2f@g)V`BI[5_ en k`vbGk2k =Ns i괍tHcyvW6xc| .kjG*5x#m}l1ʍ>^H[F/zRt]exV?{6>2V?_/ԍ_06*evW1KODj"`}7Lzn`^EեPG7N^uYZt8^(xyzpwۮ1*uOp1ScY)Qw^d߇}Om?W;bU0ƃ^])x⧪mW}Y5Ň`TJ| $%o*hxuɨ͔q4qo`_ePaDlyZc#zS,p/f=*T G,*-=Nc`5xc .xDխ~:v}{:"'RCuU0*f o glzV6wҝ!ҭ.qVVU{Se<-Xl*[i/Π bO/R"++Ѽyqry(ؙ]6Ƈl}ۼ2ƱU*)V`*c:J(` oV^AQf]2F)w:!v"1D p{)(n-럺6?@((as6\|_kf{6:B@Ca]Qu>K 6/X=1knW(YzYɏ1s { w׷ם_^ l_KO῁~'⿬2fNc)x L{.va1.V*gOsϽv 2uaOݬ汻r{e,x fhtqa;1nVF275{G-wl.E ހU^)e~,̺hmU:|`E:Y+jVE: jZhКWеO<+ţ "VmrOΞP:GYm8 ( wZ-zGM9wQ h$ZGљ#!THcGgU<:cnQL;3yEţv yԦ*ΣwˉvhwQܩ<Gу#QrdZyEy,G1Pɣ6;Vxc%f~ѡ0EF+&&Ө $:V3CFGp4ZQwhO8j=PLZ ^H+K@">H+&*wHaqt"*w"Ҋtnt" E$PDZȐljԺSDZ1uζc"RktHv"HDҡ8:Z+D#)PGҊ?E$~Ca2:( V!k#BRT2PHELj]ɤCa%1(&!V>'[ZPj}>'a֭:p:ZF!V΄IRPj С::^]cașPj- Cx?ԩԺ@sT] lY\p* wJMKORk٨nH:)Ԕ;c5lK"#z{15$;ZIPӏ:pnZL#gKd 9LM :֞s#B42~í)2M21xnLMqQ$RVye"70iO'҆SI"8j]0n"Pe!*BX!1BTtIZ*/ Z͟hY6Lf@>Ey9|oÄȘ/GgGH(#1*=̀_!ORjS5( 钔j)VM_R*<2 J ;()gKq!J{{T{|$H{c6L,{Ѵ$Nw'Pu ̜@RK~ ]T\֢]!P=-Aj6vw#-/a*v[N `aL1opp SrSe%ȒHoq U[ĎH$j "rϖ7)t󓨊)ɐj] H+UA} Sǰ. S궘0 ^nSK"6MD`NS]waLLvYT<}RC(uI[;LLHhM#~$ԭCqHtc [SJOէq֘p|΍O7fM>Ez{Se$SZ[IXxEl^xq My4LZ{R+KPg(a|IJ#K+f : /a|<}xnŷ['c94_Q| '}Em5#.Q626]-Ev*πQԷ+Q|p/Q|`{>ڻ ȴyL,X`*M0NS2Df/:#P:.}X񯢾Y _cRw2cٟ-_m2(>7M=G1|f)1`e ߖҡ\Rÿ61bWbWLDTVx>&{#gF=YDDft(*{ˣߥ=3rn(]VQ{\Жt(E02 aD#<7]GAv<W6Ok }+ }ݕ 1$ݹ /2=5[J1a=192ًy:Ƿ+Ml`Q"cw>zV (d >& >3IA^/e"0Kma%{ӫ]Q`{tGTuG JP A1 ~"ٕA~) >V{Œ#KL>捩 w4P;coʉC'n_4mhKt7Jc[LBm/An %4T5)tsLhu'efnO]FbS{>Ȧ[Qʒ474:ySD^2NU?Pu\ GC궬~*p)4Ttӝ9o3to"WpQ>+M5tcgH7Fo~"4DiTk|ӃfѵrHE)oZv(CJ7tӢ^n\}Wn2FPe8fiR U#״CX\Z#﹦kZdz)e[6]8lSPD٦-Wf.~ݭ9_h[6F(dJ6m,X7MH6UL6m7s#T)3TX$"b嚞\ӓi3޳rMOVg]W?Y&q]sM:sMSLt39nzzETPT,%r*riSmĒmp*!N2Frp*TjMTi:B (o+,y)~Hx>{jʝSKvM: 9ZN-G٨T(!΂? ur,!yfBuoM t R-2QmHN4eBT[5 *+IoA*T)t4 3{[$|n*r=mex P \:sˏBWJ@E^x˟LqF"S)%2y%dL2"/VI]3tH2ݎX$Ӎ5 gLee)'L#=L7Nj,n,MΑe*+nfnp)tSƭL7igQenPn]4MӪnlp=Lw+tWn"e7Q)Ws2ޕE U7L4Ureb_VѲJQ6U̙C露W$^i%)qAX!*˪^}AȠ0A/ \擷5LDt2uxĠz^\2j1xv&^wAnHyY¡Z^aCavW+ؚmzG+y JR(曐Cozz߹AFe}\WuYt]I D1yPnI(%Q$QXr0OD(W79N]$z#) 1VohPb CaPcNx^FoD|/Qb)q Q{@Eʮd c xe >f*Ԙ+ULzRIA3!@9 I1G+󺤔ղIkYHS1)f0i?.>Ť8eaR2|W[zY1)IAd$2iW`Ү&vE_y"|b"|T>$]uej*t,J|UENJX њ$Ҷ=E$n)cRVH)E4ǜҭ(3VIMwI[5L*E%-/s*)tkQɳJ&CKi۩`2K7\DmY0ǟ陥ۥ eZ\j>1RT^SK7Tpjej)soKj2`M((?sKwD;j56 %t?TmHDd(uJPZMxh=SKc_RKqc\ʧ*Rߖҽ(SKwmZۉ&SKQo_V>MsrKwҏTRrK_nG#Tn)nN -ǜҖRWE5Co_(ߕk=Mjw4}L*mn&z~k'U]s{GR?<2UcsfVc?#S+zQcc粔oG_ +*Hq/y)k>)#%%P,l'$=Wt&BقTT:[Jg_WQD+,U۠T}{JoPit*A84:&FWTJs`i,ҁP<.,ԁPR*Y K!4}X ^JCEmaiJ$ŤPքR(-3)."ڣeR(y 'IJ%Zʥ,) dR(¤PʒRj 0Iɔ:B#N$5eAҤIz#i|[ &Br$0ŤPȒdR(fmR(y= cP}SwIB[xrI,& KMHu4)4I$-+4)4IQt[PvREiw4IHMXBA)TiBa|=R-$Cj/il8YqʵXIGjJ^o iR葖yg?鎎?EtGBwѤI4H,a)-*hVnMzG=ڣP ӋwӋ*Y?ZzQ>*Ѥ-rM Q(74AGIA e'iAp7HdMۣ7==ڣPV*| 6!̏C|~(wV No'ܧ9V+ܿ輽r#㵾Y m@Z]m nKpm(e ^HV#LώYx}^ꍦPԽz[Sz+f[^<`N.ͩojP/VTug#<4/Vb˚ҽ'@wK[%VT7_b>kT,Ȳk||gxͷ*7*5PixͿNbWujTWP:(v;X ۼJ#VܻHb-z{zx{޷ˏo3vOټxN}ݺfCς'&,xR {< N q5WN/IPWxۯ+`zx=0Z[}^ R^zxf)fzeJvԽG)f#YE.>_SeNjsTd(>XdN*/~j4 jΖTTդh3U5qJUMj:ڸJUM?aUkj$3g^UM=nWofWjbnnco8ʇ.ؚ5LlIMn*JJ|u_Hc}YTRUg3Iem$-\$CYaz1TdSX>q焇4d/<7xd/hUl \+HĦMcbSjsljCȦv]ܷ#΄r;:Zw'vtxLe2Ҋ>ZKgRnRz K+T=zJ&Zm8*IPj< M(M tXFV!wcPjzgR[I`RKyqsLj+=K&=BdRIdRCK$&R3ƫt"gR@jiҭOFj[t?n=Г0 8aԧ>E0z FO;~v5+FY@%za EF!0*6]€N#$=Tc,X#ȢGuz=Tl$X$ YĢGrۈDDRgH`߄(z(X(7WE]Bѣ/QP~PfX$nV"QGkv]HDDnCohQ/ 2F!$Wi$l$H"R$ZDL>]!h9J >ſ Z.]*(6N(ВCOrhQL(%eI D-Hj1GgLrEDȡšָšc@ E"1L CEbhPV"";:Cɡ(NOwr(9`zOvP+CQoNr(*5bshUMQ9w:֢S.JO *G"AԚ9RDM,hT'< E ( $*E Q\T߳H5 fΦ$Q6H(mo4"z[Z%U5KI 0nA{j^OpRhTzfQ3{47pGg]KYPQ9Qkˑ)BL-l;4E ϓ;2rGEh`!st9:S'F oz$ fŽѤġY9g;͊hR8P4+= q4)Ѭ]!&8 WyѤGa=YN-hRYGBGM y4+#$NE<GcR!&@"MiG"Mi4 2GrѤKi&Ǹ"st*2GrǸm &EhR4G"s4)W4"s40Gr8pG_pG"w4)qT&~1nѤ\/PT&|q&NEhRC7ѩMb;:٣ITh&|y|Gҗ> $#Wd&~1p !ѩ\/GC t*/JqgMTG_Y! %ҩ|"L4pHr fCJ8GR{){TZ/#@oB`AVCRWz!UkrJ&TfI2ܯS\JRE*IrREc"v REdso &"U *T+N-*QTm1l_X5Fɪ*?YUU'dUUSʸCbULVsUwY_ߠ' GBsj e*^'rNBUp%T- zOD2H&E-IlH/sT'j(AE6hTzʗISHu "UZNR !H_6RN߁|B`T$Le|>a/bSIJ6a0UT* SNJ])$F]!$Bu!*ɧ'>=}R&RI|J%ɧ/SI|̧d>2JS*OL>L>JS)eMx!ɧu '%ħT&J|ZmħR&R|J!XJS)O_2JSW2JkƅO$>rT2L>J*t*(~sKQ|q`s2Jg GZ9ak վXy0> 8(Ta_0d w"gV}06-6dd@0E}|%L$S<%'S,Wk bؽ-DxX ʘ7K4=ր M3bQhzܪJ4=$i`_RLON#F-cA%‹L1EEy$Ӣ S[C2-Md/dZ,dZ'L1{&ȴF/)F$PNaPFheASsIhZI.EI.E(/*Kkťq)<]H\Ĵtɥt!qiUӪR('0"xlKHߪ:*tc"L/(T3tccH/YplLRլ{2ؕ,ң*{!0E-OLJ[QشM-=i+:bS$w3N6+ĦnniS`S3ݕljk薨%/l*MW XX牴S>(ikAJi*ҙ*JBmM] 5v>XMK j;B8"x-*V*P,j;[QYS)BT-ǒ`? >mgoOAQ§PZK[EOm.ǤSmtL}>'iNŖ APnNm\ ScHBN-SxR ;6&شEkNE#\Z餤S\Tpe,fZjfՁ{w #봰[dz W:3lU:.-cK"tAvCW&NQ v>_ByƫNQBsU}BYJ&:ZBYǩ3Owԑ-XZ:01uS<״rO&/ ]Y#ص0jHP(`HJԟ0(uSƠ eՉVxq]Z#P[=L5Qln3SO1SO1~(FK`4} u Avz<җuPWHdZ@E젢~ֶ8{L]epTwuPQ|٧r#tSƯOUjf3ȔTY(SÙ8kQthԣz&RQ/Q!)Y"JE}{ 8*c 3HIH=UPx,J=/(Pwv#zN(+_OZE%_6=#tc}l&"p@jٕɧJ>=R`&L4S᝹ER"T+Qgi]/D-"J-UR-T{dԂNTSg0Ļ94S^\T PGN-'uTԠJ$r[@,PEZ.o"N-73ŅX%78^@sN-UZb88=ZAe TJQF"G(0;O|;U{wSy0Nc^䝪E;?۫d͐/!h)niOMmOFpKAgpK# n) =bUPY,кhoʈ%v eru2s ;9:HTSzX:%R)EEMGEW%dn)tW0Jd+^x\mK H%43aDTS hnjF~X 楌ˆ4JeX2Jk'( x,x4.wţV. AZTTj>f5۴nAIqޖOyVJYa^ViaiX%nvYx7\Bx19@ViVi;KVi[Vxd, {HGftK ]B $Ptn[R{- -`ny)5,Fc@44T!2TCGeOWeGn *T}<#t_Y-BaD^"t2 ݷ8}zo нJSD3Q (pha%b =^FHz Ti!`T9F/z^PR 1s) `K}F/ט0FZFQ 5hV}ph4BA2KF{|d ,`VJ;Foz4z5&h~F鷠Q=& rGQ~ڣW}PYgIQ⑉s"ֺHSH"sAYH@JH#sa^@FHrHHQyYDH":I:|T;7 W G^;YGؿp4vnF%ΦU?P;G拚$Dd\AΡpVȏPT%`ԝj-/įTz8Ez Wr/jw ꣗Km+G/ Ka">(؋1j#^-;:jMm ћPd>7Gh7vg z6Fm`EkTRLkqGS+6i22.j ̣٠?y`D 5PC~D11Ԫ_2yE w NPKړ3Z;?&]fI(ԒZP뗹'ct: Сhq iE:֎F[)(?W#1ty/˚sH t/3d(2mCbP4Ƞx~SdPt8eM[hnX[[wվDʳ.aPr0t3L o/= 2Ot+ w&~3+?3 nBI,wiڙ8_m8-'j\q@O՗` |DٟaǗ_oc2=}|ë/?>Wyzc711a_Ǿݛ_o?|';d܇7_?lk||wo~X^<'aEq6z1ޖ<"эub?L]튲YC{K3\/Ys=O_oĹ,g|LX_u_]ݟ/J(~W(7X梾=ñ_w;E`I*nׯ`I]Wxo>~Ͽٍ>-o>ͫ^[y7xɅϧ|H|#x?

4'xNst|iпzo?}}3Oߏ9-NK0Hӛ_&;>_>(]_aK:j\uw;_ߎɔߦe_R~OV|/gOs-v>>Ł8y~:=o q3z8):?@=r|?8߼?mk<]uu^W).ns! 6n?{a$ȏ}x3Wo>KtF]A4v:8Ώf|n_~5s wx~njǸh1`|0>^҇*Û%яqnw!q=+߾ic?}?g͸o?i7ߤ kC07vGkp~vto>#mG+f#6fj |9w|𮝿.o˾ぜv;Oӛ>;1\x?`1?_76A]>v͇o }'q"͇m/'8=^޼qk=|u{t̕ qx3ea >ss|'Jݛ|ӥ7??q~GOgsHOAxy~{d^y߾ #W66y0uRad{6-{0l;(A<o޽x>o-i܃Agd:*<vzٹkH/>~cƭ s+f11kXz6my~Oac|w>Ls %,c7o1^V߼^X/m7w<`4Q>.3qW4bx*7J@Iu]@e?q06}s!H mc<?|xflp jg,O?O!xq'xǠM\/{3:}W>گ}0J0~߽Ûw|x/7g~ xc1oBqgvxW#~vb /3{z7>{/Kد~jDOcxv|7vwihaOoOv?q|Or>~8?|z7?՛?{@s󧷟gS﷈4 rϟendstream endobj 411 0 obj << /Filter /FlateDecode /Length 47751 >> stream xOg7r-/# E(VX x [P5Mri6lٍ<$[3 FwH$N&??Krw{KoR<~xͲ_? %=K 5>QvxĒ^B\뷧z~??>~5[{ӧ|_G{ hbx-= #_>|OW|G *Z~8^F?||/7_?/~~J} )zox Bn㥞8Y9g1UM,圣T zi(8g|p8g1B~d-^_b 9xR> qWw!g kp܅ĸ*)p 6|0MsOCM6`T/9V `?f?fcaH)xc>QHFQ9g)sR>Bv9Kis >]WG`c-ӣ9D?=_=KKeDA:?y|,^67ZWT(vh=*!^6#T"əƣi7:>hx<^e4|1xZsr r.Sh}ʙ[ #qO(A@猄1Ƹ%&fdd1sqߜ.ᘈpz/aH M3$8!L'T[p4?9?|՗+NEƱȹXE7@16"WNN~sV-F$je.\1و4cbiH717Os@2IMƐ~@L$Q Iki,bC ]7ِl'8idCD%Ԩ-d606g[.g_z` {l֩b 0ۈ~`؀N]Cd!j??MW4~niw9'l͌7˚"j*'|%Y9#pNw?Gpp9Y簹qQTGh@#sWƅ?a (|Z\ 5b¬?Il|v@{XV_vh_Wx!>_6@T< b:tZAՅ+ 8Ƙ^ $IǠ8nt .  Dv :{GXt(0h ·$4t6P 6^#t ZlAkZ)\.8@|$bB Y t| Dz xO:uǡsCsQ  q`\U m9; 5[F4rP.GPh : msɤ05EB(yT(, oGԒPBm0:Bs)P"-f<C6=0%EBVbnQy>QPf9B|!s@<6[/ Bďn- z׽0I-=y H&p jp*11" flI9aP! 96% j ~m@ ]@8) j@1Yq|P}Yp]lO$XOXD?TZ ~ }V$lsU |_s7B߅>|2?'`ONi>1q9zз\Iio99Xm62Ÿğ‘>_qi R}^.99b}ڲ8dXsZQ,|NNd|N/CDgoz }v7 TNNI>ؼVфj3Wގ>{n["n2U%@_zL:ݕi- 8%7= 'efȔ*gϚ"l7j5Ndӟ )jZ-|ڝRV؂] Ksr7O }"1A=xk!VB5klG^9}͚ѺVF~9Wb>|.ẻNKK rd /w\b8WzU喚'm庲6,~K\8C rl?[\#+Όqo݄IWыnZ,`@vFa_-q>Ȕ^n9'ӝ@鮣uvj;Vݵ9BYNicXt9$hwh^]}s9rMtN92-#gGm@P(*7_zϚ6[:եM֐y~鵯=mMe.e>.lեliᘤ}&"YB?ۚ.A|WfY+e_hq;_6X\6rfD/K;^6{(.wum>Mw?5}k>}9ZeS ,\dq/W4}/ωMܽ+ێv2 2G͑B aϨqJu`w=.grOGRZwQ"5NdȅK+qEק][\H1 mm^µt ~o9sN~සS1ErGv'9gHӳɍ{ X՝fV9Q([7w %\Ep:Ɇo`XQlcH5}V_Iwݼ4@q"%0i ^KEIx 9 o) &~"iMp%ڀD- ML]=b /@ _y.3 尊 6mNRE yE{`4U_^bi) V1W0#s}sJLX@ęY {݆hZx$fN O-N%9 Ԧ_uhSfV9tm hG ]E~6<-@\\Pk3S4nI¢نX{\l IUTwS?ĈE7 ~?сp?-I4b\#,_<%\C pMogiy!H't0[ߴ Q8JT'ق}.b0kWM[g7@V*x W%;c.#Wc d{;`\Ր7mfQ&r N xaP1-YC7W+KÖڧ+Y$Vzjo_.͋c@^:a'9^ybmCQ4PքK(PQZm8m5.Z{?8myȈq鑆PweD(m[¢1qGVi!~. N-~qlQJG kLؗ[v _Z }CIc4cPk'mI|>Qr4 pZbv%H+/wϫ{ xXS Ǣmana9Yi[5Y+%86s\%@ - %\Kp,K3z$Xz7*6⯝*WES:q GCGIFuݕwKDZMǛKfs%3YLs\e U Avc\uoj+fs) {9"!ܶ,I [)MԂ-,j)$S׮`_vPeXɈ y vZk:7UãtCa*Sodh^\V=n 1n!=4iqPFGsڎK7I sM\WnC1uFܰ?ء I\laC=pj:1ݏx+G^ȉ=ZiN:;CM`'~K5 #,"O!:=c {(A`G?unܒP?㰪,Q8M@"``We|۱imKK[1%<[BdΕg)3B!^`+>,aie=apv/_:8>=;WT-vV^iӒ&̟/Ӊlƚ+=ǯD?|8kcMRT4'#;s6(圳hsJ:<zX́б8G ز!w)Š(A?R$Qk?[]GF y'VR9Ks‹EHEs[=J9(exghއd&4ٳé2e$a4fI@v.b(YnG&rXcwnB{.KPۺm}*e4?a@Öm?]ۘEO.bͧXf/Lu4 [D%!q ?({Eʖfw]RG1pz/3-XUys[ -`7ūF8C VV5vG3uZ$x\˃{~0nvGڌhpB ۈ)2iCaP0% ߳sP`L^:Ac E6 ){LoD{<^<5(?E]C҆ 41YPN'^%ErÛp`'vA C!a =|]e^։s'JKkE"qRx§Et6u;]r0r)/<]Ut5`WMNv8 G:>Nኌ+S]MP5'Jdy iCXyRHVHyP)G<9 Z4jIb+l$f )pD(j6 3ʱ=Q'NNBJ1Tؔ6O)sd#6a xR,&Lц#4H?mDA;9CG #y6"u%se+XIVdqV(4=p*$N*9\e%۬~*d1&^J6$c雜IafZ6$aVɂ.xS^.JβR1@va 9Y<ç#{?, j 6@35蜫Pup!,:5@513mNicg EAhAkJ h/g!F],4i=4A=ڂgEf'1eeNǠh8gYtxAΟo y;݁cP}Z&<AgQA[_Զ V?P hi A@Ơ 6/ #@K .hh.XhV^ @$hj:Tn9Ao:vcQQxǠ+=dB}pvCB [,6BBKB f5'rگ o7 jyD8_:qF@q@t D ':t sc',,$j67Q#9F(Ɓv_5q ]65w]6sE6@tDCD,- Z- .[d:p|HCopP+TBXrPϸAw - %5 4 BnjBYOm : !NǠ6XFtN]3 Y"B=-- ښQ7YRA͒JB 0n:m~~AP3I@- #mk95NAP8bՁA!_Pda-P3h: 50P(PQYm1 T$P˸}p9 E E7[ 5coat?P$$ mQp`P qP3n2ZlG:k^KlT1pPmJ#騌m{r ȣ2l)6= c^& XXF/аsT_b-ھtvgN6mm&CsYrI'OLeYn˰JglϬT5% r>'E,DŽg&}R6⏙"|k_fhD>kďۂ~.*vМ46qn!h>W@+BVk\<|frۊn V0-yGRK-\6D2+I;\ ~O/7r82 C/!sxf҈][0tK@fW9!n\7v 1P\9>.mhon% woTNv+u{:4O~#Ipum N 2++u%$~$NCV{<98Zi.<]n N .q 󷄉{< K}p+͉H%;.|-0Jv  2b\ձ07oi@v W%;V]\-M.*ڜG9/Zsl}/Siݿ\;ުh}Z0dXD(ހHt*V|UףG6VO`;a-O(1`Nm N=}ϵ%\Kpv1uF6(o^²2%,m`B"%}ކh t{ %'L@m6(.DvdKpmXŹs үO[ /{?7A30Dh-[= ~ӈGK&N ) UC@DsPϴ:1m/2w?Z/iAo N '%jiLZx )nX<#HEKK$qf͋Xl@C Eނz,*{'8=D=[T8ڣԣ 6 ظiJ% N6n N Ǭoh$ptﮢWw+0)d.Dvt۬Ws$HE-I`:QH>m( :xȢ;űцi!9"kߔ;cճ L2,Vx )/[ C6#7ZjRNcp95D-i6!`qH,ţ үO[ /!%]3.3餷; q`Ng^q N qfxl TG5Ƴk $$~;8qhXcy8Ny -4^60ʼn.!ඌiͺ,Z{?8%f$H,[6~>'+6EoP@$['s9_~7Ai+%\GpZ}ނͱ_L"P\˦_Kg.i9wI W12aKoIx sp"hxI#2Gdڴiڙ}0s:$86d c(|ђ`>:v_DQ@L~,[ugΩ\8RÅ|ӎ@cKX4p?QcK(^6?~w\vp nE3YqLŶP4lТMCH`H8a'lH[WK. p[T;ۅeɜ"9~xl/X`-BnVK. -8.cɝBEhÏEKЎ3ҫl@Np"oHc ^Ut NՍ9a<.36 {GB]i6W,N r[-R-S؜=2iKܨ@RA˰wEjgԮ4>miC\Z=Z 7,4tmt;G>.O(s>_1]1/?7!ͭW[ \up]½/͇m9)w͙.l,%,m>mNF`mUZRC#P/f:}6!Nig"\hWw Sp'[ Dwϫ{ PU&Kag6mRxIX4  A'[pZ=JHGp^V{?r-=(ĭs.\Ƴenm,Tl s8x. k6 W )+ r [NӊዤrkF+YB;@Klis'bywYµt ~`@tN)F&yQLmk(gBIpm *K]~j&qp-]½ַd)yےN)dNW D!jrDtGf!NAf-.vk%\KpSTRM`!E8 nsZc9Kd%iu vhЀD,RYcb*\h^<ѯtճg-Aڐ~G u6Dc@RUv ~h/-ZܙL .DYxKxijv%!^G4+kn2(91}t?Dy{fFqhl@$Ej ^*&3YJ+*4ݣ"7U CH2 =iRm$=؊Npw'&/aoN(I%ڤ-alisgKi] /ZJ»~p/x;8a¸NuH|#.@_ *b7W_lTb( :!.m4۹-r;r]Nӹ=*Iqh9$Zmݝ^ 6XNtGJ϶HWDMKus1*%F聾XzK½r/n*FC8#O ] &7ʩģD\%86UgM]B{_^b- ~(>0K[s Wt3hMc2J끰$,9UK(>Ka.}ʷ=mݎ N ۷Df`4ڣT~#%\KpNJJE朖հVqV:pi upcZ%EW_\zc^µt ~&8,Z̴U!$>ַ4ې䘕2Uޤp-]½\tse^W4^g$Zo;KT]|s/ +N GI(^µt ~ЫJN#ueQ$6{^"Gb^4۰1wc 8峛 m\ /JJIp3Դ;$gR 4F~eA=Kp]D#%^=j M*x W%;O j 1vp%ֲģ T>ن>5p]ID ѯOKUµt ~S%|یl$1dbyD p*t%8&s`%6DCs`*!%][j8~;88</e':]"׉˫l@npq 1$x]P`y{(3uƼ,{Q 7+z1zȫ;' ;km5 ]?~6 >& G߁ۦ5e:d O}3PҘ8p]½ fI)g0̍-)dEק`N]dpyA%pr>c?c I1[?f% |m NYge%aUQ[iJH%H% _'N[\;HmڴN[@ :jX'4p]½ڼ+BBfXxDarӌN/ǡW IhъIg W%׼C귃3wL AZ KKWIlCXQ^"`<6DuQUµt ~02\GR,]g`(d2Wp>Kd^$86\$(h^µt ~Uzk>p.8a=*ӆy`@/ћنߏ|/i!iiJH%ƣ9Nc>-m- 0\_k;M{ -~CWI>ֽk/>.AQGwت.0w̷/{N!˭ǃTX% @b@vٷ O:tf2cܳ0%7pIpZm>m7Ieyhe!/X%\u f~Hɑ'`jQPꦵ%86PCDqKB/h䱋Ώ^މ[o0CE;nZdY" p h Mg<2Ǿ@E%\Ep e5+o'ذ٣tz*:^_+k誾h4 .5) H,];M9<os/"?smÁ" aKwb|@jbqH++GSFn!).]0G kz@ې<84ESAdbM2CX;J #s6g%a m3k%\KIxD8Hj~>iqTmQ1JݴFb>KtFO'9yZ.VLα-V?K. MMF5Fb Aaڙ*-t$Vtfr v7 2vN줟YD):XHS,NzޘrUvz'[%IN3}hIFSR]UdF*c9mo.cpvv}َ-ia5cJޥ m5\ /Z{?8uD3Tb LR1}Uw >mNFr%יHYDwϫ{G+_:&+Y|E'k?{+=W=Wt>W ޏ}ϷasL&ryֺup'р!2TxtRKp끲%\نCwO_T 8QJsC.'*g.!n#p-]½P y;8Rl=v|̋\_øcS\fmX\~݅qB9K˚R9K=CfpR9Kětw)?^wK.䌳srYJ9J9,sRR9J9̡e\ݩcW_7D˗Aa.젠94׿?kۜg3rs>s@kB\o?O?ǤlA?ư/W‹)& ck 8`,<bRιQ8R𦆳8VfdYS5{ ;(of&~4G~Kzpn;ŰD̮#cbɺ2nWU*]8ֺΔWݚ DG+jiY$K! C; =۩EDbnM1, 7δ q՜ދ1a~83^_8院(#8KDWOotj:sד+oJ澅~Yw[>A-|ke[%Fs[h7~ZNm[08狙kr8؂hL 9K ^zfE.,";5-Z͠a}p9׋u(g1բo=7VEi4uj#1JGWxB+}]6 ]U5k24'`PqG+^f"lC S M'RV̏.6e /"NpAf&m" ֨%s>[\/p\Ԋ\0@tv{dTg\ڹ .3T@3@&NUS p/<BblW{)lWfN\ݦɬwƼ$q:YS5Da6b(av  Y2Nӣѥi%W)a֋'3@炷e2,'#ߛk]xqؽ1ؕOגcH"90/EX- ths/CT4`2aH>H9hp8#yV"2LRt2"t}sP̓.3'I *s51[У0 /zyçc/vӢªi/i'D uf&;Q3jqgKlCq'N4u9gOp'SꞸ$W.Sy2X3&UY%QN8h*;5ǝȶ$Iܩwtr;cpg;O ї3,|j{Fq@O8= _:ẍ́?㥻qyG'Ձ>E} 7n ?.XYSȂ#CZsD>GYq'}v]׼gwNia"B]#qO〟v/)QOs08ٔO3894NO;\J\-2Sp h>YhO\hM1HKx'Z347%ׄH6_3PR"q~YScB9GvIOܓ\}*>* |=%g1 >%(qi Oq } 4f>mkq;B'3pvaKO㰟?-(1h8 qπm}ѧ98}og* uGߕ#{ 8Q4`rOG ?A()wC{i4N60X}!žƉ'c8<9C=l:(g`Я-P8|od Ë=0z*geW^3qҫ+^?~1D&g- #pz?t۬p.#]^\8Fw)x8˟ڏ.V%\|q'; `|L,NK~I:&xQ`Ӓ. quP8Cʇjg*jZ3b XSBPllVb19]߷bV2%&?n.pWk hd8Rpqj[^8 #A-bf\O\q*ϴ[{ 844&'"A~D) {x% ̮AtW Ʊ. q>-xnb0B9?i=[s$wN6NN\%hc|{IK _5!,ҡ&rzb''׋!DA qp Q#vf>rASv٦@[g69ܘFW[$EiLXH{q/ b!>o((fip^A7-z-ތK 7Tw|F eZś>mc={?my`T#[s,s<6rjt9Jρsv9i&qţW|m{c><#ڥĶ*btc: kyj.^zwxsr ن ]96}G(i6FN3:|T|6e>I5C-Pf&X9873J#]Wr&r l;}Ζly6xW"t\}u4'xelsAQH͟,m{9azWʒa<كKU sȖ#0*b1rl-K9M[*Q`l N tKK}c%\itLZx )n@hǮWH$C1Yx!<qW^4ſ>-NwP'o|*ݼ;5luqcy@c!˜)E=}0Gd (O٫٫VUKwB GpkHM|U4&Kl4RΛBUbYmRs fx_\p%d\p w&-k) ]K0/Hŋ͏bc]4=Jt}KX4[[ϔ6H[p-]½bMU7moNCΎ=u ׅQB8Kī/ {sx!떠髍B}iKKIx~lWytNH9xgXHӒ@ܷNObqpْoB$D>~]]E՜vp\#IXYb81xKt[c"' B|KԶX3K>[("eS8_Hdx,oZ}=Jto$, h[UKT5_g {dtpZ6%jk[¢:2VǒN>6DuQUµwXA˻N@ V3Ckf%lu*}KX嫑s!$dK ZYBZ. ~1-Jɜrb2^_85y"d7^gG\¢j%DiPȼpIpmX ؁5+,nmp-]½z]eX_88K-kӲQg Öh!K%Xקp-%]?֜? r9Fla {hIYU_4Є-4KY *TwM9&ǖ< 0e>/SKpZmGnPBn2(ԆcX%\oIx׏ 0|P `/F{ v!u(a $alBR \BmAZ~py8iS3paM$Gp X>I'}WNATI Gֶq&E ?Ā4[dbmB(CE6fٌ2/I>mW.NkNc*Ip- .IA߶@ .K/*{'e8.^s<'a؇JX[G &5S%7V:q:qVN[ jJPcU?_j8@isҐU6QS[6|3N@-! YµwXUmd$Ty!])}b^_ r fPm}xlgOPT;K iGo:-II H~^O8JjKXt%hqܷ|c -Q5Jm/=^˺4 H5oZ#,%mKX_9jIХQubp-%]?xw"İl#"2at 9Ȱ/1p$΀g3px؆^Cru'wb=mpE<-<Jy>i|y>ӻy><<|7hlv< 9ٕv.b>…kx9~?lTlADA pIAX>,o$~֯Hoh.Zxh&(UhGNhZ$Zi&,ZJ»~ܼepkYKчwt%,m \w益XZJ»~o 9]IwF;9c(o$cb؅6+YDޗkӦgcZUc|Kphߜ828zE O^BJ['X*3_ϳ6^HNpv K¢Q9aH*26Dk\ԣkCxfzjQw,N{yE6KR?JiCH2xnYZ @=X0+vp5P9(5.5iZQa6[lpl]zOCz*!]»NO=abBtq'}޿U}Eoo %WM^ ﮟBBXiz+#0Yl Nק[B.j#>K.ޏ=HcDv1`;6mQ\¢EE6K@HP=`;p>{`sB0rYlyh{g$OK<ևrao}mnftƳ-o-uW_4slAaK/*6n:q"=_0o}T`y[{Tkk/_k3fMǰ˼,8*t*ٹ4J4V'{^K;̖UD~'%١-n<,(kǞw;}(}7R';sLpHP< f*̄t2-P汤0E]9p08me+UEYJ$Qeg,5zdg?ya;H cnv%8(ډ g*XE*ݒ]GM]*w.,E; l<}sJ҉faL7/?~U\o̚iFr?f+5cĶ4}ocr{->,%zK:^_ԇV3|SJfW6|7/g+e?矿|iU7~_ϊÜ78u3ˇlSo>ͧ2Go_壷ZY|rvoݱ*M)G7/og]Z\M>ވ"QiOϿIMx )?ZZ|mlϿ,˯X"1>aq<P/?O"O߿~ 8=۱ ~kӏ_~;wז|/?[O}wWNOQ|^~7~׿~u}Ͽogo~Vh?IG}Ue?O_i~3ʚg3io>/Ub\AÙ o#0/Ƣl:ʼn۾20a2B% PmvIҙ76j!c/ص1g@RD$X:99$ǧ`7(g]]9G㮧9K‰R9KYHS+n"1{qnhRJX?JO~jYV)qnMgdy!7_-|K/)E3 e{=8=/<0[ ̔?c,TXveucF;[o(䌣FQhqv)u4Rs; 9c̲m sĽcWxd.a ugٶ9)l[^\myeO>laگl̼X&=Kuly ˕-e]|'F_l_8:W6g%2X whHmm0!Jd&? C> v'REEr:'#)(t2Uv>LsU m%p G6 Wy8g ny1b;em[0; =sq`MN̤CdarRh#-P+򀀃s^|0I &Yƶm3¦,!Ȩz(4Z^>9y]:9h%RcnWpV.R|gfJfEE9jH߫EwNslLRv`xE2! iYE!X !]3_8-r Dqog#zֳQ7.LfG5rp8kvipVc)sQ2c8ܣY+%.+y8)v\~ >s1.>{Ҝ_f^pf1"|` FC,UmcƌYʝ#m$;VۙmGc2xf4솁&*5qNNk6_q~h428fh9ܩ LRt:^E-b׽`[0QmNt:r"LT3ā>z>"gsɪ=Sdn{6^~`ϜtqžD?{ >n9|N+9|i8l̾[ |V |Vevz46,]+jEZ(E)e7, 6,6,J[蓿/詼Dl}VG }Va>>aGJp? 9͑S69<› @/Wrjq/@^4_z*Fa#P @JPjw@Jt P₠@o=`7U:z_TfŸum٤Ɵ6{7! hɵhej@>l_ua#P<?ݐpu=gzO}Tѧ}꒭~ YpY*H֖.Y7,2di钢e*C:҄4eNXBdUIJs6ڤ6FZ6_Cq"f(7ν 2K$i(zWd-]LcTׄ*ƒAuϋj]R}X!fon4 tJfR C6wYMN6hk۠j-t6~M@jzL}@ 4 [`m9YzIfsN4eu9Q"Rm\0+z~  89{v ޜٽ3\-49QOG {b>~Ўj5;4[NSR10(wV1[B-4KQkz5_%tbl0Kh'X,Q11K$>9`Yf) u`mGstp=SMS,Ɯs}eg&'TO|TAUsS}EN pX>_?O_ZXyc cxbJ 0f=N_eM6_[`sX>NJ\Q3:561jaB͹P11Ճ ye CP RYƼu,09 ]F53@?p/+ew:c^q$_kz}?ƀ/V$QK2m;t%o1={a X'>1,Ԃ"xW3.+h4ܥ>6VDi,c ߼QR(g=g(kǤ.Y炁;߉WpLag. 1z殤`\m[l=4 ,E dU6ë8 vk.c _1գBj9`_g(kI7`KB).bB01c-zc ! #ITZ{́k~_1\0}Է .Yǚ}GgFc ?x'MR0\l=4 ,E7s9fnv,\[4N-ε`<18B0,ElHJ&{_dL-`}bHApc@}b&2RQP NRn*g3/N˾m_aK>rBuF 14Bf$ y.[uyY`aբUZ_$r f9K̀ b~QF[炁F iܬC R-^Y~oZv0 P`0='c~n8KŖݽfs~|Kq{2B-WcKbK׎s CP RxR*psX {:&}z= {EA`퉀e($}ɆwO+JnY+:wzD 4>y7B(Bu HCB-4KRxƪa( $ZMrJJdZ[['Z XRb Q%H\9dZhp_e"T!DW ?tCGs5a.&X8:0R1Y!5)T׮/9 ,EF(ӽBu>1O)vʀQ0H[sa`k񒃫&' uYWאq?0ӭ({lCE{ (!0-$H1Wr]3d ^ɫK$ >pϱ=l&$mХm3)1$zPR.e;}b #8 ,E.ha0H;g}Xmma!`BA0ư˜ Q(n 1?^rjY}~.n 8<LhҺl>^9Z Pu6 Phf/y7hQCE/m))NĽ5sѹ [N Zh$p=8^qѰ&= 2wZ&w)b (EA0ưT1߸,E2R`Pcӽ:mOZD FpFjW_I ޗ;+)( E3%+ŻNyF^LJi0,yVAn㤗efc&Oʫual3"MqFOC:t+߾o^oj׌]JvC: ?ΖR1(bFWſY~-ѸaNX1Mn$IOMo>0F$L-1V܈g)D%np˥#h3[ݽZ[DZHi Oxi9f&Xs$.%]Z&[f,fVYZ.]Z&[ P3p?|:ÊY泬Y^>(:RΫ\|-;a}؄x=Sד|b'GO̲9K[N^嘳^c屃x>}{'߲UCw<.́`\XϭDf_Ø8[վ 2oȟs VOwn1.39jY|| p yJXf:p %)Mnnn4 8}}QF&'a,cEhB26cb1 N;c.ZɬguG1RVb(P,&5iut껕_NzIkok9E7v}|>n{}$T_2:5fFb =z/p'`vMXnp9[ zX 5l ar6M1P&%\AWK_Vɮ5Hk}|>=YsَNtVX%f)zbY2&-FӡgHc,K±]jL!XdsFI]hVzMLP5_(3r :T_~mI]@Β5˅ojmqUk8fr0vF9]P'WX|m2Ux{Fv.SylDYr*iಟgQI~8> .)՗}¦O2Mm,gsB.ۗ#cF($ǽlE'u$]t^tPt-Ar0l~m7H'ZfИʼ %{%Zb y]Kx+]"w^˓5x4bHolt ɪ|֤HT:$xRO6183F'ՊRQTOJ*LJSTIaіJ%UR*e[*f(ouBW}*u;XL*uSY[uIZwmugJJc%Է!P=!#W 1J,WZbR")։LOI} bAEX% wcj),3eEf"$IZQaYM&OfȴPړV,)kՙ(a6I05Fӡʕꐾ~(I:)*` TQ!{&0 YQGˮüfI集Obym$/vfNVMfK-}`eIA0ư\4e CP RpoaO8-E{/e$W4djaޞs@Ef:h l3 |Qy 'p|8m+8Lۨ,DFP10&0@]o:ާtV'rbo߲``E( c WİMP0}Z΂-bnK\wr+ WnDv;xb .XazL^rCSP MQ>,jEF"daCv͆}A^AƉy`a=ȩ:fB-4KQ/͒s L B60 K-zo)V^bFc(0g(k @fxj)

DH\.Xac7 w$?^r j)}xe-炙PxƬ^'3כk sy  OLGNgPZhp_Nw? Lz٧d]JHE ybJ P,B:x@{P 3Ode,~RK0mm[p"p[;;b/P͜JR1] RDcc 6fAERvIaFy{j*0 \[H}DcwSvٻB3$ xKoqy\t-lcKzcmq 15q7Kb~EqE{ MѻW@׊/؍t7]H*b;]%A~΄I߬ "'&5NZk̖͞+b~sRz2'iyc2қZ1K@ bn \$X Di&xM%X[J(2bvOr 0 Y»u 4më O dB@Ohj΄Js22)npo) vg"psz6>ZkJ1c*Q(^$xY&IEw9&E.0jQxy(b&$tyok R; eP 6BNuޓJ[0D?0 eRu+/9xG")[DLPC<1mC13ERW/D5 cI EHJ1 --bޤnwݰR;7,/.T;&~ik04E°-L}}Y[Be?LEJSWu\1i[L ;L.E0 Ue]Sdw:oH5_0s"o"}S1\EL/6cMZhp_vP< <ڶ1{m+L]:8]aևN{\wK>vW6rҰws{n.QO!kkG ̣X[hҢp_3"](n]z.!#LnzfҢ0 dwmMA-4EQ/"C;T:c2āa37Α0Ĺ8}/(<S-/c恸-4KQk@`< Ӡ{u8PbH8c AL91SQ 4`_g(A+"MTJYhz7i50%1=I@ FK՚ӉSP S 0 P_AH(-ʣc ?k5' C#'j:&63P;E3Tc52v.Tweo o)5<`>mm»hCiX  Ьǐ1"'7g +Z p?1HɟvI!஧=(Tp1FӈYfI AF<"9s-|q?#!jaQ_m X<$I9,B:+$>qp]ǃ}N8&L6KPGx_MHRB#ÅjsYO炱JZ){8``MA Fpew9ے>@i$^wi1ij;%"̭-NU6=ԂNM1)}Vۋb=9p3T /ۓmha۞Q0.cLZB$w~(!Aot{zy[K `?@8c ! BcT֥Yf) u@v8w\0gKH~ %F031~gG Mqa)I f-4KQj6s B=/*@0`3k *܃`d%1?^rjY}޲HZ=3Qc%69l&9U~0[{a\ >""uruct_Vo䄶%L IA&l~CE1oRzl Q܏B[ݶz2l+X-͓@>xnQǑ^Sx WY`̋7Lt]x4f~P=$ao҄eZhnt`9L ܁AfwU=%?h_~ߛM/ z#M{L+ZY[h~p_A}kEl`j ƚ,W\ZL7(tց(>zGB)Ye6~fL"Ŏ ` 'smaYFRc Yך(T14K%)[ͳ090nMWڛN:X[t~{9eנ`p ´T׵gw-\0wQK ESx4gM+7Lb HE#::| hv5>a AH(~tVd`cQ!0 nBsq ѨS9wPo+poG]pgLOܚJJiHQ}L cKbZ)) yƈ@lY}dN; j+`xĪ#ePc؏B-4KQkx)հ)9tόv@7#-*\o@? NA-4EQ/ٔv7=̱ai<vȤ5XW-&8=JҤ#5 ,E:=sŜ:y$gTpa7:F+'s*o# kcwǩt'sXK-1mc#aŜ(r塃=l{EW8pEA}]B89/բ!yx1~0h^TB#epp6'aݭmuQS EuGI +3_$A8)l}.l=4 ,EᾎPҸ{tdImdO26W}e4w)%Z*'*CF; GYSP MQuNfܧPsK= 3Ņ|N+[ =f 9vFg^A>.䘀lUxfbv/aZJdž3*|Ur? 3S>t}Yg|Z0RNA-4šE҂iowvBLi4#Rص\R?߭B] p*uơ= 7w/W@I? Ft)IԄ}\UtRueAw({:Dh A*}ِr5Wߑ0smQ7fUAsalC$Gjuҗv%BpLH3f^#w k[[^q<)4s9:;\Nẛz]xYf) u ljc, `Fn_kث` U$`15HC|[~2>@!wHI\[4ˉ@o "9`=KR]`-=yT!k =A!.s%$Ǡ(K=GlaY{TE@iRjv2\ yEZڱB0Ketp`ӎ)( Eh w"uʡfnM ,` - iIa;(c^TTb[o+A&rRPuz_opMB I!` O!D`bD9KB-8I/"r:\0;ںǽq$ T4 ^&e`8 i=VxS4*lmSLm+;P;vGۮKX[X߾P!<H %/c/$[*fX)t0f?@oVA"cv0Dv}>aJ\Zh"p_B|asPub|W Yy.0FW U/A X~ [W$OuV>qNW`2A5&/ō&f6CMȚL㼩i#hCRՎ꾫bCMͺ+d9gܳ[a:z~tzQB87(.ύI:/lr}W :N:_Ezh' JQi6zOg 5Kb5XC鐢n ?EmDE(3ʳFEC2&{001dD]ArVӳtgY~#K%ooPz6ʬsi4jZ;$,A, ^^U/RW{<_/_!|KA;AuZk\?=_w>|/]ˉxkX%OR?lV{")*_[Oת, nNͼLe;]//?j< vm&al݇ێۏ_~㛿esvkʂf0q30ݦٷ\[ NV¬:/Y[G9yfmu"bi%J+қ}.ɚlW Ҋ+ZZfi-⊖VVb{Y^1^7nŐ_7+)_+/ؾWg͘rׯ'~I0ovc?ar0u o?_4~%F|ئ5WQM/X p%1sdjd> c9.3z0{Xh;UYSdݹ\0ŨwL%V9y 8cŋ;of\d镕c-o'#\^ӧs-Cy8cmGt;K|MOjg9 UjeʹV.ַ"T8,Vѐbv|\:֊T} =DW3 nhp` U\CaU< v_2{l;s l>S9n|.QGܣ(u kΧQey30ʾᩔ L '0jv7yepSfŁr#Jǽ&tOWu(+*I}g| T(4ޙ~} sA󀽞RW.bົq1;1aV R8V0v>ZoTEn8"I)-mOҀ8PBXF pIdnQ81Lz|Z׋dȭTܲ,_ E,_H>i'8c2*K>"a,BPE:en3Iuanltإկ+4Rٰ e>'prWww&+F\aƠŜ{'1J0H%oȎeN6;alBLwG*sQ>@nx,7mOx/8X؃~W} ,m9pZ"hhUeJ Mw-QvGKp7za-/@'1Pa c_+' z5r ƯxZcBЏ"L R?{ؕA **A|qalj;M'3Alrƾ;vĆ`3G ?CmfcVSژܝƬTA̷W-Dk lt%vZr,"+:-Lua: DLg+,LD\1~=9#(m9/Ӳ!r0``:*nQL'LqPL*D~X;׹\VΝSr;: `r{\9/Lded:Dg:{L,4dp:،:߿r`x"XxH'` 6Gܧa1'4_;i>ܧIȭn@d4 OMC0(O`4Ϙ'0~!i&HP,VBP:YЊ j6d@ 5L1Muf0d.ɀV, +EU0'O44 1~wG$(1t|r|$Ow5@0)#0P|VO_Qj,6ļm]hY,dY0rpy^LsOy Cf 1 eJ 10s[F)0в{@y* /ߏapA³;tXvBoY t o2Q^6ˡRx,ISjg"Y%JƞU4dP=)=D~yz`{zhhX`-waJ 2 5IT^;`Jf:ܛcHrnKߜ 9yiiN^B-Qx0ĸi.ugs) *C). P E7OnԕΓ;"]PNJCpϋsB_ҕ" ԦpP-fxd 3D5|NsE8\!0xم> F~Nq0r*oK07G|= CIAR)*Kd@`$+tS&Q,eq gm? d_S3$=Ɉ%GZV~5 C u&p)մ;iN)^'sʼ1:)I;%9` r+}N] ٞ TJiP&9 8-CL%?h=vpLsEiqCKSϩM1CRF {Z2(J")n`Ux(Hr|Ie)JT -4V]ZBjjK1qA[O0ͿN.mp]MNy&+a¬m<9 PB6+Fzʾ?tmrk)$N<zMaZ\;ZLgsB}cmql%zCKVP0E PfZ8xVw.T?.`7KF;vKP11K }aZhp_ֶF6avV޿_r]׆ڨB f]d(Bb+E WU'?sԀ"eR=O3 /-NfRxt>5)1,B$wې.s,I0t.NQ^~o]076" #='5?uW ޸ΠeuBh*C/IA03K VnA_cn|](| ] z,5 Xucfw†i/bK 6hb1a0h)}X`򋵣Lb.STAqbN蓂`a=Y>(Јcw2-8ˠp_w#,Pb+؍=zwbOe ++k 0MVb6 &(G yl$w߄ :tgg?gM=aum<}pwx{Uznq<"滽|`|]f<Rj\h' 1'ǎw% c \B-4KQkH! 0&{„ꔵńď[D'Rtnаy<>B#v"wss@s3AA0yXLR1,B: h1J?Wǧe$+-ZeQR1!QhKl_Z,I:"@ r_!ys5N蝻g) A1Z~E,EᾎȐt mhbjg\[gP>( zbO-ͤNxyB}I76y.fbPK$(ڢ)$1uf`Ƞc,YuپC C!6muO"8Z΄ 8LbDRh~:pÃo:>R&b{|1ܰ58@_g]03w ]}M`'c_W9F6DihoHO9'psgt7/";r4a)D MZ ̣ ُu7:%=aaPBE ;`0IS(=B-4KQkC 1?~M9]1\jK=SY[tVz;$Ia LlP R븝ehcm%܉ /'Gc(EXj$w=iWkO:w5 ,~i sOE?΅`=IZS'B:ޘJ/0ʼxOg'lZdURܛ0FP,P=Zhp_6t 31s;I} yE/̅B ]bO^0PR(B9GjE̛8q{ L!۸x p;G:Ftc%aJqm"uDqJWb10/.Ui!U[_9je.*R10(*O1[B-4KQ#ǂ30 ڒ'W:-X < .I`kXg"H  (O*}+A5 j[ҶEC  cpm摿-2 v|2#kvPu٤)fH3;/1gYSPkCQ:"(~"7cHs Tf) u.A%5S?R.A}54ї$$U1(1)Ps(PUZhn\!o;]:Q[RY(g:Qt7f) u˂s-s !q+UU)`wp`I[1tT^snxot.$xqJZW7Dn֡M}sm B0um}|w;l=q7XKoƙqBS8'5:Af9j\̟T^IL r{Z=IԄyok cP )\c2`jB:BQ2%8I@CΡT 7ڶh1DXHaSSk MQO=XէU~i$E&E}- 1Ƣ>e|TP0r ‹4Zhp_jJ#nP 'd3E-:-c Yg%10hImq^*4Dž5L۾q~,6AP t'G'#sELX(1}r/3q(.IZ4%S%+)D1 ,"fI A [YÌ"iX Pqy YBZL c 笈&9+PA c%)[VPλ,0 'ۅ#asm1܇=)΋s=JS~Am]ST"…`wG̈́AL+av|8Z3`Tڹc g')@Q*oC Zhp_M w^2ߨ-NN'.,n:,tpk~~_AWʄRrtNЊⷆQ0Hk=靖.v76e.kEk MNӧw_e".*b#Dy+e eͮ< TDaqpOF: tM d=IVI4&c>+Cdo Z 21%=O&4QאhG>06vÁpf%"wA^lW g{d*Ai8|ZH6NΆt"}L&VZ"fh<g"'CJ t P1w%+=+#R!a.z:"<&Hn0r(@q˭EԊoR .ĩX(S;u7|>, ˛By JFsTy掏-q2Dn@tſa.RN8W/?+c_1rk| 9}nRӓgI={fnR;p>~gxOO  dU̯za~or_u퓷>|3Q=>`7ן˹o|Fo_~z>=$}ӽml{'v7f|>駏?Fס=Į9~)_޾!'7e}_1 Gl~y|<SuCخuB3fۏ=۳0ah< oKCƟ9\B];z"A{SRokX Mmxk,׆G$7{?7.6uo9_{a*^,O"{l+YKy^+$|.j%v>,\}!umr*}3ŗ&{ar༶޵X~Vѹa>sv%Zگ]jʜ927}oɠ~{O~derkd|Nݿ ;b+מ6ҮSxe?q}gn>M2&ᄏ&b=/n7~Pz_H AښsXL鳾}/~|_g_أA軱COwY=N?o| COצ嗟>_ߞN+/z%?租cmo~ïEwф>|<[ߛ7/>?npb}oK oendstream endobj 412 0 obj << /Filter /FlateDecode /Length 28043 >> stream x[fGv%1Ћc1眸h c@"Uv%IUu펵;IQh@Wڗ|<}y}8xӨϿyq>ϖ7?q<y}*9Gyz#<=}"ק/?odO?~+xzû?~|z|z韔'ϧ^ϧݗ?ٿO?}gz>|篾^O{ӻ_oht4㹔:wO_|W_}R몚Y_~|Auyy>ZOyDr^#ٝ\Vw?}tO_ݗg+,r)_}^|OV5_,-={UV^w}ˇ=gkmb{O]WG}|M2l\?` Ebֶ_ՙAO?_߽ϘL4} "8a-z}+Ik~_93|XW[/߁mMF~zW{sӇ׎dO_^qگ#_Ձ=O?c 0iSNst_c1 _G<F%,f*ݗލw_{_~ce}e}9ӷO|/o/? xnGϫf4gќ/qRm5mǢrz%y=;GjRǮ=sO"9Ԭ^TvhXfH-FVE}Y^ԁsrZ.6k׮F?SZF$V#Ӳ jmgQk똭s>p϶:Bsͻ?|:c}}#^8߽6^7+ }/4kOP)_CO߭ʺ2,;OefHn/AOFv }?._>~ˆןxvmsif>5_>⃹V֔ScvԲkvM3:aK #\R9uoq}lq\vQاR ?X 1\iw?ߟ>'blݏˏ*Qmk]9 cُks=80pޥ_)\i'^x7lE[ؒiXğwOOVX _m*Zh__SP:wo>?棕駵&~%\5~ݏY?ܛ2)O|˷OO[z:Q}<TxRrO P9k~-ФjYP9w|5q5[&hkyJ+c7 }ϼ]ZTk Tza5z #_AZ~ H,r wkorɕ^ѓ+(\)\utk֩!ei5f k=kYzY\μgi';ZZmA6pI '2ˁrp X|ZDͧF6nRb3=(g1z_1>$ "G)!Z/zeX}3YmKPYic4V kam.VD9kw~֔ed!q~h1~(#jkJ#abJRk9b80k0mlu37fd1y\b d\FvttFXiY*E)?S[uQ-,P&<:zc bwLXKC_weLk>i$rՂj tQ E)<# bc ' sZFl%;")lV#A?N߹ru6g>euރ8qxs](` 5zY9` `/X9ʢ4c5-ۘS:m^7JrXuO2} YYӲ*}x'H6*}>1Q5î.W8 *)_ݞeQ&׺Xگ\\EG4 @Lp5Cj׮Qx%pAZ(Ƕk`0p29Ɛp-Z/ W1Oi3E) (3NNbȍeRդzfueR0Fc !X{Îyp](JɼepHS[``w9:F,՛ n8AYpcAxZ1]xZ5oPI("Tc! pabQ5/#uЯ㒇P^!!џqdk힓Y:%B.N^ڹS39Ei6T(/Z6H2)8PTnIO5' ,2/b=qvS{1/NEqY¥ܿy<'.RX`UӠJ` ]֍bӻ(܉*6ua)FV:rוb<:xӗu΃ dd-;Gv9K7sSNP ek#g͌`M#.Թ@v P"#ͮ#8)!8P'Iu"-NPTαV:A :G^Qp8YLq;Ǻ(;Rv=mQ]`0`B np'(\w*F3NBw"p.x1Hᝠq\;G x'(kO6QwB)s@I;Y❠w"Eí{Gp)BaAocZ_w6_knѠܔg PqWt 5S6R7e59J@?. d-g.@Q2(:uvrPB(\1FHת+RuŢ+ؒKE{.tLt^>PtG>pQλ0mE#Պaטk'܃k0?r LڊtMs%S +fϸ=\hwti7aS֚[|n9guFؕntB}תKɌ윧)HLool0(I2 pq[S~Z(2gv n(Ip{hLY!683܄yp3m,AVn-rPٜ @]Iq Jp!dE5I!xET՜acA[w% " I0 )x<)rw@D68s ˦HpqA;(X@+E#FVoeGs ǀ:7;7+ $CPO(,X(4(*XHTnhFY-hbd' 6 s{ΠЙ7SB3BapPɮR8](kݙeNvpL!w f1IS#JX_&t[2mL EAЈᩄKЛx*9P ( & q\ pla^oD! q4CeK459wb  1̅C :4<Cu)[8<(Rji,Cڄei)LmJ^zP$\G`pȆ~ݬ 8_zhuMbzޛ8a~k#8?s ][n&gs7wE9<[%\£L9&F̡#v:Pg\+Â$juWJ R9ILz">,`ܩjq7HTܮ 7SzG7gt.%<n]C ȍ+F 8͛dzM8)(s Yz^d1!_&% dU?Ev\V'znC{^Ÿ&7Wr*~DW;1 ʿ b^)frW4svḞ[Xd &LU΢|vH8hBpENg!8 z=E Rm# d],Yd^ey`etba3Vh pYU͕yZɄ6v2s^ </{.knRWݕ"l)L =݃%23B~:}IwKאME>ܲ1&S~̝a {r@PBf튛bB"6K5TAy<襎 + ?OXƺ- GaHF%Du PCKXYvnrD+U›~XPlRi8А3:"+$2|$+@vOOcvL#9u֡y'^((G)b8JPG©<:^6KfA`asx+{?of+qz@m7ZzYZ]rF#/ӬB]3a5QgQZd6z^pvcI3Oָ=񆥽#ƒ,i/!Ҭ¶( K8u0kj wp m>PzPp֮"pJ{%Œ]Y%M35KLXC(&BQ ;E  (f<`Z5sx#[/8e=,`1'(kgΒi;q9[s&prfihw^2/nmS XIB)G(|] lfbJЂ Sd<*E%Y]i&6QB {J*@9jK[= [d{^ 4Hl֓Q@6`9^7C9 HPT,F n0=vX t/*aSaZ@]/%{!}&X(fKXcPҪE ="GS n:^.rpT mA_v7@ ElJ-t(渰SJ#<ݰ́-ΰW3MN7rj_l }iMl| a3mhhvAXKMYǃGérr.=D$ I`$tfŬ֒5Lks( `g@Ut9@al{igIgz UN:R\́(A>MV͝ Ci,-af7]yvBXܘ1pf0yS!aQNmN_RH}8,"uσ OiVw\s?#ǧL+p['FǯP{.IG~~Wwh-\N<ϵ`k.x[.\s v \NBr%Wuh7߾J+oGW=JkR*O偮|BvM҄\rKrK.M%WPv.C! xQ--R+x `X@|g1Qz$gGY/aI /^hN0\Y gȼg7S@ ̰F{d%8"kFh,sh8'͗:KG4@ ;DFckcPf!q3Bw0(iq4 'LsRDB2kD3Hi[ !d' M84U:e*IuUD. xcq,80^`X.L+T91+Beԁt4YܛN(r()֘~PDي{F18:[$@ Ff"D +fwosh!`]=jf #UNO1z1>?G50$@?Z ) 2O{iAe]"Ҕ+*oRO;e y+b-Pf=$cxbw8`5# lGtdkVd+1LƳɳx B;#1*zC&jĕ #{D A`8pLxM*/9xI:NI2( =g9ܧgs1r,-3]g=Ժ j9C.&p';'a,Orc}Cܯ=kV?}ZV3lz=d!̤6;ߐE;g/> ѣ [xoHdN;$^z(ph>NyCk^[& Ex(^d0R1 ݶP72P|`(³ Fqb[Lcx*CxEÚ@1te ca#u椵Z&=yQs|S&eБFOK,֚,$0Je\薷(4pN,&QA3/<Ԣ*|Sa&K+ˑoQEYN<<2蝆|֓[aQ #E.XNέ?(K>;@qn4xC/EЫ=_Wu<<'4OzrQ cUXNZyn-V&` EdQ:m")(E-J瘓O2⍔ҩ|leJ ώD?Ѵ(ǚ.JW.a-+Gf%3Jloc,YU;hPzC5YEc>dxK%s{"(MANeM <r} ̜_=źp~R\KP(t.lU l;3-JcfpoP[x¦"k(DѢ4czZxQ̧6HP"żxYۂgYWE[̃2v`3x~3UST"=72pF˯S;Y-,+`ٚFSPXw?[|2ߑV !x(EBj7p'܃Y[O"r=%92Xf(`oYO}[DDCgC}D"0 WYPHh@=,6řq IZ֓fc }AA71v<t-t(<`jvG, sI 밵>%)+{{/YtV(Ѕd # 4V\74li%>anT>²z o^$08~t2{s+f8+٣gCGbgV2X`ucAB5®(d`x`J*{V d2$JGX  @zx+92-BXANl!8BR'l qb_ĉє/".487"(&q֪qVQ"0 lMX`_2 gw695 ΡW69@9 s0Ü+2Ü]$W0l89a`KP4aNi/0Eu 愚^5 lR?sq# :6Yη8g!,F8gqΚBU sV 2pΈ*8ghs{WlMuO:}ًCsvX8g5 Q ,:9OYA  +`)fÜsҀ9i,y9|0 QHs0`NQWȮ؄svFQ8pNS8'@$CtR*#C G:{uJBC+ܠ#z )ƝH'uqg9P=0xA:{tqErJH'@rC:B:[ڎtH'tګĽtv΍Y#ytV76Y2*F:+m): "%t0y: tPHOAm+9c'sf㜽:8gY:ه94) Y?NJ@M@:EOC7Љ S::!\;oos*:^@?㴁\tsG鄐+,Q`g`'n) `'Qa;!;Me9;㍦;qfvBx R[fts;#svna-9ڹ%9G;hB[ss\wn NSJpgHOvnYNhg<h'*@Kb94vIKOl9 q5 4F aCNqw3M .wA+5R::FXFR@8(8'(5 NY]'NXi: /s|c  D!ӠN<Ԉ K'PP9"B;iP'>ny:A[X'6aX' 댧CFHP'CfCAz3Np~M,t`p8l4,:aW Nc=[;G?,%1]y8 r2t". x(Nܥt, $҉ ϑNHruڋDQ7:r sqz9u DX:9$; g sstGg9d713usȒ`SJzPoSq79%Cmӟ 7L@;gաhl휁99ns,9ޢspsk: #;!(Ypsz/NX $ uuBjGuRP'(uZxh:!q: ԉ<uڗ|Ch|uuuw`aLBu#ԡND.7#:AX'ܴ̑pNȡvdJph 7 rDlorvBUD;[h ki+:;F\ 4GavJp'(\&xBp'(d47rtzQ Gk AƬ^ܯu0;}LClqשդmE]S< P݂/&٘ Iu݂r^L!!.2ȳ]w(ar`AnjsN}QG CJ.Fq.P<ն8 w tӑh^&zl¸eso:zA3q;A}|Ϯ? ^+Ş[v@6.Az &7`P$ %KuczٚѼ^ȠK;=? ! &"s># V$ v% &뉷ǂ3ǂ{)1# v]Ψi(w/tP<),V'a{[q/x!4tƵpŴx,"9M 낳p$Du 9bp兛:zzdCUUh^zdg~#Lm°/"$&'hrZaVaܲ(pÅT9KjnF[T*69d;aV=&asŅ~7›L$o=ꋞ߶Lš8&7bjꐯ6:0 IEq (x4;a2#<Z7 #J,Pc9p$Z;8Zc `&\O1ǎ1%YdG* d"3]XbX`fXjX`oXsX@xMJxN0#|PZߌ#ᛧe#(*X2FK(TDܑTS&097Dm&*`yAIUXBAdkГǘrA `7 n{1qJTy[7JGao@y"04$1T) @C%\h[$|\IզBl[#xMJEN$E 53Yڛ >|Z h$ I2oͮ0V `R\Op(VHf>-Rɭp48;&@z.ăbP+_'ŶD9)'lIpȡu]MY"mu!D$MJd9 ԱԈKK^Ґ@xQ()!T'e $8m7t<}.: tNyq!:+xݎG {7GMfw Gl[a?Cmw#%}4"q|x,,W} S?eQa[(E| Géa\;$Ju,7T(ڱd,uAxf;E dq#a7&?^sCa'~d##;*Uwl8M0JrnbE,2~v-n.{](w|Ղ -VSkk^BOTw'ӗPm-?^,v#8D72$wabshzW4 @@u! LsfͲeV:#EM2W7uyHioSb[9K f tU(dozb" 3-ܦshGʠsv9Q$ S%Du Q}%`P]S+1%xu!JN\^޴:Vxopw|·)M уv_FIǚz(K4 E%d^[J8%ƌ^(#*21Lr!9!c8N@w9))]~sDv鏻.ǜ$4dN/+zTju9IK4;]ָQʗ:4J/m5 tyv.0i8/9Js^=5]BWv7?wB'cnEbHdz;&m~EVgs>Ke%!39}gO.+P!9}*Mث"F+Q XL.`ӿf7HPފT 0qњ*Pn"F70g E/b`o\ţ |2=Kf@2&P5(Mjbp{=uZ8 E2L΃~)v4c^Y-QĿF ï![opIJzzPŰ)MA{/-B@s R8,2QTg?{ׯ<)u_/a Oڣ e` 12/9:(=S4BuQB1Q[9^½bQz t*ĕ~O1yY*Eơsd%5( _MD/M'8iIC1Nj E{5)Ym6iwLM}d@Aȼ$K7/>ٞ ]k.UgNrzVLAQ(1BBmitBa (4L*AjH/ ס1^(dVS1K4sXO$@P /J޼k`N$4 [n7RMJRھ09!2x .!NX^KC>Mo*B)CphW&mur" xN;ir29GU:cUCܖoG71:٣ 2&;[DD~_9l,2]bQ pA7xh?<&&M%kы+Xכ6BT4 /E7o cJ8/gxF/i>ÛF!'kc\kTL|k.Y-S`.nrҬ^Be\rɥ^rKm %zeh_ 3mhX gobK?Ŗ[zJ1bDtr"xy&S^0}"c'y3!!D0eY0eZ{&rUiSB%g7IK'c!xq06~:[DB$4 4KwY h+7A3Čy 9d w>6̝ Mo%f*@13& :%3[$9/ɲўK(dhgpC_k\!3%ftHym"t|'ov#RP\Jx1&CuB¤\j O+xfV?-z4BHs4!Gų=ae>r3ą)58RZ}2 +eA\y2W̓E)zCZvw2@[OF<1xp ʠ;6i( $ 1!'9Oeȸ(SNLYc7i#sPSM-0cH8rjB,)ȒΤu"?tJ{EEkP0FY̓,x|FJ|(#B)bX*PNLcɯ҇30L+Ғ Ƌ,v-V)Kivo8Zd3Z"]1Ok yZBvh 8d<S!O6|Z=nR[}Η| y:QZL9|HE^04D{p0(qOF%gc"Jf$|Q(qj:8rE.A`E ;Uimi?98tQh>Knph h q/Flp#xtcܞl  7+9 (Use2PV'Mg55<14M” `،xeK("΢|Gx^\2B9Q"i^ֹnv֯"+'dX`J TVZ)tP˥RYI 9IvYsJS`+0B6Y`=0BrY: !74'0BN,L &@,*{H!UO @p?\f!QEggރb!I L (B V`>nb/-c<wXlr a\E-P*5+N^elW JY 2ۥD3oQ " t'UH1#e-&H1SN |N#RU]lHytR(it1 kӻ4RbAbI s ݊ J iS #t4 -a!E:/kXl~tC 2K'>t=>ŢʑIw)\7H5P }~^0;` #s+.D4hMᵶ!3bGGZc]lQx 0C*&Z)$eW>M0Nhz}o]N{xc8X'_bSCm8N,%A:K+N"'35u GNnS0&N,:7&>ubf HC]Cpp~OP'֍Gٴ6ꌀu.:+NCwC]XYQ yHg)9/CU霒@79=,i@S:qޡNKqs;ԩW/P' +:7@P'v 'pTe rߡn]hdO#e*ҹIr[m ̨ הtDҹ8 @C#q 9 '_N@; 4hࢀN- i+m+lHgHcv =vxͣ^o'yu `g_B{6)$/!nzBqs(J }Ros&N:):^.P'HRav:p|OP=DunNFLToP' :#0m@@  L4TKސN](db AYAg4:V.3ǧYoR%NHmn۽d! ġ i ؔNAp3I Ui}p9_pNM'y7ܞj i0'$Q{9CuWD`NH5rB'9-,4qi! 9q8S 9qO `'X0yW9q+[Dss ds-Vᜐ(m; 1JqN܋M'q8'd"l9qwr8 yJ.M!K]sE8gc9{ svqt?s†^C79tsD/tXC7Щ89iuÜϬ9mRD9?98'[9 rz rN1J9'u㜝69z1N1,aʳ1醈q"XV'x%A',m9r 9.9#jiq`4]ANc@y(Pv] 'L5B9˝7ӌfiv(eڷz9B9AIMUpNc  8G2 LiIr"J)okG9AW(rNFe L vZ qLOE:q Гb!a*phpΤ݁p&3"sSZ^G8A.*ܴW!0+B8_$ \((馪pH#g8o'(BLB3]݀8AD"(';9 -9QmG9{I6G , '(rBd9 SX9A's: '9AI. r"t9!s9gc rN~0ފ (`+tۧ6ޜh%2%ߖm9B1ʗlX=XfIѯpun @A9nv]=ct(Ng|f'~49,J3%:urގ]@=4h6_Oo  G@љ"`MyqFqd=zs3MqY|A7U8e .[]Au`r#-r_@E`!f'+)KP¿Eѩ,Jf:= -az*d6p= #X e~ӞqS( vO=JM{x1'Hm7 ;c sScwck+A!e6z>wh6"9 qHqj[1&TXIQPc.R;l؛޻.u;PK%BX]:z6s],C`1nzUD77y~. =|gň\}Fq:)?6"}sNjm $!nͅ0 nF/MFa5]dsoS*hSe7{eݞgVxa= B+q2U)! GW bG7i20ɡ 7R77]-@7*m ZҲ閔%^b S>?$ϋMB<1ܰ"e .9j%xu ]%lXeGJ "rx+{?^,֛9T 녒,>dK<#nw f닠E 0hʏYhM@;-ߦq1%㮷'(/ds<]ɪۛR#d;w/Φv#Hmd o{uBi _7am(cjljy1mU ($<`lϓYv ~yMj x|Z@zax0 5Ãe8ɴU9fx5K463J2l(\`ڶZ9^½-G 00)awd{o]rL5^Yp ]B6`4Vxop<!HnJ5)qT&B"흥EAO|=v|sW4>Fxo Blʡ Ab2mBnFĒv  N4˷LJ`RvܻnDӞ|"SLbAL)1.s *AO[#;G_icWC4"rx#[/رa%ҽ^(ӄL2Ƿe A/9xfNQzV*#[DJ 6"2x{/x~t!^(39 "JNy'_)MI>{iVcdnʻpԨI;mToza>^5]0\B2%y R)ދaN`ϑ7 4xy ϲP*M/8g1Ɂ/ Np9 O1CYd6ǢTb7_v< Q^lb Md#J֪dU3UCvO'ߔIS =`Z⎵sx+{?8gG@9s 5 gٯaΒ۠d3h%^)^k3%ܻ@N&f eNۘ,SRKJPeUp %(Nԡ4P+"KSV +}1J!cKL,i{@o>Zi)cmiLR˱MoAd&{.&CMW--t|v?f8FuIrtweJ`ƣ]gtnT..9^½ĩ Â( R3Asa<`(ӧ"o ( 9* Y%1&eUOgMj,&& r*J4xyؔf.軄j]/[%{:5ndf JG dKׂgm{3=G#%xu fDK8][9^½:-ˤAml- LH'iz͋iesІ# D~I)y%( 4 lD)|BL KqJK[ 0M؆8w J6xh xӋ۳{|*$4<<:_6΂B܌xĘdl&)I IQ4iH),X6$Les1ԑ",NٸhRiBt3U! g:pl>;(2 사;5YM:Lwguɇ:h57 JRn4*v⬹\jSf/ه+"GAOƨ~xMVBŇ+LЋ,-`Z.xՇk YWgt0B@O>Z֜M"!*Xr@FqB=]JC1MpA|t{#7>\ۚ?p`ϟ~tY_m`---][5+n ha Q~O_~z Q?W_e]W_Oat8w_\yX~6gO^}Wվ583j{Gf8>߲߮eKiW%_pɰఘ/_>#(bv-l󻗯`H{~XqNxzÚ-9f뫯'bMwً^3/0i>kY=}Ƌ?O{w;ە֚9ןkl+Ӛȟ~4eMӚ0_Gװw1>>0/yl1~ɧ~篾~DFG(K~g]5*ta>ӗzNoCSm>) tMX'"N޾mRv1738Dظ[nK2Sك}'5̸A!iZ b> .rTʪ_svn>yp&*=y0ņFfwZ\:,TpN.O̱F{'oU,WCvJ]QXCMUweߵ%;E1aSnWé 2E:bK .&ˍnk~ceLRnKs-xr7/Q~ L_+~ؘ5\1a1 'bNW#Vj~@svl"Y'6"`>]e+QbY_,Djn6)ݒOendstream endobj 413 0 obj << /Filter /FlateDecode /Length 10494 >> stream x}K9rtHev7 L6lti0C2+I&1ř=?bUwk4Vx:8;<,;Y{Z6x嘺w_+~v-yJJM[6-%oo߆v ۧ/G<]kn7s.?xJz*W¸qo5R [|X%:ⷮ=r{'/K)ۛxK/Cl>ISYΰܹh?c4|]ɍ=ֹ]KɁn+i7SZvRIu؟㟮}ϷOK/)4 wj ݯrPWGp3~\s>^nՅeGX_k;$kC׮:_wߦ%МBj`uoiN4Ou\ft4 {!C<śiOcBt2|S-77U|=XN:nNg4uե\ Hef}ßo=.79p͍wnMVJb;鶟w}ݟVhYDSޫ~%^c?}|FY=Xp;^17 A_?nz~x?]Cs2Uy|҇kmo]8a=5&J_7?82&$IjwqmMʮbn6]=7O.-K 41ae*n*-wιax[<$d q1m>_·lLߠ"MηM"G]MvlNW_yZX'A"ꔉ`uLF<. Zh*@AҒi ew4nRʊ+.O\Jj҄aW牡#3 sE%]&Ub9kYX6Nss;(N:iwK[q 3Y:W׹5\:׹&Vp~[Bڹ`&ۥ-bz. //b3׫lvUy*^Q].8و`! 7@FZm&+}4k\X5BSncBɻBP>R&6d~l,;QhW#Δ#%wk-K!?(t%f)v!Z"5` MJB{Bj $) L -DTZD)@L!=ZǘBƐJK=$%hHHgƥ4jձP$rH@́F'ƚ砳R%)3Z*h$f@oh 0J<Ăݕ6`)Db2$O7$&M2)GaPP#ːWҡLt#)+# UPB!1*N HL^#)8.pShjF# ($eFS$"l}@Q*0/dļxޓyy?)3ڂ} y" юinB+SL$dH2L" F"܀BR¸$l3FNGbºhz$& (gyI,2!JQcB{T"aJchGH934N]_4ʅ1*yI|F-% uIdp˙tduIb9D),b'C=0^5 rP `cN$&67IBS-h46pKSJGbzF 1̒TLr¼d5J:ɴ$'K&.<eaULr=yNA/$(*&]gAF&y( 1,TI!%wJ !Jѭ.HY΅\P*8Rf2J(EPu{F?ϟU;% (!{FNP`C4!S'|PAЪAP2^A̴aPBdƠAS *eEu~PR@(cA: 0FPbPz!E63%L bwJ-"uT[:%HBPڞŪ  AI}tX!h hKKASu AIA63$@ @'4N 7Wew4.P,5lODmfI'FdP2  b(EhQk :CEEd:FݝPFZYAQÐs@v6]4 X"ЈY4X ,4*rwII]On3'ޘm1I>| fmOt3lnH)A8,o蓌bCdHt{0 H%۠OZ}&ϐnBԕ1Î>I }`΍OR'PHR ? TEUH@Cu ?hv%#!,b h1 Zx1hUWy`Psdx:mvP0hS70h3E@aL+QgEѤbLH[֝aPYA3 ~"2 e4bP@=LA3\6AAsMCPAAsJ A3N4ahV ~ *T3EǷUA;g)t .M|lQOF?kSk,LAſeu ~m&􉨥> \ETZO4sCeUgq^ Q*+ IaVL[jÔ<mBeELxl#`!-%y ?U=#~Jȉywa#;#8fz0bbq\q l90]I({o4xӣ\@- hK G/}АrrS3$j z}P0 B4R#CBʡ^QJТ)-51mW#țjx*#XA][$2R #vC_ZzA99nG G^%&a%MB;!E >AҼX,YvV,O~6$s+ Xc7gn]en!qxdn:s ac*2$HTARmxSW\29jP&._e ąD03a)O&NdDXXBDC\t 2ʊ ί!k9q)/Bi[Y6uW¯V|- 6{hAd_wQ`ꔉI'|b2$>(abx2b8'020bdCEm~76O+F[#C>MۋuH5#5 K>VؔR{jo\wkRվsMjܗ0? f.ҾK~.K23^_G3 iJZqV<_̐4썏գr9zQQDfBs4DځPD@.!G>%РYW!''N )ή(HA[HL)Q1-2AɊ*ܙĔ Wf=\!s"ȎWBтg vd4AbpAX?+"G s|+%#0k lѨ`($%Xې؀YR9G(E.*a;O6YH bWljq&dA[ȅR B9P&Ex)C%9c۪M0RJAVI6mRpo_(=dBi|PM`Kao]Mp?J=̇͋*wig]!/ %Hp&AJl~$ UqjjjܚxK <$(tapN'8.$dJx콤V6He[ $'XU!IxaBNqe;.KHe4S'(|(rRJ2&53N)gԹ%JJ'(![s9M!&*Nyp g rN>uOJ8Er$c5*"qyMM:"q&R>; EjbIN7Ta]ēNO3NԢz=pbS|, IV-K"a`!$$*BxPN|,c}+e\v&ٚ,~T8aQi8U$:"EV,G4Sf6ͺ&2;rPFl眇iS}+$,8wz"/1BG9!JUqEvn:y98"JlW7WF3wGU2H)j[Tn%Qf|D +p*&9lG@-OM|\6ὅ$OD>wټÁ?(()HPsdcg?".%?ǟn4i6 ('($JOI ~rU+6I#(w?C1gjJ@wϤi~0Ϝ 95g5U "?[ wC:Is?@ r2'͌>~&uAC@ 5- `Jhd@缙'l?qW*Ļ?b/I5 ?& * EA;gl {&M3{cg߱'R^MOs {8$RJ'l?qv'O>("UYqvg4oh'^3kTYY,€v4;g5|lǞvpgYOr*U]5pU2 nҲ=Ԗ՞yVc_4z yy'`LeaJ{mN0uH`@WWթnv8%i9Xtհv2djp>b2P}ĀQe m MK@IChʢ/womeq_5ԽE#r_ݧ" H\;;%Țu><@=hTl`v6b>#)S+w> ˖wuJKͯ}E~i4yN&DHS#$ӈKn'K9hS*!He BveP FwG^A |`t4\ETGe7{6lajvHRs*PIډ#LX^gǖ fRoo~ZtĨ2XY,B]^Y̜N;jY wz`9dpYTS}ZT*E ؁v^?v=q03ٹDד~>/K^`3Z*I_+eԩu|O!˷V, RɁQ-Tr˪}dz?qeWuenSf.~vSf.@(3l^e /mU]F Wue M}  TOD5Đ%03 aƣ=K5CY2K[CwԎb vRΤXgRU̘b2 LJX1u&%L:VL^I +&ӮΤ=7Hs@SLx̰̽yX}ܟ.ͧ3>B3Oj˧G?^oO6[_Gol (Ocq^*F2yl-j&7,ҿ)y|C|_+YLu?"u ws,`*hf_p2>diS"7كAgAsMs=LvVjmr+KuT+1_r|=E+LLyŮIbzͮLڕkve]Y1fWVLٕkvef"Dkl9E>mt8& vDn\&%rS]}㦹 73&'(Ci^l&pavM5䍜 oN.qX B("\I"_^TLG?" KZ|pQ.iɻQnX1]"p- fʯE%F.[H+u^%|eK)ĥ/%F.[`x7/9ނiŔ8gJiZkWkW/|>gK|`Ul(^+4-y7Mug6˂@ S$$@ ~foBqs%F!ц<F/z5<&6LKw&JgV:1BF ,mQ Gz .sJoCQB{9VZzM):-K}V%2=8hisNQ56^jXq`5 n< F^fWx13'Z,mpא2'"LƞWzi5`٠7 4%ybP<<4 ;2^] /@8BY8\ "(58~w+~޻ş J ˒QNDZ k)X2|vtT|.`A㌇:j< >d(n oFQр<@9zg"XE6WsN}G"i 0JIBGoCQzaKa-aI:`se "K4;QDeNht>vk~5񟺌;>BD2=! !_y=1Px' ׻5%(`[>=t7 >RZіxE;"Kw*pVu|k>U͗1Q/YJ|ۏ,ci+LwT/iK><==ɭ6LQoae'5/y}'d҃hI[~w\p]ZQr]Pt'lTqK- r~iY!\ onx$ |0[]Gt7Uֆ/K숵n\/t) 1)_ge=A4jH EXuAZ<շ (5F~{qBo[$OΣqfD}Wbsjۇۛqõ;e=wdYaEJi1zIe_vͿK^Ĥo`*rK֢whUCv{!n/=ۋ涗ۻ<1|ێ>E63S8 aa7~}(M:WΫ^ū@b+4\ #q4<L+w,X!\EcC#[=|~L8U;+8ޠw?10eEJO[7ϫ֠(NvA,mWK||oy;[ _3(o'GjMLLno=koHܞ9D?{IP}p{>?ޞ6VnqS {X\8e2}\Vl\}szwv߽aC੣TH1o/df7_euU<%HD>E:t|~˷4ncgӼAhyH[oD.eendstream endobj 414 0 obj << /Filter /FlateDecode /Length 162 >> stream x]O10 XЪj8(NߗNN>ˮGֱ4%"@cQ`}*Bv7ޟ@n]O$*j 745$V?i vw֗@Pr48n.1Ҵ4CN / S2endstream endobj 415 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 193 >> stream xcd`ab`dd v 1400qH3aep3 0012*9)槤)TeDsJRST000030d{g&,L ImI]M ݍUȭX=e<N^;}Qռ9>9.i< E[endstream endobj 416 0 obj << /Filter /FlateDecode /Length 6318 >> stream x\ϓ[qϿX̉5TlWRxTK̒#{ߞn%]gR)4h~h4 f5On5p5_}sHm߼WΧUZyUWO_]߸cY7o_?v뻧Z^%4yx|xy{{Vuwk7.>xsϯʹV?S_+yڽ (Z㝢o_~5PC$+GoFBXXpoƳ T{, HG)@v-n) .+A >PC%p] pMqtmT'n(@1gNB%PϱE{)j@ێΐ@U+`xqAb_\ a#*SV49 bȎ؛ЩZ1 EH V`m E1 %qQ)L0X1tmCݭ r5`&F[ Ōa♨/}ګ؜u`o\Hgohɾ7,N8qH{S/^b{'>|%& U&E 0311BބY>:_3W% mp>, .T$fVUE}wEy9ZH,*Y*dYhXTjWH,D_"y=„:18*فYAuUfbP]@UHKViTܱ*Q|FMPB%Ɵ9i.#}jhHQ,5H,ڳԠDbPYjP"%YjP"%YjP"%SS8^aπ :B+,ShcJtg))f9elft={ J-:s;)ÐӜBD*0+gHec }͟%~~T)WSYB+iQYEQ(J+LeQVEʢ(,2Qy@E}19_[|m}yL1aԥc/-\ukXukXukX>LksVa=ҳXT3/ 32eU)Y%O Ib@& fZeLڰsJ fd!,)-i)1-j֒dR*1lr_50w/-"UZ|dYQ>{ S6xi(/֊R#M!'}9QȔ5kIֆ2C2bE%2᥇%L9g693p%JnALLiQd*% v tҪXi'| EQ5:+<9:| PL8BI!#ES)!aB7*-)ᬅH)i4^+c7,b:ͣᣇ P TLSh#!:ڙͣ f&A@Xv')aEgsqQԗ9ZH n@GmF:볎30maUdQхV/ѽT q<#`%'8|(HLCuH v'd1w>(B|Q˧$ᣇj c>:~hR-UHPQk=\:M@㊰X[5l Jq'%lt0 8,vgaх Al(hd8E Lju#TB:`V?I0,6C|0|B na9 XJ#=$L)_Ho-WiT> 2aA sQϣNMsu?ކ[Pӣ 5=Pc 5=P#ńsӹ1%7=i 뗮_,s1)}fzfC kNY_`v9ad||~qo M]“gcC藐*1kC ?(XTpG8J,*DŽgP"3%#%jPB/(REkA]`^ .wj]@WNQT,PgQ]bQ1QDG&О= y:A7`^9xYl*1AĢzH,AĢzH,AĢzH JlTbQh?ٌ7;40lp03070MiHAiQA@0(H L]Ш dZfg[|{>%Xϗ%"cEfXdEfXdEfXd,rY.2 y*\j4FuY< =kK'LH_d8QQ4~5yz֖L~E_a*ʘB_Tq0Jdy0zƖ$>6/v+ȓxKe]0-M:3[Y"6P%,aTuг$[2ލi9 $` &%kGI?r{qaÇ .[n0Jdy0zXrpjv[ϐRgToA0ahYK}y$Y颮wZe8_Kk\Z"/1 7Gn.—-mO ]S&Z}kFA1– 0$0C kKRoC'' `{۽H[@GoFBXXƖLx)UyXmRAŏoJYZA2dAizEb&Ň(A(03aF.Ө܆nsS5D]HfF(F Er4<;͐TLZh!;Rm$b"5 6uA]2#eR QP(@L4@<>QyF{d Dۚ"~<yFiX6"߽Pu  z]6j/r4bM E>#Xt6UȎZ6":HJXP j"^|蟋Ėv((qT}睰_&_5dcAjM HoQCDwR ,ArT1EH!ATbl&tbj H@ DyXբvwb`9mZ%uo\(ܱT8'뽞Vr1yn+yPik|3&խv<=a O,XZé>}x`Xt@b=NN4,/ ]\ō9E?,Yo=nޞzs/ wL;\{|l?wX- C4hhO@;oisB$ k l\h@cr7.t1u}P)6?{X3٥-zIE]:¢w1{pxV>c- `==ԟs=/!䌯*?lq%҃v k鸹?{8v ,\ EG$\︁y}8W@ }1.ϾqIs`sըP>G/i]ERL!Pbc| ,*m]MሢBUbO ۸#41Qk Ƴ۝,H>|=lTnsۉ:vBAAuz}~W ~Eֽ, w;O8q#W{8GiVJRSFF@Jύޝ*io,Ò"%c'?pq=>6DrGVζn,tbe.k ==) 9:;[Py%ϔmzTcп@Ǐ!ė^רř8g!d'840 =?wC'\=Ԙ6n֛z M92An[ 2Uuy/K69MG y%ܶojb78]`wn}A\Pm ?~M[涰 s Ul?@MH[F(=RiiMt>YtR~+xuoÞ{pZoǑzzȊ*tf5Bu7HO8=>:0zfCjsy%];xR͔wJ g.}}-{s;螏{"!gy)aiy3D?_- .\2 :oL^+wpDOߟa^ Yy'#G|/_IGi(X`43)_ؾKHȫ?>Z]^3>XRGj?\JA> stream xͮv9-& h$$hPTe唕λoFZA=,B!:&X$G?~%->x+Y?7)yxO=oВv?˯??{孿?ϓۯ91so=叟Oyw_/~ӳ/7~lgfg=ci I>g~>~:⽤&o?#Fw߳Oݷo~g~/^T}^?}J)m=?.!(|ٯv=]\ڳn\|r~~]O:][/_һg<.v{ ϻb~>nBE{>{[?W})J}aw;ו~riUUwPRe!g)*g*yY2#rr`֋]xoXNQ1V-hTtS lYA] T*ׅz i?futlFIW{Gʅ\6xjQ[MX R?=b{ڣMa*3V+1UMnwHZv ʀ_VBuaUt_Y`2I[]0%]{se; TB_Rp־bjT諎?vkߕ4RKix]%ZM<{֪vn*޻x^RB֫*p!sP%uHJMIpd<P"x}' ȱ$~cdw1rx)r$9B H#A2rUm! r mlz " ML g;r5O. nm\ G}VEd8qG~rXP!<*E FG#?/豬zT.C@E0cIhEmAo=*bP6>2GŢ~칃3YjjW1ɏyN% X$Q۩ (|GO.Q2p)  +Kd ; !X d@HWxc?_&?In~`J$`/Hn^N~NhGV~HY(~%,:=JbE|dzT-&G(G ?+Qu~ˆϚG r'?P:1Q$`)Gr㣾t4p;QVÕ9>Jc~7|_wXG1 ru7NH'hIxE~Z.jq+WXP~u aCC&hqRkd.bd0 hp}h]h*ӆQ6k?3bFFX9(vY*r,%DȄ8:#RYYWSGEFJ@YKDaV }+Sc9;H׎kqiew,/5ܧ-A[A 5!{,F1Y }8%졷! .Jۓa}kQ2Rm3N>/RZkOuy~51Kھ1T94kv(*errC(G!2mSsyQ*=JڣqQG(t\Z 4+z[Z넣,.'Es;&gȳZ2k_%q|kҔ4v#ݴG8ZTHw GqtKo5\N{7~%ݨvrNg&w{)3k%-*,ſ Is;Yqr$&RD{wm ݤ(+rtKy b$lIW_y2%@b*cHwrR;YE$,{I摬X9h)G9:6Ox%ťqhAib`1yО(9ERlg)6r9oD4lb+B̎¢e rh8Kň[4ƙEc*͢ۋ ҟ޿yA԰:"DmEDBqQ7AxFwGJ̇A\DCVJl@D{VuDe<uFL;Q׸X`FJLW.%pM%p0]%mZf鞸q] <%woߴ]-BXK9,b'y xӰs@VιG=]s{zF߅Un13}M%8b"{K㦾m$\%Ss\Cpf'g,x'OrzM/Ÿ9st29sf!g͙6Lg&ua/\霙/L 83ߜ=͙͙%YșB^ ԆLZnάTIː3T9Sgɂ*noi~9s6gjqqB28S\|.T>|yczz 9=;r^=əF_9S͙멼pjL>%p9Sgԁ*S{/% rL6)UWL岛3uz͙%hssf3 9e^93H&86gts}gD#gř6^G9fh|8S͙:͙=8Ճ3EBg g~_nT 8z3gvNT;1ssNX^ 3lb{|Ht`@}BbT WCά12@31 7if2UfJfY355Y`M`M1dMi I&֦l֬]Y9Q+Xs=46['qӧk I&`N2 ԙ6;H݃J~o'lv6G"|52Ps`䓨9H.Av7Ǽf-7g-ś!qs377'qSq-`wEzr҉S.m?e#{* L6O+x3a쏼7}<`3km6SyĻyQ8DyN}Cո*Qe }o'jkhsJs=j-;IÌP j*FSlrJnQg1JأVFtz5»S1?_KHT{ Z,.Gb?ܖ 'Kxl"nA8)u䷥hsz"FRaObi{0^SEuv؛N(eп . ^;iՑoΠj_M6C1c䢊^ɣW:YB02xR΂.XgNXa۸+=erk78o56(CP|H5I]sX"`&XWیm +lWb|bqC;7W=wfw 1y.\'*d_\|t?CG:!N86_ 458r O#wb2iKģB(`vr<8#(N꜔bq4ǯ#OV ֕{H`_`Gpi1oca[4aPLWhbLFG24Cֻa_i$v: k&SҡLXC0F<@; ^s:|eZm[ A)W(w4a 0LšFj7P dZ4$JU&OLPYuj{֬bc*KrLrM/Qδ2TR5yKKQJ$rNrҵCH+2gyye"[ϙ?L*cT<(u<`GGxQx$ŞG$myJ;^懲{:ۅѬ-:m ۗ6hK::؜ζlCލY}ES tSt3a=GS龝mi*T%~ m\ʠ?<3W}uOSX:=:TJG_kƓGɣO] inUf|+(SaEUxU-PZ "^gvpӺ׍sW&~9tUGLۂW g 4W^a-Àhq˱j? \IS:u(Wަ ~p?MPvwY-3bM1f՚\;.=#lWlM\5Y}g$nL'wmJ2XjiRynWpwMoMujt.i5n&xU^0`JsYՀG: <:u=$ţJ{`;2}5^yt&.{oȣK 9?ͣRѪ=Sts]tѪ#hGL[Zg~mkk ap|׍?ƷCqт4>zJnC̹^GNl+Dr:6ZZCAK^G`k_YCG~ {.{C鼃6Ӊ3_{LnD?˞޹|pJ9I?x%L LLOGzIXJ 'ϐR}uROGzؤq=ʞ4ۓH\;u6oT~((QTMuZE]W8p f(ZJ5.cAՅO>"0%1I3ZI'F4¯eoѓf?3T]#0%ic.ky@{BGQs^ѥ#": $ɮ睯ї'b+jLWKGO,F}GCV]QT9ő0]"str 3b163GxfLu!;>:G 1#fjۉCj~5b4qmܣdc\OG7OС_Qҡ/jhjWno0!~.lkdWkw|7(!^QdIu4]F=bYK/qȷ-N8uQԌ3b^/>#)1#Sb~⢎':[>Kpa<؅ #!m7h=\fu0pvg?\u50|hod 3V-tg)\BF919SsLJZy ]wAeJ9d\࿩:8'FȑMۗ5NBѦS~0R0FmJ`ž&8^&C7MGz;X3se{:~)8/e ;0b訾㇦3c,G!i:9-ViάM2!-)-Lv\&ƫ*;SqW&, aGvʹ)\g?d73Mb~R(-S <3|MYH$uAy6 ld O~<;&ώ;I9xT}y2 s'lTj3-3-ȳ[}!VĈe?I~x|"؆7@)^&?xw`a-BʓkrU9#dv&]5<"~D_R_[2f3sӏ68Z F1m<("`v;Jf4Ye,q#fg]q=?knChYvz{7=T"E/Z.R 1i*z:zvBwo!zpYA~ -P%{HI=C8r))mʔHq 7VN7@%7l .+/T;]<$+( Ү|AM}kP ?ӈD}E}tD"5y.ѤD}C:;xzm[$ #Z40AD崖'D1`Q{-5jnsס#u-m1:_7e]OB@0sg]죍^og s`0*HrqCe{v܎>r ɹ!ґ:,SU5 8/]>ntM 3aEl<vo7T]9t1=ݓj÷j-tr%wטv(nSjsǡjyq ${1YeZNsϡj)\ )iTZ"_rϡ ,M[{?>w%/'箴cDśZmݧҟĄ]7>ݣjm.E*Uiu=IkSy:Ms~>I\iNSD]j̪W*`Zc;v߫&E6Wwٙi1*f7Rh_siq+s$-qѦikڮcBGs(jRS95r w..._U i0#!P"g_C=S. 987kgC(fy׷[iC(C#)zC(C7g0Ҹ7C3mdө^ϙZr)i,hkD™r)i, t0#FDӌ~) mF ӹgLFlAqTx rDJ6\iGNbSZ q2ys?6bg-:pݓ(@\Cqemn]ʠĞ]4=c LAq] <#M, Uƙv)FZϙ!usELuoxMgަp\Δ!4"),M#UpfKs4wWAiM7Hk SaRϬɦyh29IzhYZ7/OF*^7h."kh lIU&h]/ ma> ~1ZUP:nV}2n$v;#f[p ќѝ-^b"ݽrvJcVn|u>=Bks;ۯaG3ы=]gal@=fHN0mPI'qY&^؋pt灻yJ :`ږc.H 'MCeTI(餌r"WYs^ӴxT2#p-ɩNcap#-y+p,5!]MMvfe~>?:S}l}ɉ>&DRy)hYғ%ڵ+۟w_߽})W՗߿o psEB Q#MwgF|J9xuo:MAXگ7~Gӿ{_|P{A7s/J*2RBPRs*zG)(W)z]ceQ^[P?UTlq| RaKoEt[^Wzd2eԺ5/X+` vHx=˒ϸ.+ ?h<4ЃbFK`hhhLGKDE11'[.<OSOv\Ԋ+lw1„n3Ŏ64V؟5WI&v.jd+{^\x- Ai>$U4ssM]j@4W4R4᩟X$W?5ͩǢ ›V иB`v/j{ +˵AChE53VMIVT(RnD]fx F` U4ɶ^ʠ lUtH[U:*mJ EkC^Gmf%~4TF5O@t?k^кhsd}kJեiw󍕙--WQ79K<_ާ3] /\׍#. Ͷ/g(`tol^lk-!~vX"{Zuaj X:!KSAgDWث֕R4{+)M+NDW0xfk^f9+%:A[muȾ:C4m+^X|-nm 9֤[ ULWf͞]6s"UL܎m\.XbMߋFCi+RlѺ)Y`9ؖ-vu{\hH(޸nҒ+JDvȲmkrez{+YB_';ԧ׏xh^"˶ƨ'B`h|%kKжjDs(:XWtg:!bEꈾN`in7WËQӃF,MkZzClCnD7=OMTM @2oDK7BVT㍐{ dmA2d~b"d<1% i llLIlLIO0%6BvOn 7!AvB ڹ͏:r?(H\s$+q*qV9h_@*9Q @tDr!  YEJ)`; B NTqE*r"(#&E*A". DjOdt,Q.:)._&Hy%Ha5 W2d-BVt!+wPdm@} DDԩco'C6 px{6@ d8CBaW  ς  $'/q 8qՁLZF\@~~QER R6Hy&q? #GINĉ)m`PG]Xe]QlqxN\@j\)D~ԥY~aG)ہګxУQH|vMyG ~&?(ȏ" |agCУT2TtdG`G5Ŏt.r\ G( i^ ^(ZInp5 Qtu*QJP2~(H(Ol^_QM ra5Psvȍ2')QFE\ܨt4F'8p6ʘ QǮ+Fޞ5*48`LVrLty0BL4:dᎣTAVt}^ Un4V\lRg8zA|*} +S!_@fxj:vd[s UQªsUЪ+TL*(+ψ3#UEX;FSΦ]*AQA&Gt5Kͫ3n l"m+WWJ;blUH3D.A U._v U`ĠR]\bzIU43#it[j6#@{_&LJA9zG<'88ߎU J2۠(Uԩ=6"5UU%t$B< 4rԩS/ɥq!qUA.Uq>68@g.$ V9!<ø ߷mup13P嶜5a*x 8,.~;"+,3?'"?!61Bi#VCi*+c3 T =blq-/ZhжA‰F8FSZ3óiC6_"s=6V Q'FhVTgTUyTC/R[(NV LE&ȡV 7Hߤ$pO+̩0**0J^YIui9ie,]N0A} S4UG'}tJة7O"LQ?E'' SVDXOgOYrNlY,f/(*6ERPRQJ4GJA9@T\}:>JGT\}:>JGڠ(lj@{z젿6VQ4Q#3I8o~AM;M7HVӨx"£[VG/_R FSE]+5vT&xn̟!0@ts8kH]ū~1hr`m$s68G2$χ%ybQK̩N@G68c -֋!Eg:@q47 RЊ `^rb(”E PZtqNݦV=8 րP?/Qӟb{a!؞.XL"9IH+D6X#9:<=mxeAQG&: Erfb -\xPԉ` *E;΢M0CWI8 W!E!H^ PE/e٢:⑸.L ЋpCK~GDXW>AނXEX4fQ K"̜DC>wc N)wKDC e"ꗻᎌ}r=$j 0Тɴ,%2ΏrJ!,QG%3WL_3QޚWȁg漻x}_ >g'w "v_`'Z(„;%EJ֥ht\ ] &5ҩL$M*jCqKV\m+2t֮>/azȢfmy-:jх,ai/op Mf,-û~bwE|ÜN)ʀi10X>17 6@BuE5Bh@B&j 40Bm[PEBc7 BhπP ,+eWHO# Twb) 4u!Tg[2P*E$C*BĽ2Ȇ? Bc*M@|B' jBm":_^3`%G-%@h-B#!TЊB7BvCh#IߕEB4hC(me* 7NwBldb@ ܉tAN BKP{B6a":au *]c<gz@NTh ËJ!B*cJ?: 4jH@h3FȠ!S0hL#w6J z(Π;$¹XJr썠OJd"O&903݈aLB~%sbE 焽sC:z*\U ʅyNF0ة9j|?Zvք䔁(kA=9+5Nvjvv/dE/1&BUpwM5 ;+Swjqv\ΠNs}Ys?,#>5s21N's=p0SWNsfhW/p rA,YY:.Yb4aLX|Mz`>XSMkJg2OAl^j&mz<[c:.O[:; 7)B8J<#Z#*+щ^b_q0N`Q3CrvbG62Yя eʎcGQҨ0bZ 9"6&Qv;:, #,1,HU#тdn;X-̀Ao) Hs Gu33h#sq=t {; ytC|H{$=RB2kDZz…Aǣo|:˰|˰}iOnI4Г)^n=i ] ͺ@x@_D9Џ fS *Tht3|8VxDVЉMT J*>]O{Rgnדו /uw9 (?;^jeDi@wz5HFp,,}, Ã.|S"uxȷ߭{M_HN;BD38žWQ gSX9°G^ s6wqz6 ue43d{CYlEsY=Bt˴`c7-yǀ<| 7k"b/v@1J@i+SB!''R w26cmB(.KE;y;c-{,vՆUT$-]7- 8ZWMF{+eL7˗n-qa][ehUh2?IMElF1 #p2g4i. bmv/8eݰvmJ6|gOr:&b{DI\SN"'۴(JA9KUd,E*}ÕT,G)ZU ?/FH?/fbbK}ѱgLOKΧ.9TՉ9)Xhq>:ÚV$xYfTGZƾxkj;jqW?:8T<`/B9is?ǒm0asrn͚KLRuNUPZ3gJT=}*(*L9F^Xu @j<`*<U{ h:1q -ߪls~xYC=׽Vc?U)kfBB5 0:b953m#ߕ VxR=jW dNHY,֩jqjShLUKG]U$UE,v:iȣZb`~?#VYґETuUѪYVkRUvVhT\mͷ 8Wuxp]ʼn-:ڌ,W<{!ү}&Of@"n%5)>h;T]^.~&jI&paU7?Mòq_3*(7\QɘmʀCc,l2L\DaG˪6b)(W-)\U5GL +aZ0 av)˸W #~4(f V]+n1jb ΅܍3Ê)e tX1)v`FV)~^S9P [66ůֲ);)\.kJbV)WM S\1kJ? L|yU7ſs@@U9)~=t0)/]IW7jIG&t$IBj|#`F҆7jI'2I6F@%H*DFL $xG$UoF- IӨI(TS@荤:U"/Iu, HHڑMw#μIgyARꅤ:{K~.$iSI3؍HZ聤"tሤ Im$ TQD҆nk#F7jͺAI;vH:!IC$H: !H $qD9o$-I H7.$Uj\/$5C?Gi:ݡH-:H.$MjIu D;"]J$hIkq i&IsIÈ$IF%Ɗ@ZHZHS")pHJH-, Ց7I If#g $q4;7 ;@R% ipP H*I%Hʽ7JIq\ Jc"iM t" T7/FҀ@47 @U;ʍ5k#)7HZ? i-;"i@F i $£UDҊV(t)FҊfm#i]"imK"i %V^F |DډDRnDʺHJo@R֖47tdI1@@I $<3"IF@(ag#i{DƺHm QYgրuI, MN_S< yQ|e(>N}`||e9&?-F֕,ư^"WPf5R]+,]=WNn!Z v%)k\-7uݭV-[lEe -dlي6-m2gl/[v,ZuBn32[A2e6h)[#{4)K#zJxM]MfZGήX{$#HIhH /4"W=vē';C yZuBAJz¿r=\HTpH7]C\> jSډf5u?Z]H봮c I=0fɷ']SFM݁اz#>bǽcJ9X,-D&hwLG?n}eEG1fq(jrdzD̛bqqFb^ևv/K$kJd_ eOsy CbC qwcpu~p-<}^U9D$<貮~yAϠgC ܞR Iw乽)_5BKM>: Qyf"p4=!g]uyçuKM8nQ Jxe.LSLWh[_SxrO\1 :|LBrMU(չ(5|ңEt*gtkG\}8>JGT\}:>JGYj_=KWwf6`M{zwO?dn_}m Iemr/Zw(oajdC#T{gJq4TO_F¶luC>VhmXfΪIѲVigֳ[׶גF_ʝLh.EuOng2&vs@M`.n)wM'*(*2C)(r#2Bde45{t3K.Mx`B{zKkn4G$g>gcR 6MWmPg)eڣӁQKpPi qTSi-e54ہ~Mz&otQ?30h.nզd9wZē6U;иYvR2Gڙ{q)37 l1v),, lh@ТjyO>Lu48i0,YA&Y=T2Ahj 4 (!Rgu& kߡG& >9sw!St^ՑIxdMEk x) g(S`VRTŦ2 )u7ϖ*f:L8Saԙq30LiP4V7MrǛWir 0)MAx72MgxS _3LSSpn)\kJ5ş3^S&3]n7}2'ԍƌnh$ڂMIdMdMw$ʍ6v`(⥃D;0HD1? N^  N  NxD;8HA$:P 7Rf eRfVHHt| DC  p jh(A$:.6$:PW7MB%*ΌuFq Fc}xb*S6*|&a`3.&d^sԖ̺5*Z?7,jow5<1 }҇.{/.ۋYw8_\ൿ_nt)v+ף%y>6?EJ-[klD&nif+Jf:$]qb}Vnhx)1$^&hX-1dkFߩv;=)J)Wө]yg',D@ hH&W$6{e #4JA`0@iS%C#~W>> !;d>CNU݈BW.W?2mj"=P'A%TOxC# cg6Uh(W죱!4~W sYtܢ]ƪ4ElQa$c$dpǯsDdpԤx3bg*;CxyÈQ*u0-<8E@ƫ Eit-cFu EÍn9fm0s2\5PC1p>T[xNQJyrTwhm=ۈ4svnqSlR :2 >>{|pa{e-?HDNfYu$TRS`~|'4]Ƕ*ݞl~i:ҵ>ٟx_Я+bή ?J[x^(,%hw)*W"RP_u낗tfr el5TR-T'Gε(G흨jtGnVK)-17'p9pGGxQxQ*p:9!e! 9M9"o_Zyjd@;:Kn#v$)3?Ng_3IltfB'wLgJ;63)r4eۈ@R$UUp);K6|Sl3 c{Ud2Jh 7`zBg6}!hP!##e=fڡݩw(}.=Cz)gSy(BOۧTƫPDeb~V9҇Po@v\^~((cbTCũWcy9V[v"NjEJ"ik tHc<"iI;A-46 $I K$/97%f"i$}YIkHVn沑tpC$"i %6ف{ n$~I% i$ޠ{؍HڸQ i7h2(/H:> 7h2J$遤ywH:+niH:F@R?Fm$ex46$;I$7HJXHJ8H*wr3(DRX )a,赑llHJ $%Hm$%7Iw z") $eJ@Ik@*4p"vLMm6Vb쁤I灤IHzN)b#iI@$ %} B$HIC $ %4@RIC!Hl$5I27v i(nHJ i![P$-FI$ʁHJ*B9xU$5T$vn׾;r )IRH*T> )IB9JQN$r )H0,Gm%*Tn˝O#xb[SeD|(v7P{P&l%Ep^j]šIe^_]_S(U_e(_wDВ -Rlyw-VU-d(G`^ZPyii48h÷f 6f -6,_.3,6d bXi'3h7@b<%nORb vMY_r' SSuc42SuV-y2:{lT#u~r~e~zV)⸚gt/W_}_ޠ3?}?VK~W#7՟>E])9f s:W/O?\KӞO;F( 4C>t+5&'緱>}??UXC(dO_Q2;Bѻ/bB'ׅv7|U7[7}_O_g|s{>>O~?|W9Q\|zUmWE4V/?W3T{}{BTV˧=dW_&_(nw__K)}oǪ_c&To~^ɗ_@eӏ7v~$|SonKſWH?i-eݪKٶT|RZsyw=q]~ÿOjuhs}a'jʨ.jSkWVv<1o"BG*H U[YV$߇9dX<8G Ee8K݆/}Bד @Rd׽Ng5x Fd7G|,T(_e"W{)!YV<18I0,J@n[!+p>!ؽ}⌘Lhx, Eku:Dv:ݔvVYx ; 98D _֊Հ49d"hb%'edPeSҿki#―R0Ց_(2VLf2 (v?MtySZR{DFFU/6=^QD-!2/W'u$Wk]ۃx,B2&_uEOhӴ-frWХl3M>6n5 X^97:W^Gvf- #fOϿ| ^dv$bBx|f G (p،('vxx9q=B '+F4q[>(_|EURB2>9,1r̶# K&ϖaGt;&OIj'm_3 _Q}~mIwb\xRA;Y6ֿ)ƝO>F $H'I(~ad[͙h2jm]@Y2z8u^ZC{znrc!/Mt!W-Gj]W%^2 #f҉QwpmHv^S'G-ժrYeCqm;{ZZǭ#ygWȶGNWTjUc0 $@֦eriKaBalV)݋u UN`,UI\> stream xModu ΢0Q4b`$p,Ru҇U&=%YR{< xZxy_syOZ6nWgٟϜ+w{ӪmZy^VmYlPVn~XOMkyz~x^\=ݟ/,T֏}zڿ_ ߢ|X3m%?y36-%zwp!Dziqۿ9w͞n}:} :.]뺼?? /Y khɲISI*vC,>POiu ̿y~wp fӛݹ#w׵\Ϳ~wt)q駟oyoͰ]~xv_ܩP?\~nW*G(ڲMU,I b

eg&ڷ7^Lb72$\ 6B8mho)^FY3>57S߲(Thf U>o vmPES(E*ZI !Lźx3Jy3\3ƛo;ʒfo&.mfJݝfHn-(RXm&FGe:dXe4$!m&nTA#%pR?31zEWy(ez(0@iVq5.-L6=cg,m53Z;g-o53ګp&zV)B_]|`:#')e`BO͢mFNR9I9iBWxx>v3sү2 8Ɲ'(6(eܙxVw&F}0$%Z+ $(cP?9F3l =V,V3:P!tITa>av'GZOD' >=%-c'm}d30CBQeG ~AR1']c0iT5˴ |0TiD2" 5z4k󱧰r@%s@=@<t/2ihKA(ICzP(F>4'9Zdt 9 zP(4w\R)cAЌ;+ơ TRx B3,:fZPZ|*J9Ќ33 BIP:# xJޫS(̧C ͘BIѻw ͘B3>:Υ3NPVvH`))S(@;vtA[)Z;V0r, m:U&1s;w2'|bGm`QR9Hr+.1n]ꂆ+.sQTf$u\l]5ځ>KzT"2|)WVi*(_(:y&^%/H<5f^dN+-pDGU7#Uo(#U/}(5T/1TDŽ99p(T/|o&WQb*ԍS)SRd{('02qDOY| J|/d}YrN(:(5T+S)TW~uB_p Z&3eN i4z=GZ/#" FiT^j^GZ/5Eo)}FQj"b/QD!zEEq\,Ģgs]44 :x&^2 -Z<<7KFQr % [-|JdRy~kA?Gx.%[$DxX=LKdK*Qs4$TRMZ+X\Ux.zs)PZU{e%BP2Rv@VZ@P*~Nt:''eox> ,  r|0_cNGjَj( ??9nD^˨,$;OyR?Ɵ%&精&zҌ0LZ(s =ʆ$q <:z/#PBf9UQ{䫍: j"8TiڽbMث@I{b58iVe5Z$j`h"7ۓ^c~iI !,2H,KF.lv Fff$P&QTK QRI&B6mO`GΠєKz,( s`Qzї`QFSr4943&0APR.P>|Fiۻ():`єJ67(),*/vbs,Hd((*`UE?HeCєղ`o?-v<,rw@Qɠa9[xԹESN`D@є)%޿E%xRX(mw D?IKEi *|9ơ&\iJ `*)^^€C% P 1Ke9T^xe@='x : v2patje}C 140[2$`JpUbU0tdCI5JfQ$hPhωB%R&0S$.Xi(Vs(z*zPOgg醠ğ[h~(O{.{WPQtpjlAl x84Y!/]Y (f  CS:cz& *N0 (Uq^}sP>6tJ8r6';֡AeTtڗ\Z5Hjh9 M0T֕T(ּC(O6t2Pt`(;BpM'|g{VObY8D/g*c;~V"4g (g U`Q>$,d g(g hTr|4z($%ԁs|:*9IIYeHʇ@I%KILPr.`RV|@:r;\Τ|@jXґԡ]<6u( J9#۩C)+JW{T:b(rHP)+a> dTsRQNh %`tdVu,)7\ΥhL{USV 00 TC4PJ޽%i`:Y0ugP|@::lN#?)?./7) ~(GdA*dnY{#Yih:7wNh:8Xh:2)ZO}h2yNh:ɳE/e\t(XigNB"nP % EǽP NCR_NuIy_ в8'_IʣBaR8-6~[6$aKy}9¯&zb^+y}yjNë}X鯟 TO퓬;ഈ?&W]]\ן/>$.NTjRhsϧԥOTo- Qn鳔򥖻s_/Ora_\_&|yw"2rUzrw 4{$:R>t.aqn}sGMY?m/ +|"[\jue}y}7D)WQ܏Q GQJ:rs/?dz}'aQQ]q~z.bA/&u\o﮸"y@CǏj;w {'n>hRg|x~ܧ{ۉ׫˻,{H=k gF\1فf Լ7wO,>٣~X_>~zi. ?oWZb'o}13{-n%`zn"?o$~|}<9猌 iE@xutvZȦ XSh(hx^zKdo~}/%sH% Z0G2O)ܭ1Oe<<5kcDoyV7b]~8?^Diƙz KUBp^ y{ʼ?]㯓ȫڒh S?>`$NCpkYH&tj{k]G*%:i]4#:++3岥B%2N KIN?=v8V &i 'Vh Mu9h?\hN;Ձ{& ;7w+37-nvOO7a/~5 PSuۥN.j=Nl~On|q~jpmO-J:e~p0.HLMM>жNB.jd](ǡ_@V;Ѳ"[P@翆[ YI&7H~}}|R _ &.{]" ?(!D Դ1|R:r͙ݼ*ڴ~Ox_:_/M{.}噸RS"op9Z=-O;Jx"۫}3m_na椰~)-'"8"n mfŕb򖃌VSCKEFۇ,=yYT^hHOv9-#\N8^ ~n~~}JDa)MQ4tδΠ[/|wT=؛yxtLh~yum*O00/Y %$TwNTYu:~αwݽ0 >m𛸑ԭ۪n}juF%Zf|o??{7_Ǜ~σzzO~ӫb,(Gl곧^}?Á>휮vG>{(_|_m?ke^,?v?ޞzcl?[>߬RRr))R1۾JQ=KmW)WnVǫv7KնWts=K?rJ+*>P_paV٠srk?xcT(Ա\Tj)T,T(ԟ{7k}b>M}Cpl>TTzjI= v/RXy~^ǣkݟsm>RQg .u=&2|B'J.SsS?jFҡ:Mꦴ|v(uv{ҟw)z\Ug-4?_,s̋I;l۩TSE@hZ@:Z@ϽAc72WRؚC7_G֨k ek:=6 e2 rc'8ۡ9/kZ9{\y-2o{Ն\c@}mSy+g3vbƎZ3[Q][5*(;V]fEˋk2P,v('8F 2罽씯xO ^|L9Ulh[RPtкg kll׬$;q Jeu*~Vy}vnfU,>j' }>ըz=F}>'χ:GuLo8yl|:{hy ab9Ϝb:ڡޘXe ܯ 1K[}޼|y~S]L):1뢢󙏵Yu]c>F+{U|nf>V$;@Y7;vm6FвҭϫΛeրUTmۼ 'X^[Ϊ ʼ5cu5 yt*-֕@VԖm>VEױS2-ʼ ;[xy.'Ne>dV167g&h„FaVU'_JP=꜊:fY|:+L;u=UG|>5g~Tu#fduNeHO)=1n'x3L'ʼ h]Z2Fq &C4{MgzIe]z9C]7kP[]> 󡶺lzЦ gu9jyl|:[U5n:'X8.kj3S.ݭٕ:)k| wou9iPnt6m@ʜ)ɺa-xT*2aʡk*ͷ/\4o]D`o{6yU)3kjs*;k9ɇc9SϳO8 IaQƅ64gm~YlB;ں:Q:)Ai~knVvcPF_o (jx)D拗/r'6_'vz'6hj7R&=fPP8zN[kv;"Uk6ѓe׼~@c;%1&͑?Άu΁)~:9~8ώw#gMagc'$}>)pgH>|],#RHH}yuP9JTD}Әi(sDcv1Hρ'(HBP1q6#7pBy$[C8jY6ees +\Y}$zNlS6]Yc=RtD)\x,}&E93Cϩx=2OYmK9zP==2F =V = Ȭs?Dϩ\~tT^r = M{&{N,Jc-BG-,l7Rt+S~:OSϩ4]s*G,47G9#,xxI&t 2L) yVm)|$] e>lfg F?8s;#J{k14F9ߝ^ bb<4s^DO{\dQz8zZ}COVuJ+,!}Ne6-%s*/ ςG,fttgkbcS9PIS|;}N鞊>r9>uD/ 2L]&}Na5?r`SQ9™ ϩTUiGO"G'^U#Љ(?ME9NpBys*j ȃS9t,'P(NC EPxYNPxt'PYNm"*z؜@dEPD"P(Np@߄P.uAĠ~9*AB$BRBqPZsb|s8GNξs$SFYG ll;XT.")vXY02;D@QYpڶưpzՓa'6CLx/6M4Tx m~AX)"SAm)Fk)ҩ\hgL>wH{\#8p:OMUn{.6n _DW $kXl<ֵB7ŸL3c oB)ΪOL ƅ-:6q [b:7&;˴6Fde00l) 3rbVr~ ݕz>+= aK\byN ``R0]XvڰySvde00lSĉ&MY$; N ⮴C -Ai a>]63ӆvStS̙b19\|qW R}vyң>̧XGyQ/Km~IQRS}/rQNeD}JA]AQ)wG}Z}rge>~WQ)3N|X"z5a'I5k4ÆRrѥ0Y7mMJ=UMUKUUUB0.UDZ{]By{>ћ{ZyݔHzW. dڌHV0ޕ ^I)./|Uޔr0%+P0ӳwFT2=+Y:pFBO )= 5Ɵ8q!x|W@(" EA. BgmZ+ n!X:Q@h= Bq)Nn3* sI'Bp9a ya@h;WBF@hs mNu96}_A& &(:KBgS ?(z)`{Q(E+Q(7SzAˣeB:Щ;vB9zЩzqsAě=N.(wЮ>ҋBP:4(cLPP3]:(tx:%BG(t}, J:y(ttgWСECBB_Bc5S(#pNPcQͳDPx/B`)X+S(A%boQ(4BnBȁNPGXp 4A1PK#B2r@(C BA 'F 4já<  [C(Sn9Br,X K.A!HΠ#בĠPƍA.W W ,U9(qbP :j 81(nAc5G0(b_-4 ۅ3(w+ ۶3(;B=u@xΠPxΠXb/`P_( n E& >Pca(YΡXJ› 79KxlXn&:8 w, 0"BGBёXbP}P(厡d%0Ja(#p b 1 [c(v ELC/(APyIODHz9Ў >GBO] >GS@ohZ~+O>q;C]s !(F@sH{ς; eWzϩ >-|Z&4B>2ؒ>-TiA"|ZF$|Z_IY'BጻçE SQ܋çEDS̽ӧX`<|AHeYTiE<ka>-P^'Hʩ%BkO ?2} fe~9 M?cgD;}Z4Ώ9]ϲupz!}zO7A9Q>HoO U >pyS99i|@Si q("bzTia=>-0{}|O o ?} ?-R"`Byϲt}BᧅoyBYbß?R@O"ΈbyQO2`~O ӂYOMZ,9kBb~911+|!ŞA1ǰoĔbbo|oc~~|Ϸ`V #stRR) g]T pU*ؚ|aI/ZӚf2ݛ5MPK4h V nG"&J8(q4Q*DR)K8/hhXqAY˸o߻g?"٭TC{v+R٭ߡt~IQ?n>$J}IiO|WuaE졯1ma&_; j}_|Kua{㫊pt] Bbf։[և]R^mz ž\4)W/ux؂KWO^v.fTb@.+J͹ٹi>HbA;Qg5\*8{->~"T)wΏfvBNXF`fU>J糱;ëH`.UyXpX }M?+߮{t/{9bwSY1.wo_{M\th{[={).`f#=+~*Ãa2WQgwEn]\2n~ΣF= n`K z7bb pʞ"mM׹ׇ)b鶒t{r-صUJ[IajQ*O˩kҡq[Øk۲qk}-"y=u>={gW>={QF=LXÐb'gm)]@iUa]6`b8K1,'z+`h%vJ-\,d8JP{:&`-+n~wM Ƒw>C ئb#}rmϥ\\j^Uа է+Mً*TCW:v-YJ׊P*aYrWP)rRs}ޅ5n-jT -C3+4r i?a-00t~9Cc( kw C|9 TP`ౄ.PT 20$oCv#X9ʼP#\ ߂Bc})4^AR^/E\oE[/EzZꯚPE, ¢Pz({EQ. nQRBr .%(t)N.)4Х8sФB\JPRBuP+BC ]Sh(A!)t NJPRBC E.GPB Jh(.eD hu(]h(.eDRY Jh(K Jh(KQREC ]ʈ (B+ Eң>(JR@ECq]t(Jh(K/s+ EC ]uЅ.e@Qjp(7BMOn9{r+SNtf&73錩-Ln]r3Вtf%7',i $@Hm:?r3A l敫`#75r,Nf@m.B(C %: 'ËC8|H00)"0 C_"=0(пS:$8ze ӡX"a}}ra-XBCAt\PC: %p)NtJCWJIt-ѡ $:x]Yt(%ѡDR9hBnjs 9(,Am:r3rfߋGniӁA{ fp68D;mHpË ȕ`Nr Ӧ37͑`q7ڸĦ-ո͠4m\ϸp͑ [dL=B1nq3 LW~/⦳F~/f 7s ,"fipo˯}/F^ qBP]X/O e͕mZ&PK}?lr"鷯/YO?'ۼrr))<i$I調[)=KU ^yԧoRJ7)R(Jy*I"*%%JQʕ[)OJI*䱘X MEK,A2T=#EgBYF%zήQwcY8r%R:2Q_}Gr/De"YbIK%R+RMe)#ٗ^3a)uJ%K~4_DKQ|Gn) {He\(!-E{Y5a)/O0㖢5喢X5K?d͖+a)ERd):"c[¬^d):|SX_(~/,EGFt7~#GQe;X@~wx9iQ}< E@ d(A%\(놢$EMiP=RE2P"_hE.PnHW6%4|,C@nV|P4JӡT<͕ E++٢ {eJh~PV|QW| d(ZޯJ4՞i(:&Cъ`4퇆:CVdNE+Pt*ݳ2PZDT" +i{O?ъ`~.oh'8ׇO")h'Z,nPD+>ݕʉv,Ce0:X;eNZ4?E;j&MZ0?M2V3D+`LnJ /ъwωD/jqJ}^MhŘ.Ѝ59֭D+.n\"4YVNd%ZwnhpJ"Kd%ZЩVQ%'RQh5}ƜD+#Nc+D'ѺDY]Wt@#ъ(D+yd$ZůD\\PwHbhU'#QS,JjQVD+}D+&iTDGZD 5i#ZԯNf#Z56lDocw5Kd&ZN=kQfLğQYn^A ʈd^2 )={V UۚDMDžD+$òoDMh?N&$Z2L{v5Ea͢41Έ6AۻázX2N;\9|gp|Ν^^Sw%|Sn[A\_ϊ\JiYP@ 5*:Mu%|= X NwZNxBYɝwl &ĝ4ui1niIýq<3;Oܩ)ĝwBa:wnx&EyO(6q Ν'L < LӖk^yx Ϥؙg%8scs.ř3`P92>%sJ0RzԧP:C \S+A!u.ũ3N)ID$e(*M$hxX'iӗozé>~bE rȒI%/IRY2$J%/HRY2dʑ%/HRYYVY+Rhr+YV))bdslo ]eΙs&Sɜ9gVhiJg s3 9MaJ9sf7f|BsΩΜI[εi)CNl*)9o9rfYOVhiNgOZrfY'gVyS̓3+4Ȧ7e])ghʙrF%Y+)L͕\Ph˙ rfI-MQ%rfY1[Λ,Ж3+)6VrfY1)D(cά1ܘ0?)t 9Л2>Й3+t̊9ss 9Mi&И3 ˙r.]9 S$Гs \r\ 9У)Ȏs rLˆ: /%ЊӶS6@+ΥgRdřYqfVIgRdř|?8"+ΤȊ3+}U!Yq&EVKq+άUTh ˶܊3+#jR8"+ΤȊ3+=jS8"/Τȋ3+WԨyq.8B3ΤȌ3)2L8B3ΤȌ3)2L8rEJ'3άЌ3)2\q&EfY13$Ȍ3)2L8B3ΤȌ3)2ʈ*r$3ΤȌ3++7L8"3ά\IgRhƙ)EfI'!3$*7sNGf<å|v)mP71|M~_grX9 ܬJe!tD tڴu@ܱFZfgN49<3 n<.RYx ȆY-g%O00' +'b);kqR$w־=tbuR˹r){KAgE):FmW[@g*m5SЉ ^Cgءf;gBgC.VC :lĉ{q81eDDS)U'ZvCl%VwM0pKulM!X掛Xm /6%v) WMް` l_Z% `vA4S|7kOa?Xohfdt4Q.ڔ.*hNOe$TҸ#;='r&r^mڇy 7(s^3Xe O$ָY_{#Ă=[c(lvAiKi._ ;Dv^E)i;km3j㆝c[s켪 NtuvbYۣcU#jZysn5F1ռ;s^M}J0'T_qĄי<3uyXgNܲLbk>~9gr 9%<]y)Ĝx(󒳻+"yG8fEk>j*#dW2"':UFٷ8vDe=R:pvO=ug7dD[[g;p$NVg߇Ӂ{6~sgGw˫p"ʸƂ8Iavc}VvNdia6$g?#O H f~*dzٲ6Y9=x"Ph\َ90;2"N2/qboc'Nt$bI#'NK-;#.)5톜O9LŜ3s2U9QŜ  8H Sesb Ӯ:tk vq:-2\YȝJȝUksgrW;-sghIEXIq}|LꈡSN[R3"e$u !u?N]gŤ9&G+ CղdرK$kYГk^M>M>O[:s5[YRY->]CЍp=+J拙LSҟ/o{C8&bB"iM RVLH(bBTĄDVL1!Q*bBT 3o<2V|3O=b+CW%~R,C%%wȪ0 K#~^|^}rڽUL{}Jڽw.k^߷Rv 9&E!Wn<;*%VʳRRx#[;gwnYui8@FP8 FPVFP ##N(|i jˆ 'B6e 'ze ' 'zw )h Aid™pBᨐpZ@)CN͢KrN(_ gRdi @SʥWRC{j*{pBaL<8 "oI)d9pB`J7L|8Xk +ά fQ:7\{r&EPU3gRd Eنϙ E.Pƍ:"άЮӔG2\,; N㾝KqΤȽdw2L<<"O3NYPZzBP!zfƞIgRd :p\|&E>I'Ggdy~&E7e雲͡J4)r MDB$J4 rLn(MlE2˅"sѤ_4)5LF %ht MF %p4 #()2MGBѤȁ4)2!M|HrEEJ)&X!iFԤْ&EΤKqsP>얖0&?yq:H51nè1gM,g7քv 4bZf-Tv%a#B` e7,'q,z$'NY4ћJTIX,҄"lVdٵzn"f)C EkȚX4dM=f)K5%H5ŚKS& GŚP$/,3;kBQ."f)RY0" E{l"̰YsY2;vS~cSNX.qYwu>kXiqg{rP'r1}C`Hx[^߼N`O)NH/(N*J*ivVPr)I\Gtq)[)?-[ S˗Rs)Wr2R)WnIOpg!dd>?TCZICGC?|8_jUo}z'7J}z'K}zT`[-D4~{R)R`ʥ<*V>/紪zO. WM^-\!JBB1Ba*,wy5e$פyBIy-;kVB m^"WҢ7|^"W!gy }^My$e VY+y5)ryʥ9E6IkVƳȅV6IkRd E氲y]ۼ&E6I+^CƯyM m^ ׬ զ'd&&71kRxʥ E&eܧ_&YkRd&E&-e&E&IkV.UFpy]ۼf uL)yMl^Z5)yMl^"׬5)yyʈ*"P5)yJWl^M1A.KkY.AIQٻZ-@VhwM]׼iIkR Y )ryMl^"׬G)tzM^E:KqפƤz ^"פ5)z^"פ5+zM^-VR5+\Z&AVIkVhY&EVYkRdzކkhZ&EVKqפ5+zM^"׬kdYgͭ^Bפ5)zM^Bץ5 z ^"P>ڪZLqcO!,>;|Y{Vw$-fٳibS{"5 I+g~8:{&vЂ==r縜Ş{bEEY=YMg)3#9|]Np`uĴZ?ݲ_%;~s[YO5n冟C7_9oFC ?~zy/᧹+𳶓qW5O]?e.~BN~bxϊ*(¼z#P2m܏*vCqAQ] tu OE0sRv!(BP,3II0t`E8b!( xOAaBP޳[rY7TlN (ZpUmg $SsKwEܳk+!h+  A1 t 0ZGPX_Wqe@ hS*'fq4r"l|$Ű6@9dVB֚Y iY"H g*9Tt8Wch ;a(&÷o܇0a3! mmCaQ+a(.Yv6܆1W):,FPrЋC9Ba'b:(ʈBS(\TF ,!b%qk$׮ȿP8K !$ ŤPk) !ԢnB?P-*GxKBnؤAbEGI}A/?µ뎠n  GPLt*BЫ(]GPDмf1&GPBd9bC{"C{ZpOGj9Mbgz!iH 06GP~,Ug P ^̃%i!XDuD[5IEO֔n/\GP ⯄hM'(N׬Q7)2-.>1930dEPT.7)-p"\(.>hp]pM`Z9fPp.> pӦpȎWY#_Ȋ,p؏7 KO&nRd ϸt_pJ%g"ky >w ={s t>쉰'f2{bOdp3gNP3tsDGYG>I3DkX > !|FJ|"` Α9|bsJ&l >^TDhVJ&lρ:}bk"oUNqUM8}63 li>1ω>OLs)ni*H 6|}'t:O) ?1˭O|rǎΟzy3J)F 1/35l_Οձ(4PReb~ce%ż(=@Ѩh4-u@ NHzD'PH"Ы2rܑHj$AZ#!މ@y'r >EI)ɟEğDcO̓ Ŝ?;Ν>!;OLu$E#%}p9}b>@a>{9}b%`E O^^Οp!~ȟ]Z`qt_㎟ePV1'tlgSgwOtʮE՜>U7O9'O5N'IO >{drc{$C.n܉@|j;aݸmwᙶĝ#W;Ǧ,F1E܉n;vwgc?"e6kH9FC9pZK\@h j8p{Wg"!N(7)Λ+y!ěm+E~^qs >.ܴ" qM QVŃv 7iysŀ8nNœ 7M PZfC,p9M P"Zfzm%%nZ'bmwGU ͑604*ڴ Ψ6-bڴlIڴ i?0"R6-ZΩ4#Kڴ؈#ӦFD$jI6-AeHĠM b  ((2~Y0`s$8lZCִ胮McM 6P\ -pܴJiWMh7-PipN%paPEk?$NW:/w\3"NWY#N0%8\'gIji3Jl8njMnfRś nkw4E)jɛ A1G4ųp6"8MQVN&D y'PPM<)Չ8۾XiNi-lݏЙӔ͍-};>6?Cr)B?)lφ֡[OSi Oi )O֌CTi ;M)y%xN%Sg[<]փ!$Y0ӄd;MRJ";M9E\I4EylY)ޑ;¿: ȝ(!,Ӕ:MwrK5k ۰!q#xrNSJ41oHu h &^ǂmn龊|tI)EB }HP(#RRJJKybZD^)h%JEJJA+Q*VT ZRRЊZA+^*DZR)h%K{^|ޝ%J~n}߹[tw.~n}߹+Eڨ@HRkKyU[㖷+9ޚy99NSZք-'YNexkdx;)a) )m7UE9xk lixk':ex;S25Sr57K(yorVY-xkBHX`)o)U(Y ˒mzkʖszݔ<4.۬ t¥t&dz{jRfnzf7LoMi6+4 MoMT6+t)CyRImVz{SSE6+z{3fT6 fZ&ImzTA{[f7eȡ-fYMQ2mV6 t)7:f7eD]ʉЭ_Y1ۛ,6+0Jݢ.]QRyzV[잷Y1,6)y EImRyz&EI- ۤ6)Mtݺ^Vq!/Xh9@qsx:!xӽ 7\*x3L7qq37.p3L7I/x=7 0p3,7ü0p3<a鞍An1fXUnefx`:nMffkngfRaΞgx:qhgAΤ8;ZpBǁ3)MZ$3)N(N(Τ8G%7M 7mQ]fV:n&YInB!;n&E gE8 4Aй9CV鎜Y2 -|9"䄢4Bά UgG[ gRIrwG L $LPmʳ)3)Τ8!(i3 N(OgV*SfIpfe:\Ipg=NgVj3'rL3+\C+Τ80qYٗp&E';p&EN(Ly'$82@ ;RΤ8tYsM\ۢ$\2/`3)ͬ uv L`3),KIl&EY6QL`3)ͬ ե'_qL3)"άt96?9"L w#\s δ=TM/!Τ;3{i!HNs;ygNL_Ɲ0@ҋ)ŝn܉wb@Wyb;[2Νq< >}N',;Xeq'ni72s^'cqgeDDo"w[c':DYe }\&Y#THNpb Ĕ%HhAXTNxM>Faa}5gO>a.Hs.l]K > 3?Bn9>*nŶCΟ׮Oxi/OnğxQ(3?Cɮ?/_GFw*lbO)':_'L  yΞ ěZ?"zbas9z⽦# =:1zb2 =:䗘's܆:a|Gx˝'b8YWTOĐBEu% Ӟ= <iQ;G}o֧|7ˬG?Qm6+gO߾/o~wѿ2DY7q￶v76y5 o~=tgv=7o}找y%֞~gz=}o!uKs~, ,Y獿߂c௿i  ~}wqϯ>/fX7: āY9{g{]?~O?}鉹O?_qyU_q͏ҧuMP;~?x6:ݛ^Y~ Rc"o݀2ь6[l̞wQ>kAX/5s<}/1; L~za0^׮oF*O'<fWwۏy_ik'Nq$C fm{𹍞.o?g.pV~Չ:??t֖=}|T@I ] kS T߽^)8)0:fWmǼ+O?{7^ұ&/~m??Z~j'㏿J?ߚ7c_>0+ f_kwy_ _g~x{7G̿y~_g⴬nt^NOO:xkUټ鏿~N܉/鐯?ᆟO;o[msLպcd?ۏendstream endobj 420 0 obj << /Filter /FlateDecode /Length 9492 >> stream xKIr.𷻤`h znPi&% G3o;nv=X=q#_fq ٿo>~wbp߯ǯC,q5˫wwpǥvvy_en1Ƹ>xǧ8ROׇ~~Ë^۫ 6J W{WOvuǧ?=_>?嫻FF?.]nC[~ojIv5zk\j뷐o/ܿ}ӗw/zKzӼ/2_R3NmĔ//hۻz+cbR]#f#qr.ߎxܦgXw\jjòb<.rm?-Q9g"Af؏9~cb€K5ݎyO5O*)rޏ2~[OQfُG˷ضh9%պes4>WBUY,`[MsЏ[^Ɯi:n q9bռ zC5}E( 51ގQ~j˄[QX<ee],%_fripDGVN͏Gm͏GmGƣGD󣶉߭yn}*{ )o[~'ky|{=o5sw#=tbcZ0N,ݨyNdDbᘷe4W /sxG8i1z1sLƑE4Vf憌v@bgFHwy4sv`LgEis%c*?˒?сEXn'c\~b"{LKÒ#U$R2B,:}XSЄFh%CZ2 8-Z,AN'U י},i`%iL9GR(nT, &y;;aZ-=θKNOa$dX!N @wQІj!'Eq\8")Bm.,N'dı0̓C?%#A2'te2牥„w$as=0" ,o'fdUih$,[d0a8,"^n(S@y? ]`X:,"S]=#ZrV!V<&a lOYK*@"W8"  |C{Du }PSz Cr: !>IoȐhDS 2Q1O u"ÆЀZ▱Pd"$CuA&M^yKj6f9 I7jg5qx>xӒC]"CK ͖L`zEdj 4SN. 6y3]ߧ>C=e K8lBc2D[DChT \j<z3BEpf/?. dbm R2r74 o7c3,E"(HQaZ ّCS7q+@d@ P8hF8y%(8Q ?O*#*Sf:ʍkw_BEkHXHP2GhvPYM:xP4a,NM!g-@fz;PDoHu]a*}1q)#ƟݢOPv2|]CȬ.ficT,pO~Oe;Sl AA- Ơ@g "Q&:lc,6I J A`V(5CQZ A3r/JkZ9A ˆ,4pML5-I/c)ëӓx*LTNkجn9S:PAD#BZ,s-M?d`d @RX芛ʟetl&!DYYeh 0,?k̆ IoϚl>:T5 8VB*K>d ]AZ`Y?(ɟ*ȟl2Ch@ - VaON9g)VY'xHaYܬ'i6gHKlΟ g:yφ9g6l6\S1Ħh$Oq#Tϖ-M, sA-MNldb&~UND'lNl-h(pl 5Ogko0γɟ3 &"UE>gz? ?#gwGhlb(➺kh(nKShG6oڑ/)8`~Ȩ 9Yo ؚhxs9#,XXcur t8a}`R$S}iM30Ia>fئ*Z G=N,Co" \: \4OZ`xZrW&W S1>#!ݭ$ i]T1m'ݓ ]XŠ >PFnRn.UFq2`Skϔ(}  Cf(@6$Y|HT F ΫKǢJ;E>DR]*YS {Ms n8!?8Ej͓n 7"'u6S UspPyALʅ"d A-kdE4+NyNLzDMotHg)PZl:)IQZäFDK?dL 8 Jƶlvgp)P'2Np Fr9C7}p]#}'6OT&鰔xz/X USN)qL,+0݉SJPnYY>eVF ɵfuE,S%)yH-ͳTum&EIsZYjv^guXXY뤜&73(Tp'\TNwWd:iqRk(k{M\\gKW}w'3I(2_Sq`˻ /-p]iDtj@oAM2M0Z5e?C.QƆe*Mk>>PKe |R6RB Rsi^DU5cу/",5稅뮋Tµ;Gw`%Jcq-Dod`͜J/D|6*kUV#o>P'+2xTV@1:] Q#$ѽܮ#R(#a"xE:y"Z]ܬ!ZRX8)bkҽR8jr+|`Zy!6D D+;}:hRC7VCr#Uâ($"U;9wQ8XE<%c7\LRA$W0Ŋg¤XoV=T0&QgrXX6K5W,b2rE0O[] q%m6WP7Fbaͨb+FvS,c,ލ&b&Y"R_j[RC%|F I+KLy*9QŦ;Fjr 4S/qt^vbY\VgzlTbQWf̳8qV}J5{T,p+§ebI&Y\z?Lr+g4gȘW k% ϻ> `k4D]&3ԉR&EL #*W#FEn6C,HEFa2'Ӣ`Xi}TʹKtU3-z;Td8VPWM2hZT(M{SbJX L-&R*6+tO9mN"X:7Ӣ0޴ `R9-Xib4nX]4i^YF-t27*7uxɼ挎eGPl{O;nAG AoFÞ#hړ(1i T *ϊƠ͝A}/3(v1ɏO;{2Ig1(emJAe)'YZȎqET TL'Pҹ>e^ d T02 +h+ 9@`¥1J36hi*-o8h1' XP`x!AQ=ZL=^ePloҳ@N@" [UohzС,?Yt'pXJC7x֩F ouШxEadi Lҹg7aOluO>CD|p1gR#yJS_gr>/Es١78tV:*:qϦC|Sg4u6k5QV ;=ɜZ*u$8oʰ9ySSFJޔ)`,Iބkal'y:8o:8obN&ys0]pޔŜμ|̀>.ljtJDR$mi1"mbHtPQׄʼn)Kٺ -]o RQ{މ^t٦PCMl?&,5!+{i`34Q!0T҄aY1BF4a&j4aF4M& D(rh4$i¢'iu6NaIbw .Ҕ}Fqg_6񰄽B?CޫӁ:b0mSNMDb6mϡ,&O,! ۣUӧW|3ƵYD Ӣkݳm׬wôr7gFҶsMG|25ZmbRO-r|Pu2VCؔ>=@i VSbI$eDqzaG snqb|fBz&kfqTqwÁ :4lVX'fZQlkwTPu$fl(փ/ࠋ<8:1E͊S)ڥ6+"Yt`zuh;646'G]՜άLV㢚jͶ lNVWaa3+Xs'3Ǚٺy51Iv(kNq~snGS5jt S'-RP6Dp{f}ozwtHe컮*՝P,ϬE7yzRe t00=( i[&=ZdnBu x>4,ēGz\$ +4 MɜsOdd: 6R']sU}n7!*P\脒JN61j!:suN7P|8eά.W93EW93qsY(sf>EsL[2gN|02Pa2P|ee̙TO_ٵRBsY(rf۸DNșHʹ,T9eXu_sν.qg-ZzEKl#<Ή|`[ mQ(H'NImN}Ӌs3Љzs+d%tR(XEx g/WO`sN=K#Sg&9un%tBS=ws.w1'ŜݤŜdŜ(9Qrl2zӫ3(M8óK_ȵ3]N}N3floĉB$O,4{!'lr ^9̙:s&ֻ9գsA$-LN ̙ a16洪BFmɑًEgBn~!'ʑ[^IZ9Ȋ$㶿(i#'aȁ3sӚ'P```ęYstj!qfV8Z8Q8I$9S N$N8I8I8 9]L'rJ,$J,4XIpXIpXILXI*XI,XIXɐyGtzp ߋ8qʼnz[Hދ8ƞnq4jCN8r&V9iؐ,.t ;gN8t1' Μ48rζ-nqn"np̬;rőnqr-ΜnqC[:NZtf>Й+3u`,NӲ?՗9sGnt,|=i<Y`~[yD, \˄g/wx*#O̧=Ęw 1;H.xd1T/[ 悿*?Ya`3Y`v{+=Vf^L0}eW4˂G-n~*`LQy{]}NU%l[j V _aW+gU"gYY)VlH=Gع5,Y11Pt=>sI(_cH4a–=t[Ug)c*C,,˴6ֵY셈rY\ϾR3TRoBxҔB&x~&GOP+R >iI?#?eO}]7Ka[;պt _8LK$H+_b2}GH,WK3] u OWVll2-?}j1DL>} FӧԢ߭s}ⷿ/k9Q/Q ]6/^"h\vFd9r"(:x{=?}-O?_oQ_hϯ~ذ*'^|?]|$d׏^ L~oY>Oޞ_>o :^f}G/o^??JsOz+-_?q,| m/Al'k׷_HXnz(Ϳo>_~V7Zr}kiǛ, l/w~y+_?Iǁ0U^|}_l;Kqid{c>'T+x7w7\)F Mz/^j!/2Rp̻#y1]oǿ^?>~G&̘mj(ݿyzUw<>W=\p@XGh_xám૤TϾ~~}MV/?}mz󧏏xv?>̗?~Wf~$c}:~V_5_̅Iį> _UwLؠendstream endobj 421 0 obj << /Filter /FlateDecode /Length 41006 >> stream xM-;6?bC*ú' U®N \k"js#vdb0ϯ3_}şǿ{C}t||?oR?_w_˯˯_?~;vJ*g}||ޟ~O.ϒz{eRW2?ϯFS~_^?:?SR6YM:g.}_@I]jYO_/G ^!ڐqE#?G]^_Ϟ^|tyܻ,<&8T='֒MgMlx6>`T}|Y"g.ED""cDY"~"Y"ut#"Y"nh&w>z)y2+{I>#lRɪx?x:ft'=rt׵گuKȌM]l M.=l E[BflBW?>Ƙ<>qWyfkyUv~r<7Nx'tGѯ+kozo>$?NUYǸYShYck mc+>,4ƗBcShcۼϞe+R/*,^5~0~^wP^&ooӷWe`r&)qyo]!qٸޅ;dR+io~>&3Է2p9>zSI7>V;hH#'ԂG9,\NN;>QsPNrzLs?戁@\shڥ'v NU[/wZ R)gLIOCm |2<9gnu\s t8=6ʼ9I63xlaô5˘P#:`Ph^k;16OQ78wTo{TaAq3}VEz w?O>Hpk$ ꎎ^c9s SǕ e /|OHsB`Bң'3*=>9%s}v|،גFGi|uh["犒it$=c Ψ Isq ]=SǜˢQQ]O]s_=Pͼ?8W k NwWk.ѻt2c`#c$~f4fѻȹhEQDNQa2rP} 8c`^l]ws.hK&g=OU #QhRN1ccėcc5p:ZWgLVWSQ"8Q|Tv3dƫۥgNN||t>ct3^JB,3|SCOBk:8gF]1`#@+㒖х*9]sWH+ zL1C<^t1>&92@p@N@pXKv48} OK2GgIJFn G{4=ytB;T|k3~Kx/w0>ω1;8MH.ljUKݨ/Mc_d ~cFn,\0&CO6\S- NS'H!xCĂSXKnwS1c*ӣk9º FGʡP8x/Cխ^8:^bڧt(%n2q|vp0ep];s l׬pXp1 a(cX᱈c Q1K[?|@c8@@C:1aє9y2{\CEHD9A<8 3qDAYT:zWb1{r`l"c,X"aE9=^9%ת) sl5S!#i5BFK4*|ӵRk+?{'PHeÜX0s^s^%Kck|a9Xs9sl5scP'A{|;-^X ;1t.vZ M9jicJ2?u;Zn''sisͬx1Lx'gI@D뫁gI]]@4Z efEW0- 0O9FV >3gc1d|BO:b~u'/Ϛbʙ賦@1gC蓋gaBX&T~lZ; 3 Kc4 1_iѽ@+ ZlYHO ::(j@hP؄qj0hrVo[56H^w4 0̪p3AamX@ |B6A@@[dڀ\X;#PuPsF1^T>[֜;wј!4zFߛ0ޚVL,!g_E^@1Zr=`@|w}BI{誡=itklG!G#'^;6&]Y cMƍ 2XD@b ;Jl c@̟A5˜z`_`I9(]<ӏ~nc931{ۘbRH Cϻ0LXx9+fべBO0I׊FzxuK9*>.ÿa!L4GW[bNSsyBi1s*FfZ"Ìc0l3\I)&ag#0g`X lSnt˫׀1e2KQ i!4`D =Hx:Y ac075/Sc#.ϝτ O0\;a.]oÜ.F׎<.av>-أ#s;? F[isa= 3c@=O)uol]NViO)X!1YtNf.0}͕7 +Ki'[ kȻoEG )˟rF.?`SjRoyngMK{,$.]yLwWΏ?Gfsq.Ʈ}- 9 /L0iXNa|V2D[!1kCmF(47!w݄iyr$&VP`{k=~ .UDT0߫ )&礩0*;t0ț:Hx1Vxmxќ_ pC÷Fp5Ɖ{P Z͏OPy =LDoXa+<{rU0'6dZf"!ﮟ@ 'ɓ})8XNε7'gCiMLOS42sljNz<2ZL Txz$~غ17g`ѱ cX3ᒷK~KäUjR <26Oki TX irpJ1*kEN̴ D,*Z÷Fahk<8c:SQ}FslsiZ46h]"* |nA[ҨC*g#0JqP;i^gxJ]H*=/jM m`Ze84d4YEgoд?$NqƖ58~bS26@SIeBvq<UoF%\Ekx6 0\qxrpT4FfŪ.cU/R]4M%t4VɲL ^EgoЄ:̓ƁO ;ؚl,X7u2j U0QUFQ,V:r8{ڄyyDX ;]b_*Oshm 0*B$UFӻpÜCH[g"v%<5V\r3).Ag cQ KlGδnf&wJ$ /Y{||vrpTMV֯}V_9V!1Xxvy枘3^5VɁ4,Z 4>ŔP%G#4ɤ%Ӳ=902A/|JYo T  sXw` WT_k/ɋ1q;\#͉O 8/ii|ih<]e~ZXµ ڡhu7>9c:ʹOr;e:,q k02WtukԽ!::ƵKlNN}7sF [tMENR$z-t79r@2UF7ka Գo:~M0ôI@ҿ_E~ĩN<+~wa$AίϨ E&Kcp $|pIXd)|րR*Bd*ө$aCoE֔jXä=${F鹌QFbJD-g;m^GvEuj2MƥʈAF b Ц7́ki v~dZ] ~,B^f35~ՑzشTp*_Ytg5FK$k0'ǂ;Żh90-BiI9Sbjn*#hnT)ZZósu{95p.ÅmJ:IKäUԬ5J'YX]"* 9*p0XS7}n&8ixhqhe V@}- V9+F-,ZoP3,sx5^97C_4 0CŁ$By;a\#-s)0!7*@4ϕ pC÷FΧFC&sࠌa QOh¹k͖@d{`Ze'ȐXέ ќvp-َ؛4Nn#wwqyyܝ,`Ze?GLʠ q*&ZZó:]*qvD.LJfu|ǢWlQ3N`Ze.8%w[e=k$\KkxC:''p0cPLo`JwSJxLاZYV` WPp켽1Н0{ʁ40E^ @4V+0!{%\KkxC c{r&0bH :ZY-)Yq,QdLp#g@3xt!j[;U';|us:ޠo^?LGjz:j6WFmU}{(9L U55Stl֯M• Fh@pqOɩM8q=6=%:07Yτ%Qx4.q8_KnoE$9:ﮢ6 ZF<; VxniJE^CUJZ&2Dp*YP%1k1%/`M=sE4nAxpkeDR $`/*#9'oe. cVr!ja Pb'GV@K@bNx*6 UN-eXUUFātr'# +tk‡#qEF#ِPɥx,Xvxm c#l!F%\Kkxco힜ڏ*jےP͗*ck}m]qrDۂ6%-SóHNn9%|Dtgۮ}J/ ^7'|>8>ka ̈H_gl@l6[yUٱ0 -ӥ)QLqxIxKTi'*9<v]tT7C=IVx]|]q5,Y, FjO]rUYjX; jr.yYpNEU?Eu%ki02x~iahhp-َ-`r>J(UEGwL8DE,*ZóZoÜ1533m+|t]fȗx,Nea1:w ѴG-,ZZó14Zjy5%C_+cɹkJȡ_O_ɪ9w΃ҏ)R\|pm USow` Vj9)IȨd l84LZEЪրe+C4p-,G#‹i;Pk>x%Y>w跮_.W7$4LZe?Az- Vp-C÷vDH'6Eg&<rEDҏ56A< 1\01]vU%\9+x^0N͹cy@g7{8 }< gaսi02xN׎terki v9|OemE4vŪ:N".1R6 UFExorW x + 6f\ '1sʥ-DZJ2V7}%jYi'R}@V$'u]E?lDRhZo9b)'?s$mIa i@ dLۻm. Ǭp q)}e@32ۘd9&6f}/7E7V<3[C¯2DPDT ciDIYwM#RgcPx_e-nh!gk02]ҠUh먅%\Kkx#@ lu796WCfk{%|]Lpkpa-ÔZN v(nNT#k c/]AiWW1c^[/M"9zQh`hX2ﲯ2D?V-,ZZó1q_ _QjqB*clWnTd% Ki>8 !4[+u=ja 툻G\l_1ޱ_86Ibܯ(]ck0] -KhPU]b;4<UՊqUc(=Yn9-YJ\XiXS"HƈUFA99vljB!d[[w &rIdNKCe$Y K[;H:XMUhJ;4odm=>i<8)j2ԯD$fC÷F٭cPMnk86=I墆 F~o5W,'ݯ8N̓[UaJ4?-o:Eo&؆p[z )Vr4Wԏq%s~ѕ,^KUGٿy4IT(kI=Nu^e1[㦿鈛 {Ȱ"oU"b{;H=+ <|^{3l33ᒒn\:V6lh'\O"I[Q~s3&úF7nxںiyY2PgBw.WGC~XVNy3У[쒔m L"=>Pilּ>^ ukAozЧg'Z2j}Qf~jdD@p0WFf*9B*CH3ehd,Бաee Cl\ePqF.b-m|3Rk??3$L2<7oj̿~ x榟*>a 'K=}y_"I3/&:瞥~q6ij =/Β*L农wDGo2!8B!]hc)sRYi6d5TUM*8v݊1oHI_|bћgJZ=R҃7VGN϶gRMܖ=av}aW_\RIEۤ&gRۄdmBK_oyHJyvoWqNH+?TOwi6I}~TW)5GؔFؔ#lJm#RkYjaSj))5GؔFؔ#lJm# ˚oj{ \_"_OX_'/ xLN;"d|nf%C歜 E{ sG@:K\pWʾB`287/;p-`4H|⭍N#.em)P{?Ũt ^R^dW/G.t˜r5\=G֥ҕ!bsŷ/gftEj-g๜9ؐy٥ .r~9Hhp"'_Ҏ,[NfצpĪC1Hn6mHT`HU'܊ E9U RUYxxhYzi.t\'ΩZki4qߨD.N%--[vϿ W1hЦʭ4;a]nX/9#Y=(VѿJwUa_9f9pq`M kP_qyr+vs!7 Td!LvjXiX8cH-izWD>.ٓnqzSt6cS'6z8WEkn@Vd:,,T{&Cpb:&Na85W{B1-kk?+H9HS*՗H!RǦ7*6Dg9fKݿ?fqpRfKzT5D*vM"\n $Hh_zɩ,tkT8:ؙt-R2Yk%L%I$f1/ɝL\URzRM1(IwZZ%j˷+ݯ Xz~֮KV^uftz"nϠ[g{p>d+Ux)|!1i/AOLڛfIĶCRp\􌔢 Uق78oAR\&y|!ҫ+iBͶ#R} GyQY G ڄ<GypH%S 8(o!#8:8 G혮p11e^cqaQ"k%h)JķhVnF0hmM0ZIems'U8'X`Fk3 . s'=c.0z%`:c0ޑ|Qk`4sQ8| oѤM)& Fqd(h3N@vM Fu e5aAm]`u-0#*( FdVF_j0 Fs>Q%\ڰhQR _*cQ^mPB2R (mïae(:\9oPb"ymH*†D+kUy6 Z`z9欍Jw$h1 gz6̄ypjW+kDŽ{4I׋tiƎR+{)؇jޔz8rzqo^ y=w殞n1nb`k(ᕝ$<ц 1DcDW Z,ưNsxcH21$' 3/#m?i!е0-FLw4sz4uibkh~[5MuM'.˚lm k5>ݴuF`lji[cSlMF^|o}b#Ez9C=ݞls%["\$J '"fmfo9 ?d_^0Kz}ޖL.ݨl/>;—nISִƜ0לwiΉRfst0 !Ԅ: e% 6REwšHF &Xx-Nl!27YmLZ,&:澒A.xG4F[A O-Ip3;y,jdx^QUtqR$,Si g^\:O f(rX+~-IOԩƂ;OD-ki vl?'9)1QCh- Aso-m@2ٱ!hXg@8.4P-m vmU MovfNWA"$QS'\i.LP.\zx[g *[Pod'Iيc0G%Mi'̩t] *C4p-,ZZólRs't@b@㍜9[/íW$`ڱD W5<aNk\XI\x7aQ>(פحSW6AsǾצ$]UB´lbѥAG'tk=!hJf85q=qqO|VG\\ki vm:ubگdf;5my<$noq΃$7?x-f&pKr[5nTdZÃV<ߋ~p] &Sa%.N-ƥVhIehu’i#۬aXM~ɋL >ZDT)ZZónC'؍6ki˙>#h.$`HKI,R@Ǖb  p,ָbyձxVK^0Zts裆NpC0Mb<I$3 YG !YaY3?B-F%䋺4Nzq\E4:wWя?QyK}(3yT8'.nt0۶Ecܙc"8^}jXx,#ր8i+C4p-,ZZól[ (S]9&O7%xJUҷ"s%1ZäUxrj54&%\Kk֎إUƹi ; XmLN~098 A(|Jr~tŢCv㛳#갦Ƚ:T숴/ ON&Y僁DpDF,G Ԩ*sW5VT*$BN6Z[e&KllM5p29ٛ*t Z -|EbbO U )<]le%\KkxmK'e";(KdVz9-#CHKä+nqLniPUѭZXµ ڡ_*J89glMHMg2yoy) $v|\hV(4q5<]5R5m'ɤ_J堢zp_4g,TK#RIäU5A;4(/=0p-Drj;&\{qCcW;"389Eh]ĶLzrN5kjW⹊ɑYù~[#0 Abl(3_qߢpJ#.IR?B0pqWUhNPAg;@sO"20_ mW/J R+79=T $}%nmīϛ.,?7+Hrs~rp 2`e(}qN^/ N\}.Ĝ rA1ݽƈKCkQcǵja Rcbf }5L$4$c8=09- $^O^ܺ9K/Mmxk%jyk:D%( 8iU)z[ówR1%Zua`V8!?/-c@>sjtC/M 8pAF-- ۡI>֡_G)8iih .{[qZLW"NPv}8ka x>n9A7dȴa)xe a*c3^(΄G(Cfeh֎/dKvP,"EJi~ M0Bä&{5܏\FМU)ZZóa KY&CW!ʭf氪 \h-k*Osp ѴG-,G#ZVUGsN$Wޅ32ޭ\4! K\ "85V|"8ci<^e%\Kkx߬uk<++R]BQk*O譵4(*C4p-,ZZól2ܼq*4<Fc[~z_M x > Dh FhѾ\k iUȊ,гXx-Y4YY,j U-xbxXBH*omcMyvҝ K3h]c E&k9+85gA?f-kCm+`ze$𯍃3Z6;(i"ve鱗MN +LJ'\KlE$ps^FA&ؓ)y@[[4w\Deϥ G+L%OD-ki vh 98ij8zc7%u/0&U$6 PXäU0`ᠳ*C4%\!bANF%+W`ıhԳ:,rH3M*O L'\ KD%ǣ+HasTw*ЌIȋ߫q*18g| |Dﮟ@Y "U/;y(ۯ%x8H)p08IcbAe1Cv"o RJpYMA`fA)ר|ڴo˛q*g v~YWd[p`c]WXO]">4L~!1km_%`Vɸ#.PX-%р03.1.NgiG<2\ KD%<˭\΋Syk>#J9WD$k֯tNOapx?>(`2 }xBbuhz*- !eŲ8֌% 4ߓG{lq*"8Z.M4_]9?vV(Aa[sZv}oH#6 U͞, VZXµg;4b yY b[>tlMeqܚKAxGʬ”ZZlGjrƸtCxO1ݿc۷M Z*YrDdcHl5~A8}d{ݱKKÝ7~kckUC$4fN]%:Xug+@Z0KON[}*h:VK Ucq֖n ѴE-,ZZó|iy{8"l3nV(.<$H1tCäUcq^FeMw"Cµg;#ܚp =Mmve8rc<vi&ɞEﮙqp[uGNtupK{@M8L(ҧM )z;85<^ vS`߈0pt8Dw :MiA#Ip. v\i+C4'Ĩ%\KkxCD4;&IỲl9݊?=VײK%.d\ŀ2 ޼,G 0R=-w‡5ӒS}v-ZLGqةTYDɫvMg;u9Αq=,87"LrĸEqƦ-EɣxrZrdlpx*g#$/VVQlr^"x oE=u $N=cK"*H(=֤yue)T)vரLJl+^Y/fl-])V"jKr6IgL 2#Q1O7LfZ$ ^"Mq?"|N7kɇb*8IYt?}1F욪噓c+Umd\R啭V";++Pvy3ȿFwSEttFsS 9w\d8ǽRP 8p0WB BZ"8ӦJ^DEɔA`1_DƬK])oVREAR,)?sǿ)=_܂Jp?=z1~՟~=3cRM/=/2erHc26T'g{ץ1.ꏓ'^Cح|re9V~47`2n{KȜM*#|R{KNE;w)sz~輙Q>`AGۦHp浾K1*\xa sbgԋw7,]$8ѥf xmidG+/s7F=0xϞ?t5yj57!36舛,)w%8TtMjr6舛,X woy_Cqc 2lPg7?ŷ˺bV@41Eqp>~Ou4k6KtϚ1ۈ̘ű5F昜BۘGY2Dָ>.-4GF؜BشShXbRRXKOc@[cec6}{?ѾοОٷ[l`2$Yߚ2?vK'+Ap8.3־, ^ (Cj̳8z4#dVFDN$Jg"ThL NT IxdDRfgS7Ĺ'Lt»ɜ|دK1j598s+1s$UtJ%3o-ltpp+-)ݺ{{F"?jO@M2r0Q7b0dHvM}2}tD_,f]Al0"w{>QPnCEJ.2b`3P]hQLsJN439M)_2g*'ֱxa:7cTdxcEQB=C9R3 hDacZuH, T7]H#I'cP*.paa]AxW:pp"[W@9窠=2ed%O$sE&9ӚM8(ɺLZ0"ehn+0qF@_ S2luEE-pʥ+ #.U rxchɌ~£8Hg.5uYgR SsTVmWiio45z{K䪋59On]I)mῊMT|J4Twicr߇-VO ;Ǎ.pjr| siV4EYT]oz5#u}FI8࠿/%%M7Up E ݜtHG%^銲[ɷ "AmO]??7?. @Ǐ @%T '(pOJ =@B'nLJ:'Bg?.8N pğtqnO'H}Ϥc U3̈́$bPp M ePpnД#+Dh Rx2 D:Qh>P3+^DPYВ1 51 -sRPg\(5+%֨B\I +DA+s0ePv ZdaP,1&mYS Xi 'm44r8Ah(7j *dC7;քga(' =zァ4 =7X(tjQgp bDBs(tr FlqP};rNzNzJj55 ͇c& ;Q(K,FX.O!@XΌBBCP,AL3 ([p7 (9( A VbQ〟1!(oŀHQm!("# y X'E.4 J'>oOe3D'}~O=f6D(XPTNP.1> @sч @.o47w<P"keßǙ"X%]='bݴϛhh^BIL~ NK_wlp42\NkgO`kS|Dz9>wV1rkX.8ޫz"M;q6)sW̍^G67n?Hѝpsh#Fk=<,}@p] lC(op#ˆ7X8ynQ Qv̭3$o>{B<}qc-lEEƮC1ouZ}.6TNgf[*ic~h}:~z\F#Fgڎp(GolG.ux'gsvp]Ij;cVL ۍo^g5&u~\lΘYA`Uy]u=ƞT~asxH(Q_ڑT|magZmZ(qc U0GucbJl|ys2? <*4Lt4Ƨ*OӘtik+$]UFa-s!dp%]k"y,Ì]>!-Z|S{АDT gyK&&$B3`nzqA it0ٵ$ ` <_q>D?V,G (ltpԨ`2zy|5-%3nqR6 T.rG>eD-DT и _G}p:g$9m˺Οi G^h*$Gn!~wlXO>>~qtȕqO.-Psۏ'9{Ω` 1+ZυEe2&oGb8IU)*-6T!`Fujd4ZL<ܩ uE^TnR>yU(3Wm5)q*s(v)HD W!$fC÷FDøTdlmN>fяrf3"}}]"<-.Neԥ綕!mZĬehuƔ)40gvkst嬜94Vx\I?V-,ZZó]}m ؓT[qWIڢd7,AcZfǖvѐwpB4E'1Uj[ ߁Ejв$ڭF`tc"_IJ4GH!@2|JO}S鍐(BQLa}iڷϙ~IdƗX :*? zQ( ̖:Pb8EE`Ze sNVTb}sbJl>Xeb؂T''NB ixc:w(Ҡo xµki v< U pΣ!hɏlx f v zCTS•g#pV8FA_,ke Ead{*8ZBwUh mTEK acAgjd(x6:"dO9hq:uD|%nLpsOct8C!Ho{5<\b:xort#8~Yq\Ѐ V+)`i8UǪEHZoˏISw1"ŊZeKwP3थtZ($Kh[(x]7Ř)Stħ?qsTag]~?w>>iÛ9¨(Uh FD,r@ [*gR:ގFH÷k|vN[P$Kr[8nSJnt6s̺hJwnlP}"&Ź ~Sg;"먐7yFNϵNoٚbEs}u;5v ѵ!),#9>ϬŔp-MY̺lNԘSH^T+i1 #.xbi0]"dY-2DsqZXµg;ض'tijьwעu$,)~i02X$zl- Ago`J/+b(?MF^N"o8Q]Z[-qwUL@.3%#KL2FBmeki vLq-Mv8zxYr1q#d]JUi\euYe@>@gq0 NKOЂ[ce$-a"aJn[ jAl @ՁlqfLEG/nN06y> ϫy(v&AN)#J7'A9M;ߔ!8JHpZ#Y=:Å1ėcuӦX X2p?#̮%q3!8JHp-1;(xbgWmb:{T6v SF0&5 \QJJ\p*cFaG/Q\SL8k SS{ {l2k29롓F䓾uzi ן^R"#`]=SS6)#J3arDKH kizGYWqI <1Nb (uutVp|| 'p)<)9<~8|af8cAp񠋸k2 _RLL$ SF0D$Ơ wA8 X SXI18+0x"v8WP>X<݀(I1f!aaqoA8>0s%xt9da YαCq^ᡧ4v SF0fC Ɓ.MC sHa)8mCMuSi`21S ,׋p0Ռx$9\b"{F_o6α`2PBbx02w2c#-La-\}z7Eʍ_p`\@m}(ű`}fA׵;tk etn il}hYWu0 GwP ax 1XT.䦠¹82Z, w9D8 q0LQ˜ QZZù[m;0?3e$^o-&%Rt/z-) wA!uYCHAB] I:́Gm _,0Eli4F5%ntpW xo "9"6ӄH$AX}#7Lc„ub0!_ Fss y8(畷 L\t0|XFwԀyW£(vDj SJ3q(2j2{)9Q n#\sou3(y`2Z`{V7. ­nZùO*qG's/o1<:9闹 &#%1H '%x= BRXEs8WOf bXc {$YV<^_f 3`&aU ٦)8UB bṢqg|#l8#kiby/W&kXt޵cVP N5es)BbxX'Bw"g\J1S>7Ôq}0hl)B :ϕbIa֙G.6\c6}u0 8L+_YaI SXKs8Cot(h#&$4 _b)h86)0edCt"⥚tVϕh]SL xҊ8tx$x~(&9V:k 2I [O! T+g0n!chx*!ulҎ-[F: W3 h^e+4: ߉cC`<8$Lؐ 3Q0!KAд04s=*"$ {o ?dO؝n̥ ^(1`xOtD0_mCA/Uts%VX'Ԍ2|0k마>njg[O}}81829,bk‹3S{ùt#h3T hX2ѱiBd]!Y) `" ̈`0 ]A8JX SHI38UBυ'R)[gsc0HaL#c< c|h!1sOUY1>^cu`ZT֫oWZ كnZ'J"]Gb軜 nf].w΢k2Hy< v.<'ZH,*-oŘIRAdM [m=EU,%3*`9 j o:wJ#(;4?1ǤU5Pzeaʰ}R'xqzlMCjaR꡺&myRȂgWМ{kQSN=>d?kwk|_-u tpI+W=EA730X|'iĈr+>`>4D*]%b6΁gLV 񪷕*mj{9cE4)A!1vY*>a?@UkLDOj]x`g: "n&saTF S,^aʀ"\hCAд04s=4y p?wUh5JOW9S0ehgVY5M QpWz=O !w6/70[ƀa\(L9ߵqs'PEʉÝFy',1;pRjBX3SXSqH2NMQ89DȣA74)RKq숛}OZ[fSج0)3*=b\*D@+ \:V axdWnE0ęr00ArpRv eNi壿Xqz~uڒ](cHu{}p굃&1A%#Gy\e\k9կ:ȏLֲr*ŦdVAEN.)]&)*ums&m<#!z'+UY&v0}?Fnq8ZnRۃ҃3=jN:i>(S'K 7qT1w"s'ѢU˜UDԤD0=[4ꢣ78Ĕ$DGODĿ"|uDec燌=n9'7pۏE|)uhki [iD ӈO:$ѿewG_Ph_Q;Uއ01US X?l%z!|I};Tٷۦj}T}N*$j};io'Q׷};Zߎr~n _M4q߸oO4q߸oO4q׶oO4q׶!'D1vASR=\8-c)–Svcé䭕xeux&W"Eo=Qī3L>-˜ "1y*LJ--t[) y VC,9sl-í0|3nny6_C4obEs0L(!̀a W3 ᶙsW#:3L1U` 'Y0Dc6nQ`P\2K%BRXEs8W{a[-]Ba9&=^:ui,jKxpCdG&C0*T ~z$nC†9M/aL9O 5cR*>q0LQ˜A sSN`֙8d E>^%"o&ah9*(cB,ȓg$jG` )`)3## &(D: p*s3)Hov ;dKKju"uVϕP5hJLrJ1ؾ- \mWa kL@kss 4NK8gccH{M|?V CClCeq>uLWk'5Qp' }obYceCӛ9Fa&$BQia%gm}wW KH+™66T9SeSGO)Z @@\)cyR NZ I 4Lıwir\@f!AkeS6Ôq}0iW}ӑ2 c>Z6z pDbJĎN6LiI_Û;7SXtҴ04S%{H0;x ?Œ3 e2l)0u{ 3YA45?3o~u,y`7/ F/QxwS o)}WjÀy) V-߭+52J}Fjbc3 M6BR q0h?QF]ao0+9]pCSq2&nM-ay p*dzY1a&&i;GPIK b`me7\`a1`&0(UUj߭k5zey0fdZp͡5th05®J `&Ô:<4"[[ Y(er8Cv̨U6Xx ;12 e5j@2 7;s[u(0,+h(9]nf޵tYeӈ,}8:瓃IP͐25)9#m})c egqWMؐԼq0L1&%q(̂2dI!-ùW\ bf!꾲%vSD"{!IV6iMFQ(RKq5՗n fth+nuL9 |aVMzMƲzZ SXKs8׃uIH_[CGq27OFYC)G ]:9=:eFfpĕBRGPY99 R ۤ8(a̤3Es(÷[(a-La-v*Ճ#sVi}FawdѭtdJ)ȸ3oO`1 3U/1/uS=ӟkt˭lF8wcGlyFK|/uqë"7LL78!<աA/ss Pp낗_]w|Ĭ 4P-/TpLݯ[JbIT+a%@PKn.|֞55?. <0ڋ ]j&b7Ҧ4Ef. I,gϔ1i{` ,b4ZdUOK%w)V3Ô0d,9MdPO pEᆉ{ԑ%X'9εȗpg4Ô%Y7u`qX25)98w0bU0EjHsf2怋ۃÒp[ȥ6:Kaʀ"Ag)#O3S SXKs8׃l;~'9aL('}=O (kp4&Fq-#OS SXKqc b6)ĞQ3x.GGQ;:v S0j5cl (-La-\ɩd 1<8&CiJ=r, X,N SJSn!\&!Uu`,->a]^ t Gd 2 sbGR0e1H r^Y`H ioC oFO93pX,!ΝRR*%EYy2B5eW+u4s-d>"J:!N̲3Ì^?3<_FSl8 }9=eW:i |y-<,ݞ >iΥdݺ)L8t;Q**ù.&9ht qaLz'dOpQ tg1(_R N[qE4 Xn9;ļ܄=;p- z!0=!mlZ$4s=d^tFE!ęqWciՊRlÔ&̴0L9*eWp{".74L>Efp1EͽqrXJnZr0LQ˜a69lÒa8JPH-2!7$ՙp5l rX<1JGFZKİSK^š)BlX%cY9 綶='IE1˹ S& yEc`d>4-L19C2Lw03*T7Q*@SkÃ%&\۹}}&~9e i + T¹cY.]L`3bIU s01M(a-Lzù۴RU3" LJe1# =OJ B@O!ߵÆ4)p bp.8t9l9,C;apxz%:(8(!p0Ц9yk2cՌc i`Fxֽn<}%fc$p )cC, S̈=8u06! ci2kUZù쌜}4|Zbax F*o}W9(aLmCxo P;YQ9yx0i"/W$y1a'JXF=Y0 31=VrdLrWiZZùg|N~0cL RhM׵Xq0L(!z9Z`L")97ZpFF973‹=A^%&(B vT/ĭ~MXwFY+1{ΊQpR6E.7"2D(̀,9 ǬLAR NHwvEѮWB>ZÒ o0|65%ջv8U{<[*>t ֡G8}=x)ܩ1K@ˁT0U4s%4̽8ov0iPD] c/̊S`9:(8 Leq`&ia kizn릁ux9bK!1DrH&JbFN44QR SXKs8C` s0 SaTL]]bSn.s0NҲA{Lu01";Y1} %Y?`2PDmsA04s=Fa]Q.x@35^<qtt SzبIK1G!m;(k|p40~YZ,6qـglp7{"šབ8$LYq8,U2cpfQg#@6>Ҁ~g@ˡ&Ӳ7M.n0bcMnVΕlpcİc;|_7S85bxe S>0@LAX[pv2;_֔9&;N|3(ia! ;DS)0e@SaFۉàs;ia kiz 854b+Dhym 1GuhC``,Ô Xwp0U4s%8·[}O΢s ĭ yi*r33%ó6L S:ev04s=!?t 1V)=E$X:66Q-Cιpv@Ð ~Qxڹ*E,u[U26w9!4י )C0`La-\٫\EG9kH4!eC!A 9^a q܈*7h& SF.<!%Gr:!7@q0<*HAr.q<"~ݗ7G9/[O`X2Ⅳ!F65Z"zզW S)1k5&^0}ˮ5mwH.˅[4Ƃ)9)9u ŬGϓ.j3O"adO֞r`2PBSMsB8Cߡ=N [mP-fC1 ʂ1>+T8 ̂B8< e(epG: bMtq`@@ %\wx[:.=U4s%T1:J h7c^[Ս>ql0oDe39$L^¬HQ:Q7ia kiz^Q{1b(H[>zUgOD :T!ÉLy99ۯ@kaS LLBrES t8ĄbX ߎ&B0V%t4Z\>i=wuUՃ^pl38Hm' X)&m*p>KL53~C9hZFTB8u9x}03\cދOH H[C=ćU6: ih*DZ7b 2 s1>GZ?ux[ t4"VHzCIU' Uqg7Y|3+@f.(:0óT$f0@ʮ7ȤH-z/40A̓ '2\idq(i֥157v&Rott0VΕv![_l "ܿAV\2wqP-.*1Eyo^??~ D\oO/?|"q>~1\K`x}@.1_8.os/ڊVf;B)?WZe~{S8UW)K5-"hX&xBW/22ϗ-"$n'Nu%ӗzSjwVL672:kqH @~~OqvrˎV|vc͇տUq^ jq;5y2f}T_c筚GXoi4]~x.z>#[[پ~j-Rqqj)^itϟkGW%HV`}zx|O ڔ,=cTp)[ edE=#5X/|dqOhҿ= 벜?]^<&:"q@9EtjdT-B8&"OC_#Bئ}$1xꀘ' m݁Ģy?gvjČ+Vņcw}Gj߿V _>MP ,Έw-9hcI?Uu _?Sc೰v/Ͽz||vT5K ,#@J[S7˯8f^Όs`SĀvd_jU'vPqjUOU|v >~S7bq%76@ųeUI9ckfȵ\R13hf=yG_Qƒ kDȹ9i KͼQKD\:EOЍ[1<7yu, qvZi{G$Aܢhw>'FJq1Jng[x=L^GݶUնM|73E{ljap/ѲGjw,HL_y..Xл b:j;Nq_lgfYФ0㢁F54覦Ա^-V&Y/#>;--PwuoH_׽/B~ ꧁/&;ZX;JsOm . i|mZ|ckӣ76wklG#jKs{Gy{ݎ7H8T?H-O.,~'h݂G|xk)6jwjW{))eS3we*X.Z!?fX['O:]+-\3 gw뗧n%'wb:ļ|}|Ҕisj!օɫҧ5qڝ,| =w emSxduX4/ذ);MiؚcdžھNСތ> stream x[^;r%^aP~)e2v;BdE(G}cs(U3~o7Vv5-LXvXH$|<q?_p?mX_~p<r_oyTû/?Mo ,oJz C|_Wo~R?}z6޽ c{x3g*÷<12y6g#/6~G}noby-Ň)+/?oJ8~ϣh_~x˻+/O>ޞyޚm1as0Ş8U#v zwOoçx,#I8(ܻ89h|.>.ςР5?OV4ڭ%N>>7q=&gvQ=9R sh2t'[/^T\=f:XzN ]V9jưBh+>z|62gU|_FQ.s; Snۦځ6 5P8?haa}P?159?}{|_LKQuzDu\ Wi6gul};YP؇O7G:ç9?^&<O1r^>??9k7#i0$h﹢}![}цT|^=|6&Ļ]1}pReX[V?ΐC1rlVBE9'n%$avoӘK1W=?9cC3d-߭Ƹ`|cF|u%?|}omhC˻oMDiMݷ>?=/^㐼_MV;?|2d)2" 7_>r>t\v/~T\'<ϟZ+Иa|,Ԫ35[*!_·D3PP>GPV}a9?O|{M, ߛ=/~=y~cpߩ>t ů*'?~p{U[ԨbLՌ`2zNfoJTr?PN㔣 2Mߋ11k,\Hб Xs;. u_֫ LYϟ|k1_l(|U2̅!1zr( g6ۇO`0_3?4Q_]HO}qK&o*<k׷")cWF+I}t~+jc YQ33AۦPiP=9} =|?[pB yds,9ޟH6ret~7؉Fcd9}CZ@^Lk4hM6Xc>QLǀ}EUPc?}~Hݨ{d }nx,/c~s7$sK@w-dDC Z-@qO4[QǶqz+Z?6ƣHH\R>teSsI5|%ΞjSCw-s.cnĹJi,q.r?E8Te4R{*q_ a!1hށUNG_㡁= ~ 3eMѵtm? $9cK%J8[* -l8ܷDXiD&џCe1ƖkNnO#_0fxT`):Fc}͞N?_7y\2m5uB01j1Nèep+1og!/ۜJi4k!F 㴱6Ή?913^" 9cKX6-[_"cXh\d88C 4V{pe8jnmchr&L2Nvюd$+l>v41;DrRyl:`F]g4NcGR1^n?Bi9cqXg:4cU)f@곑r4(U m'[=ϱ:iM3#%6 v( O>FO_ʶi0?RQ/cCʼnV2TȯQ%LT[vHi-%>FNzexfr8ʨvFѓIS!-uBCmQv NSהQ,X*S8A_b 9:Bk1&7;ίcquL֒ɱ>c +0U\8*ԆR͖"a1NG0EhCa4 8CD:"Cp$9l&[aP1|8a r}(MCR+9>KEy+4C(͘C}SOZm [ +Y#M`Lcgp8`ptMj!F"'D2%/㜧q9XH6'rc(IzŤ$cC cix40Ɖl N7 b(8"@A!;q31P1lDإEfL:3Yj4a-XE^` (S՘$9 R-g("N@O01#lUYhvIy C 6! x8T 0q 8ail;FAl38$ Ґ(i(*GA* \5 ZJ"lAY[r'%pΚ'k18Y)pƢ9YB"'YV4Obt^/R0xpcLUىqI|,QS *Ur-@W姉?˘uض6M2Kr$,g?UxSZq-"T":o>l|B@ Z"E"2H׎@Xr2lpYJq\+YN\gʿςhr@hte(<б{b{ ]g9g/Dğe@A0g'Gdۆ?KƢϒ't-u+>›@MRgöI T8&,h ,8ygI? Ÿ`]?QlBǟ%~ßDbT}{@ZFp@a;-8k!(8@-t|f;sف>ErDBs\fZgfcj}fusga.$;ȚZ&ͻkpnjeKm~Wz9G?K1͏<ǁ 6J 6pjy, 3uۮqr}I8d=}ȣv2RhiCGZ/QCװ %u.,ˌ2C}ATjAeacRkut>W_S%[r+DKÍ<6hcl?~_jy{TxO6O1sd!5412̳Nu@ud2D_f3;_vD/~(uEai'Kþ,K! -K).Zw(y H" {k 8KkDhxY lUdh ^y%a\D.nlyRx \*!5{?8նX xEK=Ep N3- 9mG$d+ҦU Ot zX9PYq4UklQMUVS4K0y9 /KP${u!n43݌|UbX6 N38')+V7Sx)]µVr5f:jOF>fl p"<:lڢocy*_t'-w9جG׶e@xpN6%7$ۮ H"1Y>}}!o4 )Xka^f\mE%8ifp[b~%K=W‹( *as,m"/oJ7JIp( )z/Kpy:n.F /Rk=Wn {e1:l|hl^N=SȹNpC$bbcy%Oow3N.N 3A8wrf!`ߋ>v-J1P_0 N3|x=#K8ʃnSx)]µ~EDbFobiJ %LY )$CHSx!%Z Y=NyTlʢuVXG~Eh7R&LI4*pKv< mB^Jp} C89!Nn Uo&jsF~47ۍ@/y<6/E[Stz\.j<]% ztصȄ=98Xn Va\g׮]޳.|%1/N/< w<AC8QGU<`'ӅWT㖗9uSnnE tJmıYڔyC78i.0)fxh':3bc$jӏ*w*3mn㕛C97QE"tx'@n\q ̯ UnWU.'_X|[E" `kQ3#^&w_ys?:s-R4C_ۣ+1]Qk4y]J-oh_#X2QƖkQk_߿T\z>=ޯ8M%8h ހzh2VtDcKD%Eʴ[" ֱ'gDx7Z-W"|?fAxo `?+ XG;u 19[ jrV*֕jqT-lԱ[RgTRaG-\/v=DݛN8Lj1  #@>H=aCRM/08ty+Qw@ ݕq{ޚEq9Z !1N]C q's`,t5TNaxù#^4zR/46Xnxw{`FI:91B=X!j9cͅwLMZy^KcA%45iݜ`vr0dT6b;|=IZ[Oi'B$ĖU7QtzCYuJwb'? w2Z""7ث[c>ՅCAb~ :+O{Tܙy zj1sRU УV[ ' Ur opo6j(_i)`點i <ը7z"ţ1+٨@I[)6ih%̺ԦЩ,[46ԃ )N]զc"yFZ=.:Φtʀ>nt OWk4Ω&Eu_ʶL&M&M8xi<ih l7G+E2i=:cM@Z׀tHģ](E5"TǣpDxYGbM8Zu7nQ bu4+ŨcG -$@8h9TωF?KTpȚGϤ;G1j8Q(x" d:-~(Ʊ))f-,:#LL,7~ExG({"xo%2Ģpę¢sRh =>{~%,ZpHh9NG¢\⸺_hewa^8RǎE=¢ן&EO~, (GX;1܌7,( c Nk$l"Qc3qV Jʦp$E: x+ᡠ9f ℎ+C~iBQ D9u )Kd,,jAQ2ob#Nw0LeQ'vU`hM,ssgǢpsXnNQ]dEq Evȱ([!!= EӉEsO\h Eq) ɡYh͡(n Ů*1'a\( c9ayxQNu ͂vD DMP cМP4,МqhNġ>ǡ.' x~DqIDq_dy~Q0 CcQl+ jF@18F;Dq CKq"0P3: E1qƢ -jǹFu|CY##!yiUcoo#:p<ѭC{硍q4@!tH\2Qex`Iњ)c <<7X>;ee! QW<Md>ױr_ diI]^ gP g˵"(]{":5\ᬻ ]Li\}8w@5v<tiv?]_2ı\ּFتj}ҊTU-]VHK#Ŕ=\aAg*b66g0\6 pP0 .&> c@mP^`Nv`wID"h-SU>t|%Fux^ $.cU1SX0{ċ3&Ĕ1`gjnqd52 &۽74giĆTs輀r,[\_Øy[x~ b&sWHd[@ ki20]l:νns(7;(xIr3,= AyrpTeMǓyJ/IǠXI׉HRtuj2\Tw}4wkkgm~/Yk op9/|oN{3 `Wl/%ٍ n^v i&BZ"T7#*4xTe*˚ď+1G\G}G,=:,̣ϪNn*b*~:2 Z8ؼ`סuMV1 ǩ1`ܴMiZSşSotSQ;8°a1zi|j(܈!!>Gy:шy?AvqѸac/[nxlIpy !Ki^y^ Ot zT0yZݜSmn̿ߺ\ xb`d3U}!inIkA_x)bR^Kcq|F7*g z , N3|h7͗n,%\ $l8ծߛ2,rc手Nt)plf9dI8QmAZ7).Z֭W:q9!f7BEC)pQI3B]gan"W`O`aC (gƿ};qd`޲lKhU7JҹK ilF~49lvO'WFO[$8<0NKSn&$02ʃ= .IΈT1ȟ)8i vBRtM 0ifXAyh\yF^ OQgL*pˢ3AW=\bj&)E]f'Tp-䕇hCzSx)]µZySZGN[yw; gHeh{nKiC4(a,2&0mn\=%\!swsZ1^6(T8cz6lW>MNSu8uaeβWW6X {9ݎkr6NqR~z!OO9ډ o@nWuP ߝx8`w@c7)=UfV3qlI8͈ m]R(,$"6ɶiqn Joi[f@WyR>8lj96FV,>Uy&㖄x'â$9gzЕ";':#AxGJ1KGO#X 2BFz{#U<ÑŎEMr6{W%@$sP)SO'<sӲЇ=$\+1Rp3*jKo6'}ѷens fNXf2\niYGÞK) AT _iSl Zm{T[Ҁ)hR䢸540;8|ݖdnA_x)<%\u=Cq CK +mؠs:{:N;|qdgsNXIWXk Y#]:^U5ĎԄ w.tMo2 {($LyH!']<1ny^..3,$v^v@`Wv^NհeWSd:RN N3B$n֫iS /KCR;tAG"WE{9iSX|dfB'2(CCnb`!K%d5Ge9|[+b)MJ>L}tICn9,Ԕ`ACnbRk=Ww$%F="t-屧HM /mRseAR _~WK .SpH|7HWhdQ"{;JxB;eowNcsUL=I P\S%B6闍C"Ijv-XQb1Hl*1CⱧP)k=T7mۿl <#6Jh+v!Δ4/ġkYϕiJ).Z7n/c,ZtLst1y\D*8\ 93m*dR /$Tc={[q]TBfшh˗=rxƨURIOy iS,L<.ZuZQSjqzZѲ2~9E['$je 8$cݜ Ҍٗ|jc˧_by}b0q p<ņI{o3SgPkIp1g7^y**P!]̧1:&p=isy,txc5zPgiu3hC3)rk=N>?F'3BɽG1:moBd)4Ԟ? )T>R~_VnLTO&7TX4ǡL0ifa_hLGbP!%Ziu3w`qxY >knW{אP]~瞂hS¤nqC#C!ZfBJӮm=PoLL˶yU.lY=amIpZyȲmt5Q yKP*#`@ss=^IިkSv|@8ؠH޾|G9"^DIxU y(_29ڻ*pK\b^)6 f@s C_y֑gSrKµ%[釅ܴ6#\GZ0[^edC0=%E-o8O1- zL)L'_6ۆ{ӺFږ'`>S &@$s~6<s̷ e ڍ{ qJVB~7! w(6:wZv xhM輑;%V2JBfpy brk=ZqN3sʗgӻt9A@RnI4-N " /31K) A+(0OOI1l[J,%8qS6U2s}\7P%gO1EG48_7P-Y<^JpfZz jqXy$iAN#vأ2"md޽'}虦E(W9U"1ɺ^>U 4y{(.N ƻ7E˶cYfݛ)!wޒQ)NsTtO:O$aC']/{-,$oǷP'G1{FHX16L;ff:F$)tV&wxUt.Q=EGArK~}~XTWW<%\+AǏL阹8Yy%F,\3k*-]?Ipzf:}3];gz;K).Zi1)YTC*)#m)˺I3CbB2p*Ķeש{ rJփ͗S! gQ=KFUw{:U N3|b/. bҷ-klRkoR "hݘ D\Q0+0oD#=yMD8 HU<%\+#RKI"˼DDM8QLL!. N3Bu o*қIk8Ϗ]o &r[QCF_a-.CyC Q,%ampδ JBI:!ToweK+g߶̓ /~Xsmm>UNs|+Vs|U t}c(Λ𗱧vh#T9I)RVs>EB Myd,8U '&ưQђ"l٥-peO@} ep[ >j[4L1KHhn*U|=WQt\۹ )}?WչJu\_ULµ -͠2<*fSҡy$r?S(tKt򠗓b2IB`H˙GA/J1K=l%*HTQTy1m+^ P(Ipy 眉N0.$M6Dx}K1 /埳+70//y~OĠIyI?R{3'-"5w/-:3N! 1g:(|Eo^ūXQ<|YrLq78W%qWXҞ;@ k3ֿ*>c { XKoؘ4"Ꮾ#f_8 yUg݁QqVJ-&uo/RDޭe&{0|zk|:5Y@N'rM^3/~E25rc9_N r)$U*ѷҒ=dHˑKy:*mIRT>{2F zP䩨mb{{&@O"-!xKPQI]bջ=~ ,-'[jaO^/?߅_`O1rmÏwi@t-xE?}ۻo~ǻ?3^}:]YɑѺ)yߌǻ*q^A xh={iTj%?QF#Kg|wC4>ncnNL>jc/ӗO|~6gço??}y_~6o+oR f j'ëYW#3blҘ +dlrW<[cKԳy DyeO_6f\ToZ--곥-*-jO ,Y8cLCMN9=w`'1ϦIvѾy4\c %禟?۠? {۟E{Tf^{*q. ,qTlmKK0ԑ'T\RTf*q.SʎJƴ^mZ/nJ4BSKcp_ߙ<^ !n7g~[4،'n&%^ lH!l96lA|(t^%W:4&A7G^ql 0o`` \ڠ.ixq\EyJ2n@Ե;>|8v1Z%{^gk5Irv1G2Ɏ!>ӓy#ˉd^5#Me-~(dbY幢= /{t_\raٳtL4goI271Pgy;9CsA5@2 Wfb[9Lg,$nR=׻=-^МǓH='SnY16{aaC5b)@xEYEo39&{)E>9tCA)4`(nBΪYcN&f|b:G'\= PG>n͔`0`g9Z%!K -8ӈY+8H-& G{P.?=HJslj"c,R,9 b` Y2oP05lf6Wв=|oϽIi<"5bs#H,q7%<nHsR fgVYf-\/jBQ#Z`)݁o0͸⃳ g ֓%G?\#|xX=ga3foE%YadĨL7l,8IpT'1rZ0Q I^^'zy\v  yy\FV@+<:9knӳ/-dRt}` -4CM{WJ21Qj3 ?}-3/г`\8Ӽ@-CuR@-C?@-hskd\ <ȰX !:i*ol_S̪p_~[n>3t"n_DoF1ğ+i4 f U"iAg֓;ĊIgg `O`&Itßc>_g~%U5uCR94oSor;T Tl|a }~A }a߅>І>[ |{OܰxpuPH*g\ϰ6n=qCS}B '-&iznxg |A] )ge |1'\q'|әƱgwJ$$Ă4J#Y) >uZЧ=z`=|}ÞL"@L^'^.;` !O<Di(?%!LcϔJ+9^Zα_ѳ޻穕s_;SƋqĝaΔ1f!${¡i=); wYUs싲pF8R,^r Lh8k:uwڛJC9Vqg pmӌ<dž{i=L<Ҳ3a”y&`0!&<.-isBH:v1\tSd)vqю+sM ՚]P ttPSdZ]S=O҂BX㮱CZ=ӗuiNp-Dr P[]MJ,_`o;[B-jLs v;ڶȾd"ԦmoW=:N 2Cv9*'G)K~v-/7_ݴv0<2tz^&:lb"\_e <|BlʢAۭ̅0Qv1̙4pbsXI1w;*0Z14fx^&[ cNK7!e쾹BB G c 1v naߍٸIRw,XHhCM΂p_cO1[m}la:v|QL*ްoi߇WfN~.b쒣=_eh_1x ٴu{Gm/1x9| jhjg X\KbVcЭӚmSc {hߛͨ}~?NmVİ)RKSCܭ6]. @er9;yyP @~#+ *eI2,:خ˩#zQ!*LPu,&YLUT:J=Uv4"]Fw'Y֭xvnX%D+58+?^47RPk9 H" {k Xh-z8yS fߺ&Ι{S>N f9c%DFyRx /$z̬c k/'fʅPd4JLBoozL^ 8X(_f Y?jM1L8'Bfv\q[) / ULH0.f4<V5SrK«zn{eq` | Cx%nq|lxhXEk=MC}lM yRxYJIxUa m?],m> D9-& 9H僑"rItU9y L-n: O޳qRLQ-@ vd^vv=xep*"k%'8oΌMT/z!Nj)RQkIp* ZSx)]µCѴba^6N= S1Y'MqCf9 B.!iS*Rk=v#GCc'vza p2XcȄ>=;fYB `ϲI$92琽h ưHֈKN)4y>f)<%\롺%B25a@`b̶<,ƭjS$CJ+}mI(T<>^:4Hqش(3@pZ;)po$8}ꥪR!JymvaOt zL,l#Kz6Xp;;k'i12[qR OZ(/*n "Z]YΩ|X-.|@r8%i/W< /KX$>8MGG;Z=ԹIpڣ.NSy*¤ pK1K) 1Ḱ1۸=Al!UcOA%iB53D:DOZX*o)f KkЫ;Ѩ |FSx/Z*)R$8B%v43 q2#NYytBE^DIxU y:Zםޠ6m3`I~83(qPha*q*ߢ ߞy^cRk=npaXI&߽Wchd>KإE٥b*x O.N0vXMdrS )Zi#&8lU74$|84d⢥=E,Kpy#H3$&+2=%\1,Y&(9HcQ{"vut}-$1j״p%^6+yOs &U;k+-B2:e2])h]D+e2%{m e2]).ZT:m2 HFg^Ok6^")if]qxWoIy m5S)< .#a]U1nTǠZA>NRql&8ud2 K%t~r*br$VE\h@4![U˔g8n0蕮:9rZ&o)- NENGPlʣy)<%\뱻$\ fvj,!_F)Lrx>w,sΙV$k_k0kegjjUPw S$ M$8ʷp'l s}Ctep9A9ޡ"k%fwR-.IefP4;֙m;dfP\<*пt.Q3-XOmphfZyJ+ϑA |YU3Q+$P 7{s7Q/i bGO5 -BhfW*H0@T޻eN`ZB1߂.}ʘvz׽$8MG|WbFoF.nm萂t?|oz9j0 xD>*CxTsEõF~^U Fc׶5{їm6Mv0\πZ`W]JowENZ֓.$ZqX̶¦t7XCcm8)1ur #Ќ}ɛ\2nkGh8Zewjx۩)w>}yX/ûǧw+k?;qNK,tƚtœB<mqnnOt!%͈PcFmnp)RY~~z6"Q>yzfS-OSϟO:{^UFHW%C>|{>zˉzwVe-cYT0 yx7H%+;K|÷/8faC#w#G+h![l3C>FFjWW}}|6#h4I?W2zkX^}$d6˧H^~/֔<|^哆1>;YЏ:? k| 0/_ɪKzx4Ϭ d~xo-Zdj=4#C3~Wj|Zd9҅,yoT? w_]g yZ$ ]r0rINSzˡ3idr()"3I]ie)Kڕ>sXI)9z^}G;3UֆubEϒꮷIkݿȍt c#^lՁ\Ī+xS\FE sRd싫J'.\ j(1m'B D=@O)B;zZlyʁ'1Åg 6rNBt6=c-(5U3y->:JƦu@hFO+Tu9 U- Sm d—LoB8_ÕŏEH8\s/ޛ wpHa $A3xpZFyե\>No}#gȃOOzl(mJPoyXøX\Զ3j4qa;oݖȾjg;29  mU@VB_ik.*ʼWIendstream endobj 423 0 obj << /Filter /FlateDecode /Length 2502 >> stream xXYoW>n!udESldE}.E:$Gg?Irԭ i),]~:nw~7WgxmĢH -j{_E. OT-ڻJsvC6eZp%KԆ8IQ(6~Ba6+ؚ$f˿_glJEc:e="ORnpbe n؏\#͘@0;e$q\hfݜ_K`ΓBdsOd;0Hy1+!$<IAkdT|KH}9Q 6 2򦪫kCӤv뭡Yg{gfmz2"O(uZX ]q5jJԔ륳5[&"#'$z_,;;.[]UďK ;#0|6&<ꪱeל۽'IrvS5%yN<͏(C,4-IBTÉ5v *r GQ_н9nv(WgWʾ?fHhnwP#> F߹s l{hZr4 &J x D *|b4y4 هj ' j LQ!@+ۦޒOs& er(4gAy%{3=CL0[|Ld;2xMnw,=0\WJY-,kdyjY{ }(f_vMً)7Uħ}pO @\_Dlk!ej\Wwi2w}5RhJJ$6$u5CDz(*%=*Zh;DQ Ԗ%f 9ׯ߼9/3Z?PQ5"#CIFʃKpy# Wp)Q* ^PX5;wS<3윂y[`қQȄrp9N?ےKھuM;$ HbyN@̜+ou6GR4vۅ%@IێO N<[U9aEfU`}9]YVMIq2E&Irqj[Abl{l13ry=AG0/ 9 gXrAƫˉˉcYPr+Q0w,,A/蔧ޯ_vE\?'7y^g7&q+n@^#=D?zVZ9B  $#)t@ [d9I+8P `!i1dBp$O'drtfHwC?Y5B!FG֛z]'9h?PC<-==9 q%()T"`tzHSaF>P5Qt5U^/oobrzз=\y4&>=96TMj }݋y`d99Jt=dI $@5+-"<+ʔ8|(wg(xOʛdeQŲR'=6ZD_5P!R n`GهjR+*[-·1ݭ+֤A|κ#]rq=M,duv2C4Ns=Qv] *K9*IyȬH/ 1~Tw,2FJѲ ;-Bo7p莦LxLHᥬ)Aʎ0xP@\lۉmfTD(PIN D" ` АIX+Q) Y dFw<[.EƂ:0o$=S9͸)]3.7#:^[$|J/0/-b)'F&'F6ߔ>tOyN#{0p[pT쫌PI%fF.P{9&l"V[knr~m.H)c6.vh2Iԓn5UcTsr R7hX>q  %Ƶ׮[*[[c89Y-RXpX)LGCopXՇC7Is4%7͂jq0.gNAR 0tgoON 4{6apF QEPzп7c& l=9qu6+?zu~ izG_Z6E>Li#S{*3Ȋjk 8[W endstream endobj 424 0 obj << /Filter /FlateDecode /Length 15568 >> stream x}[o%Ir{0q= A ~MΒlƿqʈ:=CïdeE-/__s~7!zUJ!tzoQ>\7'_|߼O %]piW||Ítնz\}?Ǜn>~||y|Qj@'Fpmx.\~͇7o|;|:=99w~׏oexN|]w{wӷo͛疫OOo9]ow}?ֹoB;rOS*]Y1Ryk)L (1C9Gr:'h 4tΑykrs$A9F~~^ ==s6R٥ƹR;H 4V,R?R٥^έTVb[޾ )_S)s<%POym/:u۹Dc]*[J5Ժn]SfZZk j zW#3(Ty}_@/;i vѮRQ־)K9WƈFE&1n.Td b~^Y6T.Y{z8vKZ-7dĴy3zPĶiض1+b5Ԭ&v$'Ju]! J q82b5DȧhGHۯ~oňybhl-UּZ}1mՌDLalK͈(+T[NKrZR"*ň] &b f4㳊' c8A{?[ږ ӇV?W-Fl.0bjbm$2('EEl[.EL[Pw73B`D$%}bv"6C7行TE^hla{1R-{)ghzRg0  Y)V[jJw+׽=wk:ZW޺o K_5Zd"ֺC5ѫaN;ࡶv[6l>t.H b.)3yEjX8FFF󹻪+9;hbe-n: &AR?ӠE1UĴ˳QVRK+\,QWD/Esq m^* փ3A|Gc.g+b_my) 8S6Od b5R\#~] ͈9(5qYXL֞B\ڳVȈlz1O.R&(Zw6Rq c솑 RRyAt3F|\O<"zHB~s;c9dC:RVȫ{EctX^J?UN#v_[Rna"W.: buZ]}S'bʼn~u;ߘVAxMy ^YzY$pF8AoW9̲=#ǒm"~lYN0i%Uz F֭ b |@_z\YtmC[-U#ALdc 6%Y:قxB J ~33s냂ؖ5zq KDֻxn?0\%>BlQvGaf :tV#i -fxXTt|a߱ޱؙe5 ~ͨYj:֟&b6B0 صE;ΏyE|yVm:kp_#vrc U >Q}[XQ'>`W_CU3#j: 3#7/E|HՍL&aSiw۶}bsg~4pö%V>dpX)I6OįdV[t#M@nU/e"&qU@1J`|bǵ< CLŕr1RW)3~W<+-6YP;̂:<)/9/l7VDs+ xwu vdh]vd"֞!j[s&W%~TWTU{6 JȕuHMG>|:!}>^*\@ۜCuH9c>!^WA?byx0G=h<YM6L$v\/@c{!TsWu|ޠg[$e,E)0ZMJ?j[ⓚX0)IᄐP"1#2$-piĉ84I"?*Ӝ ޸[yH ԩ2{ih5e$(vNj :>!` œ.cKx*~Z0 AfN@*"#F x$}$@*L~Cu=GG|D _bDc]MsM9:8UI,FgX\Rqb367/-sa3BkI}- } Hbp;O2.2%BXyYL:nI^"k5! x :sxh4ax0|6.BtF:+)T tWx9 Q9<2* 7RLu'nȐ1)g (1^v@$oht4*8Xc-6$N4Og:vHx scAs>=A-| 86e6::H: @'HDpy_ 70q@8 $JB\ RA6"{ NN=S!5T" # oIX!InIrH?b¸KֹLJtJ(.aT+cNY#F#R0/;U .qOz`-:!qn@H[7n cH.I|]kahOQ_p:脉UŎ3@20yPCoh_ -L \G#-|M,RIɸ_TA*Qh '2(2 IZYmD (R2@AFVP a%YF Kbh(KuXX Xɭ@H&7ѣQ-mH`~[ *#;X7RhQ+Q$T$B,DO\'syQ;7T d (AzlP*D6(*3cCbF&e),U;= U_FXlT1.dZ3:Z$RnIT73N_PemZ@TB/8=bÆK 4]cBJT<8bX3vW7Z%ɯK# @s,(E/ ]/cH0P^Q.9e-I`KySLX KkpJBYF1H$.T@eYെ;>hr-js$6NQ3-$ r*OZU*/R+Zz5efҫ)5{5^v!vd)#Ǘȇ g:WΦ_L^~q/z)&HK}#m2Azd)R.%R.%*5)ӹ}v{QUJ](Ҹ?u"$"[HMdWޯI}ELK 6pdq"F A mf."6#5U*b*CZBZY5 Fc;2}WwXe*#*A;< \g1֧'ٕ" $7YT*$u~ `FѺ:48TuVK>PgU-yj(R1 #Aֶ:Mֶ14Y%_xjDL[堉rDa,/\\{?cSwC? ?R7kKLg!V)AoYsB?XE$&axs81AjPdzG.uwALl.7)N5,0DTۊ@1^=ps,5l5qotFs/Ug6GPlv);螯xvPxGF';VTlE5SC_~:}h\mn:걹H+8og7YX3Jqՠrn61~ +0k\Ek^Hήկ~{Tq >o8* Ekж֘}r^8P;ciz"e"T%2*yb-&ⲿ]՛n| T5ɷ¼0eYRWa9/]ZN)0o u҉Y;d {q_W2[+ƛ'zգ!rlUW&v~E/:cDVk;?.za>@ÉNMЙv HJX yV6F=J.H^$~4fCRLZf64L664!̆&)†gMlhz6t Mf6tA MV:4 &[&CSz!C_dhv93qYIiB z0t!CYLW24p3424#t|]x =&͂BF/W2@2 7#dh<ʌ eCܻGkJ'6hUBH4Ć<ʆ-2s]cҕ0UJx&t=CӚ G6 BhthGCVia%Cc=&v2@>2̅ wI^‡S2? YЃwduS =JPGJäaLsQ̮R24" =Rx =HOa S =4*\"C#t"%C9.!Ca(иV%C}U@$f =xn'CiFHGCF*aMWʅFd3̳Pم &*%B$B ۛrGb(ʅ2\hDW…F͆ =~p1TNm…H^appqXB#ƥ\h`p10{[#J"`.4-ῄ P M{m…u.~pqF!+B!C'dhɐaZdB! D'\h ,!Th = >F z2BuS%2r2f1+zIeLAJzRQ!S;iР1As=*4hDРa/Tؔ4hDG4hD=pԙ(,hD,E& 0aA# gaAMʂFD‚Ƅn,hD:)JD6.@iW/q+t2_#<3 |/rhР"K8m3O JW({ `7xp0 Oxz\> 2G5 4B DNM\QJQDƈv qPaɘISVe0/G'egrQg4cu/zޓҞ-{p޴Q) {U8sU&6OeE|E-2eXe*r|bmIjCua"R%[+Go"4b+#4XypJ`2ZN3^{\ZuL,UV 2GߤgϢ~NX榺'6 DBCo`<GJ@A@.ѐѣռ0جv "S'&k5,ZNB]s5\j?j` 4Cd"ՏhMOF G鶾uZU*E C TB + l18`U4K<+[{$laly'k$`]1$^40^R #=z˕$5MFM$TmM<@d,5s-(),Qu@}urC4D@ehР~on?~L|>iJ+tT^R@^HMdRR.#J,RB*]&K_Ndt٥1RJVHLEJ //>7.JEI*+IV%M)(iJM%MEI+utuZje/_[J_k*G ݫ)EjRUJڻz*T]Jjvҷ46 @4(Ϝ"ێ?v,Rx E^5nMd;ļ ږ Y1ӂMD,&Yȷ OTd|AjaRLt[q㘂&hzc4!ȪUUELhKF{"N_5x}UgH13Tqd}I#wdjJ)b؜MW޾|"bylMYȪ{mPa8#$@iX ƶ%*vwY1+MY Ws^6p](u".FCȮ-Fږ"KkK'9kĈ|1a(R׸J)bzO;>nɏG)4 &&xF'Շy9``TXOh]di48,HT:db];bFnS6#y~~Felг-{V;"W@#U}LRčt~ϰ[;XM;X . +䥜dV,2y׫z5kmb F׻)`H ⲧ n.h+8ʇ D5JnY}l"k;q+`Gqti:))ATpyq".*$]IhAH *-!Zm"|U;bˋ1Vwͧ.]\a"jsk67T?Ik*گAnXN#%k=bvwD'Upk;vkk"_qY[})b~0U\bW&bH<đx#!'' *W>rW]^u ꬾ։&b\ռ#.7jD9l3_}C_1IKέ᰿U,$8 hm'<@jP׮0*6K)<îhLčˎ1 Rmͯ|(;J%:EJ)[1:-6k+*ЏVxa> 1`s Dͦ+׉6;|tKUh}Y߮5WLuo&Y76J*gvq5; lPdzng.-E\-w;?bu;T6gW_Oĭg.zp-cReab`M7;ڊm-E'6+2g~Z/'\-W Mcƫȫ)vwx".u5b16lb;DQD>,dWHvdjUf1sNEL^窠CMBwC[ؿvUf"ns"~ruD;&b,?3N2!ҹ#^f;_XU'9qe%gw`j][-KS:By5 DV/k]ϓ X+ &ȀL2wMIٚ"T2w+~2f2wx +B1Rk Q=xO "2<[殡]~mS?g^i3TK!mas½c.w A( zM?,dn@C,du띇Q܀k  d֍Ϟ*nU?-dN=+ݹ*_ ]"ur-W@6q|UuK]\%5rW<a.wOH tr+r[7V$8 ܕڹOM>dMH(]Q+ ciBf.wAۄp wA0MHZ0M]b{܄(Sf"X$nBCc OV a>7!O` szߐD t^"M_&;cT) TP5mSw|BKDh0b KV2KaIC.H֖~]w M#S 19k [Be!< $V֏>bYsҀm:©$ D`1ͯD"t9v#1q}4]R)n[M`[Ӫ-檯 E&Xl]𲬸 Ul2tn [v΅3xX̤A# eJ a1ɺ b47vEGflM4 0{]/Hժ]R+n>w?,"ZB*f*eơfmuEL_#?{ZFF'dWq90LFa OҎPe5L^kB낃$XǼK²-'ULPj$V!yrf~;V.խߐՍUxAM)5》 T=ֵ-E~V F*)xJK<3ebo*z"6J: w?kW4;.^oYA'AL6;`$/IKd$Sh[nyAmLH9ԎRAɏ+Ðؒ{~j0gj݀#Z0;b*;bSh -;vUf7)2MWe˝BrUh1\ Ӊe8 8 ˡ+rڿ*/ r#p9T! :R=~ݑV,{0/JʌKz>@T}hJ~?Ht@&a[п E]4H?DqOl\K|g\ \pi ߈(<oo~@ԙJv`!pg C DjcPNUO$)ʘґ֎ε+J:WJ ZVL~yֿw=p_[&\+p~ 37qٶTt| KO >g[澠KÙ{7% &Ɣ`RPv! ּ b%"F*h9E.wUH!?UJ`4.ʚBSY*JDfQRESShjJEM(Z4ThQjREK\o7֏^x֕ZBًK/[:~9w޼.~ y w j"zIJSJUTPx{KE{yp]1 j H}4п K9 jѻ RCM ޼-j" m-ahl)r樓R%o~RGFח|dRSB{-a{Y%E/jk.*%e k)k9?}N?fp˝>TZˣfwAwқ-Tyot]٤lŝ'WN tO錞O7yF"/) G=KbA6[^* }p6ex 6Lά?|~z,{3}l];:= A1_P`A58̀cx ʤ Z]o8\eݗgv~ޛ.Rxޥ[P&D'z27sr{oi5F@dC.ԟ}{Rp`BBӧ'LS>tO_&cG )&S!VQT(E-͜~gQ;aQ/O~v$? !ߏ !M6]it0uQenʋy*)+%]W4TI^EIaWY~n6|?\?Q:&@1s*w/O.oۦjf[?AƲa>n8thal v h6sq__Ƭ!Ctu=?) a wb9,UH `#̋K߾%/OyO Io~s'U~ZIJ7?t2W?lh/FM y!F~V!hnP"k\4ƶ]!EN2=);'f" oplP^a[W7.,Aticzôʁ҃=&Ќ\ $?nXEģ# ٶc͘)z84$?`o?|{G>=Re p(/1AOh*RO=öM㜖!ib>8ѷo^e@.2 p@>{Jx}BUBW hH!*q&c 7 i9pw`Fendstream endobj 425 0 obj << /Filter /FlateDecode /Length 6726 >> stream x][oq~S I/A'>8m 9"ʻKC~{2U=(%akMuwuuW=y#FJl|%)7?yctm^-& no^0ny\v(.GmK#0r:wՏ~7F9*W 3JQ^(rs6>z# J)Ǡ95`q?mޟxL]4czn/KR;6hq0conUp]*1s aVoO7:vfx:ݾ=.\/F|00_q6s"1~A$,ի+ ߶Ri۶R3Jigi_3J9X}WEZlcc##ʏB QҵRi `FD4B!R>Q JRA罔80+)1O*ޛhbT L(YtkyuՋڕ. FjFEԂ4Rŋi5R3H}-,BЃ!GF\rAo(oX8K*`be,5,u 5~=~= 5~=K~=K5~]-R_7._2#ҡY'TYFh'7 !e Џ-\h]%lJ,2>/6DCB`:$-̀Zo`9 4y= X1sY"xmB*`DBI? z"n[I h˭T^|tfVjY맡Bb(l0K"*Xtv>VZ,kPC}a؅j+!BG=PPOStB=moO+4S}TsSVR\ c*aE|3vɩ~Qgaη15V 5h@4.Y,L,^@=U!Mb@unp4%i1@)[ ʭgK0m8(BQ$ҰFڷ`rjT0 m*ՒCƩ@V-a  Wyo|:A~'Bˋf[Z:sW*N!B.ȬLΉ\tc0 ^(7sfږ³0褐QzX#V'ɞH; y{bߧҧ\eZ[HA-k<lbjlVo2-|Y^"SxSdk-ݶAkHv!"9Zpl-úEr7HsT Z$SZdǩ RسE2öHfL [$~"9qHN. RP$"9HNv r?1҆ Vh6<(#9;/H+%[ZaD}dz}nWFx_K>CJf*% |FZ oAbE1d'3BJ[HUFȈ2 ­#Vd(`9Yghj֭bR@Px@A<"#TJ3sX9fJ1gHGTAMZcJd3F7l M0#Կ¨{%(HcD&ܢD:i,*N!}AE;2ު1#111V:?`FZ)!KYK*7LAx_Ks6uPbR33:K B\dXxy Tʱ3ZlZ'NT 6{Tu#󚌐I!RxCyK΃=f϶TJߜ[6,S;>GɪpnsRE@E,Y<0#Ԧw//qLVx t-݇2el=)lS -M B"#I̛ B+k*oRѲ:bF 3ٳ oUZ cgY W~^i\z& U囂v珖L2Kf 3pdy3rFe0Ƃ*=nAa,B BvŠ`N *+TFFL;S8;rOaQXwc}DWIi=tjjv<_i폌f{uu]c|7\$e63ªV;|C ˫Ȋ3<W.OW^S/VBG6}}NgWBwJ1"zz]mk;1yМS٭ Z= B_AN ܦ1p->Mc"yjEXeޞ|]Kt)ČPKIvU^~g>vr_A}+vNufw2BA*,X ""T{1ӼL.=HOC B%;{^X'H&eBp aR%R#GQ~LVjyId8{DjyJ5oq:3ogm˗H=/z-_?ܻ_xm&VBO @G|X^%wO]2@ܼ럵f$!|-Re&`M$~^!Z^;/(##-x :05Lw: <&-ArEޥ)dܠCv͗nvw>߀G/!P|HߠU* i)oﯴEٴBWBKED-ԡ* G*@+T?0 o3#%>>n%x*T2}/ uЍ}ko! 9%`^FQh9nC?;0K8K5 YRJRJRRRRRZVe-TH]gJa*7)owZF+kFA<$Gezjm <8$5#~qx4V=cp[ |o4wuߖ5PR%nIS=7$y%i{i٦m6o*Z*N_AW&oAMk ӿ\߀V 7|)gǧ a 8Hz!b1l:J{[MPJ @o:+;R}5nծ=t)vӹ5UBj)4eWa<-n/=d:77/&FXvS2I?.UGZak-֘suRcYw~^ǧp|[l=ܕ|~ (}t9$ޛv)"tYϒU.4 ~AA,OwOQ@|/y?~NR ԩi[Tdt92nZzxދzBw->͖UR@q8r>Z>U :l0^K8 R]GaiyWuIYnvvwH߇ 1!PkHVAwnQg`|ҤbaWyf0BN1+L2nw>aMP31ۃWx?M焢Fy<ݢrdJ8kAeìEr{v }0h"}h;P5藞3]Aa=J\/CsJj6UglōhZo+fk#@~6q=5.֢L sŗEޖET9j u -SG@j`h~)gGő߽Jz Ǡ@T}c?@ZcҴ\rÓs0-V;|`tfo˟rHw5i.2e!XG$ϭ[dYWk}nhI+f/#2CMd.b`ߖ#P킗pw-.NJdƧ"}p^狵)i~:LT\%ֵ'(.]MJXݥ}6->Z#a@bѹ0.Ig␗0'ְ?>~jqDKk󗢓vk<;rNv_`BVNc8!Q۫5eV:5oJX1ݎX+Tѿ1"DŻzgb@Qux .9l`2n1ğ|~ڿ/T ӴrɄעjIOPx L"<18<*.;gP~ݝs'HN< E,Ay?\8)nϻԽgN]>&TKF9. I%Ax>͢[ii鼺uF"mYb%qFp`*b㳛iFe'œaΰEc4T[`BN Z<ÏD߼ Hmk]je[ yWͪ?f6usy={[\+'XO;:9";)`lފYXdn&Ӈe w_%CuBP \4{.@_>?΀~|RV"7XElj(t It cM&]Z˚yz5i}NvL?uxY;#HG~0tHuTyY-aL#qw.8p^0STK ݯwosq>/|7pk[;9#~{Y˧E)O;z?Eo/-aK=2RڔԶ?n:U9/&) nGn<$K,%ǶMZC tҜ@f]t;ݩɕ_nx`+n , \@Q:N?>-{|?Oa1p8ݥTRm~O?鰞;UYF(5q?\ `vbZVC22fޔ {Tendstream endobj 426 0 obj << /Filter /FlateDecode /Length 16013 >> stream xs%q{/|9pwꖃ,ʲU;vX7%9\ꪬOeefiOtzſ|1p/Ok]oKZN_~Otjt=vtM1Z_Oz/ ,S:?]~rW7{UZ)!HK񘩞]TlKou4j(˾z.=_ٓm=_X3K)71\ʿ}{yƿʶ;{b7v9-<_oΧ/ŗxj}~՛]j|~}M,V+"?jem@lr5ze{Խ Fꍏ`{|e/IV7y}G5خ7-/-DZy'n։1(˷/k[РK?߳mw{Koz68rnf3w6{}z^wJ9{qrF\-z,Ռeu %Wᅪ*ɺ1y& 'j*EAXe)򝍥ۧv FsNmxSL{WT-uuz^>CA٣j+0ce/~u'}ކf;y`N6,ayR}y!{4qmR^~kjh\yycw=c6B+R_yK|s55WPVS,]/C_wwOΆ_M{<||^OK>>o3}_~q.UR߾=vd^||&_/jaEw.[lY]jW3Uf#rp0ۛ]xvr@=Y]nr󝽟j.ֹRV߀= {ăn~-)]RǪ}s>j؍N}?MҨʻf^|W]1Q۟&\qػrgW|Q>/ [(7}VZ>Fy,w7?^f/_l)5UʖͿ^~ywd xx{էʻ_~UzWz_ꫫ_t;E[w??ro\+ռi~t,o:k[M~6x]=<ܿ u~Ce~Ş` ܦzS^WK@5iK[k[N}li:FC+o\z|ZI&9m^L$[3P0 O7lTL̥!2|9ah?|}c:婝K<&˩%_z0H./fTlKu^*MʹXj z(%Cb{v(%CukKRLˡT m\lP)k'kc5Xwɡu;P≇RJ-2>=^㨏WÜPt4pW{cu~MXF&aGS0^&cpi P^KR1:R!KKd,c/TTHR{Yl)oup}Z6^w2݆m!)v8N+aR}R88qKqK xD}uQS>ƿqu+P[?/d}'f>Y_6K}zzH11K}zz>==RcuY;4%مY ^oMbٮE{dE۝WX/dh^KVTMr,Ӕl׹d+^BƂXmVۗrmZB Y8 f;ٯ$ u0f[)X# !  A R^&G_ j+{Qp fVu5YYmh9VFEƚc6fTn]Qkl4fjm\-aBbm̨˖y5q*^$F4hkCSVkMT[f˺v`5BVl׳_͛e$X\b,7k;J ]f4dY 2Yc>ˆnllp4o]kH,Is45~H mfTЪUY:Qy$LM6|Ƴr.@;xRޮۊlLJ5ᘯ%N<46kTq3Eu!Y-(53*+^9-C ke×Af!)ll̈́bI6S^d~ߟd%7A4<&CY%Srl C 'd[VuV+mB$Z^ ,I0|ZM; qƓlڹRKSk&W,=65%ټz ͒mR&fɘI ͂C6!Y+Y`pDEYlowf.X[mtpGhl+%ߋ*7ӻĚ m 6LdT*b͵KmPgkgE]H^ZXCg\e:P:A;q_|1]um mQF/UXƲ-lʮ_PUֱuLӄOYUFɻX+]|_'lBkq2Kn%7mxyk#TKnfB6BuR=䷩Dh 7{TkbVtK6--2UzY]PmLl[-FBP8hز>2kuLZSVBgJV_ ;^f\$Ȃf MŔ4b ZW v^Śu&WٴXXli4,h#ΙXY#ԂZ"68ٿ55)RllrFbYfW&YL4k$[7B VLR!Ҭ,Ŵ0+ܬ^iMh@6q3ij\d:xf)mQw6kWZ5@h&Ɂ7Z#fa5Spj/QI\v3W[J;fN +lO0E#e6|)s5:e~({(sӁ2W{s@doW2m$(\'ilH6L3VD"k&ϊ2AmͶ6Ͷri휉3wg6,JlAxc4Pf3yWafk+05)w`f3DHafN^e6(gҡ(RfN9e6i#l8!2Fg``&UٌHV%I8`f3c3[ Hjfbg6,DFf@`)h6b@Xf_*Є@*g6l6UEfj'8 l4@LX%2aOy5:@J5`ͦ&U{fyM(wi."Lxgb3\ Xe沮?w\E:8Pԙ@M,'|Á!k.lg&$[,\l3Lk.0t#Ś e` /XsYb\lCυ/X(`ͥ.`ͥnW4#l.řhͥ,⽀M|&^Kq\rAl.Y e-Ŗ@NYfhTL, \ⱌ`siw J:bh&7iӮ/xs7)d2%MYxIଶZIκ5p 8+QQYm]pVL>YmΈREL3j"j"Ŝh 畀b*$pVSMJରL'ŜՖ'6*.19+l`j;Ϋ`Z"񰐳`@ZV)`NE+YզT ' OY 8kNz+Aj81nĉX"}gҳz"Κ& j{Y6 ̶$Bژ:>c'$DHQ' ͝7\\eԙNMH2MNH| I;`'$4vB g ;!t o#DvB}ݹV'Ҕ3dɓ I%R )S>I h >6A9В*t9H"dh9HD9H9H=2BQB쒎D9H=s={v~<_p'>:zg9=هdG>l;zѳ>CBgZGOZF}w\*w`:g=F ,BOH@Ϯ=!=]͜85i|@OHhv3z.KKd,Co/wM7{ k|1֔d?}:q/-1kjyKyK A/A/5̃^*A/σ^σ^hT0D:S^:eᆴS^:eᆰS^t:eᆴS^.K}b"CcOOıԧ'O;AFA hHnrK0onݜ%2'ڑ WdtFI!x!mUryṟIt~jb2myYZiEN:Ӓ=ldU:HH၁Q8j 4Jbo+ }Wk&j/L͊cJ7&I׏Je8nWb#))n*fM2Ɋ/GHW3`{e8%&fy/~ŏ&ָ`0&J+$2. ~3%8B S=o $nFCODLX +Jy(7kds!mQnD|U꧇iWm2Jbs It>&2Jn:E7F պr\Ux~P`&Qުh4h)Shj:0JyJ읂 uxjٶIV1ʕLh(MhGt4PdujV̰ x*X8ޟ+mSC7-]i0Gncڝ'=rcYY3DIIni%Ou44?t L/p_9I:B dxy*r庺nj Y.Ƹꆇ=bouUMYwlA+=h]%cv mnnqEnGfxo;s#t, ˠ3]7iETn (zH{)'hϒ6TIs {LF^{e;x׵wowFl{sӟ~%>޹X7Ή>-OjkSj^e)YlRU-pLi3ZnebM9'FlUࡘc៍Pl!A\8vfQuia*kY5X{xyĽC *2e6xc&1 슥LGY;[AgM#Y]ĉmB[b U7|P$>rS %<'CHc\iɭ=jf*rR){}trމ3*;qbnTgw X E p7]x"L4(yjOo&x5ěPp7&%o&/o&B,o Dxt<7}!!P|B>!Y ǂOHd||l4>!!|B"$|Ln $A"#Ejνafu-miFl kInܭtɳU'O#yFTNKwxP֨w";y"Bg$䉹t$M5;yڶ[N&ijqf'D Lȳ>[uUV'ʉ<Dn\V!1,_ivKg~IwGK'Ѥ[:R-aG-+QY:[(nl --tЙ:^D0u.[ڹ(nv rYn\a;YD͝;'̷$n M͝r kgetn ?qbX;v:y Nx 6g||bгcwt1[ tWz@OllazOLF'Bt@= BO] bTb"s&m^t+D@Ndarmd '939aS vs„y!C]z|;d!SCCLE1C?d;d/;dސ{CX҉+_X?P?!r7rpd5"#,!,ȝ{d!Oe(TJ梁d,Y: XJ^CqJ7P eBJaa(%ɡ[XJCPy(9#ֱ$zxw G텿#./=c "-a`8R]ꃨ%CD{.J Ku^Oμk'hu[po\v{27Fο>#0{>{aDR}DRÈKK ##Fo>7;Kn{}޿~{}޿~{}޿7Fh(h, 4܌W~_6Iψ儝L_Npl`>`F<3~$GrՒIh<~9%%eLfrBi͘ cF/`xfF/iE/MgvYr/15c.cnFc:/'&4QCY`J\8 FK3|9t̜ѩӘfZbФr1c $Ȉcx@3xWE&K/'dq~yo/8R0x97fP"z9y1zs$arr0z9ᘝ1x9}s42Vߦ%^  Ufr™z؂Cڈ]NpfجbM\IsӘ1ME / ]N8.W4CS8D˩Ʃl.)t9e TXGcHSu d1gN4-c20obe崤5S2hLHeet0c.: 1t9!R]22~ ]a[ܢlJ>똟Ӑ.'!#p< w"="w#SK=A #mCA=.wj=u9 4Ys6Z@sMU4q5[^^DJIqc:CFD*uR3",3qL\ Lψ) 1pL$e1Aci6OwY<؈LLr`&[Fob&;wOp7N ̄KJ:`1K3%f"60+8)1 բtLOCy~8s$dٲu;d·A((ȄPs$d 2qHT8Z(Ȅ/Dd#'1q\f<X2h[tLN&silȻbL,ۘ1$(\XU1{d.9fdxҁ2#e.)Rf٘1!G!C`2G.7a& @5vvzv-2v"KL|rLPyH͘Y3G٤KDr8 $f"SÅ5f: ̬E[G ?I8EU&qr9r^4ȗd. Ь龺Xf`MDip &Pl=[P-7 5J#,6! 5K @j"i`5Kv,{Efy@H]$9 іJ(,Ff)g 磄$vn8Ys&,bۉȉ Ol$Nxq"Irܾqz^$℻8w#@'D"N;ɐZrFmdNs99HVP*%d]"A"ܟ9J{}:ȝ9[J1'$9!!sB"(t԰&#:= 'ꄄ%)eoN> " 9 Yd`,"Jd_ I w6ft :aY:KY]RM(tvuԡJ)脄8:KRu$N,!tb%@9+B+V0'ӏcR/ ac'Tjs3G=܉@LLrgk@pgKHĝIJN,t  }ӂBMv7ܫm&1+IӍ%2;wfQfnDn٭EjF_^̌ GDQ;7s$ M}&,9wn² -9ݲ 0b0mun Ӧ"uwf/ VR'du":wcq@gKLCBp79idLˈ%4 C̘DN * NwP.8< ]w􏛓E9NYxIp>'Y-]7pyn\św0l/%YR3plc&^'pθa$n3iͼLOkl 7Fm ܄Vkd L˦e /ZenH1q^Gf7q|)7q3n̉ ܄l&>\ wX`+X=pi=kY.Y<:j"m4~z&!o_Pvwy6o 9)y'IiY:iB(P3E$/-m=gg&d\_ 3=}R$M ɫ s_|,>Ƀi3K$ W|z/_^a4tR5Xx" m7)*k \C 2k/%c)Jd,%OTHZpjCVÐJչD$JIr(>$R+e,%ɿ!"ک>&4}Cx(Y_Bܽ`ʋ׹ ^^h md(os/%+_TЊDꥆKK CC֘s=~=P'/.>6r&Sl§} e&!~s>Vs*|egI_yYGW&wS[>a uM>kuDlB1|mYmf*dlxP&QVuc4Ϻ}s$[c;0g0| e=|6!ۢلlg$(|M Ul,لlʌZ73lTn?$ teayI LA۩h?!ӝ)|,.|naQ> ՏWu:&D(oc1hT+ M-fϺau߭g3n`1~֝9U=ϺAclORIu?V.P- q?&iXIϺA!MzS{,ل-#>?&q&n,Y2fP;1~mJY( cMeXL7Y,Clx"Ϻ lhG6 5IDk+ uguL6KxP)đ!I smxIX;x2n1'DbNx1鯌y[to‹Y G:mSB-1g9F 9nzI;0;g) Q fAySeb `jN|#=< Ш* :sH臵˘0н$t½MY=kйl:Љ錁 s[(ǯ8*H|xzӀ)0uLw"XyĝP̉0  nE Mܙ{;S|sgҷ5;vb4FQ:S|S'B\: U3#$R'8ؙ"AZN,JL-DN%%&w"=rO|Ze܉SJ^-L{?'B# "D,P gEICSx‰ah"%ٽ#:xbcn"um" .3y<#3<'MȻsE7yΑqgY gCj鯣3<;t_uF#؁:qNN ԉ%u֜"{bP u"&Y)D8שQL"⎝(; QT cQ&U\YHx(&N.ڄCK;5Sh?#'zp'IQ"+(SܹXq'Bˁ;AeLaF̑ g6vVp'HDq'q+1_XUQ&o։T *q'vqpIk;w97s ݝ;S$=ܙ ۱3:vF6Վ%wβTݱQ<}E_1ޱs;[ls;vh:z: ]hu":NtrPu"`::P:5ϕ39?eq.{N'IwH^/.{{Oc_1xott>6yzoiO 9||ps?\F秸t;??ܶ_ep0o}v#/'۸ac9Ux>{C?Ѷwp]0 a8a=k궮NYu޳uK7l^>=njx'[1gehistzˣU^"a106'^U.]m^"k9\5c~|3lb'6Y|RC9XvA)Fn>P5av^.ޱgS@{n^d@go޳|{rĒ-N Ϸ]3F.sզ;|X/ؘTKXrW~?uVnC tgT{g(omw?rw4{{lvh}Q{hkM++W~Q l /g37ͯ+̆ X903hJM}q&[η|?l_`D=_iƹsͫu>T^A+VEmG(58>jyDGg!ke 3TꟋKo<^E( Mܣ><[2xJVĚͧ3L]::zl>(3Sˆ4 Tv ؿ陼Tګpm+ooW ϟ?d}w [bC)nmW]@:ݻGua/7Oot{oMM<]ٸsVwyUm||rVG/tho mN|wX7{uxֺꑫPbJ7*_?eQendstream endobj 427 0 obj << /Type /XRef /Length 379 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 428 /ID [] >> stream x+Daƌ I)Q.ىXHը MjnY+KJS6R6(XXXL. Yts~}- PmDS9܁s;MXtzm?oX;ݷME)04 7XfQ΂ꋑ90$ s |q0}O= w_O6͊ c\6]sNMgv$7:0m4@,Ḛl+UqW t>UKYW%tg[藚o)UF~ P% endstream endobj startxref 713694 %%EOF effects/inst/doc/functions-supported-by-effects.R0000644000176200001440000000267715042141735021634 0ustar liggesusers## ----setopts,echo=FALSE------------------------------------------------------- library("knitr") opts_chunk$set(fig.width=5,fig.height=5,tidy=TRUE, out.width="0.8\\textwidth",echo=TRUE) options(prompt=" ") ## ----echo=FALSE, results='hide', include=FALSE-------------------------------- #options(continue="+ ", prompt="R> ", width=76) options(show.signif.stars=FALSE) options(scipen=3) library(effects) ## ----include=FALSE------------------------------------------------------------ library(knitr) opts_chunk$set( tidy=FALSE,fig.width=5,fig.height=5,cache=FALSE,comment=NA, prompt=TRUE ) render_sweave() ## ----echo=FALSE, results='hide', include=FALSE---------------------------- options(continue=" ", prompt=" ", width=76) options(show.signif.stars=FALSE) options(scipen=3) ## ----fig.height=4,fig.width=8--------------------------------------------- library("effects") Prestige$type <- factor(Prestige$type, c("bc", "wc", "prof")) # reorder levels g1 <- lm(prestige ~ education + type + education:type, data = Prestige) # equivalent to lm(prestige ~ education*type, data = Prestige) plot(predictorEffects(g1), lines=list(multiline=TRUE)) ## ------------------------------------------------------------------------- data(Orthodont, package="nlme") g2 <- lme4::lmer(distance ~ age + Sex + (1 | Subject), data = Orthodont) summary(g2) ## ----fig.height=4,fig.width=8--------------------------------------------- plot(predictorEffects(g2)) effects/inst/doc/functions-supported-by-effects.Rnw0000644000176200001440000004305415037504444022177 0ustar liggesusers%\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Regression Models Supported by the effects Package} \documentclass[11pt]{article} \usepackage[utf8]{inputenc} \usepackage{graphicx} \usepackage[american]{babel} \newcommand{\R}{{\sf R}} \usepackage{url} \usepackage{hyperref} \usepackage{alltt} \usepackage{fancyvrb} \usepackage{natbib} \usepackage{amsmath} \usepackage[margin=1in]{geometry} \usepackage{ragged2e} \VerbatimFootnotes \bibliographystyle{chicago} \newcommand{\x}{\mathbf{x}} \newcommand{\code}[1]{\normalfont\texttt{\hyphenchar\font45\relax #1}} \newcommand{\E}{\mathrm{E}} \newcommand{\tild}{\symbol{126}} \newcommand{\Rtilde}{\,\raisebox{-.5ex}{\code{\tild{}}}\,} \newcommand{\captilde}{\mbox{\protect\Rtilde}} % use in figure captions. \newcommand{\Rmod}[2]{\code{#1 \raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmoda}[2]{\code{#1} &\code{\raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmodb}[2]{\code{#1 &\raisebox{-.5ex}{\tild{}}& #2}} \newcommand{\C}{\mathbf{C}} \newcommand{\betahat}{\widehat{\beta}} \newcommand{\bbetahat}{\widehat{\boldsymbol{\beta}}} \newcommand{\bbeta}{\boldsymbol{\beta}} \newcommand{\xbf}{\x_{\backslash{}f}} \newcommand{\hbf}{h_{\backslash{}f}} \newcommand{\xtb}{\x_{2\backslash{}f}} \newcommand{\xbfi}{\x_{\backslash{}f,i}} \newcommand{\inter}[2]{\mbox{$#1$:$#2$}} \newcommand{\cross}[2]{\mbox{$#1$\code{*}$#2$}} \newcommand{\N}{\mathrm{N}} \newcommand{\yx}{\widehat{y}(\x)} \newcommand{\lvn}[1]{\mbox{$\log(\mbox{\texttt{#1}})$}} \newcommand{\fn}[1]{\code{#1()}} \newcommand{\pkg}[1]{\textbf{#1}} \newcommand{\proglang}[1]{\textsf{#1}} \newcommand{\class}[1]{\texttt{"#1"}} \usepackage{xcolor} \newcommand{\Comment}[1]{\textbf{{\color{red}#1}}} \begin{document} \title{Regression Functions Supported by the \textbf{effects} Package\\ And How to Support Other Classes of Regression Models} \author{John Fox and Sanford Weisberg} \date{2022-07-07} \maketitle <>= library("knitr") opts_chunk$set(fig.width=5,fig.height=5,tidy=TRUE, out.width="0.8\\textwidth",echo=TRUE) options(prompt=" ") @ <>= #options(continue="+ ", prompt="R> ", width=76) options(show.signif.stars=FALSE) options(scipen=3) library(effects) @ <>= library(knitr) opts_chunk$set( tidy=FALSE,fig.width=5,fig.height=5,cache=FALSE,comment=NA, prompt=TRUE ) render_sweave() @ <>= options(continue=" ", prompt=" ", width=76) options(show.signif.stars=FALSE) options(scipen=3) @ \section{Introduction} \emph{Effect plots}, as implemented in the \pkg{effects} package, represent the ``effects'' (in the not necessarily causal sense of ``partial relationship'') of one or more predictors on a response variable, in regression models in which the response depends on a \emph{linear predictor}---a linear combination of main effects and interactions among the predictors \citep[Sec.~4.6.3]{FoxWeisberg19}. \fn{Effect} is the basic generic function in the \pkg{effects} package; \fn{Effect} is called directly or indirectly by several other functions in the package, such as \fn{predictorEffects} and \fn{allEffects}. Table~\ref{tab1} provides a list of regression modeling functions in \R{} that can be used with the \pkg{effects} package. This list, which is almost surely incomplete, includes functions that are directly supported by \fn{Effect} methods supplied by the \pkg{effects} package, by \fn{Effect} methods supplied by other CRAN packages, or by the default \fn{Effect} method, which works with many classes of regression models. \begin{table} \caption{\R{} regression functions known to be compatible with the \fn{Effect} function. The name before the double-colon is the package that includes the function; for example \fn{stats::lm} means that \fn{lm} is in the \pkg{stats} package. In some cases, \fn{Effect} may support only a subset of regression models fit by a particular function. Effects for mixed-effects models represent the fixed-effects part of the model.\label{tab1}} \begin{center} \begin{tabular}{|l|p{4.0in}|}\hline Function & Comments \\ \hline \multicolumn{2}{|l|}{\textbf{\code{glm}-type models}}\\ \hline \fn{stats::lm} & Standard linear regression models fit by least-squares or weighted least-squares. A multivariate response, generating a multivariate linear model, is permitted, and in this case effects are computed for each response separately.\\ \fn{stats::glm} & Generalized linear models.\\ \fn{nlme::lme} & Linear mixed-effects models.\\ \fn{nlme::gls} & Linear models fit by generalized least squares.\\ \fn{lmer::lmer} & Linear mixed-effects models.\\ \fn{lmer::glmer} & Generalized linear mixed-effects models.\\ \fn{survey::svyglm} & Generalized linear models for complex survey designs.\\ \fn{MASS::rlm} & Linear regression models estimated by robust M or MM regression.\\ \fn{MASS::glmmPQL} & Generalized linear mixed-effects models via partial quadratic likelihood.\\ \fn{robustlmm::rlmer} & Robust linear mixed-effects models.\\ \fn{betareg::betareg} & Beta regression models for rates and proportions.\\ \fn{ivreg::ivreg} & Linear regression models estimated by instrumental variables (2SLS regression). \\ \fn{glmmTMB::glmmTMB} & Generalized linear mixed-effects regression models (similar to \fn{lmer::glmer} but accommodating a broader selection of models).\\ \hline \multicolumn{2}{|l|}{\textbf{\code{multinom}-type models}}\\ \hline \fn{nnet::multinom} & Multinomial logistic-regression models. If the response has $K$ categories, the response for \fn{nnet::multinom} can be a factor with $K$ levels or a matrix with $K$ columns, which will be interpreted as counts for each of $K$ categories. Effects plots require the response to be a factor, not a matrix.\\ \fn{poLCA::poLCA} & Latent class analysis regression models for polytomous outcomes. Latent class analysis has a similar structure to multinomial regression, except that class membership of observations is unobserved but estimated in the analysis.\\ \hline \multicolumn{2}{|l|}{\textbf{\code{polr}-type models}}\\ \hline \fn{MASS:polr} & Ordinal logistic (proportional-odds) and probit regression models.\\ \fn{ordinal::clm} & Cumulative-link regression models (similar to, but more extensive than, \fn{polr}).\\ \fn{ordinal::clm2}& Updated version of \fn{ordinal::clm}.\\ \fn{ordinal::clmm} & Cumulative-link regression models with random effects.\\ \hline \end{tabular} \end{center} \end{table} The most basic type of model for which \fn{Effect} is appropriate is a standard linear model fit by the \fn{lm} function; for example: <>= library("effects") Prestige$type <- factor(Prestige$type, c("bc", "wc", "prof")) # reorder levels g1 <- lm(prestige ~ education + type + education:type, data = Prestige) # equivalent to lm(prestige ~ education*type, data = Prestige) plot(predictorEffects(g1), lines=list(multiline=TRUE)) @ \noindent In this example the response \code{prestige} is modeled as a linear function of years of \code{education}, the factor \code{type}, with levels blue collar (\code{"bc"}), white collar (\code{"wc"}), and professional (\code{"prof"}), and their interaction. Because of the interaction, the estimated partial relationship of \code{prestige} to \code{education} (depicted in the \emph{predictor effect plot} for \code{education}, at the left) is different for each level of \code{type}, and the partial relationship of \code{prestige} to \code{type} (depicted in the predictor effect plot for \code{type}, at the right) varies with the value \code{education}. A linear mixed-effects model is a more complicated regression model, fit, for example, by the \fn{lmer} function in the \pkg{lme4} package \citep{Bates15}: <<>>= data(Orthodont, package="nlme") g2 <- lme4::lmer(distance ~ age + Sex + (1 | Subject), data = Orthodont) summary(g2) @ This model has a fixed effect part, with response \code{distance} and predictors \code{age} and \code{Sex}. The random intercept (represented by \code{1}) varies by \code{Subject}. Effect plots for mixed-effects models are based only on the estimated fixed-effects in the model: <>= plot(predictorEffects(g2)) @ \section{Basic Types of Regression Models in the effects Package} The \fn{Effects} function supports three basic types of regression models: \begin{itemize} \item The preceding examples that use the \fn{lm} and \fn{lmer} functions are examples of \code{glm}-type models, which express, via a link function, the dependence of a discrete or continuous numeric response or of a binary response on a set of main effects and interactions among fixed-effect predictors comprising a linear predictor. The \fn{glm} function is the prototype for this kind of model. As shown in Table~\ref{tab1}, most of the regression functions currently supported by the \pkg{effects} package are of this type. \item \code{multinom}-type models are multinomial regression models that arise when the response is an unordered multi-category variable, also modeled, via a suitable multivariate link function, as a linear function of fixed-effect main effects and interactions. The prototype for \code{multinom}-type models is the \fn{multinom} function in the \pkg{nnet} package \citep{VenablesRipley02}. \item \code{polr}-type models (i.e., ordinal regression models) are used for an ordered polytomous response variable. The prototype for \code{polr}-type models is the \fn{polr} function in the \pkg{MASS} package \citep{VenablesRipley02}. \end{itemize} \section{Supporting Specific Regression Functions} To support a specific class of regression models, say of class \code{"foo"} produced by the function \fn{foo}, one \emph{could} write a method \fn{Effect.foo} for the \proglang{S3} generic \fn{Effect} function. That approach is generally undesirable, for two reasons: (1) writing an \fn{Effect} method from scratch is a complicated endeavor; (2) the resulting object may not work properly with other functions in the \pkg{effects} package, such as \fn{plot} methods. The \pkg{effects} package defines and exports several methods for the \fn{Effect} function, including a default method, and three specific methods corresponding to the three types of regression models introduced in the preceding section: \fn{Effect.lm} (which is also inherited by models of class \code{"glm"}), \fn{Effect.multinom}, and \fn{Effect.polr}. Moreover, \fn{Effect.default} works by setting up a call to one of the three specific \fn{Effect} methods.\footnote{There are, as well, two additional specific \fn{Effect} methods provided by the \pkg{effects} package: \fn{Effect.merMod} for models produced by the \fn{lmer} and \fn{glmer} functions in the \pkg{lme4} package; and \fn{Effect.svyglm} for models produced by the \fn{svyglm} function in the \pkg{survey} package \citep{Lumley04}. To see the code for these methods, enter the commands \code{getAnywhere("Effect.merMod")} and \code{getAnywhere("Effect.svyglm")}, after loading the \pkg{effects} package.} The three basic \fn{Effect} methods collect information from the regression model of interest via a suitable method for the generic \fn{effects::effSources} function, and then use that information to compute effects and their standard errors. The required information is summarized in Table~\ref{tab2}. \begin{table} \caption{Values supplied by \fn{effSources} methods. In the table, the regression model object is called \code{m}. For functions cited in the \pkg{insight} package see \cite{insight19}.\label{tab2}} \begin{center} \begin{tabular}{|l|p{4.5in}|} \hline Argument & Description \\ \hline \code{type} & The type of the regression model: one of \code{"glm"} (the default if \code{type} isn't supplied), \code{"multinom"}, or \code{"polr"}. \\ \code{call} & The call that created the regression model, which is generally returned by either \verb+m$call+ or \verb+m@call+ or \code{insight::get\_call(m)}. The call is used to find the usual \code{data} and \code{subset} arguments that \fn{Effect} needs to perform the computation. See the discussion of \fn{nlme:::gls} below for an example where the \code{call} must be modified.\\ formula & The formula for the fixed-effects linear predictor, which is often returned by \code{stats::formula(m)} or \code{insight::find\_formula(m)\$conditional}.\\ \code{family} & Many \code{glm}-type models include a family, with an error distribution and a link function. These are often returned by the default \code{stats::family(m)} or \code{insight::get\_family(m)}.\\ \code{coefficients} & The vector of fixed-effect parameter estimates, often returned by \code{coef(m)}. Alternatively \code{b <- insight::get\_parameters(m)} returns the coefficient estimates as a two-column matrix with parameter names in the first column, so \code{stats:setNames(b[,2], b[,1])} returns the estimates as a vector. For a \code{polr}-type model, coefficients should return the regression coefficients excluding the thresholds.\\ \code{vcov} & The estimated covariance matrix of the fixed-effect estimates, often given by \code{stats::vcov(m)} or \code{insight::get\_varcov(m)}. For a \code{polr}-type model, the covariance matrix should include both the regression coefficients and the thresholds, with the regression coefficients \emph{preceding} the thresholds.\\ \hline\\ \code{zeta} & The vector of estimated thresholds for a \code{polr}-type model, one fewer than the number of levels of the response. The default for a \code{polr}-type model is \code{zeta = m\$zeta}.\\ \code{method} & For a \code{polr}-type model, the name of a link supported by the \fn{MASS::polr} function: one of \code{"logistic"}, \code{"probit"}, \code{"loglog"}, \code{"cloglog"}, or \code{"cauchit"}. The default for a \code{polr}-type model is \code{method = "logistic"}.\\ \hline \end{tabular} \end{center} \end{table} The default \fn{effSources} method simply returns \code{NULL}, which corresponds to selecting all of the defaults in Table~\ref{tab2}. If that doesn't work, it usually suffices to provide a suitable \fn{effSources} method. We illustrate by a few examples. \subsection{Examples} The following examples, with the exception of the last, are drawn directly from the \pkg{effects} package. \subsubsection{\texttt{glmmPQL()}} Objects of class \code{"glmmPQL"}, produced by \fn{MASS::glmmPQL} do not respond to the generic \fn{family} function, but the name of the family can be obtained from the call; thus: \begin{alltt} effSources.glmmPQL <- function(mod) \{ list(family = mod$family) \} \end{alltt} \subsubsection{\texttt{gls()}} The \code{weights} argument has different meaning for \fn{gls} in the \pkg{nlme} package \citep{nlme} and for the standard \R{} \fn{glm} function, and consequently the \code{call} must be modified to set \code{weights} to \code{NULL}: \begin{alltt} effSources.gls <- function(mod)\{ cl <- mod$call cl$weights <- NULL list(call = cl) \} \end{alltt} \subsubsection{\texttt{betareg()}} The \code{betareg} function in the \pkg{betareg} package \citep{betareg} fits response data similar to a binomial regression but with beta errors. Adapting these models for use with \fn{Effect} is considerably more complex than the two previous examples: \begin{alltt} effSources.gls <- function(mod)\{ coef <- mod$coefficients$mean vco <- vcov(mod)[1:length(coef), 1:length(coef)] # betareg uses beta errors with mean link given in mod$link$mean. # Construct a family based on the binomial() family fam <- binomial(link=mod$link$mean) # adjust the variance function to account for beta variance fam$variance <- function(mu){ f0 <- function(mu, eta) (1-mu)*mu/(1+eta) do.call("f0", list(mu, mod$coefficient$precision))} # adjust initialize fam$initialize <- expression({mustart <- y}) # collect arguments args <- list( call = mod$call, formula = formula(mod), family=fam, coefficients = coef, vcov = vco) args \} \end{alltt} \subsubsection{\texttt{clm2()}} The \fn{clm2} function in the \pkg{ordinal} package \citep{Christensen15} fits ordinal regression models, and so the aim is to create \code{polr}-type effects: \begin{alltt} effSources.clm2 <- function(mod)\{ if (!requireNamespace("MASS", quietly=TRUE)) stop("MASS package is required") polr.methods <- c("logistic", "probit", "loglog", "cloglog", "cauchit") method <- mod\$link if(!(method %in% polr.methods)) stop("'link' must be a 'method' supported by polr; see help(polr)") if(is.null(mod\$Hessian))\{ message("Re-fitting to get Hessian") mod <- update(mod, Hess=TRUE) \} if(mod\$threshold != "flexible") stop("Effects only supports the flexible threshold") numTheta <- length(mod\$Theta) numBeta <- length(mod\$beta) or <- c( (numTheta+1):(numTheta + numBeta), 1:(numTheta)) list( type = "polr", formula = mod\$call\$location, coefficients = mod\$beta, zeta = mod\$Theta, method=method, vcov = as.matrix(vcov(mod)[or, or])) \} \end{alltt} \subsubsection{\texttt{ivreg::ivreg()}} Sometimes it doesn't suffice to define an appropriate \fn{effSources} method, but it is still possible to avoid writing a detailed \fn{Effect} method. We use the \fn{ivreg} function (for instrumental-variables regression) in the \pkg{ivreg} package \citep{ivreg} as an example; that package defines the following \fn{Effect.ivreg} method: \begin{alltt} Effect.ivreg <- function (focal.predictors, mod, ...) \{ mod\$contrasts <- mod\$contrasts\$regressors NextMethod() \} \end{alltt} \noindent Here it is sufficient to set the \code{contrasts} element of the model object to conform to the way it is defined in \class{lm} objects. That works because \class{ivreg} objects inherit from class \code{lm}, and thus \fn{Effect.lm} is called by \fn{NextMethod}. \bibliography{functions-supported-by-effects} \end{document} effects/inst/doc/functions-supported-by-effects.pdf0000644000176200001440000033450015042141756022200 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 3103 /Filter /FlateDecode /N 57 /First 453 >> stream xZkSHlME~mM ȐdyL16c$3~mI~H1$ȒZ}VK1420ôT2#s<>ETrLZkqdОR=hB9gtInjIό sdϔP!0%g n:E/2 zy#9 <\pF=:@(DDaA9Գ,! HQ BT E Ua@FhrЌ8Ʋ!q.(H!C T@B b$KPU%[T$ʤkxІ@6Q^lIOyve1ìl(<-(BUq2?r_OT<0Rn|C Ǘ4my5'G=9ɿP"Xi#a~⧦9碼bW{2/ x2>!]Oƃ~Wi9Ö́ޞ'˳tU`o|;*r~P`FS$:[xrHT kt3KR>6mƣ2U0펿 $WQU߾OOKS4Ƹq4/'?~Q/Ǐm֦NƮB6S0na *LX +c5LUXՄ_6),L53Uk*5VIv{<5L˽ބ. $!:A|LcȲm1(H/uRog烪\z7%R$'A%K|Dή΄jZN#Q)ԵOWWN ( ΧJ?`2퓁=޾yW-I}c~O>_ _C>c>O9/?- J)L{;ivg/P=/N֝9Ƌu@|ۣb:Qo|E`,`7޼gϥ7,`!9FUk0Yv'ĥc]BZNAO@&;/Tӻ0kB+P,(shi澑DCpIIROZ90ǠhFt;COo@~_&\ρx8P:7!LGNr!GH7qOR;i  gzG<不!Mn ef[8}{ qr 0-PSn8 :81M.(tkU_Tj1sd;:(\ȇF%K98RkjC',T z'8`oYwDXAՍQsNV>}WuGmq-z#m H`j!!MEQAKbG+Z ?y t1/gŸ`<Y87wۊa|:y>;cqt!a!V$ 0b<72$Y5iv,ZZR-pm&ְr2VW#:9yNOA!i((d# rTmٯLޤ[^. yC2riOO YP`5eA9sFM1gkv&tkwRC6^_K%zebUTդLKqH/zu;b6ph)`9X0o:AvL:f@#p{WLWMuz-i5ث=9޿ŽWtI~Ju6a]kJ.yda=:9rGI[w$R%H@}ޯ%H)g !Mf()i#$>&e3"½d;J8jkNmk.9&0 gRdqOWM̾qMi/bRMns*6,wma\1StlpwZR`ujf/-j1xT`-Yʄ>3Be!~ofu>E*Z,wBc . sb Lt Ti001WLkQ%\&lȢ~-$-`blMKyI?ך5ONu\p;\21Ȃϯ fQeVWY*Ƥ!/cFdVlVJWzs F8, ֲLǬ.bK3οL$Ŋϧ7kaۀ>|HPf&e9MاL@bgS&P s@ =iaϜ]y@vUPl=EC>!R\\@)W~qh:SS%"ߨG2n|O[ 6[ĦBoCЦgegU> stream GPL Ghostscript 10.04.0 2025-07-29T08:51:58-04:00 2025-07-29T08:51:58-04:00 LaTeX with hyperref endstream endobj 60 0 obj << /Type /ObjStm /Length 2781 /Filter /FlateDecode /N 56 /First 460 >> stream xZr7}߯nmepUR%^V$vYYHBR_8M\H At41$)fsɨ3Jɜe>1'0)g.2b^0id6ŤרL oLwLEШ`>0m #A0dAA1#T`A3 3e[w ~9f5&"> ?'g&$#k@P D?<B= -0K!` n,T! Oj PR((K@)R QC(EgL/H5`)5 ޒFJiI$3f`\ɲ3~xN&_~+st]l_Ș։ '憝1&NGҜƝoJUyu%B ʨsT.V=BB;GaFQ-Oͼ)RW*a =vO\G6ө5c]R_sn5fK*dRS}?ջUSF}-T&!ڍ"+6KZZV%Jme7jv\QU6@ƵTeW5fd6Tƹf{QϢs?\mNyRD,* Ш8-٘Xa%Qə nFbbUE'0cbkjԃ7/+!L#K3b| +liW3S[YbqZ//LII8)iπvG˾]^]$'Ԥ7$jBGoIT۪+A'2|Ӌw<98~%=l~?2n6ߛf^ϗ0X֋%#2N}$6a~raL@ `@r}M|XA izNSX@*5uJ#'Tm0c :oبYYσ|y9x]_B#Dѿ=sGs_K^+_9_;+w?Iw !?9B^D1 x"g`vS"1՞MUoX.59[`da~.o¸mjAn/<{z yOFVװ Qe}4 ِecr*N[|LSrLvI&$ 2]wڬ5gL2Q8Lp0k v'̀#o_"s.lGdF\$1:{?Ȧ^mM[PT.>fnQĪ}DR] U)یg I$rmNx/wNU 3o\tSWHb{]AC'&i\C;Sk. EZOm^a.@HAݠ,,z#g\m vRֈS$5M 6Պ!{Hy(:hCf,-D 111[Qd4*STeGgU9zUȾu]F>n2p_&U}/^/eڠ6Nޫ&B~C}|LՏ`:YYyZp^mYKwtoj(gɛz!urGx7T xLJ Ӂ[rt#?:kcs #Һ"m_͐'vxT'KwrzYsk˨{mjKz<} <#Hb?U?=1EݏXVL?uQ[aG}c 3e #-!Gz:KSPqRQEfDJ"[izs3}5Xj+T}Ku+́mKjA,Jʮ30m~*X,=bZ/[mMyΥ%\xOB0zP[:z6]&w5{={NO{. D[>jS5։7c1:+=)=\y_uSNźpS|;[-5}(4EY LJO[Ԑ;p5ӖۙwgLÜK2xkz6HI "Yᤝʛ~)Lr0S^2ƭڢ;y`I7іz1PN=:M TmWH|,gbAe@bCҮ,2[# z P؍Hޱ#=LC5ȴd؂LE1ec!h+ 'peA8|KhHSoPXk*lBmؔ)Ӱ#J-.'av+B#vG6r0ӝJ.JUN/Tez. u9>%|aB-,T,(6Q)SXj]=T_SԊV-4=@TߙaXl 4 N\m'b:3eoNzN c~aeC* Gjxuz$VNMzb6kR pfp"9]]酓T<)%co}`ī`^߿,endstream endobj 117 0 obj << /Filter /FlateDecode /Length 8843 >> stream x}Ksr+{gqBvxw84qZ, Jf~䗏z4AI ;Ov̯6{vx?|zp]_#r9o^ۋV7t] )Ώ7ϮSxwq?ㇻ+??~KW+Ӷ>6y]Gk8h/_xvCOr\kQ_&'S㿧Ws׮/|r׋9vjis̺)opݩ*0=[M!6i=>uhF6t/[86;p?_N[,[Hh f$%ϰى$ ?ܿŃ18)ƪ#sR넍#$h3DPRhsٍ?ƓE _lu!7<|Hׯy\^˧@A1r$7_[XO A DMnDp<|w~  1 qKMws8Ԕ j-GڂÛ_?;ĘDþy}{<)}mrq6J-.˃EN:z}s=j&)=b5(%-TTb+0@O 'Ƞ~{GΏ0_\qʹVXz$Kwls_pט{Zav4_N 9nzCOc7>8k ZhVs3rX<(?>ٍߧu|#y;vh,pK#1%_󞅼y2ՅHvx=]?zݺQl ?<Ĺ盧6xD$7xtu[]rDD"W~ B>EO+.IV=V?g(;7w5?h  o?0 Lz.v?̱?F LFg}6fDKسa,[0T t}=]?ɝz|&n5L_MS (YETScBfٖ~ZqĖ_Nuɷ:T$x~<7ٙȅkKx 82b3'W>Ϲ ܤne_Od(_ۯ=mq8`ɖ{؜h"L33힯>>}u?, kϬ2W_[!&W ߏP")y+-S1qmI=\"^K19#Oso#iHjxʏ雷FzRZWTϷHv1ٵo4L, ĒE=%~:T(X);<ŹZOb[:I<1&5|O܊S\g 8uƹO!K7u+~&ۭ}0jvEj_iLeB><IP70&Dg?~n_}&ӽ^l8]?$sϟ7̟3_Lū~xiWisg6oY.ńq=_M$يĤثl$fB7xZ 3n:Lևta]Ζ CήYL5_M0]S=bӕ7` yGi\u>Q}y, ~Y!Ϭk3\ˡ]YtYr7ei1n,q7wzy\;\Si=kw/;ZCPJPhjw?C;%?|Ny~zp~_6N1ʩ;r3\e[lְ3FOؗ n(G"lÛT ?S)0`_S &=ûIBEb/{Jkui ɤ^K&Z]2 L<)ޟE Th%ˬE+'ꍟThkJFԽJ"g2S[c&G)ZhRXdqgցfqyVh,MJ&J%fR2ɤL2`i+X[>z򱨧*mCƛS_C8:?]:_@S5O9-64ؔ:~҄_SJ|M+M5%ov]0.Fs1#e $U; ą2&ye-[0%5$VlT.|8U$V{[&۾_&YzW̳JKf$ W5ܯcZVKf%Vr{Ltb gV[*W(nendW(~dհGa,rDW|di1fK[.X~M2#ךdܶug"1%K;w'lgKf[md֢2ɬ>~dҪqd!W(C2vG._&[;OImׯ.[e]!gH\dD]ܐ,LĞ+u$wc4bkMd߯Imd3aI,֢%s 廙02{.בXi]21\|qK1Vtܯ_.dDK~}4Vh{|O [;&%K,s.~dcۭv,9s5&dhoOIPh\OFBxC/*.lQ~hH%tiXf\aE*4 EU4Dt V wZXYB9) xa aפ*,Pv%i2W)`O)-割bHLMPD|lGD0Vt@ўqN{0CRN^d|NDګ(cI($na «2cHABc" 1Ā*K@<$q;!Hk)v"ءq$.)C;X2DaU "{D"]W@R#Rb$UaQʳaE 8IV\ l+$vțƀ"M,%vUS&U ׉arWVhYUp9͈&vkSW6hd5 iPBU^@R$nSWՆ Z*E_iP5C ZOh q)Ƿo#M<Å$Q шX+s+&Z)+ݧqC\$OOi Ooā#~#pXo@,5j {p'I~p,jxU{(H@uQlPWKl 5NB,' 8`V+ *7KoĹ@R~)T *,(X[)"nt ;|938P%*o;&wn{O^aPc{©bٟ. /zO!U Dj"3=͟SoP&IHxgA(l?в$F8WN$ u% IFӠ4**Q»F&v*$Y0):6=u/sԨ! }Q5QW7"lTОLaREFSQ)1Ia$I5*)b,#0 lU^5x{PJ!ET1 d1ԤG}Y>21P#/#U;bW#"r?&f-9on $MqiDfUp/~]W51)UF0iGbX)gz,(g)('W DKJ0rFHJ9#Nr Tao5yH'ޟ9139+LLd_g/46 8ާt`8t3! SeIMu!7W:|eQv&I`3ԜzԲ]㛛Wo|@&見J}:*O4I nȄtiA7q@HHMp \RfNQ͜T4mt3ٝn{N7AS̤ H%nW|F72a72y&Ρqw:^XxO,T '>F841lpİ;vIIpԄAuI)QN0*p#14 'x]#v=3DGŲ1N[g7ə8օqzF9A4rQSN›N9.QNNS߬^=fj&M;oc|mI=fs |7W|WL9 ZAGQ)qN2\8:UԤZjn,$('-&Jqr5͌R0δIo:L[\nG2D1NrN /39K|F8V%7{*H0‰Q˚&pN8Q?egF8RG2N䤬EM!cZT‰P #x( TfB\ʜiip =7‰"S *3 9S\m3 5 '#HxBRp{7{7&Pύlfv5tCid3Kf&Ruq.uPe{k!6sRfXj(VmB-l3S&f3:Ξkpfy_7N4 g`!f1I%R g.3™|qv~I'jgttYYgO:A:QMKK {UYWzrPeU RNTׄmBfsVTA*笔%!s&u(Lla*ޔ=*笔P|n0QΊp#\V)'8kLV:Yq֤8Qe͌b+#O'蒰fc57+z*D.)'&ĉFks^>kS8[ڤNgE<%J8ۦ:l;,wtMFne[fR%|0Qf̡SNp:|8Hq@q\g4'KeIUq;1N8s/Dc4֕p8hS '0E#U_= Y4qqtto0X~t9_ӓ\RipLA By\3w5E(y7|y?/a1%8!G(™=pq~L%ϒz{V!hzJ%'_BG ˷PgP ?BrWP(ĕk@b@aa|X4$âϏdhl(ud'T9FH>Q*R 77kd>YK%X'œIK%oJ&yRɗ}>)9H UGJr#>FIESQ^JOl'% %]cWE[WEA.ɷibeҿb+uxRGWWeJ\]i)ulu [ԡՕ&hRGVW|1_i0YaTk̈WKSe{ E &xI]9e^'Tx8,l*{jCB5z/n׌آUPU۹qvQBcF zKY2i}L"tT"tEϠᮉtZoz?ak(b̀J q Ssr?A4zn Qsetu|z>$gP'H,{ic46ZQ4[XDZ@p Co'Hwl^nZ@o7x-K|}%6=ڛhzNX˘?KE42*{~tPv v/mLƙ9ްUhC'DFZ؍cA43[F75W5o Ja}4 (m1A"u CX=اK?(2F􋋌ƸЈ )+TQjt?OW]??C+/TD tXBd ^OMO3lkm1hh>>Q=0Nx~1'!eYU(Ûc% (ɂKxKbⰀmjC4z:gԔƚv N(^X m2=$2oSr? k^utS8>0!PMFb^ۘƊѡͣћi{>9׉^:&Efpd g4xJgǙ2?X4endstream endobj 118 0 obj << /Filter /FlateDecode /Length 8364 >> stream x|ێɑ{D-X9>#`$vP]$kT*n|cf" `Iw7sGu7n_/JY!|~w,~wlXIxf\E&|U2}*FUeԍH?ĩUnTmTCQ&NݨLQF}/S+%%PƦ݊ϙ J9y}'*Q,O $y)4 $%ju_5yo:yAoF]pj Sc` %Lp"XY3w[q>*ɚW"DA Ecp^B H*"ekz`9K5`S rfp@#RH8BRI2mBRpHIPvM<IABܾ(tWZ7gظH Qq 8v!,NH rtcYV)L]Jѓ@06 + Kׂ&γs*xGyRQ+IĠ'ӫ(k1{"Y XebZq%+px2Rg r@aRA}  xN])Q4q13XIy R>r$DPBk @1'"2D_tRL|H*s!"Z }?SN!J{XS@"p R˘8 Q/3:-6ZX{bJÄub.WRRΓş8Ŭ/d iuȢU5F`ǥƅV0Ȣ808QOk) bWiMgD 6x1DbID Z(b WdyYZg^p$qg4Ŝhghв&*F#` h4d1(EerXgψea Y|RThEpd9BWCl+dnDDTE%#)bnjV<՞6#R’"x21qQI s B : \74% !;BAESW-8}SVh4"Qf^HV ]He rV$G88ǃa,RqTL n{"Dq\;،iLPG8X()F=V#AE,V#Ⰰ (E Yx$tһ@#8@dg:W>r4X"`7a ">"=vqD Y;CV18Q#+2<U+vCEHfA"F(:-x12fd$/SD1aeFSÚbҿ Qo[7d!yQEhkJūOEQPDV\"ݨOՀ~ ֨_"LRƜnC1_VbCQS2ts7 2pb8aH"BQ~ŊtRdsbM'rӐ~_T Oh \2S, 2$_А^& i4?ٍR!. O2*vUQ`L<ȩ!2 Ր^j`66"H* {`! '2`.F@'Dƣ4dGY1dD_j '\hH/'^"z\t FVmID0p,{w"|.,qϫ䘃E0dA3K= 2?kg]!2셩` 9|?j}w%h2ثy!wŌqUE1 ϧDUTdZne6i l0Dц 1ې!HWJl+"È2ԃ6dh6dGҐ~_i>*2D~ϐ zC]'"'qJ=TE1nݐzC}!+Y!î֓!ۨ!/n]㇭;;#Dbu),V. . .EW+.Efi1.M$WDٹ6F@uMוG6(2vdUp6(ui_A] )CkRUAd:MkP]Hgcii6(f\+k_4XU֟` v?"j^֟ 0[Pk-'|(Zh ڜ,ބb vߒڛ`-ˤ7js|=ڛeJmkNxfGk3[s"5'X}9 gOPAj"DMQT=Da:fqXs:=ڝ)!U:#֞9Z{'X}{:VOO`mkPukPHz'XVM ֫,X[,X[A7ڟ`Z{H?a*'6$ksjEjseE6'bDdmNV=kÚjs".VjCjs"&JNmN0TYDZ'֜HuҚ,Wk6'X hmNlڜz9uZsvB:Z9bDؚmNl]֜#MkNY6'Z/H5'OI9yBymN9`5ڝȔWh{"7寝Mз7q& "ةΨ'@؃֝b$D֝`QS[H;];´j{BXם`]ZW;̦;AӦ=ڝ`̩UڝX@vjwnT"jwBꤻ9@SKkÚKv ֜XkQ֜X`ᵛV 1R֜XoӚ ;#ZIJZ5'֜vDk& /ko қ(TT!& xVDHDAW[%ڵ֚(sNmM:omMعc5Qɩ ZzvSl} =i5ilb`ve@gr"ѳ_inc9 c#8'S᫧aY*'Ǻ4t{Ab3$IZ'1UCW6NNGxT,i*fU鏩!]zMo]8'3U#oH*05IuPͺ00eH7Rw1:50bd2ĺfyfRjC(M=Ujy o:{=IpNlކVa@ݙi d^Í ^o7O} E,52h*0s-1K'8-S ks_ xұ|3Ԑ"RF}5jeުC kyŪ"AWCc4/% dk;aX1y-+ÝywkZ]Q+ vA ^u9P-Ɯf54dZ^\pȪD[as}MfTM(v2^/i8&&RHuqK%J/tHe,k펗ei]rgf rZsw4NkZ#DHjiP*-]k@3zu,,]Z:V܁ :ZR>+ekiV,-H*`Oiȼ* (Cy*8N<@JXڟUR%cW^KWڵXl]][Zoo DMY疹lwxu{Zu^(ku=8Ʈ/8乿u0_ӵ^2oh]^ht%Lґ]^epv?XOś/|v|cåZtnxQT7udFG2"vYo3lJdA  .tb`&EQoA:"èzG2,/~!(zJy2ޚ0-N^l1/#Lb vkx: qbK=ߐ;mPC.l/py}:.d>LU(w=;!Al&uP/uP6:I@I@ _~;A?B֥W S0_(Ȩٓs\n JC #4ۆ~{ZeUYߺ˂g*Eľ߀V_oh^}5 C ݲf`_C vi3q#lEQ!Q '^o_oՇ6`Y%W]@+%FgG_r|@P7X'IѪ̩G֦ ͬ$ͧ"j䍠:eYEjn绛+V<BO5e'4Xn K9YJ~|8K>0>|hχ4Q~B:啬j{YCB:ݵyIZf.Cq_n^7Z8]()O]x,L1>WZ<H\L>.#0 Y?5}/,B\}>to?^n_mm6^3X=}~yaץ''g2=Q '.È߮px~2 "WneF*ĩ ӡN䢊 h`C id!oHbFcwthN#SYK_x<(o~ \?|ff q\  %.ogev[i+d@w,X`T>t}r*b%# `vwm?#E,_7;ee.Z2Pl-X)16hֺ/m~-aN8y(.sl!OEp8pQMܻghs5z,֋2q V3c[.4 aw t&ujI'/m4=\' 7NFRtwFa*x]DCG˥`"ewHp.7OwbXSb6urr>w5C:*3Uwb$T/z,ތ)~ȮTTHKv^^TU͈C}T)ttm6_p,@ &ݔ.k.?77 l1 㓜[2B$%sӽTUdR>/N6U||R;q2|>m/Q|)#|~?mƯ؟vURxEnfZ G 41φSb=دy"+\, _q]|Jt}~|<|=n|%NO]o»QZ7ޛy)q+7,!}/wOwuX1,EmkR]ȂPpM5l:C>IBqGdKt'pzѓD3Ⱥ~9|xgo|`1Fo6Gt}2{}S]a㚡?w/ckvvTye87J<ןSͮUyuD^$x(<qnOpNplhPS˷rb!f.Rc{`SB(/!Yz% 3EHyZ(9W{& 9R؇}#s`izXAuz|Du&RO6!\׍:Nhybrmc;S}JH2=&ȃj6 [6 2b}5ݴrO}@rznBpr֕hGV-a(L0{z'uNw&ό%!xAU-*%5B?A5<,ɳ*$rw'_躾gI t{x;$93Q%--p[1bx~f!#!/~ϲ,5''2E*x a%"eiDw+=`yφc+K!<3|s~vYV)l˳>g_rV wkq:kfd1Z ?5g䅷,Maؙ w駟XcLHd&AXeUfHZ~Cw2pK>N֓l% ~>q[w/M>a:7|tHJ5?Ke0WRo,7_Nt8@ ,lK,h4R@iʟ]]ޟ|]ƕu$K ʱxcaEQk[+J1>/R^N䷏&g UTD Y9 ֘<߶KSX_(|RxmǛCDȿ,F`LoyƛPUẁkuƀh6?&-ݟ kqdv?PTk1y^ϋx0ӣve(xy0|<򶛬Mm [uMm` a"f5EC/5H 5H0 w=oΔg [X+oⴓct62o/=mf1+1YRsO~0"_w/*>gTd&zUښtCWljoEW|?w"妁`QA0_)ϪI_@} ss> stream xZݏ!Aa\\UC"yi"Z\\n>d󠵵^%'ٻЙ!)Rt @}XJ vln. o,ryo7 [\\؟ 4.9+!X1>7Pvᡫ7,+,ER/I D\n`oP*ׇ0JÓ[sĒԩbyl¤J6KDi#IJEʤ \k$ly6+4WSi)mw$ddu͘P&A 3\}=-UR*5ȃ͵,ü\J Wx)2s2-O+~@I-QIEf '޷,O;DжN UpÈ}'KedڪQ1Mʘ𢮞`0~͹y0d,qœa !خA]L^ivEaPO}<xs)QP+kJ;NJz>?TIn(ɒC $&?H"06.f2] ,ΓiG VXwffOȤ`dMSvM n}RԀkncJ#Xy&m\a8lpfo>;25ZJOhD6\NYBN< A}us{ts8vm?l (U ~m իw:`||p @j t n^ 0RE%1mMIhZ[4Cs%K^Xc6~[qݺ$$no~q_o)|2)3Y p܄0܇ uFkx_qoZ{W@PƂ>5,J6\yuRntrùX` uSbG!U~mwѸ_!a&S"[.z1\H[M\c~E7EN'"YD<9gy1p T\#1Qd1 |2+(P|Yso"2]7M:$E  =P]Q vB|OݼI{cE[%M>&a (v?z,0` fA2Ac 3m H03?IpWt,Ց 8T1y S ٠b ) ~Bڇ}Wn1t 9L;B8Tp׿0rE)z׀E51vPGZY+lK!JֱH\u4E1(ɋ(%#ayfɟT2.6LqQoKtۺa5"̐1R*OLK$9AyDV""V3 齍޿,BC**\/j.9I(ʖ|#<.ޅNSFI2$v,o,16M0ͮ5 ΤVl\? `$0ϫsnaOk%ݒ]"gjd[;W|i=w TS^N:f(3W%L" Ň SQJ(r*c5m_=: dy4BPuŘ`oK§M*cBfq{2"65.ȡ:?XN ՇIjK͋#نm(pچT>L6oDs9&_4gF1x6 LȕŗSDd&LQ5'],9Vdy ¸&nז4ħ!:.P:fr7-7۠c8^!p:JTS_E^{~ 2[ӂT3Oj>Cc5bZgjL9P瀖 !QTϡS,? P; l &ԓMAH*Rkiail+Cfԯ@ _/y5e)޺WHfi!ԉ9wVRpF$|uMJ GA>#`Vyqg[\&=c :{AV:({fTN)5~v>|@kģ[=՛+wdwUhO߮)>+U_= fqU؇~o&ϴ.4τ-.~SHvg5>*dzZ RA(Mtb_cd->XHNlNsFx(6s3m]4fid$%)>6O/9DhS; HZٻhz wݺZ~?Rjj9Ls#0cwg$? M )x9@a:|e=Đ]4qx^ *s|j"Z6ma퀓Շ󐗚(wE6 GL&yu%KT5NLq""|wKN:ro9͸;< jƽŪ zv1l7+(m0koHk}~ym!`El)777BX`O_P-SeB)/C|1I~)+2I=*nX_K @js2 tђGPfScф@UwF!wNhv3{on&RFz~+ a{+)H M8)HiI5MLT݀A_r)d{9ŷP6U~3>]BohlҭGׂ.`*Wwg>1Х;H0Aձ`F]53Ģhx'b-S!o6nߵZv/߸ =* *`i FvVA LX\e bnBTPkN{}ynG`*4Gt( r7ϵL2$u:.ݾӺFqQл΃fN= E09 Wpcw qJzdܙLEܕLWfW=pȰkɫ%}:3\jl0*f TpviM;hg:߿p Dtm.FkWSAa "tLp+ WAUlM0diRv dl=n`yj0 &'+ݾO.K+) 9q;opx;$6>u96+H 3F[zeendstream endobj 120 0 obj << /Filter /FlateDecode /Length 3358 >> stream xZKo\l ڑ7 gDkf(J 6?ÇTU?p֏A5~V}W=qQz>cg=~zysMbRÏ/WGv?X&I1$],\.g,1Y G6jWQ{OOf,~ |s&Ͷm"eub XI~Q }cưe.|Xö/9+on榭˾͍+TB{,Vt ڷ^TCsƔt(:p+?X+͖' d ~0$sPaT`]VG݀ ;Pa*5V($RrO#Fvk9n2CHvƤ]fvlvu[~sLxƿ7yU?'` ١bh@f;EKgnRHԄs}ۭiJB*љ|o'esIKL?-(&jh=D&:ЄfB>̠@@˭cLɢD8 )\/QľiiP_r"C_U-Er^!تmaMuۆYp5?@lm0AZzS"r^ ,?P= M%ȂEKi uK"!'DAZ/cWQ>_>&\`8)U.5i%/ /BٝӲ<d?XTK ݳ̴FiMe>hI}/}I6 \Zl"!m^ֻ2z}CݹVA)[[LH?;k짌;h{7($ -[e_N{b .)TSTWzxR 2:J07"mI%$.<'\dN _vLjUB8‚jS>+alb+=q.aj2!xHA& \ e}:ۘ/wDh6:^YkogY0R"0@!{ Qo}m8cqK_\>챍-',2,;9w5d4QZ]30@%"H no(qC FɗԸ N`P?4q4Ss&rM .u]fԮEA^4wz2=aԃN9 5ۛS宎ƚͦSiEFإ1xn9\ 9B["k.Ӕl{yv /lk yyY\jp(C_ڟ0 )>&=)}5._J"x R@/V6)w :t)=de0 O ׽tثn02U]w#O#pb: !8z[^!k@!- |7ս{n[G{@@w%*lbV^Ӓs@bY# A0Lttw1d=6XNL>=" BN nD9fʑ}ӲZ*@p/d$$#2H^C$l5L5|@xp]ҌJ9k^_KS/W@qvWVEp]EBu}7!؆e^<-@nGhRyYt'b].,g?s<_lr~ C= W#oHq\Mժ~lIdV2k10d%s KQ ^nU_CJr &TM/> stream xmV TSW>!pJўPjZ((&BH[ <"* ZUǪh.unfywYs:YY+'{x<$?oK-[b122~M壩3V:@Lx{:P3([=6:K?,<(J=6.;1)y]h',0YV1)w҃9Ghܚ6]Ϟ@ٿ lnr?} 9 X6 ŵzscaeĠ4ӂ^Y~.{u *ԩ씴##՛L9r(-+.(V,g qb *TVM"8V#j絑ʇ, tE--?3*D獼YOއݸgkETE|߽59 %=~mQPYZѢ0"b\B_wqE/P`k*K הdjkjl0{/It㤉(ЗtgWQu„;jx`v:gt0K[$^ 3'i0c !/Hک mɃVi9pǽ\?(x  rP iݞBYL;Z~ϣΟH1G؝{EŌB[VRfN#Ù&QcicY _)C26@V]]ZSlc޽qRYTVKnUT.b{nq љ,R!Ҩ45?#ծU_N3 F=ݝ1[2< 5\FEXLתwAoi M(B4~.)SMq}$vGJQf\ &0B@َ̮a <ҕ"OFp«q%x6^qZАn)>FzXX\pل~<}#Zt `AM$˙%k<;1$rvV9JL#ۼС&cWgbs^ q7_!ݤ4RUjv}\zn^:JeO5&ki=,QH"9RP|S蓵)j6ƶxQv&MÞ1}\7rJ&E&MA)(&%<I=7_j$_Ueendstream endobj 122 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7628 >> stream xy xTș2LBE+nlA}l59g5dBE [Xlkz {g&yL=ûm/''g7z%Og)ܓpv.}{On.=əW%} 6k_J\R[U_~[^jך[ĒU7e%kZKז۷򭪍[~?g[<^o=識Mͼ-GxEEWxxm-{:qJU'yo=[ǻ7GkpV3)٣jٶ#_madžofa r?rxDgs.2kH}Wҷ+'P{Sf9дsB6HN||Ϸ&C3b#42F  lN :ϸMv#4+FTT f-p{@è0]3ՁA?};u$~~yT*1඲ag#OJG P4Kn[Vg b<ڈPe_(Ñx"&ݱ?k>}oUE )}[_߷'7kjw m`tYX R >jQJeϹ2kVg0h`tVR4Z'm ͍060EKbMQ>dч抜wȊڅ Vb\?e9}vOr'}8[tM7ۋ<+/gx}D[p;z(L1z1Q7º}N0@ m5뀑o{NQ&Ћ E3B|0I iH3 SU #+m/qqNo&ZaMV`3ؠm{azfVײgOLli^/N O23l™twD+DvwĻaF7z,8 IAAAm>CG ͌%.Moј&zF!5$Ga31:  a-hq2".w,N;:=nb2a:h5Y -Ml+ݲ f Vo R點By\!G,6Q6#ka1Q9o5M :W4HʙZT~Mqr29GrR %Pm艧NnڈbsItz\һ 5xЌdx]<ԁ& 2"5˨׸4.OԅH;;E?ypqn'M>@w%aʞa Cժ>n:k~G; gRV̢@ z@O;lϹK%Z$r@[_FET4j[ZsE"s^ tO^9Aڝ,z0ʭ*#)+۶DpS!p쁼 =zI3zDn 9O.PD,3$T^mSo04^f?(vG0pmC!QG0FHjwh|ZVAb|:/P+ c`XzpKlR`V v3NLrF]SuMk*TC}C ݥucSosl֙~zDb͓0`ӝt'E: *6wbͻ7rfphh:"BfUr DVPMZ鎷@T55/PGa53.a$ r0 M%CT1ew9XN3)dL=6AP\I:0/Ɛ OBU¯v''{*[IpSV,EKf趺ٍdG!HG$IJSoV=ޘg&PV{nŜ<4j8Z3cc=hwӝTYaVZ4ˀn(|FeVYT˸"vvhWh=mڒM $z5PP!ycNAaP6I?H`q=wN f8?KvIF)i ~tEAw<5UTa˼NN"W8CceLL*K%%VC83|AwН })[ 8n}uqt&PBfl̰1`/FxS_<8=BECm3뎵Z6-j'ʯ0;:-{^e&FWrV5dUh&OSp~U@TS5P5u+`Gz]?gf,3+2?6>"}=6n Sɓ˾.e.5Y -Vd],lPә(]N]p2Jy;aUpr[ /hmr6[+-dClu(DkvOSX_-5rfW FHq*b ۂ60L`%L:bF@(m"$DQK'x1c#b)n>QջT e vەV =OVKƄUn{"( Ӽ RWmo^[Ib huRYӞub كKd C#sxLD aG33Eΰ+ba,1f7?$*l+S̔L LRL NF*cJ=V!LkWj*ѣϺd VtBFQ_xqrUr-N$AJklNNHoL;.i$DmK0My;⌠j\G{U!\":?ȑ\>*M?!wO2P=~G5LZ-h aG %jl5ߠ3k'ٍ"ւyoD](kI/ G6v۠5L!^l4<2|=< {'{6ظ ~IZUYVy u>CϹlJʼnmHlpr/^owp0gQdϥB]Tj`"3|}7rrjȕW;8z ˈ؀^&f cGp#sr/*+44,GWwt(|77ÁE hfY*1e^M{KEMGw[Xˊqne#{ABQ*{G[4T;еW= |.M0 :IM@SvĻSfs5tiսfNd k#쑮Z&E.5Rvх6ҖM|q)z|&2U/N%=c`/ w!5US ({džQp#;7jH3VHW'0 "n7K xTw,l3Yji>ΨUqWO&}?sQ7H ^bz,^Rtٜ8<D'ATFvarh,17|q@D8pdు~OAr #rA}fGjd"i͎"\v\rC+Ԅ]p@--*&j\Do{8'6SV>uއ^ U|qi'6+.&ўRPkR)EcCqTI~t ډ=Yb0Q7Odf&G/d̰PQ\-~- h#V4#FkUNk"WU_c5Ykf1#mcS8 V 7~(\;rx㈞~/|၇Cяd 򓁯߂E,)XS!ELQ{S{7ǵy>|~r9NvFnJ`9}٧;ƕlLu:I[X>شMNԼ1S?U'2w."j4c|UmWMF+=m  C e&Tu['CG;S}?}89iXP VL.=!$.{7[$*j/R~1مyn~:0OۘfX1yw?VZ+JŦdk$bͿy 7iOBotG.37 G/)̣5UMu5Qߗ=Y/EDFFO"41W0oea6ZYYI+fnA3wwo۞P VV4fJyxLԗ᫑_?\}hU+_(/<KrnC2(sX vh[H(onqJ=46 Ny|cӡ=zӡ'0 swFGwfI2#:Ouwr]l13ƥ#'ɓS0fZrNL&&]XP}}mZR]e0VX$& -ssKg]5endstream endobj 123 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8868 >> stream xz|S  2!#i=K ^M]mp%KE2WHVJʊ]-ʎNXv7$mLޔY&OM>f>?k '<;!g5hb-1XG%qb<@l"%6-$b+Ll#Sbb*C,!K2bXA$VYj"MDs[xH!D'PG Ÿ?D"P/S_.ND _hD 7*1o}Dnrx#jQeMmō4ԓU$.Z():yBH$@\W*wjݚp<~m"5U@/Vɖ5Кh]NlN\@-0;W4a'^Qp9W`ܕB t;(@Ŧ0j2T_|uɶj-}B|.L7CCnȶ`5ڕ}$i0+%[7<0J#S_r{O@Ru8 *&iFPp⊫O_NS(V[*ZY\a,ܖN_n::,h,C>JւZ/Kذ-\91;Tf}wY WdxZE͜=KW`óD?8˩6zh?Fpȃ_`9F0h$*l+P8ǖ ^*@\4Hͨɗ@Uz;tOkaVG|>CW"oy/SW2@Q d]ArNq[}p8rC>Ҭ6`8vÌȊ.uܬ\>zbUvuIʉSIH-VDYvJc !mt}DmghMD h#mRF! hX)&03< ;]}>*v pc7dYT\‡Vb+|eg3rGp'XQX=[F.&T.|#\썽 }@ ܰS+6}%v4$c9ɇs)4'}/Ђx 5@mJgv׽eȢSsmmǎ]o.I'4ĕKP9o֔1\b4 n#aU4P5fw zidCW__ _qVJR%z4v$^;8a S,5ҽcoV6.@Ve@6R ( S @HhU,@W:le < ^*j|ݫgC{5UmX~%,8-Ux) ajߠvSev ޻cc7nr8\:lC u[+toʀSi,X_ 2w_a~&AWm?,5Ɋߤڡ"Z`];e !E2S?A#t >X!RR@h%8~"h$L,W m;닷>R3q/q]#ZHg<9Ղ1{A9l@ s@.4~D=fCϦeaRŒCqWA[LSi}B-#RiDQV^Tpܫ {dC.4eX$xV78AĻͻV%((e;v (XH|$.Md:zt<"ŵ\~Gc pt˼ċȃ#Qi|IA/,ʷ3"gC`n 8Âf4ǗXv>bPLa^@J#ƭA4`QIw}$Sޟov<}{QL yOmnZb$Zfh7cR%ۧ=H0J}N>-KCc "HV.(kk\=j =@(R2Ԛb꺃9%zz+@vdol=ȇU UQ0b'*pI)Vc13T{0;m L]8b$[ɥnS' uAd:x_OzER$8ŊIøBBIAޒVo 4ITcjvS l:c|.>mQ))#|W Qso lTK>VP gϊ|]>h|ڛ6-[2LMOq[Qon$P )dy+M1[_s2ePX0TPm Fg83zxTUi`NY>}bDK9A Wkݵk޳3%BP @V(XNfS _芵1SVo=pq!H`T0/q{8#pKC&mEHjLir\#X,Z$\+ꕴLSŸ>; 8KTfV)]"S%K'%$WSTVg^θ,/ֲpQld,Gv*=0 x":ރWnbx> 9AW9 mQKI"]I0wp1b⎂lmrvOR%` CR˙g欞"WU鯖3:30 ㍧'Whi-cOq~&La}Ӂm=p`+իXAB5Yhm zQU [|bC Z]c-)n'ϳV7L 6PggS'_e5ʓeKO9ih>`dD0t1P)Ni i5iJT@4*6iO֕h\d.]VɯWWvE%-%\r%r])x3$u:I]HEia-̍#;xX@Večq|iBdϙB{ 8csC]bR vX=reT#+"~GU]J?o~`ٰ/ܼ'=~/)ܙ!%=`WԢ,U=ȩE@A_\,< dW5 TmHPLSNDi Iiڛ- (em QA=콸 xBu rv`J4Sa(ANv:GEp%ҵ86ʀv3dDž7[} Qgxe,=X CAF!($(Uj: k} KiouZ< Uus$ʿ2$9Ubo ηն3P8re[MV #[EձXn@?O?| +j5}˸o=>Stv$d=$XO\{So ,,t  hY4yEa3;~3p,~/ڽVHPr )="b}o\~PZrVͦd:e.J{Qd޼}As =z:_1S;$(b< ҨU@I+>N*nv(9mvN 'mN{y 9baNB̶'8˶QmϳsP~>O%6+ ? AawQ8rPuA d?g }x. ܴ߼v]`|ZjCDZYn޶%m PUW+;ep ZiUI]>mNP W.GGu SpSTp`&ߢ񙈃( #޿Ah.K[MzBdٙlOf}νp'RA5uWX&û7&L,FFg-Kh@`2Ca\poeh8B5#q aV*|*r؍7V5 ݇y\}.@pjʀ+pδzJ9]q"S>RK 4Fg?\DthKu<bWVmM{$ƛ0c҉L k~x S(gLoWcl]؅{iHgQ`]"vG3i Ce{R\כnaYk,҄D0vёX@r~#H*p VR~y {iy|V끭1l&o}.c3hiv㋸ V@%L75Qb:\PƮΩMf_tȞm4(%ѵ]oo>:k9w/|Y^$7/YLٶ1_x{?_71*m3[m|JJ az$v)YR_%Ѿ*4VR/{q¸seXJR`՘ԀVJ>ڄw(4,f)RTqLX_26/UTsn'}E1 -+dRkqc<*k$baDȘ!7ً`?H!ud}ƪ8rZcKcY@&]2k1c{{ ,%4V%v=.}ìl[f p]cokGȬ$j=ɸ;v8s7FZ69ȧeRm JE"_ny~r{kpq_&*<~|k{c4=>4 X{ 5W&NiP=P _aw1Wvت* TnoP@9YޣTDDb?#8`hm4¥jqcgءCHKi~4 uT8Mi`eR^P/-Rkhݻh~/Ɍ4+,j'6aF W_QWaTyޙxT\2HcMn܁ŠA]%SgV9kKl?Ro[;A {g6ﵿ{Ͼc5Եy4z y(ªcc'fMtlVL5샩8itT_>q:ۉƟ@\\vLU@e2-N8? # % u܋_0-0DY2lzTm)svwuCJ +ɝdzxwbZA1vYƤ~Mq%q.Mڤ1_jNkUXThw*6pe'aC޲eE ,R}16G+ٗ ΕMq~1U`eztL n,qid|Σ(}D~~c3e% Lxro$\gwa꽨Oq ?Hˍku&ТJE銔r ֡>#kD&hD o#U4>.8vTVyd [)>*1"[~Ҹ`)b^FŨə67jJI-X.idksQd5U#w.ߺj5c $Y]wQu×_qf2lQ^Q`XkӏCǥ0p ׀Yws>v^pfG3#:3pϼyg+/>}%?mq?7,Ʃg,f,Aڢ;,%{ɵ\\wܕߣWxU&)Gw0857XZ\(38N\w1UxV rrTyJ/<G2ɟsٜ~wݦJ^F&GРh!@szc`ΪblB/8 a4 [,Z4f ΤAo0W{/ ŸeE4zIhHRjYgaLdiSZ !'j-B ImQ>v0xM׶zZpao~ðF^t_!&mr4r9"[Su%2:9+ږ4Gy-Y֣<3ը~&K ݣ)R`„! hqa:}GZW)պX# FoԅƳ4)|H. 1@6_+KjRf/^> &R~豹O_h:/P dge@endstream endobj 124 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3399 >> stream xW pS}1ĪRH2 K 0[6^.Kȶ]͛/Hް-NJI3IJ tH,OMe:F3|9y*0p8q1_Y5|i\L !iv`$&S`^tVFv$)7jS8)73ju!qZ$)S$)*3+7O"=It0%5PW-~HNCRq6]jPT ZOm^6QITţ~N) T$;PzX8 J_< =-@Hn?1᳟E1d{ىer7Ч\Q$XN>C 4U6'- Ê.$7?{/gx]M !ch^;Ķ0y0ҸTЍs7x]!?! =^ygH=U"D m`7P Pߥ٧9!!u9^ $_՞:7X{K8fe$R˿ySQ亓[}Y$EcQIg^7Ч+wP %s0 0`1H=`xv m'$(.Htv;׾'vˮ0ct ]fYXǠ8wv~S$d\d1xwU^Q 0d2K̪r#*qmQl3ٴVcGc@5-$Ќ.}n{|{rD#+]Sj>`g+#K\Q*+J1]hLHݓIB,{ ]'%08ÒYӞph.|2K(qY QrxZaYǰ3{F6ajhz-n܁juC3tBDyk"F^LĸpѢBk>uu*ʠ"|8AK qZec@CԽҷlk3z_0!$!D5nnsXB{aM]?FtCMiCB&2K*7"8FS!hׅ VwNQ)M$?Y}FўΓ7BPi•4JvJx !TdnhqbىQS.Cf|G ~B`UXE;'a 7'ge'&c$Z>-s] AQ9 VaIW'~N"qzC^7$}#t+ޛ΁hwn"iJDJZ""=ݬ^' G FC0iT 9> U@lL<8 _`"f}v8 ľ$MIFumu# g`B%f_*! A$ $@@+q#qrPZ!;ܯO'EXh.kjFMMmib@otXUu)}ƕ.DNt|:9GXjpV33RMNTJC|;[mVC(et! ٶqN~󻙡޼ܚ$U[s^t<]v׿jLJk,5W5ɱzU~N`)27`*Y^,̓nÇFZe)(ZVh6}OӅ@큥]DJv\@$&ɉlLDzүH\eUWUv`_ ~XN<'zYơjd yocZ?fr[(e!|tSel*Vc.bkϖS>_Q d[0 dMV6Įa~4pȽO0qqKW;/Xjѓ:%mc }DcʒҖKjJ1!Z?[f+r.ކ0!}5Ϯ_*T2$[ .᎙ ZڥwJ֥d3g)3 _!i}B>8`(|sd 0Qȁo >דיo÷]xyTS=OKvwoΦͯJq6KS3֙P } v́+1eZ*ڸ[W'b5"Ֆi#t& b+֗7VT Zq+nv&ױNh8 MOOda>__AH8oHз+5򈕥T?><6Nye5uyfVAK[#]rvblۮV$,TZN5ߌ ir4!|2OfۧMu@VR"R|#֠Pnʐ`;=Zendstream endobj 125 0 obj << /Filter /FlateDecode /Length 644 >> stream x]=n@^ dn\$\V S-}fr"0[bO//6,W |\cpy t'=Z?}\g>m|iu2ί}ٴө|_ml6x"qhMh4MA3>4 4#iS NǦA<2A쌧AѠl6x"BcEId4&QdИDFAcEM4k&kFjk&иDNC9EK94.SиDNC9EK94.SиDNC9EΎή89q>3rQ@EMH4!QPЄDAQ@EMH4!QPqh= JKZ[%*j$k$*j$k$*j$k$*j$k$*j$k$*j$k$Zlr\lb&LRJSIOSkO=ISkO=KKk/`-yނ-z ֒-XKޢ`-yނ-z ֒-XKޢ`-yނ-z ֒-XKޢ`-yނœMƻ%9L目V]1sw^/W5`VXendstream endobj 126 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 9530 >> stream xz xSU-{/[cPEqAde(KW١{}o$iٓM6[ Т# e=7 >-IN9o}Kg~̤<~4ȈҵGGu> !OVV3y[+-(ݲdXlb'z濼aWJfZZ̊Yyss7D7/lY5ۢw,ٹtWAᲢϬyuϏ0zq/LxOLғG<1 ,-žc#%SRwX4 -ǞV`+*Uyl56 [Fc1ll,6cc/` El!6{ݏMĦcacklc`0.6b}!X66aG1{ }\eκ>mهe~Md} ޏ߿A\`CK~<< A0XcHN]GÏǒBJAsİî?O|:|??Y#6O97i#zFߞ-xs;}tmɩpaFW  y HS&oqNiv}0iI=B tT~p<|\VhJ@s>E8G޷x G>Ҧ>lK?[uDv;YZyyylA$K30<ϊ;WazR˺r|pI`%b:$je.!.V E~U\8Μ[srXJhw,,p ~5ʃ:6m$#[MoԨ4'h[pj:RqoX v GR9_wCQZ_NVB/*4TR9\q~zOo'{b*q 9? B@AՐ_Du Wn\#q؏ए_L_z}g78L M\fd泀C*ҋÁ#W Ơg\Ff;&?e0cʲ/z|sG=GJ=;gL ~23:҅EطNmur sk dC'}/zd=sD/ɋzΕ/w`wqDBxv#*O؊7$$o,2 ̃֊ iha^f,>6~|k f9~ơf=ݚ%Y>P4S@˶a|/‰Lf<ͬE>U~Z WF C]!p˔"":J50mpCj,*Vsw EYUlo57LB <4|k~2t BMxiv|zAёm65&)J/j-omHY &&>(qKL9~΢ey#v%‡D?.q ѵ39 -"G7M{T;5 ` F,_*@1/W1ꔀ,DVD 5_a#/ЇmzJ_\$RY߱J.;$DETu"1@[A4mbjj+HHq@}muCuw2=Tɥ"RR\lY5Lࡰ6%6 D}KRQF|$ణ_C6َbӇ*S(TRo^3ަ4FFJ։QGzlF`"yQ"'˓8W08ɂTǙfʉ  A ;H wʷKH;qIƾ+-ʺ3't*  8#cs"rPC֢.ORwYC*msk/_^U-~maĴ`ƁߏWH/7d`6opAeP%i5xy݂?*T"cH}E͂$BthG|rȑrT*IKV 5,Fj&~c pZ2A|RzC W^L-"W827e&L_HlMKK :DkU Sy˩Ɉ4 j`'~ɂ%J((P@8:gO@ڿ9{'|P4HX!̈Lɖ(6SjysD;ӿ ԯ H'`t`HPͱ- #JҮs7Ar#vZUqT-:(We\xOָΈϽNسuG0A>s:R{h!2*qKX[Q f}BZp>] "ReU6=nes:Z%g`r[6z||۶gO$ly;-g@'yoiR};<7}\M.8c9[}$ 4'yQ} `yzlr2,ʿжX[ -=O¹HϾh\%Dfν̉H!h/ј]A/TKiġXNi^,j8",=d A 2Pϖo-<ș >O…po?ٟxO,`QJq!Rv_J8HϭsHVܰNTQU{Q3;OOۅ9z0Ϫ\3!JzDʍd8ʗ0妃rdO%7iaq iT[[\K{:y"`H(ydogQZRFLLq5dv!DyksuI \kyIr96` =x?&/1] -? oqıNh۲A՛Xm]>)ԎK0ܝڹ ێc3;;\ hŗ"ZU+XoYZV!%#TbƩwH>K[ S@dFiW]+U&~C1  AZ媪V@,‹v /Cqy>~XsrYaہWoף[On&( OVYo.=#Ja"\ə^ȇ19)Xtrnt9ݳ7^xݾ;Nts P1AKpR)yU(ԯKJ8h15E=a R@~H$F4NR>TN >Ql9ZUG~~ ό鹵S*ɋ9Wq(㐒vJq^GKѣs+++oap8Z:¬pdd=;b>x..vIFoOr}GGGH#:ڙ)ȯ;YMma]E0PVvǴqCKzhiUc:[^9Լ.o4:t0GwT)?mw&6]#|ĜY۠$V8|<OEq;?;[9y,slY+Dˉ[(ڷ#\.)CV =C%l(inQ0RQ:n E E:db]RF"RD>G4GvGME"PD 3:>Г|4B v5'-nahȧCm>.W}ܓ N!HTkTPT$ֲB +BB.1SrcMBqkO$3oso͍ȝ"YSf"ܤUչz<ߟ'('3v6vj/X("E˼2$ !h塐?x82 HD!ߣB*6ڸe;$ Ԉp@a M'IDT1[ r,4qO$(Hn=f2!7H0svTFvjb"D1eo/35hGL`Ap@"Wa5RZT M\QBJ|8 hjVZyB:s6qB՗6SN2׸܈Gjs<+hY[B <A28Own]DhYẚ !@˞Ǭu:LRJэR&Xz )ą* [`a*OfHk5%fvPySYa 2JXٓ]7H>uuS+( EEX&ñD@ Dj#XMQ +֍>lUo*'j4do1]L$ՕQ][`\&|T[ʤ9nzߐ%yj2G&)-Ʒؖ7 ?Hp!jRQP* R).,717_`n 8 ]\HDisƒ3֪- I!p H5$[<y3^tMJZP{ .bIqR$)}7`*|7D;qG@UEx?"9GSp܇7>dkt:+D]0ZBf0f,3id!א9',X۲r1F๏N̝SMU3-]r*D]&7; gS5(Q^٬ϨJUZec^\REX%H2Ҋ'>!p M{DiXk*Պ z#ᐣ%[}Bx_+t\nH Q] 9 D ׅE:cSY6nWJDu MF0{#]p}*{˻a Ϲg/M}?_k9? П1kϭGDLrj3Wۆ^vn꧀bFr5sfUAq~6x3Wϛ;u{jzo ~6_/ oa\Q!F[EpZ *mmE 6)př:q\2!͝d;_L3R3[vbkkTz!s"+Eg)RHyL>YB$FO߳EpsBn%Z uQR HYjb:}a[|(ƜFLq.dd.{R o&XN.NoSSlDo=oYu"0Rt_mpmBP dXI H&ڌKuAZjp8<õ⇚7"s5PʔU%5qդVݔ(@ Ȁjݔ{}i|U5 #s[[[p)rgY&u!=+3)T5av 2x$ `y+3j kTȦƣWGdn?#l^@p+3 GQ&Ra8ap0#>d^_ɼ{GЧN`ujᴈ+\+ş[d{v:Sf ?REfhf:C3LS;[)B5ɷ*JU!+ er _B0+H9f OmyH?vn>ﳃlﴁ1?3+5endstream endobj 127 0 obj << /Filter /FlateDecode /Length 176 >> stream x]O kX%C8""dHҡ-|>0Fk"Gp* f\%U xr.CObEڶ#$ AI#0sixcIռI&+n|ùX(=s=cw> |UYHendstream endobj 128 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 591 >> stream xcd`ab`dd v 644qH3a.gk7s7ˤ ~ (土[PZZZWZ&l`` QFoL ˾_8}Ѯr7߹#.|Ooѿ^_>X~cnɳ'I^qDU)o 6V>$-|RZQ\엺߷6MJLINgRe]ݭݕoҼw޹2Z*7oOwFl=upoMVɭZ&[$gy.J\<۰[79][K:יMhev wkhb bz|?c(?qo=~Tхk.Z5o5VwsڙP/_ZS{}Q. rKpsr"N}B igT;v"3+w\ F렅uo\gGGGw;G{wӢU|r\y8CKendstream endobj 129 0 obj << /Filter /FlateDecode /Length 472 >> stream x]1n@D{7aq#Hr\,L\)R#Knw5Ӽ[}~lCm.u^vc3uѯt/[:tGX~[ݹmyʮ.N_\j[XI+m'P,ShO}h{Kh/ChٱX#m:myr䩒J!y1/I(.myNŢeA̦I;ͺ76!{12SBpT(* EcQ`L8*Ţ Y@x -7Bh b n = u)UŢ)U+'++xAVYa^dy!^xAVYa^dy!^xA"LJx|-U}?fض{uկj endstream endobj 130 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6468 >> stream xyyTŽTE40zy.O7eMv}ޗu{evV@A ˠ#1D\}~Y_3oU}?[M k>tY_BńJAUФR4̩81?4 @^ɦv֛5mx2uVekM7K76ʷn7D"Ʀmvrjz󖭕ۖTUXvYwulݽ}r/o/*EKD/^.Z*Z&Z.Z!zIR4OJhhh),Ӣ٢gD EsDϊ='_"bODD׉M,֋R5 Q&%V4Qt/X4P2‚RIi5+, 0wuⲉi Q~{nxO^3SIVDvL2ݲdl3VrM77~{қ ]?C%;ΗbUa^I6JYޖe=`pl9P2:} 䒆~Qwd˯uA705J;yhpCnis*F lDM>ys\Oy:}ݨ r5Uuh!Pɟ.RVy aoGTTƢ8,/RC?N߯>p ٜvd3-Cx~Ŋ^̐ރ<0aSYx ]`-Y v⪞ʃW|eXǕ_VoQ5mq0Sj~pw">qt; !?g.V eKB?>\#S^ϗ"x4 ?߆Iy .,@mڦڀe]%_٬Ù#&-!',<8) ?E  FtPf`rZd5I~y;^%q O\ o%`JTQҦ 3i%ݡX'c׷?WYA+o-z~r h#ױtXx hkֿ PNaPߞ}]?(bJDdPgZ7k-:G:7/h`#͜Wg6BC%o^(oW*h4׶0 [>hf+Klu#{ݗߍ}Y? &̑:֙/7m1io[،f-Mr(\\<9|sQp㗶"Z9|zW*Kr<8V9˪ hdH EIY&F 8;qj-)]6J]:1XF-l[mWYD J5$6DCZh.9#kI:XK*'qp_3REFT͠/.#S?/r!CF|nUM|2ݽ-PSeT7v#0ykjp笇P{ewG3z΢shʠ!T0veU9h&] \6?񨑚 Jeܘ P'ue'!t"=%&!#t2K#|t  ' 2E|x8CJxb]]x_1gT  %7 9Y 'MyOj9Tr$iE'EIڎVJtT\`7Kۆ 'o|Don=8d0͂>TiY ▤-9ubh6-O0aiP٨5UJ Y'5чo\8O/z$^.GS7+BJ<>b07bx'DK'zğЃCQ@%C[]#Y+B\ qh,p4IR~ I S;R@qu̘$3*2DpLʒhd3H3arry}wArؙuJvx%@Mb6f髍,%\7 n5A>x;{:={U ȦJ3bG2PuE tp8#g&O;Zy+Kx+ yOn?N\?jJ#֨dLAA.Kf`kZKMc;nҕ֬Lq_ƼvjItlFu$@D> >WNya9|w"oe? Ui}66{k-/^KHA"B##?F|Ke_/!)͑g5I(t*1m fL;k 050eN|^O6Z &nl`k_k:J%֖}y;ɟ[3 UDS/+`+xRٵ5(d׼gZ@I2tR{|S@>JˈUANkloWF9:ؿGоc)]H225!9brɥ_i~~ ԱoΨtL/^4O `f=䊥&hǥ+8:{a hѕ(IK-'GztUYG4&>Ihu앳W=Qƚf'aSK/8Z% ZI$#DZG Ìqk>i3jL㑗H.LF?uHPW9頮*xl6 X"=,!;g;pϽ”5R " 't]w)\pz .bkc:eB2<* c7# endstream endobj 131 0 obj << /Filter /FlateDecode /Length 4029 >> stream x[Ks/t 2sZomؕZ9sHX$h{@PtWw,%י7o_~eޤeVWf.(˔ x-YI%O۶^yF&7PH< SN2 3l_W7.DR&KbY&irt{K3’ufS$f=L&kPXa߭hŒ{>#y2vjMt<yvjl,e0*#fO} *xʈ+nn`%ʷxdnx9]E΁ ;aH쫝Yk<72K^P“xf I M R0/N۪wS:ڞD)JxL~ތn@͉]ޮ@q0Qf2oOl@X9o!$:gw ]1MWW7MA[&RO&+Y1T@ w߮? SPvʉKmE׊zqD^O$S*kIʘ[I(q5읂J,G[o  onÒ g ĩ,Ӿze')u(?3jmQ{%jǙ7< K0#mT;m34z#XK.;R`S2dR.`W^15 ]y[G(w(#Zߎ~[[و1m*x#G7tC0Ǫ03F H8bVުhRhMBNzE`|Zjm,W`p{~ciLuW>!V{7Լw65x?D&3]zbax480C [`;xRV|cqVvDJN@+v=, zJ630ض٘D)D#!aS e1 x_c%<( !5>gIr"҂ca  u*ôe-Hp//\QA6G:-6׎)L=x ^#=,U6IsKT dO|4`mNdPBR$B7l%u|^7㉐/2L)OIYHR|(uHNM#~:#g?|adu)O>M^ksCsÐ'{CCz" iyI~{8XL7p|WܜC՜pƛ@]1%9MfWSάqxWIu`; M(=HޠϴpW~}o՟bLyF `pߍZ)P 7%/AбfĬ-UvD'sc3&5SSCDꗁs.)Tm>[m;s/1baFx2JgF-[! u}{=F K0ʀKQSzMe:{] Ύ`QdT\` )g7`%IIiɻ=#s$,U#D\ZgTNo'Wm=݌KoCjlg/Y=)6y{w5wި}g>[vw 4UU2;DtgJͥվ$` P1xT`@hpM=P %Jm]v'Xy~,8ow?ѱ }hvQ(j?^BZrn ,P~Sl+B3mH՘Ƶf4~P"گɌE{&r-)2e !=!BH%yކ6]{V"UB5$ M*.mu500 *nC_ښ NvG!t飞l&l)Ux\t/ub $U北,c`)NL\oЖxZ),CҖxlz琈+ޮlO<:+ݍaB?[ԝF<鬳kDIՁtefC?ɮF& g[0?^D82Rw!YahEݴu^kBw\>Dh8N&LqmSbaՏӡU?8,s#q{O<9nƣ@bn;VJB5@o;Lݧ ɑ'mv6},:R S-M»>}h>r9<9(_郐)P9Md^hI/S`bLbApP0DbxL L 7D u; 8>v‡9L$p@wRrB"ÉHs\NEeJX~uOTR5^Y?v+r0' [ 6kjMJj8p4nFT e$Q҅]˙Kӳ`,8*Kdq!lmW(rcxɹJuSTzN`Q) y\:`-A%9w@|=qo.j8r:<-;`%ͷ>?@ ~ԍDbgݛeE^sp[BS)ٿ\_endstream endobj 132 0 obj << /Filter /FlateDecode /Length 161 >> stream x]O1 yNQtЪjbLB:t컓ϲ=(ul"-~H0X4'0S 㬃M'l|3gsQe!􆖠DTZ b'h> stream x%]k`ǟPMBt 2"Bo0Y0MI3f&9mַR0rl~zI.L9σ0'c3j9عqx=~/}Mr۳g9b=&fJsI)B"td('p`3$iN`ewxI G,goOM)f\XRwFQx9Mp9Nz%1#ǬcI$.&9) !K66؇Nù~0+-0[_k1{2p'U]BZњHZR4S㿺Te5 \^>_kacRLD}3s$^ CP1408XL^U_&l`noB" |Ov dA(*(jjmnn52Q1T(/ _it !endstream endobj 134 0 obj << /Filter /FlateDecode /Length 3089 >> stream xZKs/.&1xCS.$$r|ɕ١DVx ;3KʎbF_7=/_؜7gQz-6]gR3?+vJSZ7gȫl+]cHw:_4fnBsai~6g~HAvC3_vZM+hA/0۾cŹԤ9JDZv*7MOJH(,V فH +r1FSȺYNu`LE:M֫m3C ' ȵSQvѭvuy0Vn]JQի/0^]T]"=9,/8s $dΪv\h`|NyQ }kk00 XtvtA,$&0VjGt1)s/l8(m?Ϙ!|\͐nVHVE{zvr[q%]u_/bR|Rovfm8.Ps8AM %7D>́#+"TUiaABߦ]3,]D~,껃F]> <œe}CԝVY@d_2m-jGZO.f] !B)_j!nvie $Y &}@߯NLںFC*ʠSQ !7@aڜkMzm0kFր4¥ ~^*XP?nKj#J*$i&EYr+WoF p( ႑.rv tcl}&6)}c jTiPT=Df!;W;x\*?@>9WNyV"GA D:kH6G~=$L>l$1Cn@žSTuXmʀhFEYz* ?#>8`*.d er]ؒ]ܦp}<*MJUcÉ[%P_cKѥ[h|;PzTpqVh@ +] mZެ|FIծ&NK]y9]2JAȟA§8mnZ_D` r۹&'+oV!f8dV;H ,UD—j-cv<)XQ+ĸ%L[Ezӈ,y蘂z8 (G~I.|D(;0\eެ iLq"*\6,jDH=pZ EK5ڷ|`el. l|=JU,ewY ̞제|M>OYe!GfάP<5~ v O ч lnK t˲aoPz0I=#zXv FߥW\BdY.u`)>6 (3ގʖ8~r@q76l,aÔQ;3i9VZ {)GhqP6(&}%aWeb|y=1g{0r"ˇ2KK찡$>zիoP51'OE~vЧLeЗ*ѱQj;0slbC_OиsIf B `DQɏNsAR/ASKcޣ#%>m[ʮPcd3E ǫh.cy'| Dw]cNQt]{&G9 PWDp`] bgX*_pis0>OqHQt xZY,0@eN6m,E_OA)\e+KWHH&G7 ZP~&r*nǾ.P*C][Y(йA CE1 =gݛLavNb^4OJ!b)BBp~8_N<>}VY5lO>4/VJaMc3 2GnP =īdOm Mm dt/Ŧ .\d =}xid Tyz}p"GNy{ԞbD>\R4|N1T\Mq= &1"G dE2.+:V GQ] r[N^Ro;*ލnn;t7(_+[ޚ<]BU(ь^$ Uh-Ilǭ rc.oʂRѿBHnNRSHܔ#',z>qoOs'Ne?=#rM42#-̻ۄkJ&i;?jd9W _wb^JыaF NZbKhHUfʯ޲JP1@xKwC8ԡP}-ѳYwũ[x;k#+HW_t3d|~totlnFqÓaM %YB5 |9 Z"$goDendstream endobj 135 0 obj << /Filter /FlateDecode /Length 162 >> stream x]O10 bA,tahU@p' aKtp'w'e?\v #z|QDZ`ɱj01Y!O dgҔUZF'R]km'͟tF{8+Pj?%Λkĩ4-Mr{&SA|1|S6endstream endobj 136 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 199 >> stream xcd`ab`dd v 144q~H3a~'#k7s7ˤqB_?``bdr-(-I-ROI-S,H-/000030dGgb&,\{}d-鶴.5߫-s]ͽ+8L8}@Iݓ8&w,U]|r\y8ZLendstream endobj 137 0 obj << /Filter /FlateDecode /Length 161 >> stream x]O10 b C 8QC_Ct;,:K X&׈#ME8L+go:?`3]$e_{%hy"VUZ b'Φ TTJM5FT&c=|) 2,S> stream xcd`ab`dd v 544q~H3a#ew+o_ 0012:)槤)& 2000v00tgcQFBըqVн_pON@[{W44{N8endstream endobj 139 0 obj << /Filter /FlateDecode /Length 3934 >> stream x[mܶ~Aq0 T[xUUMѤhHs藺]&rvH+m|v 8.EJCrgfn\/nۇnކ?n~%'ww7~-UU;+[U2wNg}ZJЙ|Zޑs L֝f{ x :{_Q;?[ >  m+oN}nS{Ӥv:K?^wF+-E^BZĖ"v9\Tc?i"wz܌yh۝q|mNop|fǷlבk ] ]U(t{ڻ.6Qh#nV*[aZ"(pA>meւx 7jaZ8]O'dmhz|@`~:UeqE ;ΧzgXh6 C5Mf3 QQ,)ʬR}u& ^rꋻA2o߾ l\.h=ʼba (]WY* zB9x+,|hV82l'I.ʲʥb"Ğp*!Sm* .}oc=lL^Ig4Bl#aadcUk7co >sE mO\!0Z{l{ `dg={8]s8wE/ǍpRYwU^UxH?%@ @^eXms_}\. )tƗqۆvsU5QкU5x׫\"m ۆ>]jk<ڳos/=y D5>sb?P Ns``V#4ܪüOjMflf|¦xS+NEkQr/Uc݇g6mSǕ?FGXgSh8w*q ;^f96-`)zl%7`VHxH!ZDF|A2ہ *8$gZ\K0> Κ}`%bA2S> U&|H aMjש5BeGS5BP wt귖"sF+xu H4E>"Hxwܝ<5oWeL8˼&;׿& l_ה*F B֑`ΐݧ] 蝐.tёソtT}?fFHdqi.vВclJ*C8\|):kZpqF5WߜOFf B˾Y!fI5Mz;We]9' d4:h pm^6g?Zp,GFAq UOYC|EQF0<14?և=m[h&f) v@iA9 Z0? li ZCd*v7Kk qfDg$>e,#~ʵdO4دځ|se֗\fO>J@FF%󒕎$[&Th.=MfOmmSIpf$-!%gг@[aE,\vDB JgKR+`(YvM%N0Cj0=Ԭ{&D\%"R֤lyub5:s;~`K sl}%k,|z?ڳ#Ty>)mR,9(G0Rb:>> )#:> NU}|ؼA|)`m )^H7Q鯍~q%uVEd8ԇKㅸ -+5qw)l? H"`GHYv}{s^{bm0 ))~(=ױYOfr@..%hKiCQi6 jQ8{=W:=ivF~Q5CE4`QT@~wTd{L7iߣbR7?6;Ӵ X咚}ߴGzh1dȖbn'|wVJ#r}b2^<,vMK*xڡ%΢r Q>c9*/7@E( J@Ba$&0k|9χc K'UѝEnSRGx]c; ƒZ 7EA/K|Vi!TCb+Gt<7ԖD#XةyKZc1tR"WܟW"\=#-.?M=E:L@j_'sXIU!q($>E L,Cd&PY "wfcJ5NM( @Ί O6dT{>{Q_ΗXb _~<:#Hnp8C(O`葄BR{6›'9ЗqK*cFK؆НMHIbR {-@FaTpf"t_A&]鑀S'Fn_U ?|yT *ИfL4xWV󼂒D `Ì^3],%F•b|?`ocOIU z9^%(E:F:# / zeq۫ HZHN\,rUi5\twA!4eS:INtZVWLp FCL?|L"9<@-) |ۄ',=}Bj"õ 2d*>NϚ 1P+ c,p!xH(7Ub|$~VQS8@=(Ѐb|7 Ԩ4]&0∱lV׍J;>Yl|qpJ⧝RB󩛚8% Hg4J`1bE^0ͳ%쒌A|ɥ/'Gz7(}tv`T7j_$ foS6 6iJd]xQKh2UI9d=>H^e%- EF> uV!loxA6z%O ^93(OǮd8bE6Ͷ{TUzǢG'*>t C`2}?~FLF_,,^ꡇYu"K Cp:S*oUKpz\jEw^U#yãZ>/* m#y!vMcNi"vfCiऔ"ݡh K&LO,ܾWӈZ }/e7 >TA׀b9ksѾTvBLaKwIGd\(.c30zN`v>Pnq3{9Tg-2)K<^eysٳ?n&(=߄X/ǃ 'bV Ǎt3sʑX+̃x>bER]*„ t2yMyjb @J~f3Uw*+)zg,y424Dp7eܷyEQ氿.>9éӟx[.b]*tT>\_5 endstream endobj 140 0 obj << /Filter /FlateDecode /Length 2282 >> stream xZ[sF~_h\5B m ))'ƒcˎ7,%C`߻ڕj$m'9ZkwCnWop587M_1_q27@n?LqCe?';Yq$[^QYqj༾(,>&-g[ڑ_pV~1/wpNCϖʱYNyo dfp\m}7}ypNpB[tPj[`=u^LOai1U }E ́ KV:q&Kll'ٓ&{\yOl8c%n8itsu46*s<Ä`{?|0ԓBb_:<0ZTB$JuuW}hnXAt"Ɓd_eၶZrx8TB܋ݭq2vfk%uP~Q;@7&]7eCs2nBS:Y(^-&VgjkBI=Wh  *H7M2^YS]'b 4wL|׉M/9iF::;!r(x\Yؒiyrx?sez!`m 8gqq/& . ='<5_Tb0byܾW?E.뢬4[侻"ߝԿ)KUQe?Z4/-,My.gd^hI~rI$|7",nbK%tQDW)_zp^!k*E|Vk^^r0>TIi R]8 @,X1$9yviDri'S# )ߖ޽0" 6lcԦ)zS_t`EP3!>"E0uT,oYa˧ ~Z:hMx/+yoh[?clF;hd%<<5,(U2u ,c5amK5B/lcŠMW$O5Pa\Ț r* 9hj[#lҶ@eNYi;8^6,sb֦zXklUP5el%p&#Rsv#XIOW4;%hv`:(ʙF=&(Tcz.AXrW k Æg(S1W,!_Et `{È!L hH'@+%)Zi Z$eivϴ- 6Ł1C*T-_Vendstream endobj 141 0 obj << /Filter /FlateDecode /Length 335 >> stream x]n@{7'fזmE( c( "oٱ"ŜvFz5/>)}-~nKa̪:>gsVg^~)M_6Ҏgei߯zwqMeTY| 5 vQ@7*K(`! 51HAC"(4KFYh6F@f,jP_XAOFO(` t¾}]}5*++hTPWVШQA_YA"2FfE@eH׋My.FnuĖ m> stream xW{TSW>!}[koǶcձ֪<|"*$' B^g!$@8*([-U|뭭ic;h;Z;]'k윽}wTl %Ƥ.NIzy+s_GD !7: a|lGfG+E*F ¢bEi|ZRQV\:-p7)zmib% ՆMIY9s7Pt*ZNZARPiT:ZM-RkE j15zzZB-^Q$!{.+p1 b3b[#zRt,_ѩ4S0˱c?{hum=8 H8^R؀M &ҵsZXe6S=`CK8Twv۩_'=m/?M!&R{DYl0EYॠPa4\Wu-Zc-0Ui˚mt{CywN0?ÔJC8x+Q1^ GސvKn5g&v=q59qԚϨdECz<+ {l]Khmjh\]fشsz! Ŕ;>x4s\uάV{w_:t]C?"jrhow0JThiԨˌ.(XT\a9kZT}JZKƒcg7XtyWG%&%=wneGwlkDPᰴntI#AyK/f}TUש>v^DO 4|K+֏9kҳ2tT86:?(>?r/7Um`T\JKɋJaI% A :hko 0Me%٦uE9#}]:$eĹ `c ߧ ԭ[ZT顁.+3ɂ> stream x]oLwһ𧗊2[6_̘l&K66DڀN"P,^>0ɔ6j]θL/f8uSe*~%gν\7o/><3 kUyM?-2C9#HۗkLP`@Qƪ֖.G{VY^Zp9v#Bjr!څm*DdĠyꨡpjP ҹSWiR0cj9; xn~ 631mMg|s[.c!SiviDVDXur_jl\!-y /&p^fD(Ok aQC!%bJ|n<"i*WvfIp9CJ2dr VP9--ESnmhSWGã07x۾N=ˑ)RZet/S?E A{bv:GYnֳ!~/( q |{$MvʦV{S{? IRP*wTw=f^iӞŗ-Z"h~fr<;ƹ<r7.V,G_Szendstream endobj 144 0 obj << /Filter /FlateDecode /Length 289 >> stream x]=n0 FwB7R\%C :Wendstream endobj 145 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2783 >> stream xyPSo\ŢSKj[Ej]QQ%B N !!BBX jPֺuyN[kg;fnj;oΝܛw!BC3.aU̟t &$0 qsG \Z=-brZ2 EN "Ù<3N+)Hj(-=_T(g/_!W*ܝgト-s/XDMD1L!V[8MbXCE%^$$OD @Ȉg/V$.M'x=I~xsP*FVZi4 + Xظ!І5#z~!Z5@xtwʍŰ^=堄bL ^H"0kͭ÷nNU:֑$bwCSsKLT<+w[^ɯ>mNibu!w:DYM9ޜ[iQJ\Vʷ۱4Bdfu-tAewy6X_Zn>Ƣ*X"U+$!UW<%u uH !-.J'˥jF&^^ߞnq[Jv58dA`E5Us['{+nѮYTC4 ɭ)4!#oӥ32Ӥp7L5v H@PG.@5ugH,u0$q8bG{ѫQ旃1:| fQkB F4^HZ|eXEp u-]/x8ϐr A^8G9\xl{&e&ާkFSe"ZLP;a:(nM=Ic`}eWL," ,ʫ?lW楊MM@a~ v8mFWurMJH=ݛVηeVȠ|*8%~p׋6Y+[х)GZ VrSmox˼L{76Uu]ZAO4'a3/gelGL"){D?8~ ogfa Nk__i ]`W_a`Uj4\hfT: %r@$sC.&aT`ep]:H^Kg{Ԁg72јW߾oen*@KA!b@ Jtg82"Jx;Y"&;v·ᆌM nޗ5ʢCf}1:|bR+xĂ\}= L\RKxa)25,1L:H*- \3*um,&g ttxBm^I ^xd)6)`y,(s@N5UXJh8D{?ӏ4&jMhGh9[{1臉Bq$D)xV ?ZP!E_ƧpMㆵc=uص2KФRA5i2mYEy#S]P5Ihv 6F34m'`ctzgcCzA"r N3gIQ7jF)'E V9$ފJC>` NUNb0o,68<հ|I4MS\_hOF.Hjy8֊^T)WI&p{+x. bEfX>[*-yZZSΨz2@ea:ٴ- bz)ԩ' }7!QԳØ],Qt75764;'A {W;ý;D1fYu9ٛTT( 2řҽk1?5ˁIZ/od%DXѤMF 4)jypwE*-?IsmG#hendstream endobj 146 0 obj << /Filter /FlateDecode /Length 161 >> stream x]O1 yeI  D 1o Iw}wYvgA>Repm9, = }1SeLD@nf"]Wz a4G $ƹV?i nwu[(%ZJ7smZL `)S!endstream endobj 147 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 192 >> stream xcd`ab`dd v 500q~H3aSeo_ 0012:)槤)& 200020tgLa$,г'O9o~bݽsG'ued}#> stream x]1n0 EwB707rKdhQBQȂ })$Hxz=-ūMƷވ/1Ӻ:]C5-V8==\yt{O1DK[ - pJn8uǨ7P .8Jp|٣ @^6JUQpeɤh:JxԳyFaUԀz._u}ʊ/sendstream endobj 149 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1524 >> stream xukpw-iB jIt&C@- شa -BH~IZYGϵ% ~(6NuM11LR8<))3$9r.ԙ~=hJF4=/ϸmVh@]:H@VZZD4mښe{,撪e[-ee9u5%)z27PT.ʧR(#K=MR4E׬tjnh~?t]i}jJ/d*cT?FF j$`fu^WFl|fS@PY|(?4 .T;w:S@1% q*EFAUqE* 㸌20S36{M:Vi# w/QV ۡꈌFV[1q ؁Y 3y"R9Fdu ӓ}geM4/7fpCX:h~e9WGTA~GN1#1id\bs'QX˂peljk!a 9&3D@g;CMbO ss5cjBap~&<:=Q#;#boedGHj !Bs1B +dԆT5\JyI}[q> >nJ3H{W BB֣#!\ M 9Epr7dIc oCp3ׂ-XU@QWaPm=+^Ab/_h G1cGN~8~H@{Zs [ILWXբj3OY9zrѰ glE鰻O&|V1~7J}4e؄v0#/B$d,4O#MHte^?"+&v@ls{7 u2꣟7.3Xe̙hk⛂WsGb; Jn5>s XSU믱փpuVɵc-W@&ڿ |yO]%>gЩBP2+ʇ >COBx>}蕍ª259~7g+K蓕Cn 73' A>g+}3Km,$[ްX&_nfGLFȃҢWC> stream x]O10 R>:NNI[;ɾ;,>|/> stream xcd`ab`dd v 5030q~H3aSelo_ 0012:)槤)& 200020tg\0?S7Mee?u˅/}(.;wNڳDΜn'v~f.#>mzgLnk bfʻNendstream endobj 152 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3838 >> stream xW TSgھJʨcmm]VRP,! I@!dah)֥=*֩mettfz3gd9wy9Ę0Dn\!~yB_~u&Ƈ1ѓh&aΣŲTɌxQJD8c(;I P$HserER])i36e }nދ//X8iXK#M[fb XJ,#%7 b%x%~G&5D61HL&FL'"L AFGs+5 ׄsQ/Mgt=uc=qMH9(Y&4g}?r6Q?-a=hٕQ)ܞ2J1oe>l@/xsIGK}׾9Vϰ**]hd {=yPh#9~UrdKe"dzw18n1+WQǵ)>nⱴjγ>B?qA(&z^BC4ۧ7hKq/}AaܿzQ9S*f$ EUPiGf7Q'8}"j>%^O]*91BOh>R,|PrFPطȗҔ4i 5:aO%v*s%TCsf#q(vx /Q(z3 m-꿿RjuPH{={=knT2n"P{7Fw U/_~q[2 ӛP/)rIeoV 'ս`4u%ýi,/),1RCgWؤ@1'w֓(r%["l|3&vsB>ˣwT*/t8t8mK|# xEE^4u S47x4;P#:ٵ ]N~VU|@w(PZByGd[ jB,OP`=SMB~i1fQmֈ 'mf"{lk)vNq DJt1AS=z fK.i9Zعܮڋ:h}ay߰QWQSn:@%#XRD6JS Ē⦒撦^^^S2f!7>칚K'snܶbkQ.%kW~S?Xa^SVc-^XS.)/or]e/|Zewu5XP@JȂnPFVO_g0: eऽa/`v$[u6 hi%:Q5F9-^˾rTkq4x$^Jx;Ecx.@^Cv",:_2Vlɔ@2/O 4 [D H*4jd/ \")w1Km4A:Nt)ljefO>D gZC3G^ 5݇/(oi] ʎo[ߣ w^AcG7۹bJk铄]d ɞ.KWYIC0!E״\|da 9hB.)B*;]?3ݜʈAE~^ ;1K%LYQh,Z} oNMJ\{KݰW]]j_cՔC ("(&o`FS>ؕf{e ilJH|7ocLzox$v TP>gC+S>w}|sNvࡂS"othC?L1-ZWK/"Z}b4:N#&w\Cl.@iM2okHϙ4s&;%oh3M=%\RHe G殙WM}рAR*(bX{ 幨U?;Ɔ qI{S`=7Q_!Qm] Z4tмё_qL [Vo"+wt1Ahџ sF5LG]bs#@فJcmQQ{% ~In>is63:,?1y}u# x V%CO{:ڽXtf%ҥY@d Q7ɔA~Oj \к9lYT Y(=o"e 鰹X f0?nj*e55ă;%JPyBDhʄ\^Y6^ڠf;쭍1G8vqe1@re{Vn)*VU*:CT9 j]x+.)_ Yh䏌'÷.Op{d;c W>Ŗmlu 9rlq%Z%߄/Rɹؖ ӥGׅb<2q >ikėyc?Kr|FM ŝPWGm?g+ I}NNM.kh:z P,y RRfoeIfE9:IQ:"TD$F DtN*o4ldFQ2ک\EWT#W v}qԹ:ӎOpv(p xz"ƅ+}hˠ4llÆ +쉖H_%JذEc!A I>m"8 e j?O3tw›n4OJsj$3Y Yp' ]KNW9Cd,dei MBCh)E֢Dv.[uv`?`2Qpג vhendstream endobj 153 0 obj << /Filter /FlateDecode /Length 301 >> stream x]An@ Ebn@H7&VU D,2 B}MEycSϧsP~c%Cf9iuEUnH˓[;񭝾& @ۛ5Z}jmjqQ}/߫zv\u-Q;w{*J<1n ;; m#*1Dy/Y/xd!%$) q&—ܙ̙z1g>C]M!.&0bbb[Y1>+Tkƶk}!=YK.4Nendstream endobj 154 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2925 >> stream xVyp_&DDw 6@sp(G)174Ò-鰬lr$8 @IH8@&Lh0Od3>qF3Ҿ>D^^^E3/qó#/˦-EOb4WH0lj3~ p~OIT0 ~6B'uOpqӖ?i3FA+9vfl{Q%[H aik[z5CA(lB6kb̴d|>*MBֈ!1ekJ) [sĚF1SeM$M- ~RgEZČ FYq*N# V}2^ʅ-,wM&IF,v5b $ڼa0Uu91cv9igfQbCvWQzzN f4C Oʵ&[C8n]fUKݙȸ>Lyh RgЅ'L=XWFRtyJo6rv4)*@8|$hE 9}U0dAmCҽz/{%^X+,g՚*Vт}X$F3ɰ!s*@Zq*CwE,)NC)FKK#m.H9.s=񓉞DocY:  $*bl{F4hJhb f1,% [M( NQvl Έ3jR6&V{ˢ )xڏ{?^^]B9OM &&c`vw1M)u Y Mej[55K1@M.kXytZrhi]:crǔmf &zsP-T̓Td# W=h4(tpH]lCR٨O`|LFI)Rҥ4×V=[h p|^PlEDsPiXFLW\ʯ3OyFdζ3N =TBѤyI|Ӣf^>:ml:G:l!՚HzXjh:+$@g!%)Uk#dRj`˖۴NC;$f|N!n: wC{Bm? $~ySVi1mP`|d67K6ˬkAe0^*=˝QW+ 5H98- *ȱmC -@căq2,d<ڲ{sJV`ifh O\M8klUS%Q߈Wh)ZhUiPJvǓG3^ynq,;cum9pw]b UJ{pʣ9U>ܼ7ߗ'H4(-ZMyHWdeS{TQ He`1D it,SlD}@>9gGb:ʫYR}SI>M /xJ? WG4w;m.؈;GiN"RH= ï;:: +\#ِn|NWroA Ҧp$K2s!m\T4 n}b4 j^5P77^yůѫPNH44 b z a_UA>k1[-ǘ~E} I cendstream endobj 155 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1552 >> stream xuT{lSU?wm0׺-uFd:1atuvFn]n+혳-0aUf.Sg@T8$x'˗~~ߏA0Lb~ҵ \ ̏%f0YweTOloD #޽N_Z;'jj]ɜҪҒ$Bk7 R]4h5Z P!z eR1Ihe8c2.淄eYvA>O>UqԠX+ nCQF O#\& cGl ePbm& 75ύG=!98Wcq|-+#p8e$a۝z8]Km[[ױK9mmgs˟yjha'p)BM17GXJ3J z+dd\_JՋx lf 04 ۋCM Ѩm(6j7r3 FٿȺ׋Q p)¾Gx .|>wnjܤjWb ۰]˖m8 5{kC6;VpGAqx@qd}{]Jɹ6Wfe,6K&J'G_=rq^Ҝ>,zr?̢bw,&7;ڽ a{rH2K2}fN ,==˷se|ǸY2m,*`L t@:"OAa`lYNl ~!g?j(,TsqO+@ދ[<}g4c=v[* k74m>Lo{uȬ Wt*ը<+<Z҄nUꫣ rW4{*̥}W#tgG`RYK&F6MMlx>;hϺ^)a=kzyIC:"BduapM2|yR^p |\g6r41*KPDHL. #G/_2٭vA4pkV"v͎[tfxGC-.~~7?YQIgj>%篷Y> stream x];0 @"7hR.@v.00>jwd9'Ro>K=G*>tAJWᓹAq#ֵh k+(JVn5+P(|{Pws)&(D31Ke9guendstream endobj 157 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1230 >> stream x[lUgeHv7BĘ!(FJ %)VݶK9;[օnPZ ,Eʭ"5$> > 16MLH<ӌ U⛏''}}8V\8-+ذcXV$.W@rn\HǗ/ؼ /%Kr)V~fu6Z˫MFk{S|h(zH T&kP+jZl Ī1 TC|7(h(.-z]?-èqA'xDzTM 7Ž g-,dAP%|d`A+e^ mXtՒ)ޯeT\ӓ5d{P{8xv-x*إ8vk;Ai PO\9} d|anȰ!߬5>jL$u)Ud4=MeLJcy%?d˨'@ md0q'(D!"~|k7JKV` h@Q)taVza!Iꠑn[+!0UX3H;ݾS.guE*eGh|b%%_N5xUېg?uVhm[s3Q߯/Mk{x.f*erPrl"5Vܺ*`Z k8 ]96go\@zq"1k)_2! ӄ[i3M]Fl.=džuӈzaB;bK^OPAR\C=TJWKU1{ej)et[t쬣MzI+4I+i`B<;rZ: vՋՖ!c Fz4ZuᕩIx~>?0Q&8FlEBaro/.b0R=~ . X {ӡ4(4 p4ϐ5z1οD>eRkB<§2 #tl@(M=m~ZiYzYU_I½H8 #G <&#㩼nN~泙H: g@Bu~|'nZMڏv$ƣp<8lu@Y|[X>Wg+\k7qtf]OOq>+@pn#anp΀3_/ey" M 71A/ӡjZM=|>UСaJۣJXLHh!hIendstream endobj 158 0 obj << /Filter /FlateDecode /Length 161 >> stream x]O10 b C+qP(/ СÝdߝ|]%Cֱ5"HcQ]8LTg:?`3燞I>.j75O$V?p׶@Tr48o1Ҵ4CN/US1endstream endobj 159 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 275 >> stream xcd`ab`dd v 444qH3a.gk7s7ˤs ~g,Ȩl䜟[PZZZWZW1}Fo{pY}2;}Vwrٿ݊8aH>`O>gwUZ[&N?'ΒP=?aq䔨n~+;:W.[4)v67wlhbv]ub |r\y8QnQendstream endobj 160 0 obj << /Type /XRef /Length 185 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 161 /ID [<8f87aa39f46f5443b487b03ed1c51136><9843848bf5378dd61cf298c2a9cf2b9a>] >> stream xcb&F~0 $8JR3Ͷ^05V6$|@$(A:T"yH@Qm*D2 Rj>`˾{F5B%Dl iD,dHn+$]R`RD`Ge XM6XD2'Nn!p endstream endobj startxref 112500 %%EOF effects/inst/doc/partial-residuals.R0000644000176200001440000001442515042141743017172 0ustar liggesusers## ----include=FALSE-------------------------------------------------------- library(knitr) opts_chunk$set( tidy=FALSE,fig.width=5,fig.height=5,cache=FALSE ) ## ----echo=FALSE, results='hide', include=FALSE---------------------------- #options(continue="+ ", prompt="R> ", width=76) options(show.signif.stars=FALSE) options(scipen=3) ## ------------------------------------------------------------------------- mvrunif <- function(n, R, min = 0, max = 1){ # method (but not code) from E. Schumann, # "Generating Correlated Uniform Variates" # URL: # # downloaded 2015-05-21 if (!is.matrix(R) || nrow(R) != ncol(R) || max(abs(R - t(R))) > sqrt(.Machine$double.eps)) stop("R must be a square symmetric matrix") if (any(eigen(R, only.values = TRUE)$values <= 0)) stop("R must be positive-definite") if (any(abs(R) - 1 > sqrt(.Machine$double.eps))) stop("R must be a correlation matrix") m <- nrow(R) R <- 2 * sin(pi * R / 6) X <- matrix(rnorm(n * m), n, m) X <- X %*% chol(R) X <- pnorm(X) min + X * (max - min) } gendata <- function(n = 5000, R, min = -2, max = 2, s = 1.5, model = expression(x1 + x2 + x3)){ data <- mvrunif(n = n, min = min, max = max, R = R) colnames(data) <- c("x1", "x2", "x3") data <- as.data.frame(data) data$error <- s * rnorm(n) data$y <- with(data, eval(model) + error) data } R <- function(offdiag = 0, m = 3){ R <- diag(1, m) R[lower.tri(R)] <- R[upper.tri(R)] <- offdiag R } ## ------------------------------------------------------------------------- set.seed(682626) Data.1 <- gendata(R = R(0), model = expression(x1 + x2 * x3)) round(cor(Data.1), 2) summary(mod.1 <- lm(y ~ x1 + x2 + x3, data = Data.1)) ## ----fig-contrived-1a,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- library(effects) plot(predictorEffects(mod.1, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) ## ----fig-contrived-1b,include=TRUE, fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x2", "x3"), mod.1, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) ## ----fig-contrived-1c,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x1", "x2"), mod.1, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) ## ------------------------------------------------------------------------- set.seed(682626) Data.2 <- gendata(R = R(0.5), model = expression(x1 + x2 * x3)) mod.2 <- lm(y ~ x1 + x2 + x3, data = Data.2) ## ----fig-contrived-2a,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(predictorEffects(mod.2, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80",fig.show='hide'), axes=list(x=list(rotate=45)), rows=1, cols=3) ## ----fig-contrived-2b,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x2", "x3"), mod.2, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) ## ----fig-contrived-2c,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x1", "x2"), mod.2, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80",fig.show='hide'), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) ## ------------------------------------------------------------------------- set.seed(682626) Data.3 <- gendata(R = R(0.5), model = expression(x1^2 + x2 + x3)) mod.3 <- lm(y ~ x1 + x2 + x3, data = Data.3) ## ----fig-contrived-3a,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(predictorEffects(mod.3, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) ## ----fig-contrived-3b,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x2", "x3"), mod.3, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) ## ----fig-contrived-3c,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x1", "x2"), mod.3, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) ## ------------------------------------------------------------------------- set.seed(682626) Data.4 <- gendata(R = R(0.5), model = expression(x1^2 + x2 * x3)) mod.4 <- lm(y ~ x1 + x2 + x3, data = Data.4) ## ----fig-contrived-4a,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(predictorEffects(mod.4, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) ## ----fig-contrived-4b,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x2", "x3"), mod.4, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) ## ----fig-contrived-4c,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x1", "x2"), mod.4, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) ## ----fig-contrived-5a,include=TRUE,fig.width=5,fig.height=4,fig.show='hide'---- mod.5 <- lm(y ~ poly(x1, 2) + x2*x3, data=Data.4) plot(Effect("x1", mod.5, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80", span=0.2)) ## ----fig-contrived-5b,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x2", "x3"), mod.5, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1)), span=0.5) ## ----fig-contrived-5c,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x1", "x2"), mod.5, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80", span=0.35), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) effects/inst/doc/effects-hex.pdf0000644000176200001440000005055214165373010016316 0ustar liggesusers%PDF-1.5 % 4 0 obj << /Length 5 0 R /Filter /FlateDecode >> stream x3T0B]C ahbg```daUP442)*+q*`Q~Bz1LLUP3DRAL%+ endstream endobj 5 0 obj 85 endobj 3 0 obj << /ExtGState << /a0 << /CA 1 /ca 1 >> >> /XObject << /x6 6 0 R >> >> endobj 2 0 obj << /Type /Page % 1 /Parent 1 0 R /MediaBox [ 0 0 124.320249 144.000288 ] /Contents 4 0 R /Group << /Type /Group /S /Transparency /I true /CS /DeviceRGB >> /Resources 3 0 R >> endobj 6 0 obj << /Length 8 0 R /Filter /FlateDecode /Type /XObject /Subtype /Form /BBox [ 0 0 125 144 ] /Resources 7 0 R >> stream x+ T(*24236202T0B]C=# ˥h^_aDr endstream endobj 8 0 obj 63 endobj 7 0 obj << /ExtGState << /a0 << /CA 1 /ca 1 >> >> /XObject << /x9 9 0 R >> >> endobj 10 0 obj << /Length 11 0 R /Filter /FlateDecode /Type /XObject /Subtype /Image /Width 518 /Height 600 /ColorSpace /DeviceGray /Interpolate true /BitsPerComponent 1 >> stream x흻#1 !S!0FPšg\휰̐Z࣍KNߞ_'8%q>q_.b/xRcFOJP퀟}GJ`x]PSz-^kJ'Rx ^kߘ t7jlM)]KJ[&a(z@ ) )]Z@:)j#@RhE8:T+-^Z.cF4Yh*SJb&6#PRWuIPRqJ}qJ!b 0r(Mi(#0v(LYg$PR`uH,`nɈfp4~ NuOS8gDy@ HS$$YF4,`MA \Jӌh0C6(0)΢!REQF4)t SeDS( ,&1(%iF4 @bT)))3t,))2iSdDtI)*MJ&%]FKkQI)Փ!%rHI.h,&`kQ٦ψfR06 yMJh\Ѽ,#R2)2v:|Y:|̀/OF4}mOqɈz2sZgDʈx29$h=dWߝ?\t=a3_@?ti?3RsJPǾuJk7 &OEvbWxRu5zy?aQ hJ@9)#qb ET:t)5?pAe{$)KA=bWiE( n1uHix' BQ#4CyJ}ERWOA:Eb^;{o-H,r&W02yJ<4L/@ 0(@# "S*soq?HED7i#g1KLJNEu0`R)oT+qR(",JGS|G}S~J]E襤磻rس(?X3TM)mJ֢*#t2 >Ŭ,*3qeDOIhߧΈpoZ۔Iɐigp ѼS*6;l,)2yTshd̈&y2>퀋+âjpMxWOF4=HS\'z2y2Sre?Rh endstream endobj 11 0 obj 1437 endobj 9 0 obj << /Length 12 0 R /Filter /FlateDecode /Type /XObject /Subtype /Image /Width 518 /Height 600 /ColorSpace /DeviceRGB /Interpolate true /BitsPerComponent 8 /SMask 10 0 R >> stream x |Tݿݗڽvom޾vq  a1}_DE$" "R" Y!!Y'33۝{|?O;7sϜs33ޫ"B!B!B!B!!R_B!JHBZ)B !81/B !#&)BCc !8. u^ G2Bs)BxBl =+?^ ;D{G =<^ ^!!K:^ ^Ƒ!heUwO!nBI4/BMbY@!b7B>vv^ BIh,+&)Bq !w/BHq ! ֢& I@!a)B J b&  !\ !i/!X\`g)B5xB+@!L B1%R x !\WxB)B\`!DWp= l^ X\!$qN/BL.p4xbJ,+&˦ R D\n!$!XV"C0 /!2$x@xƲ_{@ x$"%/@kbᬽpABA 8:Ų=bnp$@b4F!6.A 0taپG$C^ DKp@e`,K rp8@Hb \N)p @HJ!QŲCF{qς \). e $xpxx6 @<\/IJ]]A 'x8 qYp@/[>U מS 6> w,|K+פ x W9}` m'a!]bYi=BM[I## Y't!NRoJݻ~oHaup Qߕ=`&o~ysHaA ̕Gq(]E哗)9@ fHahpAXԃ]u<Y|{ whzǍ`KZJ5/gކ6m/:Ɋ55uu.^:G9s3VHۯyj7B-i#G+n~W@'+ve/VFEӛhMջtuNϦ\v#oA8Eغxunv[H6}ɊxOGB_%EYűWS?Ebޗr .I5I12E 1WSrD4QmYELL鷪[̾/81ٔl_=]Z 9{^Y0^J/Ⱥ7K2q^?g}gӣmF)3+;}inP|CdAQ1?1ٔ?t"?uuڷP&+V&kfilMon|b);C$/^Ie^ .PI=&ԇ>Tn?*/hߢCAۚĵsZi!؉ɦ$j\.3he!r\}{['#iêş2[tp4ƃz0:î!7bʊm4`eܝȌTWUG#+[a/H^ZnɒqK#H>%ִ@ K#fvEoq<(ڷII[o}p vLg&uh^~|BXƁ-}B!O:hp$S[ScŎz0O3)4t_n]yE\UDe > H~wpAKJ]=dv%E1ػ>ocW?#'"8oAa*shOkDpVṲs pӱe]:E#nI {m/yDؙxSk_\+?do3v.M 7=:ā/ۏ'ܵzW|;*>gA"9ɳO?%5RKizsSs˔<8F ?'O1u_G&R8'uӶJU,~\#8h8DZ"M5e~B,~vFA$'" DZ\#8h8&?f )F(+-Soej,#hﮄ6b,4;SخB>h Nj^TFבxL1B \3_{A{Y&jj^<ņlL*N4cOuo5M,Sj*VD.ⳣhF͎F-ϘIk2,,GAfꓠ*ԃež.72>77,cozOfm+lņb RxAMݺdo`b;^Brs?MϹ;bw[ږ8 ;SM;2 GGqښZ1icO.#hZX=cb577Uḻ31-8;2-noqm\պu9ޘFNcOTq4ۗmW?CW3eAuTWwf֯\ FűƦRML*3#2C}SD#{s);Zp蠽lF&DAáOT Mh_ܽfw^[S[80`kyĴ8#8h8Ο=%at#.Knro)h.2N#XCjYUg {a+Fߑ>|U#Iލv#XC$&b~+(<[) N4cMLuUm3ށm6VݙK-H]`+ջbeyew3uj Got{cS/g~^{s`uOo3^{#u,fOx 6R#8k8^uuSE:mʝ9v&$(~v#XL_Q*Rqb߇io?;v_iɭaN~pZܶ _ LR} }ioF0,篡2>cŎoXGՒqK"v99Q zΩı-qEQ8s[6#1'_~*6#隤ȯY}zUC2$ϜzSj_wfѶ"<8=KdO2BaIW7Rޣy ϯ4Iضuaח1 O%_41{N_0ryȉ;Jo'; 1n'5ym;n?Vy&k̊^nQ+Lɳ s*S2{lwcǁ42oC?619ķ#8k8zOse &Dդ_j{Bmsa/ VJwzr ,o?QFpp.<^r$q-\2&M1=΍]77E5e.A;w*L/bʊU\c goO<m{{qu]iQiӦݒ'1&'h_r"& 8U?gJ5pؙr] KcٓgSLL|]pBw$ǁx57\Lˎ-$΋ި7>#|8H>'GJ<=IB^;W|mk:N#vkZ$ϙ-oٳ˶.**NU)xb FD㇎ ^CοrH~q$$$$$$$$$$$$$$$$$$$$$$$$$#`䴷n?Qm CzQF"EEvF(FѓRw7 60`Qt Rǂ@e##0bҁ[ho6@`ap`|!<FFF#`ap`$@ F/@` Ёt^#FP `4F/ t : `#p+#1Bȇ0A)DU1)##9&c#@x1 j!т *f+@;ӄx&>#@q Ih-n&#@:81n#,#@ N| FpLwAg2"#@l`ȟ\0 Ձi81h#$Z>#@`0D)XY18 qh#X9/ ,Y?a#@8Q`GA7`O49`0Aow`i Bpw@c`0{.=f"o F4V:apL>FZ%!`"&i?LF B6O{c`.2p\`0O| Fe [F2MpZ%`0!`ҁώ`H0$+ #] ,]  0B F0?uc#@H\F q`/ pRpYuk $_H{K0$ . ( јeWN`V:/&[>#5e/$A#` 1O\?A~#5` &,#Dz7 Fˈj50V<%M0XIW #5g]7Fڛz4b&>Z`=!B{Kk`i:-`}C0h1#hoMO@ A }Z \yho xwGnV0&X F FQ^#`:J{{`@{lF+`%!FӴ\Fh3 ƀ` :w:`;P{c`H4aucMjo &j"F- D2A0M'7 F $!.p%DFQ4]1J0$tcMjo $!¾p%L# }1>0H<.`:Y{ce`0SFB, H&D.#) F\F1W> 'I# ݮ10IJFq0C"&yko 8 ȇ@{c` `0 FP| t(H{c`F`hB[BI|7@qko@#cXDH]F{ AFIC1; :PI> M``#PI6DѶ`Dw<[[|$6D0v#FQ4ç`Ť$~> s|L"D7\Fӌ@% ;o#>04`9>8h0c&#@<`8B> 5@``׀ f0_J-ÄF]Ä\F E#@ׁiB8/t0csoX6jc Fư 3j4A FBQc(.#sIЁ\(GaIЁ+\(JaIgG[hKj,0&P9208Js F@RcЁ(SjL&/Pot00] Fw@RpZj0#kpaF@ KTF@#|| F7ASЁg2cj5`pT35a L FA5 `p45M`p55!P#+ &``p%wn# FA{@;\ FPwF4!lI`0O{{lwv0`p7A!F@ `R)U H^FP#0x).0%0zeצ Q40x O!ZH0)7# eF `g0!啢엾_Ur"PbG*mؓ+uc {Ns~bw6. /P쩊մ7J MnhRnUUmmW4a8Vu)P+hoń=><'4a \E"˲F# l=!*ZeQL&imb䰱 xD5i|Kͥ']4/gqJ›Kp1xnUho}XZ>~Gz'^ؽf *)@j=7> HT-ibny'O^xo{#SF&]hLİwjopjo5$]|緾UGcL~xsk,lrC J^([#a|507uM>X=65?zϵϝ뽠}ĶSjoe|joyS:OIlzMuK',mv[38Hc㼍!W|LpA FՉ|5۴p€ P]`FP'tQH7:T_q0ȖP+q`5!,O4ɾ/;¿?b]ª;ƉG;r]J, /#jܧ39bUU F.hzsӀ&(?P]X~ Rn DSO =`53k_|;?:wj~M%-no!6pVn~7d߉y>Sj'-@t 8|T~`¤6 048@(&|7Oƚ @ˌp`Qw{g)ףnM#*3ȯD.'>4{V>'/=j\W~'݇}؇?<| _d~5SmyG䒎(e0N) jܡA/j(啲‹YCowޘ*+ϦGg e,'\O=q_n`5.Ё-o/]pؙ3x= ?C:WV[ZT*}yƒf5O.5TNq Y*?Qnhp_k5N>rZk&gM3V4w/5\RxM3zϐ#K?+xju/ xZ\`zXYIhBv_iBvņok\;}Ӽyz2.H\,[$h8@0oCϟ=_#_ Xְj*YOCi5ΉGϞ<+A hCUU ?@}@%7/ BI4bk҆1 y]fy{6î 2#kߟ f2wހOwC}dYeG+[/@c<􅇎:.yƵʷvv fr#?jY!)@0kf|}򗥒EV`w57?"!ִK/zb^0!sq؟{u\/|vr?.poѶ"yي+Z:'sWw{n \zI3̘3O:W??3nMnDbycJ7Ų~\xV*6Xa-r0ŋ^'[^Ȼ*Kp+ǸVĤ@pv(V[u{߼y ?O6Y4{G"yD47[V lK-iSZ@׶㡡*+7ISqB, WN2zČ`t ^XpEӆ{Lġ 6!$űȇ?,X0%?ϟ=+]| uuuBeO'^aሴ[߲8=H@;,o\ZT{sӍ6|mr򷖿e,ɺ7k뒭s}ɓp!xtno<7?|;?Xzc+dBڊ%n~W3^/Oē+H q9~Xx/Gv~G;|x=BX.Vyw4BbOID]mݪύnM/D\@ ^0QMFɪ>9[Gs ͎!*u{ Mm'qδӌoG]._L1%Hv-j0lY̍KLtV'#IAI< (oq{v-} M䒏. f)p7{]mYo,>ۙ-~r^!ȒqKmm7~t@}N8Y>y~O.v0ϊS+-кu \8/z%y I\ޔ⍸$(H fZ٪LEۋAs?K- ^^rG2 %bxl~Gz}}61__=: ^Gry4A^N}^uu 2j}j/}?ybY^|m6YgɅ)ק9v;SӺNK%- WyS_Ig׏iȄDv_igܕFTh<4S' qS0菃>k5zzD%^GkzsӀ]e ?%^Ⱥ7+ϓIBTX<. Rw?_J|9{4RS\? ~Kdmw7pKeoC8MG_TKOg~5S޶f]ƚ笗Rx{IW' ːû7tPQ?3. ތe{C߼hfc%)ץLh7쨼\&i^H.9vq[㇏Eo :|_-/EODB kʏd.T^Xb*>)mI>돺>,`0/ChEۊ+G}K. mbw~D\@:+ 8&Ϟtmqwˍ=n&~q! iAY8jj3,?;ZƞahD~`7yJ_ghHd\qʢ%;V77=*9⥖!M `=:L8]1݄c=yָz^PFƭ揘/P]^?%upő)#O,;" '/żn 3O.nA(NUz]rEyj>\@y `l%W>j5.Ѥk0O4N~x/K* _bzXCޣWnp˗vwK-Y &ܲ73x3xx{_0nv,v#iœBeǚ mZ~b:ՀFbbq? ޾l{ͥm6yIo^Y~qp! B2ΐw+h)хSV7~DdktMK^geoQ!Xv$ji3-?ײ@zS_^8xuuuYRsz_,8]xQ[˙'\ |y62B\\:CDž VRK', X8J~pBgf@-Kː'}8KUlx[ښڮ?ДS/n}q!^pbصZjEۊRojqQ}'/O.W *0. A N!y4Cf5lb-W2'f[B M ,O?)|AϿ~ ںO.ǸƲ* k$ִy9Ε!Whq{=o[mKY?!+|~jv[}7 op!$V"G^!灜'_wvzQ18˗3.sOM. `:VЕ-{0(yWk=nZi><%0$X(&H߻~oRLWƲV[Cϟ|_?*A~?E;G‹/vz$ygXdKN_3NZBH"b&g>#D @k5NZ\7:_ץEU~n*a! RAt Q g%Y͒u{FmvmZ兣6E)ץL͞Zq-&u|m_ܹj bu^{cƽ؜ ^W>`2U}߆~9Xn?6i] Py&.@˪%6hO឴[>a? ?G`gS#ɏmKe . X _={n,6•ۜ+~ xi.fMnhW2H!$t>L՝~Y*)ʷA/ <2AB""u>*y@pH![^}3RoJ_HW-?ײL~4SiLũ ybZw;/0hY++}qoۚ_ZTcAo|v$"<"o|)k̯eB# :9;`m & !^m[sƨģϞ|F&=?s}~LkB̊eUK{ T?buR &GWM_Bse/pC_xHXLo,Ӈ;[ &IS8pO1#Œ>3D`|+a^BeqF67ʯJ˚,If %pTQL !etz SLR_SL?Oӛ~O5^x7E߱bqBA5I?,Og<7\K)np !ӥqwF]]o|mr^<][S0}XYBl˪_"0菃d7\:σ>,\Y;d鄥Oi0. 8 ?P~[;˶w^s-+NW_LΚ !8N ƧFb^ /dסY~~BBY^xg;WewR2̯f6ּXt@qn,a߇I#\3|&74BS *`q/DPZ/VwS0ݷq߉#'?BH^!*- !VBB!B !B1!B. \@!: \@!B!B!BHiZ endstream endobj 12 0 obj 17415 endobj 1 0 obj << /Type /Pages /Kids [ 2 0 R ] /Count 1 >> endobj 13 0 obj << /Producer (cairo 1.15.12 (http://cairographics.org)) /CreationDate (D:20181006123004-04'00) >> endobj 14 0 obj << /Type /Catalog /Pages 1 0 R >> endobj xref 0 15 0000000000 65535 f 0000020220 00000 n 0000000298 00000 n 0000000198 00000 n 0000000015 00000 n 0000000177 00000 n 0000000530 00000 n 0000000772 00000 n 0000000751 00000 n 0000002549 00000 n 0000000872 00000 n 0000002525 00000 n 0000020195 00000 n 0000020285 00000 n 0000020402 00000 n trailer << /Size 15 /Root 14 0 R /Info 13 0 R >> startxref 20455 %%EOF effects/inst/doc/partial-residuals.pdf0000644000176200001440000445373515042141745017563 0ustar liggesusers%PDF-1.7 % 3 0 obj << /Length 2480 /Filter /FlateDecode >> stream xmo{~|zO:mz@ /pFmJr~ّS.G+m;rGί\8: -F}ϺZuVDưZ[Xf]T_/ꊤwj hLmKYX`<QtųjVdcj%14g"R^U gH89""Rg(Vc):s| ~7]z^(ͿLj4PQΔG<̡ؖ1cY1 /cSz+sT\wZw=; ydXHd\k9E],49JVB_,y_:h*LEDRQ0e5dC~'ղT1cP6B3{#̈l%N;"wILu' R;FАYV L%8 WJ/dyg[cq6zٕ2q`Qλ1~;6sF Dy=kJNb)qt@a"l_jU굢ԏHeRe[ch$! 1hP1q_ Z@'d\I2iTJ ^R1xۃʑ@@@/L*aiU.A`- ^$OUpS-ӹ@۷1Fo+t/Cbunq4m|6ņNH dDBD_Iͩq:܂,E|qY'? &TU#W] 0eTl\8]JX%*Yᒀ=z^ QZ祓&W V+{zS0<*34Y tJÔBۡ(B>iS(t*U"[ybFs^땮KQl炗Zof}@2[ pd7&}WJ J+2Ռ'+*ʔB48 Zohx^,R6#kYэX7MߣamYQW\IqUk(J%Hԅށ읈`y*Q"#iB}iSg%_+Kp@f)JSw*&tMZw`@no#m, <vCzP;X3dGaVJPA"]eØ=ߛ/Ѱ^)uFvR깄a{~?zJiؖˑ 82 b.PC9Lkh-um)UHTF/ 5囹(Jq!3࿝ކST Ȏӳg0xQ`${jMpﮆb 8 do3}Vu]@ phf]z$ܞTrj%2P1l+-iqaNupHltQx'͸oFk,"BWL1V;3=~ 'C4 Hw̛6jƒ&~7} ٢h`S֔n,qIjՀ\@[SrmW;ȓbU Ԍ1}K0zR͊07Vo9oNd w7{A_tD;8Z!ny 1AqEV)?{1 l+\#3.qm2 w/ pgaz? (ކ̏4v.DAh鵆ed@Ε&B}EMǠ\yG9l ۃ8ξ*&PHٜ-R iPט'V HTFPkdZhM\Vda747CԉΌeqsP**IKg ÆY_U[:'qc嫡RT7e.lyHfbu "C?՘ƥ54fp88iȶ4HV'L ~ 9`ȳ5JT@s1y+l+x}/Q벨d-8SZTї*z0cNIg!<<繗X3]zd/MbjLҳǪ##r1z)?mth ?`pi>r(s';6DO~x,c7?O)u Ó߂_Lz|{u;_`w}t6/H>d.%?}~q?dJ6 endstream endobj 20 0 obj << /Length 1799 /Filter /FlateDecode >> stream x[o6_!{׊HE7`k ^=}P-9UgK$ Po)R(A,~A@|o~{Б|nL8ߊr=$r!`$|OpzF֒% zl˸svF}˜al=UQv,\Nv.P"ejZE-\U_!+O-{ B`ȷ.-ݟlLYs~s.nkm,׻rKR~y8ݐj&U0aݚƐ׵yz{EY4J0 w>'wM9:8ڊ|9`7>MRz]Hܝy< J;(Y^h05Gí.Cai*?/i1Ԃ]`#+(k_tۀ0ٺYÖorIj0_:L^uAS AD-!}-]muI}RD~^G3҄znEI/i/*%&Qkn\$1&oBK7Z|@ ڮ$"[nJ)wYղ頼e21}`1nKyx|=HyRmCWY!WrȚNejƆfob EiIC$Z&}iNU[UtWbTL9i5Sl@)k35u]Z"ۤ|դɨޞxMw+y_Ռ/ f֯p]c[^6X!]k2o=^MLiplȌ4g96Vkؠ8.hΊk[PͶo5fzGIX5躾8ྨ'noN> x=;H׿m/x:M&I7(yXԡ*Yy8[ԍ<놮(봌I|V3! *2D {B> 8mXӓD{cM2b7+F2˂gp5O<9E ٪򛻶eFa5sNc6`f0Sʢ(of1+qW|^y=_:;13Ӣ śyue"xbD km2:l3#̫0yQQ,궎b0ABx(Pd|0 endstream endobj 26 0 obj << /Length 2552 /Filter /FlateDecode >> stream x\KsW Xa/oHMUq)'o9C~{1MіyvOw [mY ߁ 盋2v/ e9t"_yB$^g}eKxX8t~2KYӅ/5Xa():mRLJ TkfHlMZpn_,Bң+pqBx pfJOR3p`fvCRl&s(-Kk/ =ltqus!@HߓvVۋ^x0鰲-xV8,/ -% `]%i"h;"V.0%*ٯ,Q *,QBF氅4UKSQb;%vx@Ů6u[+~ni8vk~=HV=`gMm;$Ep,y'VUPNm2C5hɾ^A<]nj @h$!PK$`ass;DU--KIaj CQ;=fXlNav&V9gmW{;(ئM=r턝oJ،5Kv;ZynէAMo%7=3>!38d任ljN(e_X;|atUh%pTG4 Jjk8Ac pe_,̧%DF|G&qr\xRK7&/6۰\G 6 Tƹ#yP-#a6P {)~#xnG^ B;@ ȽD#iCII,ӪXX36-C fj*ۇgjĦJQ4a*-|Vsy $P쨠#&j;Vr,o(V#Dl @e09ĭZ@*]gĂ$P-;!dP(t#*7ie잏 h`ëT/?LF[n2:;LOG̟ tjF:~a39-PBNPPZu1}e? s e#Bk*@K 4RHO꘷4zw b*[T=BUq6~3Y*=?ӑX/(w_)^fE$F!: H gLp@5Kzq?{/ a=n|Lj}U4l?d4De ~x[ulyf8?{6^K@89pU}EĘl!l:"6J!#v]a(5͗󯾒y?_{7+Nq^'0e/k'P $ endstream endobj 21 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/5t/8dfc_yl10yl9j91v2lc_jksc0000gn/T/RtmposLYxE/Rbuild2d0830c1263/effects/vignettes/figure/fig-contrived-1a-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 28 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 29 0 R/F3 30 0 R>> /ExtGState << /GS1 31 0 R /GS257 32 0 R /GS258 33 0 R /GS259 34 0 R >>/ColorSpace << /sRGB 35 0 R >>>> /Length 104261 /Filter /FlateDecode >> stream xK5Mr~Y ~Jn@ A+9#ԅ$0?nDiK~֩<f|RzWWWn_/]5?W_?{g|׿/g_K_ʯ?JLߟ^}~q_c_;;ݿ7+oomO\vSrߞYviYZJ.}o.ns9ȶr}r"nˮzi7nI\O׺O_7ߒ1-ŞSÞ]Wߍu-MՇ_eKϾ~e[[Rzl vϫ~K,gs~o^~uj-e:ߺkpI n~]~m~ϖ{]/_m<=Fz~"}]og!%f^]?u}^h~E*~σ.ٯ r<~dî,(> eI~yX|,.>ZoO48<8\7'Yl|RVf[գs]~f~OPh c ~3n~O\9S'Y|.$P~fQ~Ol0\/'Y'N'Y|oy♅J{ï=sQ_u/~]=Z>׾,\>0˖,^>~'YMXythx9#Xh^ckOO3kpϵeo/k?̊bۯ>{SYrjgo/k?,^>OR'ʊ'ZdywV;avIj.'٪dfV`#a{{l~O5N9 -'يtlENfNɖl-w"9N|HHv$'ڑ,|'[J"ٲCd빮JPN,d+}w$[%lwU}~'[돒$[5w;ي-vHZ$oɖludGli|'[E5}dkl}dkFpwdw"Y<֊lߋdk;V#N"zn[/Z;R1t$[9Ir_ɖIN}8 $[*NUOVUNbHtd+ΨwGEU̼I;*ֈd$[#dOwulMŧw5UIw"9N}/dkGrpH$[vN*9S\GR>jKV>BWq'΋oG`WZ<ϴx>E{K5oJ`7%0c%򏓯3/'ˑo|0G )__|'M:~Z(N\S>O~ NN}o3#ߝ|k#p䏧ڏ?ݨ_NrSD#`rCgz ^ <>V c5jo\`J,ʧ~O=#^z3w=zS QF>w#_=Ų1Rtd( yD*u:"YN$SGvH8ف?BvC', ht_FTR90KZDpN-HcSh8QQr`NYkV ߽`Ũcđ۾yUR姖Q/=_^nlWݤ=ζlcj3p)O[;Y|>nUma<剁V*-A;}"{ %z }E?TO`ٖ۟vXV w[tmןZ{a:I#OEΏW-gፔDI˵{K-x(ZE-υy0e%c?jw8<> \sx@x:碥Z,LԗC~ c[$ߟųV2񹐝1N3w-I·my~~ֶʏ~' *;gyQG5 s]tݿϟ&_5*ixgzr ˂eOIX6mv(dO{FW-k/-=@eظ cR I@PAN,Oޟ_{Nvy".tK`o/ i~K{OAy 6;dE3Ωݷf됸>^089 6[JO-w*xJ>NZ)`&rm==MI/mᖭ"exz`d ~#DϨNcM\28xMDUGmA/{eU;0m<,RVi1=o+{nጲ8%ÂZܶ#tXdՓ_y[g@Fk˦uaALG6/D.mϔ)\2rC_bũ-JVg 8^3zB;(''eC7q,Ś~ҡ $)>t0wӮ_jš++Š[i @H,XrKnE:K,.Q7;:}%o}>Z֧`=6![&a٩dCv <˒Vܒ!3.O Q? ` 8e ~` N.4#94? Na2 )񷳂.gl:9iXA\ty*eQin}>N[S:yן> ?xJCZo .m^H{=!7 r2 S8?3}&:8j <7g߾oۇZ7duToh8i~Wo!mpCgJR<_V? z򰈑|9gAd`ZП1ŠghG,*r Am~ϧXM;n9;Pa-z#^reUmoEFnjzU*~S '5,/ja&OUal!'ₕCkgoևcO>ArQ㮲G ;w)j(I0wLl9}#^EYϵ=NuE9XS%} ~E. S zKA55[ R*>Hzi'VMBEA?nݿ>O%7NHl\%Bٍ0BĢ868TJ.Gt"ql]MGo?BzϊD/ /".`Megܙ?<,Y<pDPLT'pQ=> V3)~lM.2 H+ Ԫb[ىdKLx=f-\37Q]J=> ~tg k47!i.2Kvk=  ̦]"keͅVډ}bVLPCXC NƎРںB0vL*]!xռzE&ˑaE(fД*Ư_pYUMbT<(G(hB<P/ ]qⱥ,oCs*+*х)`^XpL K>Io=s$C #Y3#hn<`֮FmBMSVQ ml `P1u9ucE,<01nxPf}+ZaRZsfpFni 1^%j~>"hڄ0׽vL[ܵVqwL靗o@q(P[խMjԮЮUdWԇwZ[t6ҧ7?[͚U>Q  !I恴6$iohbg\b??j[Dr#ѯ`,Z׹I+lO@2ᯌgf>Jٳ6(fE_brOCZ2CUBq}I2}$LGO 5}.uxsPIo햤Bv}>f ?!:%mOK{qRu52gd0c  xS>F9}"UceIcjZK] ~5_*qUpF_|!Cp\~S]&|=L]ѷ= ciEO&{ݤhB]3*nioR+*jGk RA&x gS}?*fVtyQ4(r$m cЏXGL 4Z̏u_hux|\~,2ݛ7g_j];T٫ХgG92HO@Z(}7B;{][}GئoW"FzŚ_V>MgKr,EZof+5(P bYΆP?㽗;i%)Ԕ^di|w]D/f{'#lU,oND⣐3wd^Hjm&KPfsR'|= \ S{N /e>}Ƽga ʑgO>$s V1QNgJB'פ1S8Q?C:عFbQ 9aut_FjQG#NoRO2 }ѝކ#Kج#Ml>.\K2ѷmk! 7|dT4ߍ_2A"|yOh93i/y׍* 8% ma'Ol [jA3tt44z( FWn>.qoxT!yPINkA'+7E>oU6<#Y.S@ aIv+\[>`Kɭ!7Fj$Msrm^Ƒg.|+$͊Et}`f<v-1`֔joDt}cxkPf,4,i&R >0_?ZbKPG&4uEtat܅*Sn܇dM7[ M$D=.5QV%TgPͰ-KvIb1+j/~r}N̮^>v-9#v`< h nhwĶmH˷VUuٞNU@ۚkh91C\&a' #Y׼PK]e!h!9b)Xc=̑\٨6#ZcWEE,u`ޟTo$()":a4+#H΋Pfh'\wt6trB( q馜y`CS!SPi9h7q :=^U*6K;!jdƇmYކ>^{ymG^r{{l/nqV_i|9U]OT%9ò12-vƌDi ը m5oz4/y6׍RJ{E%fTϨx{Oy4TV7h C"RCAVS'䆨TBޑ!m&4^:JD3ȡ~O#aMP63^n1],Ӄ'S4ҤЦN8f*Lj'ٱY1IuVlݔa8)ZM}ƬHKRIhғlҠ8+` 2Hڗl &X $a$f6M> 5KDS%LRQYZqk Ve<0 }_dRՓM9ş8* (+4\L;J:3ϩQt1Ҝu/zuHyk0htC&&C>d2@b`U& H*:8ʲ-Y{PEJǗr (&!C\)Ш8PM (ܘV֨]'bQؚaDJ.QgML"NEO³?TeuP};WѳڈP:DU5w392P7[ZU%! oE)z0?vRw$v6anE>[0TT-M|cxTa#ȁ>7r s *[Zs*,^)bN/C hiuE"w_4{^Ym$n"fQYcR^ilbSH:.$X;#Y=nj/c^ͷd}nX*G:,H}*'7L$$B|hR+O 2ԪNjVFS6QSlG 0VR4VEᰃHK7Ȱ&ov@u~9z vQaW!a+eKЋURDj1cL"pnEx1!+B ytlg%5+OF &WνLVU"ږj#},ΐИe! $٧X9]3 nq-}L7О8H)s['򈇹)t_7 ܨ!!Ovn@co%Z;t(ʶq9>;_![l%V #rf!H ԧlb!M|!SԴ LB$*uAHy ǕNrC[jBj]ј~Tq?Nbe nvT~ŤC (SH=>/T-~1Hi}VQ|ܲ{"z߼7zI~|!) 8}Ԁp2Zqtyss ȩT4~yK8ʒ@@E ߏ;nw"HОa$\.Qǚ7>elyY3/"q05{J[&R_A1bX;J,7&V= 'p ;S& ~!@H2>N"ƬQ:^Mdwc |;q$ n-xlrpѡ3aBe${$q3+?}8x)#0(E꣣E3Ew >LFQ0Ԗc>E`Af]V\i5]aUY 6~UCbrPo2!U&qrK'!q-Ēҝy <8Q9JѶNM͌5Sv<R˯=8YԃHQwPXrUJ~]&FRg3K^vv2agqe 3n5VM81<I .!rGͼO ,hF}T| (G Y'ݛ0썦 ;G>[ wIj`l"ԒXTq'OXR!yƤ]Do@жmKЂ<3.T&ړbwH 骍sxى\" Hy:18/P]mMX4 qJbu8] !2Kvm(ԟRhJ ] @6 ϒG3/YsY13/'Ml!&pקC9*ëpT%bڇq?Ar&rhAΜŦ]nΖG%%NtdklIa&Ȯ\jST2+u;˸<πOl5/49 9* %p8fNM)_Tإٺc*4Bgf"0DиoXSD !"]jJ7PX3D-,yz,B̠YG;KcÃLKl;V&NQv+Ɂ"CvZb׌-o3~ʤ F̏HCO[S WUJ@}P5cͺa?n_6(S(:j<3j"ŨBcqRJ3*.)B d_ eޒ&6pj7`OoZSoSΌNsK2xɎ@/:mѳ:*6}/ l@b2O44#d;HphFl-mvX24wPiAPv'M7 ut"&wvhe-#Y^V?HVNXLhŠ\鳄kTUVzy5].(;Ҁt ID@c)u avkc1}1.;?txJ}x﯂)j֞ޕ kN~ ZzNJC[?V9Ÿd02!i* 3Hԁ&F޼LP;X!0Q~lݻ6\1]|%6_r4kv25/!_̴h@Uq/rN1]ԝ4gɧ~$nhAvp+#A69n˱׈ D%e!XAԄe@ua[`N6QkղŨ^5k~3Z ]!R$ZI 6~ vȈE""Y֯1tkڷʋ.h7gw؅c_6@Vu)0_]ݞxX[ƹ#M*!uL(s a{k{Kg:LtϪZ7{'u eSS6jJRw~1For&/8BuM4O(Ga-W߯!;hn E \b )e~W;߉tol!F` X  }IXt Ts8%=loL3$~:e&pOQDJTPW-ϪA1qxa7)}O ZOZq7UdÛEKgvu&##ҋZ%v,OU䦭g1NV j- E맱nh3”iq謘*m $UOѕZV76SLIJ1mf#nK>TUNQϪXn%Og+`d.ٿlDP&a^T c;m䨵&nZuK,9%%.UsId -M8 aBA8]X}' 6:gb H64[Q.I@nN~_eL76#ꄿ:,$%}Jc%16Y둵+O[sCyjC*3&rS̒(eaa% Z("g%!~;@˙JUAk`6o i@VrA씇ZD}z~4;#uY㦲[y _ i%&Lt\Qnq/ ȴcV}7L_L,`"Ҹo+uQ.JPU-Ɵ XRFy!kFFq-p)԰.ffjsWJjb%(=" /s 8}q:?d2bm72z8!$PaM.|bR_%yj͛3%̬T&1Le&6;-K.$gv#6HVP>;RL-#/ϬfGcA?i]DfH%gGwCֺYwb2'V!IT@$hB-K%j $s5O1ɳ#p83)0 e.5'%+Qb3M%8m0BC30R+܌#XK܋,< 3qxqOwolh 8$X>.Z֬g+񳒞zj)?\EMDƐC1(#gb}硲YNPnHKDZ 3f2'iuq<0<F0Ea\!;xo혽XG2 9갯삕u[bhTFC Y0/jROzӵ5Iz^O bpR o۩FsDk+wX(Y9L0t@^o9 Ԛ4Zښ#ƴ"WY" r*Cs^eʞ#qeWo^@2l?[E/ 鬝ehhL}JQ(uA5fEen~AWUS}sǭ׆Q7 U1OMioo:U ~I#l` a E!Q;([" 8eySRw vLDAQjRĤuFlgZvnz$1S*D'g%ؐ1 (U"vIh#G$ie5WQpl֍񠛞I][һhSo)jfxc,!iohb)z@2JuܷlSCAǴo>>@gAL"L&|S<) .y04LQe)=Fp7Kjq*޴sL4\Lt=7 }%߆1v3ۛ3J','"*G3?u\ح$B >NLGrxr04PS$aClv#eZ@1,\pG"lϴOgcccq]@ءT#!1KƆICHNgA Ь5ԩ"R{Rg=76L  ;Z6o!GnE>dיY&4P(OZL2 cGMw1È!.lχgf~8!*d6GpAGsrgxwJbDpkױqCq\_(uYt*\AXVis\sQ@`MmcrrA׍i@gcJ9ɹvVf)FS7 &|V]-Xi1i e35TVYyhLYF6dq.TM$iTmK1K ;D0G5ΐSYnjr} ʂ>͋p=:Q\Bܹ@nSE#/=EDZ tńlRNC3*Z;Ob\o,C޲ZBu?$7& QcٲP ]"+? cO<`hB)!xضK$!Ja$ _Et/[NíE>I mu. r%%UE ^;LL ㉋vɃ"1▭kWM|Iҗ$qvݲfk8|5v.S7+T qU_X ;|Do]wǙe JVc!kբ=>L"4y|VJzҺ(GXBnũňV2Kc/_3`,r$8;|f8dL`5<|%zK(&y4t]OϓF$ 8zEGI]~3aVwt;-. a65DgF'0Ł(kh6|¶YfMF!bBdxu>"RXN͞LJD;.w1iWY|͑а'^cjgߗX>kndv< btm,PvN.!t/:*#`5 hz"tf_/҅x-P4lTkΪ燔y`JHlsC*c}[2>CzjSyW[;^u"UiH2x.luN挢)Xg&ad!zT^Xm~ dFP8^[P?amqoUը+㰉FI2K=aaX嵰Q;cǣ}r5~]sGű]z|L-VS 7o\fY80ַ<)lʇ|/Sۤ묒@s%ԔDz 3̥m ^]r! . osZZ>lUL/O{N򲆀;G飆4҉L2 dѡb2XC|Y?%<*J{c`Kki0㈾eF?w+ue+$C)a\hk3H=QP"jHq!fETI_hoݘf1Yɍ_`&B?^ 0l6i9 Uܡt.<|gFY ~v9St5M)/ԫ%;&RGP7,zA#ߨ#^ǸI@= )LLkJZAE6&VFdX5ܱfEl.^"yR;֌G,M!LlttI;K4,yVG!?$SgNXT˦xMuV_6jF1BQ硈16;rGR1Oy."Ǻ zzi"msTn8 .K=-I`XP6u)$bKjj/j HY,:!5Ԥ]z8dtvZ]&,UHmF69c5 )f ~.z T'/e:+ޝ :4T2yg֊d-h$iq\sq)*G:3լ;ˊ9a ~yNQj2S 7Ri/Ko)-R |ħ$`DB^㲠 6SŐAKA$a_hR a716$v6#Z/):I*.cM&-I |rd i/ʞPXFj4 듍`5$T(IJQc]al AR_7@'JH'-HzeYJVYIM |4 Z-N+"ϲlCӗ.w)xar.,+6OCooi!>AØ~? aG =YSJ_DWLr2@w$m5ـ'%G q@B R0r%荘4UNeht7VH֐z{a'j, "F ?C68{T5~d-L ŬWNE2(hjpgbKۈ C^m݄h(Cg.Uo)VJf_TW `=US#&Є3%m^}MD*5BX3Eu]qXoűsM2Vc=Hp~K2Csqn `n{[΅YYgu\ [gsI;_d54|6<#jgtb߶<ƴMmY"m|.Hyѯ?=ajzo+\FR ="7 3>Yn5xPmdoڡx[۶ؕ^Wg,r"ϦH0Zߒ"rҺN9JQK%Q#nJZ-'G&Th$[ VvlyT+$O-xȟD'muW`bƸLIPϬ3~m+&Cl<:EYh\T&5~{+_jqvфn4uqRUljZ[^x"\TX`/*tKρ3{tjդ7zX1Ƞ$2iwhkۍc@Wx#fv@*9帐*$h<#c'cIhdp%@:tdV x=A!ĎyP4ғȅkdm*%7ΆjTijdS|W]sR`NBΦqR , LqY>nk]~\Ć3<3φԬˌ'ZG@ *,S.}kk"Zb4+L1; &Bȥ4 n>|H̏ Ր=5$!2LxxXŒ+zB\!;:9]x9yRXR1fgDzt5<-W7¢-Vgc줃Od'bƼDLXm0(&vw=l+UIC(Eﲸܸm)YM6T,Q\  0xX@M,?fR#X%Pd4&ߧ,?iD 7TG8_@-ģ'JZW=Mb8ױ.M: NA ab" {kIVív; I%IES߮Iӝ]* -QR̛Z Up6TT=vyLζnF"*:9hPߥipɒ9FnrS6Ĵ/&fH"t1&&+$rܧ-$j崤h e`.xDaUX bFS& _IMD[o`=Rn#|<Ȧ):`7Xgpm(tuU8лU32'` "YJ)keH<,}]\_[pTf@Ӽ|{x+̯@ؤSu dG!d*c>Ȅ e+:&Rl=GBI&lNYBHP#Œ,XXDaʾI(DN$:7jx^#=c"=FrbkgMl#imOg:bo$ 3'iNHH@яML[, Nk?t*ƴˌYK=Ċ!q}& MQ8^7~'b9f U 6|Mj\xJyMǬ"z!9|2ژm^]K=l'3mѠWe>AsMT:l wi ћE(3ߍj. o<(Y[q ԠOy6>'S]s5PausArɶ)ғʢ)Do#T_qDж]ц8]o-)d7Ã(Yo8p4C#ˑ&d03qmHil/ph#TK8l㤉ʳAds&pcYS4a\65I<+)UO䥯rž=4UճBVU&;F6M@/a!qMG6ڔoQaLsy3͍a$cYBVwo#ƥDXw6`1S Q S~3 Ʀ  b38qnZN2@wEVO[D2hT1o^3nHlJg "ϡ'UT5e ]]Z v8`"U`sZ+OԽbhЗ>8i&M3zxFoj_q/C(*;XM: & sq&.Fg (AJH]~2T !+B刀y8N2؉)j`o9KPgtMN҇ZL]t7᣻!dEzi%-cEfy\ .{/ ѱz<7cdu $LrMTCVdjِf6w)K0W5pp.]U3E* nLyVRae͒im,cd!=J"s|")Y\R6^RU_uB!gh㲃hAޫ0C< 6 5^I>TaݬJ -'loސء|Ŋ\Jd9Io?oQt|[˱KcxP)l7A4) ݂=6GZYʜtFg? CeWU! x]%BChkOoyᩒ o.\_~Xe7/iɂ&D19K[v;'ŮKeph=09ފhi|2KCOŅ6P֩* ζ*bZz2mJG}qI.cj!X;M ,MRkņyMZ8nJ3.(%@}\~fR?6 E ꤖ_1RC? 51XAH9NsаCENk(NUpa$1;@]"1wI^ }Y@{LQx\h9;dine3?1cS(LK[lnEk6waбj}.b| Wh.vw&[7iaGA`%Y]cیD`bab2*>f0)CsywQ|Y͟TᙖKnr{zIiCdF$J;^RJ޴R"鳠iQMvʛܓє&=?H6DpLCbN@sX[Sk7'U88S +/qfUnA/E2IeNMrɶl B'8%Rs`d'j/!HVHZ>QoAFؗP #Um{sˬk\f0yv`%{Y-6nx5z[C]Pa=E4@'Ʌ%U,GH#MeCZ ,KfBmNhE8!=x5b2XtQ9FutXF3r)7hkڐj ?!dhVD`svtˉ>Γ-ԤaJĔ.xEs^n252R ^wܱ;PIj@=SX< 8i4@u]vɤ7uf|tcL.cóe㺴\oQR/+CܼKYǖ;QuK!*w.&Hcpձ@PG.+s=*ȄL$ogO> ˅8Ƃ " d~EjxVSv9L֩9~2x:䥄5G/ay%79>R+4eMpX8*>2ιoSԄ cl$r! 2T I¶:h2w. O&ʄ劅6"a#kzFl4 RH""ޟ=6ԛ+5-d &@G`,;ȎahI*V9Y |ĴCn5؋zx6gAJ}JɌ,aq̹.S{p {+(M< &Z;l)yT:\thM2u-(o:ij'XubP-TYrV+ʒ:51Ԅvu↥8S7|R"Bߢ7Yc2Ha-yN0Sސ-d6qo%h$D2_aFkGm"L|ϼ9~(SiA{ri2 j!Rn%NbPmEE0ԕa*4=:Sa,nEA#qm sǕ%y{gein'G:v:ڇ?S' mX=< ar eς|Y6)µwWZ7vHcBztW8`K qk~㤎L2likas$"j,/յ¦{֯^;[ucMMoc@{u(LHP;cL$=)m7 EaudU/=/S⊥Oz Ssf~tg8J6n <+ןJʹ95,jPPJ:FWx\Deܾ  =r!ї׵J#F0/&1vҁS:g&MI&̠7 U^E;li}]_ *ٝ%60 $!] K?>.rS8Aaڱַh– )iYB#%X}L<6uw>$^ybꑦ#P[MmHvMŻH4*簰5p%]R1 SMD&QSڏ _Y-k;▎2GEy)\K yB5x KV!sҾzU?:h$">cKN&m(nuhOoR Y۱DڧdL(j fdI&ɢZC"IMtQJ3`Ƞ"tL#VQc2MZ7zv+"i+>B,b^ŷ B]5-_J'rXj+Õ]V ]lBX\}.?ilJnm|2IOUnr}Y,&.sXoHyR$puS eR=/U\e@v" w<*pN A8屣%87$ |xJpV*>ZTSg jƔ5FNS{*da}d8XMۯ(2t) !vՀ{I:W>hDs%tD/ެ z8sY'5YpO@ߤId;ȺX6i^7;ǚ(~Qál%S\LB z T̶ )Ƶ˻!\k3x DXWZg_Ɣf FȍTcð>z\ '[b3/UmO^,[u) k[Z7d0&dEt$KIy+of=kRb9QW3e:waBAS4bqndX,|#q\*i.6X4XW&"o͕w҅iviPi|5j ]CEPX< v.C%P\6%x-ɇzZ5$56Ȓ.!Z:CmIKGujKqwqܖxNٮM1],X}%8vS3Q^m"tbi*. e|qjh/U4r[1'2g\su "[`SdAm*]Y~aJ\"X"q̮.ZmM`2Fz X92KV qq"S[ۺU?]r(ME۶ :MfߌHC<1&Y62]rZTUU ?p >H'ZmyCiZ7nDi#읯}S% c- Xȡ$MJM\/I7bQTѠ7G FCa۱VГ]~:ĤD"w_'@1K[Too!q5&͖y96k"5X,ӚzEBbJVZ"E`بѾWAGg,IҰfX%J%U/Wi(:: ]ւKQA[QETj1Q[AVC} 7i;Uj6p,i4 `Ֆls}H, FW%x<Մ0BDcMh8젓B+%L n:㟬/j4 YS٩:czʅ;[Vv a,;er Jts]5 <<(ШH_Ҟ7 W4͌xhՙ8V.@5A0'aWd mAB PYl}?yk&( Q\;Hp6am(>W?Euh!=]i5o,Z*;/7)` ()xb||7:H _{N!ۘ;EUn=ɣDyg|dFy|k"+'+_5qz{9j g9Z$"q;)9{b2exCnQ5uQsF<,rUj*v w;1T:BpEGn29[D(85,tcگ-Atպn8ٔ:NFjM8wJ9.Jj8:RQ CUGO56 DVz*:B1[|"mĬ(0ud-̄eH/HwW;ɝ;S<,' hw,F% xmY!ilI{Bz ƯH447 &Y2KNX@w *L=!NzUBh`ݽZѡ݅ӍlHI6}kE?s⿃Q cvll[ z#$_pEz9 ۊjgA"c,Tq^h퇼X#{@Jшٕr+@3H9̀ 5#uxa::J@?fx]=N4<"}= 6 ]x<ۺ<:G?pW:Us܊a&ɳ@ػ% -U<,xG+/Uf/J=CUgP1ݢ ^ުDŲиgDh\`{ܢ4.!;>ȩP_ޅ9&>1(6Yݘ5lxCحCx9E`eڹUlt1.(tƋU!B"f-^N\j4pfuH8y)Ix;Ծ"c8D* 㔥EmO9+򧧘goA(AW#fV7ldu*x?]եXf@WuY׍S"9cCPi{Q:$cchWVg\;nnkEX?*^$犰KDh@0qec;kz C8vISUa1d9[=c A-"r`gEFgL̈/\4 E,7߼{ ,}FiA )Ǻ d$!.tȍMc"),ZL |Hq{HBmRv/l)Dc4<0l8Ag(g7.ƶ8fsB(>Ieg'oGg+ wvvD.7؎(7oR!NiL fΫMM-+^zؽ ebdIAlG_Ezh#VYs0 Dw6 lI\TDE/9_[ƍRS;fxYzYRM2nT)%dxE2;6bgsPV䍷Ao֡XU;8 {F#tG{ʵrYo5cgR5?# jQ_.n58B̮+az$huӷovpgS$EID-$mr;"M619:X[ ]4Ty1qMv/tI~^a;]p15EЀ(-L7%McfRE+j8Id^4Lq:@VAaYJw pY9ͣ Zt/|BǒЁcXc/s$~wd5 OjP:fd<{+~݇b(0Yϯ-,_uunyP1 `IpgsF01b+Cx394oBw t1g9V:[ Os@P]Mnk(tNqxox#9k"6 _?HQ1@o<~ԛJkY%pC UqI~݊t]m]OgF3I/[Z#Wؓ࿊_IS~Yv T6ݯd}Z&F*֋xaeGaM4qtɿ.3B,\;ayeoq>6*Vz.R;%7VJ 7} }τ$s_ "i_FhZjQNzTLޞ$돿?_CG1ǿw?bz5t:/߿+?d6?Z>)e7oo=~?_տR⃔>[׹rs>Ɵ>?5I_@J]OU<Pšuw?Zgv3<돿}&+g+yZg+]ڮWx}Z=tEϿbixJ3nZԩH΍l%5ٝ?OUNO}snJgO"ɖ|!6 ~_/;!.ӏl^ %qg?g[YPA}3nov?vLϟ}ooJΑ]Ǒ<W>dH_kK5{]iQ%^Sk1kk<{b((ƺ+e{֒A~x<>ڊ]g]{{uHYx`~6}ց xXVE^^K$VYookakA kJ Q95[J>kPkuksjۼGxz~<|8G1c&{^u9p|u:*g-mz{XjY7=kﵚﵔk9.< H{^g-z0T¶.E:&ơԹK~⥯Gz剗Z'^jݞxxZ'^z'^jxuyZ'^j=x9|=x~⥯_扗Z'^j]xu{Z'^jz?;=RK/nOԺ?RK/OuO鉗Z'^j]xu{xZ'^jxg|/OԺ?RK/^OuIO:?RK/OzRK/Oz=RK_K/m'Dr's2G*ƏT,uO*'#RX?NŖw*S-Tl}b?;[JTl)5{R1ob?;G*6ϟbޭHży#M:ީiNow?RX?Nbbÿ; T,O*T,O*6SX?Nbb~R[*6~Ko-bß;Ibb~RX?XT,O*Nbb~RX?XTlR[*Nbb~R1b~R1w*'zb~R1w*Nbb:TL坊Itީ;bTL)S1ŋw*xN<|b>RX?dzTG*#[bO?R1TG*#bq=XO*㓊bq>XܿO*}bq?XO*“uM.T,'|I"_yRgTTG*5zRۓ59#c]_/w+)-q-(}}[j^RTVXZg<<؏x#Vvo#^?ris/\ >1<ͳ(}ٳ=`?ó>C7?gQ; g}g³|?gȳ|YG>k}g_çO>y[:gڳ,֑u:9:['zěSxtX?^įԋz2SoF<}шOg#^?nxq~EQ=C%<~KO?&_)ѿ8o~P?ODJ'NDJ'N(_߅+1iϼt!\[xMՄj};3r9\-/1jEΉEɀ"pڀE"|=*TNB^RǨH.n5HG!n$8mW'0e+::vt6 )^<83jl }eUˍݲ吾:=I;AU#ر@J1H\2َ"ݳ[X8 ջ ̀ضi< ,_hbOc S ho; .;pleulh82d_Q @-^9ڲ#7zߵ.H2t]Yڭ#,KC+aU:`[ZU[~]^{o#޲D|SR1^g- ȟ$& D*.V[<vs')DVuY`3VM,V?6(;fQT"^!%xG%D&:S 8rtcNRȘhkBA/%J v}v~P0 Y;I2>G0E jE%eO2& qV%H񪈽2eܰIJ,{5t!wӪ.MjFj7R= HĪl~XM٦+bS3hBLmF/>U%@t2գoؼo&k?劐Dnr€7sF&+FQGSDZR{7N <ɭκu=tzX4/9ǢZ#ɻenzG -b]*Aܰc0*jLFFVoI`uIw:݌z= Y(dYv/yZv;e]\#=Cfu?(Zd[`vm]-q|٥TZ]r; *zqѠ˪zDMcY؞xB[ؖ TlI1Z_!?(fЊb6Z'̌ݏFxkF. ,lͳ•+^eE$FMM=W{G2+r!^YWrmɲJ${]C٧jhE7tlf1iDC_9*aG%@ߩY`,`Y+_Q>DG۴:TKCX:6ҥ[Ͳ: ,K깭Wt}i?Ot߱z~!2.[ߖ!ql#BEu(|*MtMC_H֥ZG&S "Y27~ox$U1uS^g=Fhojǜ&A 2q :>>K@ZU> _nCyVlvL4œEB`CakMgL:f"[;gU"vp,HQY$jZE Ÿ=X5hiԭ,W Ch=z[tb!Qu#2$ &J[vE? ۗ h*\;eV[ZոXа}9l#crF{cߘ)kc>,[ tC&\ MfڅIv{-N`NaNi]}-<>Y.Se,ݰKs+#Ot˻a7 ц;:4x-Zcnf35ūfQ:(> ;8uf謦 ŜY<%%ǹь@ wyԹYGu=GvvSY/Kzu-!^H1aߜ S< k=Fh`/2+j#w$̕( 9+4C;2ѳ;T$̄1gc3Nc616a!R>#}6!3ְ?#sfOvR| BU7;f_LZ-N.:3:ËzFAU=W~ C5{2|ҵzrC?eS-CV! 9 PE良bRl'J0DJX~i&"p|*g S79 }/7e)V_7<:rU;Аv~ ϻsDU{a*tָuRv݉b!3}ΎO(,XAaVd#tk臬\3\4?IrўkغjB/Ot]ƾͬϴ rϘvʺ2;<4ek22f#3?g2+LFqbRDX'DY:Ε{#l ]0 !2G&֊XSu!07srgK${} h4gHh%W˺L[CrUy:699J$Ki)# fe5BoxwW%ŏ,"0aӔtKu`z-.c6W)6jq`ݽ/ssٲn.1Z5ST9yɬcbuߎ(*t1;hlY7KZD2cz\J^RޞljO}R}~ ձ. NPTgZJΘSB5 z׮xB(>5fTu;N ?4k38Rѕn+>"~/bD쯁#># hb8CGZ#Y䤊WTđB(D ڰUu\W9# ajlI.7j{Sx$MJ"XA fO,|Ȕ2J׾5lz<*VvmK hdv3=0-kP󃈶A4V"K ▿eo;`N$| NMgJk"Q4JdmoD^֔^*=15F4(FaK\ ^WE` A{BptՔ*1&#HBD*#qhP,_!#Q̰Fi6~{T>95:N/LoHGe(2 2Df`.-2;ИN U c! GS[ka&ӺRVxN@H䎼UwVA0% nHRv)B7?VBREu5-1C(E5kqjv=g r)h;>Mv(>WHx5UCBȘwƢ UtYAg`BFWC̗4b@J<2 R. ȷEY6+VnUS M\x[fwܪTZ# NIG`nr$wϐaKQgF';#ooq+}*5]fQM )>,rWᆜHDAԎ8,ue uu9`mRH 'FܮR":ͬM@RS(ā^υYY o" G)z#6M89 %Jۉ 8S:Ku79i fMxcc.r8{aS$0e}vK:*VKDc1ejYg_(#DuJVܒޘ,+pVzi!D+7dWty? D׳uD@}q']zF5TN’]u~zl|G-Tuxg38#8KF nGT6A&D($(3NN)ۤzU*?u钿bQ$؂ XE=D:>4dkoT@y+:HqkHHpa%}釲rӰݾMײg'&v&tGp!A} Rj3Ƶ3sgLز:$I`Hw|PwZb5r%ڥӺh")6mY\VSݸ'U.,y;Na_I>pkcg6@,&UL YL1gY$B:ʫvӥ{Aef {_*l$p_Yd#%.f鎰hXSLD$Q#G'p0=9([f{Cyu(X"vYg&˄Ɠe_G5M/0 ّDI_A\uz[7\ i6`hL04lL0:o.(2gH_`!pυ+@,EUEa /{# mBȚX-B|v^,TQPUClf Y¿U( %=Yh sr:嶀O~;,Xr/X*MqYH;qf9l kϰ5^nF "D?Tnv,YdΟzYVYjBn8]aT?] ڄ"P6x^#"-l㻡<]$ Uǎ. #n~ho sr@R0Ptͺ>fտ[Q[Cbc{ Fa^`"ܿ.'. ac8 (_fFFܡ*U$MD!RR72Gv;4 ~Tބ큽a.+iji Ca=s6ˊUyzA[<6jh:,P^E4h4ZeVhaFʮEha'}Kf)حM6E$yInQ=0zڙh*^_ћ%ӨrGb#FMX涔}\ UZe"=Հl 84ʮ #R!x) :.( ͻv<*8]IBjRK֍Y_LjR1%.;nM. b?٬i8(, ua@a>vEXz7g JOM1#fq_E`s"..PО^Ί \, L/((W4L5u-P4kCzê]B0ˑp2'wK`bsNȰ}HTDٖae(@jF]\M  t++Xhyf[z6 ykX۹mAsX';.*Oq2eC- EX:6M"7|Z{1anv#]څa[Z#hа.I&iE踭H)i2gnvw/V e.yLd$aXOf %U"sqrQnN ?>f$Bo Gg5:(Rϴ;FC3,)Pnn%sۧMJIVf @x1hkPkt>zNA.w28G[ }!iS{aj4W2=rGrg DE@}ТIt [L&놬d ]FU'$ QR6{uf&bq|퍇3Ey]'b,DY\oR!Jp+d#.5؅Yj7PvW7Xx~dEҤ<߻qҢ9[,d|RXr1+#cbqAd4f[-pV`I"a= YFrV١@S<.,.Cu"م/{0N]9dB+ u0PUuT;'IEwXywdܖ:UrqcK3nʵ7ʯMΡN~>d;DÆTԃc$2$ *msXDhQR:uhe2Ƴ޷:7TtUGbG 36(sf"8 m@dҲ\*6َuW0?zTR(Ltw{1?4Y]B;tNūc/e ѴtASKfޗ]xCEuJf5PhFXͰIueVE^v/ҖzVFFR9Q1AjC.NL0︅?)MjFn.N:bNG,vPVML,6it,`jd6PQusIHVLj4-}w1 xvzY#DBdcOwQB_[1Buh7sÇ]+* ceBx%ͭ&@y~Ԃ)|-DgßC0T 5o 2D%@:` "Y=|4l2dN]~'hOу[EYC DS*}P%9;e3CA 2\$wuY'S'b֟]_QLjp`vIWYJ+5S;ro>*6ju+6@iq#>ݚKoK0-3o"3&%jgِ*'"q) 3&(U XFQeLL#'R'+ee`jSYަ n1'qUebX-fY. eT;v(La2BVUy4u=%-l၉oP_ z|Iz̝os*Q1nD^C9ڳꨆ,).#=3'D !T>zߝ.ʴ(۪/CN4c#V0dm)ivS3YFb\""Sdˏh!dFtgf`r?80먈k'~a̧S/-D;djw8J,NTE\PY449&rIC2dP(umf;+w%)?#CMr?kO~ivѾ*tN<#.zYy]t53822Wq~dŋ4da>؎8̪Qĵ]r$yV,sjJFj@tRi]Bs+3_VL9.(أBez2+#Bs'iUxa;yPB&\UK{u;!R,if=bDJ;^zλ,)D%e[sI\(OT 83+J#ȽHg%oul@SN#12*/"t&AUۘb] `(u2!44.#bn"~Qd[ ߶g4! #\FHz owh4/\ҫTm߷wnI uŷX%yTznlwӇ]wk9R؅&niŵ ۳Uk\8D"xwak89vRԫ\Y2e8DuD\r _GY};`QJ~k_bfͼ6W/s׵?hb[]U5ĩ>с_ZrަB(S;{M"ՓAׇg?1X zP$GF;1JY Ԙ/]?s֒S⠛ҮQYATsI>}fǍq;PDwJwNT"7YzR}CƯ.3#22@o1 _{R[u*9-Myh%TMky#WGȑN!s\_blϖlSn6 LLjM5d9::2k<8~B+zR't?S7@@T$ )aM6/+lWW2QExOs6mRQ ͒e#v;ϪY;6\=%kn P3 5ve+󄆙Mj,0/fAq [.e2"Vg:r⥲+ǫ}SpLߊΠG&?M 37pyDaTsZŖXOU&Vbmڕ GS';nDWܦź@P-3/OR6t&9wK ͔QB;znŭ2eONmKQ'pWgGͼH3s C ؏> +l󣣓a_!]ǰЭYB>1ÉCroi)7VT@nNxB}f^|?h _a%#Z1v^ww!2ג*7bzkMtܫaˎ- Dt y4nr3t`ɲen8buҏ : 7v]:}҃Ov>~tBCs$w#kF|-G<\ *{0;~=#R*'FOTP Z=%2{TUe{r0[< R  'w03UY tk,4n~1MQ4;KRH@dUw#2\{xcbG'D*&+꺸>8U $uM”ogtOdLTeHA:A[HL*?vD֨`xW$=)1P8^2}߀v9({7)l׍yIF}ы{tYB-uvb,n]Jne'G!guh&"dxJ.LnHX-PmB r}zѦRlaA r;2Z=tqG©|>4yd<3·t2@؄Y'Mkg8 oUa~!%(%Gcfgi8ŸY '"&A73C?MWl"fgduol3e#r\D`9>hݭ98ó{_vmo9)ʸ uwcc[Š)~8O!xo@]zP®\pLg@V%'7Qe$x+/̮U쉞sqwU[eרaՄdhnM/Yu9̷YBGz n^M?Q`Svb5/YJ +^!-%AQYe'{LdRHqu{G5mnvYL*]黳6yhVܠ؜=$U|E›NcyqrWrGcSEiNv7zX& CcWE{ XՆO^.ήcDPܲ6{yևNS@DhxbgRlt;vS>3uld'gcٻD'Ee|*ș+1&r3qElsUJ-}:6Vte#9$%t3? ~Ѩg t߱/Ik_d=.(R%@hc10tlx*=l.R4ͲOYh.v!t8 5LYRYȳRTsrC}d&,q["A<Hn#Rs=: UgèbÖ-=Ͼ% /Vw!5ZlY [n6nŢK d SD&fIv5a%v4lv(=΂["eדw' jqnwD6WIE;:AQ9vm l (*ٰA: G%3M\osC EoѣzG.%eM6[lnfPT),z,I 86Cxhk4$Ƨ7l&rhTO;Z-8)N)7t4;blReQgl_IŠCUb rn`P-̲iIQ)JڲRԍW1.a# = 9 PTY#2 {=hS#]xHClY`;i4$oO] 4NḒVC5l*ބaמng7-#|18ڱ^j1N=mŀ}.T>eڪ< S9̂{V i'k.(Ks>7`8D9u{¯s[4i@W :0Nn#VBUDhnheom_ f^1P $?܂̉kOA@KU Ħ?PhG|}*qץ|3n4f1HT54yeץIjl8oQ`k]58ĆTJ5pp~]8\c*`t|)X!@R6 (lbjI頻$Eh"[Py X'|.=>QJ =3+ u]yv\kh@r1nlGc.zVVKd1Y1)ʋj]Ps3uCs$CxNMъDU9L+g)cKq#Zg1i\AtH}_0yj؋j5+1;c8+rcd7g7HjX:MpS3P'C=h6QE[hm+̅Id;( gN֠Sa}Ӎ65W,ReϹdώ [%u3ɾIxDx[uJ; SgphDhγʠN%}a_4š.|&J_Ѷ1NV-4/Hpټ:ԾO5gU 5+Oi95Kn@!阹L$8ma.S³y횫l-ݩÜ8^ (ݪ-Cx4DtQR@ S)؆ٵ Ď[c'e fU&$ *zg]3qD^ʪ@0UhNB4:fq_4V7o`LѼh&D@i Ea;`O(h+*t3 "q. '&? tِ|\8%]jh: ?+.S49Ճ[QME~4i,Ba7ɾkBϹQvvgFe4tJtFTPr"st}o5[bEO4c]VbBvGpخrqԣ45! ̍fU)(ût`LB04ilPq"ie0? tBdyN@7kgM TL-脮bI^}|MDHZ6vOh bgߧw{ ƄBcY_1@r UJ"$CY&I8 '{TǥJPՅwzoS|_OSL$o ,WOJVs$$1/*TUw7461;vhrOҿQ=ȶe D_fErPd1R 6T|(T!r"=̽Pub/I 1*ivd1!rxi\иJ`)Rb"U0s^;[̱>Ga֑XloaK: $xJIʾ/F58,es G>eKQ =ޟ?&X;[G3T88.AYhe#a$^G~&)C -3xe"xџ0T|[VoED< - RXej` $d834JvxMI8ʝ aAUZp ?el<-8_(f\02Q綠aNʼ4+!+f`e-@'؀}Ma,aagj88v۽g,["R#@HQ`ifGx ݡ}'Yӌ"-ʬuZjwK5/,06]Y +GVfa=4l2Զ$k.Pzc͎X&w0Lc7j:#Yls$Om"q# xU$o]cY.IH*Nn,-[٧qW%PE&ٷ} ~GS}yHpnɽр.H#=<-P\Gœl\#1THU5~{4WFXZ;7*ܨ׷瑅@Vw3l*fذr76L=ɹYTO<5]x̬ D!p]qtvT !/!',S$Iēe0utiFt$y>LͪܩܦMNޔ]s=r2 ]Sɤ/#oFNG@t3Oɉ'#?e}-Fc>#,P$hǔ{P-O9ȅG &Kdq>~";*BVʷ)AYB!I]&3VHnк:6Κ)uq!H;_W , 1E֏mZ/t5i&H+wŔrVd ? d\Ëzo:S9uf1}-  uw<ֹiObn6."bo=d֒:yLulX\C~ DT%`2$jJ =ozAdI3܎8F7~~zɭda$փ؇<ǢJ馊 " Nכ fFdHfBx:naosc>v1AaNZ؏*Wcf}+jnGl(qhݏtaloHnFH ޾wh ʙoc礅߼Le -W%:;GlI,[y{b|_6TL1'ck|*/HkJ$Ѵ ^m&XD|&Dnĺ1n=F4Et:ST-ĕ~m3z]`jJ{&bFy_~/ ܈!cΧ< L2!hUFʓm.׬xC؏9҆yt?j OX 6>?+/nhKLjo3{N9EYÝN$$2PWm"#saNElb&kbY휋fulڱ&dT2߅p6b@tB*JG. ^Jc'G,7ߡK WRC8P9v.qn{wk8Yq1r$Ak,fh:'nof7U4Y7}0$W[Hh7BtׇU#7R?VR-fl8 v4 CpEŮ}*26f vhƗFw5/ o[5!`!ص ʦ`9}G NZA@ 4o/h$X+Q\*6QNRZfPS%%<WJ #Vha*s.mj:u u?:1(= ~ya]`RVϚl1|\{s ^^M(T:P&D䚊tkh3:͈7Ռa&W?s'\ j+¹]:[Pߎ, 2uI>?NCe' Bc YeCUvlQotR$8=8t7f0ڔ}!r}B:]gb0zfMu0HʾhZc+1#fe` 9 lD=~kf>&h3XcqAVo]Wb4_2cQar |p"fƛ1bAW$b?|Xê o0TYa3$E/kt!pPa9htPeWO>w{&5γz?z@oF[Z.gloXn1hf]Q_!׭:}g|VRҴT7{eRO)pe*] SZܲ++!( hlȐN>b>C~,vISUT.5UZf1]Qŕħpalji`GnZZ6&Hq?tА\AF vgs*Te2;p$} 6z2_0Su\{4Mb1Kmj~;. !c/zȍm%x9GQD@S_-|kx~5N1iZ'֭u IۤgX\5ׄɨoV!&uЇ{IG֪ rڐs|ǹ>,SDJ5IC N)*6c'Ռ1j:˲PGP ak-_'907035S n'e 8k?O &]m*IJ\]D7,8wϲ4O3FH)GeS"_[=Sxh{QNJ:տ)ouU[W(~!V\24RKBvp ŝ*e`5lcpOeq03iҁ`9]r>eh9YamSKL!yCA; ߞF cX vjy7U=cxݮ.IZU( ZZbZE|Vl7+V^a.snL5\/dPHZ҈QGΑ!3x1 ]{\%'k JzfT޲&Jb|EъƎ#t0Xִvy6BqEo)F N;6 )W+iwB#oX&LX^D{gYte Ի4jLY֋BTRi&,K\{Ob] 3;#G٦G5m `rHF#&A`-DJT, gFB&UDZl;gKi)fD*xO!Dq6T5TɺbkU.z*; k}9q[R:F:1KZcnJoxM)Du Z7+Kl`vwܛ(j0Xr l ML 4Ws7:\ 䁚Csq[2QfHWbg@5Q=eqs{?q2̷r z47:n82[jZ5M([`;T-7$o(Ƒ u?)N Jb -rIhb5`!i:w b5%ϘՏp:V3EΝ84Ti5p ԣ <%L ]eU=3GZCvm!.Ȳ Cُo ccY=HJcёрm<- d8oE>_)CL5ucnmri5 Lf?&|t(㫌fQ* R h+b]"1љ 5>,لf]eBYmN%af\u^F5%R{ee\|%Y.>SFb"B_rH :+▶_)v,, Sf6gsa`vCP~+ޡx>\D] M8ֽ!4Oi9 GwODu^ͅǑ9}2Fզv06q?9f{̻T~FP)C݄3N<QrHHu0X9xeTvf_L*ֵjr߁`5 HǑ :NwHA먋QtKjxn% yzpa^dQ [UA]S\H'yrƶCKx10W}+zʔK|}ЃY2ɼ4`)xc-h#nNߗφFOͣ1{E;k?6R?6iWe&u*K FމD߅JhӟNo br$d@DŽg8 i폿w',.VHd5 _K!'`'gL)Zp!m3u7_cb0OԮw0h{{Md"yi=΀]t<%v OXAT4[-}ȆZ69ZB_nVeP/(XN_H;{})b)8Sp`Lr4G1Ll̪oi͈S^<K1s$5w~bv~obt )DZ *>KMzHCY>S+L. M}p)wgvB,W}iSr$q");H@yd2 rGӴ̮+p"nά5{*XHUj$bdG?Ο #NDGڱ~MZ;1O@:>ozL S});Ҵ0[o|W9KW)!SLB_m{ZMcb"*ktXL ԧ!k>ڑM(7|$ԛ;LKv;pg(Dճ+X[l#SmF'hrv{c"VhhH.y]\\5rF篿WE:ri rjc%Pn=5/|pEoe8 TmD{"ZI.3%P5IyVvqliKEV؏`)ou\I̱(.JsUs:3 3'In8D=N&sltt7!^oK6pV?p䄌^xq"ɯ8rQikVoLX[8y =ggLdUv4Ύ~^Uu:lC{.E%ۅPel]HOy Β\HnSӫ3s_\wL )ȸҥ)_dJ'jmTKzF t%<49:]EH.!Q |9BIˮ[1tEP;!TR-Ox/ȁZpŞS!\AX {6&WC£1Bd̟`t|u)H>eHv׹%4.a=)5^Rׁ]#/NuĢ)NSP5~"/̿qnmYYܞ>O!o":k薛h_,'/k] TUiftfHf4Ġ'Ÿ{'IF[\3;?좿y`#!WaX?Z͑-]4g3f4H,ԥ5|ٱZAN;Wi`L1'gzNXU: b~$wo2iCi"ƟnXA>2^\kGI08*;)IL o*o7d\E"lrr$2gus2CBsIM1՝t.4'~7"=b!q%MPbPBX~\S 7nO='1C8g@Uƒ`Mn 2acNkK?N:{tO}-Ca 3CY%:zr([Cƃ}C{&U8`ĝWp1q$K.|bRɄw`ՠav\ wQW~HbCo3蚼VVWsa~hTqũqXaXjJ[ߨ: A}<2kh)q~%Eu;R0}pTLB=Tׅ*J%(lBM` ͢: RޮnDih904,h:b]b8 *sTՏ)bb:>`WJ8js:_y\x(.u*'~ ]%rJVp1gh_xl5POJ_(f"jIn:0Toבyk&,5\x5B ϭv_i%[:&8ÕSjUz>յ\fZǺ$E,{qc)Cߗ;2F*&9VAmVd%Ek059}#6:NҶSu;g`L:dz ^GOn7!E:$8< INj3YCg.إVs;jB5`C1=e^+{'==߷iֆH"1̫G< ) *B?ϗr[qH ވ 'X@&'<%sgX|s:x:ilѨdGS) vF393$^?Ntq&duNYṋq\TKIU*,UP +坬*<0.Oӹd;֬TYm95:A ꝋ$zhWіm"ر8=qWFM̍zeWq%vLyh$\vӟ,&.r4>Ty-!EigJVAQىo̓ `&SuD4y[]-Lw.ZĤkD8RN}cJZ*`Z ʭߥE: zMoQFzXLbM@tA|#2ԛ'{;oŞfZYW(:zhNDUc~j$E{PslUn+`YIH;L5dž3{B_$_00(ںW6~=)P,KMK˯SBhY2UG7r]CEѨի9%5KۂjI@L V0 )Ϳ8:۰#*(̞ðB.kP7Ʌa< prhBZ&dlvs "SjM1NŶM,88}ncS!92E7߲qw1T5d_AXӔ{HO-#a}1+A@f ~%؆&9!3fܭ.Ɛz0 Iz 4 BtS< k- 9>δPͷKc٥(^Fc"sl48?ՌDohffFDNl`Ns+hdD.w|[bmx!E)}>C xN虙h*nz. &;>|!q 4qNɆ qJbϽu"2bƮB fcMKq 4+H"^\rX5H48aĀmg8d08KqWN3B]D0Ǧ%}3j⡎U}Gj (a>J]JZ%l97)< [6َltPdG\C?gQ{ciC`w׉t )\w!WB̝H1w1%G7LN BZcNH t^%qJPqЀyxPNy mfg X_g@og{(PUT8,nh*?}ϾB {PϺȁXD͠?ROyFR)bO~$tWQhKRI757duD46>!!^]2{r\mOSH>1X_Pb, }N.!oRc4o әލ*'"挹N'z61;KŃ"%߸2ZO>JϙZ~:K,%ƔY>c]\06sT{_p@1Q)Kgsd4+=T]XVZY%bKQ}ɬFu&gv)-Q;<ٗCj;I~oiry-q0):7g l583~]jc&1p-)ɝ氉tvwװg}JߘaH3'fp,{GM!6Ey16ڊ&}DUGh8I#F+FmfTyoOSb) r1[aE5''Pm ŬO>erkO)6߽:pn%,|&7t[m+\8@N l;r^jk\B?#CPj}&b,nm([9ɟj[7)~zKi|q{``g۪K\&D#V%zX}; 6%8 n0!;PbS+U2(6Øՙ~͎*uЧW5B$'44y"a3O!,ȑKfw.XkbZ_pku< Y{M̰L V[Vhr0!{R"ݹҸ%b",L@c>M!ҽ|DI4,q<_6%ut?ұ d/ &ޚq>,}~\¾]_R!В\y`an:K&ŏ߆p{4.#)4.Q: [+?8x!8Z HK4n1\e26CP)h84nZ Q-LeV~S \OvIoIznD:\9p{됩Qf{KzoKJ6U]2_JV*sSA7h9'!w5*(fM~#a=vdm*SQY}95<63wNf7b? 4vbeWLRhq؊ )2-3| 򾺃hbѲa"! "p;GXy+e(RPc .˙6ԕ+68awdNh_C 4@R_w$uz_e8543Le`iA&7nԣ ެb !j*bØǞLu5 /KB7 .{j*X+%3h:ۿUSc3%US%bpT)FSzG_w=L̺FGgh8@wʒ$UA;۬ΎM1Xo%jN}.F^?cP< }5f s #[qx.FhO>sj/ \8 lvLa>?ڪ P"fuL%y7G EdO|$ K¦Hgw1^pp /qZ-eH66pF)}XOV ->?f{cjQK;v lsFSrņd*ȆS} W.*<f24@Bcz:2)攌2z[BԵz/ILo Xaӳc"~+4E`h-@Ő<{;y _1 l0Fﳉ*N,G骴?'ĥ4"tzĩ? ^Cn ";jY  x6XGVJݰ0~9F*ˤWDS#å)y@'V&}P폍Ƚw*6Ii(B{ebL#(A-؇(EH9 rg!XP>ELo_"G#eL:C_6oeCXX c(s BE-l3- 9wl̫w#d(/kɛ#% NPmcqI@\jJNڟ'+b4&I>7,]KB=zJ 2ѥw mH~Kp/CXh( a;d'3kSzO Wu5s`G1.1S6Iǿ߼-?|xx|ThS/|"kKגZ[l?Q^.OY؟j^۟/e!TDug~gtS2?Fiyg vWvii%\x7n3աZ\gXc~3V7lA!ong (<}~"}Ndj43ͩytK !|)} k{O=_#Z(5 0BG}}u/ݛ"wپ޷L7zG:Q>P^?oo)SR'T{~׿?YGۿ?_E+_Ϗ[>(ߚ.ښn9fX_?/oo?}܏?gtm=*???/~|v?o~_? $gG?_~_[GFDUvo_*/RNgkoUIi_ʗRk}'+]<!/ z޿_B|//.?Z C;˿-ve;fU߾wY }eIr+,+̿notTC;xF,\o՘p7}]]P;Pͺ\=,P9˺|#.hlfK~sJWĢake:j.F|ޱN 5q>ψz$#>o,>_ۑ&g9>=ϩ:k_Udk hx7#:>o|:>ou|2jpD&SH kI'NMhyf|5_Jx|Lk95-p:>~NOAo,\vZSE6~=7>Nyּz&Ƃ$׊0ײE?5|4㱰nm3>twfB׵ O>K}{'p)kYX{_'_g!*׵S* $b:,f ~1Iv}{̺ߞ7,DOO(ά; _# u~L3Ma߃1 2yszmg|ۃ16鹧&fwʧ` ~gœ4zer؅r'fAϻ4_I~ Lbyl|kD\g8fʧ뼜H ">hk]` q^msrĠӘ{cȸ^s08/y\B\O~u^.Lrպ˕uure*_ϸnr~08/W|K9xu^~V\ 'Ue['ܺK/ crU|\5)=UOſ 5R,n/X޺{ZTRgkqR,[ׯSקtgkvgkk;[K^ϳdi֢Sl-y]֢Rb8[K^Zz%_8n˥b_`^׳u?[K^䵝%Z )rngk+r{=߭EZt֢wJ%ZnkyKz[Jz[Kl{뻵Tk֢n-wk|vl->{]2TJճu?[K^ Zv^gkbbR,ʷ{ߕb[ fo)f*RP[J3fo)f*RT4{K1SibRP?bC)6P?bS[MZo)6UjTbjJ1 _ZRLW)SU*T[*Tb*J1_])6T?b#KS,O)6>b#KS,O)6t>b#KS,}O)6=b#KS,]O)64=b#KS,=O)6KuZ k;PA^%kj|UyUz彶8PI^u;Pޟ>ρjZ((ǁ{]Ԕ@QyJg?x灺z,ہ-ˁt}z(/@y~%{Pu e_ϋsy^*]Guyyvy^W9O~bG<~ˁ\oy^e^;Bo=^gP[Y$3 MNBo=^g[O%4[ XBo[%4?"N=m|A{>?g_Р/m |Adtm?@Q_Щ/hUPz UݪvUo|A澠~~Z._Bӏ~m?/ܷ~ *~*h7ѷ~}٪w ş~&tPk N?^spU~5G#/9J9xB$Qssx3zFQ~tUsu𔚣3ZK0 ~ 6یϔ]VmksxNzj; 0(ͲjLOH'OC?9M:bܸgYGoex'MGDgrY^Qx2s NzTyTx'c5eOa( 9 {ur'e[8 ]n͒> ;WJhߜ\F /xkPoϷl]C0>Q)N#ySu%mQήtl04[Z=NZ]12i,VZ&ߟs,L\,})&zhi~zh^S\BT9$U }*zbcBߍ34_s?[h?^fi yuR',I;ɐ دCH#[2}ўX_ﭼi/EJj|kWFktjٜ?#܄ ٙ9[hQi`k'W$dnzwa±V9Ozw+< 2&Kfpfb ;z}́HKݓ S"s̼v|}͞)pi9yFM6Ω*GMߖ eyMHjoO߷ˑcUx1G>Ӫaƀ9Q,|߳O52+ f}vWڬg|+\WһG;uE޵G2cU|7S=]*o/`~L#T *vOR_hά ߍ1ׅXpy8]8|aN3vO1+`0>Ԑ{hqZ%3}Um*g5'T?/u:O tTbJxNf#U֙qdqN/WEoVM;6fXl&͞[ygӷuc~jiΎ#֯r``F4 * Ήc2%;lJΜ\Ь-փ-fh`z$K{ݓ% 7=Gϗi"Vy&嚗~26]i+<%jdISXI7gf#{EE96,S=ձB<誑҉,kȫ󧟙8< d ҞxlFL`uǩ[ O7¬N Q-٦ߍG?iJw\ jy,c1 h{F66MDJX]<#)v!QX &^<:6uyUO;ga⎴ rZtka%y9;&,{ggiebu{QįH`RcqٍB?'Z8_ T~ف0Ձ΢V&rV cAq70W,+qaghWb7}_bOƟTQ™ZbB[L-r[f甄nut(>(rjX tVW_:ʼ@n㴂lb."SQ.NH񗝛r?l8fSLGxXK[`MѺNcY06"mfC>ߩ)c*/K3 t` #yһ"j|[+ܨMK kԓ[i;ޜ&A߫z5hBȅΰd̚L?;` >OnU;R[ǧ0mJ3cT¼e(3YLT&a;Br;VRm}&HqP' ̲{b|*IiWطڇ{#ɋ!s+ᝬTS6AǠ~5osdM)pT 3א/h1o}gYבÐ.VcHp Hw#ڽ`!:!:\Lt=B9lV_:g?tZ-Ľ.Y&Į'~$Rռy=Rz,c`,A CKRIAAȒ< ).\\ Ku"N9?V]D ^}i$jӷ;)Dz|{'YQ@Er\ CC 1ǿU;uۿ 5ON]t-lʇ(mω8 %QVo$Vu V}vp4sEJU@0~fn32 d?:ˠ~v3GF{GAhבR5Ʒo 죉 X,kT gY@ nimkLrD/'Ɖ?gBdZI;pܽBbD teB0(̰0H喒S485*UtT$(1cԛX&jb^LU"ό" v$g~83;F2@ `?SZ),&WnI !mPʳvy FuSf"Tna'}ޫ2VRϟ3'f" $1ĄƓx qeX:祈ߋdᘵ;_ q t R!#?.jVpwRڜl\O{슏 ߺ)JdE#ṯ60q~gDH'B(E[&=BʁuLc<^eks/Bp#[7c47ix2$OYBBگ&r輨~J̖lUI|DWA& Pqu[*|Ӗ0x.:hRn/8otXRH qOxh aUfUм.w+"7 ]bo]nq&K=WQ B͡ HF%+JlriI|cW^4(K?o;R4pvMBSkUk"d:>'*Y<ټAIow2ml`)!7SzUe5Dka1v׾ycePNYOنj:(\*v@EN Sn P4{oijc~Fi ̟ 2b/$$0c0DkA~ȘOb&R.Yo&a`v=8Ea8ku(Yt7V~U N9*q'Pd.(iVo]2^^UVϊǨ9еžHKwSdޢKddYs:/ Ggs87t/:[ESy[a[q^,R MO󇅕c}\G,Pds3*XgasQnrnoڨ<ٞj675FV@%u#PP<Ov2Dk$Dlf;0:9!),[Gq{_Q;1ـaH}᷽׾fb, u##3ߍ"AsCYGߢZMuBp/d#&ce+~GR}v[Vb"R|r դ„"ND`; qFMF tld҄cox!W&jFJȗQ Y=Dq^e}L/ڑ^!ϋrW/ɵw t*խ#oS9'4>I!H&4~ +;"u*7zefwwFsSa}[4섖*>pFS73fu*u>u[|!E.`^ <'nXo|QZ#7^Rq1`פa 71C`|ҥђ@ۚ.i.h?mor7ִ Ҝ=S ̬ONtS7ƂFPqX%vj4[΍ܭѶ؉❼pM174MK%*;3[}!* yGueszPG 5:avڱl1񌩴T9F{;9k9%]3“);z$w ~NHBkutJ@hϣ``BFtբ_3%O: Dbu5p9 33eR&EIڑV '& $TRGTnS*\fm@G~YvQNتv[|߳0cK0psdPGn~ HB[9& 0™NauUSdƹ\'j$4%kBnDB:r?CǮ\= s8kdφk [估sZX˝A-`CL&kiVj,D”kJWY."’MZ:EJn O8ڟdcrcVf%~v & OhOmȢZsߋ}96GY *JI8Q` .VEA6 Ԃeh^:|T,݄V4c 9.fa v Fy-0F-Q +R<[RJ.eLؑZHY۔z=e7SrB!1dH ڌ)[scbHudee [5! S/+TOjpd8- D G&l"2yMa dΞj"g3VFF1CL1s%TkZL9gOKv~##<6mY14"y;4|owl2 P}Sc|"hܽX nyH-M=ıYΔM+1OU`"-}" jE/'H}hǟUŻ`)9 {v GSۅuZy}3~4#K 0oO6C8t4+ ُDpX!6iӴ g;ȉc5Wxi<~^u:Tqj_MY ˴G!ndAr_..䪮|q'҄5*Rb:Zc3>TU/;E_T}HK(]u!Xo*n 硇|r^c㳶 $ʼnn}}^&o4f򡢽d */&9<8MSn٭v+cyt:/IO d1g6֐# ]սO8Pb *+u| C^mF"j0sbW13'ӕÐ$lZmkްwv|rHcnB ?GXiffE͑1HLXĽSlڿ[g'"jĩ !ڴpxg_%%i-i _{OkP" 3G8 /y:Y27l;cboWs7vj؍j@`p}aLzg_2D$ _;W\]GӜOû40:Ie8at֔ RGag}A;IuPR6a4sz 磓`) 09c4SĂ=#|B&WK4eL*ؚ\<k+PqƓvRd4g>rBxp3]U\2nLu>}0͏X:jЀ̶D&b3z7 נsY&\cЭv2i8Ң ϭ|Gb,w]dM(Qsr5 zr0Zu) z7f8zÐQdG8c0+5v wcԫ `Q7aI&:u2rW5mwdOJ:9?~Bs/'<#C$ {brSAk in)-B 7뎋㐾N$wʈ͑yUWJ1ߘӴ!vU$*2cQ5˲O!v֔{瓃'7*tT#edʞ+MyzFB0U{#M%jH"wt Xf+1(ޙ2eHl ء$o^8x'g^tjYt*Id WS] a[ v~7:G}2wçi8;IBwTIZş쌚~ #C+*G6$ (#^PJB4 ƍK v>,t@U;uH3PJpye%ebϟ/uvy)dHbRظ?;~)-ԘTYU3~ sgvx}5 Kq򷵠v3<zF&>"60ѭB;N(,|-4 pwt>,8kbe:x=Yݐq yj}f:kUno݋u:}Bt4&g͔ד5ЁjL-+]#[iO:nF\+(*%aO7O\W~vϛ=.hɊ|BյqED#'E]aeq5晹e"ǣ8͉NN ΂z'Q;9oV.RajY.ib4LI~N Geh1$pž[>wYW,e0LI{5[߫]5$ Ɉf^a/LqM򾓍}ZH{s*v NG:afe$\El)d%81!)*{ %H^oބPMj-ڵV'Hwx/!T8 _nGw\3nFpҴTJcO[F~PʟZ~& MRgIL+&DPi/J⺃U(4KU`ZM')$ު BoĢ@&*7)1A٢OB[RMOWфw;fcv7ℭ8K /wI`ߨZjX;D{+)Cd2Ռ!Ȱg WܫPLF-|}-D f7)g{%[صIDžKkam6Excwq>])U#Z8siͰ21-\kɲtsn9,118K@Kgbr r8[C&O3_oV#M%N73$3t޿2$ ºyF0S8״PxkQ%;p̋mrޗ+WB϶7;= Re{ S3x%ћVeHCCw"_:Jnq2>}4tJ]'g%'IU/=cыzIk3"32|tS+';4j﶑a5C ߨTuN,.Ʌ>N4mrT|z;b"N }#9Wdl<xQD-m݁jp`=My{lm)8|7U6ݢT>1[^dPw,!Sg*wM t=ǵ ]͵z:{m, #k")[M`L&c ban=raP·6+٭-ꂫ4Mgb)N NQDS<'|qAe`ssh?:་)r(8԰;:ٕbfn\T5fI{_ E>um[;88W{IDԘHBNTKBWrЉL$y}N 2PgaxR9,w?vR.svwW)qcz/4bЋ?1忞urYC#@%T~ e2:NTnsoΪ,}16'Ő$ܬ^9ҫ=S*J?u-!p yDo`I;*}\A C&=xPqp"jkKc,]& >RW-ڬSGﳦK{4)1D!*6O3)MӁWZz f}Sq Nc#OjoybY ̦a}bai1"XW281,y$( 96#w4]wbosKzDJf~*;P;گ9\ˍvMi6!jBkum=/X}6 a~AD4^WBFQk" ua .&4gyG[*_ S"Ac''!3gU *d[5 #5菴b X7e#OxN*}uTt 2Ehб+s[ߍ*o]\TE5nţHҴql"_Db*sjBYbä:ͱ :]CLzI+!r_ڗdut1C Æy]=4 c'_eK]Sv`a_g%s7[Y;I4ӅP8',I5"'] X3#_$z_KVN725{rN|_Tf*җj[o}vrG}Em''X\ IOu3r{t2a0ю0}kJψvu̻. g/|CA"å7Gx&g[NbBz,v>}EbqZ:>Md٣t:Zhʶ=~P]5cP%DsHI'rǗl%|s26X]iK9I_=,rZ[4{iגWOș 7 C;\9&>T&v>:&Ow3PTW|4mvQD.|z(Yb&E +dž=2Hf|Ζ>cF7*gp7ޙn->C87 ~]WyD43Tkb;IXVQV7t@mwmK|~hL"[nrB8[#5p򂂹Go`8ٷgM 7G32gW: - 66?#㸘! 7o`xBЩ#*M" tuIJ )#4q7Jxu˽v\w/!k; 2`R#}4ylv t,e{QzoX6Bh%Dqd(l3Q1֥(V "[0qOVq Lwp3Acv %6F2>686 Ɖ[ٗ-()]ڒ|g,"&M9kj3W[R, ŲHOel611^甦v2KҰi"*[U9dh .kѲ;eי 4lEuTwr,coI0TkWV*mT V4xyw iF( u5 (vm(9o|~vhq9a!޺vŰ*ðNX NvZgc3{J^d2KFG#|i@feEnγ1нJEhZ@i5Ȧ2*j}ުs )[q^]X#gɁCv#>\h hn9:RTi2p/$zbt9q1mdu"t'%vqjB2iBɴIm5HZ 2<&^.ՓV%\xH7.5xx>b L 04|o>/],ݯ3I*@H{0Cu57whY{/`+ ;bdB,B"D| ފ;R;-.[`pg9<c EoSjɕj?^WwT3në+!1Z8L~:/hkCHm?uHq #8bZKѰ_ifl.#VAE̛G]n&*:mԓ%S+Q].Fy,wͪ6qvRC7.4(%-9 O:1m8Enh3s'ci/U#k| K@[H *B7Ґ_Ù0gXb'=Ϗ[j)&1%RfSfs9C'Dl$%3;^GQ\?eZ3ANm[YFEg5nszgɧvɑ[b[ϴhL;c}ŕ|&FB]#e e31OئdS'ŽH.9bdy.&o5=Mݒ2Șɐ]lzs:̻#49mҥ&t7癲u+e~- 3gb("ӂ4u"&^}~s䩨m:m{iK %΅ *vS4%n8?2;8:8bvRT-.Q YۼR |z%ˏo3=;)#ωr+ .h6Y*׀O ~pzo}6ᯮlTzl1G%@FlEbȅ2xTGΨUT T=}y}d_KIXKq]{a̜#1Ȥt7NP ѣ#nl'#F7\NuSٕUu|\h)p\IUXO9V2>t^A)jQb)*pd7O[X%s+:L$:c3ѡͧHPun4 PST*u4]Jy65pNT,m߭[qPgr}yP]G&՛-S+G0CRk9rZՔIMH'N t\u0)\cLoWo's^4(: w  I{U!ӌo awn2-gM _< % vĕqz-o{P:/ !ou%-HV{x߃^ZxtI͉0G&Y8YT W2Cu;<QWNHഫC]59{w IU`(j UmgC3x*#WEOxPjM]DnrG7dE*b)kl`4vy+u/gD,c7}ݱKyᝪzAٗH2 'pW#IUnV38fȾhnKXv$"\\SVTSj8J_rZAXG0"d뱻ACSbg#Eý@;n^9&5e6$?oa|6Yi^vxJk>̐a*lߴٞ~&-bRmW=3MAD x VK 8 #Ƕ[Rp|RǗFW%bB4dYQ CRo}E=9{]7Qfs Ciۿ]Ô: ^38=֧8MU8]j³ & 1LF7l3vՅT$ʁ!]ғ,+ޡ Wů@f"KB|t.YϮf}ʐ8EdТ;cb2)|+8r.=K;&Nʹ,J&*͞D{ р"6Qv)6x6I!*z ͸wZszc<߾ҋ9B! -` k%!wXRMPPkZ1|/L.dyPNXڤ~ άj[3GqevQDe龹$5aNgA*Y`:3=M}(|SB= +nX=ys$MҰzB{4re6Ϝl)!O6n&Wv#9Qhk-&`h]OP]c, Bt¨:8O~)[ t]sh'Sevсpw7{@l@GStƏ=&290F:㰫as{h:U5lvsr!<=MĠe2b"đVudg)/9٩a~ tcFט\o !iohv#KF"|Pr$u׫]/g:o--E s r.1nKmd݃+(Svߨ7 z "te\ UɐT,%WyYUb]Uj=h61=IϊS-5/UdiNt;.b=4b{b"{9{շtn⺲p!(#{eOMy:!?V`ibjuOo$1XY c"voLK#}y#j=|*P~^9# 6R$6"֋M{S]:4RTst9&m݃v2Ss\iaх2{U!"m|VY9g:*h&$=$ՇK }b?9E&U0ï0zIu)I3 <>oB*ږ|hmX4d\.GTQ99E݄hWʔ|mOt DbOyL81jrM9tz4y?~5s¬D6Gʼnۓ6UO>6ݐx?oɌλ5\E:)_[a*b$vܞEhI3 jeq(qwɻfF;M=Ɂ .NGB؃"My9{*GY ahT2 YpIty=upv-J+Fp#i`Y~;kCc9zo<W}fWB7N_Vt5p.fu|d>12n&}hs+(!tM| t¼ 8}7{r vYXMo٣_*tMU'!zu$>y?g1V125+>tjP&K,yJ<+K'B=-Vݩ8+_BʻngRN7/TRGO\bLQ8r+kjvvʚNbSfSs[O⋢7i$bc9js>E::˒{|LH빊'L$c$M7dhWnu"a|>7CÕtvsrtٓK\坅s 63`޴lX={+I35Noj'+LJ=^hQc~ydkɻZ|VΖM W!mH8p@-8igD$zY n3x=ŔH}^U?,c[ T[3M5D5c>pU&yw^H~8/&XP}E(ٳ=.|"? #]WB5ղ3t:T5$_tՐ3HPKkR5Be~LYi8Jub/LΚ &_~U>> 0|I͐rjq`i4|=P;%X QI3>ȅ8sk#pMhy#E)&:/93$xns=ʍ`HcMG9[ Sfb`,b$8qڮ:*}LN̔ku|MI6i8U,)&]y=p-ڃWc#Gx,a}iNdF*X$8 $~rUp}ہϭee $%DUI7ү8L"\TK\k($}u;EF׽"6vItMM8 bpil*r[zop&nci Tb!?ޠߘd3O7YNng"%rtO97_K :P#k:&L'G 7B2ns6Ty#{QKQGS.8WU 1G0ؖ)IR >?ջB*H VuM᫣ߍ[zhDx}Cz4iwqI VVr Z`QeN2zeY˔ OuM| ;M?`A~$j%|q܄sW*z>W9(rTafA2k݈i.L9y@‘,rltM4Î[gja[Fay%oX7eb lʼnP&fգ!jZ>M}9ʘW˙tX8lu$oXix@SQ4=:$0٬GqT#Ui /Lql n<{ro|DړE#2mjHʇKwY/*2;/y]=l!~&"Q樟)l56"KVU FFp+{6zE8QS boYwq#s3h2UDU2}=wfdSXxM=Љ/y]4pL|j:y$: '9o~h]U~ [ֽݮQW M~UJ|ݧl/2>*Eϐ9\n.wJhRMkcnG GҌXԦvٶf5ogס/׼-ff]+ jaJ虅zcra wL-JpPE&fO͈ӹT ?P3SdUtXG~peI$pg508w|/H[q-[Ҭ6Kͮ.:9DB[~QQSOe )Y%aNvxjW~~7J&=I"Og]r ~bRq:R-buhnqAUQ;[eFFڳ4}$MY MΛrG ]ZϨT0Jw^~q;"Ys%Qu@μ꺓̭r #G~|oz7Ik7@F÷/]!: 3umʰBopg'%ܘO2C0#paױ W1x?y+' (H?*fmTidȥ9PQyd!ˀsI#vWg;7D1`wOuO*ѱZ(D[g,ypmNc8baVu0 e"ETQ_W!PvTtщ@!|THtGQ?0Q: eZ8Cܬ4Q]A.ܬx Vm3U|q'7gtߊZ8O /i&]VoKgΐcX:+i]Mh!XjfK]sg~QG )5DR$݋\:"TyUqF Nx6V r<_q`ЂLų+\l^w;\Cf;`mVFM)hF0=HG ;$Uy_QnƟkܿ]V *D:q#t$KeG\Rk$W&\;HۺVL]e-VJ!0'Z&vSé]l_j}dJx/7xBdU2ܹ>2L3NYpA ^~9jQI V&IX>15vt ?=So^{Ûĕ ͘ش8)蜵jpdߍm-v8Z%p- y/=.dgM zهo{gU#nm nϪ@ Hr0VfĦ*Ifbnk_ʝ5tBޠ`X^ЪCfW&d 9>zVW6_ =}bm {')̄${q*h;¼O! =W!9꘦Z eN3Yź6kQ֍ |<  ݐhN-i\cg"Jlnh\ՠ~{^r:HO[xD.q"f~7}d33y9Jq4 0N;htzU[%7&6#EVDݱ%osW6_{0яFϕS>b rJdw4:~ῼAYΦ*?JkEhMNM=c?K{xITϤ0J#XWS=⌢Zq7{DQ'2gC>y $rp&摣ɜgȯ8My0a:NfbV8[eJ=p|gO<ݘ7ۋƤ7WlQX6 S.M}cq(P4= :TĽ@to.ʼ&vYdlV^_% Ѱ *v%5kr1eٳ8}$N3;f崉.SS&<+'k=f&#U9q4EdgiU^h5fJTotC۹uWҖw/4'Aq &ϽS>6PGBcD;:x@̋:.d+׏-3_j@Ƹc67Y\(1L:ji s/%Ԇ2KԸ(i1Ȗ0 6 sN-D0Z4kgP޽_b.?̜ꝝ4Q]L`?.dmOV6z3dXdF &u{!(]r9Uhξ /ИŃ鬓`ϴ]IPvJ>"tHy譎u"[C0FS;0-Qzkb؃Qm^/)Bㄯ 0|6Az!_!k$G?o bh . y}]~_xw{,e| 3L՛xg@#i."P:sq]X{;5/لkk%#+k *r<"ݘ?)MM CC7&„w'" M?bĒIbήĤdGMymBP2dɘݢi}?s2kG4HẌ Yx/$6R ,du!Pʾ2~AMNSg'32f>K͞v|5 R%Q:n*:ϯ'98h3>_21GȖfXEN7t^ 9{+vrUe`F- /Rcԕ#;=aCN$t^(G0?~qb+Ȧp.U &ˆz+ųݱSU@s#Q'R`_a25>ԧPWqjy1`z8 s1x%3%ra&V6NKA{qB`/c*-+#JCdءk*XZCzx 9j13ʍhJƓ}>Q@4j^N:AHȡfpr֔,u VJaԘu[M"ণw/7RK V{ FgG~ C=rE܁E qD;T14!c:Y@`̨ S%uT#v0-97mI)x> .&=4UO묹lzC>No9yVkQ]7ei&cmWL \|ބO>S?ArB>r 9\'cXYJyyw%;MmI՛t{% 2"1 3Sbw==K0(xA+3Wr;L&:m 4N*¯q$>s9'¾>$t蚘DOO)6RѪCئ,]t"DR)mMMBs ;R]i/'ŶW|2Onon?rXZaS5CUtM[PVݔM/"]p"twaG:%eQ.,  R|Mv HvNg{Dt*(L倫L!&RƜ8\"`pia_Tl:>E;#e} jl EM9b[NiL(Rl,۝`c0Mn4e>{pHNֳe⑵C]#1 ܀]'KmwH|O͠i~|݅N|`e"Vu>WE11'L4N3:Pi}҇LF: |'[M=߃4<$м~awA䭰"B"dy޷f-kbTɷshBOk"ƘW7Nթ |I %FW_3Mi+n"ߥ15H%aN)UnX/ #Ö]CZ'= qܞ_!kSgqV_4yCTX1e[3 h}>Š?uM ]odUEp€ý?5L!:뵰B3>zss;Wtb#QxOtL-MX"fkIgnA'4I[x*L3wgp46^)>IUwcY*?^ZEF%ȕ 1K&"}qJg J*X&zda34Ġ2k4Ӱt%>ʸ1qpK?Il[Z`J18uN8 ] s|X9]\T qKIx$;w!'ס`|)0,9lôC;˞HL,\/hJ݅0w&699Z8#=V̹fahkV4KƑl<>QqeLz&S2Lu 8v.<1 "C0ZY5[Ï:-4S6/#ELAa 1|/Tq`Р& FFhD0kkEF<*)Lٮd VTOT&I8n-bJugC2S,QN>skR_L1z|B؄P-$i]ɦ0`4wia@T8C+cYyQVx y?>hPg" =k#-anɁѕO 7spJ(bזxW>DwR-u%;}M.^7+5yʔyCd3 &dZ}̀D -pbW!f!(Ta^lH̔vt":$aL C8RVU37{SZ|;X#7_[ȓMsCɲ"\J ۼUBc:a^sups3gi8;[t>msIwּcrI6707/#c]`aو#UulCp|%#Z9]$qb+03VܧQ#j5퐩[, '-lDD<;߭?u2 endstream endobj 37 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 40 0 obj << /Length 500 /Filter /FlateDecode >> stream xڝTMo0+|)x vzڍ[+niH lQYTH`ό=`.$"w_[v wXD=SHc (gHJ%(C&)enT2 $,U_MjsudNsc'?/=n|ne&,G9WcI5J)Zxl"GIJ|L J%d5c`Sזu[y\7~gɛz^u]xR8“LAWRs?( .[.<6m9.۶CsҥhP7l!e `t-@ k#Ls WO *4tEiO3̥mՉ8֣EDavDY$C&a)@)XNˉ9oE_ṦR*A__?/`)I@FN8EÔ2;Ť[A?bY endstream endobj 22 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/5t/8dfc_yl10yl9j91v2lc_jksc0000gn/T/RtmposLYxE/Rbuild2d0830c1263/effects/vignettes/figure/fig-contrived-1b-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 41 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 42 0 R/F3 43 0 R>> /ExtGState << /GS1 44 0 R /GS257 45 0 R /GS258 46 0 R /GS259 47 0 R >>/ColorSpace << /sRGB 48 0 R >>>> /Length 49753 /Filter /FlateDecode >> stream xMmKn8 V|LK=A#}(R]ED\\v˃ȓܱ#E2_ow~_^>?rn_\~)׿??+_w_ۿ~o*nu_>/_cc:=?ybX{z|?7/WǷWz÷iݷ8J|e﫽~^<߸bu|[?.bvͩ~5=աקvoo MDlyY_W~?6ﶾrm6o`l6]]+O4,OlO?~tliO/[{[1J[J!o|o[y}vyO8Υ2/Υ~.zy.qO 8?=0Kp<|K* T^Tϥ.Υe>Mts_{i.ӭ|V^T>ΥR/Υv.5.=4ݚxntk_{ɾ=7E+S|u}.U{= 0A7S8t׹ )rpKƻyoeeA s Fi\Vi^f<^\<ss=/{z=g=|3Zuǵޒ+Zq\7_,g)an \Þݞ- Zo|Z9ۯ? Þk {:v{簧}Z=kW?Z{n~u7o{u= /{tqx.{>x=l;cx\5xzEw7n{>粧8+=ۺ˞m|eOj~n|yן;x_UqϵoaOtaOZo=ox?{\Tn<knaOnOt=׵s^=8{o=>e_|˞_w=G/{>^Zo;x_ph?e_|\˞w=窷=yP0 {T<·:vx{ Þ*(7v{簧}8ZFx]뵈{x_֛aOu==,?xS'.0׈k}=,?xڳe˞?xSXkx[s˞?x/{ y/{vZGd[*d/ꛬrhd>9YzMNV94 䜸yrhdN[JZ'pR$:YȪ7\IV͛R7MV94 tbg'0A7ɪ7Xjrhd.,NV9n:f%fw tMNVNUɪ7FVMMY*FV3&v7C7<'0A7<'YӖgdՁw?US^o+ 7\̈́0q3dUf <ljMVx;YueidU l4\ݞ"EVYYȪyb#fxdU`#;Yu`'p{f% \Þݞ-ɪrb#lj#xU6{nO`'l4ݞ͞CU3'6*UzFVxzߝ ܞ͞3ɪ9x9YȪ[O/'ˉ <žݞ3 žݞ;x9YȪs=' ldՁ;Yx=/*dUuɪs='YɪFVxɪ- Þߝ <Þ8YȪ}t\ɪ%x瑓U[ӱ=k=#s_';Y絓Upq{6{nO'NVnnOFVx~s*t68G'l}dc'anxUG/ {A6;9N62;`8x?ɋSr#]ɰ1ɓn}gv{> ɝ4p$ɣ:p$[r*_@Hn˟P38c#yi8o6{H_Na? 0-9i8#J~柒ݞ?%W3Hv{Gp$w[7k|N1;l8%~iÑl4oÑ/LzƒwG\n# &~ ٳh/6{G.z!BQ4^z7p? 8$S[\ !^ -~1&1Z/9C nOE[d8K^kOqU˞oqVI[[fOQߵο+n04Vx<FEFz K޵HwF84FzxF3 {W(|זh8<ZX]h"4]bG\{,uAB>X&%Mpa1ްÂz84H+0D LpVc-İ.]yC7e/MK)./]pt!n:eV]"䰻锧uySץIom)g3YC=u0OL-L壸2GܒeEr6}Qtu<[>Nf&\m_ap=xj絒)p=vSw8Y3Nb'@!B6'Tldb'kuɕ6c| k:i`gerWŁ{ξޗĎlL3!+<Et=t C J~z$!9yF%C<Kԝk/ 9^Pxxe{.Aބ=g鈟OA9u_^7e#},Ǘz& 3Yg;sd ^ rrk>j VBl7cCĿoej\Ս| InkmI!7 /o?\,R}ӫD‹NI= 6, aC[櫡zI9\ů鋽$Q 4)?ȫ|d!c+[n3Kib`+ U'd"!U{L>3Vr-3UIejJbB_1a~ӗީ/tk4jy\蒡 v<4`=*ʾIóX2b {&\UutIkBbWn#f2n{#*dX[hWH~ vIV|JAUY}XED#ӳHܗx5Dg=y^寏@R&jy WZUbdD-1GhR[y1IP} ,cZd,CB z=SWqf5Xp nsd.JnBmc>ҨtAagzyɭU4$\_)cL3B#KeMoEF#T$9r2S#WFֈbBØGN!IVv5خSQ} '̀G2_/ଞAM"NJV#;5ڋ ̱L$.OK8DK%.taaFٶS'p3J&2r޳LˮmxH8B%G+/ztnP;2L )k`R[0 zN1k H\+, T1ٍ;^o_5'S#%[o'Wv#7Ju榖J˾A6 ji#3Anbȫq?/ ]?1 ȝٶ?89eۦ4!+&% 3FiYQ#񤞍(x36knޙ.Wr+ QqԓW&N c ClQ鮱 [ ͕}~* kMAU7&Q^ȯ f45qu̥7,$W@}uG/tH5UZwS= )2RġdyU 8H!_5Ja;i+8UB(% 9E8Aܳ~q;,T'n&Vٺ>8 .EQ澫E_KMJΚ1gEF[ NR9@!չ.5/Q4,(;}vr+DZChkybφY#c,LnP]JH,?w1!n)aIiBs.,+P%wKwН,]5Kvq(Jvd'~yRLM좖!&gNt=nEx?e3ыZPߖ%+:?7J* &<ۧĖ0MCX/R3o,σݧ Xt+WH] K0GA܇Wóe2fRX4sE 7%H da!ȇ QoP*SA,薊SFX w!)Jd"$6 Rmܸ<>J*vI #Ѡn^̈́jp1QMEBcgm2)焣WXbexgyqBljp=OUB"2ږ^H 'Ns#\:J,!I gH1lhJ->Z;+&*$4\;gy_>*:g ٖO\⛈$QRRxf%fqk2VdFeҒ05tlR6fCS-#*ItQ[oK<C]]\@Ty/NY_ZL(?ΌʁOvlre`&O'bpFxiʁ(U@p6Z?@THe f4Jwl~IgHi)ۘ]᥃afz+<R\JZL5OI1bw*M*xwrT2~0tkSi}hCaq-wS] Zvb aLJeV-Δ;4+xQ%Wt]5M&%+Ep .|rQ=/vTB4YٮE:2Pb\Hm_H8('FG J5q%t}0:툦~*^,5h`2!uC5 ZBBӄpao&E !+Þ̃[h%\ZFf8XP뀖Yd<B!4"aD `QZOK^QK$4VTRa&Jn(QiJbvԜ֏5, ɥNΈ99Tĸ+bB#]\6TrT$,_b5K:%fK2$*A+Z>é8p8a,wT5et"l;8&eړ!-\:- u~=c77ažlG)+j-$9UqGC_:Iv]3]!˶PH}J\wy(UZ]FsiēaH9N Vf5]Z;Om_$V]@H1f5圆斊qTS6|y5}z;$|M{xhggTorH.L}4ScT:&Xcкz=QF%U UӔ  'oB~AJZJ sqIe(Xֽ4ŒQmT0ЗKdƗ&cx%9-c.e*ŖGcC>F_ @Ps%0*& g7 m3M|H!1 4-iZR?*7 h1-o:#TxAcl:m>uI+X+dZ=YZ1g!Fr=AJ^,caK![ֆ 4 UWQ2iyM*s흖=.=^]r>-P!Zi9 .: =iIrO޿N CvdŰ(0&i&eayA#v~9ϊ-ޏȶ([7 Tu= ~$۳##(h$3s3KiݦТ'^N [UHT /]ȭ/zw𺵱mYɦ[Aq r԰E,1! $s #B.\y>t :LYw7%M쥦GӚlbzA5 {RY, e$_h}v2+MRi]˦qcYR|&m~@;])Y{44Y ;VZ*sKOf,X켷&Z?REtJǜPr Sun\C~+<fnkmzznT u hnL\@CWG('rlд{4n)O/ m1_06t(iߒkͯRPar؊N62\A . Xi Ii%6CC hZ&T aYÇڡqrZJ<9gjɥQŋ>LҘMIAʚl%dEVW{;zd3(픫PS֟e՘g-׬; e!E8J({)Kh t'LRO qeҒ&s~bLe:7n˿M+  9omc%SPkTr\0kC"x :;z'YE o '$ZkZ*"?+|* X4&f"Lkހ ' 5\qQbxNFmlŖ{WJCg}ߥKUA-cQ޺ ?{-٩~X դQb\rōI3!h+5hL?SRsHqi4暼~A驽ѣi.ލ >6߸;yژUZB (f}r1iWi7|G40f|VAP̑u&ȜR;%'Uٱ:7i"mJѧ;[.Y~E \r엍0\Yuzfg6z_w{h<)к3. ܭ ctll4!,`e4VPQ>#wc1C;id *C+U}PZ4Azxw^ݮEy:#<̑b@|&F8}]>X)ˌ8 ?LAhQ~C'@۔/s5Ԋ0eD+:DxmR\Pl#+PuW~0љ50kf97l][|P uzdkh}^SU|a򖰝@W{k%2ZVC>a41p5+j#StCJLl2 j4?'l S1|6|̠*OQyS*M Ct?x蹃;|  C744'-δf'mbTcLoO,l2LP!*ꓧ~: YGՊYgfT^~\P Bsy IBZG2hAc{k*?"@nt"l0lF[ڽޝe I5zQ5łp|d#nBf [̵+VKyN޵:󲚆3PʸmfjyڸM, W^*)1k$[`e럴AMRg#l8ufńO>Sw9eUsxH޴O-&DurfURiF⃮kDcވN~_ 4O^Ăf |vpUJnټZ>ZH9ʠ]c$t9 ߎ/Y|er j{i:N^[xfNg 1 [ۢ9PxcBL&&1Pa,̊ %Xݍ񦢡Bc*d!6ӍlZ#Q* W2e0Y?ӇF]JZ{RBl0 [)YY.cF꠹b>DŃL'GlO{h*TixOcgRdeW4S6{!#/lZ\.ۈRqŧ"\ҡ fp^D6okVpW/>*x'6؉K*F]e/s"oP *QQ"YڸbF&izppp\2|rYڐ\ i:zq届ZA֢v3H:%EPŵh1NRKR/ y~9.iCG" O'բD^Bd((k̦̱L مUm!b"Rz_O˩ʥ'pVeԀs@Z@Wdo*F&Ø4}ijTm7?ь^A\Ut&xP,գckM#ejLm11&u6nda ؍} 6N+QfM6D^kkHdŎi1d&\Z #*!|*MAyÇ$oMD5:8Q8EQ*{7![CYNsPێc+蒵@Z]&F݇U -RAC4UA/ōvf&D/AElǙ UٱhsrGkZ%0erighblkڳ r쯝8F\D.6 ]q럦;ϧv>koڄa:y"L5m%DCkoȺSDQ>8 x)((6y: 4*c`&}MZ1&9("\ʧ &~K.:Ob|8RJW`~VQ&4mt(BhotgkTn::l_ĎYw(/&^o \yӮ,4fbD*(e;Yd VnVHFCPevB5A9KMP-+oY~dS1Rg.Zy0(xa^O*+ڐ/?fZDeye`rq4Y&;3)0gqUlڼFNBoƝ>VaĈF;N?IK`gBU4)R5 f RuFj>ÐZSCR OM7Es 4m%SXFFK+:`:u^t惶^9KSּ'ͼrXP20ўw|XV`陟_\A+S:C!1 sOQn/RE@ᥤ&UHTAnd_C"GbDC&k$!"oiM;8 _UVIy:MxR,𫨲_6Fɋ6NnñB,( 7RrGxSd5I(֥^5 SFo!=y`J@>A'?Lb0cT>,5I^o&3V_՝ݦ״~'dI3 -*&<9 H儎c*}Fe*l`XeXoOZgNxИӻ41da҈䇐c\hZk^A@;JAb?T0F}N]q Z+tuSblEƒh 6\!i>3Sϻ%C^/t;L {B6&fia!w5SFSiVC*09 Lˇj bS愄Z*:.̂``Lb^{ vm8M 3oOУC:\6wŷ| Ę: u!±>ςd~$2@10D'; (i'xKIICSoƧ>M%e50jK0c/'5u [|ddƃ 9 ~˧yVV?Ѣβ"C癨U &>!է$oAc7"+F2@_ }6&SF3`hl :(&,TE;ېBym񿠘c?{CaOzwvsaFU%B-5 0Vyi IfY!J Mm0 ItZww\tnX5Lv^V"˙ѳk}v] Bڶ9[3\-z *Z9N!!w@Ubb/*R$ސt354YjFgt 2v/!%glU;D+w7xI] ,)*zKTرNHPAT X6΂wH:ՙ/LegTPf# 3̴#$ݬnU1H`3m)򤊆4]ELIWU$ʋ[.sU]Ix׽4cg΃J:5Z,)Enyϲ7StvdfG:oxe1Y9c, j/MTζ뗿_өthTGG!쩩DAp?ch'.[_C[r4u, /:&^Yڐ$K%{ᇊ;(Ts`36eW_/e~ 'Ҟ:q<:R hB?^`?@0,lSVoCϱfuce.Φ?"] t^lf:1?M^< YjN6"s8OY_^ y.ŘKP++R ja=5a?4{ ]%O:j&Ϣ0~h0_?TeFQLp~iS&]˷<߽oxs[]GǷWz÷*&wߺIFڼih%o/,g_>??OLTG['iV<[cu_镕K/`kS_}2^O^JNzÁmOiSn|3۞ys=&zӰ ؜rQ^zj= <žݞ3 ž׵ކqMn-u}g'ݞG {簧c'p {:^z5 ʀk=NF3_Ǘ=Ǻ9mϱo{tӴ4oo{rsW7ufOAu8vKue8.3ja y~S]͞7?.AupP]spP] l?Q]'kvAu6{ Mu࠺ e8FKue8.Auv{ե:2Tᠺ=R]Au6jpP]1Tᠺ=u?.Auv{x]e8Z/\Mu }TW` e8fOAu6{pP]^P] < TᠺS]͞m7{.Au+8 2TW`'}S]ǹTWu?opP]~|Tᠺ=xS] .Aux.pP]Tᠺ4838._ MuiFu?Tׁs~S]wӱ3_Tׁ͞ʟ:FuTׁL%:~NunOMex=5uTׁ͞S{93:=so@'pL?,{mq3 `ٳ}8ٳ} ܞc N78v>nOaOnOt-鸤k=RSQv{c' {|g|[`^6>|aO|>7:v>|gƗztg|m`ss7p {簧c'p {:v{^|u`u8ϜO z?_?==q{>!pr{6tKo9ٳ_A6{O|Ӂ-|:gسv{ܞs{xf_),aO9z43򙁗t{+_x=3pxBOh.9:́۳]=5_33W{>=]YW xz9Ⳬ&pxWz=+YϘOOxBG<z߲_$pq{33ٳ@ܞW1~",O_5U%:SY/*nO9:_z홷a']4G*z_A{gkt3GrtN_NX+:RhU?w*NZhFQ"|1_x#c;5Fvco Q3}fmAA,[߈p53DGVT.9'bmAڂb56pL4DlԖrqrl$T$VGzMhV9Gee vc=+1v[xx:/x~ (QC Ӟu}5KƕAt9# 腡ʧdudϾ~z5t,Of6K_3'8v?{RG6P">n kneͥYAHXaFmO.:R;So3pE *lџ,prA 0|D8ƙ>߲EȻ0l5"y;khj}Ye!y e\CQ20q_oIg4»@A˭\Nc3x| e/!]hCGtжDw:"nr^md\Wޘ $"<~|=hd 'rqɞR";[sNYtt:gtlDJ1n1'񅆶3\G?BOrԲcBy˪ Bu^g& \>Đ)(+9^ꑛnDZՍsјb8%}});ڔϗ "ev \ɞ\tYyЈ@v[d#g{cS&6h716E%1 6P䔈 Ïw(rf#Q3H`]/L!NY>dx2,> ygNӜTa]3{de(_v ^lȩ2TzA5<(T#_bXRΜN[]YlTЄzйޞܯm3*UNx9X#ѢeXI#js|kJFrӉZd {CwE"MQ$DssΑ즃^Iv;벳yV Ts*U),"3*3c&8F\VY^FO^n*/V2~;9.J66%1QK& gQ Ala3VZ.crPtj6 ltsٔC;&`4*y?]XZ[&<)t ġtҠ+`S]NyD>TΘ|6|)Z_TmWcXC436s$c l0v:StbvH>M3{ fIs u"|Qp24ḩ(GlPˀb5rIPp3k4N{ό` 4fx5˓05v( 1U%v4z^SY5:qP┍rc*$< lfHH9:8 GW+)rٴ=tΔ8dv0r,׆i َ}vNj^AͲ^vSL4ʺP[+&&pV|b琧 _]ԆuyqeJ.pDwQM̵jN*R%]]7hO0ʣ*2aTikʲ݇ܳGlvl"x4U]Z+T0ʢ:Y<(_m`ȠYQtpߘo )4/d2bCɾ:Y`)lVHՔ?RQ?f%y;qeBƺQ6hHϜT}-U1F}HcSyL#,1IEfVVni}?2A}$p" `d^rEZú?1X,O/TK,@i?LmHsr/iJg1r&a[=ν/hp_ơbF49W/(C<ΦT, sB@N4PfTD%;͈%:{H yeϢΩO\/L;H3S^:^vW(Aj[d@R@=lQóAn,fVp4>)Ͳx=,*?C+qcpfyrnA1+c,XTcA+nďM`,FGۙC+gyGXp]=}2ZcgYbLB,De 1Xޗ01pcEKN@8(9cMbX2cEPPe *)2*$0wp%x^'r[m : -DͳiA@Y{'Ԥ4hՐg*a|tjng6o :,yxH/k &/- gQVML 5'¢LZ䕍" f$8=9AM^qS)c+./SiWkK;h*ɑ?bY^gQy%h2sܡۙ<ަ"#ъ*6VE7YN5ժHFyɌҨmEXx*lơE'g d:(A*JgkB_sq'޲j}b%8w&熜q}{+hŴLeጥw+,ɴ b,D6^ڳ|0X(} ]+(h*–ZZo 7_TU4gisП*3'-IgdZܿzbIaα²2~^ݫاw~и6Hr;rٻo{63"|]dr,vc4 ,Ƒąl 9EEyP#JE[F ozn ӫpqV9sfsޛ) AR3Ta hb_r>`0 s!jPյU:Ӕ4<⳺Tv[umC2 AIFT . ; @ٱ; 3D~tκ@G3{˴eR!O9z~-mZH^aQ(Y92z}s{q#:2}llS/WOpL랦e$6 c L83-֨۔ybz>3߫? enBqݸ5U3&8ٛK3κsdzy  XmCs*{ɘ~.CzILM|39ܨ+TGJFanHT7Aya|P (xVK>88=QOFdIV۲J#!3N/˼;uCFh{AOT))On$]WăG;e:AAwβ s@#BL#WB=sAtDZY&b2+뤹rӛDk1 L?dXl8!FP)ہ84nP>)`q>L~`9 YנFWFEbZD-Dh&whz&UA˖A?dy,ɼb+:FHz_켓H} IV&Z?e>Ci1:u,iY3:$0~&tFne'a[Ib V܊Y'}9E&LsixU"ng-q}* k#mI,#Pݓϋ}vKGvK^xd@?4'KkXJgzM v.sۖiMx,0̓*ZbJoey- {SoY2 ]yI,mH;'!ժ [`H,YQʸlyɔ vƩ”0cՂU&͋aAMliwF+@%;%fꎮE*m秌)QiE% ,^\"<"؅>kSB]-u,,i4QIM{9j;X-RhCr5Qe(q*?x}M*Ec&{٪ 7ts>,L˪e7B) r@,kWW+%Mn:ڦgo B=&[&ʁ }'tvWϺ-+4c%Rw|Ҍ4$QcG*AU 'ØjJZ+'a~4iM`z0 YD"M'"FMS:55ѳ.seH޳~aR5p6rVy܀W?;Ӻjv!\ $Ȳ<2IG\hwh4C&V0rV9_Ӻ k3ڶj r/p2LGXU^ϛ`ze)lNbP/#P%pYQ}MєKPm{'I++oz irP>HBt+al⠌jӧXڬ-_:<ȉ0_ o PPX3+*2Z=緽Q+T;Qdtf\]"[{5ώڕu2)k͸/& j9'c~,ƣ;nIpFE3 |ļH¿ЬwD#s4Wos-Yl*bUBG5sN=P.ٹk).0 1>t.MkX32lvkǼGZNYxaYKyt=u~`~c>P|bc5;b0U Ñ4zci;, SVS:?G`sϛgh =1~XT>Z8z_ M''u r"LU2PXy&,2'F$T7cnU+:|) eͭJnhM6$V,Τc_FNSMolAump2U9JZbǪՐ"e/y߼l=Uш$XϓF:Vq>mp>b^jHb}mԽ69%w,X:*N6c!pJGI̊ )tnvUh>(*CzӺcTcy:0["mz"#^V!|BMomomR٪:T3Jn7%F<|=+ڽ0fqYcL|26_l8}r<#!O:djR=beЕWG}:Œ?-/?N'lhiT9/^f3= 3ZFV2-9f{WZۿ%SZP^5_k۠Xx?(QP<}(9 ^m.4FO 1gW=2v\UCMsgU*'9iNˌ e6y;N[͹n֛؜b|䴹ɞ~xV%.wsۜtߧs tH*Mm|C|BA.j0+x?ԟOwzuH\jnв6{1o0qNUhn0W|NY%?+B.c7=)_6VmҨC u eW{HDZgO㴩 6Q)%Ƀ[KxWߣ?^7DҪo^-$^yT4d6#jʟ oo,o%~>o\L>g`?DA~w|)]޾sEFSjOo40ÃcNջGrQO\}Jg5OہOmyZobY`g?x ;zN?>Q<4b)mp'֛0x^m |s۞37.=;> =qp`z*pv{ﰧcž9xtC`=^lkys۞zs۞k鶧dǹކzZt zhY|˞ҭmϽn{}s˞=v=B #wuWn=쩇=a'{ϰc' {:zHʥs=ݞ5 ž=x]<]x\!~}$~zig)==Ki;O<mx_!mwugt۳۞6ė=m۞)o ǵ'^V<=Cmk Þݞ[ {簧uJ3dOn{q۳۞}E޾iz \ok/p9mo{~s۞c0.k*x{}<55\ l4\ݞ3pw{^zixz<x^-'k/J^z+\*=Wmn{Jqy7<0<=o+:ϛ2TWyk Յ e8o+>ߟ7ՅMu بo+Q32TWyoo+>7e8.opP] l 7بAu ɛ2Tᠺ>{S]y?:S]}TNuߩFu6W' +px"xz<_:u`>/KSS]x⢺'.堺>'=՟pP]8_DP]oF<1^E<1_G<^u`'Ⳡϫ%Ni< l倌?|b;uq^|t6{nfs\Ul-<۸1>>sytlp`2G\͟(%m}Sm|c6{ny{pw{ζ=7?zjria9='taOfu[p籥ɱs+ʔ ΈH$@!AgmH?nrQ]OڸcLc֩A...~#jȶ#_v37;m$;vSv[oضW3nv=H|2ś#߼mSeL;)l}l8mGovv7xx͎=c?.xgO}3ہGo;z.n;߰ϴL<~k3YNʎzp\A#2vĿa׌ue=d%zKYJ~zζgێ|"'>3Umg5$a.ϰ⟬q?zݶWa'<>mz>ӟOz[3VvIG=uGzn{YٙOq~ϡz=Gvfg>zvDڙO~}|BkiG/bL|3c>{?p?'D5.~Awz~i'#n==wK9&7; M'_e-mG{S3=|C6fGa?e'_'S| {?vg"8DgƿF-mG7n;?*ϰeSB x_~[hmzjGpǃpXm&Ls:г=C sc߽k{CK$cH/d&@ṛ.dF=mt_φ'A5$E R: JR+ +;%ΘSq8mg 3sI$| FPBb_כ-#Ǔ/:w Z4dE_$ic%AAXDZ0P/ƆcH S4ЍIHD܆g6ECՙ.a0:I\ ŭ-I4* }ߵ~&Bld}$ᨎd-taA;H(ITQ=XU10=%GRcDK~R⡝')K{|mNu'RQ'EB)5s_.uC Q(2c쨸/ս$1q.MaWgBp/~<\sp'ރN_O#85O*AV7O cBax< $ Kqyj)hbcп+&RW g {=d"Ӄ^]88h{óbQaM hoߒ7 !0ؤ9SZrbAGYe;P)Vcyl)qk#Ŵ&1at ]x յ2sW8@*b.ºʵ#K(ku1˭x 8c$| gKeqKE' w'}ڰnڠ5=F礡vM`J#ɾphű44:$'I' T6bw][&3Qqd`RXaw&6'zl8ᦍܡs$kq'& 'PM*:-:hyvj`("n l!pZ]Sl%T/?r 4k1c/tb|#dcC~bR Lv2Xt)'IɺQ/j= fyٌH-x9{ YLf8CYBͨkΕz#2D\ . ~q 1 G0(8N (GvtE}`[¢ 3G7T̶׆g (Ȯ58͜#|[exRi8h5mxwv!j'ƄC5ȘUkF`|U;c#lFۧ|8Ǿ]8P'!̶+˦IS&b/מ=2>H:ȝ]Wqx-[߱>Fl?c֔vt_:c;*y'UGӿ޿"gN>Fg>M`unvgOMT)\q\e>1U++} 0TM#,hjÃ`cK(3ܦpB:slFbo X 0T->tNةsXLST8&YπN;KZ$ ²ʇvΎ5v|f3 {} J\2U3+爢+T8W@ zVjANUs 3S}<_!-]M~DFh =c}ޯd>q- -FԞwO ssuv1{EL 9nlESʭTK uM qd><ٹ自OsY{7œbM6 ePZG'/C&րMu:8s, bE1S˼^GE;lT40ߨUu8dX1UtƱ]ӲۉC7> K`UV,=uGu3Sh. U#vQϩٲK.+ڰ(Vuœ/G5qȡUG/8>'cePcQ59s߱˩ +g Cxze"<ݻ97,k^ZN ZWzM|"7XjޘoPXt걷}&| +WYM^2a阘4lKЧNĐ-&b޾p0"sc#Rkk|-{֝O0.6+0'!6=: r/cx射䫰&:b;3DiS^xl]/q/_oܺf&* +m-L $:8C)b>EP̬Q{GaO[N$Cl5'A&gݥG4ܸ)]d2ϐsԦWy+:ЧS,!V1^V,xNFW&epsoE`Wi.S4[ejNG79k&EYӀǭ[NW+݆^7j gEbA4xNU^;w'ǐOD>oЮ0846y3#Jq:/ad7%hTl%\^?Go |EQǐ1K|S4qp*b^_Pbѝoae}#$ʲJ1Y>.F%q˷13s_C+tzA/_EF ĆtbˀBrتm!&5>X+/+7)q(!ғAUڿˤݍ|XS^֑g 71r~9JZGS+מ*U߷ 0rzSkE   g9bP>UUԑsS&ѭK㔕<5cI+O! ^PSEHӥ&fR*L݅EjϻC}.B?Rkp*Y]xnL-1ڵԥ@:mM\ մu)mJ&Z~^Q4m͊hw)*@UUZ;4SgǞ)~h+g}jZ4(:2NdWZۄPYs]x>[djGAe~`gNu&%IT}@-[Ń"NobT<01rTMkX=<2gl+H~U i1FUM6d^88e y0k8Jۃٱk%S'vTgυ?T%dHybb$\dW zxᾂ3:@C'0PP^-Vg?B YaVqd(U[:^ۉq M%`d^W^(؛nO賞VF[BM0:?Go_QD +"E9;EEUIgM EbǾcKFHsi2ر*$~ݥҐH~GU("*>j%ɓ]0Pwq6$XXJZGa,q0VDY^C1 OT+UM*ڍuVpXkH:%OV#VQ#cZjTj{Y҅xKLc\RELWZƱxnSUT>qNɝ3*I Zpܣ=/50)R/ČdBl(ӔbDj*o$cˏȉڕ W"Z)ހ޻Bs^܊X6t^!h}SKOs׮բ R7Xb!V^k1gO$uq.僆2Qכ2426k.mqd)} cHEPKLӐZRܷhO.G'vvPSzu%W&1WpcE ΡmHw=ሐm).fHʜXC^FA%Gڤ"8!q3Ų 5T$=hwe#T;9麟~]`v: q;2a<ٹ@ԗ`CfaEZ3Dfm]5 Z R^zyt/;-m qz `6iN >n)l,1Q?Gm޿S^1<c@U2PRjB/@=XyD ^|!3kPLxB"uPDUQlTd,t&?NBe|U#3 ԲЉ~|+?[N: @l 3M+V_o?'+ NC ewcB%bA'5 1a#1Mq$g EgNbwԲF*ݹ9'ąh-{=^\Y#|$lXD]K(r~;~n P#ǢńM ۵C$IZ6i9'eS3$fȔH8zx`=xZA^ :gNXfu~&YA29gԧwI41{r}o lQ12&+6cQV𕐄,*v~Awq+uROxV^9dT6b`Xp+NꪉPT]ݲO8'MX:u0թ3nSOqo3IԎ"# n;sjzΗ.>1a|bPRs-O~ɗծot6u?_14ƽ`=DU$㬱'B6*Y]odc$"qڿC7.|+qk :{Bk):rӑs=.gXt3MWyӺɺj^S-8T1J}3P֣UU<V>if.a9EC?y1{* VΥ@dB/C8|Q$PGZ̘QǓ⸾P>Hg=c f'}SV_Θ{IwkqnC=4891ݡ1'zW\ꨧsKzn1{(9g'Fs¯yJ9}(Ri1'gX1WΩV1XMs OW- ͺߪsȭ_t:p۳P9ԮHt~}Ϲ7P?s:U9v),!u똨s{4[Ksm_u҇-a~n?]W>R}?_;*]R7-z()oiWY>]m vS-UE~Fpq!^+ɵpWO}6mCyq/o׿?*~+ 13/K|u_ Ѫ9x~6}?>o~.t<^?*>#vg%_Eћ#k mHj?}~yyFu//++<X]Z{qYYkk+)Au?U ?P~ϿRُ"i"O#oO- |Z|WTg@HUoqmOE.7 -ݾݾRaGvH9n󚔰nz7?e/Ox?G{>94t;=3zy?kfDeǿiue?Nn۟i?eO[x ki}ݟoߴӟvSz7w>xkǿiuϧgOB;'dO;H{<7wz-IrnUv@]N2A]7{PRyC]7{ ug3}$ußa_޾nPW umM_7kum;.A7ku){l<P׶WsO/ofuZ*Rofn vK}?<}&ԵvP;kuEQ|C]i'Ե퀺HvL;)mNf?eϴӟk3EԵ핍CB]7{nv3lv3 Ln{=I ێ!aԵ퀺n Wb JNf?.۟vSv@]7:v@]kmԵ$m?eϴӟOOB$;muyum;=۟i?eOk3k턺ny*P;P׶H{>PN۟gOsSL{>PuP׶~v{3m۟i_P׶g);='Nkuy? uPN۟r)ێWWB]۾2 uml7ݶ?e۟iz׸#߰gƿێWWB]۾?NPWܧvI]ӟ}mOl;{ƿg ;߰Gƿaό<P+ ug%v| ume>=P׶{ƿKB]۞۟i?}=$uӟO u'.;8|Bvvϝ;?ag~&{,'P׶'ΰ3?}LPϱu]2vĿmkmgumL;nP׶gum{e>}e떏ok%_7Ե ?%Ե3ӟOlfG>| um{eɆnvĿlke3;߄}?gA]O=2pR󆺶=3u2f?G7۟{#K~]E~shwl;uKovHizH;ͮ_V zqϰGs/Yto7~vs?ey1byvsϫmyvk<ﺟ>SvrMfrkS+ Hj}Oҟqm;m}6}on[sOoKsO/2OOl; nȶ#^G<㍌wݷ?N>ӟ㏌nv3\m?>rӶk}yo;L<1x.%;s}&q_n?]'m}'^|}'޼yg~%voomo7YzzöWƿn"7ﳬlo]Y[z̶[a'mw.îuGm{mʞ۟i[a۟xCv#Wv]vqw=17r/wr3V|b>O}cv+?g{]?.דzsvϝO<7;h3?S=,}eegig~'i'fG>!InvĿ$a#mG+I)nv>ݴӟ>y|">2v֫m/I>˶gƿ$f?OKo3)>Iunv?>7;K$fG+H򑶽2?\ϰgS|Cm{lxIUS_#Zv; H6DʆZI~%S8kH=yl.;I1>I ޡI IMH\_ynm$@iټ~ ,2e\(55Vl$Zm1ŴhWKR& "?m0$m bp{Ř12#R,Ϸ9@"P*.Hbֱc&ZM {j }&iH~VεfOU#EǖDO)4 u ֘S Rk$u=_p*]xJZa inCzP!Pc|5%]f2l2:ty֗nThi#~~*]ϼ qҥ7P G9vnŕiઉ?cbW 5%ʓwBEw}Ys@HZ[zaG :O { ב>ծmS@lSl%S*-_J.M\V1R 4PϺ9p q.]ȯӾh(ZSi2E*b?jd;Iʇ3R$1[vEi6%ʉ ީǸHIJЙS/yb׻OR8ԞR10v0Hڃݿo;9H6 dW ba_tM&[U(u&,fS'y s,=kx(Oѧpn|ťLYB' 6Wڃ}ZuTb+D{a+Wu:TC%BV߅Y:;ra8h0ـY_*S)뤖c=|Y9]t`g䆸a!Fjve^1?8>Mژܰ7;Ϡjvb( [ 58h^QP2P ܪ (2‘x+N[o2ώi>gNѢ?Ff afSݭᘘN3 ASϠvU~rS '̀ f+r: !Y.eKj|:dB"S屮`/Q8$=Nme3_f:{>9&?R%(W~]b,p[LIJ| `Ht"ڍ#󟞌jD|r誱(xL_e1iNrB-yjDSCW^<̓3/-ƾv$**b|^3zeGwf[gn* ֻZ OuiQwx%wٓQջbwv7* *7*=n8©=Fi8ZlAMfq}eUflߗ"_oco><Khܡ/)%଻tդUb<";~"(fL[[Ss4P&];USZpS"b%j(48 Ϋ96|ҧ2Ff UQx[*evOW`Q!_(<㢑\xNA 46rUJlw qfo|Gv[ #q43dx>313PFMC0>>q?.^N̴ɶ{-9TD9qs  I_]V،rFo_L Y v`uwkb¯[XAUz NgMGWi֢1r=VU]f1= ٛ 9,-n'ncGw譞1RΎ@~)f0={ '΃wE|HNbE>fހ=D4&YW\ijl' 4_dLY"h},̯ `W 􃲉i"Ofƈ΁ȧ)vzAq7,$U [Z1>2oThluI:EU,\ýihS5\ʹƥ;P  +؂0ƾ_^>"$aeٴ&?9@X9vl{(fsl\w*N=sq 6#r{0)KSm`iu]y&FL??3~ 4sّ<MhwK+BP+Ȁ-jڢ229~u-6K\&F 2ub¯ew)pgGFJKUjt2,mi ˑ jU}ߚ|7E}ٮZ|Q&:8qr@ƈVD?RI WyV0u  !9چ}ϷIfDf!>Ym%dbIgbUNKi_"Ձq_zY:$Cܞ!2Гv 앸Gg^jt]Vlx#q=ِ"]~ѫ"Ļs3hjŷG8~j"F^z#H75ee3U;ڵ|;2: mgT.!V8~LEvߨ5[kZS_,9vD:Ofe2:.v:C]S2X힇jR]2ʠ}:L3ifmǵ1D9F'wq6$0~x9A4U۹c†oɏ$Cgl oǺ!rCdOyUC Hxrv ;aIh'fUWM{yjϯ|>[ p~~7QpFZkbE`UNMn"N:1g>u ʼnnc`F_*cyTzStWݩNnq+ Y冨f"&CYQU/Dd0?I{Aq2[TND/UQm T뿦fnl-r+ZWrȭ G g!=q2uK70t)T鍘~wYHj|ocfFCS N~Ezx*nTxφئ¯)H(CT\Z,>b+[yL'tĆjW'PܥD&RR6HL)`4Kci`yЮ2s u .Z[ʠѠ`fYuڨ-66ݮi(FZHH:bdWW7!%i;=Y6/5gB8QhE]_Lg RHΊЈ[ӈ\ybatU+ז,\,l!*/V~uaqjeFLQCs&RCJ/UrQrs€d( sٹ2-jJu5hRoLct|'Mz@0Ѝ~u:U,Q?xAEN = NNROBjMЬI@qnjB^y N3UJ= .(U1>:xQs(4oкd)3`@]EHb2J+*ۃ 1$Nh:FxB";{Wl0Hw&E)]/تu.˺,KR Zqk#+zgap#e"scKak^ !`v1Lu(]UVZ; K" !J?{BA3a\[ 5cI3q`)F(^] }UDE,XJ5!@ѐҋҸI%H?_35ϘҐ9[q>z{a rJۋɕHW9t.Pܸm%M3xU.5"\K{uÊ]-1a*f"Q]PM_t:o9x-nB7Am*i WeA>ʰL)0*템P%nma ֤{=i' F3t^wpJ~jEۙ%yBwDZ\&zj…K`~GwPz:ND\Z O%EjI:ۭGbѨ͗[#HQDy3o:HW70/@]iÐm/5jgMI[HNc`zO` _5D鈹YpK1åfW57o,Ռ9FѠPYS-55; ',mMZ)E"&ƹ0ʉ–}kKqLFC葥1`Gl*M&>"]#՜C^HdnѶ2e1Yǒ+7dD ( "*SI;PI%dk_E1!0m=U'ϞYdgs9 ߿!ۃu ?S}pN["4$,I?^N[<̭%V.jdz**ǽ[,V%OJS*8Si(P_b.3hIFB~ eȺQmU~.E348b}<ӒurZkr`eAJ!{\S,D_$x<>ېxBS]Zu 45M-C$O:RE8Cj2q A!oP 836exy) nd MV{SE쪅tTώwS󫌻OI[.0-,?N$4+.Td}7: ND`g bפZH}t m .59p>`ާ5yQMVɟU{ܢ=V1m%D/](9#$+N|prLIE*vN.Q]h&uw"=8&՘_tߥAwU?F#_ &UQ@魟eԉZ?&b_?##'bDe:ƺub1fX[\Zj<ؿ=`+*ԴBD ,*M1pIaT\b(HCU{,H8d[ȁ[J1¥伺-73rEQځ{-IjiP(|yL(=j#iQbEdg}mZĀ@s.xeNAIad]㹨Q]}Ⱦo^-QmllQnI$Yn(9GlI ]TX eY/phxWY 6`B ֶؔwN;ӳsQv1!9s&0*O_x`aLC ]x"a:7Ep,pՁ2VoBɶvDoz4+kj9pwx9.F`NVy`>xp(禕CUtRX97_bf]T9yޔrGfo\^ђM Ȭdvzx=8y v<ކ}.zT<ͦtW7{KE:?T73WzDF)geIq0c yH.?=fϨҙ#cwt)z蠚8"%o NDm4jL4 @|nZ`%d'ĘU3N`ï R],i&<\=#7?>8WE7ܡԸ]yLr߭Uj=ND!٥cĒ@3p^|"yzpyJ;hZ<d7H߸gCBtcAg KޱSg!贻ϙY*rkrqOKbC/=KP#-z4Cv^_ZO5SUb`[-!evr Cr4ДXg6I! !7%R四%mjEyBkz])sf ~<ėb_n5l8Uzd/1XήP{KK*a0 Bqຮ/p+ )HOw=f#.dBе.$/0}N.:T3VWqF e~ USS0հ=8jPP?II>a9@xU9(avU9ygUmH" "8$ޠFKU6$^"V*ZVX!YpO,GEQmk,Y$%†j#?ʴb(D}Jx{U<\x sCOC9[f.1G>y* .7,5i}ƽE? *p]$o"Fł> 7N٪A $SA7>P H胹SMki7ftŲ.5cNɕEOL4k 1wk+"3wչC LԳ5YabzՉ|TLNϓ93v8]TFwn'ʐDWL]y%S+K tvu89ԧQ/QOSVNj_q+fqmGW8kdT@Sr¢O1.Et[Ih2SتK e&ْ qlD`TwkF6O}3*xH]ꊨCa.dEΟf &T ƓkRO?@Zf>ǰ]=cj\i/Oa7g>5}ߑ1Uog  Fi}rPU7#F9Y'HriUMƹrt=ÍCԉ3fJ]G;=p/P^Rgϕ A{fkRG8hmF274Plw tWP/+PB%šSC*N>ftcXmb/Zqiٙ/zތL&]q@> iE-|Te_õCPSsMbLL%gXlA5Uޅ a[8ps"y[D"q)rs2>)QrE_j,ݪ +^zQzx*PnL8PP-;}P*qESIN$ýUǜƜ+Ƒ隴G#KCp(]"KeTrSYW4bV,Na\*#&:m uahhE{"ݣzʄb3d,,&q%AlќuhF9%ƍ:!0 By'+knX@.5L Lb>7zsO b?D9e:߭( tIb1XN~hSqKO*_/L~/ן?:c' >>6 ۏjq6Z>׋4$Vu[͞uIlA.jKN!AP%V[h81<5Ij :}7 N{N:W 3KӔGSr큂79׏gXrDSoGgE[/O xyMKlV]K{ޅwT;5^s^v@Ι.eFr\ѐj.tn?&m(ϯ_|;?|e†5Tv_X?mM?/hVC>?>o7 jxTo}ןpW?i+o__"w_י endstream endobj 50 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 23 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/5t/8dfc_yl10yl9j91v2lc_jksc0000gn/T/RtmposLYxE/Rbuild2d0830c1263/effects/vignettes/figure/fig-contrived-1c-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 51 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 52 0 R/F3 53 0 R>> /ExtGState << /GS1 54 0 R /GS257 55 0 R /GS258 56 0 R /GS259 57 0 R >>/ColorSpace << /sRGB 58 0 R >>>> /Length 54628 /Filter /FlateDecode >> stream xͮtq$"-  -(-Ψـ4o?wR]C-Ȩ'"_o?׏[H)=ۯ^> :Gݏ2z_G<#_/?s ?|\?V~ecO?4/>qyQct[G֮_y1o~_gGz˷e6m\ |}2?|ఖ G)+b>z{z O/))}q$/~\O/%_uͩ/Ǩ1O O~/ _/_{^}&e]bS/?oHo^ݞݟMYlw_u^ >ço<6Q及eQ/ߚS'GǮ߻Ǫ[weo-ڼ=-u-JϷuӷQ>zoکýmx}붯6vmx:l8ڰ a- ϼ>2ZÉϼ?ujH 0#̗ ,Ňucx݇6V:66fXl8SnQ1՞n:>sÇgy Wa'Η.,]C_b} 7%kC_+aGe3cKW?ͼ pca31GTTgͦ<y`l5ۼpb|З|慥kҵ91\j̗#pݵf޾ l czˇcͼGTgn6 C_6;ہ/}恥؄{b}}Gnؓv Gpbi3k 7&PU|\NqSvkq^[7ഇ/c =}gV'q͆>.e[к'm<0`Y9^.Xmc_mbṉha=Gwexa O]7l:6Θ{b8o;6n>f7Ƕx%z^cߧDƶ]L><.z^5nƲq/O70sp1ӎ7_vC3Ƕ׸`~6va׾gp#1}oc~?c>7~b>~S|ïcW m\7V?o曘b=+=9l#1K׳FX>vS.m/vbY}%bݺxc>7/W;X6^!Kxʘc='LL9acl9ad|/vx| &dVnj¥c56nlӕc66^Mho.s\c_E{3:s\c_M{svfL禽ƫ惽`o|7w]ܶ `o=^.l=156qư7_gyao5`o`o.W'L86Ƴc؛ mc؛rl=155z^c؛ɳư7/J?>zڛUf5g_|7gm7c\cn1{{aog?_J{cPA157 Yiog@_F{sy!\c؛kl!57%eg|noZ`qı}ޔ4Ʊy׸c]{`=썍}=MA_ {S.ssޔ76د;s{S.0c>76^Mޔ쎀]noll5Θ{ksޔ\7}=썍}=M`olaoJ^X {S.baoll5v{S.Тk\`|nol<1ۛr|noz{St6v{cc[k\0Y  ?}=G| /'ˬıM~M1\ 퍍m=Dm=L.m=G)OoT9w_OYm=qkTl<2 M̿@nvޔƾqw3|ƾ &oX {cc'. a c'qk\16÷_r+txCYuXe(MDP8`UDVN9M`U`U`U ` rUVXUpb`U `XUq `UD*RUJU(+% `U XUq|8=V=XվSjjKjF8*h8V1 MU obpsUXVhDjj j j j VMX& ^UYUYUYUDUoU3V! jyj1 jyUsU4Zto VY *6" j3*6xt*n` #U%XOU >X?U X5*bt^    n VEEE5"߇`Ua0|Uؿ7X`8 `8J&`U%x`U~*B`hXո_{`o'VX VX VX VXNU`EU v*k7X%%*;  o p|>VM&OUyU vX5`Z_*V-OU'`bp~Uoo V j38*6666~*WU&a~U=VV` }rUOnj8XEU`VeGUqUX}`UzXUVGU`cU`Uܯ7X*rXUVUGUt]XUyXUy`VaXxX"X"Xx^bULu' IUvVuVuVuV8`U7XU; p>A33*ާ::X5X5X5jj&ZU{?yE&E&yE&E&E>?`}~}W `+U;+ULvV_}3Xe`3Xe`Q{` ` `EqU#$X5MU:`GUX<ʰʰz***g*<VH 9`!b_brULn|XEUXU fXfXEU"Xu!UXXXXX,#X vX X XaOϸrc=cJ4>LSe2&[-Uz}J>hpw}!G8?2gL0?c5b??Ζ_~>/䑝D9o);#s^ >~;v333Q?UYqp>}/Gr!;I$H.,&{"}=^} {2y??H^ͰGg3y'owr=L~=<Оu=1 O-'xGog6 PSr/O<q㏝d%ß? ';9787Ÿ #J<-O_o aSᏟ?ƯƷ/D!9N?#^##$#D<YK䳞x*𷈷Ȇ}",q;A>`/$o>y'r♛|xn rkxr r=-}[nrI~[ ,MAn rb_OA~5% o|nr !' g2 2!3|o뛜;x 9듯HAe># CH8'o/'55QsjWAcØOAȏyzruܧA>doOiӂl~sH5uH&Mڗ72_8#|"דodn<A,6ySȷ_7#OGٖH3b"LW5T#MV]M!$Gr)D!DbwfyeFR7fyaFBa#]_'~A 4BA" A@,cP =eFA e:A u%s=2栁d\Aa@PHXE$ rJ-:AlAI#S0U}&$;AIpH):VSP4db=ElFEҋ 9|$FQGNYWّ5xgGSqe>% Uv;\c"jqq{s_V7h[cV[K :qq$ZJGs?xNǶLX`H. vϝيۘe(b!_'ivz?s KµxY#ɽNGX4-f !uLИ/jbOYtBK)8b$/5 րɭƒo#IMp/^&vx?e+rMdxz7uH‹^] 3k p:Th;=0iE=e敹r7^^[T,u^隞0-,cd_Yg}\Gwzn9;P1[BE aݮGfh{/xB ^\㰽ڭ}vٿ^=`]KtQ9`IS쿘cׅ#Բ<`krus׊ b{j$|o̖!,xkJ@A׻gqrC=?hz"vtQND p' 6^xt[FFˣeRˢҟMȻi69xc2~r_`՝ԭ c+fw_eׁZen)_P_@"J7e/˼%Jpm:~[-183"ڇlګ5vrvu_M EUGH P急v)xE~rV s){fٔ-.%L,9UV@<Ғ!e3*L)*MKݖ<}")Uk(ۇ>y 9k33P2)K~VEr3kHP5Xkq}5ux0(~X S96DTqf0ޔu+~}N}ׇ{sKWg5"`73|}e'"Yj <Q9T(qM$l ˆ6&*gl}TOI@%xwc<9X2INX3ې|x̖&݀z (БWzA@ڒpYEԺ24`bb0S:6eV;v=[%[ SUv$N7p 6`{Q~I&-z61(3xµG?;W[sgDmȤ6 2%){ZT}g ׁqҖLsc?&nUuU5 P@Ѱq$H1haM(TKw&d8`WUTo"_ G\ލ_+v+ (Ϧ@׉Y,fp:A V8/_ !iZ%x1`K8aC]$~W1D&/ _ktsLisvjY%bWF9 jsqǒ.!w6֞'HL<~ f635.\V*#fi=qv tJBnO0+e"]Зt22Hl ~!`N}@(޽ύ՗f!x"ٝet7Fj"8*pB2kdȇrUF4^/1d0t N+}#6p$)_^fk\onǁ ΊuT.݋{2K^>xHVv&# /h*uNͿ΋+EAׅ~lMʼ &3g^US65#s^tArL|4q…H 91Us 4ҋj㙮iL%23JCof%P~3FWM]܊*b>苽~ U^cTEe:ln9,ׯ<~DVhk_GuC%~qҐχOoIx_֛8%I3J=Sɨԛ܏AY(mM.qzNFNPbқ%1k/uV|cb ,Id,14GQ(;/Q(_ݝw_ߚ&VJ =9Hu:҄N]MJ].EB<m)]o(on6Y&}̷O[O* x5x e0"thkʕ +2HUi ]żAyޣ́zuEªRsF Gy!a,rE NV P;A@'R;uHmlq&O5&5 +'*iFCZ U&k;* l8 Y [UxU J>_}:O;l7LTIV (4EtцoY$p-shWdΉ"<~`feAaz\&fQ1(Hʓ[ 6Do2R!J4w3(SBnF][5N_#C%97Kc4wl#0,1yNfKں'0{vJNQ^}J5_@NdRg%O&y "R D"ɖ^ 8/,oEAcMP1yVtlCdV%F[m[SmQtQ+b/ܵ]5{ wE]e  u鳮Bnn+b_% B%neϖ8Ĕ9R4B9 BqGd &ȶ*-c[ud%MWOS7-o ץB2̮7jrҗL/%juZrTI!v8&plޚ. 1%vt|}|;Jl#oX9G(l;!#N^nK %6e M,h/< {Y*ɍ3\;V,R`˃pbTCG]`U UM‚ф!eyt{Gҧr ɲ23c H^2fMy2%\|^w$ǹdi9E=։%5JZ7-+O94z%OdbKYuvB7ҍ+}+xAȨJ~fnKlZ>,lU4z 4|U9fJ/ Ąe)="*FdQƂ^^!;4u! aN vhH xola$$ʔ rǒb Eea_ִυ*< b17'ܴOBJMl>oe~lnREe onu;+/+ʸFݧ yiN5MW/T1T {5Bco_&rKJQbdt0!_M'C;%'4D=w'FTg˩lQ˜}D@ SSZł/FdW>:ɫZ1BZ\2J0Z7k(mԏޔL- UA"] ,cifS=޵W!?Ys+ToB=.TFlaxhzez0F3#2!.jC0xw9;(!CKhU<5.g&:e3 ؤ+VX{2<)ۜQQWQM{"tS}fp#/! 0T͐Mq,VJ"!{ (3t.)!zߖe.v7`hTsx72o= "{⥼Ujϻ\@٤UD#CA*yiJw['g`)TWNqǩM.]9.z]$rneY$\3YQ#:UfʉS78W\t0<h5})dAd !>Rf:dA6az9t1pA3O CXmMXH˶NN|)a۔HB%:tLXÅZ`%*1+J`MpGg$ L6!-Rd|G#yMl**Xœ,묠xZr.cC= jT v:i/}DxڦIi((&& ua}[5}!"vHCB'YBM X(,j]q7Z@TeN됵]TMJ(-n e[IBjGCV9Uyk1R T20ؿuj?Tʲz+#A .,twXpo+sn]ʊ5\V6"M3#0t}ۦ ]JJ_aPQwrANHU8c0•ʽF 5CU'$H(T$X /uu{]S#iukLq)bNeYs_Z^}I6jEꐹIs;]nS*^Z,@x0T|R=e#$0@&e%ӶG4VׂsP[dV6nѡ>StÂĤXw2: ۃkYk25h3 fO]NO~QG,C]Y;5ԻI Ć;U6!j)$] eI_N9 Pj|0hZDݡPQV%ek(4N4I6u)Bo(cXLHW!HnTL< Y$St~ u%zj=vOV|AqJoKEQ!ֈ>/3R 7ETnW6@o:0pl€J'[Ϙ$qޫЕV|l);F nN gfV Ô|)S-:ɮ_m%cO}Z:9 !DAҳJM=mH!=c(h:QQPp%P̱0_*y!_$8G/ZQ{ 9nP~k'| 'd,9,:eF &B>3*k+[:XiyY\ԒeNC)2=O..Ivu[azc N߂BR`uZ5wxFK(HQa:nqRrTy#(Ezٕ{a ڐ(2 Xԙٴ/i &ۤgRKl 7CaJ-C;urD46Pܥ`9EerV&85WO:P! })% a>%VBqjZf?UV{Bs%kpڒ|Ly,@d(Zl"wfΒsĺVd,5!1R6Hz$U(1,[ikV+!U PtާnL Bsjxɿh Sw")QGAxe%NTO.N5]Ć-ixeȱˡ4vS~-LЖ8ce<.$,4'JU{K^:$ +f\թ Hl0+l)ԲpP1.&/ٲ%.TNb*Biq* 7 yaAK&k2T="nE:OiP(~F^oe\17&IKzb~'Q=[Sh Lv"+#NB ;q臻!\K-/YT+9S\5gqtJ$y ) ^˲Xִy ~gW̾(Mw4N2qy^(0} і2tTVW=2t#)UpQ) jPЪZtU6@.$]E*[\k46)9K>mFIoc,pҸoZVTUh5`A,TEAbmi#W!7 NYjFx/Uo:/nAΛ溝U6*&EP ֥u/aK]UR r䷤ UV˨Mۣk}ޚѸ Mgp+-HT.Aɫ< /MMx+YP"%ږ7C 9]?ʗp|y/E *ѐIAp#\ĬL7xU,jڔ[%YVQ{NY+ޢ-qb+oMN*@ZŦ4G7+EӀ2Φg0IRKAIݱC:`808bb1IuWoEc ]&/6Z*Dq @XEdypEeWdO"$oA&x9TeT2qB~{ecF vW64ƥqr2\sErQ،i7kS8 ֯9O_ )Πr ,lEZC!u&FZaqAQYf!;E-! l3Ό`;IXeXYuسw%VoIUGB݋$Mf. G mT! ( ->wȺ(ɒ2T%1$(pg%ڼRgi> t2i $+E_fסy !BVG`2[ aJNj ".S^wNlCR1*5+wթl2e/Zl+v Jػո%Iď~D@li15|}ת%5eVgMW \.A& n:eB$ jp-nS@gR+ށ䡕7Q_)]vfϋ!;C~ٔRϯE7kuvL]sA߳-3Uv4 0>:^B~M(DG޸ 8@Ʃ[oлģew&0*Ƶ2\MԏJZU 9\>SGfO@d6xlص jUVPRZ[7zV5ٌURr{L>%Է@!4%8FdPV]tS@K`rي :ԧj2=K |isIU]NHL3QH E"ZK7 6n,;+2#ޫFZ}ھZUo\\(@j&@ Ҍ޵NTGR7׬DMݢ3ns qVl xnލeou5{A AeRW)wKzU۪45e@޾JmU:"TpdbjcM$s`(I)2poĪ&K:g0*1t5u\gm]-zS7myw-)plw۠t"g]y5No݉B !m{S&߀{_!0)>tx4^g R~L &`BOȘKD߮+4LgzFM@~mOIе>m9Oa FhZ J m{M5iWixe>=R Ү-]'P`C t >M>܀|:j7K|!d>Q}}J&r5wK\:J,߇}`+~OW2\7 \)u>ncݧ|Ip>mOdiy>hu#W4ϰ!"qq>{ӓv|~pC?O}}f[s_}_?}%g(4>ѥ/ꚗ"Y}]?(xoz =G1^t}4_rOWO|>oW[?yq_$^Қ%P'wVGc<#\9o?Oo~joܚ}~ˆ]gsu{+^ 0|~yO/.pޮIӐkY|MAO>6cW6{ ?7&L .U.>FDV=ʼ5xK杣1ƿ '"lj@O(P%q좍ǖ5O16ښamQM:|a<10SPOM]xS>iAz勍kp&f.ۍD=ƾ[aF40tk8o̷0? x% UlAkp^mғ.a; J--l Y[p7ܰ18եm 1t $U=u? 9[` s]6vsh]*wP6{ԠeCz: [:wgt׮6[ Cl AAj> Z1@uN62B71?m;UMnT6F=Zl<|ȔZi7}= a8~3-BqךQVl ';R+RY79`Εmܢ?60^oaK >exN'c~(`h4{ 2V&ZRHؘqM-1R嘍*+o5KS`o*CR3( xH+Mdn 6m<0ۛZ\WoV<q{p8̏|%ژ q썍[)V;`W;Ժqo֗-AT 66^% mk7+ǘ GV31`lV̏ ؛J*g76o`~H{c.`|8 P1?TWxH^㎖ 66aol<1wsxXw{SI&-ipJ6F&-؛Ih L썍7曘RTa~mxBM>%$~5󹽩$lE 7FMlXY2Rհ7fHnތy*11?U5& zm$?l;L@nx{3Qp6nȭdr*uis/7D,֗4/؛^ho&ڛ DEhx1YXhoJ{s ,ސ+w ~*Bi7 Pxo7̱F{]f-gYЙz8O{v03^@iovr7&[]lCg( fh {3faod7k f/x`>7-ˀMK%4Y {cI=>aolݿ>aoZX {c6]_7-썍 vm&޴.O0l V߰7Git {cR=޴(#`L!7썍I1O`6PN76,RiYّ`ofq< T 'H7 fBTşaoZei9#޴䌱Q2 noZ(7`Tgq{Ӫ;ΠU{jA{c4= oQi6$̏樰76v] {i8 QaolYaoeF~ ƾ 5Yz{k4؈@`D`o ؀&Pjn '+ԕ ԕ ԕ ES}.ue~ Ё F0t+J|B]%:@uB+uUB+uU~*O@]'J(!zC_ uŭuF'F'.u>hm;P:O@][@][@]z" }Jok}6>P}u Bu uuv .@76@]ỳ&uєk*8PM&\' u퀶YZZ"uE:PԁP\}znumnumnumnum~um~7e7Pt ?ԅ:g u!.7ԅP2LW4.}|醺k~wPWaPWaPWaPׁuh@]Eh@]mo m@]m@]UE@] u.r7ԅ{C]jܿu5zx$jܿu5B7ᆺPف /7ԅrC]ԅrC] {P;.޿uuPme@S|>uM>& uuPuu"Ե ԵjԵ Ե P u.umumBCumumum7ԅ_o _ uJ'oy*;Pu*;Pua=bj@]92B]Lu1uaP ua=n #PW@uPWܯ7(PPWy T@]"uuZ.@7Ե큺:Ӂ:=A]okE P u퀶 44Oܟ7ԅyC]؟7EhPhPhPSb*@]Lk.@70 ?P6P6.:Pԁk}ԵԵԵ<@]?E P&PumumumuE(@]u NL555ea35'kau퀶Jy:@]Ձ222' d@]d@]d@]PO@]PO@]E*ʁJ@_}*=PSꪄꪄꪄ".ޗ:PS +&B]5zG߇P' !PW~s?I9ܿ1Sz"Kv~y2us֣~*>\>&G@74{9w}!#S}-~>_3S7tK=~y yJ%BqI85q5ρS@_ -;_:r{龹|G}s?S3*Koy'RH,n"@¾Djb}_86Nj={3 E=j"uس ;RR?Kj(g{:{KcRÞzp}}RcRg9qHgJLNP'UN NpSSJԖ?`ku<#?H)A!TS&[&O1'sSwxO;hIJ7 FPɈWojWc~FPwx>x]xSۀ?Է!q%r 1##qI 5|/uxm xn |O1tWոOOqzyS?MPgC/#uHyqMMg~vF>0/ jh'GYgD'PIg>#S'󡃥0/,|8Sz|)M@i]+mywD>7w8O|vg7ݍȇw-GȈyۃOxݞ|=댟JW5_ JqO:7`>*Wܥ;KiO$&(,E EaiU1 KQO>G1ߥMԪ!$47, >JfiQU2K҆Ү<|SF)m#I!'|df '2أ>nQ#AL TߩJ|B) $ ~J Ig1V~*̧JwYʌׅ۫Px(x%EB<)J C UVp^Eh&&4IJ!}nJwd Sk{2'é+-}V0llͤ }}Lâ%E⺯\Q_澫xFyE'^4h=!9ϥ%nO!fr`O=X/Z9y]ι1/ʢ"ǟFQ"Z)V$BY:RTŶ$\nJEJAOHKZ Sc ]+C3pc7KPXVv0!4vqvG.f⺻ sBą]4䗨Co,NJ&3E!o8lᇿ=0T9%kYZ8U*n~]iZ= k*$,oZUj6亘Juky 9{C( %I賽j"n6O+H$֭6n[~nB1l?5][QeVCH3WnM:Zf1u^qaM(^@)GaPY);GU ErI}Ϡn1ɻ=ٲ Bdo@K聺XHj'h^El*|O&P,VkGdӯuFT/2\ŲXٟ@7uMKX"3櫰y6c 9*|)lYo#\C {VG2m)SqY'ݨ"P\=ACR{5c},o|V2d3OVcʶ͎Qu^T<*>p_Nx/Mg7& Հ_ƿu;(;lQb8ŭR)@^W`ߪ-T7xyitkq{W4jSD ޟ2Z6C_9P]t{F{ D~$[knae3HKa}g%rbhβAZl!+v;(ܘ;9xF]vv4 q&r 91߻;/o$׬4;2᛺[G*YKޠ4єɜq8Eê%z7^f7T* ޞD*fϲ({xӉÞ`WBG[}%6b,8VYɨ j%2^u.fQvpiR0U6 E^ruփ$n]C) q3{"Sۯ`b\)Vd>`-P(-Jx F"RzAF;DDO GRw,Y DzŎlqsTd ק NpQk(F ;ʍ6 OV1)qBѤ~oZuġygpٔ}Jo/?l_酑$a'#dYXYe:{7!]Z0*ȶ@n\ݨivݚ.R|zP:O&\mT [Dz $Ý[J')W^"l)!SڦX 9dfE,)V$B {יww&6F(}'J"h]uyI@K8>e&<5#MTb mW2 I/":\+*C#tV]{VSeJ,_TÍ$ {LY[tCjU:JPX*uC0FB-wN@ S\@u #^?v@2y8nU߱)9!+h/m?=J,'ξEy̓P+C|@ңיaېɴpWVd^ӲsMt~%t Q7Nsfq=M*/UE?-6J+p硤:5ή (0$ gj!PcADsRdUy> URGVhһcKZ1ԩ$K΂"+HW 䝡jVESLLhsK/n||+UZ%b5&24]rЍAep1{jIJ T1R/840',${B$aKhsBKUM$*_vd`0,鰁U= lnH u+I,Sє|[VP u ԤGYl2 -j{.3z#IIRK=-ԏ)lRM@V:!F|p_/$F`--NʙCM' ]A_<j%WLOe *lr.hq*UݺNy_Ml]FY۞\:שX4!f›lVÙ5UcT7]%=p4#|A@W|BL$x@D Jp$q:t2CYqE23'=ϭG/UeT1"*O]{zP7T9D죕#EN+L$;H%YCW ^?UVT65R 8U9JLM8HRYIQzbLW5 G.nq$Χj $%Jz'ֹAbn^*6$,誉"UZAm単u&J2uj/~8[gJ V3Ѐzm_ eHq N iJ7? YjRSEkӺ<"W%"Wdݯ+37d-Uj/JZ;ne%GTY)!pq qLҤ  Z(YϨSnpmgJMu](]Y{@9 N}nuUΙ\%/Fa8J Kk- #w85@_u,٪l)9$(Z莖cU' hg5lh.EGRJt'")v2S"/'nPdα[̓eڊm;4jHP7.) hPuN|Ay}`%S\EFZ2o{8"oy{k.o&#>8-OLwݥWezS@RR@7O%rx2XJ>miG^{[)&H|e7QSMw2oDE-|NTHAߛ^t1dF]yCeKqѡ%2R:eLhҽ"4zo,KFY Z+y?7F(OSk!Vү_ӨIJ!EHD %2hB}#_>$<yͫw[]PD!"VQV/2(r&n$J I&ߓ#>u{d_e-vչʦ|Z$(D }契? uv?W֢Hic!*B^H5( eAJk|"f"Nm e.tI*q s&2e %Tl4Ml+sFRvOR4x 6ns]* FEQEv7𠾜}VMST99>C7 ܖ.M $8YLiҐ `]:o#{?ėso,חV2r lWyBkcpz&~7=~#{"'atMm%B| `~|/Z}^?=b ~ O/ŌKbK8~zɨE$O/y5%:#s1j;QlcbP80=c~4u!E p}fMQ_th߹6Ǿ4G,2kޱXߨ(xa>MSzBƔl`ofC߫E4:OW+N1o|f6h3^ko&zƀu瀿H@DŽBU#+GtL_gx>fO_i 'k|Rt Tqi7qǷ`вU8am` U<a\s6F fP=|E!k9NHefyo&cz}aX23eCDfR,Э><<d<7OW87̉",73wIYo&f [x^i(U9; b} HIߘeV ߰SpV'y7J4!a؍foh,tF=:,r ͳ,`~lM|7?;ėo9wrky7ߝf O&67)sl2o͆zcC"栿.>o6kslt栿٘7 Y$Pzb/f:' %Teќ7 礿a42N99k7σ9B@,@<38t::IuzQχ8(?0bƦpu~.W_o܄1 -u|bnKlxX[͔qMt:>7y;ηC[n5Et;8OIϯ,Uc {_+GkխfVK} 1nH,bcVo!VT=z|5u+UPAzCj#5P0]ƞAod!o% <~ZX 5kj畭l7x^k )X1j Yu)v #c $ _>btܬF!Qu77xWhs}꟨]$aA&uAぺ:҅x.ţt..U $EW}J(#J(#J(#Pׅu]Pׅj6 ƫPWëPWI$y<~B]=/B]PRBhPWgjP uP uurԅT=PRP`*P P`*P P @] 偺J?JPW#PW@]R 偺p_ M uuB uuBe }ꂿy 5#5#59 =.A]. u!x.@A u=M+iB]3PoP uP1B],^ uWB]FP1I+Z }Hk}$Ե>bz EP.BQߠ.xVE-9B];9B]PGB]P&@]~ OB]W/up?.u #u #u #7 uZ eMB]Px.+Tr) B]v =]k'LPiꪰWꪄꪄ ꪄ& uw\HEPWKu_N(0.Ҋ/E(B]/E(B]J)< u CB][B][B]Ӆ^k<$5y< u1P uzr׌g~uByX7W~|}~4/~~6~ϓ_h]^_C#Sޟ3ߠm_ڃyyh/ޓdfThCin) "tϓ6I&=g|yJ?OiOVFoVK˷O@_~ZXBi)_JKbcc17ϓzވWd<`,?1-!xLLǒ'~biS:l[xQcxRk7d<Ƕ,U2YdxS:e)Vk4xEƳgdK㍇xO[ixSz4*+"e>p 7a>HyJȇ;4_0I@C̗*̧*KoU'%^P>|ڀp2L<1CI uC(I1RI'_#T0g>>#5eF]iQ[o\xN ?H|$_y=ȯ3E{xIH[O*q-ER@%J1mio|?L>uF-,P;k;I⹬]oGCI$uP+G~xvH;L7C %~~8ǧ}Mz~ևo=[//u֒{^QQed=_\0Z þ?65B'`=~zRu(z_>@|ֆV n+Շ|l ~Zwo=li/#S4_ohO'_ekζ{n=M$f"5['!ߤ&|$_gOkgah//_ih//&[ےs[׹q;/|y _^|3Fgy _\luq+nd<9Bo 'kpʬ 5NM8x5UQ4pW ܸ.)Ű#1o'?ȭ*x2%˺QHQgALG(T)eԖ}É(vO` c]Yx1Yj<׮ ^5D"N{ "9ftӘ|zB~F蔱Yڪ2ǩ 3^G5>>/cׂ  C'sʀ imU[Qa:0%Dj<6d]V/9jGZxXnK \ɥwTblhZ:{UeUOW*(JucD&5;B#@$`b7TmUԷ*"U9͘op"2"?H_\R_w+xSߗ7ԳňuT,s1g0hSݎU oA qn;2ﮔ(R~l,NʀPjIa%'jz5pmT r!#l1CO_PglPT&ޠ鋗tgcu5iE?XFƩ|G `j %No|$psetrdM+7X_~s+3\eSXA+r"?Ge" i2n7Uvsp7$l[.~{wQ1y!*4XQTF@( CPSG}p1d{8rY .[^>UńQUۑ&*+2D ̡%sKguu}#>F@92oU-v1d-T5#&?Wz7&Z W1rbYSqyD/q~pM"6١zΧ w$Y_c+,A^kv %REeʱcιamQyja֌7TR}qSTEQ/"TXI?N:G>8Kb#>bqA&ߥ̱&b|9]*YTNJ)KfmA'}jΤf_av-NNu]ׁ֝ΐahxb'%͓6@츕W )ǭ=Oʳ R@\>DSVٓw tf<4[LWtu9Ny:pQ>"^Y39eqN Eu:UdO[؈dhB̭Ԡ…q%g[霭T L ,jV_M"_q:û|'7XR*!04Z0r.vK{mͣ*)h72pB&v9٭k@cxH>~]IΘr L*9ˡ*5 SV-!2L:O4PX$kT. O-^]T9;Q3}3Lv9{4Hˎ@:<)drGnmJ.ek4tg{# ^.b\\w+zĽJlڵ[NY?݀yEυF_B]ADgԽ :g?rOU'[bΓɏ3N9+A'izb`@ɒ y<$߅$J8nsK?~::'}k2= /l_(/ akKNӮ|[йіd)} o("Iew89_hjjEL>h;HŁfP3ױ |y  }w_}>ӢZ}#+oqd5k" ٪+ǑʣŁ$tK `Xl+Dn8kH"LQ-JDSQd<9b tGT>TTE a>CsxǔWTV6vA o/me(?ϟF74:Q<%qӡwNO}\.Z{?6Rմ.y^VQUgB|=VYM"F8tuxCWhJ~W^A_ʊF/"W]`}#NMAVㄡ  *.q~+ÆAoD-ct׶չyZm8 6U8ң*97WK+N}*1Xʕ^5aR &?FMvc/LlCY^YS Mg1;/XP pK(Y9Β>iN4PgW0uu}X^03_=5[W5M1b!I\܍N af^! ݫJl^W!uArJK};}dhtU]cZ7UtsAJېѦs}#JY _&1tQ^ gq%P쑕A$VOVmY+SA9q7;gZ >pjhh Gf/ýsshQI::P?t2Х$H-~iĜTYR2';~+!bgw,k*3,aA)vof`U!ʳ:+Zzg=@FyakLlXn5 &sQзŠWx>nwk+^R N씏Ud%. gN5!ֶNK}=Qk#;*l1Rs0}I l@0Xiehm' 9#YD`n]AH%9t/|3fOzF8G}_XOɎrȞn}&Ju}aHLp]0Rɪ/%#V=#zSTM@kȶVtt^sB͠ػ.-g Xbϗm$s7xv8RYf,\W @[I?̭18|" RXY ?Jag/\gv64~* 7/ՍKNg (ͩ{w=I.ĹsY#^VKv&L&N}]`9PP=rځ@q}?Q.㆞y;A!-L^k;y&߭iۥ:Sr0|EF]}< +S ݇ I%8MP!jI "z+\-ؖ`7I7N ?CjD^z~BG=E2~wk2^O>V5e9"P \OUY$N26(d|t"FU4.ZM+@D$ƸQpni>>Aj|9Twd \ Sa7ySifx6&݊2+U?QOFrkR_ }7;zdU O~]eo GGdh؂!^L1&؍9Tk7Udt'2 gު|%k0M*mlxL@sC2w\Kl*\Du M)o8CJ _-C:괃1Mj|Y,Yf*K+L4l9#Ia)jԢOU*^* ωɿ+s6&> DqrYe&=5-JMKKb_QInP@}H @+*%t66K#G}ܐPe5ǏwS}-">!K]z Iv[QgޘY19CD1 ,yl9tRY4V.Cu&yѷT23-g)fȔ*oMWfw!]2QHL"́(Kk چ"0J}$ GVåLr5C9]eb:x#Z]IɡMFI){A0 eUJCv0.8$NUxwDMkL SEM9CP6=ՅorсXzrrĠ8Wts'r8N򃼋d(\3y}=&]kw̢׻R#I͑ۜpv+Ԡs=,ʳU5b-lb.oA2%j9]ji̜:.i x#m㠘757C0d#&#{crvI²qճ{H+nrfd3p%NY|?lͷͿ /!ҷ|{?/+|YVø/"m#~yG?lD~?f#BF#?|}:;>od?i'\'G}I㓯?$5Lyk7}ώE\ٿFtp~;7"`oֆ!20@'y; ]hnoVq: fu f>ծpi7ԓ\7^WAנ# $xX7̉ɉT_džY8h󡬁XS}ml@EhZzy B 87Z,$qqo|M_ʔט2c?͢3>!Y޳߬,7ixj)x>tIֳsmx =xUoք~7++ͲfYokW5k-!oA_y5HC3'^G0a9σ ߸6,L9Dz}} ߸7 cfYf7 ޳߬MNfa 7A0F} nX/po:1+Gֹ_|o(@:כA]kfC1}NMIQ¤:SمdP_[o%znFsߜ75ovAin_f8 eױf;Wq}|/<fQ=#Yovȶݨk'Sk]YU,7BX/ }cb;G73<JEVovT۝<%UZl fW4~G::5n`xU5*NXa?;*ov>uM]7^Mɍ79d׆m<Ra ֹҀ O(}ʓ _/l7fWJ]}0zBuB(PCI@]PNB]tꪄ.ꪄ.ꪄ.bs.>LjLjL444F(%F(%F/N/N/N  $oP҅x.ţtAh'. u B; uU_kHE u B uǘuM uM uM u] BM.Dk}VфJB]F(0.#P L]]}."PJP"TP"TP"TP"ԓP"@]& dB]t5/Եj^$ uuu.ԅPסI$uxSKiJBO.D~?P TJk$Ok'B]#}B]#}B]#}B]>r хvB_%U%U%U #U%U #U #U P u!N1N1N1O1N%SoPBB(P]:C/EW~. uu uuBぺu$ԕRB]:P ԑPWJぺ*=PIhHT)>LLL܅'e|? uS' E2}B]PRBjPׅu-Ou- u-ޟzԅ@]k3OB]"E{{.t.u u!. u](jdRS*]0O>P u>P+T)T).PdPdPd Z m4PS uUGB]PWMhn#.A]؏T@]؏Ҿ&ԕ5PWHq?j܏x.^Ӟ%չ uu:YB]%P؅p_ PXB],^k$Fk$F utz.NA]uh$ԒPWB u%PWB u%PWB uMB{PWӄ.DBO.D'e2Bqԅ@]u1~P u-τCq>Z< u-Lk|&Եy>ڴ um6yB]PB]  u]+ uTz.ƫ::.E(B]A]VuYO }B]FP5z&@]j"e%7@]Vz#U e$U e$B]O/Uq?.Uq?.U $U $$EɅ\ԓ uߠ腺XPK"t.BWbPo~ƿrX h?L(5w3>='K$3O{61#'㳓6o/3ačW&3e\CeS:,K?ZB3?,fePs}AXdK-KnsR2)>wW*o377b|rT%U"JԤ*&7$5%;jzB(eugy){>?2~-;0vRIHģ:C6#6KV~<ԞTJb ^ rI#eÏg G|R\jSM^~/2G']j&6]og;IFy}7}VR/iO%⹤_'U6Jx5Nb?on܏ģ#jR/Ż[㡆ߨjiӾ&^_y>Do= Y/C%URkKRqY߁=zE~d=|dОe=d$R/-Szֿvw>vr@)3փ:*Y/ϲO֧.zzzRo=%;yIz_RIehOQQz]R᳞T%>끋.d=q>ECP-+X/]Y?^ `h%@+HK>ԬgXz&_깓ȬN+<ɟzdn֓'Yolzdi`+N~Z=n/@kR˓/A~CIxRoo+hEzgBh?/_ [sOp[w7=#t+KC0>| ƧOA-X| G/_~$~$߃Tɿɿ!?$?|܏ǐ|䳐{.#0#2l|BFm^>zzy.>x>Nr;l]G߁>‚Fk LU|vg!mo5p.BkO_zDm~#BT "O2 -`#Ը)#T)gSbJڃB&g;d!| pMTAtq>?ԻΫߊҭu47NkH ԄqH]>J ?(JnO&8V9w34XR{6 O}Cֈ7hI}QOem9c.X>Y(w  MU pJ'?l0`OTSUlTP 95赨cRSg7˔:Miy;qC0H&'&sPqer‧,~qz F$b#єewC(ͩV7t)〉"OZV9w7&z hIybg".G:!P@R5lY3-GVx0LzQU%v/պuTģf4'jsVT_"wJ XfЭ,\vde¥H\wu*TPbc_rJH>0bKw {sl_NJ3ߊHTȊg&oAHyT%vyɁ?{h~ՈjNbJڢȩ;gKI2"bX0C{{Q)ۺRbz(Ud=ȳLWլ"MwG;,W}*݈S5!؇2b4 .]U9r. HC}&L D M![a*)5ǃ rqƪlߝa2,nr؄c w,nvyCSUH݉d{婓?I9jCÛ `??u嚽PkRAθ b'~b^jS|#p *QA 9I VsA۽e vQ-`;9H^#!mIMGL@.uT8:ԮN{jS^Wjz-Hu"V)X֊z20mC#ڲ'{ZIU~ qAO%zHX~&\83/zf**I2K*Hnx^YQb;Ӵ*4O1J~5Rn:Hwʡx?mRy9Nؙh`=hd-瘣g#Jﶙ ^JF4{:Άײ/\ ݗRt9?lƳqzN햵5٦m)l&VjOw</4)ڠ }p*&f&slﻃZ9&,A*;F٣ i^ KR]W‚L Y>~#Q2(O1wT_x[Mɏ}O%kΤTDAo,Ѣ&8Hdnk35O+MV;*)Ki֒V֎oވ:_\E0f15j0T*]icٛ#2ѧ$v`6e\%G%:d}Տ?z }v19CIKeBrBMP TbD"㔘DaһV<8JXI?sz7M/r ڂ}.N^nAzTՙq:%r^jwd0-Rԁ"fhTP.c*Ar:T`3,(ljih69n(RU nx6dr3GiUr׫ʽʡg@i2 |A8\ΧU.o"r8QT݈h.6ʏKSd i`dO ׉r{sO}C_;F]h?]@\A^v Ŕ* ڲPPTv;/lW@ʹSͺ ൚3a졍_u98(C ٨3I ;Z??s=tsz])3}L@Ė>@r_B.L톻8rn`PFă<[e홾aũhzbUzf)\b7[vsZs$`F:K;KS…n޽dHzV'Lκ}y u&bT 8sKvp<֮ K\Pznzk$GÞ d{hG[#(RaZMio(r|y`;aBkWX&Gi^8]ɉ Lm(dx ̤iX澕!ؔr}.I3 Pb*n %FBx,;ѥ;BMxmW'&EuCecUDSZX>oۯ.2(p/*F_$77`V H׻a"7m uUy$dN ;yFC2.٣.ނ[G?s3 \>}ᫎnli ,)WaKbcmnZۍd:lKu譜kL{I{]p:WɡQv{O9sTͪL]tH.1sdNV̯mrWgNº8WG!ȖB9?Ucd=rEwdH܆DSkCu0T$A18MNY2y´;io(E$Q>ϜBnhROܩ'lphUlf伾йΛuSIAMn*YVjA%͏S,ٴxea%M}Ϝ=Mi&UL!)l &Eݱ/W&}KVkgI1i ŷl з0'uI2_44w-5d JԔ.4 ڴ7H&U:[@dHl\$*J:IfÀjcAHf)GvJcCw,<,r% @Q)#?^An15 qrteyg}_@U84y# МJ^}'e2tڔGZS[#'+^9CAi"Qp\u4*q9M$ZEL# L1])]W}f߲*aLNj6$}c i }2e~.zl6>Ukެ{..T;/W'[6K͔$o>UfYUhhIJʻث R3Yh/+GGD=K0MBRFŹcW5g)R`Gq ۔Gc_(wo6V_bk0!{c"6]C?nj|H9WF`MHN|2+&e~3 /^ye 7X}iWwl6pG\CCoU($!vp!yKc4Ic3I4ͶNCdm4ۿlG%e;-9(QWh)2oݙxbᗖlbAB=5dGre䃽W'*P(j mE1%%uv?.:hȢ$py*<,j 6Q[ ;en-YNJ\!fp T}{hi"~aZoF V][-׋@Cb*1t76F.U9 &]B\8St[H&-P]yIgT3Wo9$Hv;s"H4K.8]ˆHbm奢㔡#Z$Qfۖ,2HYUZuAfTuTAϔA_VId#>U6- p(Ć@[K!" T-2L2Cv+iO5-ÑO7 gJIͷQPٺy)6. $NJOtf"fP=͐zi)0BIlK n+Z /ǵ5y@)R6{A'-}tU_O5Ҷ+Ra0zxҦFouD{ xY{ P}ju:;,gڻ} GJΦY{ dܮ{;PQ[Tha! EWQ GJYB? D{P7뚇@X,(*LMtV0:% C0dJjǢڋ*JE%qtbM4llI bZ%S,@ݲ ??wA^@bB'D+ܞ_+RYD$%4cvSg?IU8tYL"O5l浖>T*Mٍ{Fpcңb4CеE҂2Ʀڜ*k< h Khz JZG0/ hk`(3STVdl6dۤ A"U!TWG#J'vkn<ƆF*`:7gBRƵ{0P &cV-"KBn"&S]И5$ ( U,_ i[+JOkI/5^'l]Ve7Y? 4Z,i:U3iaJSž)!{S;H&|di2:*/%&uٛzY0&DWə)zJ}᪻m)ՖrZ&u!c:T9uA/)# Ec-ئ?yh:ZlZcV9t5ނbm俦;gXI*׋ԅܘֵF Hgtb ^-u]%d?2^>̴*KE;zAB,EڢibE hhl[T 7=tԀ%i`l+[Q^- rq}vU|*ǵ~"^#V51)\bҼj^)o(^YҊn@Iw3cmg6i QF!Y)g)ehЪ$_3umR*q stJGfI+d-_#1R 1i+ƖJЯv|*LɘG9tJloǂb~L-Q$Ҥ(}wQʠNS ⏔C\ mšM'\wt g- 2FDn] Q^WXQGzi[8.I&bG@_Jԣ 2DIu%VKoGVc V A.8wJt7et̯A|hAvIcܱQevHSBLǏB`ļ"Mg4MZgv|F`[,!&/}%2đ]s:{vprmjzjU-v)BtU 6i=‘x|(3|_P^-'A2 ~rv9A tC^<ὐTK[2HEk%rBb5_FݍRT^_qPiھ.8);=d'@}SWPJf^i,i)gug1L "z!LoTgΙ8?yRDXhJ{VRȦ.+B)CPS)(U ,50.5<jN޺b(ˏY++-Mct>:޹FXYf lg*pgIZ\U+~B\_6C^*$g{K S"]6K~䜳H؎>Gsn͢brd%50 j‚ֵ.W ܋6)[$|M—} ! ؎dco;l374c-!Gn ¤I2yڒ-0z jP"2R ӹdgjmxGz*S4 KO0.o3(Tf*~^9"X73_{ra#߃fG6pè(Z΂yUC ~wˁE^rZ9Ĩ4]^gfk4`EV@id!Ux_@]$bd #CѰ%z.mV]t.&ˊR.( (OeT@r&qD]tTKmW8,Ȟ9dG * 5ij(lOŔxk1xw)% ser rP==fAtAE^3iHˑe UnԩdAQ@r+7*1pE7+@SQ2fQ%:C'xMk>m.A&5Jbۧb/Ut*0E}=+\u ꍴbCMx.j0sF#lkvȖq07OK RR[A)3^jt nNWÒ1[AkC)ߴ he&TrKV>z.XGv4}kU#c~l:8!+oZ9aZeJ\%>sf *m0)ݤe4qN a cAQ9zȫлltoAnx H5P'T7fVaSw1ABԮTL7ǚnqoX䶂 MSta8~ rlvrhc`nHLs'ZMeNh%G=c l(Pkَ6mҥ /́``^4 \:1^$eAݪaEP1O.i>̍1YE ^47pE+9**ecvO9UVZ0K+{7Tc0b_HSN1hc<1,T ۿ޾'&+:L&) 4V ҼwTIAk!ah[SWnc>.4܋`%,a=M1n%p}U{r֯!nPEGԵ) 5R+Hup ]3Q`4*W7_QBF5Ya)0ó) ]e-h)[F{u] l_f6̪'`T!kF%9-ˈ#UƄ ft O8Wh54rixG:$A_ٲ`IAhZ Xn:dqSR&ϨʰY^SO16{^K/rƒr (8ZHAhozVd;|a "jXT*a0rdҶ.DT 'uJyڎm--6!m[bS PhTM̀:*MeVrq{y̮>t SwN~SlRMK.L*ݘSsfr6II$9NPPQ2Xe󂺽졋{D,!vA=.P]tH9䠅q6 g3ܥ+s}ʹp] AK(c7)( @lwpPՀRDZ.Bä姪~tEJǮÐkM~zĢF/VbtWфԛ@)x}:Yt4Rmc787wmh )) EXAPʡT ? |փ ʁ˽"a7$4+$<*`AwYH%X8Q`c%mo웃6e9Tnu;. @C༿E2#50OcpMky߂rV[} 63. X|Vn{"r@"Pp@U)SmTFδAٷIgFoV={`sСñJU MF}ސv;]7R)4WnHjVh 1N#p6J[}mROEnkZI)qԘa6}rYBEIͫunT%|Oނd\C@B+4zWoD}/3SG68Tݕp(^bo˩Z˔:}醘jFtj,]zH1) =aDRf2C*yu?*Ό|nȬ/}iCsXj$؃oK2:l%GjxPQ"-ǹ#!To7G(vLZ4er*FTCk0Bӳv؀} S1ȕ3a9=5hWn̔R/-[ َ y03BK w&yl  z6Ip*T| C649+aS&@kL +ZM8OGS9}DRuO1Ά#Gםrv>0Lɫhǧ҃ ߔmIY)pn$v%yJ8*͒nE ud5Ƈn*0UסF!pMVTJqeå%瓎nʏ?@#8_WƪiFxi?)ڱ)^ܰ- JF$`5QSg gXnA[>$qx [}VHcM\z^y=x'ȵ)[ @da[)*5QޒsR&|'?P%/W3}øTVKh|{3> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 66 0 obj << /Length 2614 /Filter /FlateDecode >> stream x]s۸_I_^_H=psM}ӇKxeHIł%St +dbc,v]`%1uV;Y ρ 'ūk:|;73'NIyLvU+__NT?V4Ke4f2/EXܻS2,ΩJlfԝr.+{CBv?7xu-yM5ՈYkdY3LEf-]w抩мzGyD51.ę/w=xw ɂ>b g`M8g&eU*r"w\"=~w-E,Ё3+o=,!꛱f~a˰~%LǕGמl3eMIML%iVqN!dVEdeAW淆aWW7̽p4ZxLI^0NTMl';#PDe ,KFDG4r*БS̰|<#On@F>QFIGƧal1au3$h{'>d=Э ?0g߳'| =\*{ef2>Gzn " 7|C( 2odfh%=m Q^Fuād3k<֚[ZkXJ\O6|1zTk׸3gU>Ydtr]vfk]b,ː1VUr^Ӆ9.⼼-W&LtyYUV-;{vqKt/yJDri"fi\QSޮ^(c)n:lМ;2̋[{&fްoBf㴈y<o)Ҥ9! n l Àz3uOWg|>z/祛N9G:yɞG B-_C=uJXL&nҳ=-Z;[?^>O =øYEO\* ,.%u KQ8g<;揽3Ǹ%/WS/,;Wp4!R54ǐW|?ƀPj!M%>vr՜sz^/h) |$)gf66#"c`s l_!c`s l9(1<0ZO4`UJyo_&VeSS2{"~L.!YHu0d%:K L1;|OmQ0C߾]&J.EΩ$Ok|3MZ Uc Nv8?jqwY7#*;f -n_VȟЗԻ\U^N=+;a/"ϊ4@Ri\'5KʢN]Eb;/g$HH-ŒJE.^b䐊2Vty{`C1n8Zb^:QTqH dEV&2RHu#cMѢA-<ѫD^}XFJw,A1iƭKcDb {A}a(\oHNɀ=@(myEYbO-2!t ԾYR8ip,mljY^.RTi%Pq4[;ؼBzIuA)7hMyRί{]n[2&ml}C* v!xmCpށ]#i{25*k&PGpU::-*;T-㬺u C I][h_> gd4k,`1e?cu%g~4o)3g~x nG)9SmGw2ʜdxd o85|usT endstream endobj 61 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/5t/8dfc_yl10yl9j91v2lc_jksc0000gn/T/RtmposLYxE/Rbuild2d0830c1263/effects/vignettes/figure/fig-contrived-2a-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 67 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 68 0 R/F3 69 0 R>> /ExtGState << /GS1 70 0 R /GS257 71 0 R /GS258 72 0 R /GS259 73 0 R >>/ColorSpace << /sRGB 74 0 R >>>> /Length 104587 /Filter /FlateDecode >> stream xK.Mr7~2` `v7մML]+=;d4K}*32bZ+_寿~_?W7[R7ۯ~__eݿ?o?ןo+/%zu_yן?_/oW?8?s}7o_gw+}_?߲(?[?|K oG߾\Ə<~۷#or~Oӏ5Q~=.}CIGYoKEXߵ'D5b>bǎMKv߿A 7oТ|.}[?ZQ]Ǐ?SRZyvs[z@g?\eM岛盞c7oϹy|,?Z盞cmt{e\69,n۰Ormcm td{.aH~o|)aypr/Z_R,ӟmW-׾sp~ד_k=?qF]k=l Ǯf9_W'jZyկ0yXOಐ\k=d ǮHfAm'YT83=ٵ,.>f/}zCs4Y"߱W\k=?1s5c,~>~?ky|f!yZO$9r]ZOh(\k=?(hfqz~0 y›Ez.O׾-Wx\z.O|x, _g/fSs׾,^>sys)sy˙,^N v)]'Y|}=;ßy3ϵbkk_o/mةsi׳M/mɖoVdKdKIJlx?d(Ij$?-ɖIZlH6~&[|'NLO|E5"y>ֈgw$["-%':$[bɷdkY0]yI|.~dkx~OF3ي+l[c=LHߒldXlد'٪ d묏ɖӓlIou$[)Iz$3'&%[Cl =oVr֌$[~*}Kf$w'Z$[KlD?V|$[;Hf<'ٲe=ٚQd˒%]G%Gl}HΪOU?>V$[Q|}g=:Ij$s'٪:/>Y':$[MlpN'ld+O5?֌}<|y~_q^sEqp'EoN<['^S\F<-qx[Y=^ps^GWu@|8`9/9?sgy< ( 8Q|g'z'_?!ϴ{'i~O"_ɧN>r`J<ϓϕ_koO>9b+7S'=Q>|EN߁':v?h8<`i3ꝟkQ/ȗO=1" jz$˧^FzG>\$ꡦL^g]GU#>,zF=y`N<9`9O's;z/^Mnz6AԻI7筫ɡbsnVe< pKM:NeN' sEC[]',>F{ wt iJ %Ya&^ṕwR=PVP>Q V @NY[V?`JC 7{ ?_ߞvZ5-_jM/_9>Ѣ;6)(~|}ٶ_m?د7EżMpW}wy}YK' ɿi䦄ׯ9<5;c >Ob0/_lgQYXJ?M=9 Q<&m^0[:?YjقY}QzbF~"WvOz|^{>!~vJZU4"(^gwGfqD}~N؛/.3}/VzݲR2icZX}9jdw<g(Ӝų-jWwgَzG (btzgWn'bHVK@xòPQ|mPR1| Lʛ, Y7hT,?);l1ӮղDέaA]`Qg3I%ع%H"Ǟ/QA?WZhJ򡥼v,y$,{3a]%찿z 7<%JbhݢE{-l9ŚCmzgXZ`adFaaTG: pӠ:p)ޑK}`4ۻST5:2SǟOq*K;u\e1Q IyjǺ).`Y9zH0x%IWc}9bϸ ӧ,cb--anJ÷rSCk'rRgBr$Jg3;+D!d(ok۴ )O]raz^G;!: V948}SOPu8ޙ='e p}_5ax*T]{mOJ'>z Oyi o"5.)M-4aR&}}bbӝ98ű O泣Vp➽DM+(SgL$&dyNh6PY,7k~VWlpPMpWUij-.E^1,`$}^|7G\'ނQ^ʗ?pfɻ<%)w>1 N9Ⱦy1EP*xe*{>ig}^E$&~`b v&FUL LA µc{C.ݬkvIC/8P^w=jk=(rF2&A9ܞS%_4|))Wp;23,(Qb@3UH;c-gWȖFWn$+§MIlLPe ).gfCA>90Wz/ ? }~*m\ s?ʒ]}p([`OԼE5/W[`=om9m5CE1QyI'3ղTK]V;1tpvCԦ3*,% MwoZh`sQbd(0*(†k ]F(5]`O X DVMU\'FTp~ڔo?&bn%tשUi^+b9=!HQm^5LؾVcIiUv$bxP`62"Y2?`7.J\~>dta)nG:>YuqUtSg#b}ff&6KIIr%dGH`n)'2Cğ5D]ŷ[z6I8s,&G&i0bnYx ΤAVYbKr"L157 ΀'("=+r&xq6w@-y/aJ`c0ƀT9D{6% :pR2W+*^%:"!SglM↛4?:SA:|i" *gU~qi3IO'N@aSluKGᲝ%!kLڷUʊ>w, OgL-Yu1m]2ieMnM-ZÄUNE\SL<N,%%b8mWlLYBMdv;5x}ҎJj&SSFXQVSF,u.L%3)(5)L Z*+rquY}"ʧ_<iMpui ,\t`xR^Tշš9Z}q#Jiaj낚IYLY9*Pk~VOjaRғT/`-_WM=9dHQҰiCSB5aqW]-mY $IW̜zsa]Eintb PRJ-~A0 @ʉ,LԙUOGXh\@d;K0*~^]QDSۅZD4C;`,y! ԉ:bm?Ar얡!dp$aw#נԔșQTʴ֊ t.̰-$U@D,b%Ԯ QO"mK : kWeGpĴnO(ǝOD!"9Fף@i&h;[xH9ˢZt[.$ޅ$:7dc}D&fV]JS;M"bnKm8^LL6o$@ l[01{3Τs({cKd?VؿtTSj,sBgIrü~'I;š)}MR؃1q#(^ s-/򧶉Te,d(~`$<<gKyTDvLeH5p,ЋHh7oy#:(iw<ۢQZQdSjq+!Ö0xmd\,)\lJ儒Lض0+&n^ân"bY U\f+`\*E͞%ZU$N|33KNlt.j6k'ԐYhXxcKoR'w*eJ4&jerK{Rzkd\XR,=h'S-TM?i#§,Щ~"h Cngq?SuMreB0j$ f,`I1Eh~E—6ݞC*e*"~|IH2V2\o)P"3浗gMOeaQXь 7Dfҧ0t!. k5\(DOQ{b6$SdkP$)mDٺ$+hdG"sN.[O=8.u֩{X ֱDHI=!̒ӶTk=#ΐ񔨢xo(ut6vr"'RT۽#O9Τ5R#jKpVqkK Hx>vn i>~;Κ":b @^qQM"wACTI}&mx7𺩪x=a!oJJ&';3! LvS/7.x%6NC!''K?n$#Z$1OoMgcg1=B/ul\Jf/snj5 fesLNEթft4f22"m܅:=AE?=>c@tBYUBuY.mWMHXg ]1m.;z߫'FZ-%%IEB>߭{pٟ6EE0AKO\2<)" ~36˝)Jl2ʳn;_&Gi]ֶ˿g1VО͙Q/E{ﲢ?j_vJJݹ9%:[Uo-b%!=!cz$Y==h\lgEJ2HUٖKɮw1V;kˣӞNFxȲcW6IGˢKo:M] ({\%xs#hz* /yqO:Fnn7Eu4;%/;y-oMFpڔ+y{oXfv8'GRwbs(S UC.Ie.ρUpFt4L83vr5މUs=zZ>a>M/_$fc?;Eu nP,!svr QEl~G`Tyk>V0V;z23(O^jV ^kZ"]1-f#rZi I ^_y}u ?tK}ѰcSc؆0]!/W,, m!J4)&M>k2pw$Vu<;*<)yY=6&EiCvL>a,%׍q΁Jܷ5D`oFHtH9eI>ߧPO(NSnAKW KGTg3SitDETHYe;jh4Q虃(IiظC%ܗ~&ʈЍΌS⒟g=֔]lG%~n w?i4˯2pKsnҤ أ ׶(`gTֹ60LYI1*1Z9aTD*C.MkshV)bgLUwOe^YYK8 D' 8talo a>Р -Ѵ hY#{;(a$᧑vn \sEs!I֒IAk*2}cq`0swke8Ixr1[pBFR$*7o]"'6Y'=7-wcΩ\qQOr*3g2X{&~G1keo-@bDatDC^$ӚY<Ȋ*gz6v>^Hs$RR"@vlg̺Q9EP6$Hr-hj}*3~$-% ^+|oQS}OM $EꞐ\:Prr\s5d$ڕv_rfԦ-$dR_ ##-dwFNG#B?ġeU0 ^oyBM!ýA+P̠J8%\CQ͊+[Ҏ)ʼwM$E qhbF!5 gLd8..T b~CLa3i5UOdu1eY >(5偐Mvh}F&j8HbW^^T~q0cF!tXؽ'n]^B6Z66OƱScF<6:(Sh -r|X0[S-lĴx[S,0H]^T^Aubű`f]DRc\@&Z;Xmٌ"Fœ3ptGEk~1-f<Az 9QTV1PޞYN_~o^1 &iDF7-N }dFS(1؞^7AǹQojPm(iz/cU'& gQsYtL8btuG!]0*Q Mms) u Ђ3osT2 ߐފ59{iS\L0v;~ KP^tW.D*;=oi!Y˜D.XT"&i%3z~pD8~V0܏W>ԸT.uI T~UbYz1GFE]D#W@zۯ/i3k4ݶKvs1Rs_%-?4,TDUVYCCaa4=TòWܙHjQ̳j{ˀ g%E}Gw%=8~_ДVI9Y;kyo$ܞkfbe*$ ʫqa"ړue: Yi",[/pԭN-ׇTxgz[̵lU.$[v:CC zOujiF;m yؚ"g$7":$z.6*i) l&|A?w7hӺL{ 3h{.lXĄr{YM)a{ Smmb1z,V4"k B e̦ "c@}Lڧ :@,*%2x`ǒRܷQ?*Yň=}CpEY >IeDxNKQ{8n >h׶cuՌN [HJEE:M-D>g[fn[A,]2m(b+<1ug tRlKw ZV4+)h< -]Mv~mPSָ5t4Q6`%vi8:EDOÉc6\7k0{m(wNw M}Jb]6i0jn  `h<>8i'm*]XܯM^!W6 M*h=Z:=G )eڞt'ט_($c"DaHA`iY/Hy'%*dօ=!EʌH/a#)h1:<*}m\{;h+=nHtae$U&bfVfe,޲zkp$$qi~~SlJjh=U=؈7: +! e ueB\![:Z5NC9NykG+aB!]|`.bC(]g$qʷ}L,)P"zaSaTx ܨ^oJlZGY&} ٥faY+Y̓A2~u JM c6,x4zdh10;PZˬhq%͛A{w s;\?w/H/\U9u Hf 6FyQX=.dR$x&>ϱ`y?e[Eoض3B{9KMLCh`bl MJ +nO<ݢ1dTv[$ʌ5K WZpZPXWI/ lqUlt LP9(͛b$e5m@\sj ݟ<# NHGҗKrWTy45:rnq!0tp6퉽ޢ\G5r歡,d hh&K2Y L+岔g87q:8ZsVA~ J% U)'z Ml[~Ӥ @Y\8bcPjlpi勡Cҙ#s BbAMfTL+JFYsؚc7e!{_&jH)3!˹&41c}хp.:N*0-VvS*5U<͍RRuR'Ԩ/WzZdjuLKx2 \ P:&Aq-2DCE0>ý˧:A*+(- -jͷT[TRy86pƘP:F*nST."4lZ{kvç;C(TۿYw6 !S8987t@"  <}.~1'tUW`}nB$~akwYTJ Gs{#  GJ3Y Iu4yZ=mTPWdk\'r1h{e >ySR|L R|,)l [Бuxrpn1[QM-yJVp:Ԓlt~_qQ7[eԻH0Qquz c}A/Awe5#Dw#dE&0g?q!)ZYƞ*7} m.~+-ׯVxDN5 6(>xQT?>!YӾ*FZkHꛢUER=8#i%ʼnn:;IuJ)ݑ";"?rٟ( \;2>yqE,wkb.YCG)wuw˦EE/ׯገT6ˈ\ǝ-v4W'?Hl뎼/9. ȋ-4f`W~"MƹbUmiVu6 &KF׌:KKp~|GŦnO$-`38 ekc6fU:+l413tSDx|_# `fhf/[E/$[\Kn}&,# _oA)ICԐc"ISP@q^Q$sֳqfI^)ڨ &*vĽi1ۙDGeYƼk CIkKkyiFy2(kҙTZ @O: U֓O-h+ N7{$r*dDž4*H%%6VbQQV:y1ɝ^ C,ƕԸ W0H/1uVqѬgFW8lˋ&lS*u2ܚ,YHs^\UE(8i]gJ%ps f瞷"<Ѣ4K`n̜cƦK榘r<)u1]13g?$x[։jJ~ jY `p/pˆfqWFطE.+#`]wi _CZDq'uV-~))u[nlѣ{Gr@Vn[cQ<L_kӑcfM["^GfW%j;&k]A@fz夰|o 8R8p[S3/ r5*[qNo!e$5J۬ Ũޥb:lR䥛7dlQh i_+z;2+7/ZD}5 35l3J @ {i5 ʦ&@R1&giW%UUOWL`)ZĮ*8ݵy\Ue^u;s? T1[5K,4>qTrxgTKLKsšcҡ²خmu8^nUUHļƣxm`9YINTѧ11u\Ӏ0 NblCيN+a2Xݴ*@ -*.NyɃK,<4<[XCrY1U7bՕ<<,&Ϸ:MTtdKҾ+6%'wV G{F'pNtUwXVPh'dr{'V[X}Ǒ$>ɟl̀7엋d ud6L~UK õ#ёG< @UC6~dXh(H r* 5zmˎùAYP iNfe55]rK#^k¦[Za^ $F.!U73hCj*2βhټI($ؖ!ɲ~Y3o5[ҴE`!wjԡy5Ѭ U(xq[hBQc/v~-=MŨz>P_Ux9R >\wz1)ʫI*`1iM?]RmRIC/ GGԇ!_X0߲g gNA9ٕ/rv RO%j4 SdI=C'y#eӀ$_r&Bݱr麉&%2ao];<˘xbIrJYɍ}Lv -J/VJ'x3ΧkuAoݛME,V*:N6Ey[7% *+:z\tX#,ĸ+<*.cC1/ n+HX$Z9)ӳS8]9ŠlB&܈"G6.C-1ɳ":5Y*ͳ-~+,͆%i6BL*[ČmZoq u?eŲRł=d_\Id<&Dl l$O?tKp fry{ƹVY/ロX  ^r,&Ku-qEL\EOFD#*X8V$^B=eH_[>rOB)_KC;996m#ԂcyST;NAʺdb=.8B5k$ F^k6Li K] 5^T Y+n}A^]j3xDuEP]n4`AQk_S[x-L2K1pXKd OK!|Zc"<+P59Cc`6~/f@ʐ!@ U:MQXWc6pKWR՘eTQPf~XU<+X)m<4M'Ns"XNT#"zng1" n%ɕTODnFE]巄BQϨdzy|\Q$.12\KHG|6Xٹk@ɸq9uC]OJ[t*3&#\p4+wA`ȤΨA Bb5R|1{mp S8;9[4V1Ko2 TĦH"JTDdk #? +Bjv-R{*BNǯ6[E15hGM*2$G\-y%\!눉(fN-$,h.ac4Mcae<. ZoobQ. Y>/la~w7I4ȫKs!nGa.cMj[yj Y{aEW?d_RDʾJi:&c[}_Z b</eyY*‘&H㑘B-iYF#L=0s{qIg LLu0^k*|08 qMq5,XpoG'v5Ԣǿ>h0cS8b%KKMʖ~[ˉ[Ĩ,|Z6x(kIE n ՛vSr`݁L-Eg{s FgZBVEIK9*HoY@rD䈻0fdbE|157Y5#Hnt%˕KZ+ 2Mk0Pc.4*PsmyA3efX۝rk@5 iha{1\^B8OJ;sKR*G1 #2e`| (=i> 8kZhE @G@6ŌlВG&)!+8m^€rsKc*fdOy04Tj #ZnܜKb.lE͕c(La*.8 giRY1hJ?" C&=.6/``J gl|bkFt_VAXgt(SABFT᮪|y8ό]򠰢U .1ҜAnQ*xzB]Ġ/Jґ_ r1A. 9[ht/7-KVFkIgNmRN"#lI"KDcI1 <_ZRRӍB#Ɏ$+iBf5PH޷hPUwk&!X :(KWivo<4'1|LsMDcڶFsG=`q)C[y)tϗ1mE<2c;x9{NKTPQyeŸt`G[{dV˙8q]fCh9ݔ3-rsEVH8r%R[4Lq3ñ1-Z9 hyPppJgr!/{0 p4T)HeS~!uE._Z2fá 5SOy]ƒ X]UI],R4`0i`XiKnkq65Lɥ-.ZRY_)ͽ2yh}Ѿ֫32}RVkaF,dE|.`psG{m7Y!GI4.f8R+4ErgCƔ Ub ۛyzvϮFW=:YJڎj{jFGym 1t% 6j"+ً~EeŁ{nl^8 OZ<` YcHhW|6'CU^<opyG"th&<>u)+B.4b,֦v,TGߎg`Yn`cbIe! '˒MP EnxBu VQ?s) wbdGgǸىt4QSvpD:E)LUPm]c_&'o+Z ;?6$ 1|gsJO5Xu[Z6ZYnA]g?:7D'Y}eIpe^`$`Btpug.Y'SMpD)75M,pJ;;rhLH1!^Wi{E۹No !+ݝOD<ܪLE(cIH/OIi 2DA,'+2HMYu>'E˵? 5~M?;T"˶>;KыZ~uA[_5qȞ|U#J'0٘R. 4NPE>dCʡ OQ䟭jr;qFk 9EcGXu]3,qW)0^}4S<^$T\E2kx  (:E:KW(mܼ PM.yntoifV؇,+GEOIX%YیM(B{+cZ/YCEm-;;c>(|gݑeOY[#v@,V42tF46%!&P؄VD\[:Z+2rаHq,(SE[Gz}s"Bgj6ѶGqcl0^YKcg Y#oNۦgLvZ4\a&kS􋙐>Ջ>6`|su=_a\4ȼal"A,3¢uϰO Ѥ{ ۮ r($ʖBX:5i jE9Op46AR3:X}_ .#e;<,[q3&ln=5A5(rV%lXudld b|fIyŦ֕SUi1=Tj߽GLpU8Xz„ 3Q!Mb?6Ab+hLmx@mn$rFbd%gE(v JQ<&F&2 )ܑlkh "~D/<*t.Eu[AH*n^dy4S*!Re`cG˝R0 ]Dњڰ.2AtOg )YgM+Nl\:v"(ޟ2@5#"M[^ビJ+ƫw /ȅOI)7%{= uI(J%{#Z2Qԁ _ז%vVk Vh!'KwՉM]QvfewBͼ0g(LNPs^1[5庽x@N)%K7ۂ36>e^*ڙKJÉ_o0iR"UvlS,j$ob$oU}fUQ]wпyfk"HM?VEto4L^OB m/vjT.}G_{8䘙[:։IDB)@VE<6ĐUFݰSf^ ZOkNJ)8zl|IFjvH}tVA*pDh(bty` -c D)>cfMMEXQs  O s[[=XN&һ"XōxvOJf@7l}4$(#|ܩi+ffvnʹqI.'H 9CL)SʯfI r,f|t'[YuR EGe:wmMJ<ݴ*Цjh/nx;0D)'&\ouυbDe2uĀ`r}'zRm|ɷ4h/B,3p{ކثMҋ_nqެBU(sX쓧&^ 721cXIۉSEmDĸx'],b=$2vNMv:_J:2,E3h B̽0i`jl:Ғ\048+,Q 1 M3ͦԔޥ\h2l Qd~3UQ[K z% XCT t$k)& GB*U;`~t ͊aHe4\;3Κ%C'K(H/\iՐٽߐ1[x] gzVn%Vj-,$~Nb-;/8nf2t,hT:. :cSn1KoRCB}tY%K4]4O4.n\@јeaiK]SQhG͙NEL0'c[OCJLb.)^uefEf4}ǔA_g~Xcj&p U'\&?Ƌ[KUMSy]K3E"Wuw%JHѝ[ut_Qn PĵUCm2NrB[ )<"u(j[LucbzrfXn>|D!3r4`qLz}؉֕Dd5#,3]6{ێd,lhd+{ >o)Y<՝5 Z3H_I$ngmGd$80&Ǣ9թpJܟpB"䛘o262| Y:CcxCJ"N3H*{$VfAnTU#9% AAGu*n9W_ EYKg_̈́!T{{'`!k>d_- ߑKx=L$~+l+1"a7j{SC}ˡ %Ng[$xm*՞[3s~q4k(tlWGWRu Σ>COSC$6{f/wQi6,]x(`٢s.˸1 kpԆ;=i7օ eW&vkcK-kezKC8ޑLyfnUްK2b<34;iMdnْ_<)7mba+lM/m.@_R?9묔 ka /gIѮ/N>wcnǠXUĄ|z*Y-3ҝrXDz,R'&M "":F4,_:u #:5K[\NΘBl0 wתaAƂs̬?KXh%EW5Ū$8/ʙ ;VrIKi<4 I4> A:ȯ\Dt1jQ#ÐSr fFnV*7ll|~ejYJ3z/3%zlʀ,mƜ͏d2Dg!,<3:1f 40f7SD1qŔܣ)"D[;p 4%ZJtтoFh$u3[?zri`W$Xf[zu*/_IEV\-T1.1]{6meW,lb0Ʈ Bc`ZOat9]Yhi;f>ӻG,31ue q%BR߭l4 ]·:c4~Ƭ{mƭ71i,vx@k ͍(~cc&HIV&ZJv=ȥ klSo fQi䀧 Xī`M {akZ cNiDWјnu;uJS[8v!Pk7!Pn]! Ue/J:\#@!|rE |IlAnlUPdVF;YgyPI)3ҩ_62/fSrșdyJ g8GWJ?paxri JՋ{V=g/{%IjG)#{˒wxY uN0 䧧pۻ3@FV>xR΅|Ʊ[?ܭƠd,} ^3Y#2n`<)߶hb#"eg-5 #h\grc 9pZUXrH2ƭe+jї[ldm"p*7e*7H攖vnB倌ʓJn8عt  \L _l*TđZ yFHɕE-JIP8f w5`wB a2ÎP#%gh/MAƦv T r/Z󴂺:)`GؗCfy b/ w{ꖊdŜ trJ8m"ފ$qU&ڃv+G83pL40xd<"M 'S0DbB?df5bg0-D#D&/<85qqAϮtLMox]%+:akkz"ZCq{N>#}9Йrȟ::OR^]L,/r0?h|{Aqv䈤5O`ym^KBKh "ޱ1[jVMSv;Ov9SG `wxKkH¿H!k[iu[ ǝX%򶪋ʬ)תxr\x<ĐZ쨕 ǭ+:-Ij,y] .啌/Vۘ7IԷ51)YӴ.JaghTWKX"7<;Nl? ;$52Sc4iWREyD8s`|&`': V96m.[vM(jܤ~mqy:q8{T>  i{L;eo3H z qXH2{.%TQQW* ^5`VN(*rf&m)or2um 'F"BRZ,@7\fAMS#UZvCQl'tvvhCLP)đ!ۆ;-r7R.IL s #ipKhqgxܔπ+4C*;.=ҚAXI)8"7n3`j@p1ۇPzH9147J\=ɣJ"W K*F!xDހ]ij =[C4U4Ϡ>򟚘 l[ ~g!v |a'Qwҁ:٭- [Gϗ 1~ݡ~$ c.PSf7rl(ȖB&v\ASfҁͦUc7)8QMW48H ΋RWL8^O93n#FF~F¦4NN829^FE(bА0f`t8`k^w] 7[+gVSeG׋]4ayz*dp+8Oe+'*J$K/o`(ggcW޸#zsNpgJc~"RL|=<QWWn/ zTBSWd[\JYJ-F6(K׈nYEgjb\7HG#NHLpM GWTwtg(Ֆ,7FX6tqN KNۯP3H9,EqY=k+LG'0L;fȿ7ϺS2$-/Ŗ|dz)=?1Ojlc|n+@~I4nɹHUK}aV>#'eb퍃pﴑ}?k=C&iJx1%b_)C b_J;fX"AwúK I de)E9TuVq78iHDr}j]sljt jm7ԋA=᭔ަ>ou_O3ݴ$c`cS;dwp\ӂL'rra˨_L :g4S*,s6>4n8pp9Q2=vhg쌻Dˋً9YeWÓ%danKK+E[/)Y '_~st>`V_pE0׀K& %M s e›1'%н1eA\eR$veZ*J6vRep%`5UT(6xx#Jy2Vy! gEϓ籹 &1B*z5Gǰ҄2MUrՠ;5|AzG17o\f%nFdݥw[m1%.^hi[;kX/@Uך㰮}S8F  y+1ĥȽk7R`%w/f:YWed/fl`@rҎ*AƋ>tpZ[Z`$vl7Ѯg$.l 8h"dim.z_0 3yP?%ǟhyцuQxQP? Y&D^F`axDΐE3&eݢ!]+l(ŪpWQX%t\O&mT1<݅moh]¶0 "\I19b+C*'% `L%My0xqa<_^kziɺdؘ X֪]cIi_P6k͖Ӣa>tJmc'.^_Y2Ӝ)[F1 b/NYybm(Et?dov̆]RgqE nweFk>쇏Qw~8w, k*:vdHҼX5Zdu %'"% /0^+B`3x5|PcF]&T#4 +@KNI:\o\s0D{12JvqV$qcy +&}_z+g--D< w|*3;3 UH9l7ҭM)a/c(#iɄ ^ %9P:1S֗N$#tme` { 4!Q_bT4|IP[)N[1\(PdRm5u KZR(; wf+`I,u1W(T쀚^R>ⳋxP-?}?aPѐ 9a!gL_5)=:m 7#RyUD$4PS9$, i~rnih 1WRaAS/il|o[U͘D;TtaؤVqҴ 9m录?~>9y;0R i͈uӜ uKx` -,~ڳjy_tJĦ?s\/ܜ6cqg`,t8<7to %N ֘D*sB8"c ɰEIfF5ӓ PDJWl'bn]X"yڼޛb@nd}|;7tep"c:EU?_\| !gl,Dc&'5cِ/,I<vE>Ykp:%&oascH tp`i!_;/r9 ֒pwᜨ i6OJ"'' 96kC1:FUI,h)Xސ!Y8dE*^r閂ZFBgts Z2_W5fKavx.a`El Gn8[C {P8"e8Kb8huO_pV#R @,e;w-5q8,XʚTa퐑Y 5mpIU1豎4jč9ڂ^DgѸ5^B9H7ܩED`v}׀qeɭ` +&fp+g4H3KVtE*-:`皅MF U6U0:4Cdjߋ>XB9o$p1( f 9;Zxe;@yLAӑe؇bIxLь,bsy!$apkRG %cGĥt/ȁ'i=/*" Z|}^16=z !^.M#.y9KCxlV( qw=E|qЯHnKvoq: Ǎw]S Mġ9W/')LX2f0Wʑݩ=r6jm4$$; dOSVgS-Ѕz>8y ="PA'*_kB!<аŠ 5΢S}koQIR,GH;wԵU6WC-Jt|wgc@+=#[S 9=GFqǏj<`Vt| w0}@MdV-܎ Mq,x߾*bf4\t;QH;B(Ofr(k&.1bCygǀ73|;1a8CENƇĬ 49kgE:v&lc'y!SOq?FN0{?R<,pxQ]۸T+ *{#>v!>`n gjjR6eJd؍gAr:To7^Ofi`L ]:6]*l\n:=a.zgjvkH:ɛI-#-HTLg"XKn4J0K8ʼ56נ뚮yQ6Gh&ZZG'2?,Phq 5'u`06}p)1E)ڙ5LbVNr DISсBKLbտ?ol?|t4~]d̸ߒv}.=4*?}9|VOG 0ϓg׺fYrz&3HGzџuĵ=րe҄gV4?ʩk9쫢~d*^O3w>1숗3FC4XZ]s!UѮgJSbaSͮih|}^[\ ]gPQ~еQ4(nʌIOԨwqfR΍עX`T`\^gY>,q{B;nv\Z%;׿/?ﮞ_}ǿ7o5lY,ʉ(}~_>oo?~?ݏMyG݂LV ?ۏ_ۿ??/??ſ?:>//~?Kv,ڏ ~G~{~o??-v0N?s硟:}˽1b|s˷{-6,{4y_ץ޹!_#G?kog|d{ bG_}~8Kh?}?>O@ʲ] o_A ɻߐ|= z_~>1[ϞS5I3 ]1pgk#ꤻ͢e=7<1_?}}}ǧs9nyo)j#\Yj;kzŵh_ U;ݤ{kYXw?S$v뺫ςצjmSMֺSk->.Yq^~-m ʯG簐)2:^RȺE"PГ;`Yϵ_+oS}gCX߲ix\i-pZ6:& j9Z׵Pmg]NzEKV׵01qzD5-f_'b3T]P30kMZ>׵ؽXO)f_}Mί4mjt^><}>l"ϻ xG< zywT<M4'T<[R>-K,ܲ4{]/-[Z"wlezlwzmwznr|fwEJ ܿkz9[~>P@ juO `o:8Gbs0n(yf"Cҋ y̶gWy,aLy͗BɈLe"A嵪S߁kBݣޯ?+zn.(oPlE/[~9FV(e@|5ǻѦKhdѾُCg CMLnZ ](C>4K*یg5|K\̀Zv}v'Qk!JO?} -H?Ld0߃d)w-Gx( E%p{ )Hl*䃇7&ۙ); i#c,0 LnEA{Nm6oΗ@HRxdwoH%|x /1-?luciѐI[%Cҷ%E!k$>*.#jp@y#I

;~(ettwY/tPkR'$?CcsWaxo.&S;S ȍ0p@Δ q5t,/ ndh6qIWqbjpS{42znEj·ӪwUl+Z;#b!4CVa<:@NoJWA2֎L>)#M&:[ٍ?&;_PoUٜCl􉞜Ϣ̀hL vsXwYTS&lI.7 4€۫|5썠:n9W[uWF5Ғd0B:^ 3=?uPȘkC ݅& Wl:LcHͨ$gc¸QC3封 " WWeJw_ aLό1FU`Fw4@S.k% #8FrJ=?Z'P|lM*C>"(CdaהRZov 꺊4*'&y>#PM׋kaaxZ5&z\5lҠiuT^d@smӞcCn,3Y8X6 uDðgO4LI~E͏ny6R%a5t3?M=P%(͎H/7ڋOwѵ\4j$4<Ѣ:D>29먧N`Sai9b>%ǠK)3 zc@;*.)bFL2NxgxnY kѮd|wT!nJɖwBkH X~htmߋhIGsvh/ %lbA(_ 9?6΃ق+&Nj P$7*B#Ucbmhۈ*gW<#D6|ud"j)~`]FK/`x2-m!\ "7DKSUa<ᄶ: jf 9& Y-;pW#b0?$w4mԝ n^ ~&t.00)U@el }dox>څJU'0PЅG^&_=bUho\.*r+c]` HzGڭıoH}9ۋbhYU܁CJ6&ƍ:?ß'9vJ`B #4} hdG@LUl} &Qt'˚OKǧz!rgǵ0Q۔2j3i"m71V,ThuFP+p_ǒG޺9R!*b,ؠX*:&ꎳ d+$^L?v˲1؇Zr5;jk "5|D XK0P䪺ٝ6G;+^[~umM@\wKV[JӮW5uX#Μ4HB23XgLqudt-C ٳp-j\OF, 'Jn@^'"D qSs0IdWeN՚d<}bqx/tŤ?][ټρc%@6FKcKQ$ MD^Gt$Q:\Bseg8M"78v$~s|U(uxk1 ƪH|n;3=z@j&y5s餛*ᤊkI"f; Syrh/UPv/.=jH mhPi%|+n?w8qwSUO~A=V{˄xǕ+Ăjf$UiwHz #KQug&si΢Ȭ\d?0kFƼrNx"hL~UEmد)f KF88q/s!R1᫡㐼uh(-aǶ.zOT. ա MM!L->Ti¢ϣ{xCg(Ss$"o*!?YHs:;7vVa+قV](s1^ ix v+@H+::M C-Qv7;"m7<$}1lP"6CXֵc۔&UC:^葦1S l?'MȡC[xq[:bB`% xot2j_ܐi܎u˥[Iz4yMnL :Nz5h/o5n;@#)y}gKHy;3n8F(Ӵ$anOsngRg7h%+@#EmS]3]KLℨ\e,MxUBܦ!3 ʨEx^5u vU3!''5J?X<!NTƞu'R%ޙ*~,g(+}cTO8del|5Ԉ6KX~\Ǔ.1iboAu8t1?@j>83hށ.4_XDsUUiuρxg $޸{)G{kȌn^'"  {UAxnGCox22#] ->-kLs/yw$vŽH1b?N`CGuD6~~31l*V^lwX^/s0* W2͚Y (|" FF`p$ ]-b R^>`*W\c;Iܝ)CAğ'kȿ9R k 5I,k5f`410VaTȲk=t/jVuMo/ H `9^mZQ|nꎇ ;>f5ɞpiŖ;n"f-ϐFokUX́y ߕ >Scp[%ϣ#Loh"1d[W=G=NO#D}a`KM1ycgGN`=7yJ 3+*d{`5wV8tB 7N}xש \yݢ6Dh86 '!(9ف"MQw:N$L:(t} ,,/~h^"xH6 ;툚 Gq8ōP܎:>g\ S }ͻft͇p" Usj- 11aw"8\.w[ةA5|US,$s|MA@q:Eu|Y, X '}߯~8Of c@*DLz5ᦡ@gGjf,<>~VM{8oH::W]HZXz=j$ҍeŏa5؈\՗9c"+ȿB<<ÔVd`'FM=Y2l&gc[%61mزhx(nVa0/Y{XCMlZg0ҝt'5:D0Цj$_8a 4}v q}+Q{ ZλO}xⓄpAi'ôIL][ G]U񌛜D-LK Ӌף*&FzǺ|~VmfVXgŧFJ EFΎjd_aQyVu13fF: Qd]IOJӲvPht1Fl[bS W+*ĖqDu'&1' |3 ` ƽt:vȀ0~DڕsUe*<do2IzGдѳ14'S%ۣ&$$U_Ɔas',M3GЫL&I'x:0d{1c,7n )TUxo]6L;!p޳*QZ[y\|\Pۍœ΀+E7Hӏq`~y zMD%]+mǤ@J fU4Gyj0V;ʗq;>KŤ#ʊ_eC(fGbƆǶEޣiТ'wQl3-X7 ئB]Xԭ4(N=ΞX]f<9 pȬGD :zu9X vXC5AFùIHL>%WA+Ar+wv.aZ-sث` ܅KNq*NL8c*8r 03ΧJfܚ Ճ_陽+^qsVݼ^6? 3SGT f0s>sN',[x4J%i6? ~J1`dDͪC3[+oIX5H9SUK;VUnTA SUxH*9.u"/ƴ\3chD|1QiJOo;Rsw;"rCzI8n Mdݾ98a]U#`sz?"wTl^(aM=;"fxl; v5/SZ;rwDB+C@6dFVI^b@MBoYt;oJO.)a1ui*.6SIl#a4<`|tZY5܆HBxdEghm k"䣉TgEީ<2= ix34@3U9{ǡew󹰥]ݨHg^"xs4E&g"XX에s0\; ]tK10,ruS/i0i?;;hb K7QD\&W(AKcoC Ea$t$ōL4Ĕ0.X'Г#k);'x2pd;r\WK)m"<'ǺWE"KUy6.jdqLrl͍ԇ!jB4wvϔGjS-pOdhB*i^{'mz40U(4:?< fxBJWٌ'w<K +yЭnS(v~"Wً]Gr%Kt,VIgV ϛγ4W0hF,qЀѕik\~9K?^2xeuXb2e>*u~~&7.JB&H5gEdNk[U|H8NffRg`D8s>}ypƔF / I6M'2M drIN7FR8u=jNLhGj~l<˦&5gCQ܇nq ko/$O5dOɐtAjSTs-*qS)Xǐ3/͞tȂ#}cr^ ̚s&Nw-D.tE _yWyIuE4Օ w븮t.},)OW_F屸 M(pWQ1bdO]4F0"+"!s(c7T2TDl\IF ^gDk1fٙ,[e0&lLdʜ{evG'L})'mgP:`(G31N"Mx6HmɠƽWدͷ#דXOL5ҼP{6F{{@ ͱoH^+=&LC^<)94Nw4-aگBtM1sNGؐV>*FhWOU@kWd͑= o9kr`ϒ}(\ՄzOnW @QTv׼X n|n.h2/A3D* UD ,sП^2aS*_tnHJdL?_X/.UL72 4B#45'Z&V/t3`w` q\Fc] ]T utt#a 3ݩnZ*AKyfo{u tnv\r +{W)Bڦ;t4T9v|֑E~K,RCWIg8i2m蕛? n̍a]qVieۑ8j` ͺloH⳦n+PY}y_5΃CL^Q݋Ot|LYYyA;Ep^סyP=k$35*(|)[01VMgG5ּ5 x;7g¤d =ՙs02ZgH]ifYPD~I@((T2Ч15{`4.!W 4+B< xU@vNU"=x&{:tp? Cq7g#ۤ5ٙߖat"8#-SF]DdR Fȕ %pў/K]vqg]EiM&yU)׋*-b$x ϴB$"C+>k)֎Y-3c!^HMNLBbZ6̎&o')ٚ1d;Ӹ;(MiJҌ<~!pRA1?#K|(e_ZEa tq򺎖ܼi^i$u$Q,7S6IzGmc<~XKs+.NW,|(WDg張doZe6c"ۄCX5M%o޹xdk8;[u7R/n\06 H1!8I#5CdL;jIk &~Q~}j7:A7 '%Wxa0#ؓU$J➳4w9[i)hmBja} PBOB"qua^5J;1hhWK/E٪ }(!/wTe5roVS0/qdFzvQnMùK5p$c1-~ϳ;ս5/qn%OM:s&QhԶUnNkjQ8|#bdN{T^RGЅ3ͣi2_壼6{ҳ1)"د~PT}dvQ=kn&E¾2BU4L{mmLؐ _g9; ]qQB*1)}nr* b4ߪ;Ӻ!Og\+ q½c͛m.,&<^'``eni4QdjoAЭclۈ@r9wObSkF&5HEs 8?PU%QQ0rС9)00rX9m1hb>Vv]ʸ`t@)T!c߷ :p؅96mxd|n&HHKh-\}^.[N ]R6k]HZ=úyv~J >&dc=qU&"tX;#)qJ7 1Tx\lu\,pFѓFfG [%zЬT׹47vȰGO̽eTp'!{|6G:+o g:gJƼSNF9"֬8qiGPE1''5FwjPd y!'  D\1._K M:[fܺ9ƒJghUٻ܆\y:F S~DA/?OtȰ^0RՉcP}riK)"\qagߑbxp()G")s!{_c0a#SH[^9MBӉ%o'{Cb<ߙQ?/v[>鰙W;p Ğ\^9U¥v򑈞+]GLt VC޹3eBvCwa,> ?Şz zn nmS$/"O&Ϫ4n/O ١ͪIGG[DAiEY t@at ]4hAK񐴷B<^r *JKORiV+nO6oAwȰ'uEr1|Zv/EiVygؾw)bcYOu]=9-fMs쑓.Se} dU"L&=c_,-ET|tY )%0fY*uz E, wٺpKK%ҔJ9OqN phudzumsjxlOfsvXw"Wide2MvkK {#_빚pNϴ6UfS =XlQ޽9ZZ˿zci;Vg;B;A%d oxO#ƃ̹?2fQsNbCU`yqQǠLZYZeUd*:j9)7v(xE 8^( yw iz$)w8@8 `I:`INÛEU[c4u6Y7 ;R[ʦK٣wprJ Tl[3Bk~.MYA8NpSєeOwet(qK9ù[lzGKfk3>L1Vw/AnR0kL YWe4^hO(; d@HU5?Pd &)96 }e(;#M\$r ,Ep[ôihے(gG3V,IdY3_(@Yk1}$&~"nrp.XQׂ꽵la,dmceSVلW^`RDbizTHW+8@J;l>eD32ۯ[CvqhOZɡ0d5PEw!/AMxʙ,,sd= `f -n@Kg]Vzh`y̫ nsQ}yDeOf!oM=Ƀ?Ac-O$/sNoC[[E%SͩSu<\(a,`yKV#xe[o pTY1 c<ŚxCD/Sb_6/ی &FMdX|r RV֪ 4ű°kpX-v1ed*ӞaA܋pkvɫ͈N* RFZƏ.?%xPKR4t,vo=2Mg18}E?!qS)Z[;|3<69g?jfgb 4^yHYYm m"F6qVQ3w$ꉮntiI'g:|$i[ʃI.fECrgsګ~,7׵[:j:o Ѽ"0KIhD/͛ck@.dvJ_vIOyV:$"uSM☊ ol&Cä xpXoS[*O:Nd%N;Z5=70ߞtnz{IBWC;Kҝ:aU7ԐBkضOʙCHl `])Ӈ{cǧ͐ a]@u}>PR,/Wc":Qeon:GNc)]~Rd0Ή04v;/QÜ:ڈUcr<]ߴHl^n?Ċˌ_?:-8pZ>#0iLJ ?R7MynMԻF~UXo(/:7spҝf*@)@w2tXʰ2=TK9rQ!L5,v/[rIT%Y>| $HM=QdCTY'90TK=Fw~D{hzގtNFJ.И~.iN<;dd7=ƑkFtlL X ab=Jd8-!O==CR+"nX}Dp~I/4X% Ee6\ؒ>Lt.󩨞aH W#UR6۵~p 6N59eNdT3_P"[C rsQ 2o$xD+M7]ݟ 'N ̓r6c3tc;zbziAw]-M,H#-] _tqY-t 4: o"]! 7 l U"4U̗7hI>pDBcc5#WUّOluk/N⯂;ҙqW|by^E!FT#ɨ̠39.sK(DX;>9wrW,Z2zﯫ8^&FvhÚ!?ژʭO4սEn(miipncCbOxv^Rbv9;K>DnB]Ƽ _\?rnG:L6چ{Oԇs5_=j9ydehWi/.;?k2``X a_/jbԗlLaNIVZ~z'Kfa;BU%l;3X+x+qS)v*$h yɢuw{h-Za>+H!;`ﱁQh f^X8vVlv]d3ӛֱOv#V̳ltm!Xzr^)|nLp.dIMu ݢ[T[0R;Vύ MTy8t]NբnGz f4^SHș׮٥dz6Yеv\/Ηm?5ҐWX_EeIijpy /Niu;ք)2ƟӜзԻ˜=V8@pMZސAppniN4gwŎ`jc`t S5Y6LF$n> 6:x +!'#*v|D2br,G}R3b N4?J>/ pYD #*.0pJh+xE# }`g :fNHVۦusi(72dܧJdw&[hu:\MEhVT#i^8J7SjA$"a]3[S!*oޯa̐s"JW &86E S)s%w<0Fyv:pf̱v:]LğKqr%Yp^BѢٿIa/B@>ag}<]rPCgQ {%7q.{Df.''ܮuoȧo Ê-^{CgC`խWG#hDjT]b9~g|]86тh| AMWs ?DU9&STMB#r<-2(!`J zFl9Q*9BqiZZC M.QdV첌ϴ1; jzTy[m#>4g~}Z$r. Yw#kGv91zy;S饵*zPX^NnFPP7Fr՗!2TBJ΁> ]$KEY[F@*>.S 'M P-6&(,8 ZPK(oR&s%ChB>X y{\K l-0"8MA\HFIrزu'+})8_ܟsp];ugҾ1;S.Gyj4ϋ *&=ϱBK kUlGEطr|2'td`jO0֟Ym> !l\:M3r+9+3"0<:jS[Z۝& WcJP+L^QדQ=؊Hf=1?@/7䰼ud,| ֿL$vERE%4`,Uuj:'r 'l􉔱#pfJK;)_H5x U5Vؔcj2PUNaqNXdd|dG!E&b`(#G{,CB:DTQ؊ˀ ۶Xfp7ةj)Kz ž3$;LpnRbz6dA3~9t¶jG 5Q/I#zŝ> U$LԸc `cQHZ׏VQ(5/f&$akœ>$\'GM(5rB\]X 2LIGZqgN=uXvOL5D|et_:/M :Ls h_iˋ$ EG:qڹȶeչE6j]dKv] DFSHc1<'u'3"k9w0,;E٦OUL鰺T-1,A:w Lh6$uZg'Z ڳaﻙ g._0ԔОR; rpVng "*0B#pwL.V=\' 5Z ,|. (]*zd5!$%A<>Ȟ;S`PEEF'44S<:C&R6P돚d2o?b+'ʡ&XowAD6.h)oFIپK"טβ$ PH l:>MT1^R=9籍ǚ_묬OAڶ=E w6y@/ޙbA~tgjj߷a2<fqsp7=&#M勾d 3ξѤU(D#@xPH$w!IpbV e^]oddmC^⨨-Q4"1%(Ka7!H^_q"k6~~ঢi^+n%I%Pš-紿̎`dy-2ǺB*LNy\:" )hLEDI,ſZ%7;/'M ::t0j$O <1Q,郦{q Sf S<:̆Hl 逭 D"j ' }1vڍ2 1=E,~TJK}8[;2x gwS-R JE#l䉛Ϩ1_ S-2؎aZqd3K+5zp oVSYH˻eFͳ  1fPl \4,mF*OCm3b|йX[#Z6 IT8hۓ@z9.GdໝA!m9@RAeJ~6aTI_ߨPFq "ڍ]>;!-e 88V[q=<PZt f CD*^ٸlz\-0t>jDl6^&`/S{}DŒR@̈LfZ*c2 ̒C4%K[ŸzhќO,)[EnG=t[T$AEF!ˆNT\albFשdӶ09v͙hŢ~fOجr Z\ ;aedt̻g`hcNY7'R|`ӭ5}sjs~GEv@Xlq>de+D,uKjVQc/E0Yi!kgU*ǧNj;z* ]>?SMq%gbb<..=EHA]lCom͟i3z[(*k:Z M+<WTԙӅ(f;6նct IbY%Z<#" -XyM}b{hʓ@w6>+-Q)! 9Am fY4xf:2\,Z\*{6o{T8ѲA^jfy7r WX*jUJOQ^aɍo"@UeZ8$λh΅'ޕ"L(}tSb/l(>`x[?sD9kO/9'e+/څ?E&dC7u !P[BZnG[Hewft&mk-_φBvWA[ș!_YQ Cl]1_i> [ɵ:1ƃEU!TvpYU[Ps^ /<E(KjY*D$U͹./e:3bM%! s2tc9ۭ|:p9l$ZH$;k@Ldy=fŐ6.F]ke,P&F42USgST K[~t&Tr#lG aҬ[@Y`Cez"UqFL:J{Z 8pUlf̩A4 =Sn&".akhNYKQIY`Li'], ü_AH (7!D1c(t2`8-tD#4淘 zj!Gf"Sc% [Q*RѷkX&rXn" Ru~{&cF 4G=ZҩFK=bU 8rqكv!v sm hG[. IBJ|~m-;E]/ [y$."N)D OgS|V {|1Vt٢Q7Kֆ^r(Dٿ+| ȃSKogaXx`)n,';ُ_'n_YEJSuªQc_:LHꫳ~8M5»]LGqof vF$kxJd˜mX]XAo[01nn*cɒԘ[*ۡ $Qˆc!U䜚&\8ܑohS!lw%)642wy_+a2!whù . vC|I_QDRfC+'̛<$EdU%hTq[;ݣ%v>UCG;y<t[ƤˣK¤آJd$cتmDဣ`M05n5F, BaIQ22֤ig{J})5ݩRW6 cj@6'hPR7!+[2wEcqgD C_epR糽!2NYhKTY?bՒ&+aOnDF<<(TH2Q6ךQv`\-jwV42kkF!jqK|̞ uI0rT+JCUOTJLW[PUtȱ"[VHr -b:&i:.F2k`h \4|1'*8{]IG9҂NM gd*ޙSЇDSpHDʦ85ǯ''Ki8¾:dCf tLo]fM U43\k#%FfQY]| AGoWCl1^ Aaac] †L[q`EDz6&X4s(6g^^`l -[Ϡ/~Qثkݾ#RE eۣsR3A%h@umC< p[hqު\9wj_VvmfT#8&Pxf%$oqixO*&,أF|I6m灳0ܒ+|FHOP.`o`ݔ_qԓ|zc6f(L4BUxGd) K:9'A/6QlAu=ǎ"㰛(h+ wR.֑r]/R!$'ۙNQ. j>Gn)y'ZG4$]aBI-(DY$`Z#A/ǔ!l8rR &\; u@o'I|&MvΛW"2T(D%#$J[P$4TIBc'5^Y.F&5\&NuLh[E{rD>HK?.ʍ~ G-K`KٶPUW+,W%j+P2bE2#<۟' a]tAƖhe.CՄpSsfjԮB#$V@;jBT_vhS萣 X@⮲EZq#BgQ0 9#8IG0ϩ'_u X.0m݊usv}Z1((/Zآ{(̄{kp +rpL%s|3 Ag9E4Fslt@/ȣc'Td968-Ů>: ᱲ]ɋq5% Хo~a(,jL~]aU*fHd[yXHt䨞<#GmP|s'ifiXjqth`2oqqyrv:8C3"@i<D!)lv5퀁 "$fbtq1e1ܗ|k1N$Ɛb~ekp~'I&dE1s\b=Q;eAT;vnHjӻԊHn'xSM]J:®sޅ1@[wvڟE*]\Q*eue_mu#=N 3 όߑn2*X7b,~1E1;|rQGvƂv- A#aҔk$}*GRQq;,gGlAf|:'/KcbHECӉ_%dyNt5!BK:#˧ʄ7jac+68m|u4:#LCƒԉ$VT u=G3փ\l>=w3sXȈjN h-,VfD;`;+4Zb-=H}Qى4ACƆq&<[23fSpx\;jqemֱ3;~Ov86%Fc' ɆDS()>csTfp6X`~5x:E&{6C[6M4ۯ*hlHVA{ :XhxVrtnRbv6< iRMJّh[u|p5ip7f-x<Ѯ)Ӷ?z %*lK\6kV2y6'fW9TۻF̸l*:^0)"ݝ&s9HT6OYȒrvGWvZ4瞛UzAJ#GxV [{L ĨLR^ƒE HZ쫓5 H bmsBD:WDmuI$Vec` L)p:eP[=Fp^j6[opCkIQMCmJˆ(;Bۼ6!r@7+&up1m8YTPa+ViVgsM_a$U%О_ȥ.a%4+3cc$cH_ú$l„ŇaTxؾ1mz$fmQ5}"R)@c}לI<$ӻG3VT#8 ',:4k}*:w; hq8 f.7Cv{ѦX-J<S3WOfF}hG&#=ȥerNuҐn|-'IOlG [!KqI>X¬z!f`A{ v8~O4 Cew5q}/UOOdo? /iqkdFT1m2˖$F,FX+4Ӣx$k9{, 9m@Y ^;WX35Hqtp{M@d~,iI R~5zG86M&V^TUˈnC52, Z+ZsQkw;DB1qN۸`^t9!tl`|A$̞1s3)إ.p&O73ϛ[k$=U.*f6[jd`j)c%iAE׿GD,nsiiwbnDxWtq Ny8 (<G#1GޠY(H:-ezUt mu2ӌCY.IDXy*5hjA.lt|ϨiuQǕ/cPMV HzlEtk(C4 t F=sd3c1R&Ia_3QDׯx(9.|;fœke'viHβNXk$~:$F܆B bFic^>V.M u^e"@&L1`oBQ+= :4WN[bzUJ]3 F}:y QDPU.- >@46nmy򢉐P8$ Od&VN#2jfQ8`Bi"Uo.s#o`@+5;IХB4Efΰ;c8#l{; `#3Tud V\)IfO]-IB$U=JC^Z2t&Iz(/([ =lrT]r^/ Ǔ Ks̲#d jF*"TVfrEOz96|0IK~::CvQZD27MjדA,c P$-s.f-l qoL[o?mZ^..{ 8.Ū'ILEh eZ\ DװA0p(kJ4 KːĀ3P">>BHB.$]ې%3|ÖcWZg x _ru]yjS}|׭d pC'"bzd\T?PCQwX2j^Ί~s$.-Ƃ>'4XdYo aUqE1ƼU-mv&nV0ɭa;$H_.3fΪ&0[he^= e }_csҸ|D(⧢v6b.u6Uۂfٸ*|AfP@$!Id]o$[#SS͆x'&ɫ B/trd(n(D<:Kpo}ʣB_żϣ]!JݵqggaOv*Njzh'#aU?NNܔId}q{Swj.$Y۶AmaG'$=[3!k\` Kߤ#p:Q0YsFs7ag:c'F4yӥB}=2MKL=q۔Xp,E2FyaOKd9XmFKㅭR{dž'7 Ez*aDXzLW$u6''#cG-hZ)/Ɓ>et]iKHBK^!G:1S J灑nߗqIW.P\G[z c}5DgP|#fA Y` <Sc|<ڑ'/,\b{#;m`GJإ V71*a]񄠶LsllgDQ,DjSE6Q@1`5on]+U+܂9IQC{|7'-)a XђEcŐ˥%pfi׮ f~G1=GGs!y]?7O_ǟ7O_o>~R⃔>O?;}]GZ^[}P:ߞܧal4zfz/'S?y^' '?YٟyO/*K}o/xX_?OH\hџٻ+ۼ7H�E?>'R y }_A<}˯@?'x+Y;g~K GߝGsaߝN]$ҳ_cg=ƿ<1oiD2U~6_)g\-:ˣ4E囝]R>{=dԫIIu{<]\kH.d:B[^]_kث1)C-V⯥zU;dv,::lE~w`Я3)ygZVWZ|SO{DpuQ;j#U~Kݝu>azTc5YTcЫd*(^ˬи\{jEN%pP\0{-gjg1^ZwG&ZO$O]+vjfk5Ҵ }WvfogGwZ?3GFH1UgQoZ?3~KyZ#޴~fRD " 7Y(^zY0#|߿Qߛ,3KO4>YЛϬAnZ?3bH{d`i̪$ { Mg6zM>i&1{3>{ڛϴV =\oZ?ly|^h܇{gɲX?K s`jɫX?+'L?쵼fz)gPacX?{I-lZ?ly|,^Yr{YIJ޵~V ᗏ fk1cjZ?+\ |,@Z?++Vw5z]gee޵~Vh+J9U4R]g/{YELk&ˡ۩#s'V⟅UO)/Xrb=󺞭jgkl-zE)Şl-z}J1R=ZTRy=RUͳu>XlO).gkG)Şl-*N)gkQtJb>R=ZjgkQ9WK)^'N6J(|R=)ŞQ5!O)Ni7B9^G)'R,{^G)ք>XmO)ք>XuO)Rb(<|)xJ&d)QyJ@6R;G)ŚJѧ;G)ŚkBb:Z?KR)t~b:j?KR)Ŧg)YMrO)T=RLGg)S)Ym^O)Uz=RLGg)sR_J.d)ź;G){J)Q{JsԞR'_JISbq>Xbq>XO)GSuO)GSuק)h|Jbq>X}O)>XuO)5yJ)brb=SxN)֣,|}bR,J(Fyx^sqR>ovoy_g=/80z}^S{L;=>P@OSO[}>X@OV.OSըO=X8bUԓ>f@O=PSV'O=[~9n@O=\՟=r@_MAyЧOhT't*ZU jf?~>]rF Q释_:O鷊ϧ+z~}J@ /?EC>&Pn4P_;j%_O?\~eD?]~}+N?^(%rF//gx@ JP>xC0{<>xE31*;xHV=%Y҃d7ޒj^ (COA9ьb.jϤ#AO;+Ό8c sLꦛ(!6N,-v v469<!`-ηgkwYcmi["O%qq߾TU&a.F5Q\-@<[;(]/3T3쉞XkL1WMA9C+*uE#f :Qx-J<ِC7@Mnθ/sAap5tQ<v,[dЈ.6&]Ȧ2g`!9KX[mAWg{&oYOeh?вƾ!_ފth fw5:8fl[;t)](T3IYyW2p'rD6|8'TZ+ѧJoCI2L:;8^Gi_J$ lJٰsH$j(#/""&iޜ5 vN6h.xf:Ztfp޷[|Iy(fdJǑ#{bWC2 ?¡Ix (6g V4W4,>l'v/i`8gUGzk(G8Wv+''JaťjOcgnu%R{1F3ܳjæm+n3(t js̉2,rAV.qt-̊zFP;&]Ton˞* aMn hN+'m+*xloR7wBC{5^oi}|ߡ޵5zr.x \FS#jݏ']ɪkձYߗ` ~s5²#r˫Yʾ66^vD8 <%isK tj+Y7̉ykVH5B $[\mW3*xmj]1О+׮>E Sp|V4g}Q1@&1~:bZu\ip8aa*0ɸFуiroVYY P4 .bQ.AQlBسYhG'|&MF/b\͕Iz]'kv!ώQNgp֍=9sWXUCE?7sqA'T@eU>a0eHQC} Lu)Vry{UV{ɡUAk'lU-:1`'*~J>V>OI J8132LJڵBNw٭+*7ֵ|Amo%[FCx +pI+\!O=F;$|rQ6eE L =vxB3_<Ϥsz]a`.8VN vT69aUt t 7B[NlUAs,.FQ&Pot _,R[c7oX(VnBPTKۉavt{cfBFké4> _v$m`3+ 젫yf7A4"PST,pD[kif4YT֨Fk*TipQԏE6M==KA<_-q`|b;цxy+clMiHp5O"1lX3 Z W GY(i a2MԊ,F3ɗ=Mp4t{[covۑLwxbb˲Mdv3dI#k*L<;a64+nfinmT5StզfDxGa6l"m,ըho_">N!C Sr"݈\ˆ2_څU_*'3 fk6+nfkO˰40C;=1'˘fc-{\7ѠJ ]\$}F.q`15щlˌ|U,F%E]Du4ΌeqV32u8_vPv٤8fm$1˧=0C.H6vF'x҆vSŕbR= TeEGuROO{N0&Cyc5.z׵E2j'$U<26L`:0M̪)iށ |gVxZUQ7E;aB[ >fHYZ(m$쎛UV S`t 3~>D RA] Юxj$_[:/`" agQ",y*+4$AF3G`ޮH;p vlRX.LVɟ̛,4^/ mv5um4r0J({1`VEU}z5MK~lQfG=_d=.ZE( @nGg].Jo򄥦q]ӱB٨wInY J@AIAPIs)hpG \ . :4UMROԹX!s= 6(ӓcv̖ g kEZȑrC-jEłk̀-\P+D*ĸj|ii&ʙggУS` ݣZ\'FŪ#ՓstG}#ItiNNtj4HQ}XgJ$2Y~WV0Άq%\o3On `q 0V? _¦ʜDI"TTOw?βf~໽]#|#rf+)N d7_p"A]#ׯhugtn>"G}Z6C-Дcr?M%ut#6t" )-JbYzGjT^qg7Nt.D&3[W5n֖g־$Pzd 6OYFE̼RbF;O) NnMVd G^+V1ιWM%8!j+f#þH\y`.Ss@3> G(.x ֛g%Y'J=Ń,AC6LdԐijClu21e8j42Y0|{{_Js[J|y[7ZPbax>VUt$tѥZ(07W:a|_ZQĝ*My(I\l`㲬#mI)vElGPPc^HHW =z٩$X! Bde T7r'Kg }#+-PN(8mr<"ȥT)#p4lfV3W &&#ܰb" @XtLƨN%idI|!V'!b z2:g:O+_acɄ[tL]&bh:#;gHRAB }&]c_ w:xE'H 44~HygIJ%5 Gwv5>UCѹ_T9tV&)dn`l1Bdie"]:PfGnGקI7+[5_KnEro$!_4w!_TbFZEw?hh3Cxb2؆uNm# @핧!Ʋgĉ V#YEQnHDS-bZBy >g(fK[ <ޙmydbNUϬ24`:~dEc84*)k(. |fLԭ.wύn)ZRK,LJA;W8噇Gu8ekhAbyyi7,v86顳- f0pc`iM<펍Po*HNO֝.fyhi7yCLVQ8 CIaiЂ}GHM8Yɍ*;"uv:&ޮZ?WgUT}t@hRam]<:pX1%pzc̛jC7/%nHӆv\Ϻо/5|`C y*5ֈ4pT/x s: 4儼: C( V+W$lAG|__e%]1LTq7q3=2Ps1-40wM++FyyPZҍ}%s;s0yv*ϝU@]G\߼TuHvstc8 zT+iOAxUSqkԮ&u5{1221D-a}܂rl#t-ȖF!u|BxcjYٲoW܁mRsQ;Ox9[I#?[ceRq0%a틍 vH8>u%YK,sc2'DGjiD' TjiZ/ % {7 FkBg ]S;ؔ2e1BH-}Pyͣ&C)T7P떉RZ)HgV 71Y& jVYߨ'#SMt عO+Bw0߮݋4v>n2}!b#j{0%/x5VhkV#9l%Wvw6́*RI]H?YGb} 8"T6oT%+HDgt-' _W!kϹuI2:݅j-7 ] ݯ#,CNC ghNvWrMÀca2UU=߽LP.ǥIѰF2W(m]&]wZуL#bO`F{Iw3tWmreC tM5*Hܳ1Ka*9B*яP6NB R5xLb U&u G(FU,XIul\|dQCvIfD NTŒ?m: :=4pI;aCNUCwP; i;a 4-HP[e$@V łn#+[c9؆x-nu -Aa'GB!ULw7}H2u]M\>ٳ>STd4vV 9d'n =Cn_GX'4pnzT͞44sD$OA_!M.=()λ¸ZY3``lh{aIp&euEXJ5V$".U0"J1g{"Eݟ+8ǍNIõ(nrs8??¥. ӟf,ս8OgwXtVwO)"Vjf|IdA0b,`iU>$)FX~'~qU#!l B΅;a`!{ U+ٳXmDBpUYe*9kvpooTDlpF Xk6X)('gE)tf`$eկ;)Q׸$"~UL94(+Iʑ~僆XZΕ"(Y9Qbؤ=;TԄH B/i37fw,2ɛ(S _W N1:`#]–5|#V9,:]GTAoﻏ}('CT_"z4`IŲO%p,Q""Q\N ghxHGJx,هFzE5h%_1}.?<1Jz!9_ZYr1X8+rsl\殈hyɄ[ҼtV@)i GҰ㨺>5_oj+;PⱆPK.E7. =H23t<s=e8,n\f"jt\1 9o4,{0JVGҵqEDE p>az%ǽ£^d _TJn%u I[N4Nd"0ۼ@l+yrݞ. :wؙΔ j/q$cԭ.1j&zťw_.=ZE'6.8>Nʸ?ORkf6_+ONz=~3O5X%́dh-&d|}dss s EQ1헌efjç*=Ҝڜj4Qyq|  14%.Y{6[gOidCk뭡#L*mㅞ6&\{ۧZ#Y1WN4)SBHv)r7dE H5u([t~006͹Y րQ/O20e,<ћ~Pv,`޷r`bC ڤ!|- O{&VzTO'mIyH@bhs?)`eC:y75q6%-C{$,E kgmZcֱ%[Vv=1:gMM5m8{0^ȢFrX6:u%狦1"Qb%b (rQWd!#n֫rjbanRh ؒR^U%*elFam $(3<<:[Rwc7`sS %.xyu@^ؤ]a3WiVC}ѱ\,O8\"9ԌQְr0S<ύH7Y|t[Hv:'yK頍Yܾ 溱\U@;R88dvRQ#$~+錓hiٰ+F bqlcmE%n^+=t&"fCaa3Fq×UM͠"~e;g]T[lp,"7O4[:ɓl|%?17A_rFhe/ʻu#d sҺeA6Fie 8"Ϧ3t"#!:iMUP$bd]7|uk"({޳LVQ(3C.*l8vLaZ4Yl8[(?קV,QT75NF V+;gKnȦk=Nފ%.H}$&*?.͂7T1*JY6.Mv滾gH> 3B_F+^^B})M/3y{S^Л̫haтC"HDࢉpM$FfGqr9V?eÐиC\0c>~4 uSv%W_:{bz%xhG2Ve. Z 5 P5Ȟ(ԲgIO祇J}fJzeLEB'zmڛ$/̎vZCf9#kLYYǐ[TJԉmLuD&: k:oN'.6C=v;9ej:دّ^1Ucv3A캬_epJfAg=XKL7R+.nCT%!b0!6pҠb{l[ ./'y%[LpqN itv,n5dk)?c_Q2$MD!e'ͺ,u⩤OUDGZ* J8Y)tDX 0E{들+:[BӌQZ4 " d}æ$@>ޠr71I̧eQ`0cHnT!w?vbjchͲoNJ)&s1Q-^xtf[yݫ`j6I1?Y|疗Ȣ)1 sFE>u@,nDFׇkʜlܥ+ݢu7~aOh94!46ox1KX8Fh|Xe4-fX4aLOΈ 7dFKRs)(|}UuĀ\[0 1-7фH*f%@]A9M[xdx0_b]HL%3|<d=/;c[bڟ?PEۊƋSs+S@t3[G'%MEAϭ}b`}f4lVhHzGcgb"c}5t hz ƟMyJ34TEEGu)h5Uu+Jw vSS.,ؾDbi=vhbMg5r$=[ȍv,v>^=mcZviE92-LqDvg'ci6 H^UǺ%-aW8K\?:yi ǭvYyВ8I[;ݼtH? 'R,Ӝzq-d~x܊* g7dh8nv <3 8yL&f9 wJ]:Fޢ6@&K21 l.FתH9.@85pjjތ q> }UیPeېȪS hj,'0pcQl7S/E?ւLCj%oTuur~ cd+HDS'@P2z}yqItWp!bd"+-\{5_gp>ret`UP4KZq 5CYg/kQ--b{'9$HʢR-A9Ce G(IO4,7 '71GaGv}3ݥT+hAL#ƹ99[+}mw*f`rJ͗zpvkA4)FL $WBQoZh34"[5٠ [*O(\ gHh?11T p+z h N꧌iPˈRe)  hJC6W-Ō0?/W|h0p(Wjl9+5+o2S\֐wjwrБl?YJ [tsx$d`>.(L.H &A0*^|$N MjeruOOCl;a3tj)"' C&EUql4N^2L:K۸\Lj~uokEC,"x2).14o6d?_GaGL xL=I:& xUIm ?(ƒ k}<8& nĵQyj Hf$% V}EIMkme*C%(\ےOY+sCC>n&F(G1.ZY Wb\v@Ȏo +hݰR'%h%ihC^^!S<kNB_̻uzN\"0dQc~fghW4C.K^F!N$,AT!hݱ?wQqeoalE $p.SqZ$67*=߼ɨ'I #h+buU%9Ě`=Χy>94fWa ֝2OX! =Ɏˆlh/յiOXJu/j#RSMBsӭ|#?ev‘&5|2^~"5 OPaF='4! 0ylet3N/80L:.4f[Dt k ;7b}#{g-:0+RI,QF V/j~bU$尴?Q`oؗUNıkJRV[Uq֖cD o2䆊!,tkRѓogŹLZ-ǃ'u6{XTtN44vyTm/:Ml]$> K.da2 jlxVB}^7 \@u4|~w~w/fe@=FCh-&`8?rqWǹ޾ړOh&4eV,\K&תSJ-GHZuO9[IiD:I4ڼ-xv޼x hPMYON3YO>:"s<+(N2~au^N~=F)T} Lxz_U󜌴N$\[2l^5݋Ož+ Bƶ`Uʀ(c!E>v9Ky L?vIRG0$HOMXJi0ybHaӺXd pq3ZTΡ_'dFcC̫ )cJu9tkHttXtuyjG<-uKT}]43(= <trtqօR>:A?9S5Td<'Nd&i)s0B>xdOz9?l_ABhZl[yw0%O]TZ-=}uSk< YH8ק\QܻfRvvYJ3yG|7֔޾}jG޳4?h8^՛Ml-Fqh a¡`K]t#)ڇf-^a,2zO*9s Ĕd^6N /IȒBzyeN' EADDgktXޑ1I8*sW4oj@ӖtNzg?^1[Xέ>ꎩ*jOF oQP~pBԨr sRxVA$HO.RJ' '; qsNSC~R@2YxM3}.P,[%-e:L8EL$6`ۗn+8=8GhURp^Aϴ( eO[bT]K;|)N DbGٲi)ỷ,@Aw>tKv<~vۖ H=X]m\iD~mZe>9uTWf}ZwN o@"*Þ bٓL#3&R#@ee)¦J@pq³dY*G ِDlޞ*tݽ[!h\ypnFM'!lv̻`RHMIta}&¶[S]iFp>'K#|*~ C1RRuf6ҞaIO 0^J:WMR\bؤo6YE `cϺ)>}o 4æWm`#̡A`띔ʭG $]ÄLŲkO=>? +u-9*5*46 c4 ,滲N(]O!NBϭ04-G0g@/CIGNx:߻&JjY}nb&oSNT Ph*p&Ḏ)+o:5&5J)u{'M ȔX:>Ivm9T$ ~塖[aP"935ԯ{5d~?ٿ'?T&)| UC"gtl̺)g.uoWmR`Iۂlo0> +҅KOŕTCƫΒD< ¹#]66ɳ-`w}`hQ ]6Cx;O̡fl*(Ω*g|1p+wN ] 9E4:yƪ!ÝuyV.yĠk|"TbޏivڈԤZ<;n2Yv4x_5myL0n%6yP%9Ix m}Z7 -ͻP/$'yݝea&-ʪ#7h/@-4]{?oD/? ݃G#vCI34%r?bʫҔ ûI82Ι>_3: A#zs;P vс0IHfYj1v)-"2Ztc D;҆/- 'Y9W,Vԕmsd~#;9r-uUTc͝;֌`5)l`fH&0Zn);eٹm&|dDCDLP8n(')+]E0zM&&[`>i"VpwABG Ҳ$Hz{%D5F.zgDS#f[+;:N]GOd5?gs1zɕI_l"!ٜY׿ֆH,20eoCrKe ~)۔35L,=X',Q0Rkd^PfWlZUhb)&~т9cٕIaqGB;:fJ.I)%Y S,}sIN9R52^isBtʹ [l P4ƙyv o2JwM4+ÊNRٴ&v)EQEny?kkAf88c1GU$Vg'y▤?^;-I\w`+t?ĻMN#U} );QDj\)gԸ(39҅z'L0"tKaK֓J&zeqr[+!ږa,ԥ=unvI+H2Qx>fW.Z$} Y1@E`Nv; 6Ul((6S KX.Ji ԥll  د5+=0QhB,]lQ65:L2H(ƴdiF0f\c_LVlS U2x]fF7ZpvNM")zة-1Dk}tW{RE!{o?2ݨ?QGY ӓ{6->QD\&d'JxGTD ̳7q.Dm b#*ZH7N\DsQAF$!ֻ0gJ6]iz:8[tK+&9JݓŃ^?PURX>| Qd~[<¨Tb7/#6gڮ:rƵDi2inh}y0CD5E^<֠XW4[%'%d q #^f`U%O;XYes} >5Ũ7^ZOf^pHni=*[H79i7tlx͌͐bsVN6،$~ry]yn4<DƺSy'jS70ȉ])eGcoʫ j5dxwVwHjD}~iB~!~$4HѢލ^G~zH1հ "PU@]jUc]D fLj~ׁ7=Ķa#&\3$ mV83"CioH902h 2qJr8iyLꔡ=eB~a82Pу Ӹbs`ƏJxT|е^k_2HmmlcyX )0 !/ĉlP&VSj0/Fh-$8pڟ]9{%ݜl_dE19L*["Q;f^>SFQ ;nx0jHtnNkiJۚ, {!KQI:r3fgT 'F;^NN];ίͱ uvx%\ rt2bM% N7~x;sbn_<Eɮ4=|4!$k]gvSH6 KKS4Pr"GGFۺ4c_0/v0Oj+`/v%4YdCԺ"GS7"G䘎`N'yQG)Xz_6 l&&^>J,'erY|F7e\c,W),6 s 71[+mY,Y:T,f8k 4p [9ם\c![raE}\022 \b6M7w&!m`OfCYє?8}UE2Oȩg 8*|eQH) כBXR!L 19U39FdpOlemَG6^ 'RAIҹy *ā}Ȗ%T=0?AX( peiDHvZ=4sbOiUATئ rBX)O|p1SUG%pJ YQfNICC2]k9j첎+'fML4zVR<"Nko*%l렕Zԃ[4ãplCW@TnpoNI)ݣ'l.I9"w}T?om:հ*/go諴c]3i;m\*xYV Apء u.1!A>i>hvr")<;&hfUnؐ_ ޑLT6)G0$˕UzY:+꘍]h96STMqZ%vl\?5E) }&9נhpޘ8Bzo 0Q2k^e A?4eQ9L H!/x䦴r ` [^tϰ,zGwyj<4 ?7|Wm9_tU-<<\Jo;{s)+Fs6MSp(2tGθ_HcOS ;\k!#nMu@ KT"Gڼo3H2(|4k9:l%V)5^ )-X1XpOa)wZJ6[Ğ-u"LLsxކoU2<%ia/0'L.픆v.ۺC.ˉ lIh[f7[Tmv>+d_u@6Шڥf!b.-MHy& "">uG!C"Me4ǂbJZwwQ7߃%%L*#,[yRrOb'U8] uCvcw ͆2WoleTDJy1ؿu;.A^X-USD0Q |4,T}_ã]8L2"|PӳJhGSj<*MA*Pw~=+voc3{XQe!  ǮQ*^[.9G)"_1*3YLsr Y#bւy3s0vae0&tg ")M Hdbp~oT{N2Z /-{US/ۗA"1P ;IGDc.6~5-v 1͇ sM_/Etxd˻ؼwʝjTg5P|3)e)&( ^5Aj}Rc+]-tfhCV"MH/ێyh-3MS~o{*sBsNVf>EZ7hN'(H1PZHi ~ܒ.v 9Q #bt_+oN**﷛R%keWԜ:b-CAq8$hlܜyL|V }D_[PdM="jEy?ym4|4c,9};R̆+X1 K [F^ͧpG'I0 ֩Y?裴u}klc0ͧWbQ#;=5&rL*XUhk֮M9Uu5(wtWOꡣ[ߝcS+c_=!q ɡ /_uP{⪖;Y8Uv5, 8 \G?_eC&cpbcf]2{0Y'P}/TNv;⦲0Dj~ HԜ.(|5lMsۊ+-PBv)GV.7Lh+tz7k!O˶.g99e#AbMKW273ջhåu/&{ݼE*urC <,~iq29RǁKv,QM~G"5155&t 2|/^X,e_lwne+W b :Xj{P:Y7޿2Z鍂$ Hg1gcyI˗kD76$(Rj˒ĥS#+qYnԃ~u\g+:UX"B א}!_(UEsFϓ F(29/ O4&(XMv }HtƎy(2#ϩo(|p)}7FJQl~3d>؆d+!FV:0H_硆Xg'S]s/<*7UMY1-^ ^o"ꢵr`E5aJ0?n>'F\9M 4<.9"ml4)ݡ|n{3!ѳZhB'0=jJ$xkۿ\̤S.B7=?UKGKfIz]`ɯQZU~v7qmeM՗*VO;JH}a3_ȧ<v@(DoqYlU1Dsu-+wLaiMn?bw@*ޓ`E@xVG%S)5_,O67LvaN(xFʉhmC~p2Tkv9x,@tu16btM^/ ~cR 62^Ao4>ɝTf=iVـY]8D 4&tҝ(ُy) T&,v2I3PٰRvY[Yg.gŦ֊NTqlt4D{k r;ҹY*ykȍ?ٱa/#e{d8MYy|٣f!QEܰ#&D/%߬k"#o6Fw\?vsGp4zx.W4$6gի= \ {y2 u H_?yx^6uF}GDdugOr l>6݃+Vj!K#ONcZўkcJASZ8nEdN%c*-A&4l'`)ݐҎvJl2Jtm}]΄sY[XC‚Gyd9)Lސo:T=R5mM7!>&rwLܱ]M3G>MR]Fߛ͖_B> c8vkE0RUڤS`} ~X|"m𦱐Gŵ N { +*[:'M8ɦ 97קbԳRҪ1[){\_jqMvb+:z͎&dŠ \(F +ۭ%nց(P^o sqiLLУ̺ Qk! `K79M}pV|ɓ2 ^ O;%I~l!5m܍9hT>oiV O87R#ZЊNLHS9toeb)G(ۤianm9U'HBo" \^rr(ϻ9SsJ>d[; я\ ezfJqNUhmm>R:NرǂU1]RYwtA肊s) |49j@񘥦O4:HuUߚ-$i ^Vْj:I905FޑiVmx`hy?(&G6_-ڽ)թdگ,OXۗ ns ۸,u]~ Tz4骜|׽چ&-z!u׉-B==$Q[jD*3}(u+{]6D) &9QEZrLYf;*A^Yؤůϫt--iA9НB* }>"wYbƀ0V쫴E݃n=4r܉b?r.x zo\Zn lW sL [V,JGmzSh@㺮۳jO`cpH׸8hROq$B&)N34Z% G% \ɠ=xnT4AJ^WѬ^D‡3v=,L]:%& CXۅ2u$y47=)aՌK+"}(tBw6ޖ Y٦7H$ƥ? ur|v%uJ5GH<[ziHuۜ%9[;If;~ț`9oaR?}V9c;fR6J`y v3t,Ap.0uU7%I+s DT;sn[U-RDP8=[oo5UL3YU0b%e(iIxW&]N:>"2n*4C GԏL+߱b` .Ѡ(ɩBnz*P#o$Q;گ5c;ȚH*.6XGBSD]v͝I]庄of,i6E'>w NXN-]&Tt̥CñFmfޱuڥH>*7 w(Pcz>CY'.!(yॗ׵uq#_ZST?@䦖5\fÁg(Hu_kzVB':n X`jD@`m#Ɂ@?Ka4qr4dU4{1^r@A {{S{ƺ)` RYÖ}Ŏ?9H-Dɽ>|,4@l5+b)np̻r *ơiW)= EtpX\HQjGCǒۓ-<Zcn3*͌ݦg ]b3BУU)WK +ta5C`L>s~0380=n+jb߶Ѝs[CD!%fu_EUaiǡlX^g>V[6G "b:DFh61aiMG6ja7obx $ X6@ c!h0#Y^tn|VŨe|kH\m'mS߻84` KDJ#fQHӒRB?+4m+n$9hs0we>%~hp$FNŢ[:7|ҝR2I[Nwh#=)ᾰ+G%޾T&N3];؆^cQ0h뗍X-#ba  \M =8wKL7ќ)㚌-%O5F}Z>YH:HA5v3 J!m̏+SKOu YFl44kqlSqߓ6+BÈcRS, Ȏ+h>.8~w"K%ݗ[G`[N\{1:)w|Z$WP6.Ct= VYePdI02ٲ֥&2n=A7qYIDؕq٘2ۉ};X&Up8ǰ=8^L&L MVnT!}R c~kヒvϣSea}yK"[#q:ҬtP9pf:-eD6{fgϿ\U> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 79 0 obj << /Length 500 /Filter /FlateDecode >> stream xڝTMo0+|)xުv֊[ڃ8,[pwlR ̅Dd6EA'>n42(P2X=|\L6I%qhQP>슪?l²_?v\_O4U=]#s1! g!2ɸLBEfPJ0"0`+|HRUHJ0elW:De儥M[CsNmSTMTU?NU߿d&Wm &H:Yc%2" ^IMElqrma!޶m%]e7mT []mh P6aci}: /c" u;^QӄSi@xusQaVpM0QPG?#,5f1u91vD+> /ExtGState << /GS1 83 0 R /GS257 84 0 R /GS258 85 0 R /GS259 86 0 R >>/ColorSpace << /sRGB 87 0 R >>>> /Length 50995 /Filter /FlateDecode >> stream x}Mlm\Z:?ll-Bfl `ϿKYyܞ}ne2Fd~뷿}ǿ/RzwUw>_ue?_GQ/>?<~'b|[+?p<*c\?QGZ?>?jz.vȻ}ǿ'}˿7HoY?_cG)#Ǐ||<~p} ӝ?bJq|r>~#o WzՐ s\#o돕XW"?G=}H_cfr; [Zl5w`c?`ToG֮0_)qnG~~'sn~:Ȏ-_v~mvmKe'Ԗs}6G?*g8?=~Q \&p~|k8QU^_5༾z,G)/: Ȳ+u5N8GG%e=x=t\nVhn:f%k0閬u(>`(Y=rD*5ZML8tp NN 8u QF~r 4MYttM'ܷ=ttM7eu8ax_o=پN|}{^6aO5=a'p{:6{v]4{n~U׽_]HxOgg`ݰ%*'v뒳Uc?.:{:v{Ožݞ~m==5]+z2牫l_מ=o6{nOنa ll~}= _xӞ7N%tzÞwteN\Þ~[tal <ž3 zbg͞p {nOt>'p EUr̷5<ݹ lm?so= og@g`,Ӱpq{!aBc= kx؜ݢw9fOYt.Xrg`gQÞ-^0\<`(Yq!;%6pwp{mix= /g^͞33p!y(.67wfO홛 l4<ݞ6{^nOc\ [0|Ml_f]t{cgA lL~?h lDA' |&]37pq{ni= 7gj͞33]M~ loAc'p{]ӱž-7O'OO߾?:|RYBY4 JD GU-0JXȪ{Ȫ 6J|#*IJxYdUKMFV ldUK FV <*? %UdՆ՝0U`Ꜭ`㜬ƷYȪmUU$U4UཛྷlY2 =$+Ypn:NMLU,Uqwp{8Ȫ3 žg:{:}dUCN\5\qU Þ#9Yx==Wx{,Q ;Y8xKU6p {c Yx=_Ȫ /' o'ɪ9_fO W ll 3ٳU=* x_oNV Þ%9Y=K<dAVx'g/ݞ7 [y>wa.Þe{ _cXρx8{ ~0_~c? ؏Nq wO͞y1@y2@y3y4y5@.y6=y7Ty8@dyy`y;@y<@y=y>@y?@}0}qr7`G\bWTcgLdwDe܇d/l94riuϧ~O#l´dӒ oLKV?2-ʴd3V{NK?4-yҴSӒGoMK>?f8dVsɰ&iN$_<3?nN$_HN?{`%C,5yzZy}_??5==>ܞLnfOK7%-ƗxiK?o nOQ >iNj3'w'7Gu8 xw_=E1xfb'O/'Sl|4W{~_+y';r`gSl/|4=;iEO;iU6{"|WD>mbM\yj/?YO l\tg`4\=ؒ 7=o16{{>gŸ|ρݞ3 <ž=8|V`w[y9 žݞ?c'+ <Þs;[>yj0a ˱]ఄ)pt¹ 1r)og@0|4.0qtqjt9rXx)"X./zO^^\LN6#6.v{TR gKG}@Mբ1K%qY [7|9bهX6e0A\m\wێڠIh׿vX OqsUq38ղL\)Cڦ}_Qe?0Hj% 'ב ',{aB’?[?wtC5~U$)9hލAlZ!|75%.da/ˉV6PCcW qsMnbs *ؼ^Cbb0_mKgfĬ|鬅YJ˽߷D2Q{ {d fT 8z+}.R5F4BE϶/޸4׾`*✯53[ۡJAob> Pu{tBFz}R _^mI>uT!M뢸9'v99B^m'޵Shvv 7(A" ]JɋIx._e]` 0p5_X,WR (ރI#xW $4|t Iɖp0on~_B.G{.]MZ.QYP7/D\3KxP5g[fVљl if{^$gwh_RE!ưdMү1;9.;mRA`Ry[h^XT94O);Kbj?u4dˈƪ$2iMS;^-E9lvL_u4.ǚW~ 1@[1@Z ley ms'me^qs"ᲾǑk4ڿY 8EͯIʟYB9Du{' -!{TUּ؃ENtP7S/6<jlA4*%yݡҵ<<7aQuf$nU5k& "Sn*^0-e}j Fe[aٍkzAHBrAgK- (4jh v-(.")F_G߂!_Z38:yg&,1UYܽU!fb!mBU] {c$\'62Xz.Kͤa7__g!e0O%l'i.\ܫjA2B%(c8Hɜϭ]DĆ삽˩ړsSuH"U)-n|P _⋆Aˎػ+g$IE|ܥAS2vm3pHJNȾV{ +52~U|f$YޡRZ]orǞ6m Eπyu@hrO6ALtnK7z^\G #yfoPS--P;3-. 9tS5AAb䯟 h1 湄m)Jr` Q)4M0 %^.^h"@py9tU_jf׃FU_rl$K/_mX4apFcb73fV>J y|o$~Q,i-DU7~b9jdTZeQ7ĩ?#"K^aIg! KL7+Fc$HN6p{jACZ" bc|Ts&Ga  ~4Vr}!ctA5:={ bի7\‡"s$\;cV\+ȈHLN&\R$}x&/}Rm.d H[]FcUDa[je] 4MU M>Pz,/3yrke|jnwzФ3(AAS݋O,3oq7O\TF6*n<ǫcK+o_jAkqFR\3S5xnoLQ+h KS0Ҁi3d$ёw u v%ԚdCnTT !)7XTnZC"I.U 4-iJ#a-l m"H"80 zwDˈZV=|cFRjWyq;MJWȓIG;\U c/unTqA>Oza@%hDIe!s1'oTR`栯-qp p^fJʗʯ}/EۺeJy'hx$d! |ifj7qdI uMD4ZDBc`IRaVmBzX3)/-YQ2?}m6^Vx-*2Z3`zIU% ,7=f g'@rQ!UbqL<;ŞwчƐZir4W^xV3RP Y $h^zҥEǞ>}cp7s jЪ r2hhiP 8o~q|Sf`wrYVQc~.&"Q+g jbjcn;1Y 㫉^;c5B n,־jVAmhwV1$m.AՅѓ*FfkCHM6CzZ! [t#>MƲVtZV?]d̽}{>~ށnZ KIEIq++=ʉbbnu'$˨ZVj>y(c7u8i4+ P-{`W$s.hj*t䌼,RsZ٭ba5u,)jv̇<2W_m(ER:6Fn\ ہf h4$(V jCnDsgr?Mhdq Y/! d/fݲ\zUFЛ)8++TDs JY4x j .-"7#)c.hAݚLA* )@q6c{'&ыzZ_#M R'ZXz1֟ Z2/:lD$|`m^%3 =2z^hd%[$:e14! wcY0w<x5C v=k?AݩP̏Aj_KƴNSш;2z t1 *^iYHѶQ*']A-|ڲMdzv1Qubifwu'Hth6 ~u46+ũݑgpZ<޼"fg{gŻN;,I/r86%&?z_$ : 1U] 4ؐWR t,pa^+"\ BVjb˾&| [tn#tb/t6 $m`1Gz;oYǺZiW"iCb$rՐPdn@#BEK1OH[Za^[̜Lb6rڊrLy{0tꭁ+ '@-TT~YY" N OgN(&F8(8+VŻϮcJDYFA|Z}i u❺hj j :j%ʤ$J <}l u$rKjBLh ` J>(6Ďc4Eebh+%vejPwV=k*M 17Q7M,+UGxkk<@EVZ$'ƇLiB]ͅk4_p6gQ3I &(`0hEd(& 'aի ipP{OwYd K"/- . uVQG,cS ~MqSn*poM&{N@qh-RuϒE'Ɨ8TG[n%c]ȅN5ּ,$sWK_j!r 4FRKh17'*zv\pA R&{$ˇO%pm&1PՠX)v C҂_rEf2Ynv`-+1'/|3<߼?a3jL͸rbܼ R-%.t'3(TKYTײswglz/4Z{7g̴zS_a"э>q ؄I/qa#jcҍb i-5zoܹӴC‚ݤ 7KtZr7mnh}6$M# X|Z81lVeݸ 4kBJJnHikҖ! +mхa6X2N64'f#>Tdκq`*oyoHwvLmT?),uxwpdIFRLi8='$mp!FLk25MbO:mtMGI ezv1Bőٸ u{oJrIzBYJ-7D@ԑitX5o(hy{EEwrDMpF?٨7Z# 64%Zb ʉafh7tDiC>1w>얼n6CG0ұ"aDd'IË,!Ι*+C dlv҆QK%PK {fGU.M{jJnϢFGƻC:Ce4ڞ1^GrFw! 8`'/ymVd}$~{ae,&5)ln=x# -$.d~)C)¹X:[ 췯1xx_iŀ-zƨ>`PzP- }-78iڂYv)7=u3@KBkL]@PF٘vTep:MumH&U q`IJ)!oI§J-D:v*yǤn5:ͳ-ݛZh-*YQqSK 6(e0Ӛ딞8"h}fBs?G5(o71ʮGvC4=\@F)2=JM.B8N+c/Aq8&HL=`h8٦(Ç$e}<$fS qMFNA6"2󇙤zltH- [У@B7hSA i&Ӕ5(7f *M,*h=̄W;mչ+iVLi<l_#mT{ٲ!<l(3é`Ƀ;.%m6b\(-\ћWо5*M꩚eZ@M~!Z'6gB@茭]}{5YStVTx+Rw::qM^.T+H~XiVSǸ-ߖI:G-"S s*ZЋ\tIӪ9um꺠Ş|]+|7@ 4d+kQHx< D]VhiߠtLՍvް6͞СP X ߂OH_9brmM`C<,=J75 ҮݼoĊ.FR%ҷD [w:TR1W]ͦSmCgjH9ox.]˜ɷ%ȼ3 _/;goqtxɊ덬 ṧZgJd+jU~!/H[]ȡh IO dgHNsedJg8 P#!:c~2^zڲ K3%Z]( 5vث,pf:H%tb Ŵ,|MQJ+n_tlR[=[I` ފdrx FtWE<$PdeQx 9UI?xBOPob /`CN&=I[G[;; wo*6I")>rqJ 874@<+v_60gLRa2Q'UI#XVӛwԿiegBBu)mގ &Z Y-7d$Fp3fN^?R+jez9NGAxk!k[*'&.WvpOG`U}wSD:p߹m #ĒGL}6QnMƋ|lz} }&% HɛԔ%ɰ_s+vDB39BxK]͛0 7STIܡ*QjGʁio}D1%Z黭?iC=+hqPJBz3:"mmxTCM2TGN@Tlkl]x#+T:XТ$0c).ͻ Fƈ'T1t-B ɿFOiȨNaWRXAe2+ڨ &>>f](Q(ޱ}l p3 3ؼU>NQ6B#ܨpT$ 2_tG%j'(aTIt:bn{RE{=ۡ}p:6F::=t5sd\7fZE3g-|ckZ;N 4:ot$7r2AQӦyKV ?P#(8ڣchu%7VLƵr&XjQ^x5M-.杄MH1RGˆʓbY̌épj_?0XwTe:FmqR6ASkIž+:&UhXQh1Tu"kpAx `D^.QByX;rdM[<љi,r1{A 7EKY.>QyrS(tNZ & 6ĤO7Qnn+a_啴}L6ogFpI Fko {T !ʎ6bڸDYnFi©[a i]b{΋:@6Gz70>ߺ] zˮ܈i*ZݶMc-R4w[.Zk1ET5 VTnO5 _VwZu7+u3'٩;bӷ&SMݛz1Q*[RдP1/CԻZ"U`OQDMY^n-j _$ٰlPr !m>uЖmk%x€8 }4t@ѠS O/t/\nB"\D`v:hjBtG^ۺK H3|p"v_Nkt%5}꯮ky毁XG۴!,8Vxt>4 e:D^N|Q)66 YTN JRm*+5S|ӊJVSN%:ism54,=LN?H;&s8 \PL`3t =eOz |@,l'Y[)okpIbV G%-PЅwXxh;dMʻVw'>Y+rk7Jg2dE{.1lTՆ(Q>Qf5,= {xc4 y0fPQIzaz 7L>FSR.sR7cl3NwN; xP"=DөM\u'm'㿷8hw2y1 uMotMؿ&/^yH./=h ~έC۟RllURhPN w?DWe?]J~g$.Sxfj13ҘZ{O%Hd+nϘ~*.䱯cSy;0PW%{xۧ v,rձUE߇߻4J~"G!Џl|ATL;TBuUHuþl?M4h[c(d.' [UG]+KK>^Y|\T5ZWa[/겭?z)FgEB\DUjQ*:O* FdoW<~/7oyoGzJ@rDJc˵'/n}?S?FGM.ǧyVz)Ӌdz÷s~> w*R:??{oݙek$Jצ©_o܏(-|\&=G?Ҵ%G ?UǏ4ȘG?"v0<yRձy?:9_G鿼5qOM ߱csu\0xvRG.0xOnm.s}MM6k |]Z6J W=1f('xg$ol/Wxrh`Nlչ)'^I֪u>l'nϺ u Q#k tP ps{6{Xfw{nfϪg#MjRul>L",4=a'p {g2aO,L'FubRt=qr/{ .'nfOu.nfO\i֪8'3LZ'P'4v{ pnϬ8=Kӱ3)aO`$[N<< ,t9sM{9Nܞy6{nOܞy6{nO홻O\}fhmku˞W =wSׯc'pv/8'(P5]#9홖a lL~e= /g`g+h _=OׯByO\u?ps{&]ݞ͞Gسv{ϰ'0j{NĨ?5(OlI/tܺ~ =v w>q=Y9nn+sӱ=tnad ܝ7<O,g?1r5'V!]/#=uJr{nfO%[)nfOuJW:1f_ׅCn[kO%k= /,ݞk {:v{Y^<]AO<xyMk}Żx=%Nl4ܞM 6{DN)K;)$„u mTWKغNu#}R]IuTWK:Nu5[9y5Z:6$a)j KTWKX I|R]-NuS9,T`|^P]-9%@uTv{UfdTQ]-R]-R]AUzbP]Zr꩹=jjnOPGFudԐQ]-cTWKFՅZ2jƨ.?Z1+Q]H>*1%Jj3%PNu©,gTWKB'uiՅO%Nuީ;BsZoP]B >.zO ܓ lTB'ՅIu!zR]TW`fk} =.:O+Q]mTB'ՅIu ȓB ՅIu!txR] TW`f <.O+ WIuR]k~k|S[f1 = 5aᠺ=.umpP]TRP] lTUTᠺ5=.Au}~P]͞zTW`ᠺ?FuuPyAu6 pP]=OTW lT"= wAuxGFum'Au6˞Ǩ9 \ž͞== xHÞTׁw9Q]:ةٜ2{ii=S[9bl/TׁFzgz=Wx==;u}>ϩ%x<Ϩ-Rzzs <Þ>NuxTc9DTׁ=u"uÞ8x=9x== oO;uy>ϩ.?? \K$5='1zM5|Nt_&OR )?u nOK%E/~_M{?>}7p"r"4ݷAB|D|EFG H|Jƿ2qf4iKV4~M__?7ro4~i|6{st?4)Ӥ$R+_Cؤc |YH uCؤm ҸfO nfOنN<ўᓈ#|S:񵁫- [ž9 ž<-|maxKj=- \ž͞O<8=v`W^j\y>y#87g|OjO.u0\ |UR||Z҅eإ -]\C:\^/ _o#_y`' {ϰc'{"_Þݞͥ/M^J|҇pvS`BNaOwس=ҍ+yOD~|=tpwiҧ&K[6)[{)(Jk';gz<O<]zN=ʼnqFQo` WM?Rݞ3%bMKlKˉKk)nnO[nO|);O@/{K= 3\V>J7sT/EalZ+t\[)=z{61G|YDۀIlI)dڧDo37⺿I@D3{utQ'. [NVD{%2&Q2yAQu]w9M-Tk +ފF`/7zy_zO-7+Q߈tS6S7Y RzͷD#(ߞܯ&y52wgW0zB4ցNg]Jtjo84YMe[Oíh"IH.dkзR6OE^n\ )qsʢB˜7*fׯ[5rk:JH@P(108lvK)z Al}۬ e 517G6(3Tމb#Ce}O`L2 X.`ׅGsɕwPIGZӉKBʭ2 b*r2WT.IzvĬ9AO]7ܐM aHouJ|]_MMI:j ch/Zrn @7ud#~UayG:u*;E(PcR|~|Lj=])W[GnjDtm*psSF`Ӭ3wkV1roPtඒYtf+ amb|*m:XU!A&I+icI, a3NwN6MF*^o+ 3H&mIZz*Ԫi߈6gW>*1/Ht?R"Ȑ>Mn=I0!.y%ah7"wAFkMrHEߔz7s/Ι0LB:Lc,@5Sgs)7pIlf@aqB)7-;(VxGږX ; 1̽Lև_ ~vAK°Bk2#\e}ΤJ]KR!U$ 'LzŦRNX ԕ ٩S?/'ͿbO-[Ѹǘ3M VN",N3 Š>ٺS%ܐ=mU4oFGot(gӜ͞iugaF4u:.P{S*>mLDr:SjQ(ɢ J[qvxkPZ;c_@ʣhOȒܑ r&{Ov@:J aWP PrWFΉt=hZD);IrI'rOM4ME._m$W,|ńЩѽiǢ;1~c&93O.tNUَ\w3>[b<<|B'i9loĄnq!AS0_߅vkFh^` 0394ʔg;c 쉱ZW1c٪\bl[6/<38 IlovQnf`˒LVٓG,\wkmrĒ sx@彬|݅xtw)a %YMO+H;#:eDhȇM[^V8mp &*mmDBͣf`Fd.:9j貪B3Jy zKAK.eET+L@8 =o7qF4KN=bcKFl@)CT'%MWܡpi^IjC؍ Ĉ DwfF("u#m҄o;t,-ayjىi}5]AaLWPn$ɞI@긦%sJ^# `B#W.Pصlow]qr73CdZ2U}9/ŇE=F>Oa,>P")SHYIu4*B}r3g.󢙇i%>[(/72Y%pTRݓ4NOTeQGuʛ=nѿ;AUsB/oV(ފg6CԜ(ad4 fjCYYilשW.2.wѼ >`.hQU]XܳErx_]ۣ6VQ߸XãLO!XҖNg,b UzӨ_'+Ȋ,,W!RE1d_]UKlr6#!FPeqJι7-cwȵcgg\˩p-h2ɯ<` [f 1KZIUܒQ# I70ϋkЊ {A'/D0;!Mv-*vNjE齏V_th5UGOqWZ*фȢi{mH{ĵs3j2[_,e aM6RV IJ 7z?ihiIƓd^E֘"H PdN,V]">ي16m{$c1H ^נB2*ΩGz6 Y NeQLŇ-F@|A ;1RjRo>vCs_iW`Z|U !4ޭb^8l8p/5ʍHV썹PYy & Cbm*_e^4)֞,;sxf }ܐܠJCy=3DuO{!ړ8߮| 5WXVsT{ xT4Zar%h߾qߩPyMmqڐ'* %L,czg7!*=xPSY6Xwj\2eO+.ͼw)TQ7òl5]F+C@Ș\BPuBF#>pnty+Rp/L5Jbk"Y=ڋ {UߍHV[@m ^ΜT Jѭ)ﹳ&h@3A+m9NF '$s>n-f4wDCƪHf)[++JLUWZwͷc.ztz"FXO‚|.0q;UiTܳNtS "J2wJw.1ůS/1/YVX _4{杒pdL|EGDmUӬhKh4M|;b2{UHEѩOt[Qim- {csV8;SᾆjA7 '䲍7"ݸN6tg:m<&f'LVeq:8Q*r^Uݨ#A䍚4^K`Yl~s8s]J}797zW'FUR fʌlkLp;椆};4nh^w_STL#Ћt2EjypE5T.x͜{֨jj.ZofmUA3(AфX5[teۚhy愛*P8VY)#'V233եxcy MpRoH+I=pT8`}=9tMa3CTs^P/P p3wVc BU-w e2y}ua&+C'k1/o$D]8mjʹH4p͚P,NQk#C-wd} ׌\vLnlۈXʅH j%H4 htMْ\,VH҆%֘$̍m/vN87YQiSPTZDq+]o b`iqt YB˜}ر! g6'm6΃☃dWEc*&շNJ*(&(H աgn&A36*pl k.dH}i{0m NP쨑+ {Sl[sxĦȼn)۷A嫼 [ \xbJu.#ӧ0Q<& j\cI95z4+ <8ۍL\YAAJ[ A4aB<譑)R}@ -€Ã돐fAyUyS h`W o55ǰO]':vuxַ2JfHh>1 Y'mU SIxѭ&a5؊֔Kn-u/ N߻[ᰗNNPfU:6 Ngm2My͙ͤIwȅFi X>ıNo#lk0C4ڰ_B!J+SEd.yA6w_T 8j#n ̗K8,"VMEjz;om-;yyg l7a=C+F)v:D,MOCŚXNVDҳ M3__!PKòbFi4˳]Vޝ#۬-lP1 E[m{_֒B*ޣ s; ob5&b+qUeu^ᴏmU6O7]*^MwNSO8DUazT *AAS$@vK`APQ)ǜdZ67Yvo/3.#X^uF2b}lAHb@ٹS鴠IAN˫]}XͮhVXYYTNZΦcXY)n lF(k2e(E4,E"<*؍comهZ1ш@e!"c{wUg]&aA7w %S[)91PA|S0;cF!W k$̐Oe8ntZozC?ލ>>M :tLؙ+,.>{欴4A̍Co.aк^$A*"%w"w>^#]߽7b:?j3Us\0fHjc'llQ/+_W l,(Z1Jccnlc'$w{>67PT{*N)ꒆV$?m𡗌M)+F,lHU-={fs^wMwSS=뾪c!y3yԩք1R;ZF7@{0}[6SOQ-龚b$J$gm曓!"eKwe/rr]n]n"Rl5rpˮ_?}ǿ/^^7HoYBzݲNFAt/^NoV_+:[n~G+jGq޿)]t[˝÷{~J/`R??{oeip?y?[VE?>qm־~1|HoJhď8>d#Uۅď8>~naĉ?`|<~@3{}_J6vpɶym4wJ?w{V=.H?wKwT}8~|yKwu K}F*?] n`+:Ƹf F%aU1'nTW5<{xyKB(=M)則=OYs'*}ǥw6{nnO=vbkkuBAaz 1Qs`LaOt% \Þ͞SoFd]O1swn dOlac6|6|= oւ͞+= g'|-3N\ܞ=Oo=P˞ggsO{ߚaOnOucž~;=[_譆kR'Ϗ*/Olcl~{= Og`'|ܞl~=A`wb*hq*ئB׮== g1aŎݞ+r_0>&V9^g+F(ŧl6{== 7g3p{ P0RhӉMqؔe <lj3Sc^pu{v{aOӞW?:'.~Ŕ^uRi-pbص[T.@00<1ATU*rbA'^<]:}a}`Wl}ݞ͞KSx7) x}Z2[ߪ7[ӱSoc'p{]1ݞ͞l\Pxo5ܩo͞ps{*)i=~ nOO]<loZk8=uV {:v{װg2naOTRy6r7Yoܞ͞Yogg`̺~== 7'+{< #T^*-;)x̆ݞ9G7GO(;d0xxix=Tܞ͞3 fOܞ3uO.Of_jneHǸt 'v{_aOOֶn$c+60Mn\>MixO˞WPvrb.=BZ 2ZluPWKXuPWKXZuAOZ%Z«%B1m,Z$u7$(%0ズZ"G%Byn_8B]-jGP*!#E(;ej)E%BMMrQ**O@?Z"C%B7̞_B]-Z %@'u7ßǦ?2uau2)EԅZP/uh e^B]f   uIJ1^φϿßu}uTPWKLU uZuԒPWKL uA@]=ŸH uTPWKLu]i}9 15#S/B]-1"el;urZb*D 3u=ԆPWKL]uԄP|'Zb*A؄iuԀP4Tu%PA u]v "t'CsB] %愺Z}Peꂸ.PWKOj i@]ßiҦ?}ĄRM߀ۋsl&u]Pױ/k :Pױ u~hE@]~ߠ.}.nPum@u:6.ڕ6.E@]oܠ.:6u{}.WnPױßu'uysM¾.:6@]^nM>PױOu}.:?ϻu'u>Pױßuu>PױuucK7vyuѮ. }cGV@[y:z{ށ/w* : }c.: :~{ށh uoԎԵOPR }.:lw@]H/hOpA]>PױßԵ&Ե\Pױ u>Pױ׾tsA]>Pױß]PuPu:Pױ uhҮnıOОO#u+ ; @Mn3#Mwn3?Kw+6 3A3?~p |@kÁ&M77o9yÉ@'ΫM|"͛Xȇ}?fӟoh!?B~3}p/8pS]>^'^3>_;_C"8v?xboxcxdxeωx،w񟈇񢈗񤈧񦈷ŸrDHxm'[Dv NP_vؙhKCNRzzϠ{3&56OPgovF)y%cӟ|ZG"e}G{lƿݞ֘ß[]#86yC|>Cz`GӚtuvo3'~Y.>e'h'֮ciֱcc?O)ufӟOkf>A|bҎ|v;z#|"lvB s[h>me:eMTS;u0&C&K$մnE!Eq˸e>e<,߰u UNG R)eMD>,qSWdW"jt}rPOO(Eb8Q*oAvd)3}&gLJN5B;B!>Ũ~ +>۟K޹ҳsulz( VZbl(jBR&[4D<`rRrœ)^|t@av*d@Ąm&21D*Kؘ"٥CAl96SuC|EA #6BԖZ@o*4ûSsMm vBT[R+R14`<;$~(#-r6M՚ %h+g0ܯ vP\t:蕥dQ\WAMP̅1xvΖ'3Z!E]8%ƖmF rt,Xu77 EW4G;6|m^kod 41OkZ!w֫kt,:&(&=E<^ fJ " h~#CtlSz`P1GΠؿkb69comQ`Y2OzPkr.}LUs Gd wyeC ZĨ]QZbmɈ蕃`&b>L|E2.GlytžAĪ3(~*9rMIt_LJ6xrMO'34+o|$ë׵@ah1%)E^-k TXujLJG7/wРurI.[ 㥡&Ou%lՉXU#YA cѰФʙk셤,'.#t6#{aA*P-25O-2PMNYdJ]=i$'aue%h PL2>z˱Vk/=$X?|1`bٸsS#)Ӱ{M D耱cPP9_HPe9nV։so1\Έl˥Pxz7)d6S^QJ}|h +uQnPzg!e:=Q$ՑvqH^_O#;ߕ, 8[z]>e{<=2؋-K~۔ Ar՟-QY<᱈5;69gS簈a U .!D F&^o%^N}* ^+PYQXtU1(#VB']EHt&,O(ui`H{Crx@)UĀt[%]?]WR1BTV䤢X'F/B:*J[aڅST_v&g^0:c6xRírUӿ-HIE]ZX5HI6Y)aa~eԴL vY3AՃٶ1ɬio_08EZ?uN8N@dԵj1D%~ڛOِ4mY]& @U,IdoaNQF#J𻸳%+Ϋ"*ݙu.A"eY9+<; 3xː-6< cfY9*&$RFc1] 9uo[?̻D(R HʂʜE5l,"AK!2^1](Ŝ#n HC=]&Fر*2vEH&;b5[{ڛB=@I*iqGxé layo6,vh.``}5XK%e<~NQ4g &$mys`"XW'iB2, CEȇ*:i[[W66fDsd*BCQ ov9 9"1Sܚ:U* Ri>NZtݱP5[F3>E [q`J.zk E']蘿"TgNaR^e|U4*B\߅MPf cLw eʖ޲unVIx^sb>dTh-@ @gO@_I޿ѦMV'?$o؁4'pU4ܼ~* h,P[Y\|])E fxmE$"U'tn b;)X4KV&6QFi֗|-4qTwC"MUp$ y"0?($e^~& [7&*'zfB9X#jmhΐk\})Zi!aLJ#r4RU rߵvK@˔WQPUs}dgHXW[20d[zH|('pL>޸K(heK[("9Ȝ[4SKQT!Q7 F$@Ji2fXu"ɓ ȥjv3җɏ6?^!nџzh\kגjh~/t9v1(5x7l[K]"Ztv&2LUQW~-@IH] ]K>+~Z$UsE?WUiT%gZt@PeBc(]yѕ`dn`GO9dhB'YY$]J{L !|SX@Sm*#U-ܚߑjl2\], G:w0mVq[}Dsr &m-x\֎ξd43U>anw-%WmQRML,]ZդrXjfPt|Gsjí>̤{mȱwy t=hlnovmsS:O _%Mӹ'R$c#sؖ i04)ц+41wMV U.#Hճ#RQtlX-#@}#2.hrmב ym-*(=w ƽa[D˓bItUnl6٣gUXNW|NI _g+IG`e.{?7ۈ}ET e9''Ȓdf_%U%i+Uyj ̏!;92+^9ADhH?3-RџUl 9:U5Ax! K8$2_6,`"F5%9u (||#ԬC?rړf +(&Z)-ӅpW*5ԛ3@4-lybQP4;XnYזRxΩ<Օ@MK>}Gl*I_9,U9P(Et~M&yCj>pD=avY먾?mfy47UɻVuO;BdS{QiJ]_\ A1 A0g:ȣףdƞg^/>M;e5dyD8ԓS!B^TdRn=%닳>(q>=Y ud-˖Tװ̫.ɉE8`CVF2up#!Sh4uJZ*U""՚\1lRz5 It5ubbxyz=j[*M)9#[m*/ʔ gU6DUEmWNYHl 5A=N.3,hF$rC(IrNvC{-KߠIiR1 NA7ܐ 4':2 cFU(ψ1id!t5lC*"hL % D%IRnP@nr|  Ԋl?l}vv~v<m^IEHy1pIj|v7* E-cN ٓho*0]|'? C~orw3Ryϵ (y'Ui4όPtM1)N  I 2)D7Pue _˸|a=F:-d d{=EɌFV ]}[됋̜N[l@., T$`>yk5fBM =1pM"7Nh78!:R ]6Y޼A77xE ;DC.p, `P5zb:} |QҐm~rq4 EXTҒ:h rkZ ʙ+I}۬5zWMYLy ],h*mZ#㗊d@YR%)ECޛz%MʻjA!Ԙ4E N-Z/]4UkR9?OhD[dbm ": AP1U^u8u$'C@[U8Zucd2_3ءKMX@jgt~CcR$SLK".WF=x ⬱p)dbkmI6da b"R"MxI7+T}f4,+TlHqPyc&uROݺc¶z2uSyjgܨi(!Nd}mNQP(d^9q/$s ~ǃ*{.nٵ*oŷ3P}P˒ G(tlLhCPZ CWY.zMZ,? BJNPYyˤNY2}VkhWU&5\mSfR5vDX ~7\de䢱-R.8[d&!S]ءQ$@5VMA|j;%P7$-i.eE0(1iψsL.Eta=.2P23I,V=n)yKt& *LdU=<@=4QŨ[98=)[a5K-z"'ɓJ-vf9l7 X&؊- ~Pty6Shz)QAE)f{!BIC 2tc2o0*ĶXGF&$m_*bՑFmOlR=;DJ>[y}I2$$6ind&2%DE{ЙO$U_ Rt Dҵ}kgVp(إةe"bPFAgNSg$[ N@v(9m\Oewaܫ5ٌ㒢J R;&$pCg-oMG:Ϝ%.Z0КUn8jjb{Ƀڡ iSVQ }f JLIqL mR`@̶?#([ odȶ'=l UKU3ڵ$y9h^*V=NaU^pn"'%y sZ|`S`[+Rur(KgEz$oiD tܞDŽYv dLaPG~I:D`mZ#&Jm혘 Wkf2Vl0%FP{Rk#4}%WCt˗5~wFu[( *'&֜K q_Ga\m26TQȜL/Nn Ѭs]@$ni-qw㭟8i<c˓7f ';0)|Zp19COgh+hH50oTmteԂɽ>n% 8m3[+'w Z`Duÿ }S5'Q,lo9'<= E!&^j~%9LicyՂ,63;߇ -uG9P$ ^Gt/?b/?k*Y(?~,_c'0zv+<9_|^mth?? i|6{{~{8)_xЁ=߼ׯ*y:z __\BlwQZ|tc{|ڷ2wI|lOhɪN9$?\>]B篮w4,)ՅU_;_ͥNo_^_s?//7VY\!:p%?yXG4XA90Wy2=0 l't}{5+-w^^%׽G\H.=^w۠[=2{λc m𧛏6=F^x^]nBn#t&zŸǦ?ig8aO9qٻmS/d +Tl.qeuB{=?g uvv퉮 껽.uvd1n}h.$ ßG 'ŸGMn˳[@zz'pw{]?/Oǟa?aD{׻ ˆĉ+o戣cg Kͦ?iOϻ'5]v vve4{ثm> Kl6дMf3gO9IOv;̴Gg%ǑY!w{yδB>'~Rnӟs3MK'mb_~¦Xmp/G]8W\6{nO+ylIıK ;w{ S>`^ݞn=>_nw ^z8vMZ=sl򠶿?ӄ*w ݞ|NOUr8ɤxv j/Ǟnqc_vz`Tx5ڠ_v=LßgJ3pcODž&BԛMf>_)nq;q-fg'\6I?i㆓-ßQ4nr7ﯯã ]=<#ǟa?rvv :.7G { qJB㰍`U:tlLcӟ<}K7jxٔ(٣F=lȶ56$+ŗ ػ?3'}6nvv>}Xc&IϻoAJ&w'sP/{?M:< ßNczA8{mh^6=W[5Hǟa?y {1=,R }?L/P.ʀԕ+z;PWvc'$TF+Ffr}A]'+tE+ueBUueBQu倚R'$tTŸJ6L((L'cʄv. ucsA]Z.\P }.@%Եhkuڸ(ズV@[] hPeE@%B .;GB] %BZ"4@uD(Pe'RB]wDOW=S ؄ZbNnS:ˮO愺.?DMnӟH u]6oSkB]C؜ԚPej4.cӟH u]v D*MuԙPe,"u&u;Jf6FJU@]w; H#&uv; {yzY/#JgzR/^;yl㿀6I;?iOctNGy#JgzM^6I{?az@ ovߘtM.\y ]thu/8ͦ?[5UK ovmE5n :_B7$Ÿ_:? }WuA*l>ofiaE邥x.n69>l8h}T({DK(,Q C|!JK7D$JW7D~|(JcaGl1.|[in1ݱY[/Fi-|3J7D|6JOQمCw!YZ]̿zlf(.Q=v  QZ>v gݱ3<#JNь<$JaGf'>c'({?Dfӟ:psۤ,GAMمC~o|5E86E86xE}!uxE-}'5E]}-&U/3&Tuڇ|"ڇztlRhӋt'C]uOWzulRhV]w=PhX|}gǦ?iCm;vy{ޡ;ݟwQhݱyuE;6{gS /?M.O3q;|"{>|^'.{fOv? ;i? Q^>?ȷ|q-F#RF| X?EA,K"(7IIwXdΉBJ6ت0ՑO U 1>Nk9i %؈aKpOm%yӆ3Sc6f)(b9LD/ "f-k)gwd蟹p.,oSo#3Rdp1?!o(e]M#,['KQ. -r>z6@ul_f0羕}!;JW:D9E)o,Rwruj.ʡ1[EZ^&REAE {Ahm37Z %) _=g/TE:B{J+?͋'QRsIݡ,PA;!G[4ۡBinI:v}K=ٓNE2$ 9JLAŧ2@fBʯ_vbߒEޕ8*/l9H "9_v1s5,fc6QM vR߶ $)BbUP3_<g7|*1SWS{_I.t9xjSPBYn`0_XX`A>cVnuqZ6:TWɑ3 68(ktc`~Ej] vj[v>(F0hNb ռbeb4T*d>.iY֡-yǴ'6z]2$,H4{~qB5^q9LZUv МFuV]`u~LRZR1[5{AeQwr*l3K.i+0򕅢 wL t Uc?6. bYf^T~bI}(2hBKF{o#U[NR (R\*xz϶zQI!>2|Vk쎁 Y` Lf7^D$RYYbmLbEb`O!,~~n&J9vUӥx&A!oI^}*[uW%dFQ=x"7y .r$،8Cyeg6sH]sKQ25|3 lD82,ט4h#s op4Icwk\ò⍁fS v[Ywbl Mg>9۾+7 S1e9IPL I[MXV}VQ+z9UP@-S-# M*J;l]Ndr}e-R7/+}WNMp s-QoaJ0dsh?,$z0Oy9O,}9 -)rE?BA搊&JxNtiO=к$PT5)Ui!gEU* +fS6ɧ!C~9R'ɏXLNdM_) SjAFSHE>lxJB[Fq,^NAS}>5KΖ3mdIw*1W֥0wH" )9YPM''gi6_IjF`.+O阔R޷>躮 2S2<r\lD :|u ʤjaBcvKQ]cyS֫L9Hܦbb掼l:1N,(b_1xe D?3] L:54S-oۏD[i߈s$lBɚnn>_[%pܺ{Q@#'Ӎn_riu͍$bctvA6|T݂[*y*!y=嬽E{0(ߦtV A@{q[.n`2F/!+Ur:$l|r ]ޖ',h=i20."7}Y*P1N$c> %ڑ,ڲr)[w3X-:f$s<"jGΦ!ݢ. _+ZoSFQYyr| J jDy$ ,j닩}41` ]rfuHk?;ɀ:?C^_%}+E4lu'XO1hnekY$J)ЬwJy}IrfMBXre0G*z'@6tʶ2)&Ⱥ Hf~} ͒5`{@= ڡ(l5\*ld,]\9* ԡawGT[nݝ4FNA%\V!,6'$ԪT$@Ԭ{9=.u2g 4{zJ0e5U1N4SONEsrx)iL T=IpN3G 3rҷdWe3]$p$QOM`58}_V^HŴ-|N P'BCAVdMq4` SI˸En;mb骺!G}@ڛˊk9-ƁYq)ZPt]a#E졜wVlF V.\klF"~e1YtVa>`rc$Kz,}j_f*})8A4io}I۩յw"Q}[PFd :6$LËG!Y3$qƖLz5@U@ dt&sZ}%r؉"~TzUrrF+ΒQ\1[a]S OVwQ'WV_(n,KfKEF~FWrGjch.W2#}d}M)3Lzҙ&̺TQ* {CH{t  Ta06ys69kTbƒÍe6a r pZљ+T,`fޤyL WNZ|f 'x5.| G|o9pe bPlehy޵RK2w*2uhC.^V@Py *ik>f0=&T?GN54`"T.P24c?r[Qu̻6 Es| * '|ߴ4s{' {#p6ON`ǔ9gB ^ JDnj3Qdh1DJꌥ4B2>)(SS9]oo @I*z $o 8(Do :t]*zp); kK:M4K %6,X :QR0d$_+:+8)gaUYM؞n $T!.TGS "~GBoB[JX$w9Fޮ[P$;<2$q(r';to]r5;偈$|4تw 7jlS-8H$7C>u\Hbr.5T]Zd$jw<ѐ/M%LYzO ( Ok,dG*hZz?Ѫ %v 7Im?{-[N EQWB 7N+bӡ %@%|jdL6Y֡uP ݘRO\.PJfɴkB=#_j(Ө[V^O2$oEK FfUoR֍ ˋAJ`Fd%T)-,馤RkAh*` $ S6Fѱh`k?K_e;%%R Nvg/?hxC:} \ T'x0n'NjLN'jĩaF|w_WޠT/iS%n$/ȷsoa2tqsMFkoI\B1v=B'>sZ!C]ﲅO/Jt_A9>vQv/6]a*u"&J eXmJ ݕdkPڿ$"X]cf3`"'jͽJJ+CvQPDϋ(KdU2I}#Mm9Y[-BΠ@zd F[$RJ\hЩ}vS$WAwp<l[]HKQ}45E6:~j8[d=-˪CX BTj :-*q!'7_2&4(HT!Y,8TMKHJ} UNPdod{V5I/Y*My^^ <֨@dD0UjC5 F} (D:4gzk_V{D-ֳD Qx"Gݵf0YU|U+lYc8 ׃ h%a24:iIhz@]hL)yfJƍibOY9e 'v%$C)q!-ZwE b> gxRL3hib6jm6yAZIH'.嬒~ѸvnM]zWK@Hb*2 :,46+$t,{i2I4EqA c|gԣ%-\NR78K.cʘ \zG RBZ9AKM EWbV~l.(:Փ_GUJR|B̳D`{Ч>hQXʑSPAV]+VvY!#h[SJ$,&5, <4nGQׂmȁ*ChH!//(Ƞ7M1Ǹ5$c x nL H:Bwbj`}ē;&AL,u ݹ%9|Y5KC 9j[CQ(2!ߪCOaو9E$RI!t7p25/6A:&= %>z6U\2(fIC.Eg d615u)U4I=Ȍ4e'~{AWAi<`|9; RCK&j)ck4#P5. u[>W?-XEweOZӜxPFղe`Ӱ4/~I q.{J!a ƭ݂Fѩ. =Iyݺ`8Np&*)QSm8,NGl~,ڸ WxPz:Pòz[v |(g+NDܹ :)`"{+Չ>с0\BuVҐ*@{_OtbOQr[( h SJLA"<\YjEnU27E9!Pֆ'҃*Ub'4c֕]Elڽ?I%6xCݬ')5WR*|GcR皫!0F؈uycuUӶrb4Eg%2OO:T+5h|DL21AL~~rY XؿR޲ܞVs t3.]yJzsJ1 ]v$ڌ];E3{0iݫL:wQi1kJEO1E "QZe"1&1=meov(Y)" }cm *B1s8[ҜS%e}> @0: rQ1&NNC βKZxܔg+L :UUn]f~W)9rCUOi{Q.`>:v-ķQr%^_d~.BKДx\ByZbWӳQWwd]ύ.]Ѥά6ջTw=2122Ex(* SUMEJd%T䢫dKD.kGX딋}@140ILIir!Nrc/-IH!.Cr!i"#4^3!F5H*~O"'- IDsz+j]eV456:"S\V^'`49,8MN} r*HW9j~*%ӊYqy c2yy2^STYqS9@6a bw'\dUVh^S@AVq[FQ*ۻeǽlDUB>[xrhRJ?32bGi2;*RwI?@:Uߵ*jN?$V}Z RhS͎ ?Ujd7X7S gg'Ƞj\qISvLRu;Ta_iw(! Ǐ MY_. 72V-Pm%P٪ylS,E]l;D} vJP/'wM6=ܜU6BpȺa[+nk@lҐhR;t ':>r9%or"I8p;RS! B;'1i ܥ o9trr0vhBX!,Gi]ɊA͙_H{GZ !`k[*S:G#$„w˹bv UMTmWd^m0)w[l]G(bD#W*9@lrF/IDчfֱt*kI 氁reZnJO!Hf݈R D[mؾ2@]PնUQ Er@CFf"TPߓYi< FyI!8Q IR?ӫUeQy&U!_to!x =AJZ܄@= grޫ0 Pl,adԓ1WɼY29٢$jަЩdҀmmSe?ҳ΍,JOZ]t~!;|0۷UGYɐAri~M΀uI_uYz\1:x;7y¢bUtU1AO>+3X %gl@koߠAo' u1fofՉ1I2YLPVgU}%7ɯ5{9zڔEAe^VHmfoԱCYі*:z =$h$Wm-k|]ZΧqhĔ>lF9(ɷBUvot9걻Ƭh VJ]R7 '%€"2GQ;J$}a\xً ԮZ[D M@[7ۨ Fz&Pƒ.i+!EUH@Aa]0kŪ {Sf.gVYaܗvqLU~莥n,]ag4]";C» ON'ctMS'HHaHs$XAGT|RӲu/KHm "x EZa* J#TɂAI9~_HTОbWG5RT-+g'TKRrW\F$ Z5F3J8d5!Ź]-oqԥ_ْx @"( l!-xͨ]֛-M"I,UZU){U ADxPQEY~.E}`Y#]=D^(HU%VJ6ũ"l)F%I&OrhK^t6$}tB>U8RbxU&v]~ȨN{ / ڷVFRS]b$R;FGN0@9H2S]OiiɛuޜBMjɍ@~ :b$(! &Y;!ztӗujYrLm̎I"J&e 2$ENK>fddf׳yh@{zrLZޖdG-м{,%D?!#?:!29pbm$YGO{X%p E89WyP{FWϷZXsȞlR"(@LF0v)Kx_;B7Н%zY2Q=@U0Mf8|ƈ 6;5? @f T̙e;AymsY1iE31K7*θJW"@ļ{hӻv?Qg{޾5J4<>siDaS FAխk`϶޾Snr%geM|{E[b#r I;؇f2XԪ Ȕ&L3^|;}7(jԐקv ^v͸>+HٟU轠}d ~W⍦ǯ}?w&m(o׿_kySh,o?~7}ek^x_~;zr;z7K endstream endobj 89 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 63 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/5t/8dfc_yl10yl9j91v2lc_jksc0000gn/T/RtmposLYxE/Rbuild2d0830c1263/effects/vignettes/figure/fig-contrived-2c-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 90 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 91 0 R/F3 92 0 R>> /ExtGState << /GS1 93 0 R /GS257 94 0 R /GS258 95 0 R /GS259 96 0 R >>/ColorSpace << /sRGB 97 0 R >>>> /Length 54464 /Filter /FlateDecode >> stream xݎtq$x=E^ ?$$$@t!g@TsW}=f_N,unFWU8߿_W?}K)??~#QǟW,W>yǟ/qcG^6{=0ˤ|yVI:>GMmnv/~_u|yǿ~ˏo?}_̏<?=8c룔oWzW8~_\_._W"뺆}ğ=ʑ??S:?H /ބ~շ/{c6gܿοfÖ,m9u~×_ඊ_/` /Z{(G+j?~/yoXosWmcvmKk^fr/Rע?WGѻ}~l pna6}xk?MU$ptfa/ֆe`O5mm}1(NL5}Q66ռT xe mXmY>afkņ}a816lS]W7VnS]-yZASM,5\XU3 jC;6\oᶥ[K/-/ҍkpan, ÅMkm?M5_>Ç٦v[>, Ý||=vVhM5X&tu ڸt{bˇtSS-,^waNL5m|ኹVxc}|VeMqKv+XmG +qmK?XÍSoc_čcU >xxɷk:6o z{x`>?2U|~sl.06 yk7|=q||nr6v;4 `.crY1ȗ˛1[z gAq|Yaܞ WװFM &6v'ae5X?n|cgmƴXn|cLy}_s̗s0_zv"5jq|nY_p<0|sp0\'ֳR亰!ۊ|Pƾ"0rx 惽 ^b ic؋H6ߤc5xB|ݼF^s`ma=5\mc=5\f^5"`/|Bo{ѫ--3c؋ki/.s^ܴ}`=7EDDۦxc>؋|=[kc1H1m {qp{115^bAm{qu-^\c[Ofz=9ư7a/.߮`>؋k0|5`/_dma/>} {qͅ6;6|<_B{1 ֳ^\^g:_J{q}=+zVڋkYi/.W'^\^|xb> j0Zo{q{жF{q9|z6ڋlh/g`/Vz6ڋgAAآk {q~^c؋3Fx`>؋+zv36XA{q9b'砽\@_A{q}={=4p8^b.{qy~Z86W^lwr5ٽư{b=' zNڋk9i/.}O}=셍}=EA_{acۋr0\c%cfs<1|k6^f9a>l1zn zn؋&s^ܰ6ܰ+[w=\ׂۋr>\c6(?h]##k^8^@ 6뾞=^kiply 曾׸%m=q|׳g؋r|n/Z4qv^"^cŢcB9,Ţֳ^׳^c6c'q| 1x|n/  (gumʱg0@׳^8@};z}Mױ m7<Ѳq){+[׸/s{Q1X>v{ac_N{2砽ƾx|=EkXA{|!s`/|4r{`/`8moZw et`U1 V,D*`!Uf"j/ VU' :}JT`UyU 3*^V."XՈN V1 aPU "C`UǙHXE(*DVuO<Xaf {1*n0V m'X5XK<*VMlQ}U{j~V1 OU`IU}Z8 V-'X Ј`UFX`Zx VmxVm613Um/ VmVmVm:SO *_*>*/*/|#*8V'xJ`U`U?VE`U?Ve`K` ܧ|UUU`B0`UGVx`U=`U&=`U**'X V|=#1'XոV5GU`Uz<*iziziU<`1j}w`aVg?`VVV ߁U}'X5|U}> qI`Aj}w`qVx?`VVV` = =`&X`&XvS$ <|#~%58U. Xu'X`UGV`V`Ufp`Ufp`Ufpp<*'V19`V19`V19`U |>^9Ry>6XU XU <X`*eU1`UV`UV`U'`U'`U'`U^Xi:`OV CU1X`U vX5x_X5nX5Ua `U<`s<VMa*\j V-sUeUeU"Xu!UwUwUwU/XEU`|>**|U=Vu&#)![z2p`hXE{x*Ve>?X`PU%O Vx>'XUJ<`U|UV1xXU*`Ujj|U-O V`U?Vx>'X:`V_<`U`U`UbUj Vx>'X(U#OjX5jVM>?XEU`hUjDj Vj Vj91}y^p/29s֣9z6hjl}t9Pg?9W{CݱGͱW9qڻdF dHSc%y:}I>/ &}c%g}cs}}u?Nrx徽$k"y#@;ɧE=S`|$O1Z {ɳLU&<3%"y%bǟ"y-";Ο}?o#ٹۋ$!o>jg<,>p'/t/ow>zxaE|x~;D<1O4so?Hc8dr3x͉<R "0ު$DXGW=E>%EOrp [ #_'F>琝9dhYCf>) J$F>+,4CCR9<qʦb>DD>0ҟ/,;'Bf|o~{9C'y^?e[^>`/#_;#Kn${܎TD 6E$'ʧ^"VS H_G۬7V868T8r #`:d~!wC:i$tVb@C'0Bé jCá }ʠE4\IAh$/RA}.H:F= \&ːȂD(,GsBB~ML &AN&]œL^r sIdnt{qNsȓܠdzAbIPXe"ڵѬ(&%\rA\J|.iM%){Kqe>%\o_ gןvxH﷟Zo3O:/tv jʀ}},0Ž?+S~WdN_cyoəCë9̝O_g"(y_ '# O=p^߱QB|f?5ˈ?] ^L&Ly_~vK@-Ŗ%P?Mܦ #b_CY7k\Xhb\w/`T8M^Q*]RAS^r:LnNnK&vܰ"[ 8e `w]Qx_IW>=8Zʼnkʳ|W)B jG>ǐʈ[~}޷##m|]y[)R\5 J^6@ziv{z}- uru3sřݮ8yiۼ 5;{?tݭLDo q_p e la]_C[\YP򁠙Uq/L @ϓ{ŒK(<ChhmO=P"։`wGC:]kt$u~(ūOmLjS {R.KMmbVyCٮHӐ[:I VYk[֪zr̚AL}]%A-EHpY*rUo v8aN6_<+svdۖe^kXN`vC9 n,C92_PQ9ÓHr; -=lPsc"= #H,V=w3MʮY |Zmۼ[m .j$K[FvK|nSgB~8uv)"ڬn2_y=q]YzJJ }S;;q"Y b){ ¾XĞ5ؑlv"4CmًJKb:*ankc}\ڗxԓTmw4)UJ t#NCLkO}UXtZgc1֢%K",jd9 6!#6*D_[,bw] . (Iۍ=n@j#ݎ aI*xy)i9a&rj2Vx_ŷF&V!eg3=GYY߱++i8L퐡9=aGp/`YPI@OTBSNseD걮wźb0Ro[j$o[sAa"Cٝ5\]"+!ꂤ zrK)vj^TNxuV]J6y&W@lBRE$|4BpZS zgx-p7Vy#~m},IU_-dasJNX|m oLP ߱E ({wF2(]E9Nw ul}OYHl۪p$%UYGI Zp FXNqO b-&B%‡9;"uT@2 ^JU ZXa,J͔CSK*|%y{`yMDEKR۱Pa<'mpep{^RK™!y~&u=Rp%A ЪM2(1 `Ilu–okQga“;~V[q!aSe7+<[@[ɫ18K)#ᒤq3 SdQ0_k<Լ؀y1N<-S 17t CrT|P)DݑjT]BR옝ܷ4,HxZ*qo Ů_WDݙtU2A,0Vy`d$렒Nyr3.IrGuR  ߬ӣ$y"*ˀsiu@k,YX꘮WdFjȜץ?Uo\ KYBeiˈ̅e@-0ے;˲ D(`aB0Ԛ2OJ@eUj9 s66  J+^@Y ǝ 0jIbZ)J0tʧ[r*7+EK)2U!]<lnrٳ[N LPw[U'dę[ &HY'>ip*!~$wɃz0ېV @K=hI u,FkAdHǠF=*@ps2b92hqmQ?Ӑh1񨱡 |!KP3Jq F{<%X[ln L`a*D,x|>" BSW0Z7OE>|VIF]"R+@Ho"7ZGşS -JfN_t~E+(E酊1.H$*]aYxeYmnYo4Nt [QFҖP۸4w}%hn#E Ef]&QZv1>(ͪ<$\+S@8aHBTUէy=5TU!Gƻ7.v+~)'1(kf>&nke3`ff2R؊LIl,ʊ\2;:y[+ۖPrXld~%yPsύ@A]1k\~Z *K$aTy07PjD'# XdHHƒ`7]2=rBH!ˉ`ro \KZveY嫳) jL;QEaȃIҲ@rtR,Pۛx)%7AJnq\XӸ2Ғo/AMGTPZ:ːP{qcUvG]ub2gOUh(MILݮ!57nɼ3#/:̑ӰRB oY.:lvx%ٙ*Ng:ڡx:  \VB ݆ B`eTh~`suwﲬ~zK̚/&5W?eB/^R ./90MYCHغdkmdD@Չ|4ai3IHPUw,S52+nij6oJ2t h ͭu\~-YF),aQAՖ顋Wd&UDL$ 6xx{B-RZg n鲰D!v#Z*GS*||HɛN5qz?(8`lئ%bnKA ^?tx"]2;̠UV)D { \V,aB)*Tt6ĀWZ|&e]3?Sv!C-]Us.\#Qx82vkP=E G3]\D;JS۳ LEJ`?!+2t) h_T] 5l]k32z;Gk`L[, -{*6A JV(=o-I $nVSv{gHFm.q|!>0kHKIBLP(7Ef%Yc=Z7>4ӽC+k;޵GH&ˀt4뻾ZP/$/ZOjԩN/$?Ez͎M1YiO3`KrAahM v^YY!gV ,,kHk]}KJIAV>tT]Η!>kVG-3E7b@+OUn_a?V-ke[BG67W?c1'@V^3) Gg%ep6Yf!%%Q6+"%ҁ޿*Do 2*ta: XQ.b7mEb`k* nӯznA]Y妈7/G$ HubG?m'YR4'_?Ld8Zf_Ng3_N9+Dq,jI k+h~X)yi=p ;K4]z|yJ/LH|-UvS4j}W?̪M$Y9ٗFMKڸ N?]WWKRzNPVkt6nuj MՋZǺ[/ >##͘uq%Z`[%PZj m3fS|D4  = 3A>j) *l,ߎK;&j5o.QH l0I <: 2q7dUfM Z|!5Y|cFs3{%Ⱦ]k_bǤ93微;E"hzlbxP)4aT 4|T&6Rؗmpd6lke .;Sa/<xQYW%%-cA,C65 ;kH٘kSFIs\;E׺O@uÂJ]!^l{ ! *C6qϡ *,*!LlĸGxیGߓW[gRtC$ք7Udۘ#"GyN*4)lGe4*P420م\ V*AhQ/SD ?3˲9DPlSץK!9[ QK.*hWd4 ْe7h?IfNJхIjER; 9SweV}re1CQ. AJBq (&F;IjM\Oh;u9JHZx]2_ÞY2#6E%4FB =ndSTX( PI|A!ƔC#Qe`[S[fY;|o Dõ^-jRN@ХbN?BUYd"<% V΀.I$n2NZ )4 'V$}hߠX.V;e7)Zxv]@;& m`"h9 H6Z<]!l MGYKtgVl{!Ț:dZҚLg)5 KxCv·Ƹ\%K_2Cj][% qAʺiE-(z03xFKBt%Wp]Ff~H/k(Q갗xy5)/hz׷Ä䊯]md+@m-x,ŔrYJ=9SVsK~hRTr(*eJgj,2 FHaU6u,# zmpU`DIR'ϔ&#ߝM7j+1 l4^lKq0"nu;mkfQ\uB?pJ׋RĦZoR4}4CҴu!~M'DU׍c``|Pē `%@~/j hNO' -6?G 7M~e[*׻OPC%~ށ\h%w/B՟GtgEL׆qZ팊y}rVO_ҽG5|BLkjU|>&OZ [OWdL{\ 7mv2wow__o~O;ENQo/o-}.RGM%v }>,}>[Od_~2oz76}_|!\9;*=^~7?xJ?=?/?__(ˍ|ُV *O?=bq}<<:_+ _W2~Wb+R'޾G_>5Ny[Gqܺ;Ǐx'7$_mW.l泹ˡ_;}t~×_._~ɻ]v-e>Y@Vr6~YeXXo9<:%2+Qqe|NJ~#pf|\u<6p[<)7 }<#Yu| 90_:|#RM|>+ŲBSƣ]P/tNm0\)$oB ! *N1ˠ4i|, pNB`Q,xQ S$# wxId22tťm :itFhk,'}= 1z|P7 3Z@C0ޘFf,2e`Bj| F_c؋^e^l gBn/lL=x5e熽0>n/lT{QrW5^7x*S@)T`/l1|Md7^ؘDƞͰ5X3E(Ьn1f {QX3셍gW(ĵ^ ؋\b0|(f{Q˫fޭ6 n|=+E-)|Uҭj19j1칽 ADmQl)60@e%V6^3Ak|xp{Qm#a19ޘE~Q1}On/jmQVֱ tC6^N|@m :`/j'E;ګ±yO؋JnPepZZ'ECaX\eEkm gE{ѐFQ64O뢽(O{AzI] ^H`<f^AӨnڋ(`^\nS%u^ts^b lcd[ _ޣ'+E'1^!yJ h/I}E؋Np%^67dڋDv *L{1L{A}ua02PzxL(B{1vF^ (mJ{a6^L^jbmz1ڵ9bm t$[F{1{ya/&zӳ10h/Z8`/&[+4`/&*ҺlY~օ~>hn^:c]#c|GbH<^,(>f A*b5^bw`ci_#rt7a/!^lmbSPs^vD|1DMۤ=DYa/6m^lۢE{-ڋk<1ņZzF}~k }ڂh6EK9=^x&EKPhچ| a/l^c=7EKB_Y%H{Ѩ셍ݬc>H{aM7/'H-%؋Ƌ&49vVh9v2}ϰ6P$'1^ob>h  ^4U{( 셍N EY`/l ۋV51\-dǾ1 {_ ݧl^a/ZAI曘ugWc6ޘ׋|?}a5_.nuqk`)<сxW*6uՀuՀu14:PW%PCuUuUuZ ˱+_PSz.Sū@];_bt.JbtA/끺'=PW@Mu Bu B=Puy 5 ū@]5 E5"5.7mbt.NZZZ+@O3o.7-/Po@]h@]P\@]7P ksEWZ}%U US@a;j]ꪞPW~yk}vxJJ>P C C ( u!xB]%ꪰwb@]51B]51B]Z=.VO u! +B]8PW ~Pu/P|?uuGr1'EɁ:C'5"ԅ u-@A\ uhoEhB=.zO 5kr=ܯuMG@]񄺰O "4Dkq=Z\uy'Ե?P =.zuѾk3 kԵy^P={B]EhP:| =&?@]-~4􄺰?Pg@]#PWӀž"Tw.O ړcPW!PWPyL*BPu/P h*PWπ~UPhP'(&PW ^#;Pua?>.ǀ =PW}PW}+e@]Ɓ:R/P Pu C@]!E:Pԁu k 聺iOk uMǀ>>.'ԅ灺'ԕr@]3N=I(3BYL͜ېJ;Aׁ.b[x-DPch8K%txo~TL K<>ZPxB9[b=Ʉ0?(3xgo{aa/3E{*P}H}/IzMl⾄hk)RKRyԊTSW+KHE8/RNjl?:GNo`SgNpFL4?5>S_GZ_ß==R?pr3#U,]A ;G xKꙩ퓚WAU'^ho#h3h;㧓g|uRx2>xT/z7-ReO6͑|sg<g>x/|擣TYZ3="|5͓>{pRWNԖOQ*rJKXJ҃?-|>=O>@!/x)Gh|~|ߡ8GK$)Ǩkg !UIj<|R૔(UBT]X*q0>)!gD[R8u2!|}H;|'_QR;H>|%ڿgJ߉J|~XsVw3\Y+nS%k>ŠTTň_:= ?EY餙#5 3 S!G $f!S8{ήnei*wv&$[UoKq j #I>UBG*Ql4$D=S)BɠԛX )Do]23J_Fa¢>-TP~yy#S fT({9Q5L왋?2 F mVsv=z/إ:ݙ7S0TEx{Կm8B@zY^J6i0%-@둤d7-0 Nڵd-/%vkH)NV^+C~C3Yuwu5K 4wvP݀ٓe6+-!Y)YԌܔ6 -pͅƠHԈ0 Rq ,O(w%RY9ؘH%+!M VhT9ugjQ+i!ѷyo? V]BSswHHf bfCoeDL*]V^ӵ2 ],wߴqȤX;_NQ֛!qʡcٍVpj53e$[:(<$5@%eu7 e?|ٽe#sBR}Fv fjE^!:\)2~Gz^ ـ9lu6K罇45_񃢞dl<;#aӄ[ucM$m &sW'M)Lچ3 e+|>y*7,X|xUF JYʫ$f!. bDZQT뀩S;lv|]')HdUwVKt.i ;$BƞtL캌PzP{o܃НX-8 F6IOpQYZW 28o~ y^~-.jP$# >f\znZyY BRёXH(`Zk9d ci7u5vOkWo.(I61r<ýIT Wя㖡vȥjg#Dzfrl:TBW/Rd8xek䳷E7i73R໊ ߳UU*'#l2g`#R,вat2`/BІ<;2U$P,Qd@\1#΅Q-?AžÁq2E ?&a%o5+6tgY <U C:rnTU:_u=$+t,(^oQ0z^ʪcxTB@Td Z(iqUG#&.R9G@|IF WA#=;mCv6"1oKF\x*z~!k&a*! ȼ'~;٬ܬd+Fۍ-U$`[V[}Iߖ K׍J3y!4:Fn I\y ]ogl|ϋ*D[9c U pZ(ܨ(BX?c^TH¨$np #[¶D5i RK 2Bɻ <op iM(NէJ45qIz25Xف"s4OjVirQ޹32i Sp@YvI*eO~VtT⏺o z5٥hLeIqt'PpS?-)'mX rdgԤP=*IN._H.+u2 ꪗA99 ]yv7+*{רBy\`\Q` CGAF/ Mǂnqg$;B$bs+_2uD^з`u"fwj,'UrZl:2k|# \YVXȻ<3HݷjNmB5W>lVI'HaR@@7OM%*b%1+}KO/7oG|ۯ_2`v(?ExO'mMό琍ٝݖ H7ROg[aCfOBa |.uZ|Ņβ(#E6(a,=:3ICȄ~mw;JcθzQ5O@jX+EЬRU*N,KUIZ97uݠ5?!Q FTIQ:$B9\IBcUھrlCFK2Br_j|?*|puhldaZ V(jԨo_OF)Y5[֠H(h eokejey*ZV٬ (-ҳҲ] ͻhqe!DŖ$"{Jmڔ6k5k/Pw=H+6;̰N ]T(#zt:Hau: dzɋ]*mDpLŞ5qcNS_Szެ+Efí(-me.i$;j=/j 0d.S1[7.244H?SՅ].)3F"eDY 0S4׈`#+X." E?ټYp {"4o! <J,T_C((r٦t[k- 8!+2UpRPeM%0ɪI[cS \H S*wߚ| hP^t,F- ֤;Pkڐ*?R%~N .(&J% ܺ~DWh2#?>2%7QSuI(hHӾ9ϰ:ˬg\ B'mC9}^xT*4K98#Ϫ@njӜ; uh^gfo†S^3Eoe ÝLj%Sd^M߁*k0u@>ȗ pssuMY9"/M6 1'54'ȧ7)!y1VUoˎ7m0&숶CګYCW`j QA,TSDe1T\TPJMW`KhY¤TF%K`,mpzqUYȢH ½mk:iE |!iD ẬhUUB2mdvSY0ScID.Wy ك: \k;2]'vcq<65U*iU,PV#[4ۛ DjڒF:3WF*)ttrZNJU^7ЂW~J5f[NSk*gfIp }kb#M5PJ %L;bq^Ƭ-9:*I2ҔcWJFֱOlVX؉s4Y mݨղ[O!["^29}lceoo'D.(TWOí%:yHtQ']T"DL_>8L ~r˭3VgJbs_e6Ll-m(Og< owlW ^(+v$M$I[4%XcRèV%MsL VA1ttg\Ԑ9efoΕ8.TnC_$;֊}vx:jk\Ѩ[tܴpT}t"RpR rVof>M+I4㖝jOAAѬR艜e uM\6sxnzLL]|k ,+ʳGYAGG睲K9@J*ˤ_`KӉ}06L څHh՞dH]\ EV䰋[4A*MtNx6NSPSK,etVR. 㭊7IcHX2UpFҏ+z諹l2 ehO7F y+Za?K*/haVjWLLHho{>Qɦ7^]Ғ)rM!1uzMpeT͸SLM kE:jA)KQg%I |퐼Wb]iJ-¨UGQH%&qJlR"cTԭ)Fu9TecSG*[ȍHh}TQT<,Dfy[EdȤdd@@DGY6E$y5lA ʌ%ZAQ#Td,zJu9)b]^)2/j(.%5R)YŹ5m>_jSͤW z63:)sU '2ZtZ(bMaIU;R8_П`=j!i>E۴͍[uu-PkӍ˄Qo3 BXhwA3Sm &,Qmo.̐9dϲ>kT] I,lqʒYf׮+xTn,|*s4 U0Td5+:XCp>I`SS%qozߺf32*/QW%#6G T%P`TL{jlTB*e3QO\jȠj,(>zIg'sj`Uf鲄R)Bs[ 2 7)M2:GT(k;$) \rőMRa1bZ y=zz֪-[ ~'uθn5fTgĄ1 P05]֝b1+$їu]`M<)ȡS`e~@Q+Rڀy60Q:8RVk6]%D$ߠwV)鶬Ȋ~al7:Jyo 2ȷU,8sIU$fKorGZpᙩ=F{;Fy*J9Yj/UFbɮhEzfˤ yM"k1s7`:)(vL9HjLFr4"bwnnhVE1xf2:2<® XѴ,/;("v/V̱2 uk4v"%nO6 EB, @,=HTw[^eEN Pn 7k< @c\@z`;u W![k3_51no|\DHG=Q׬_{~]'Nϼѽ,_4+Ho,= |B!ǬQv<Ǭ+ ϫlj9uyx$߳Zfy+٨ O0\߿d]>[r!~?|ǿO_?~7ځJ-?eeڽFyNi|?;?ix5LV2ⳙGi/~ .. tGۯz?tqŖ)Ǐ?=?/?__whHu7O>]~˯"Wb+˛A>_1_˯`t_W//۞_]8|ʃU|:y=hcH?oSw^?wT?/CwX;~6s?]c*xzUuWulLwSǬ [LGa1oh#`0isP;WhcP 1>7R0|{y-^`a>Æd{CHK[( VchL8_ρ1-5MpIs:l oec_߭Mh+N1J/i_a>ԥ#xcze\M*cM VB f$" 9ǧ{G֒pcZ2Ŭċ8/o ^*lh iq?l-&ngc9<ޔ|s"^Fx!S D--ou֊~Z|'9_~l#^^r% /&|1pr'BU04KRoFkwop>̵qa mx_~op~lċ9n zx1ZFhbic/$0^ Z4Ƌ޳ 5a$ SbpP7&9nM 3 ńTcƋr(EƋQ//h?8Q/&dRű biT Σb8bB?*4Cp xa5'J"^F1C0cxa1^/ .3^3/\l /%@&p>ċ߂1/^~L`XbQbac[q?׸z7 |0dXĺ&01/3xAͮF87/:w 0[(Z ak,5//54 ρx1qy ^]7a fq8@0Rs ^ a?xN4y!4ys"^Xp>Ήxac!8~ N G/ݥA6 8i|㸟xaކ/|/rI 9yXߠA]\jnjn oP uu, uu, uuPK uEF ,PGq %.HkP慺FBkh uqkP uM, u7U! Eх&h u5 %e2 u]hPHe$e겄uYBmNB]NB]/ԕ4_B]1#Ե~oPK uTP"P&P&PFhPׅu%ԔPP Ե>.Boߧߧߧ_[ߧhoPׅ6,>,,.7I+' /A]F\ uUB uU. uP uU uUfo BPS u5B u5 u,G1M\PWLuzC](PR/Y'{ EP.oPWoP,eLL  ,PJ7Եq uB]L .B]\k"\k$5P uzC]x> u uOB]YZ%e|> uB|PWGZ.u)B]"u)B] 2oPޟ7Եp u턾uIB]bPFr Y7 u~C]X uڿP uڿPAvp?Pڀ.uJ PlM.5 K=B]p}.7EhB].EhP녺**ߗ*ߗ*ߗ7ԅxwylpQ'ԕ~B] 'ԕBPLy$ԕ4 uuB! uuB!o"( u!~%5]kpI+JkxC]Ե~/\ uM2~&ԕ3.Vߠ.@1o PP%4F#e "z.R" z|C]X u-DŽ}J(?P7Ե/PPPWBQ umƧ6P7ԅ+C6C6PP1S>o ufa~Ck>3I>I>YpoPמ?u$U u$u'B]zDy}B]5O/u]jy}B]PKB]-O u1^ u5^ u'B]/EB]O u>׿PO+F^Py}B]\k uߠEjB]6/B]/5/5f^P겼>..2b~.#ԗP uQ rs'ԵVObPbǔAߟgH%>7T X_~pk BߔuqP>~~|?;(Ҫ:\o]PtWJzf~s{czzOzwzZg t3 jB݌W5p371xI)̍獷3n<.I50^"I5x_@oj?A~7xNGoURAnBRC^HK=K]/=d@;3Rc7|de>|%g2|x͇̗7uXɷ.u|R׌xEsr=#ޑ|2)K+W'g'w'̇'̗)uF}S-hRϨ2_w3~{T5끔"eR'RGozdXC'륎S7i Wz@)Õ&Pp /#r'E3l o4n_ݚ'rMiiR&Mz~+ƀ\| H;?PzC|JsZJy(`}x f|]\?vגs#~}3EO>r&? ?ɯ~)߈GWoɇm `+@M~/_=o&_|.|0o o>h듯֐䳳u$nm kx\?xeGP_@RǫS/ >#Oԇ\}#cbVS~I ZkRykPzu=ozEU*'՛L}ZMR6giy}]ZZQ8ROSd[qX_NSSw׆ꅈ^=Qx#>Jă) w"|P%LKlšNU%?a^?G ZoD9Eq,+>^+LyacL/ > 1"ɂS%X>xBZuw ppCRЏ2K(<! 8(4P YQ$}=Nl^|~f#QaiMA)*'>sm8LT+ o[H5 Y- ;蛦\g&u_+r1TZzy!#>?Sy'zg&MIk[Ψ=mͷhӝ!|ۼk,OO! ,;LͣO~~f,i9h¼o+0WֶwN5|^$!-7G[S&k߁A))Ma<2$%Q-$?4=ބljϟjKeҤ=9jZUɑ"FkW;k[F΋6݆~" Ԁם]4:V4wLT1ԡauתY͸1p3UZc:?+qӨ".KI4{UXpkC[H0v$f4yp8sAtGA %~/ d'`.DCأag.2q\:y1mMa G> U]:?Qгo0YeVgv t`dkʔ/0KNa#ao~fڱ "Z92Ll=7,ən%ޔJp{'A ](dTrf_r{UKz>(>TЕvkuMJ 2KE*t_F6(A)Cmor}O~9(F9>/}#ӓrVSM XO{Bb [ׇ)oԻ!A0^K>ȦmAx- eal -=7V$ fE e,O}LRX}3r<ݑ*_\^ K~F7Y9PX8s 4~THK"ddլR1=He4 5tnsJmF¾rDg.Q#RL$tNѴ|}!0ɤBr@a)*ZΉ+.4 ЀY7E`:=|cr@JCVSL9D7SB VÝ)p o5Eyl8#J61fmYLXQHqz,$]gW@(G\ pUF$jnI,9J3+v#71ETIdmP3izꃯuD)bY"h Br#1rurENImV'fyy{V>WLz=|9 as4#1 l!(D32BW-G{޶Ey[eSinjAMC}m{$,0)8\90TPcgWEBAԊ ^tV1N%f alNUBK&qh/w 1qH Y?U Á_!CfPȪYg #Ll#ĎLb-flYMR|k5cdr^04 .HzW7v[e*$*iz,*bٱDz"dV9 |ȑJNH~y5 2bϖrE.MŞ^ǿ Ӻ] ßj-N z\eKJ'P(}Řx+j] Tm`a?]iثDQD9\8.QwJ@dt9um>hiWأ* S c9kDzauŀ?߲$#-=d&.hE+ ׳]#.otPM53حqz ql&?2g#W9tr8"! z $dr9bHL\9 @Rҋ~/.kVQk.5創\d|DP8x]ݯiJgLHQ!,ِCrCwQP2?!}H}o*‚j)K/*z'ŃYؿ Fn*jv*R SӮ }f/3z}RmWn&O8; ٢鉤 ɐ2Y R }].`*yi`I| +~XjAz5%.+ONU[d<5r bGo}CmKö"Uޫ MQ®B1f*lTm QASԜjiH ]I1@ҡ}ɂԴ0(M&2=zrs^2}.!!_%u PJrhAg*]sVlkg$#HNl" vϲk~DBaZ 4YMfo)Y53q_}Z˷ y*6fQ6Z#AZ塷߉roaʿlـsU̡ϨA%K XtEpKXNRV VH{8FL<1lf$5P75gf7"[UEpjPNߩD뷻 =bG4}*~Iv+ 5`y2n^nI+gK!f#9KUwj Lm9hPXO l=5P5@5Fhvqu@[n=cR % `֟tU=o(i8KD3:3]IƚD=[M[(`+VTE.S..3~uS G%뮁t9Q[B:Gc0/p['IgDmRq5v1Ul6L[dd歠K$o43쑽NB&tgQ6qnw b%HCy*{m,0̙ڱ>dsXQa[=Z6I?;Lz;RK*.>GM{OQ0? aO‹*aR3"#2иD++QI򴰹 Rw$TR7bڴ/MEKukT.y#'{F^Sbc⾈;ضga  c+3`UD.-Bjp P .%ejҵW;Дfȱ|Bood<\raM9pZpP- .LՈ&ch8SůXnsSqJS΀j{+& \Vq~= $oZd*Ah9AlR 6S[yKA X3Ϛ%( &Q+$!MB򪭡/@W'Xŭ[‘,֯nMZڕIrykԉN^W޵9Go  9տ>XM2ˢ>xE-r|2Z((f8pZLR1dʇX$H&#uݎ, !ݴ#ؚ=kK#jioHBV=|&P* x#]^oW;1{RR]խ34 >ۇhн;6DSjWm5lC3]*n~[EW [{Ѫv<b7C7)^w#kĤ8F@vU:fR/$Js;1"h{%R-IMwT#E%Cë- }kb]uك"<0.<Q䜢:Z%oȴDCHqWU~9\8%|\+18Hs~iH覰";/ ek-dh_%xy -x1ɩ1 L-舨j3,UVt-oP8Vr |¦ 28O2whc4ۂVI Zut*" ƾ%Jb|tF=d4z ٢@ ^yl&5,!`zE^_2ٯ% TqSfwl|08<3n=o``1 ݑ!l1!5tFV;;}i1zNftRH]sEJҕDB< F֠X2w*5%pglmjJթhʼno`A%?*Ŕp;bEwn=^yS$1M=s`ڶ)EBm@smU&ǾpSM b VQ7RMl>!@[Y_&qǠ)75ZtHlM(NlCR)q7D̐zx2uFbCl>?mu?^}|ZoWvDdϭgNQiJ#]}Ū3L;TFK9 +>}n;XpU@l:LUv\AǦb@хU^,2p:p=4&AwHǰIaUs$~TERcr-ҰReK*nh(?}2 sOږSZNLS7ǐq(7e#G ם}W +G֋2Rm3!5V]`dZ_ Wj^}f]~7zN Ү11:71ȢHYsUAݚ3S9aX9Pd A% U* U$f?U@@? 7?K$f ?፯p&NtşH)f l@ӱbHٜKj0ՙ醆L=#6r w~S9h˚95Xc)LXG7sMN S ?G586g89S; A H4*N]Fs1##Wh# J@bJ(R/iC'Tqp}Y?țM߳`(.ql }Xi?koWic&Y|oh98?o|~B_X|;u?ǟ?8 "/?mǿ3z<6B?ПlDZg~>~ey}R߿WxW+WۯSUX.|AکZ >kGQh(oYov`+_bua1kWR~ AhzB8o_Yaǯ/4;n}_cԷa~̛ѐ>jOgȃmg=&*IM}p`,4惾'q萪3~\6"-wF`q(ܑq|#gGXCaBn1g0?>*·Ҫo7ds#'Ҵ@^F0#ı|1֙9#\31y9 ,Dwo|e|[86o|Dx-8gNx~F㸟n@e<>8_y( :IU8!>ϣ|.`]q yvT?>8zZ(3OtZ|fn?F^ Ui"pTXxk糸m!cw<;9<>+דn8想8p> UŰ % 8܌{e+>IDċyq?_fAŁƋq1t (u'xnB8@'q_~:ň!xq GAB4X`N_?V~WċEle N7q"^Fo`dlo~lhl8ȑx(j˭pxpm~|Wq>x*=((o6^8IpDX|/x|/zGc@Xκq:71/V blMn:/6·a} ^1烡l0k0bƆEXl7bqS7ċ0/bvp? b|t| I;wqOCXxif:a ?6/VW׃qLxzAx|/Vэx2ۈmw#^, qs#^xs#^NGʍx 8Il$/{P V,HO"qOJ.q? 8 b{V҃Ǣ7(HQc*ηGHx10o82^LhFe>T/&Ge FT8># ZoT !x1۸G9sLŤwicth}1^8{\:Oxĉ/8ht 3^<ق㸟a= p/ sGgH// 6c0^s e x`/&ba0 hzk5`LƋҲ bMbܗ51/8mxJ cL(u0ƋM7~ ۰a)SwKjÏ%8gb7b1L#ʘ'·xbÌe,Ƌ #/6ӱ/6c3^lzol b+wl q>ċS9w`Y6Ł88|vƋq/w8F&z oxq 7~ 8xGF8gA ^|/K,,oE@KoTxlϊx ZFp>А"^Ba@EEnK x^Ox0qȊŮ%,D/xAbbW84Ύx+:gG؜ 3.?svċM#/vk#F1$#^bcQϺrN ?>px+^s ^F9/xx[L<9/!5#^a0g t61D0+cNċ(vp _/o("^4ċ0cqA/6ݧ!^ @@sB]ԾA].$$ŭB]!+uuP Ubs.:bsRj\/ u5^ u5B; u5j uqP u5 uuH .oPWJ uePWJ uePWgj'5_. u]Pׅu * uQ"pR%R%R%.B "T-P%"ߠ e|> uqP uqP$E ʅ }mׅ}),). u1^+KoA](,ڐ ]kcPF|Pׅ =]ӅO uׄkB]5C#C#x :JJ #@]~]kB]}B]}B]}B])1u~. uUޏ*GB]J>J uPGB]]II1%$$հ|/P%wꐰ]CuN'N'. \ uIkIkIkIkI+iB]OJ u#ԕ}B] 'ԕ}B] '5<|o #.H<2>mB]F#.#ԑP!um@eBHkH+gB]?J) =Z(%/ԵPCB]!PzHk3^%ԵڌW um7ԅPyC_(6%\Ґ uQr.JC.~oPㅺ: u޿PWxB]7/|B]NB]/EhB]Ok PyxpxpJh)'5 %B]\R uM^?.겄uڊI*B]'ey}Iռ>.C}x'Ե/\k uNNZ:8_Qb~G<~s/{?Xϑߗ{<'TYϻz쮗Nh0뻻:Yzb %s\3%TSK[KhcC|kC33?/o<\Oo(-&xU3^]r`l~ٍ?n<.3^?JVr?gror?wrqr~soy}?RCXRG}RKROORSQRWjRPu01E*m_{RmWV#+{/+K)|*o$1#_|Έ?dg''75#K2߼T.K2_T0K3߽T2K5_jT_ӃT`o>#o#s#wM#zS% oYJzg}zgzg}ut[O`w-̀q?K/l\Y/?tV~e=ZeZf=[d[;K˕[:--A}x!uzaz0~d_?(/(?O(O\i ~#^OOw‰ʉ҉"oה&%ҥҦz$OJJ6ē6ﷴG]m'w~Kk%~E&C){(u|0/*|O*goJ>.B9|&F)d]RI~l&x3;v|];y(ϔ~M~z>ķ~Nl;+]ր䛓O]y5?.V֊ko~x_7-pͷ|m ٗO:uᔺ\|&>S/z2kMI=DHyy<`~᤾1gנ!%~%n+zקk>sޣI=NEڻԛP{(OJSRyԻPeX_=MSoS'[RSa~x@%OWOT޾z+^)L5N5P5R5T5V?G!Zo31<e2QO͎~h߶xEHVa0W\j)mpLٓEI@Ix32zgCG0GprBL݀߻m?hD89D[ođP(OEO&, k(-ïKج.x*t}y._MC9'9ou5oTZ\~#XYSd*5NǾ =H̙ ¤ލLUmj? Ds0K,|Mnb*ԕtW~OO7ƶvT49 %n9_`B{IxAD?U,6SiN4Bo>0`gEv 1\20VOL7T~ !;.jırno5q狁 scU6lաx[x!έ<=n?[Ucd6yT='ٷ<[1졨it>G0j n. 6[QR` xayPYyDŽU@Hz2̸_SꎟnU[NQAr|, 2KQĢrN2#T9.#ZeAsr|0ft6g(_chTzx?\&ٸ R7N\Qqc5YflnmwcA;YT,oA_FDBZ^lUg&_.="ª|!g|TIcT^2 T3f;iLo4MD&G8BCG:UX'XEQB flY'dfE7pQ_` $0eʁ :hRVͧgR)Є 2jń%'l j=k*CZztoDXql==" ІFk>;7YVpAc!۔D&^4狐PL@KTVػb߾vE \ut:4r6fn*);FAenU12j ;INϻQQK@K@q9Pb #94a3=&(Sw:wDzeN/֣#/p^F~'(_tUl7CoTdhW,p;wٗr\yȁ٧%cU1!:[a 2`GC*SU]uUbW֠T1n`ZK1ꈇ?!)#:-_ q!kIդ |DD>e^D;ѢbV i8BlG(`/P'YxEZUr:P;)E#}dzQsU;AS5OXl0BrۛB]qd '|!ݚ:ڭI-aTsɮ%Eѳ_qTB_*=Cl,K+0WyhGyL|b)ī]O) @-X>~:&3Mb{|1Y;Ȼwv~tf*jLjOOXċ#ǡb-qJeWR|\Rj0+awqR ]M*ѪUY3R:ߗ٤ܜHo G ' ⣏1fŖBN㯓ڎ@8Pn!bvz7~~fl8Άq LF…$T9_Umݱ D 5y|-AEN/bNz,ڣ=4o)]H3,9b0bBĆCejS,uW9ን0D1z^XtoD!ӶDݍU$ g,TgAT5 X;f}o GvʠK6t3a1܎zI-:b=XR-N="/:ZP߅}.#M.G՝2kߑ)nB)Rʡ'mVO0KiYULK˄bow0Zn,p\! @d3S@n1钖@gݑ:ްC*N6z/ V[J 7к,>Όz}krC!}fx2Jb,znA;RS G%Jy:q vK%9l|٥ N̷C:wtg\ha Wj]'ܦ6--G[RySQ"`&=rZtQ|Qvar#h^' R-tJU}FRR 0?oMCob$G c ܘ_^DegY< _ m,(~<}|ߡ+j6PCU&ŒU b)Uލ)6oĻ W %TA OXN\SUU7(}{}X$~gHRQ~~5~UwȾkU 90M ZE{-=XFy9L #PO{/OzdrA%ۂ=4)ɣ%i HvNj*X?zb  5T2Y8G>_X VG_ <[jﯖT>[(zt}&5~S64jKƜŧ,&ulJ૆gsXl;A>Kq0i&vɕcXMLTd =43ƪ7 g^egb6aS=Q}#ۅz{ӭ _^U-LFUbNGKm)‡i*AiIdK6fላ5ؒ,q?Nbu$c>$K&Hs5- T%K47+EMbȞթS"lDod@[ec #ԙz@ ĢzoZeKP:$֫Df uHV.TLh]u0vO M%Χ1E*76!iSTx "U1&Pp |FU7Ԩ&;Kw,MkɲzÊRNx j]u8.+uTȶF@5tCi |Tǰ?8Mͭ?HTE оcCt21uJD3! |y1O$؎S+4)HL6# ux:H`^Ղ /ep^=2 L7״*\\9h/RC }I}eue[5&1vuC˖"ܵs`.  4 rm-FN |6p+ C4ZtxU]*iNE螺,w4E!]8<:ɇ ĥռBr/U ؽ{.oK Tńk}#ecǻ'1k6܏?U#zM?FӍ&,F[Moz'U.j#xVyR!:$3;N*Kj3sN.slӏ(1<o5 $>H yi hWq׺r/ jqܐC6&'r@pl48gTw ۺ B (Ą֐h2-֦SktWm-6i_89ޣ fdaEoF-;U:2h#!kZ vt[\oBՒ7ڨP{R(6)ݮA@M7twhݳ8UR;{)a E?ZQv{;)K,U*.8/#~R9ug\k:._P`Es* .E`ǶU$ tG gѴQF>+j+Ʒ64*ZpR̾[IAV̹ Dt տяu65[U@<3*||B-R"ӐN@x{U#FTwlS)/ݥzrדo1EEf鴫Bx{L0]ț`ЁӺl>PHVJ=tЃ*Xrɨ}1|գB3^SU45ijp* rpKP/ۮV`Bq̪x)36JtO'Wqχ: ݨeywպVtXS)b{+kG5]Who=1k[bmXz%V;r6*0];Mn"Stߺ/ޙoB g u n]dK0&^Izr:u}-I5ޢڵ&ʆg#&T:/)Y(]pAi׵a| ǜUY ȩc ma?C.0]s*_<9\ Z>jI[Na(PM5=5LOssHO TJQ!4v}ym2jՁt4}-Y u&kfktNXi/$ZV`HC.| SnT5-NdӦYW?̈ ~ʉ#SYu;h_V}laf.gq:b|Q&nxbѩaz$I,r;zŘT-yL3AY:_6&P =e``G0ehJJlRF˩PƦYcjjg9TC}n:(^1Mz:MX%^_J"/9Wl ^ dC/چbR6B{0w)ԋS:d&hm1v֧5taA? p4K'yJ9>ɃxJbu*麫y4Kh]alaCc8H%4)؆U[Zax!քC1٫&ҀVHo>0azum};.I9bFa[ϹY囍$0_n(ۦm?0sҀ8Lsk?2 ֢ ?ϴ ݢZqhd@lJgj6J8ףy!(um 6&Ti:h8c[Rd G!׽):C€4m39t%ثT)0rO@R/"dx9)Rkkڦ*K--9S\rD1 6H^.jqԟ!aU M3CaZX( a֥",O,s=Y!∃LAl_! xD8O[ ۑ%BƸI('qOØ|l=~SN:w*BnҐwQ<snAM;{E*yN9TJ h''i2e;2{>!Fyӧ"= U{"]yK >h U`̵Y}*VA9K6m" //-MҭTIi~ v*̖ qh `?ҟ6`Y*hXXS:GRI^kVG XPέUh^P[F޳+j'6vi CAr%RVv;UΆ&WA(wgJ4A/m5 )EyT0?A'شGӣW/:a(i㩳Gv{CD{aOzk?vBVµ[:=īo%M8vj&9k4m=}:GiܒNB b3*2cۥ!FDR\I=P*x!鿁a n; \\&, ?iV{r\9 -[/M]75FTx|'sBاu֬0ĮҌ}hm)xzѭ={$4a"Y% ]1* NEOZ@S/|G~F;TVcAkDeCmih' KF%.Kc%C[͚ԜqK!rs}4*knM:L';L&#yz v͞174Ϳuhga c}jsӒ0ۆ_#$~ypۯ0yk[k$ԯp+,G{\)/H!;8)BGHFp _j-D9㘱+XX|h]G(4`~r,w6hz} eVӏp&R78phqң?w㰙C_xOcǭ%5K'w|$~;?O?}P!??Y~~Ԑmޙ6 x[Wk-kCįP>7ƮlSG㷏Ϳ }_vN?~aQpke?_?yFO7g~?t endstream endobj 99 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 105 0 obj << /Length 2464 /Filter /FlateDecode >> stream x\[o~  MF0۠@vhS-Dl)R% %R֒:RJ3g.:OD]+A' ^DSST"o~oһuL"d*uL.JKN~L$-j )mug\&UXYenpүtiH5,aL[M9͍`ulll W^H"%4͈b̛2"J_[rIZiJ Mm'm9fOQ(Y ڤK]Lq[]'e\'n&I۫u>" ׿Ѐ TȽ@mþW0q]@K`%&c9g-0gB'}05E<Aw-в/d(ֻ!Kt} Kҡ =㜗mN,KFoW=8≅m$;+juEvz 77rś3@Q_HeQur"9_/Q٥Ɨzqvté\@G(0>=![s|֋bo?RA{v2eZ>Bqv|y/а.3J*>QRX}0@06|{$$]T( ]%K0?eu %8nLj#^+vW>O]f̎̎*,t!u}_Es'~Ac/ "??hiNP#&p6GhMv&ڄ݂1~6Ghs6Gh Cmmm0B#9B}7 R{$Ś67ose*V%ݕ꾲dze+5Q(r6)OyUض aIe{0p)5%+ݖe֥+AS!x9oW$C2Ny`r|k*Puq\) ņX&2|6"Ju&8Xd ?q."$e-L3Zf+w6b!ƙxĉ 7)+dh5PCx[|F%j XҼV U<Ɉϫ^!o PмUNrCB1HOuVFO( ]QCShzTp}>A 4vbi9KݛU,7qVTXauIZ?@JTB+,,flQ4?r횻EpD}]!mR-zjZ֬.~NfE\<]л0|y]C_8Qe2.%BJxoGE+l,n+;?r,܂y71njL[9@|f3ܡċ(axDtc^a];| endstream endobj 100 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/5t/8dfc_yl10yl9j91v2lc_jksc0000gn/T/RtmposLYxE/Rbuild2d0830c1263/effects/vignettes/figure/fig-contrived-3a-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 107 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 108 0 R/F3 109 0 R>> /ExtGState << /GS1 110 0 R /GS257 111 0 R /GS258 112 0 R /GS259 113 0 R >>/ColorSpace << /sRGB 114 0 R >>>> /Length 103756 /Filter /FlateDecode >> stream xK4r߯=p{/SX#1@c Ɉ;'6xp.VwWUޱ#V"W˯~KN)}?^?ۿ;^z߻w~_9}Ͼ~߽Ļ׹ݯ7ï^%}o~o^}V+?}D7~_}K?KO~;_ݾ\Cۏۏ׏4|}#}##"Xu֯wĨqs߽ܯt1KUZw_?O_~q}]Wg\e9\lrhϵ/aJ{_-z\|Xd3"^ﶾZU_ͩ~EW߻5[Re-=Y|}o2m}?po|~l#o{9~#?wkﱗ/lssWاZvymv9x\r^uy׶x]Vt9~vupaq/]^~]5^+mo{ַ+7uyv9Gzk2u?.,vYSl]^Oov9w~bzܾwҞQNWZWT'~}=~a]_5>e+z:gu~~O~}=~-мyrlq xn~unaz|~,?z=vݮޯyٚ%:oNNyޯsf]_Gϳ;x߮ޯYهo"yyd :ju|uxv}=~}=o} c_os=^yEޯ}m#P`"㲏i[\_mkUvoUE)<]qDzy_/Ez+D.&"Fu9A2뉒ş"L8q2 ş"RuYʸ'V˸'Zu?f'^<2՞_ƈqOre~N~e\/kue\/um\|˸'^u;'^<2׉u>RW|x˺x˸'^V~uxK]_,egdz.'^u=Y˸'^dkJWw5d+dk{%[q}'[ӿ+ي;ٚ}_V\llMd+dkx%[q}'[q}'[++ي;ي;ي;ي;~_V\V\ɖ_lᅭ#?#?#?#ٚ?-=W5$[zޯdKׯdKli}-WJ_ɖ+y%[odKlli-WJ֏dkH;ZJdC[-8ly}K<ʾ%[ߒ-oV2V;يN08kd+;يsNԻ8d+;*dkN;*&dkXN;Jdk+Nv$'ڑdkGyIv$''Ydkd,}HI"ڑܜdk;J<,%[[[Hdkm|K}ͷdsz~=o=788g>w>gF~nj׌y}s:{F2{ÌwˌwӴ0f<ϳg<ϳ^X6}Ì}+oi?8-}w<}b9d9Ƴطxt_GN<f}pz/[<;Nkּ:c-OZo`:N:/9Of 缹AGT9zW<nu}zW9~@nSr '7G|egwȇȗ=}}y'_#G<끈w'"Fīxv+z&]D<롈w"~V8_z/Ο<8z3ǻWg6zw*96zlSH)rSOΧHN ?*;TZx)0@SIr;L8wWuoiD#*@%CR@ D3g.8Pq*@CCEj+ 8t_ZX6qx-~[-yW-rKw#?|ղ &)rζd |+8ڭxߤ(x^1΀+tsת_0Noϯ.\ mA>!X N W0_-mr^(~X Օtw-lsr;dxƻ޷},Hz3~>Z+|Xϊu(UX۟ϵ ;+_I|F"fQn9;/<+l]y~ Km_]g',+jz\lާqB5ǝ角Tscu_gӃ!F%Qˡ[Uv+['s% m[ & 1+ ]Uz)`7r,{?!\5hje5vgގGۇeuЪ*ږMu"ʈSĶ>*W*_ί T߅z?Kb2°q+\e\<_ʋߕYX27=D( %0׷]L rZ 2})]E-֩w-G8 쐱߽WrgNX4+<-Hlkio*Otx>TՁ !'١ʒ ,,|䪰wx.'E^ãn,=$:Uڴua-jEG7D@-jjPb`͠} s&^?sV +lKkI4K?"xvxS d ɃKy@>k6}䫼=͇-҄_k~WDsT;>lAۿ!VcvQj# z|,l*)ZQߥmgJ+E1[N;C(*7B2) ~)nᜭY\ZSU o[=dNɘaGvLe', VS]lSĶKaE^'ʼnOWJq5Uyb:=՟k}>),(9Y2+֘QI\%eĘjz3"'|PBx@Saz>a\(xBufaOpPz , y{Ɩ)P?8\\fP`:7P=V:*Vje*9Duvje;9Ci!PՔe̶/еBNҫYݕԀbQ&d*ptC8 {KiƵ:&mu}vx\Q+ReI#M)e>6orl ;T\wyfPF1pk۟5wDW g*{[@ZON u'-_ ҁk Fy5>XveŔJb\P/vU^yZWOP&yX\-$PlJL)s =w|Ll. ETRЍTѓ_% Ad#mٟ쓞 {}Ǝf_KZJli]y+U<3-U3uRcw'vJ`[Bk4UP',VXDBO8>9ՕW PP_k*n2va 1O9;-IvUXĕL[h 6ė ӈ<g~E:j=$)< V)#jA(m1ZIݳڱt/5m )[e?݆EuȒfC{s Gv6=5A=B@BX%n-\RLf F\/) ͗݊k [qtيHk):분sϭh)x eQg0p/RSce_)dpv&ݪOˮ?}q\bČFuvکS5h{C_5ƨRƑtz&̵oMG M@SveJ8YMŎD?=B%I|ZF%+ TswQY"[iF)pJ\؏ۆ]=D:3*EHGB@dW%"ͺAֺPx_FG.XX ·qv[$(R|~⤦`=8*qy iO ZG*vi2V GۘDIZ(V11:ZxZ@dKitQV%S^O{>'*ON:/k p }2t8R^gR;b3$I#hЍ"XۄM1 䇺Y@ &8TS 5NWVҹ3p! c*Myi-=]O+Ѝz\w2s2S6u'LՖ0⟑ͺU%ipY/Ht(%r8Ƣْ)$3:QyөH&qBz^GhQL񟂷@-oK"JGjk YNm~eBcbXV$#74EI RpDWZێMb lE HJ-" Uе⨝^ubg8)bCgMPH"%PTyQ%NJP7cfG "/eYA[${ceF3(dÎM;ω됨N<j>B-jd$ Bs7=d \ؿ4D;M 'jz0Ky OGj5,d|Mi f4I1 >]Z#FHܨD-sb>Էu;/lgv䭘˓j5NI#Q{f̉~NauY1Sil8Q(:\&j+1ISKEP̎]7)t D[4kԺW.`O F02*DiԾU "1G֜fKrac|1i({ex/X&6c`] *t|4dٝTחUİ՝ A,n7A Q\@YHANwjd*$j uML%LK- NHNPR[Q%nC*tnb ~ 4㚔 +@Zig&R*ĬU(O%"0)iWX.l`?$27,߶hjoGƆizFoޭ"3+9_*&Q@|6gj :ĨnfQ(st0WOnM<ĪяrdD -s \TFnSP2l"{A.xNXebAxKr\ah_28p%3o~[yLQ\BIHLtp޲8Opi*A^J}jbM 6A8L%a|Ә$o 6[]}VK@r\Y:&߄m\5P 4rVX+"|E0TGL>򴷞IC R8uGb#i|0fX[ez88ʒAfyV%P/:-=uF¦;Rq*ܧvOEO ӥgxQ2aa,PUO2:Cj *(է3"-NBcu)D,aUuhU ;"Y4:3#% 33w,j*LE!ґ l*V.@4oU~"YSIR,L+%iTz:A[ldpg@Eek5y!+}֎h Q,i&>ZK~wE"ґݼEg5|Id(bƥIH޲ _d <-s:|H wPZs FR-ju3YGf1t( He`q |1I&VBǢC_@>ak0O`R.mLJ? &aY--HSSDwVk5χ ]zhm!JE.GL01V63s_a)Qu7W6 3dWڌS)ޘB< ojs"=~` .mRFӸ\lRGVzgUR$m!=n6:*hI5F~g{ҁ[IԠʤkvr+/ uq@ IxtP11@QAj3N%E1aR]J\N{T qoH}^7Jdh2GЋ?,|[Q*:xRRQE&UxQ9yprIiȾfj.CO=rꭋ:o!v@8 wBFpؘ'(ybnQ<Ģa/JQ5]&PeVUp]lu{z!;OZa9р>-0^a;bȚy ) -qɿ R'u Cj#t#:gB@F8fŌ1D|L8õ')K޸^A{2}3v5c:L "Y|e1$ 1(+J_13V᭵ᮉ$V'q4[6Jc@T!^15 ;^#M4Q`iT@=# ` < ni9n0dokOul$ɣ?ɒ)|]z3"$`~+q[ȍPwx/o38 P0+uk>hbRPu 7: {1cQV~mm;ĬgSB@ђkG3Io=1%'^Js0Ub,p.X?@gIOB $ۘE3)I@×C"6յ }qlHx8=^9JV}O0L߇:K\&dz\VnEe a*bQF!ElĠ ~!իH)hDtVVc1J2~> mmG`fɸ;S̄n"ȅ"}\a0ʦK]ɴ$lym[Khuah~f`}&td 利а]tPn1% M5¯><A9'm@i=9nOg' } kFp!bc&}R6 iPN a15 crGparl c„8+ w!aHUmG1/\&yIKZx,Y<,dIOa V{Yi[㫪 0FtnG.ERhC mNVC[)n \IϧAQ rOe \Ed;_ImBRIQTՁŬ務t(|#$赤8oGi)w{%}fS]˃ϵnCEsH[3=KlPY*S*Q-w>/`¯>STJЇ2q5yIR$+T9X , ,M(djv_;2Bv$)܊xaC1ͥ(23qGD鸘wT ns @` m[< ^T"-0'ŏ֌ 7.\G} MB؈u +;:kddy@|?^#p\U(6%ZW=͇lf3-ȊN3RӷövDO,tA}ay4L -,(1n`7)Uǒ5;m e`Qz?.D$:$Sܡ)鰕p)}J̤7K]`u8!.9CЉb͎H(G̙Azu;-,iQ&~T4ηpB$M*TqAYZDĤ U:bd+n6B2ɝ"+hCVD!׈Κ!\X̶~ _EPB}&nh:+ a &}=<~% AJBO튬󘛮<-1]U@ɖLmp QO4*yrò8!>;f y/&ӠSŹIDb|c}MNO֍.CGk.ܳ^#2V[ƃӲ4/fpbϐJ*a.榲RUFOpFzɮ cFz߻?I >ЌBnkx* 4v)FEr+ɾ%B0;B*aW]M.CCİզ~6zg.BR#߸2IrBbBxM"pD,aKԪ'r gvpL-nhQ94lq`?LZ{2/dFzOK4.9(%#2JbB%̑e A =UY 7^j{zZ5 BFE'פvxp`e$^B~t\F4pâdSE>F*Pq0dfiU" +1ah)e0 d=zFeƮ ь{1$]dlMԼ90 AazЁR>Q,,Bo Z"*XbFR\qԁe]; q"\dt5Y {KXS &j{TwȪ-4I*!3g)OzF^hƜn`|;Qz^w5M!D73ۗa@*uG={Syȵc&^ra6DuA;M*bo}?Yǘq~#T"aa3q}:PS&Ίǥq}R{TF:. 4 6㞜Dā:ϾԶ u֦X#2 ^7q@W AXLhu7j氎*<<@&p̗t>B Rۯh-7t uM3QtZ_>;]{h0v{z!W *\!AS&kMR v2nDdC=wNWZ'ڜt!\$o$:ɊEbYs%Hr1md?y GWJ:cLmʓ6Ehf+"gVGHq=mz!dna(Q amYdymOsmeg].zU`Ú1vƍm)V(S*A#z띤c&ůniC:qSg鱎f},53G#O10t :T\ظΕEiS('`jܔqQ}X8$Pδh +i Ȁd=k XF&WH^QDB3'j55æ+c}uPEu^@9 yP&+,z3[VW=EQį&~*i[gAP{VeYb> OԐiCyo 3a`#XeO r [È-~e" rڱ $_,؝z4:(Ӹ`0Kkl؂7#5/FNwFWI8֔qhǑG^yo̜`YR6?Wn1 ]wN6&GIM_jCJ,Usx9W'*ڱtIzIjx(uX)߫jbĬ[ٞ%fwVFg_7(ǵYnhr1R&571q {>a;C'X7v[\R@ϼxQ Q>9VPHuΦ '] Sx[% JQ 0!0vi޾dTzwW 4oJj[kSB~nnd>aHPDԭG gHDKAb<%9$HǤ.nI 1M-#GPI%rn$DYonϜف, t*@NˏM J`D>1?jh'j|4BIB: DBc[-EvLRgt$ ;_;yjy652[dZ-YSQc(f@#h3h/7V" &u_gCΘۄ攑ǓhއgʶbV]  ODŽ#ܩ2IP۾̒ܣ/';՞ZdP`Ktˊw]{Ȭ Uœʏ($%)&W^DX5\@I LpB`y,,)=zI)(!Ȉȴm:4?SX;:V/pxs=F [E .ɗE끍rcex kdpɺ({ATА`\}PΑwc{H])]q{; Ko9&Tx#F\ddft*_lU#G.*F_J&C9U1R)Eg8ЁC A?UKR(gfsc\M;,ߣh)[jm(CY+[fSNK VG:5ގӄ&UG.KfGg~ip̀(a  pc+mYA-#StY!˨R<Cj?*@4`  -FMy!F^} eM|Ee ~Ȯ5 = *(gRNd֣iQc5",QqHB&֔\.9 axTb%Y6rlXt=$ m0pN}ܥ0¬QWHT{ȘD*;946*cMxj ;|m ѯucNYwjSJВAnAY/04KI&$R9+ Ӗj2ϡeLLs:UVb\OPR:vd5u։o-Éw~l8+%v(ĕO2&H?yGR,d{VQR*]r)Bh~>@WfBq%@g6NC=e͎ +Z[7ca4nz?{dEފRPaɰI`bP8_^[z҂t <54+7< Tjkc"r r ?YTPJ1*#~ O`OLrF, 0qRUy ]2Ч&nXjS063r݌x|WMJ0_Un~r"#GCe 9BA i.γ(_5vRΆ]c/ tȖmԅm ]JEqq"ؤ% Kn26\ Pwb|jdBR!,_ge%S2G@!pY ,1E0vmV@۟bLԖQDEYgMZ0`io }3+Q%Vņ[V4)g>)6T.~,yh8$)TNNP,n_Sv"sߖ6̾72l !Eq3gxcWS0GLTStk^SV^PM`g]%H-Z80r^/yw Anrq9魲Y礼'9),eMc.It) ;`"896\撗<1N\ÓVEM&Nd?*|4Ŭ'6鐽 ;8GWKQZJmB-)Uz0t)1u"#h ৑Hp̕KEMID$&8s3M7i*nN͌2_=fAKTƎyaWЫΩ&g=88uRZ.R򳛥;uoKMJ\S>7( 'X,-p(ֶ[5E8qٛU0bC}}S;4 50`n>,P<3箂PCtEk%f}^뺼;vŋZ`6%N 6v^.01ܽ|@KyeS MiDܲhD~p6N4UR Էd֩y[q:w Zi|PJ:ɉf[G3Ǐ;)OYdKJCW"eY'/QP~e&s (nc`> '1f];(蓢5RZabaCS51ۀ^R".#!'=i1C4։2We&I UJ E-0Xޖ10J6h}0 ,4楣!ű-njDqu H^:c\<>5{ɗ`+[tljT /qF7y]i Te]ݠ9:/ v&UX.5&oc} @@-U*cnbhMSS$;7!U gXхaB+޶C:< :3}aΪƗE2*uVv݆ǃiRV(_ Zbvre8b>L)tф9D8,@%%@m/ 2&-33A١L+_HQҒXL.R}$ߌ.w -t S5Ǣp)}y;(1PᵷRN ƒ%CT׶ R,* 1]×/gmNY8,I9aCpe{3lj*#!)8 g Kgo$UVOf& < .o&#[Rg2.O/0Hn Tf(zO:Mu"J> ejMpxЃCT,`d3Q{PU 4]/Ɋ'gJO9#Kw],c|`57%=kje;>ȇO$2n?uH8P u(D)P&DT(G}[ k^6[&KVi?Y:41m%aaca'DCC*eF-U9ΘFZ{? aZpUs)Z,8յpe8j! U\ݘ1:uA$S4-GN* >Ƽ3| 6IBpEwj"f—~Д5BY/1Sm|hS/$z:,:o?p%WLWOW)h'6&A f$Uai} ?&%o-×0ۏ©] Zʤ#7ZqGPZPQpƑ5ckt{Iز)C'?g4mۏ0cHg7էl0:yRW|22t`$LLJOvE| hm'BR!1D;.U6hhlrvhE2l;%mLpe^dPnPz3zhONB2rǢJǥ#gʰ JRd4{.c 4j;'%D[%6XAIT.'X?noڕFP`,ԨCWXJ$[䖄y $ZG&Nws J1?Öq `]NV^cNv#y0ڷDOW"wy3)ȫV`t\^m«l qF 9f}ajl>ytQSu.ݪ.2f7mp>|Ljta4=ׁ(cKUXvCԻs l*:KIf㖰Ԓp8>f#cl̵ R"R)s &ut ٗe#m?)~a(gO0iĬxG71SbDu"u r0 ~BCI,leHO㳎hGo5GW; ! ߢ. {uF;m,t4fy$I;PF[>k||ɐd GYD + _؂F)v)=U+Od_l)Z@cXvK(oD!^;DfV'_كS)1p:_V{UT,)je7LL6W99<@9U 76k@OA+Cԝ[N )z#T%YSص:h4bàT.ƪQֳ4a bi,'#I+lL'LyZgi.#6l CޗvXv}Nj(N2NJbrbʲ}?u:#/j,S|Ƌ;h ]<% NjpϿ'۲@% u5{.T_1(V1g&=1-H[˰ S;3oA3Kdqi&1ff#v#Jy3tw`bP0Bf*.тKR.<2\uulVQec[ʰ|xxacyXo+~յXb?uby ;3|t -db= C uP{יeJN'D0g Y>O$Mf7s\X9O,*E#&@.} 5fKScOmHJaICͱI\hW*;3cJDº(?80g a[vgg UJ6Lq ~6BIUōm#7,?hK{%Wd=ϫތh hl0jALjjoVyUFcK?_:3I_Clj݅0O,j/*V4ÂwiPUlv4E7 P(g^ZTv8M D2ND,@%Oܘ<(bkK 'Bk1iihsv\.tE d~z6$jagN|Уs(kYE%$![ibP6U1N<,HjI7k0V IN]^4Zv%Րnפs8'gn(pNRLt⎌Qm]O=)66u*9RWT&w :!tu|0M\^x G hl1Ή̓,cYM1KVq𴇓# VLT1hN91uE)%tG4Ua_Æa 5Up G̰Ale-(7H/D $C2ΖCI͕^٤䏀©{P&RZ0&9lyVDLnQ]b#+\4~BP#tZAv8xUQ2lcc,w_N~j ]#gg3B]"w#3طrzwbly2*D}1ʲnB|&Om3/waa:6sgklV(VwsStplxo1}S\R&у߸ͤWT:LMRnT APAJ(μEz "r=Bb.k>IFismHL@QSYG8tιO&M.֬|ѵ'z` tSmW8 ,bb:cGhWWVԀ)ӖOeˑGCȞB8PKB)(z+z's*||yE%Y]rZnڏ%8-km6v8k1li@Z@ԅީa6{j'U6 ɴZH%ޑc! Zqw>dЀcРlۍVy% OoO|Dd!iehvu(@KRIM):";׎";;t&3p-ajڴԱo69r$N-'+RG--NuE韛Ez4-#AżśOr6V-cxKF c5>IܙV4b3,UTڰW4eXĝ^KTeS~؂Z֍ ]đPV'ED+26z\&zT̮Q@wgw-i+)̛Cdf[Tu2r[@Su]W8Q}Sa$m-[$86IZVIn4y:MHLޢB| f[e`̰k ZCǾ3YF=1Ov E7^ƌ媶 N^2Is!JLq[@:Q>0(ej (f -ৰ٦4J g<7 ZawTU1m6=>FE˄$(E-L%xlHwk#,b]V|a{['rQ84n0q9qŖ擭 ]DWE]ܩ>C)NVd9P.wFk/ iDk;G/!TCDd.4Q19@H,D;H8cC>>0!vhf8<^I P Ek{BY[FHQdD-`:}cI%bR%A9e͍AF z 3:z&ery@Cs\0F&j}K`l V}%j^b*S>pC0"% >J\ΪD2rxφ- ,sO"Xd,4-bVl68e_1۩s{lܺɥ~,rb, tdZ`X.DkLZs{:`Ж5|=g o,, 3c-Ռ I _ѭB]X6ʈ(s=Rޘ?`H j #'xz͇SP˲2,ԅ=<3ҾQS9<79Y*q Y~?iSzR2jVQXݨbJ&`ZR l.*COD5w*6ٷ-hX$|p:.SͽzDD#q- ,qV`6Q(P acx5>YӐ**։Cco^acIŕp&Y(\f6~hh#5;w[F%y__gC0ܜ"sHaECȦeN}*E@IXL7S)T0 ?gZ^ϗdU84[:ضcK,}k*IڏRXm sC~r!eBkɘ:C`G^ģ>*GK.upyS0"ΰleRUG.*%P9>gMa%n11ުm7xs'6ry>Ыݗ\XPJ+U3F)Stnj4{\٥I!Νؘ.}DO9zlotSHg,6&z@sdِ e$1!2TML,}HxR6#_`&5w'Ԏ"!OeKӆhx#aLmST5z=CH_%& h2ǒʙ}>yq{.t0i@ؚ=:}{xs?VtW߷2Vm*%J0@9m($Щ"8Bzjfk3!Qʦ:4I$_v0VtI o+lJ,2dtD[2Ђ5=a {j` [C 5B'jFf \)uw ?rֽli޶e3D6 ׅ66ʹQOȲ*I& sEe-_+wPeg&<24sDܤesy6LӈÂ3Ņ!f5X&OLBUGM]"؆{;!] ]7-MŸjCBP]=?"b窰[q #riĵ Se&f{LKTvf6Vk[c,5ZfT1dyz՗@=Zn +\ZT56=^)/)++=vDӈNG8ChGd|Ѥ-jCq椢a j%%+9P5Ű.nn; ! iPh䭣+IZ%$&|%w:EKtzlmkm0=ڿ0Y1PrMYx*PR\,nvy1* O\jNd^ɕHG[BAcgn 1ǩXUA*ʯ0E[ b)TՕ%[A LD ̊&rnYuB~0c[N6>TV\y,O;B4_EhǮveAR5oL(s05䡽_gNL8lEhW-KkTƇuG-Ew1nQONR09PƦi8z3]A8Lek|Y'—E2c>FQ(e)ѩ܅ݓBY 埒2&Ia(+>y.c }!bwV}b TV׫v@fz;hr2:? 71~3sHnW?1,M4asq![2> PI7#gi+~w} &R}Tl];!6,) ;"X&f ~hG9t#dk$⟁9EUBy4ꆐ) 2-x]J8~קlDJO f [tlHeK<25Uu#ՖS\jHX {=)QݢS*yؕMF"[-FCRV>),(c;Ξhm91 `naP;k##ߞeVy]xVkUyOP=>063PZ;{:Xt&8adֱ}* &{c,48X/GUS ȎH٘qB0De+?j|覨D'V& |F ?犒#f=>i/ͽOd0z\ON4|,6"ݤ3˦JQkvSy)ZC t#Ck>F"PsU艮SvjFEv 5[\|!(g҇iRo`BiOA~*Rh3_H]1.cm 4xpz~bvQM:H20}T ʘ 4;@Ӗk}Af*!+WGSh}I>Qmsr w2cr~]9G$rX4s^-l<:{KV t`G"|3O*MCr0(EZTIriΤWf9W=}35$$^bFt煮7r:5ԷO]V̈7 #`ucAOĘȜ~[ڥ&6Uh7n~-p6F"7pZ])$/\5a^Wr(f=lh|txyGjr%6"Rɮ;KJWL81??o2D>"չ~P(nBfNƴ{YFYyold[X AY YGn1R<&Q [0.QfY}TҤi0M}X[ F@p鷮._2}!C =됖h[ਐ%zMhIv .gQv!`8hHamPmlfv> YD#|̳&Jsp83ڹLUfl%N| J dHp~{?e1xTKB $4xBcRMCUe|kX'rNPlt zԂyfu7EOcV35>LP04p+sfvi&MLf"3- H3؍lS~WAf= :aC*ɤl``47[,Հ,^g*چ.8 FYK%A\63GFZp#4P1!nJvjOu0 , .Lh㎱K R Vםï[PJdMm#ƺHxjQ=|9<:zw{[ pv3\eJ2:,EupiΗrcHtHc#JkJȡ q{ȐQ7pb,ӼȊ!iSU3ٖk7 =e@Sֆ^f΃7u`.AԂ'B%划ֹ{u RyCnR|HZm+Su4xVl6ҕJYߎ+$8;'u-͌@@:ξpMMY/D{Q vʱbotG02VnPHUi:{VD$;dD˨ jrۆ_M#bmMocY[33SHn2K4gEfNF2M8E~Ҷ)c0?a'? w֠ZO8}ԅ|mիǝ.h[. NAo7zV 8sxf̐ z4J_0 2:l i!% &F`F˵WF c&-i ! M- \P91T$ َj"13Ec|zdp5Dσ 2Ȅ@s-bAGر--[ |frvXH\ jY%σÅ >bh_6m{ ant 94g#Q@`pᒽ8Kܞ 8i$LR7ӗߋuƒ*ީ]_V?Б .C63N5}{rkV\Q(1|Y̾8Ǵqtc%CMw_؎T5`1ioT,O.(TM!kF*zK\*m!\pY]'P% Q h{4{KcD4֖L$[h2 ׵ ٶ%=Ղq&@WFojLm&1&d[W³[!d#\,F^rkPw;S)9b)绑$nCHC. mK2O7N}@j͛KEDi92 pP&0X MV:ۀvaPbڋ_4Q Zq:/֢)]YY|ضZrVM%j (,/kf @nE0aZ_"K<'RB .yֻM5DlXl=uLj@ l0}Xb)~$i.2]ȗ9Vh#e .:{ f!uho'^ʒhg 684ʚU棙|9%`C9VC~5ISkbRem΅ܠM+K(Y(6Ffsw&#V~+еvbAyѭV&!L~.&C2 ցM qtCN5j`Ou$Z.8XӅ}cM%˼Y,dH mܾ=8J2ZNUd(ުVc$_ 4bẔEC[ۈJgB.KD285{yf>WAst%UɍN>J5cB<ɍ~ yطPtL:2CRx=XQjO>ޟ< Hd4 2]5m5<`UB2| O7:A72lOX8D17xL0# `3zӝGkl E/x%~F[}i0=VW٧h4/ށ͛́&EgzU=+<*9؅X*ˮ=q&N+:IK}͹P6Ut[QS&fb}aժ|-[R^8q'l=^i!a^%4[d>.Iku!Ս22$, e]92*6:]!oF7WO}ts @5Hr>,LXQe_d:],fp F,[m0obPBjG9v,:kZ=?h/+g_X%uG”:?}q6tv`:=l63tpZ=}}4a A-ۊ J4j7՞qDȔ1:Λ@Ŏ8hJGya|.YaP@|OYx%f%ȹTz_;$A:->UC.XkZuvv_p>3Y .7ZI0,%M AL>lh2-"ªI?Պ79rl'>>Y> +{yJl f&E?nb-NU[ܕ+GsϟKg9t7נ[F-YE'IQ/z𔇽6z-N??f "ļd'CfG?hx]}v1]e|JR\׆7y":Iԧ-~v1Ȓ^8ˉ?Uc_zW7 [OWo׿/Joz}OҚ1~'ۇR'yY?Ԋx}/Y륾yxU'R}I򏸪kBp[iR{)MbUvش?ׇs {V|w|?@zbi/?hE,+6/n+|A){[Rn uy_?矜>?yuɷWzb^-yO%Nz-Ξz]N ܊ FBYz\y( -{-DTo$M 9ZS-!g-K.eÆ/yk߄tŢUuTWqE?˹~itf^yxEFI":X-c5WVg]\q?#JXr,3o<~xZ:uޯᅜܽ_S[hnU-p:խԎ*Q:7CK- uÊ쵠ak3.u y0@CewJxmBzն^z؊VѵҴM[;k]-ZU؄aty=LZC"#v=̪XK(C&ˇ6f?9ڌyKy8r8[g>.GH u cm]Ô]XcEJ^OEuLLCm#|4oݝRh ɓ{>_~q{9 *mp/~K}=NٜM{U8b[?v-޿\4[[I{ɔԨR : {- {-^wjxVsidu뱦=e67c1{Ln߶L[Fr^8o'>W$L!KYt{tZ# Y\fZ55_V[EQEQ.C/᚜~@hts+ga#^|dSUy .5y UBftmbÙE6zᘧSkTO,ֿ 5+O)V}.jңbY)=XWJ1HbnVps[)4ƷRoXb5J$bZ8X]O)t>XeooO)ֵ>Xl%O)(bRlh)R,S S)~*ŪcbqS))ŚS5ݏkoT5׶O)U*?XWVT.TRlDxJJ(R,J(fz{JbRlR-JzJK)*ŞR+JzJK)KRKXOK1}RLb9>)rߥw)wJSRߥw)wJ>,ߥ?O)S5O)vw)6*zSuoX])FX}Jh%Rl>؈}JbSPSM=O)6|o|Us=ίzUo~.QzQq?Ksg=DkYOYų:yc@+zMg}zNگZXߑ];Z-7OT=ҰR~V//T+U=шVW#ί(,?=_짧>n}}})g??ޱ?yE~'5ֿ~Ϋz9ϊPyXt?28i/oЇohD9OyS~C/jϨh"#hR}|_OWhgWh:Z~~b?~Oy8l =}C^>ҩkܿoSr=AZ?Ь/w?y_oh8WӧI:oߠg=?дg_; V ~z[㻟[Cu|CE~qO>W~ѡWxXoohkxMC{ʎxPq/R7T׃7 .=0(_y}(:?V{'a^N~Zln},栁&¶e=`<9Zɢ=% Ii UVv/>hAEPpKk`s2N"#[tn[ܪ.gp55 \r8B ުF 24Nj`O[ǯtI*{:9qCu ο4b4"Ɉ*(Vg) IVd{1 ,hٛjT j'jAMQڨ AD땦!Г !93zB=gR؞8US3"8U@^&7Vmup[ i&IbJ-ŒvM d*&?Џ&Hܻ0 F?5`H(/Z I[jy]TeĪȠl]acQ4!pv Z.ɴ^4?ACNZ&Jx:}&UmF)8V̘Dn'{vo;CMQV#N<urSz؀"jriIkzNGOT^h }! IIݪS=ԅخS,t jb7xfJhpHnyaʪ̒IKmt=mRpNe%֏w>o24ȥhZn\-}L~BY ̀A;i󕔍5۠Ոlا ֔`"_3 Ckb](<9cm*ḛ4 U;8`3u(lx|>)JShJ`jpKD"KˮGݖ|jۨ[Wd-5`+=G-yl*~5[B]v!-obWᵱ }fOu˛!}N=ɰ_ҝM=;g.@ah'@A׹tagFi2ZP]mZ9#p $6%mTdH i0~簋{?B'zxR P5H;\B! ɥA^- v[`1-Ѻz*{{Ockv$+\NjSF=/ U<]k1hr+o jy'N m4e'9ټ!q6`ia2ЙȪ༳X>PCOTҰtrv-H淣;GisRhSX?!PH@0K. T&]y!muBEVԹ~>u#.2Q/#tmqiUrhpΈH9:C@ߩө& jlc0EiϓBJfAb @tw0r.F$_s[ZųwEiRB):ԉV[EDO>Nv d+´lk!#amfp+ˍlǑ.jo;JɓvB LX! ֊J4bjÆ = (Q6$TĐby ^k}%R+|V-Q2H7R! Fp8gc÷%[e8*C1d vn9@nNCQ &MaG^G,mu,: .6\%̓H$I2L5!rUNX%K$߀FzkXDS{L7[Z**|B0ahKP~BU5#2 8[茉OWDU^g!)a̙pG5KJԨ F^{ş|_9s|f >#D ^b˞ CY綶Y!wNY$)VNj?I!n>;mLb[¤zA JX=cjaxs D3pEmWqi#MRp`M>Suzp"jGL2I[+=eZ DiծwNxh|_8FLw9ɍ= XЬTk) ӟm*̊; [OݹPX6]6ӲYI2SOJ9ͪ d If@TTuHp%4ZJ (HU@hĦ {x 6_UX{ʝ5M5"(C^GhTDekV4_2$ 9k$aK)OkcEa%{Kfy->lR7usY`Iv<̚vKui; [{ݐv{}o +Dl !0uǚ ǘ3EX6,7ky%UPKjKhjt[/WwBJr@l p-掎tЩ1IՆk݋qd*Ѽlk8CEʚĨ-h^f},8싖ݧܕw57{ a"M(b `*G QI3ԀX|-CCO1z8!Xr`gɌKWOh7WF=3JG6 47*;ąS h\i7ăhc}C dtVBյ ^ ᧦cBec]SBԇb^/S&ĵ?h~&yUB Cy~i} h|vFg "*jg}lcV&*B0zi;~t)"''N5-^'s2l^F} &Xd_]UҸMK}lA&jsFeVx&PSeC: 0[!f ǎN|6ѬLKd=@cfݍ3S.4~$GT2< ن}ܥv"G i>sɎ,P ¸#Ѵ3!d*kW13Oe[IfY5W=6ׁ;6_(RZlq>TLl爫 -u6h^-e|ҧ[Ri ɈmH`Mh|Ψ1];IRֲޘĩӞbX:Uf3#_?nQC͂)l8w'ֽ*#6 dȫl(Ƈhh;I[_5^:+$cKYÊPfOY|ދ)l*tnJPMFcè`އ; IOgJFe <̚޸Bі4 Q剗I<6U3 aT;YV9'њZ jt-q#axt0bQQh2Y9,&3p* S@apw#A+bm ysKa#C8oV `}-H㧺yr@oOr2n)'qO̻bn]"=ܱi7ykZ91846vؖR`ب#5}Oún>?ĘyYETm5ڱdf8"C^]06ŒrfKY=nMO%&I ̹ tK9$j)k`ߐm=K[MJnMuKƫ -bct{@G0ƣ..X݇jNJEc0[1['I0> R"|^ 1HwTF!Ue6b\T7kEA;BlRk$(}e*d"}JVZ#8!]>jmIe.]ċyo$ @h ` ͨ5dцa[B"-Z[D[Vq"xqxx1U|_ԅ\({wGh@4iaێfɘe4 KK;s˺Za7uV$?uM-7C(͟#$0jHRKtHL&oimM§'˰.T$sȎFy1 3V]L#=5‰dᾩ)yf}U0tq>2oFn2 ZFO'G,v8 뼮ӄ}HٮVP%&k?cA(Jĕ=O#"EqGyⰤF-R 4yAZ"v$ DH@?ǑOPaNy?3 5*:ՋAmS hߨW[7V¶ʌulT24%-O]/&(+#Sql?7{6y4䊹]svHn\h*GmUF뎪VDz 4 {Ip@A9{9> |]jÇ~pmf ׺zes$ݧ]ulcRnls?9>#2- *iFC )◥.oQ _;""KRl)9!Tpu'LB2DMRm 7yfHb11uZ}~Oa}XhX=lTf) ›\sFb42#2בb![Tn3W+3pZ2_qf(CQ4xooLt ݯ!y1BBC/mmtƉgNwa31 90;Q~.@NcJu3bP(QcȚqQU0wΞ#CDHjTüdW Y!IMԖhj!{SH<}*Vq6%(+|KF3[SCET҄gjlLU};2TOұ.38$'ώ`e"&BV*tVY0ikhʩ[T%0Ks2D m$̠vW* Hpը'|d/}m=Rk2&S16%?ӅR%\1I&REe՘ed' V!&k\Qn0C>Je2c &"ۮ܍w Z^;:.IGQK6 uH 'Nͺ 5ձ5j4z;yK쪳h=|*/i*ouD5:/5pl=ۡ]8uiÆ]4QT*YpT,0Mw7gEU3Pw i1rKVD8 WNP1ei{d{?eclU?BJq1({{?H"7B.W95WҕBg+,^׊rCkml#~#>Ja-FMLX5BvOf}#:b]]~==\*dȶuM #)&,SIlY_eMQxꫛ\5}`5.09*2MFΕkÞ*Wx 8o$4ObL|{tj=Y9Uv~ZQ-\ǚ{J$dֈhPnj.skE-̽**loT#ż QĤo͆#n{Ivuf {4cdpg]DRbRX7vX6h_AHFg7`8Q"{}_‘Te1N(_F?I2T9| Ҏnʌ%>X3olM7ߊVcQFv^INW]h@ݷyRU|+I̍&#t,ЭUßVo ĄLʜ YjSݘSmm+U댵g*oL5WR 6B,&yzvj-).jƊzg5P;F'-)i{U.~9yz*[݌33!02k옶"/GRt_빋>_-ª&mc+*ygW4 l/r4y~j$dSO7é\6y'v0ądEOY59BDL}hasz"Jl|)-aP[zu{8 ]e0ՂNAKQԱkK)OoևlLW=} ($emT_ʿz :54)97%,epM{G.bl [h|J*gr_5T}K l4 Mx5zV7욘Z~SӞ/#mJ׉,j.PHR+Cv A >o.ەMB1e "7WK-Zgk`Z 4y U!Ȩ=#!7ZYCod?>ba8UOp1Ҟ0Mq`Ƿ6Oд]Ric.y1q<^O4KFH*RXh|54 g O&Gr{:"фo`emVlW4h2"Rt*پ"ADe%'W q,1I1|1 D삾T-( r+y:wvQcL5O_@-U%:C#xi`bDvaiBb.iD@~ΏF"^꺦EH8XXl`Ҳf #0엿#ʞвo͇(ae=Gnݽ9m}cªk 4GGI VLtY5,b2dP%Nr +<{G,Pl41e)i ׶,q<,a:GK#u&waڦ$#B..Ʊ/x S *]窓VUzGoWɉ#7)R!rQYZf-qbkZLp V9S4F ˪rkqQyPZWQfA*Z]@{Ѝ|mvWhK[Re=DCTٴ{u*aK6#dӀ иs8ܤ#;nإx`,m9FۛL: {H {$0cҋkSd?%=U?DNqŰ%m7#* .͍i&G1;v1hڥɚaϢ1fsMҳ(=<5wxQk8Z>C87 VO403?ʪޘ%ibW@PG&YBe&OBym#Dl&< (QUGpY饨[c c͑G-f H|k!_GG0֜|Ϡwvj`a;DѴNO̎QKramcgu~f³;>g+ZCUG ЄPgGR`oeg~xjNcPR%<:rb߄K6f%_2WW7H=cDu[f\IG2]C;|ɟ_L{q:_9s7hXV9洞WpE7mgYѕ,\c&\p4Z?r?\O5%B ԎΉKos]9= wkt6t3͆ԏ6ɑ+r8x2WEXT~h4Q/eC*1]٥Ƭ$us97ZOWhkcrTٕ}e]Ώ멾ԐT :Gq`lZ:xTZ5v8l!hbBx_8J7!ѻC.Bzł7Nytynj B(<)Z16+GF&KgW-_L`8w`Z$CCXglb,R2b Ib@5LWhʒY`70kA :guMLIUjP#Pqֱb^5wG*Unol^4@PdډMVUvUi.aJd8-7-6Ѳ8TnSLy@Y7nCCE~`cr}7^;3&Zs%Ԝ:n׮KVaR;Ҳ؉P8w4ْC;јAcd߲hqvc)g&dG61̋J`sN&4 < tN${WЫ@h·E^n94Ë`?jT//Jv;acv-ηKv&"}KQP2]N8$:1 C@G&]!q*ڙo$Sɉ֦*lg`je0N(EhiA?Nآ8C䁻d6|,FRŗ%9v5VeBv˳E/>KiJ$ Gگ*]HdZu Β$fM03Z׭ V+C6! gm^*:OIMMP9wFOR 1p|IySS.9}2i,YlB'X%͇\ -@[lB))\U}k{: j;:|pgb6ӵڌJYZYI~ 2Py5Ѭ^g^#.(L#di `F&ǎL.I{ӵJ2YxfyM6Y]OΝisОn*أHzQX62kWp+/h]} 3fc_Kˀh84cYނ$ؿWR9!)7E;[Vo]( ;e7 zӆ-tN*rͩ,,\t6 AX!1bTLQ MCn\ ͬG09{ kqtYP ɄU1<.RPcZGSI+G|n.V/վFg#ڀ =<0tk@c77! [G *K}#0P,#ZOA =KAۘ.uTP;đYbQzEܢVro'*F%8vk2?&ae, "}M% ) nȨ|N)cigV,$pn^mb 6lʝ"U:CԢs<T|,{2VRq.hF*d[nC("f$]Gzf@d-4oW=b^[!gu:M370`S./W>r씚4et ܅w-m,;*"P.HmU t9hV#XjPja.'%87$YQ؜EYk1l7K'\uZ3SQ)a#CzXvܷ5XɑI/T 7)g#96zp fFE@R77+3#2 [pci}$^';#;jH3n'r;gVX+SF-]HApe,؊5n~ mF{; 1mUhtvZչ0Wamf, R"ļa4$̳~MbVrlf`m:YiW97ZK圉,w(=K^B .$c/ʼnl¶Eς]IJE^[]ẮiM~BWdfjnlQ;),eϢߔ”vȠ7l[Dn_"NWk0ʩ0CʎnF)-%JUeFM%\wfIwO)h `]7=MJFɌU_.zŚ4N? U25ȱbc‡{kx. o:<uaWn 44Z ABWZ$s:x"d: S&&*.VA]z(K&t:/UOM>{F]5ɭ=p{윸IUF M")Ы\>aM1<N9b=%) dEpA]uE=]FHDtĄG_/W\ȧj3ZWRaYmSGld? Kb^LKo7[w+{$dύi%칱1YcA(ugpo:أ HϩStI M6a_RDXh|}hH)ye~mOw9Gea0{* Y{-&#捵LM$ tOr# t.N,Wvn(O0Li=69BF!c] [}ݐf"Z `t6 vECk3sr ȉ穏n[f=TX>%Z|AA r<J Ri뽏 a)Ҿ0-q#0tZ$=yW,M<u~"}Gf$P#ցӥQb1 ?R\WJ,8&i:I(4tz=`DԥTQ28_g2܎|FCv+65Et>̬qc"u3qp׋Lywdu95}דּ9b,paE)k4 Eşۤ"\{~}vmC-CYr{ϲ|C{4ߛ!M&6TtF;_My.\$8tVF]\rx2؎4QD5U#T1߰:v h/'vYSf@ (W73'i.dl3OL)#(+sMlPCl V6]u,f!t_T_qUoG6kϴ% ڨbtK27W~v3Uno|j`pQ_Nr1x3AM=o6l,GUAX 2]O;w쎭֧,'|']Ff+۾TG.) /C+STv5Z~Eد0{Xbusą)h`܋ "WI\UcN ᱓mRw<!rz -)n$ZFZ06bvn +PeL6[ =6Ϊ`na}MNļ1Imngu@'.>aT2KF=PSCʰЋ#^v$7䮼ӫ>>.z:^}߲ }axQ4ڊƓR/2b]5odkj#L1DotDm7ԣ^lZW˟:&4nmFG]Nyo_8 I`P 7r" 2uyDYw!]ٳhBưi Orѽێ{^ hbd{۴^hU?¾ h,dZjPV7u{>x,묗T$(? oe\cd$$Ts:7s(zuv$4$`a6ѐWޅmc$Dݯ!6o.[$ko|Hb8w3dt8v[1uN:`+y.hH#TCx*iҠk2+H'la5~P $z~ Z*Ržs_p8FϤ!IOdrtP٢apjG~ޙ3|)69QF/f̰7Kx ͽWXU2GؙBe /rIiF}1F+}ۦHL=~3.[" Eb"ʦ32짛ɶ.i_&$ "R, TFVzhDb2ojqo< #ǾúN+uqdF:C x%ka:W;`Jedl 3q(Uz{F&p*NǠ{48F|gKcuIGitp`'rd"ج?j^!" ]󚊲IDѢK% .uY?)Xgt5Tigm6 m=8۪sp(*<_wo߲q;9KMF4 +GQdAd䢣1ɭAAGN 6cgىͶdY ߬_rz0ga9e;rPk;[-obox -lB_ќEV[EBjv~:a`9#LhFI Wv%kʎή=a6k̼z1,F9c[fO.į2a/=eV )j䕰o4j`ۭ({l N Э!`#YJcw D2v`ڙH$y~E.A-  Z\5)A${1Uԋ&/+2#nv g*V֥|kCmu)Ly$qnG{+6^?٩䴒u;kp:G[|q^Be&qNHc?.FQaʴnZ=>lg~<W6^oh .УA5U#|d塩}>ֹYP(N@`c1ݖySAfsb4Lڗ-vŦ5aKX@*MAb"qIM$XF:&LJ iMXQ94E528hʺ`N[GQp{ ,uE-U(,Ꮧf?f=:m^ҭ'O#5z$ iƓX!ug2 Z[xQve9\.x."M V$;oW .)t?P yͪ h(iT$sTR vd}JCOO u85RT%NgQ[X*Ն ^k[d+ph%5vE-l]d2_*Fj k߸$y!M^OAKBl"csfP}&PNXyw]xhlWd&շ1EA} !ӴM~`s$W+\3wӄE5'Jb}aNEnV>! ՜Hpf)e6Y5ehmЇ=P&Jg΍a=aF_ϡ2[ȅmLub0%bȊP7BG 9?BjhBɥVjϽetķO;b½m ~c9 +paXP}&y8=zGH|9n'!+qY(HD6_2!@R%D`ѩ;8 7 7l^E$|%b\fV5ӗ:h\Iؐ!a:a*a 7"0_7v͝Wb=.l<Ԩzr6x 1ZL65E#yclZ=aT1І*VW2ϫ˂ѿ6\&p\iڨ8"%,:8L4o0LĚNjđm U23#(tl/`8sIj=dMS=Oe3:6C]Ytxf.U5tN &0#‘zSG SR+F+HXHuE}nߜ;H=F<&t8>XkB݃(Ĝ!.aQBd0Б?űa#%HlC35?ol`4Dq&QwFyβ14 iKhvT.ĀXeB7p>N,z/E6Yͩ*`u$-8[jxfIR;9W1>Ml{]]+ȏ$u[w%Faa"UU*ni;a&쏬IDL1"T-ǏhcLIeHG8p76 Fp)O5, 4*aij.)o;c .v]Yȴ܇ގ5m*g'RTKUx]^4FqIF8! +c3lK*j&SUZ3lb%.Iؗn)Rf#,:D /^7'<, qok/ ]ȋIoTb1 ځ;3Fzɗ=E=؋Nx8p10P!4EM?C) EUhGig8Șv3֥=]ѱRIݢ#bTĺ~uv2?_Ԍ@S1s+ LdfuS8J|1|I#EƐ*d1^%m&4@F -ɳr7E4 7+)>AYoJiTQ]v7X]R$g;p h@+LQP-&e+o,)e/+ȘϢ_uײekVb8qĞ]%kSb,܎h#pfmpdXqa4]L9|%7Ğy]̪4#d@~}R&N尽emC 8<{6S@6&ՅS_9^]]ؠof"UESg(v|Gf-5HEr/,_1*מXW봛*rA篨F9䧿hh nd! qoz+SE%sQx6 ^h_BS@bԩurKer: %9lǍF%Mϖ5v" {m:}dӈ >4lbVT8R.MyڇFE_0(Zι!@wFh[#$cP}щD.XOWHsp E`{ŧnHg3QYc9 Rcnf$,KX`L:Vn'ȉ!dEe9X^.H*nC풾 kfMĀ]`{zUG.4@RǓx=9ȲS6rRqf de>&I@VEd\..DgvfD.~SzJKq'@ZD)2<oL7LУEq rl)*%C^m4*ka m4i@OrX.`Iu8 3k\ P 4mfЫ{\gP#;ɆLvb/<Օ8B7.;P]c3E 4>/tN * ĒDBnab9odQZF % R=O6Si;a{"H,|K VM?-Q$Oh!GCO'AِeACV4/07%/9+7 >1~AsUZpJe 0/")rZM56,#yCqv?.\$*Zc'עYďp~!1(xrUSܴG0ljS v;i#/[`GyK}7΅]j"nMEG|j_x[U&l/TéڻfL bYtvjdeTf挌*6qh%M%:/T=\AsH3]ĶRN,Bhc\X<GRg=* Rz8bȿg0lMWRGͷϸPIwH2;k ڥw"v7 l>P5R%sMbfh]cw«x0 ul`˟Xb+9m g34 ;m&vڧQMg<,s_GblkvYjӾ ϒ5k!KqU=o?.؄j (;5qn>L\3z^^FU]:'<9;JTn> '% TAxC[KU uY&fsL :v1{Nx 6u/5MkE[7acxNWLpgM F{vyuO\i#w`l2dHϤJ.5LD숸65!fB]YFc쓘)ҹr)Gq¢=2U8 NXEPqOha)ۮblv"&&vMyh;i6f^^nD󚨤 ]H`cוDr:5?V}s xŧHLtyFٔy 43fAn Q I3Ŵb6lQMdH!e7jOxjYX}ɰ-a2cl<[н@͞B ZɢEɜ>{j7P{d> |K .c+au;}*rF]U Mzt [O8(=(^O)IQ66XhU (O<<9 ʷ[dN\.} į" z`Er?)(i;XJ!jvDR-Yք"݄ |ưcT /)ɂ)g}J̺39{bIcg&T~/UI@LѾ<8=ݤ̬HAjD}(Hz׳i' 8^=i[E:B 2VM5=W]1E#ΪIz)^ tYdfnYszvD\MfeOGj5d|z+D3kp$zH1XB|#i"Ϋ %r-:a37Y-= h:?FOarх?K3{ط0iCuCC#25V|~/4Ni6t.h GkB<in,Es )װ)ξD5ЦmrMC"3>P(Β6xD/ dGzBnXS`T&QNsn4R\fvwԴY4Q%XKϋ:0퓚 Z 3i8CC2ۼ24O" yuIoN2Um-жOPwwPoq4,|ʼn&ؓKgE4ECkުX6$J-yb`hM "4 !_I+zjZ(az-eÊb塺0.̅8Rq5*i"Ǟu3wf]Q 1nAKU}z lq{PfxM }\̌(Rl'*lT1O(q|C\uF1tإoXNqᶤ@ ,cٺy9c7dr1 1{hR^e61L[vYKRI`#Qmf+gR656))#Q­`$tTT\oE4 s+kbذ E^f~d5@nTe)\|ޒEBcW{$YE\J''hL#hs?y~EER:/!2#'5ֈ2G* MLz<6bOTB~LZ5["89JJm Js5L\z}zoV8\#Zs*8~j{c6.uH%H CUo[h>$!oba5V9*dNgF'}ۼ# ,ihcM,[Aޏ+yҵaׅ6}*_"ݱ%bFiQ0MHxJjVy«nv{ƒ𛸒V7;bb;hFb.F`7@ uO!jhfhfowEq&[OyIw=y)Nwah`s2Ri1`K}yZ)#{0سjK7QnJO{A7#N~naF{a El>Қm{$k_]wy[*Eta$? :pzLCd$}9I AA3ZX4dzb^ LNڞQ䥠a~[d281&%UOe,LwzCkFbuHb9yƺ.[-lYTAUb"o9Υ2wep3nqWa =t3(ǵ[zxqK(u bI #,]&Ff(N<&ܶKŠPutXo &'L2]{fWk6W&"26B^@2׷& :j;WkY/2GG6EFs:c zse~:P/e?D17*8<32zڇ}C>Y?W&C€KNjOdRP{X{m 7t,؉Tԇ]/KGAOvVZ?_eyi\\qW~ Ǽ} @6]*9&/R&Ʈ#]v3U`): QV\{@ML-'vo#>>l܃nPG{< *.dpjjgՊ6Ak6k"uvx|On8dW2a4bдP3vݶoOKTi"K[*u+`8d& Yѣ[h)G##1/h=2jkWn0+:;TLQю yq+Ete|fHb7;*U = .vbdbi{&Uzh'FDC'ނ'6#YÍH '-j'U8.myр!^-r])v5,A .sN%;ruq3kXBMb6]Y;0=X K|"S ϮU- \!ORz؁~ kiv td8PU?N8rT4:>䂠ZHur%MkCÉ*-m&W-I#N5 BUx,O'J2n% s-.g,;Ȅ,EޠһkXIo K) IIM"Mfsƌi}V"[ɔ F:ӿU _̤R>.IPEli:7{5v:΄?67q/ X2VvdUS- "Wd'3% o8h84%]is*:~A}V@g dwFij-=T6ge})M ̤'|DvLC"2`GإRvaGH.ְlrm(K; y>ѣAͱWf7,6U9h)υkF 9eҧv>ߴ-$Sidx%)FJ]+꺫,K;E$ 0b۳eAHby\ 70rlj.7Q H]!ftIȒg?0U6x-o>Al31(<5^ sѾ<љkGg*PJZ2.IagC*Uq`"yp ~ck[$ܙMaE5ևXnEzTM5R["@m ȡM fhfɺ )Y-dfV\aݒ¢4]l7iu2|*TK9v(铨I +' 6e3ў㒧)9 2AB R:9Ll*/~?w?Y{]>L>_;|mL,y}|~_uo>r6_~4JoH-pCWMRC8}]o~zFNdjIKkX}+?7٨qK7ch D4̓zaz7G#tTy7k4oF/8qALqo>gI# o+~_xIȞu7ǹ~>SC}s)xJk$#~U|}R#pòoiwS2$vUŚ{~(*3ʡ8=O}oYGI_G_w?eOU[4V_?xy-wO}ۏ 4=GGsy.?o_7?ͯO?O)A_"֖߆x}?C˯/oto>q`n|ir(Y^v}aփ?9?ɔO_>yOVuOןR/Wq*^I'_I)xT˅=I?ͯbu"ػ?ҿݚ-;yV#%~\$G^+y⻛|}_A<˯@?Gx/;OW@)/NN9?({N_w_|Uz`˂,_'ge?y| __W`GMG޽1s/[%hb;ZU"3(IF%7|&< $^a_k[մׂ٪R#M[ kZ !Spq7c UkZg&gf{-Ŀ:^nL#@JPnu(z8HLQbbe,<{-w* P : zh]ֻOK3֓A,g,R<k%VDaUgrm2-7\ m$Dkq3kp?^ey2_[V 6R_v{a&iE-Ld}4e&8k1Z[zYp Z/3Oz!UzњzYiL#7ZL\͒fpyYQ-Y3hՆ֋ΞD>^f% uy| d&mZΩ2-Z";Q]Ӽ^f'ˬXZ/3";zUYmkzMVCok=i&rz8IFW{=^5M.gZ/Kp=\^.kEEev)({z]^^f||.ވy˪2&21 yz2Izks&IN z2e416n!$jy^-D403˒gV^V;X/6DbhX^?~?Z䙯[}zb4 b*Ez-clۍe+_dy1G5Yet}e%-GzYIʣmg# DlRR-}e8J}٭,cU!C:x MeYA"?oVhZ/++FZZ/ȳYN{ ) k5k@z TO,? 5+O)V}k,jҥ:XMqG)V |J1Rys/X;+QʜRD)tJ)ŞR*J1|)XZbUhSb7R(%O)֢=XRbKC)+zSu/JSE+b#)FJSMM'R,/bRl:؊>RltRlyJSx)(F3JRlIʗR<_QR̷J1+:_R,Zǧ+z>bR}Jb})ŶJ(ŚS5ǧkO)}RRO)RlJbQ?}Jb1{JؿR,Zŧ[Q>>uߋ||ަ>-J}ףEi}W\ϧ4q?)~˗Y[ui~qZuZ5zՋd>}yZ5T+wy|s^ڟ~٣^9iV=Xg<>}<_Zsw{Yߧ_Q?~xI!!O91g=xMQF9e QJAe b3~N})>_yO(:?i{:ُ uKtߛXqw5.B_L܄dM,ӱZ;=f @bTH t_^D2^PYiA> B}%9 N+si6aPْ@{ i 4a[Y ǔвZד T+dO บLR~r :)$}NGm=T?ubE0嘑]2oc׌3DR -rzmHE8 Ͷf %dRI|0O˂6y6#n;Vږ`~PǧΎ,75VL9&Vz Π lq$k׋r h* b UAƄ=JkM:(?fEuaG66fy CK(f{#7j>A>*v̀v`;: U:U.f[ Պ.n3щʞI{ :r*LAB&IJ$8a,Nk?,T̎}["; fX4-rC;ZI! ZW' \!ݓvB+F(ᴊRc—&tK+H>R0sZI$<N:5Ś4:`ЧRROxR:"Yk0ӵi]Gk<vοzLik&Zr}SU`;paa֮BUԱl1Yod͎ } QfY\ksDChg-I~(N zMГێTUQ@jw iU5<΅FӘ;*I7joZ?(zOcGgDv ARl0~E, `V1oԺ'tJgRT#7Xhpʘsj@_L`ě/LM{T5Tod#%4‘Io` W:C%{# kT]+ԇ@RU/IŽT0UVS#+Xi˩zbaZQ}ߤS}턍>t_v`Z .u1fHSSɯ\pXR0[6y5.8!fFЅҖרUT]; MoWC;EmM#x-IJڴvglw!G0RDmkC *iU%:T> ?ע;TX3g7eYH:MTvoةDG^-.julz t!zHN<~$>uqe*:>+$s#Ű~Ŗlfg3{ iQU|7kjBG5PGItF0CLdD(\-[IEQ!A^[7bl EͬkoUrQ.w0FI>c;ӹS{Ջ%p5jlH^ iQu 8D *X%j DxF-^M.\l;M6BcEpEd$6J4ƃ9pW#ڢzbuMPDTQ0x1 Ijhe]-vFp%c{ c 2pV1?4 ~o?}sCqR=:NYU0|F`n]R-rYF4`T2-VS"5 Lm# |*6# &g1//VȸLu4[=a85YZ{+/MxKOְAy_00 p;)`<[HSaF9$1)d$f=~X;Ho2BxZRbb|T. HzC!"*`moHUFHAZm"G`Qݘ8mr(ɘ",3BSb٠ӵ S%!+4"ikҵ2pP^1sUL31H8;E3z3!$~Y-y9Y0B,{{_S!Qp1M̂{@yiԭS&& fBӃyHB9\S=1p'yjѾхbg\paa*Áyl%zr䴜HJ$"db5`dsr ^ngޚ%R63mFIC^8W(r#HV|ӒIEXt/X@~y45O#Šzs&H*a}rsTyJIbg\]=|lII?8 _JɋB[*SۣXMx=I<02HVPFVҗ-AE &ƎҔ& NXD-(V@=Cb :6CUAZȒ 7_}#I##oϜJ*շH17C0O!Qb"_6 ׶AzGjٚX]]@gN:UP3ضeX]*6J4q#t0IFKg:L;SY1ӭm /*KERbdUGyXtiI5;M}%y/Ϝdj'PmBvSK#3okƌSX!SCBO\39E8}g{lRguNg'bӾ5"d$Lk]'V+E%&ShbG|q썐/odf|L%OUGmo_8,F}&郩ȓĒz ޫl%C9nq{D 6Oc1,P(Li4 ;S$Xd ;9$tXIچ;WP HQcDoMC.X~s#EvIaXP'ɂfY5Fj@О J8o|Pio\Dh<֧"f֜Utީ{s$ŦE$ibGD.*Ţ(c}z8*dLЀ~hƣ3NXi ̭-Z8=91Cz(WyiX|nM[b#0Żز 8$B\/6pBFjA˞Xet3& IxCy 4 ^MX_nU,؁o*X'=>u DR"jZa?c!j;|Q-VQ6mbJYV5v[JFe@;C}r5 0Y?JԎXP#mJEӅdpZsv{Փn+%Ԇb37#ޕj3U7L4=$)ƌBiCǒ:0\7}lduza 9T*sM&즚iݢqybD)oޑFPl"E"|ɪvT ], ۲s;˙Kئ DpW/NŶ6C]!NlCnJPJLXj&Jtg [gd% Q *9DqeOUWc$kx[bG؏zJr.t)qSbCDg@ӯ7D^^,{svO=-*I1H5D "rqk2lB1/ &K& 6gZg˭|,Mpnj/eNLxcYȵq:ihY ii.\>WCpB65By[i5_gkp}t|Hs1ڶi ƭy7wv*s *Rʸ7TsyfvaZpw"6K:M zP$Q.,#l2vbf 71ft)86>Q9H>0ap N$#'ٿ뼋v6KGHE0jK.Z$=dSSc5|gyyK`eXʜm@ӏyl9Qx!IɳDh6rHEӔ,K\HQ L AhDʛL;[Efl_ 1MGmc(fdܐSnU% _w*dXAg+p| 7OcQCxEzh;2ńod)q3|7%$Ы@wb%6:0b:{!i3xɆ n8 HR[#dنa8.2_Е={22kcZu38m֋mBS7\fPx-0vpGc%0&@L6# >?vdJ@̦!w,b"⤠g3#-iڀF"@t>XW]g#QO" "tCh%=IUu[{hJ*́MyLC2ܼ0S(4߼&Y(h?{Jy ښl*Q62=fL02 ֕lMhhhg fQ*S B Ij{}mqf 2N*@*Mũ̎0`+P?EK%u=*emut^4UK|%W<0j4`.bc1 U5͹㡢ƹ1W@$TxqָܘG&&n1wد+ا7PW+`4G$/~so<йAò *6*PɆ;''8vpFw{πMg1=DvLF1~MQqd~=ufHq?;}aKἯl {_mĞ푴wbr1 o m fm9-c8qKru,MF69#K#j;hBsљR~VQ'?IAl߀qSp;V#"9:#)m1Ҟh0hFՠk^ePL&G`l3k"Qۖ޿؅͐XZ{.gN732գ^:ðyȓaYE$}*=9k\eMpk~!zILO'] :7_V_BmϽ\:m1Nf|3OQ}pr/a##%|f&JQcbڐa27ErGYtVdѦ>C~ 2|"uF8f@mlW:5p*%^qlau\#Ԉ:+ɯ&eP)P 6Dи`©@5F"PoPnTޙgKU}(%qs6|>@ U轓ㆷEQ J.}!3: Z7-LڛoV#"0Ie8兠l+ƺZ>4 FFv>O (kCgQ,A FH!ØXXh0Dur*؃MptCZkS'H,B,)D/4,cxʆ[cʒED0uzŲm {nNKz!ͨ 1cC` v+J+զ BJMlÊ[+[txo? qB.&aK5fyMJ4(d[/LItʟ?m306B>Er }.dzV92pPK0hӕxQwEfdލ0CM0 G8d78T}|mjd_ܹ.DgPW6KFڋ;븖*#1$d|=OU"ԌF W}6ހs N4a;XUF9; 2:g8ƶ(CEB煹|h*%w y Fۊ2::KĐ<2}g6WQYIc? z+̸ї&1x_*F] z~&_CA1Mk_$Ӌk=4߆BuIhAz6tj4Xڑ.` E8a nK4ԡhAh{U6VPv}dJg` Ӆ8G3Ra$UGMNNEphapP?.Z]lm %"ecɈM%#mhٯKns.o ݊ V&M&թd4?+pcK0I ұf%=yd~=7߲^\\IT%tINl!GA-$>u8Y|I :gGe7<]nŽ<uoj6$S5oWg 4n=o0LIl>.Ɔcz7M8V~5rŚ,9:d6\DNp[[\~־q`}Ջ慱<ݎPIb+=ĺ]ˁ4뻨pp$G]AxGK3X_TĮ| pmt*B{7;kʻY{`_U6oG,cq%Bvu a"mȘW$. / PTmcY8jY۟ B-@Ov{6A%Z=hlEi<}A6_|#C\pf]n8wM0)B16Y~t|ޘm4q:5͈U*[YwRSIQupzڄCϯ"1xcb̞=ջF&ul)Ut;ɱq"75٦odp}UiwCl:=t[[9pSVIH|#$>axd˩Pf_iR6>5WV |'@[,smW.eCT,) V3L1I؞I~x&UgGgYWTJZŐ7!aOrp߰!9+Hseniǁ/p:L:uS$9}m5"%Em\k/Kv6#cp16rUs{]K7Ck"".5)hiZ2.CÍľ^"Ui[3v1Y鬑E ;۳b :l3IOP:>b[NhE`5p8QfmwJ=nWqhوι}i5.!SQCv/눴\m9X](Le4X[:لtp, $%Nj͌ŒJ8UO4iKE}}C‰b5UӫkdFݹjj B,To&:6MYT% 0hjYL?iz_>kVFNs^\XfqJkO32z a[Baw)~ˠ\(ODUAnC?xӛTH* ױm_Xd1Jg?td1Piek:o^3zOtX%ډ |[g۲a%DLCw*ݻw ry Ҙuk7z${&Qn0uY =,[2f Dmx ˑ%x&W=tMh/ў"ڑ+h5f δ KI-X|%Ulu3%fܑL^;,sq 7mk$ۛ]%!I>>tb5!ەƴ(7w=O6p7DKn&Z Ў $M_mH.%T# A)؎flܒ*VKEtG*_ ]GQYkxDG"DW:4?XUZe/;V+V*4HD-<΍iAF9E@+FEK_%3Sx"U2h`T@ӝ=;Z~r,lg"e(K<ǖ1Nz蝍$ȪA9zk/w_}`e/RH4b7¨Rl̜- sL^#%UAdOd.Yщ ?VxdO5dBϤ[L #*+: Ƥ8wROMYe2Dң)npbl~qwx9jp0`:w$khXW!A}nT84 `Af .dpP‚RqG{N'-ur჋1ֵΉPf]kz ': A9+Y:UM*&\L=$u25: ̟ 9V<"p[  -)"֚ uaTҭML py[C{ aqi@owV@c ȭ% G6YtQ94ɴnvfhzhڍ] `LGFu ^34A>IIvy%2D]W"w~i":/(#Ezv=оȮF p4@ ]9oW2hƛbtQcc~r%F80~8FXyFy * ݜ"-L:O[H 7Yt|}Ě\Q퓶õ& ޴jN?Ų)wQLYzb+ֱ"ܠVʮ'|-tQ5I(кsLg 6B{NXQ:WKZ߰I2=DWف[6 fDNĹ4/CX Lhy_Ȏ%ڽuNnَ9Y~DllGrG&uy2@ 6Oq;Wg.9TJ5M[l55_@B]j&.%`P炚uOÂeNnI>1}H%CYGCHi4>C\P4- zB79G %",>]a@κ>ih@W?DLԄ5m'! ms!y/BFJ.=stWaY\-Wߦi]Dr4䊓)rN'5%)L 2{dp]:}f,g)q?©aJ3@#ΘYÎTumGb17ﶁ'Nbץ;.6\!dz"a\%mi8 >ᵵ@jS&JgGJONՈ줳C{2 aiyxp;+kZ !i|YPi5v1TxŸ>UQEw1\ }W^5?̞.-GfN-8lML.юua} A4C(04I2&2*#<J.VdU]oГc ]yH+% #eI2Pt?4aGN #%.CCE_+`Q߱k4A3(XC/aŰ&{<7<ٍ9ౄ, \nIfC. 87Ɂf"j;K>0hh Ux ?BA>3klȣXa V{%Zq-2VkEoWMP ֘z& #QBnv^꜈}Ge7+3"ׅuԫ[ulTX̎6b+1v"Jn$ 9dlDdNem#E4b\S:qb~) {} OWhOQm!6 A3J^7v1[T{+#*:u;DTOn)0'c2U5Ch^d7, mX\powR%#^vF s8*( 2'8Ƙ>ïkW/=jwRԅȑg˽ӈ8i @2bh2\Fl ghXm ,f^љS$̟.#E;h~a\:Xve^6%߿0Չk$G0hDi7 }Ymhճf*Mŗ7bWnm̕ŲE03JŢ!R1?y2w vu K Wt>$}4,6-܂ .@bh ުh5m6y 4xpo"aHw}xAҠ;@߬XtqpGT*_eZQ1t'RhFpIEHdQ=q>GG"K;!!%'!@-_޲ӵ %ACjɡtt8IDV(Q3QժBK#zRm*p, j9@ᐛWHTԣP@TC}.f{paohꛅ>1Nixih-׼.N…r+J}&Ѣ̡rlHQOrKHFSӨhQҙxqX"٠tx +5c?y%GQPVCWN 92, (|FꨩM!Z"YvTe`lk>1-t; K5Eߓ}ţx>Wb8&ݟÑ\g*3)* n`h)z /;QEQg*nJL`A)t TfleZq4aLT{7 [~C ߾D%v`QuP +Gĵ0<'eV˧(@qCHi*[ѤC\\?UpeT3<~ؔ q=]>x^Ls1VPwhD3qM GODb!˹~:+&}є,趲}Mp=:ld݈T+CtAewPV7ń(S!/ p]Qզ0Uf2yUlP$q.y45i Rsc] Sjc*9q$ &RM2|\VE ~A}l0ɱ [Pw؎ȃ0Ш\ŗ`m"߭JyкC|Gēɘ!8ʳKΘ&,seєe )ֆFǔN)7Aj`FuLY=v?]?JovCMw0욥^+A͸8Zk8AYEUewG zd$4 vIGT1~a^]V‚{7NԀDoE+TSǑHT{UL\ՇY2lL{5-25a"k]2xiRX23gecw0V50VP &jVpd ̫=St*d‚]KE® c!IzAk%';$*ARָ+E[­&یmɎ)Tp#'=TYMdDd3&7N~nz.]QL$;X~jT|d^Al"GD#ו>[TrB(G:Nf_18`O^8lpC%2ϒ颌=v' '1 Rh53$llrc2w& C=zԢKF[*5Rs4uC7dRyMM|E yW>+J1, ZԁSAc(WlPi+/V_rᜌn΋]t<)DTm 8_׾T QQh Ky2QԾ́Q1JY8+dM΀h/`ZU\O6{wX=j}k2s:a+*Ưg|3N]&^ǒ@)xVf?n ڃYٹE8Vz%1 }@*e.Kvf8]g|~Yc)W| ) pRK4\Q$:Ç}^;WA9d+c0n18)l.%f-ڃƭKu{Iq yծ PbmʱC͹yYO"]s:Uَ2ܔ[g~-Cӓe!P+`=T0sX hɠ2&i ˳r!! LxzJK4HG[@k~NaJuЮ:/2UxRC"+Z"vI>-*9f*)[iUV4NWߍ5Y =,-CdW8B'٪3pq^_-Lj}>rQ`Z='=|6'gD@FCk .rBc>X#wf婩6{a(:hN-c)Ln^Xbnh^NBl\φzN!<]be~Ÿ3Ke8ר=|֐5pWIg{:w:+VJ~ +!]h^(͚r@{WIoES&Vc&Ck[>wF#M*]*w&6itzOMɲ bT>yfQ6jw_K64>.횭RԞ(BkեB fɂsm'i|EK*~yvixne:70ܰZNG1ֲQ3㡈r~XdW=K@MCBM}P(.S5ȧ-7BFEł;,A)gp*12`p;ǂAݕ 20!|㰒kK9hԃJ${aA;E9mb:ug{zw˳rFjyY9FNQT 0k-<+B2D눺8렪Gqg]DL Y/3?a$ʜTUdxym܋2Ѯm 1^1$噝3Ǖ=þr+ jp؛fӻ3v:40!Bwَ"a!k QN4ݯ ,؝V sB>KxHnC&?| RHTaؔAx$ ַfjLr [}O1Kr߼Lz Hvk:ѕR$Y]X1fG}lSbx]]<vň@ bz9043=eiTΞ=%բyv{,u5W.9|#:kJ*ΤTPRn!3rXj*Nk-_@BO cy MG/ۭGS0F Ar/(#R*luM.sL }iW^}ÏQ̘Թn5.L2HB.:N,W<Q(Ca" g~ڈ_Z^')b'[beө27@2t .ۃ#%N2lps"?ˤ>G<9RCV—K3'ћU!XĚ%c]@j:?&fO֙C6') /ݿN{묧Y >htwJ>et3 dQ *F52}adqm 8BԤwy҈a]lG[\^"ֳō^?GWX~Dd#a`ECt?cw?) LIwxz09->2l 0}tT-ޱ4KJuPk=;(4*1aA$Q00ױGb,ۣkPkK "IR)g]S·FB&>" ؁ `MMCJMv "DG !JzS9ʌ$t4N󽻰_aeODJN)Rq{xb/:?D#``éQ#5{;hPN^Ɔ_Ej`1JIGo;`E -J«6B7,Q&hArquJf-Td`f75ző"mԾ|V9cp]<+MC 1uuaÌ܂2U(MɼҘ'ҹhjB@.ِ;%pлTy" DAͅ=^3cMS` `<5^'3 O؅c!5^ׅ'Z:NC[9}bɀ|2T}_ܻPq\}4bOl=#10*a 0^ Z|T:ì{h7g#[z76| Ĭvm B(ݻ[ y'F`4shWdFƱ__Kb\V+kuv^RWZ]i<'Z}hwعKٯ͟4Q歮q#psTR u"mcmnG8z)?':ՠTMڈSb#UadhJJmRR|C:+IVU1!xjOk<0D*H;3C@+w#%u\y_ ܕ>Ü_O1H״H`/q#k5q} E(GQD\2O8#:l5ƺG,q2]SܭV@푖Pr?(_*n"_UD E5%c˹+i:8l i ]ĦRw o7X/*6rQ1q>[NB4Ғcv&5U>L(2/Xu_|2O\~{g{XNڦ=(gMl 1]"SNk bĪ7k߮)h3F4V2-izwN8jF3G=n+DFS%HnC!糊uZϕĈwiJWP`vɱH˔|$77pA?K)TDBvV]WN4HnVWkR+RgJsGjcACEYRB5Zx甘`t,+<=wtu"&XkT#?TS!sKSxWGŁDx7S=Qc2$.U6ՁSĭ=ҍ*RgL\zHxɷ\] Jz/bq\wH8PaZ*bah ,ގQZ: V=2X* j8?hRR/wo:WFuAA>%%#x}u/7ioa#UQvx4Ahs A:U((Wlhb8@j`4M,4ȲʛqAq0OA#ӳT3n =m2aw&oh4P9E}Zm[H: ˮl&ØRBc,oͥYq_r |AO`cS315<9ōkC 41?3}X6.ܻ)/+1-3y4TaD"T`Oѿe-9 Bu%`]IPty/σQKqA2h$_H'AyCP1&:8U AP%CIq-T Vz8)whLG*ygf7)k&{EpТS 8cp;Pu):q_&kɄ у͞vZmV%S[ܡASugNRh&ԤVNCL?RKGhvC]8 ,Tzbn(e>ފjZVa`M;) tᬓ-nk g\u/LYю-BJGL nTh~BGբݞZvyC #wF-JLa㨵5ѢF1]^ă!U)h:5/Ub uE~E[s:6ޠE{ZF%;$Φ)sRL5'J.1^ޜX#'\cst]3i,֠b7,P$5i;/.HP钬}SɲNk^o7j*^(zxjU-Ն)QYqzv3Uk41R3_+^|s}Q~"}W8fE;% s"B40#+ \96Ғɭ4C:c M}=`pƎvqyJY V0u@]TY+'"6YN 6hFYze| 9N%e,fϼ^&_Gv7ʒ۸[HID}5Y|^fV OJD<Ω7LUiMO'j#S*|TUCSv#%[j,YK+Fٚ:6dqr S  Bv5t>=Y#Yb⪣qp; -U*`[e{IV:ʥ4XX}u9#5k*F؎1#Ki:]//?%a/`SB c]J?TOƹ7^ tS̮Fp1Bʌ`s]zLK.`P3xE+-;Ғ]^s *&-9rw9ݒ d1 +Oj Y㧄4ƥh6Ҍ#r vJk,Ћ54_9nHk2U5[pRbpvHy"RGwOojSZ8qa;%'<.8)4fM!z|CY[rV1Uƹ_`х @ZaYyJ@mY;*f\8T?:T`:0$웆#~Lq4LY/u"T[7[-ZWSM nEcBK0)IWJ4pLYBJAc4DhhwƃE?csn6q*B,x B qiE):t;Q$cu @*7[H|G_qM,lKHѷEZ*ܶ*ǵe ݫ0Q 陔Kc8֠=d<-n;Ogl*z+fC]^gMx]P-uVEh;TccYTd3P#~iDқE=[Ls?nv#5V}zAyf;#,AJ"]iwQ q{\0ɡA5aOryxj|V9.U_^?TzE1=Op͔"唎n͇ P80WA9;$ ,rrb&4 BAQ rdKJyTcwM4rՖȢ*PiPll ;͇VG)af&ynG)`oC! G i *PC wp]>jQ6tUr !b0i^c`2eg3 n]a :)Gl.ڵ?~&V83 1AC7]=5XB'0E5{zX/o>`$X4,۟CokaMCPwX$lTG^ȕct' %2תyҁ1j+7𜻐87r%& ƹxW.R(!iq~#<'5W.#G~g-ǂ3X0FT }/W)?9b/}*2+lsun7%H2ye3׍#F']pi=!Mx"RIIaWJҪ1A5jCG#l6-OoʱUH3z Ets_yo\9H3t?wHD =bC壼TI2㊙iƓ?p±vZUm%?J{:k&;εl5OR3aݝI`adgO57'"~ml)JW"sbO&3PB],1QKf}aeyJ|~:IGla5&fKKYɟ+#4Y$_vVP4b!^͙pL\K t6=vIa1ٖrɾ"LIL yſw~qU6fZ&tA4)Yw\%`|bvq[Wo^؀W&ٞtps<ҍ ʀ=3丙nO?w_$z@B IZ{]%ky =4<]r)v4 spl4ULժruf,_sbXlZe\k- Ќ-Hјfɇd`BrT*U#ӽ~*wD{h_ʈX!yyѕϫ-.íKY/D4Spp7\`(:>+_ua 1bp E>YUKվ7h!qإ$5A?77{hh\?pL뼑 KPPWGaSU}A&w0ji>$mhY1 3f@LqҚs޲5bkjl:ZS)q%̝ *T^t-A3&3LU>EtQ/y9_ Peew~l{h8]HN$o#P ڢ}:uQrb }o-FriJ: ' UMQ_m|F I D/Y~4t@3|tGo?#SC<%3 RØE* ]&oIeN_? "AM K>Uwf"&a0 T%MqlevStYS0MG]H,vlRΖ; 7g {Zo1.wg0c]o'BӝȤ-h2?7m c86 uVqXmn:>3]e!NWshtxc"b3eSYu:y&ٳ8[v.W~*ɨ+DX{XIkEOdѪ7pwIry ̣%A#,ǻTM*wxk 浊T;rk:|(nI͖*9tD Ė. ߂|UFB\[|Ҷ$?AjtFg< ʍEnk.MWғ/Ж%FO]Q?<*q256Az 1<Kuֹ1^W.SH֯< .##DuM8\I!ETi96~"_9\Jsi6$!;Nd pqWg) ¿W4 I;}bF0ކxtpXZaua bC`M歁V )F{g=;cn?-z0„$j;z$JXgg.K^&519zo(fqUP"n~gH%lr!MBϙrb{t^#qÎ8E1^sɁYV7NtOX( BsɼZ]nd!&o/ˢr0SED/Z|LtnQa8s+;7{[}1NN4^Xu9E;F׏Dw΍uF`ئ)aB+V3]]Ѣn3 sn gI__Gj+Uϋ$RI%;e೏L:_i}^DHv _y]i4*-;@JWQY/5 3 Dô  ~=OPze,pT0=35^!7 KoʺQ _z-땏P 6%ZMy*fti~}"!q}!5$vb&譋֤|6fB=B*ZޓCǣ SI!oRKh ~WDHhӯJ+Ĺv۬OM72+1k# 38`5FDImyEW,]w> 4Cx@ڲخ+Egl& t%67qѤ n9ꫝ~eFKR]ѽos2U%Ʃfr"1t0I7i\|0pcN'R0"9r9,Yn`gV'8MXPl&Ƴս_;?;$fK(, ΁4++c1dcm\EԱ'm([;ƟV ';+r7#B[7k?%i0-(E׍aUIg=P@b᫢ :\O蕮H 86Ly FXu?s"B$ӔGs>`?ODaL1fbW8o R;8@*B`*Zu=W<*E OߗO3شQY,"9Tz<-9p5tv 9k-$`*i$ap6G*:T8wٿRaڬDtr]v? M 9v"[B@ÍC#a1V9VƊL?|M>n%aaVa6o6d1 G"t/ $#oi!H9Pyz#仆KE^jzo"ŭlIGz͐Ļ`l\T@4q奚ȷOf8' ߛ:+'FB'?6*׍C}wwlSf6$֤^Мy1QsgiY 5}hz X;qJ)3c[xLW<ܖzr!d)l8'}+ݧ4|ŤƸLF33lqЩ'+gs(l.WzG##Rt;4e+,WUk}s%gtR@ʟ}7s#!B`lshXʍQ3)o܃>c]ÞlwKUG\zSMś]#pa J,ۏ{Pb :Ҁw#O>3pET~8[`_tр+ˆ@ mښfdbRObQG8xK.Tgq ݕ.]Bft=|$Gu~ XW5Utţ:kh=|N f4/P ǒɘV;);ǰv3КT<ꬥěl9BVc|0! dR?zc@k5lj^/'0'(E@c4j|QF [n-_4!; zd*b_yhoWqV'Q&ĠxUT}z'F>PO(CDݫFwEL0 (RctaQ ϪorEQQQb9]G ,{c{-i?{GsznRt3t770::cns衣Πy`wBUd7K[[d&ړ o<%o$6fHLZ2)iG%r̜V)OU+0C@" }/oHQ) GYy^~Ou 5K cf;EWNr NJ%VQ:َ|gMG1k=#׳FJа/k*+qXZ"J(wչƹk}+[rd:ӌgCy!_Frxdœ>ӫrepo `}𑣵Œޘ%hJ/=b_:b4@ѾۣQ:5.?*[y3^ԔUx9> gZ*9X!{a^k#$=#N_u?Hp0Hم, -yY;+c43+ y0o;sU.)i`طCQTkyEѰ(,ɌrK-Pޯ.k/PZ6M7 J^" . hլK=lC'lflm2vkA$9RKOMbsl/') 㼦t0qvkJ`Mp[NL]sxoTh8Dsq3f?Ԍb.kבTE`*dr#OIQ˷A7hBZ63?Iۄ5O[ɗFd̰=ՙwdE(m@$~÷h z[iƅ#{i wz"\4±@mg|ӭ!qrUPU}( 8H`N2ThV45DRpt>ۻ\Yg*< qYjY/!^g?=.?GZD"\?q3Q+?ُ,]O-aVB>ʏ\w1n $v&-jM_&c=ΟޥD5nA}ZPkPT#q|=S#E1z'@YM'!^dvOE.A{}I BRY5,t?qB}ZΦh?y}\׹ኯoՠDWpzu' u9D#4(!kknss_,-Q-,*(Gz,W{xwӿ&ofoO?Vj v LYȭי~?o- endstream endobj 116 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 119 0 obj << /Length 434 /Filter /FlateDecode >> stream xڭS +8b& 6to6U{vMH:^Q/*{AI)wcm2'\JVX1 TuoC:P|׹ECoзsut7)E~%4f.?/Yqʟ/-+5O [FU+ƨҕN`Z ]Z)@ ZQz/Tfe#Ӛ;ǥ-Rzȭ>x?%n' Ə8t D#@8c{HHas7i0 NUQZƧ @s|]37">з 7A+bC=FS7 ]JcCw܅s_R [(Ś% #J\{|"ud endstream endobj 101 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/5t/8dfc_yl10yl9j91v2lc_jksc0000gn/T/RtmposLYxE/Rbuild2d0830c1263/effects/vignettes/figure/fig-contrived-3c-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 120 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 121 0 R/F3 122 0 R>> /ExtGState << /GS1 123 0 R /GS257 124 0 R /GS258 125 0 R /GS259 126 0 R >>/ColorSpace << /sRGB 127 0 R >>>> /Length 49708 /Filter /FlateDecode >> stream x,[R%8?OCh)Oi"@B j%PI, ͖/g]aWa}oe^׿~ۯwo-}O)Qϯܾ:_e~O'~O_}sKק\诎*^Q^}~5!]ok׿{K~"?_g۷WzqVe~Zztp}/ KzKJJx}_ +Sz>! 9}|%e߫2IٯFUE$߼Kț_?~=o|rѥ9}] K便r[w l l //mW2_-70ӷk}7ksY3{|_|/r+ˊKywK2JKJ&+߮w?*; /ؿzpȍ=:/5ogT{7xԀ3FY^{Ԭrh)3}w;`npa!p 0A7t sΠn ,p^g@>`^ R{;/5ttK t)\a:;LgpI{Km1x#w:`nML8tMLt{78Kkvlx_OqunnfB/݆͈[t3-ټq^VUq0c'p {:v{6- Þݞ{'SqDq7󉷸jo|9Թ߱8=Kӱs(aOnO~y^ݮ7_?ݱx=taOnϥ=k'nzԾu;]']o^3 žݞ;'pv{dxqG|r:qC|p}^Qm== O l4ݞ͞KUk׉x_g^}^ױ墺=Gӱx=V:z\O'Nrǣ:jS˭s{:v{c'{ϰuut4x_^wl.>tܞ- ÞzC<_]oKT Þ% =kӱ=z}ۭsؼ[fO |9ffϭ== Bu^pwO7[4_79r{6{aO=a'p{:xpp!]㻛a| ww} c' {c'{vnOŗ?hуC`  Wo`'p{c' {:v{N+ =lZ4a8x׻Z߽װ'p {:v{'{:Ͱ6lD`/׻Xj `:y}@:mk {б+0c / S)8dՁy='0獬3Ǜ:={]obxxܮgdՁzFV9vnO.aOnOtnkaOKyU޷YȪdc'|Uv{w*p {:FV6v=#nכd?ONVaO| Þy='|pcȪrb#lo sx=WӱS{'TdU`#@*UFVdՁW9q{AVnfOGtUNV;dՁG;UzY= 7go͞3ٳȪodkAV6| ;Yu}AV.aOnONVnnϑ = wȆ͞ ldUG7ȪYMYxC l4ݞ fOMgYu` =(˰Et6yFVnO$Ӝ:/'lDrɪ#$ H^& h`'Hk`'p$o Gr7Op`KK93I^6{䷞Gr-o8C{ -;p= p#8C\Ca8z!Pv{"qI`qJ"^7 p_qL`d! l!1nOv{x-. ICޮvOqUr8p-~zoqZt^-n7>v~[\y;q.x-. \ʼn|>oq?v{x28ėwy3p9˷x4p:˷4=u~[ 58ij8/Jk ps<{{p x[\ q2xp?x?Ӂo bg6wf/Cn8鋸<}/ES6ۉCo8)61v#F<\<>S;򩁳gG>=k'{&4;#0衄ړ{NP;lF<2O};,;m0rw~_z -[gߡ ,uCX=ZLQK7r.pt8aK caKq\ R.e N`8n:]~f:e]fy^*(nżaKV5]nSAr)9BMԾLU\^䰹4+Ҥ7v)ɡ*2"L-L壸2GeFAe?}-gE׿vxY34_*_œk!1>_?ֈ. A|^~'W,֑{9b |Jr],[&]N^,0io]@yaSy|.bVLnk4[H)14\-AS.YvhNxTRxJ`ϳxgz- j~-F)حki/]Iز07E,Xӧ>dN8Dot˙c4͕؎)7Q{bHnmKwY`3kjRKCOCM"Fl[,'WWّ9ݡ6z Ύr)g]WtV>/pZk6uMF)yHS-,+S4\rF8 Yv- F$$NCZlCj}n='w,izPu|9YNY%+H2t}|H 3a}p?0.D7y6[kW`!k\8D$t$$BW}NI`㱫 +jN5YjaDvfe]G]6Xi8uș$)i{rs$ڞN|WDryLfYF]l?B1^p'?iQvbDǪ@ = _b/.aYvZ,CJVYԝ{g.uKOߥFH,& kSWoUua\KYڨ-OןZ0VOM`"KrkcgN, otKȒZKmdCnrוZ,J:K]=[7" 2;qKJ| OjA@ꁻgٵJm'gY3qgMGtU*J@ས\2Meuy#k0a BbjrPSq}|%Z#3Ns|X@zCiإ.}By_9\?$՛mFn<zeg4>rDX2iF|b䅸4)!ȔKN2}j7N q,%Mv +_c&Γw {SYqm~Lr^p=1M;Mxr4RD @JeT5*?ETCӦ{hw N bs%t-̳ R[:ij)(cDŦ,OJe@gNlB]NN뿮lYL340qكW)e6 ^x)*J*R2puy8>7]_IԛHIA=6,TՀ`PEٶse0z`z#r,Paň3Yt<$*&Ym&—+KPeK/DȢJIYͿGr 'p>oeNVNaH2R"PdL}*I+RnAh Ju_r7ʭ|M3J seΞ: 7X^5x&w9h&S,,~4FGԒuLc*w.lr&Qd FeKxTڷY0+IЎo;{WG@rGsZЏҾ>P)؉b$ܐ$r49^( Zh1'gR\":ťm&Ne:SB;ଋMySjSs YmEfKpD` 8$Pc~HuMDQd, ۸:r<!K7kWOTcPh3KqnKue!.l;b ;mp_4MjclD (/32jY/3uҒhS,ˌx=SղI0#rW HG_r៊L]c{+p\ lxҵ3&c%{+56o+TeZO,ZqYM6O&쳩&v<-iơJcyh3G9&.Fdkl.p#G6 I!\{e'JflLjN :Q"('p6[$ѨC۪«ROj n,Z>biJQ%{tW]F-bǝ3!}"ZBTl9w)DgkJ̵ Z W^˽AQ{] 렱PCAiWqu7 ʸzZc=N.t#.7;VSN.X^$ҍ8_=b ^TD4*cۛFq n#&b0;4k%1GVs;fD%UiE/X_pZhbUB&YueX|K^0\!R93_ L&oMb#nHmv.M -%R%Iai-nX84W \eD@Ouh"7-̧z(NIP1bh*%Pzl:-RfyC50/^/:-& ِ)?9yi.-#H1%}pfxC^&zRð񴳢"+L8۲xg*Z-m%ǮT6Uv *LRL8:u]\挈}ft:>?̆ f<(*thFsc;JRЖUUJ]M6olǝE4vۥ ˔\ |!-A_қRFBXB 7y6YOdD l2C;89R!Zџz^M #3ه.X2eE.iN%3Uwg,K?ĴdyV>nu@sc6|f(NA*=5+n_&0*O$6 aa%yȂX()i$FUt8[X?65B T)Xc }+$g(+s{ۄNKiy-6Y8 =Xu2'92vfNl,P%?VZhm7bA BtA'YDgv}m;e{f6eED[&aΩcL6}wSYL$lᚧW$pIl;tkAdJ ^JԎ蕟k Ѳ+ \okfʹn 9B3)2jX"kh c1´>t(,5| EẲi3+Z/_a{>7$68^EJl|ijRhmqӺ%/S6pnEۚ޿;H-f?yg sӏۓ02A{dv_.")izୡv$G<5:gIc:=N=ɝZlfjuLSay#Q`IZOlSvO #Iv$:{Un-$ ӣ(όݒ FJsuܭƄDRf}cmL B9]Kĕ+\EdlRr,Se34xBe޻DL=0J] >|[N0\:dIќln1L[p_?b xA3l I2]O|'Jfn~x%Z30>eW7{C|v,Ȅ2u(N]j#Ӂ(?NôD'|׏yu̺]h@u4HX-~47|͔Ɓm;e l{oy \רISTܽE'qTGK$MڅNUEe@xhZo}^*k (OїLt)J\ZxH|֙ ʼwFm,8ۧG?^Thu,IyiS ϒhV=P,i3 ef;6ӈ #A:B[Ox,DŢIŀBU bDJAb݌Vwhj{ɨUk^XCQ(eۺHiLϋy6+&`Kl& Doͻ@H$D3-zk|,bF-mpPbt5yNfrGO$.^xvC,`O4 + $K-~nif$1Krt~KF:J[>-Y[e>ҠMقmxO^Me6ny[@Ɲ5)b}нmlN VA \ 8X}NCZLU9l mѻ8Shje1ttޗ?:"VTR:wP;;1ˊ&j$ wbQ z q`ޮЁs[؀:ѸdpNI",@cBxTEk@[TlR>h+]iUicJn1iz!/(L9\jIu8衝il97|節iсyv܋&K"rg,[Щ7q*/#Ohwxh8/S (mK+͒l F!?O7 TU+C'CIL'1-n]f2i7* [* D*mk$_l)m2oooBh<91e$XN=#3Î3<ֱM'ΕrTjiʨ`4^OatrE=:`U/˴廇YO%QVJDdN1Lm^o^cmS*YÚk+ !eH ABȠnfGi,{[g(DE:2$עKFΤ?XXf|jucCm6`P@Mk޸Bg _GWOwK+Qz@hCk2>%S/O*O!!= ÙJy*̏R<4gu/%Tޖ@ʵ^I'Zh{o*4۴Di2-* FoD9\ 1fA tGyY Thbߵ1/WH;i B˼MsJAhIGDjĤGir,įuǴ] ;$DdhU0D Ce`԰ OT(mDP7wC7o2s>-?tR9LRޒն 7r𒭅2}҆4ى)-(xLY*Qn{܂1|V EY<R NGWK2SDxzyӹT[cv8mH9`yW>gbs?;ȁCZh)YggUXC{{*l U9hAF&%$:.3|HT&9[%F.HDQ  ;r%hEhenܩpXGBO 휏\HZ1uUʬEܶLすzlhT x_TQ.Γ*,Tx x!˥C=PlskD#!>վS.TTtt @#F';Ox4$`Eg0u)> ŀUT!:1Ec:${i}oE'8AwL-QrͽG䉉gNZ͙} m awOYVQ͛/HF3b4-ɠlhI |L7E$ %Kh*m9&饄 ,tM1~Tp@>tE޹z6-p)>h |Ȑ K- aVtM$d4^s j15:uMm۶_6nÌ "Wj]fL&@U2zhƒCdVr8)6Q*p?'|ܷ Ȧ77fQ/ CN6sF0觉oD/@ҏ?bPT3-m&ܙ6 qe(I`jѵ-|4Ək Y22UOLIk6tUqoѾ,C]hqAܹN{Ss}IoM dO.%f)$wE;#,Hs2jiTنVlqYa-W w:fl3-IВ'_k6Уnb|#k!TNBK(h#'B=Kٚ.=ٺ jƜ֝lJT6O,Ӓ!EB:V,qW*ƄESlÂʞI dB+00 X%̄&U' +=kTaӦUI>J2cMt$9/vwRln#ȳdX2..m3^Hv\كNx,q}P3JPF [Dc9}r5`l4J!TDžVEϴ5ft󌝭 u(d> d>rl˟L|,/ KBO7r[+.^RQq d!K3ڽQZ5 ?$:q?nlU#u:y䃶5Ԯ?(⁦Z{ U_֠”S]:?X[駫X$Yrb$`%Us~@o↡rT8MQC=:)hRAjz) cKבCQ<}@M>&1qXʾЈu7?~h +:&*uC]lۨ>k>ab- :%9e̥sQb=+F-δ}y?ݤBwmǔnb?J<5(Jô%U'Įǵ_qyJ`yl[Vǵ]ן{Ͽ?Wܠ'3nЫȳ[뿽?bOďjҊx%MH/1|K /iPK/V0]<~uk*_?}s 97'o~_}u7OnM?bU-XIXG'&2$>D&<Ӻ\"+ aO É1(OlC뉋m Ɖz9i vb4=6z766v^]:q!TW;126{梸== w 2T2Tᠺ5c8|Tᠺy|S]ݞ.Auv{ՅMu6jpP]Tᠺ 2TW`o+8.7o+<γ lԌᠺ= յP]͞ յP] յ@%xAuK2TOe8.AuvP]R եAu^zP]R եAuK lܠ҂2TBu/TBuiNuǛ:gjzjU @Tᠺ Au6@TS \}pnί ܞ TWwP]*HMU:+ay˱S]ؠ RAu.nOMmu`*H بT^P]OשU Tc R?Auf \bczTWAj#Fu" lTWA *?FuPAuPAun:_U@-u`'ߚݞf:@:UtӮשbTS]TS]ũ4ܞFm*_qP]++Nv} :?/}j.9=L1lm~.vz^\z\ov5͞}Á͞۳y;sk`{\ziݎx=G>=G9=m?~{`n|mlABAFxwG3s <žݞ4.|669= gg`'Ϛܞӹ:_Ƈ|5y||4\ݞ8\ܞ8O=_8= -+|Ɓ7/ <:wg`C \ݞ͞oE>fO"8y<1n(Ǟ22Y=|ZT:qSO X"p|Ox#xRt? <#>k#_xȷ^k-|n%36_x7/GG;t{[%_ ݞsvIzǮWIBxyv]2uGH|lkȴewi)58U}>ZVe7:'B;X6UwA'~yGzT5d I(@WEcvM>++F~ʤ}hs B"-#\ c'$ד|!~pB? Mv%}tYF}+t|]e1eզ5ھORKI-'y\\UY3ifcu$¾he`'kW~+ԁ nB~PA ):y%~?b"%<7Iz|YoX^ L@CC6mwxt6ݖvmVeC[^ߞFH0(OH5PvT{sbtltMַ_|֨7VMJ1\}6ffFA)dbM*ȑ%qӕɉigPqu ;ʔFA#J0:.!6,t^' Yn7_.N:4C6rX٠ON2)LYcbX';~h$ȮHTJ]:YYk{% (:9SF3F[*Wssa]$tO^O*eҕ0'o#ΰ`I6lr semEKB-?wHe򋬥i-;:׃t۰!{3Vz!Dlf>/Њd/IoSLH;)+SaW,wP{)ީN.d$a(Õtś523;-zAZ`~8%lZ+o lAG0'Uǒz"f+AA:{ ǢF+E J ǏY6Be#(GYM椈я4W*e7-g4={fёϠ > FZsitoH\{ +3x%iA6J>\ s C9 &|L!g 6Jlrs$l]KZKwVXYY kH$ otr }y8쫮BGN,a` \kEdf'euY2:s2A?=';viKl6ܵbIyu6z]e+g )D/MFIaƊbc37֔'9he6섌ᨍt )jl -ZrPb-[>Gv莄ӊ𞺛E5tt燰U! mue...vGt :_?hW*z6+ff?,4|4s%>\`^2Su[tQm>^ii%LԛH![ù~AAM9…wCgF6?%Jǿl051Ibˉ4Dzb`ƿ1=c␰"beV>9-FvIt_p*<Ζ[aYMApsQWD$!;d(҆VTg1ϢoPF Y\yf6ZLTi0ݔ~&\LSr_hc$9P!x,鄼U7aI-hZi-esW6  Fc&VLe eH˜#sp=žl l[uO,@w'zc/.4,良Gq!MY 2Adm <ե{Cj X{n|=b t=|QupA c9H^ 9W݆cƯ.#:u-pZI1mQ6M%]3K[#JnMD[t(`yPZ\N7K/cyrZ"!h0-1턈M,h_MИUL 3 AϾ]& 3 &'P hª|tO5!5Cy nCiR--jhi"w%1 s9ʉJViMX>\;مd?Q 2+;gӝ(^L4,԰P,~]ZO-ʝı ϝN"j IZz3Ӣ[meZ@ DA3(sQ5I I!rZcƁppпnecg̟A?>)􅵄%[7ciaTNObwJm%HPE:?OSeK 'Lżly*rE5[Hl A¸YI 9 v,:ƚӊGоEDR+G+> Not(SIo1[ƒ:y<[BD|,'P29o5]橀B? [8',ŒB36$)V6H쌾{Soe3B)l/4:iI.$ڙRe&arͽ16΃=ӛ_ѥ)SGU:y<\Ɔh ؇&@)#,A Z}|+)urCAB|.Qcdv3=#QW2_SKlpT&@;ZbepP3O:YX‹QR)%B7A²T Vj(q{@FKlT' ډd6N:b,gj$d',QPcs1YlE7Pq)CF$)&әDK5F4Z-RJ*MbɯyX3F'H2,l-Q~} [%5\c eUsA0ⰰ;|3Q@imH7fLߋ$XWlnhcxךjX"}!Ϛ5?5GK}o95-(#/Y}JZ-b0F ;0UAngT& ypFiU7i?4jNrfAs5LXY,5A)N^$~Eb]ȣg/y8VietEIhB1(uc.)'3D9כ ^sY n,AMt룰Qqxmr䛩=;T8}QOOmzktؗEH6~ԘwZj9\}NR]ezeQKlV<8&a+MjW;˰fs`<(^Z-nlw,/&LYh-h@,ނĊ;.HAX*™SoQ ,2z%K3&FoR#in92V ς:_Zv}X#Qᷱ\x 9#\ʠJR&n|->(LKUHjyUw|9ؙ ?ֻ3Z³C =b@ òʖ<&Lm! ,hA3LŴH7T%v*NyTZ!I*ֆ5QxZ E+Y7r5ME!:+BnͅlA :4h!$f2κ-G3AԦ~4ZW4 uePQڿҺAp8{ڔIe/RB6F"AxWFȀNA3[M9nB\O<ɿiaH>ABW X:P/ʴVʶZN3?~v Oix&-٠YY7G'Jo=C)0uz,읐[۲rzzvk/ě]OVjwjm,RRT#I Vl`sEC.Y e*=swRj3;D ԁQx`2nYV2W^;sy4&rp2K0[c Sn/6d@9lr^kuoXI&'UT]Ɂ.TCy%mEۢCZ]˨m9=j vV%nZh`'SQr 'Evbg?mD<-BDPLێpNkD}Qcn*H6e;cԀ5ڨ:7?n(M6`vL:7 <ߛ ˴U 'ь3y$3&#Fo4-Fa>K;m#*WPPTcB#2smߤ„𶽗_-X|YLޣ{i-ٳkRd]`tڌ7y=`_4A%FѶeb*XL3?jT_4Etʫb5x:>D#jiL uc77^ѣ;}@;%E_DgwyWQ~ R($AC>([23[OTɔ*5=a;pս0ǣQuVedr.*afFõ 4j|۽W+'S6RQ3x,춓U"zYO6yY7BN KM`38lXǢ[_0b C{ %Wn|if9FǕi7w0#)h&(k('e$s;`"f!{f XFNb]*(j# W&郎2Q/g%]+-WGo C\nL[Xh9UlІun;{{ei2+=,Q7U{ڕFGph !馃v g>3[SQ}<%54?:-|Cތa.d`52$E͖L% ^cð>t\$. `y*o4r t$Shj-Cc{k/2sYm$M^s;({4*R 6b.vޠ1}Ғ:lxNqa.k` sڵ47j9{y9S:^;يA]1Gz=)pIW=e`JYB U :]g\28!seV '`~RwPR%h[KI EzUlW(oȩB1mRjz AY׋$W@PZ)T<=S^R-a *zU f)QhJ$%j?4C܁]F礋hӛ Řiu-\H߾Uѯwן _y4o^믮[ָM fi}}喿?__ N'_~W+5Wu>-]7P\ۯHVprO}Kѓ!n՚VonXv6qd?^׷k[K /MMKn>^2Ί8>^rlagix k /_WծWm4V/WχWHv750tGJK;{玪ޯ/xZN!@.4) ~a$はBrVqg<6Ze g=1'l`kru^0z Nߠ/b+p,M \oDP][gj/ǩ[rP]ZHյ +p{j*5TgP]6{VPmix=k}TBj/_بTYP] 7ZH x=5uTɪ:SS!Au6k!UTB*!o^oّm;4ޏ) [ <%9뽞ßǦ?~ ;es:~<6eW>osm&_e?Σau^h;8y^K_y_vy~l&}_?MzGM.Oڼse'>WH=ß㾿'~9xv= yo̱\vxi0^x*숷?æ?Gy.;=x±ۻ?xűq|xJ؁\vxMsM /:v?Վ?.~ ßoxW(;N ;8;ox_u?MOρ7?i c<6и/=6N= |{o7e'>TM&^.zrfK;?=:x{؁3:xeӟv6їMM7w_6VDk_W=)zrٌZ[VĿ-]c'ڌ/'8vVZg?F>;D>Q?u)"k^8 ַ֨Iß>`+HU]#@kJ][cs/ZuO3:|˦?|<6I O4Ÿf>Z7/#xo|c 'T>?j(_#_ Z 0b.!R Ӡ$&`h%=2]-J$ CQVwa!1 r0jkEi*q;ʡ*Y2<"ei$'sBo!/r:BU9ouhH(S|J fM z T3!ϵa8Qb3* !^ҸԆjG7>MY.'HL%cqւ|9`ʱυ1DĖy,?PF臉=2rf{fϖ\7O uI:7MDM eA>?3F5j')'lK4ޫed Ǽ7F ET鼏Ytu%%:'+զ!yӿPG٣F$'N1ai ~+ͮfLr=sfy;O"gtN;OKrn )wH(RʤP5\wYUj.QXN`]O4 ~[5k*i{wA~_hkWx ,Ib` /gdz}TbJvAI0Agy1'kٚx9E +T4p`%XmMΖQt؋ÌHJV BO GoX$S}zL>rNy^cN]>:D TP4|XXb]'yf" YCP@: c)\e2ڰkWKFH4ULX1q\k{9>VQ;ŢeBwʠzקJȳ%m fM'֯d 2r2/U<VNUث+btbTxÁԺɾbд2=QݰI ٱh缑"aBۿ, kq#˷`qk $ȴKh,O0Ij0f_F[2aq+gbhoNo^p\% E)}ۍ㰨|GN8TV@k#KOw,}<=@YC ٛYC'6*6nhr8PLW kcҍWL&0^ء̶-ia_9rHG# 6҄r|ݒ.GX: 1DIt#oz͎_ 3(wc)k(Y `09?*:_<5T ۪5h;pt9"m.T~d#TEnv/,9"uݖ([ɚcr(ӧ'bE 'bUGF((bTvlOVs ^F/+eHְac՚2fHj2,!vN$>{_"E3rx}_J1"~Gʒ1H?!Uy$?ZSRB{J^EtS7梣>%oƜ%!VQ'aid&/ȡRc/YUv{_Q*ȷ-9+y# X4IFZNEԊaڰzV8fV1rַ+D-jYuZPGHN4} $T+bY`F GX=%zm>J=41c6;tq|F&j"jt_ 1cB9IpnuU",7=0ՁPu^_hSrI$N`[E:S-ϜHXC,;;ĠO9ܾ/$񻸖|Vi^3[*@*j`cir#3@[FS?uy ndw3 $`,NqXeJpk=57צ1NIz;_B274b̊ɗԦgE&*SLj +ېu;ڱQt=«!ëP -KUPN\"@Fokيb^$Ό7u2XP)Fhb(7ؐ5a$7arjE<~f]ژ%;2;z, +NM2:>VJ2K47^z6*x&!g85ǒUɡiV.ÜSJq2Pw*jo1#զ.у_d) S^1ެj< "fa*inel(_ ~OKm=Z9}22jF-Ѫd$r _Jq䝲Q.+ʾ} vpSժ\ A=toO7R 9]>9ct}S2ΏFPnsJǭ˳}`6*h[2ﲈ7ruΣP2%EޕK;e ОE6 tޖw+2*sٹCs0*UӪ,i.Zu,Y;4zIFnD~$ ^{/c{"0KlӔmvLU;t#_cڦ$K<5 >$d"g*a vD]#KBB{oFC;!K^VcNw*% R~vID ILH1K˪7>.̑:k== >NJ{deZ}P{@œUs8Vgգ#q~ 8p%\t,ˬ-fLFڣB5`*5WSgPMլwLT&a۪Uzc`hH<ȜCE,5dȐG0SXuBE:[hdJԈU2}ۘi{$}<'h hԦYvIaX(ӧlk"d%ﺳM% 'm4֫-'42nvwQ(ڬh EU mɐ5AN`}?0(xu 1BNXI-f`z_-dX|z3AdΰPgk,֭^}@U6;E23NGQLēEevJT%!sdX )|>؄Lds?A%so ]+RNQ$_Y bRui! *5NrMZmbCAaJ!u7V4^rZh+W01Mu 6Qq([M"EޛFlS3W\H=qUGPLH`;ʺ2ӈu*T%+k1GA߰[U]KΜњ&yTw3Ľ088cȌdt莌4@U@^QqI@lTG$YY:N72&vwHvadMKU)a șj=Zih"YvDzC,O?cIB ;_RŰMgV-{ 6K1\1GU.6ΫtDmexyMwa1[ ;<8*T<ףi,h~(RP3u)fqIVL,?ȞdH]+cqҐDWdw2Mdple*iHgge7p,pJFW-{REۃDt]to &dk#'Ir9iZB7@ nkHmW\r N,ZZ!EJ {>/1;KzX*^P!T3P&)a<-P7HjT[ ägA7AjW_àqgTVw 1n7aIP2;*blw6hG,`vdm`4. x *ɾI`d*9VU!Fr܆JpMKw"Pi]r8@047=$CNڵW׆q ӷTCxME*5c 2Bbz*15Ҽu4iqt_].d`MmxGVYQfpu (T7ba`u_P~w;nns^|;7ZoDeQ}CIPfhϿ%V/Cgp%8WAr'fGZɽ<'.>a$N&s8C%2'% mڝq#4&Or58IY999M8z$t+3&ւIጮ{ ܽ_c<)p OB8~Fw|'g[Gsm5DN4B} P<>?:? e JᓃkM涺=1I~@y%L:v4cZڶcуI4=^֍8AkOx?pȂӃN$ˏG?lmCy׏^Gk.v3˹vƿX^Mr6JY| 6N|6~}o~ [X_ׯ+t vGh_7Q?/'G\(OЯo?h~?} ϯק۷?}Y] оɲ8}{jw`(a.Gaoۿ׎#_/3B_J/D~ ?Vb>0?y4.\f(vsbA׺ |Oh?πǷ^/tl/;\:On2.dmt qeCvO!|9o=1tk1rciseϷ睖\iy'?ǟntvC?so{=Mh=mϰß'uv> ;iܘ)FAWm6*=ޞYO8 ; {^ǟa?=Z[mվzjǟa?aO3y!cxs_n׷',6I?iO=y1ncCggJc?av9 ; nǟau6V\e~]'# n?v9 ; "uߞqD˴n/=ßǦ?k?MW4{?a<%{%Ů/v =?y'uv|ersĿfKDKݎ?ǟ=#"86 ;cyjN6;G{'r ݎ?.'ıOОO{=oEK{G{lƿ^X%ǟa?aϰß'6 = y+_/孲ßǦ?at`Sb@aru5bU@]<(؄<uPWC(x؄Bu]]jbpmB] M7I@]^gTgR ;˦?uٛ4F؄.{y~:6|.; { ßwH@]aulB]Pױ7u}oޞw.oޏPױ.;_uPױ u]ϣ.{[@]&u>/lpu}C@]='}PױgO5 ܗu]yX~_#_3c?}u{>PerGAu]6 5WĿۉߠˎ bxWu{~R'hOtڑO.'PeG=ylu]vPױ`9Pu;Gہ])Yuّ:k' ;7#Yޠc'<>Pe+?Pe+?PױsĿ%Á.{\Ɓ.t<@]Ox)@]ǞOx@]^V@y;c3Ru]6Yߠ˦?lmџ-]Pױ{%:{Fh6c'u'΀~kϿ/`e<>lǦ?\eyKo7ҽŽr{O#9ʽޏpl.|^er%mis?~?v ŽO+9}{͉cy^^6'y{ٙϛy}|vse?}{MeHڼ+ӸmާǮǟa?}_{MNcӟ#86."^)V\̱?[to˦?ir6/o^vmxß'~vv; ;=f~y|'.;ϋ|ݟ{3~gSߞ|.w^?/e?aO3r=$tȗ|#?6ˮye< .Qq^qM}^^)]mԾ;?mWOZo{}ycR냗xe+>8xevv>̴˺tv⡃7x$㫃Wx汉w2;x{/z<6sß<ċ/;y^'#=O[hӟGv?|ӏݎ?ϰ|xeu۬PN]o8S8 N=Ÿ-'g{Rar'@͉zͱKE9_P^tٌ+e;ylŸgջ=Ÿ<6 wOOx|u.c?zatF=17 #Ÿ卺'Ql D=fk]ŸG9zԋŸG~c'Q>|#}oZSoZWJK<6w Aa};+\6_ԧp/tU|˦?Q?>ƱksчqLo|c'[kU(^LogFK|z|zddt>\v_e7+f=;~~.;QտoM>?Vپ|5ӯk9ݩSjz Ԟ<]C?6E,IPHR6Lhz 3ù&_~E鮐T֔4TZˆYػ r)E,lR!(dTP)p !]Ld3d1U^=y ߨU)`ѱ&tQudYU4 hǥ"[,S月߀en,$^x K*ħYZoҩ&lф X!TQ=gzz玈a>\T-fK) U1roۺR1'4P^8#Ч:cِCSY޻RJ 4?n?y+2̜"'fu9v2=٧p˨`qr C̏7).l7(bf:;*~@C}𐻻cdinr>kþǖRQ>HR!떯_ZSΆj/hs M\SIf.1hIwMϾ`Ppw4f:{CNNJj9[Φ*OѽCQMPTCޝj[Vj< 0rUJy{t-'M ;Bm+o㑪s+AMB^S-cw0tAq̪74Hh[r}B|R\M`EN!.9)NØ~6cR1KmiIiZr^ɞPU+N3Pr A\ 2TC/YFHY5*ݘդ>Ձ[I&AmV0zTԷ*t. Ed[Wg68_og Imi ~(rBAh,jMg^ 6>_W˖|L>AZE*OUd'0ȸY;)k,!`dŬ{M@IR>ڰN'RtFoŐelf5Q;Pޯ->U*Q K[%=*gw&Mަ).wr&mq"[f"c.Sy U9]ǹ*TLx{]dQCѳ,B^@m,Ng-GB j Y:cSYCZr)2/Sm.W .'Sn2*+!-[b# uU>fe$jAlVD 3fv9>sE&WD{bqjOr㤚W .s 1K=u 2ռ/ݮL-Mmr"_;E/`u*q34^wp`1N~Fʬ[ ReO L*0)X>8~T116D2+^l->Bfm&"8gKq0FdB:^4c xȭXOuNqXA>/V9j!'[PQfhaŪʘY C Eu;7k'Iy RX}¾ϺWM s1 ι ]GPdmSL_EP97ϐ؍^O_ CtUK.8O{vDN:2(*9gvPT\/ ػcEAlq r.Cg\Ebl]9S NNkYXű$hĈk ?ΙF4P-)~:9UCb_4|_10V>YVy&wo<9x:d&KOVRĜo W0:^1@ Kz4icQX]H9n}*q pݪP¬*3L'EUiV9Ó( 91XTI6!ǖ9 ռ3VQ{OVJW@Ǧڰ{Av=70MaP`:EgZtcL0+UŴ:K]1,[SngDDkJUu&gVYWG>W^;[v>d &Gwj|^~*k/7z̽ Hr,1N>5KMb]܋[.98'KD^%8Z+WLZn*5G D2D3.k"iI.#Kz[r$%v3Yno mO:  CYr/_d~bW'ê8%^UFnQqÂl-8-SԪ|ӌ{5Tv9$8V3a*AͭOO5dsF|X#ГIgo![ U-Չٱ9uaj"[r ! ȶX"sۿnUԽ,cGz##łeOc]ahhۃHE 'b &^>8]FnVG;hs7T-u"kU2 #93\0@PCv#lB8Ouc̜;t%1<7jKRyOC.]52nKAq-aQtفb'">>3lY_:ͮ" VC܎VG!\nO3\؅( ~Zrb6V#΢߷/y/X-]jmp/CP;G`}ᡇQ2[.)f:mfˆ]8E3%5x#Egָj{.o壣OtH,׸=ԙS]c½7:ڐ8GfG{Pw69>50(%ӡ|0F{ۂ 9Mb5 I--"U/IYEnup!-i}h^x+_ЌB+ʱn?Y/{ZE[UFmti Edo[gWVj_3Mͯؿ6^3(@Mڥ֊9*Nn 5n}qd׎9QR%B+Ob]3&Q5QS Iwdzht.[%O_*:%zd w: ;jd2QAu1\xhB^0Z~GVX ;T^E2Q~IbRRi(@DN‚~XL#R\~U#TmqA. ;}j| lPXXJ6ZaUxE#2@YWRCIKʓ8tMT.d_C QT3{הqj!֤uSqj]mTn=c/)3/Ov%:'S]gcX"К!6u`2vv7jǚnQqPd,ڡzWh9ŠUƗ!wtm(HՀFLDnﻢгG=% ȮH=vIa_ E*L֟1uA9dԤ3z=T}aˀD~? pk,5LSQՎZd¯0/k1PAPgaNY^Wl T6VϮpt0%;Mu-?"6Jڽ>ƲhCUV-DI=LV,Ȁ0;duvt5}h(o|Vwvِ]ot( |`H24PH_z:c#q%Q$uK|B@)NqN:Y%: ,I޹wڵYPYwU4M g3(uOAAF %Y.{CݢN gWݎ) FP]7R:ͨ$dMr]1&!+WLTx:63"[?UbB=V( wE50ĩFTOɼ,nbnb!cQ]kx"J*v~R\LիO1*ɀu R'0{m~yvb۠:FiͲ S8۔ONa3:O;Μ:3BXu?6+ 'f8OZ_2\ꇬ%m|Mu2 B9SZ#Rcn _ݲ,E6R@>N= hB_QR=V+R4KEQ"+S2z*O3yFyQu?p9 I1I+)(=TiN}jlR|N >UHg>{_wk,b&I+H vT-(SneɄZ"4c{-甾,I7vj* l#XB(Ϊk龦 :y>n} n&gK^$$4 h\n?ϲ\uڪBESJe]@uB34Y lV.+TTdrSܛ,o{hD *o}{X6|ȗ3-yryY}c$x w.CbުŪrafMR/3t+AM"}4?a~郐lwteGcj=܄lPm>2] X<6r?+8H}OPZa0mpρK+W7MkwX3l|*62^ce"Y7n*;} f%iUXW۪糝 T6D3T}Gʕ)0tա]8<ֱ5 EO6Yα+ nĸjMBpiJuo[v,spսgL|*+I ݅98g! e`ȁ`>ř!צf]C-kIC'^]R/gPA jZb p,+aLRHz- UO@ɇ/jAsMwjaM<fB0hlB̒m#r6}߁RUY\iWkGY2lXYϜTFÜ0p+XtcRIYDLZ3˺ݽt䆙TbQs 2`QP&SZT5}H zM2Tu\1jhNR)OqM.&m w.e9'/86rĈ3E[݃m\{zɹS(1Vehys(=i;(aCJA/߂hfg}&;L2a\pY 2@YPI]#)T ^,t/H3v[x 6=LOo`Xa4MVYz ~:%mz;4P u`jgLMgF]*qHJ|iJƓНk<UgT5jUvj-Zb#aQP|Ʃ0qʹ =t@MWC팵2K\ؚfdOyh*g ,M$6'CTU؇c१iܙSemxq+b|W!۱ 529vcMdw)tS;IWɐw^z@fdjiDۡ؇}~9̮3! D5\o*H+Uun ,*H`#^;SJ"vy&b/bFEP6hEì`MC߫ (_$V0)Q*|^ d¹=h]]O*&̠IvK:c) EgLbT7;T07;Nf,_% %9+Eԧ swP 2gFb0C_2kJ!߄4 H1ꓖe=joDzW5Դw݁pނZ|"<OJy@.ɹ7URpJ"{ $AN\C-&ˢjYe7e"} GUk3y YZTȚTVPsR5$=fHטQ25'dmW*Xq&=(Ǒ_-x>k \T՝ 6jmwPOQg;'Ů Qpv o&WiԠӔdLD=g`撟fhIb_0X.F!ճGefmT2:7!k5?&sػDq#O-@ִ*TFĦ.}giB`;4ܩ]eklIy՚ ~}PX`b|r6""U\Tk3 jSW2nR* M60>RUNVTXJUvٺ3,]jpwW91C _E+ dU_kHʻ9yTZ3Y =Y_Ug߷˕jP7nJ~=PZc,JkfELHJ=A<=5q;9a /ɠG >MU3tBeTolU' Ĕ*|,c`wUZ7 Uan!oE!Qj G8HD& QES0aNW<UM_mOPPG;yP u.D 53;z8+4 ]d"UvN؍Y-v1HaP|iz6@xpB%K.&l>{fH >hVgU'lS{y18g,LC֞2tXu &4ޤ2z[uizzR/b3]%N*5\9Z^*5_@r+xLW r>p@$seHFh"V 9 ?BdKOJ^+OA3 5 uCfWYҡ;#^ 6طg_-[n!y1*Xu7Vy^?Lh|\vZc`^?|x'th6]'9/O0G̙zs#lӹgxGt5F'9 PD"X>1ӟ>Lv뀃siz?Q9l?BN} z(bUϤluO0I~Xqm2p'~b߂ퟧ(6?mMb-|ò'P11T5Xq5y10m[{c/?=~mxۿ_OLɭ8y7Nt dOGsvhWF]؃oؕԚ8{L!c{?~_w~Mtm(P__?^,Twk-/_gShM,|~ShZs ~*_7Q?/'G(L endstream endobj 129 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 102 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/5t/8dfc_yl10yl9j91v2lc_jksc0000gn/T/RtmposLYxE/Rbuild2d0830c1263/effects/vignettes/figure/fig-contrived-3b-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 130 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 131 0 R/F3 132 0 R>> /ExtGState << /GS1 133 0 R /GS257 134 0 R /GS258 135 0 R /GS259 136 0 R >>/ColorSpace << /sRGB 137 0 R >>>> /Length 54012 /Filter /FlateDecode >> stream xM,q$?lǖDHZZQ &h8Kw3eŹG-x%?ݕnnnyo?[H)=/^}:Gݏ2>w#_o~?g7ǟw nwnuˌ^gqo1ߨ#-yv}]_eѯ~wï-?~s߲~cG)#4kXxp_w+~+a?r~OX>zJR?F:? |u̧_()m/_K%)G)~c٥{ .5i.\j]٥mXk͉5 tվen,]5o¥|\n1sW.lA/ӗLs'7,nV{˕/urٱt͞tK9tF9t͂;7}7Ğ^XBsf7=|9Znao\me{y͞a/\oXn +8.`:p 8>Zr{`@N8̞ބl/}öS4O en6vr^X9|VGؾ.t}?&\o|!ƻ%1ݮ-6ho\vfoW@qw%c=C.f/Kvzn\~[a3l_'z%Q' ?}=/}E[ض%[}=w޸ބ]|=/{ip6?jKWHۥ9kXS-uq|= em=/{޾m[O{n, x|= ܇٫ ъݘrz=\?Z/fֳl?zVf6ֳ\?o p=+ȸ{.ϻ{a6G݆͆l_Fqu4ھ#Fqپ5|=;Mv {.?F3 p=+WX9?.sc=z9?.{zWtp{r7Me\!Ű 1 ŝvl]c6l_I1;s̎\B?\܆0 h޸^==6c%l_E2s`=7ǪXO2aznWq?ЯzWp?[saz^6{{V`v ?ֳ&޸\ öf˹Wgnmne7q5\Ѡe\gWU `Ug *ñX`v`U. XU*pyVx  ޏ ^ ގ#>  Ј`UF6XŬ! `~xBXejV5IU w`U]XpW7XwuU,w`U]XqWVuUUw`U]+Uwu*pW``0`mj0x GxDGxt6*$ VE`U$ V͸?U3`U$ VM VpxjM eU+-U o/d&d`a;XX|#Xj3 j3 j3 j36*7Xö,33 C *`޸BuU3lU `LLLLLLn V!ٺ6*V&[V&[V5VVV7X>``U~ 2 rXUoVUKO` ` V9p`U-7U-7U gU*'VUVUVUVV^O` !;`bU,u'j&X::::X__*V >X5:` 0(*bqU,jXb&fg&_U33U _U VSVS6 * ŀVmyVp*XpUğ?V5RjDuj'x>`UK(Xu VmjbW _ 8g b87 x7~s?k)=3nפ9c?yدl~9`l6c?w+g?/}`- Npy;x_0-/Oÿؿ:wN8Y >?l%i?oY> MF-9}L9Ojo=o8*缪|<>λJa̎?y\.,y~a+' H8OűFqod_"Qlc#agۧ8x ;1/Ab_,uY>mY^Qfq|E|E2DQ_#b|p|.9 E>7yM_䃓E>9yoF>}'p7"M|W?fxtM"2JzoIBNIA ȕ'2 gѹg r6&xG%cks>EWăʛ<&?I <2? O <xW%x󽃗1,/,78BrMᕅxMy&祰}=3KY:8ψg;ȵ-v\/s=ªzCw}\v rnoD')Qx7yM.xQ!Aq>DhҿE=Ʃ7MGM\ &__x?6~FlYDygFYAgn ?A|&ꁃMnO{#GTmw8A;O3!~MG)ēN=6ȩQ%\Qe6`]Q(&qy;"s 5(PW(_W,S+vU+(W(WQT8!\_D1RAD¾ tD@DP i$ vҤNV >0'Z{4΢T($\O0Jf0h3I$2: Џn<) 8+ A݅{ܼ q"2cmf@I/nX~&2S_O]gԓfpl`5FIt-} DzKt%>:DeǚNz@ZFO͕X:|_\%i`O 2B~!!~1E0}[ĿQz$?~t_ //t-ȶЗeܾ,.by2B ָCY_L~[bT~Amvl+,zE_E "|JAF\~}ow/3!_v"lVkX|KrU]yn|$U#OY3M޶`yX+}iiwю4}^x 7py׿鰠G5{݄eDb&g:!nO _>z%<^y]`'*n:C7T)6Lq&#KK-IyZY}?5/0*ܿMا^4>+".q^e8nQmPW;z25M*ڢ0=_uHy]LM'^" q[ Q~"G>ChNK)_[aw.ܖuu6\nnˮyBķXt 8j} (j#I/dYsDAA럵bZF_ր/",? xq<=ȑPNn.އV (&gj{i?|Wv]"ќ 1*9E1ohvBƼՑ1J ,@ g^hjء%Y 05cw׵h~wyJw&}[L.C쉧 MlEf [lf{Bw+Xb &_f:,(HXmxiriyTl$4(P3˰"[C!%֫PbrZ$}v% {kE<<L鴢KҶw**9Dp|S+ ^e dT/ީ<+:Il򥦢=UAPG:M5;K-HH*tӂq,g,$prԈU7ݪU⚬Er hm]Wi z//mMaxdW 2$x'tzv.ǿԮk҃ v {f[dzwض/`WnX(WPբvxTARN M; .r z:Lc_x6Fӂp(HO:L׭PRa|wJ2 H y 8j#s+v۲mNFV'96F,!dK1:M&7Ʊ*Q+cG4JJI| _9"$$PSau7L9t:GVaGYj CMHŗ^UB 9hWPf)ajEN:l; ,Qؠ B";vlCB؞im#\բwy MP=Z诋;.6NW`1Xe|_UNQh|8Z%K-@Y9&h !8MWCޅ˅)-lQrvdҕ|圊13IAn Cpf%:M;I'͜*wUrX< ܲ:"SFN뮖BאXpf蒉$4i^wL2xSFvl!&^D^ҍUNG6 UW<à2%P!e9R~c- 64({f1'HsSՉܬh>kξn$ E$)jЕy?wWހָl䰎\m6'x9^}B\"vOvīG[,]8C],dYU1f Snz{HNPۋ ,=C@]xVCb|{=yKwM^5U{_O/]2k9d)q6,04IK[wK$ AH;:&-E`0|[EBbkXRv3*< VeezFXLǂ*5,` ,bA##%Z!"j Dg'$7i"%TGD0T*rmRT)xqv}V{lyUK:]Z; Ectg P^-"[e( FdQؒ  d q=@Ir p蠕2BEu~w&PpqhK4Vn:0X#JUiOYnߔc£Lju (XP&$*Eg.{[kK6mK44̓go~)RviK }abVEdqlOWG H\ o"4 UvRh'GD|Hܗx6|/Ҙ1H>ߑ۟TYLkrXBYb$5窜M*B`zZ< C3)VEp+"A>E֫PN6͡ta" ͤd_xWDJd9/mhFt T>3KRՋ1V$mt]Vbh6oz69E7QLnIFppg[x Bq (m]m 7 0uS QۗK+pi^(&MM,2IR݇ϱBA:/X;(sԱ D0BF ×Ϋw(}Qz8Š#Lड़=\)xn*2厙3˒熆FOăP*my.lC Y6m)D?A* w_e* En.e@ W+ߔaL߫L4j+DTΒ@u,@*#kb1GS!QS:Un0vS5<fBaT4PDՄf2IKH-`_b] AA-yV|M5E,|ʨ{'T"]&#,vS51u;U5OITIP`W+(O|@ELDMj -4ѴFWUt4ΐGFrtɤw_l |#*&do;9}SrLfQВUYW^ `ǗGr>.+Gy P6 +av=CّT5Y:K!e#7>8=O$3^[jҲJgEz̏V ́f=e T9]$ Vo 5tCȊpErC=P(鐥,)#p,]07.K{8('S*js\m0\oX JuTX;vYL.;d̓5Of "%>)Vbj(=I n?{WF\:xE"  'JV+huB:y~Ū(:tnF{-$DY_2_YjRlܳ*4:^nM7RVKexJC'&I&=T۬# &V%)wLksLl;\\k>B}U>CPH<9깜~d4bH9{oN6<&dz?U[U}OYN&ўӽfR"*{(+!QƅĜZ%I1)򆩞PT]&*9ݣ [)!۬tUTM@e FG8-%)u6`l '")߮M0U * /`כp"Lk'%wTE57MIr+H[d8r@KPxH@dT ULWtXƉx;5iFMJ:*--yOܣ4 U=Lڒ@P HR.px=7E*^j-m>Y*6 כ:[ԉ$ݖoi삐uzI[ρ"uڃ)4a_ڦzcN='zyj~U(Jn*iqa <$$lt^'Y4PNRlc8;jV1<ҪK yS?tţ!ǓRxW‹ QWY'p$܁vx,G -+zZ @rAןReُGVg$\6dЇc !&[5C Ru79+8Z6@~e_Ru]\.jgQ U7Ci Ck9_=!(΁LJSO,>@ wal'2TϘюq{;;;}^DXKѡ&uhW 5g-L7@JƤ!`0y?7 TÀW*0G|f>==ʹf>=EuO{)z7YuO ԧ٥6H:ڶ',^N;>'q>BAv'(?6[ ._lcvYN?_̿ұmv9hF>԰AxW\ӳ|JHfk k"LO#8/t'>[}85:lPiw|bF]'$/He&T>ع~uԽ}}-)3:,>[wxJ[tl=fC8J`6Ao?|ǿş׿|oxskoQ߿??_oA[f [#ykk?[q]?ξO3%fOwoBu':=]?~\qy*~2|K4_Jwi6.>UIϯ+Pl߿BWZ~rDa/g0yuk?Oz}f bwa3ݛ>Ͽt~/`_ E 4~᧿yoפ]ik?p{vؕ>Cm;{E,&i^=NaoFNKu5RF„^ gYZi➰ V=CFƃ2PF,u,7Ae);G0.a/nzm &v؇#| k^z '=h6#[CfP٘e}؋?( D&;?UdZ&:e6)%1cc5 7C&UiO\FUBw77y/9}a/@K| Yp dw$`Ը7/̮Hg'^ItDLLőCQH+, 1JArQ6tz ׳T)`;l_Q9bsX?%g5H.*lZJ0{zR?޸ބR~~k uJ X7GK@}=7GKhagK-fa/j;lpgmsvq-=q{Zv!eL\nQe'84NRfQeȤ {h1{>\ZZ0{B=F74K43a پ|l+l6fzVfpFU-h(\v G[`\oraz6V0k5VHkfSGhuؘRGo Qϯo۰[ KaO04sė-mUe[Gq؀!v}=YSkXTk##K {z?Z0`P/(^8;%{aˡ'+:u18P'kuh#EM?A]PI@][@]u@]u@]\@]P uʹ`ZLZXuPW@MuP«}Eh↺kuj q$vYԵ ԵUԵUԵ Ե;PC$B;PWIx:k@]7놞uӁP6.@uh9PWhPWhl7 6 WtL(Pa@Ib@]Q **Z Z @]xok EPԁ*瀺"ǴxC]H-oԁf؄xT$HET$w6P P3B]33B]33R 7.'OP u u;PRSޏu-u-7ԅP PRBjP׆9Pf*PfjP&P׆{z؄k3E(PWPWPWPWuu u!.?6.rueԕԕ ԕ;Pއ"t.~.췀 [@]-.yqyC]=lB]x75&ԅyC]Z|uUB-usJ%J冺P׀}.BgZa"tF+·πʸ_. u/P)B]"u)B]uhPW*n 놺pP uE@],]k_5#5POPBi熺>5 5>5*#5>k>Pum@Y k@Q4Pע +J7ԅ~C]o um6{@] PW.<B%ZbjK  uPWK*uP =kM."ԕ RāX>PKWʄvn P u @]E~@]%0B]uuB7h↺5Uq+*up @],=uUB97@]\@]\@] @]Pk@] } \o&nP2@KC>Pa@]). PH??P(P(P5@]_P~ Y9\H 8z[x> }XFh>+Sg#}y4B*o7g?0?>%O~;P/c_ MA%^/5ާB+>?6qo)3{L(#>;*<;Ni/|KKi!}Wz 5#1=s09s8x$/w%w^Ҷ C;.(5|yj|:oRuJS%lV`4#>/Q:[Q ciT+Y3]pr, "xjFxk2x,ox.ш&'4 <.YZEw^YezJgOinP"f}ˬxzDY>gOi:5;zz_w#옧|wJܥ6K:DԘD>H|EZ7uw 5LCHa{ɾ/ՠE>w:xS?p75wSGJؤ rvՅT%&KPQjLZCPoJؤ`x_!~^/Ԣ G;&K9RwxP (ѿ?"ޔJ75 nհIB>}S,IE lR_Ǖ73&Lm#woȟoj\ 9ox j!E|&%?==x-qแ/;"o$Maz fyv&UԟGxi>>HTPnj VRQO= @%zCvchۛ:uSS^A5gXϪw}0>QA}+oj9̛z3uG=/u G=1MYتqSwL~@;OSIE=zݚVu黵~zr.)ZX?D>ݺ/z ޞwQ7skϭ+yzsZ_7ui!u[sVغA௞Z[rl-B}׃|9|Af6/2Q8||Z^h5l?c仜2a|">6>~iMCMyH:|Vu_Iݠ>FGJ3u|(_[53 eZ7-$RT7޸YhԈp6+F_X,VJ'@a!"c%K7?Y!Z՚҂i#cR J ld(.%fgt-9mtf(VkY{$Mf]50Q+W-]J}cDnJCi'"ǝʤKSixez%(gڔ /P@.sܶF)*Ԥ7,^\n>b%0hg` U=~65leqw^m\6aاZ!>[d8K h5&rla dC#/ 1?>+ Mʧ3$OR9$׶Uy}pqEr^Ԗ\`k|,!mUQ,UEGd:cD(gI <{W x 'U9՞/ivE*/L’"@XdGKS7$ 9,i^-++&(oźj5vUky+v,k%+^Or!ڥR4qԩ[7 fq7V~<ֶz EM 9o+ ԋWHYA@!q1nb CU;"rUN2&hen[}#*SKV/v C}FVμ3ߵIG6(|w)Ĺ܈ˇD9}ȩ"VC햆~ftHS"wE pCSZ`ԛ*tzyrBUPyI)[ŒJ2jG}o%nl"5+-Gc̒ZU:~Һ GDYE;Fu6X`ު|)F-2l_DS34ggr E`ʹ>`aac,,`3)Ɋd=WF4A, Yow1}R]Œ,Ofb[C%G^_M <12:#qT:0QPYTt:2*qRIwp8_߄ bWrGE TbQ-C* usx  XFԀ s]4F;y)dnMuv#U1ɨi0_U)p\d":NғѤxSJ@ ?'jo_^Oa,_̡C*4Ss1ł*ҐZV=Qj[Y`Y25 Ҁ$+nUD02s5*fw>(jԤD:jx .&JʧL0QUѧH,k ~58WPPP~}ݒ{bS*anķ 7S*Ti$'ǯlֿ>^0RV2֪qxWke}T/_ t"iޢ2@MVO`n m^NaKހ@]5F :5@}gJEqh64` ~:;b z+o YEeߐT̹p1X-|$x iwCpGzW˨>gOHU"wx>^,"IÀruڎr(OOScGM>O0GG8̩LnTHy;d}|zʖMd^SM֢~PU](k[LEUHq#؇$ а@9 )n`\X$?wjHC T*(rs,Etc-' SInQCP/`8=[>|zUW%:C;]{q$Ke )ҽ|.#_Q"'$lKxh8!' _^ةI 4<D cG[ zAR˓tOT>v4c &' L0#Yaڑ B:%9JӡgÐS-f$6X1j͸jlUMj9/]m ~QcZPafϺ~K貪@t ͋c5c `'Ơ`+EkvM}AaKc4(4l!Mŭ2Q/nܤ^YY-Sי5nzёsRj<J0Sf~PƊ=j8ei%BrɣQ[uP1Hd5$vi폂ˡ_Nͮ˝h3rWx-y@wVr"TwUyF6%]FbuQYq#ҊEf;Hrjlh#jW&Wrh)(M$ XWm(?Q"E.c G*uMʔ6򃝂IW:(e˷i%5?g}jxMgF=6+.#6,jt,QyC(JM2aݥ˖=0TU/Ut6$,CX^ذkE)DsjF_G$jM)3¥A-jtUV]5#Im.*E2myX WɛKH"_CK;d=9m:_Cb݅8TO̺]E*VQS_Ō$aIdIKsDk&oz_ҔaQJJJ/ޮd᧥SOT* dɔuN`D P(Km++ۖ]vV5{UcZtzYƚ=Ty$:u3FG KEy Uprd;9DYm sJx@?7!mA;gDT'v:"9 W +5f(uR|Vu./<}W*`DL}͍mJ*3ʽ% ! r`/;[LS<ʟr m/[Hk]t aޤ)BB 7J$:Oi7"`CC*+Tj] S_~Zۓ70An/^5̡u^7`7]2WŢIB0XY$M9Abڜd.1Qu%Tֲ2 aGbS[ȶ2$|i't Hm[>@2oq|Û 0GO ʖ_w`ʋ:ᥙ46&, TIz*XMʤ[(2QP4*06uwTwB*ٴ@cȚViP(R%;) T1dF 0"L澀x1 zbw\gXf'[5'É%~AK=vUg٠jWEFv,*kH⚾6jVvw$6fî6lz*Zuy(!qoݓv,u>mOv) I%t>ouUi~Y`'*>ޡ /%e0po5rLW}Y+tB@FQmNQj2oEB1M-Ah}3VI.vUpPQͩaUS Se~DW&|:Qd"XRہm~:иw* LZ>@_~0miחuUuƻ3jwT. X5\W1'.xٱFEk VR+L&b|Ձ]xݲ24]Ro_,)!(SRЋۤІ6ޔVNk aY e7vAQG,)P2JAgO!';G=-O}cn<%O7$䙁qɭa0% Gk Pp'14/[4]4eba]p UB\+d2 "\N43 LZ"{H\bYAY5LS~$R)g$3]לsǗlrbG* 7 l]xy/4& {5wk/%uv M$Zɿrܑ$վ|#*`c7}Zz9,' ]AuS5ucYչ3KOz ȚeTk񗑔6R=F))Q QY$$#P'v;SVމΑu?;-L_m6az߹~᳹\(*d'cg 1y^6Cwvi|# |酖ݼy /6 LyiǼۃj1gOJ$L܉v}}{x}veSyl凍<IO?YW{7k{7xRo?XNm} J>'ԜO60>t+}:S|qۙ, >io֙ۜwj14'Tڍy&IãOP:?/c޵s>"c޶Lyhdyai=?/W?|K_{mOHosy"b:חpeIm_modtĽӰ[~#w\O~7{G!6UTUa?ǿ5+R<#l]q]~d޿BWzse9O2cW~^,Y+p~//|| 0~5~/~V|qb{۬P͉^b?4ۛ>g; #./>}Qk^]ڗo4om߮بug n#' w4d6l 1κܣ $*<}F h$9ll+$C؜`cktlCJE,fgE8'F=̊=ZT7;5^f\nOr-No  5n!%ťao\o)q {zu&b6_c}=fҎ A JXŎRXE@,l6{7l7Qb]6kX>ly=q7h۰7rfĞ a%p[HA¦=#6)nj؜`*> l`el=q= X {i+'bb{Pi {[c3ǟ1b=q== vob ~Xo|zS=*G/9=~tm:m'kE}}B&"~Xl!~t6 Ԇak!iPc[CZ⇭=Oa?l=е9B?zvď^A7AD3c}#~ ?l=yk0Dm'sz6: ְE,kݠ{;g!~4Pu0~#۱&8X+@h@d@XO|RBxQ $rďca-8u1~t7>^.Ə.?:duꦒFGx\:VX[7GU݌ww`-u3~ 0u3~s+ cL91~?'Əй?Fsض}-1~ 9[bMDGd'h%ÎKyˌa&*?SXo|T OPOpzCZ0~Lx̶12Va K[1!vj mNT=<ďO[*`B* [7@FzCgs_ncSUƏcdz1~,#`XacX'n X>cq`Mchicua3~lx' :džħuƏ kagk3~l̩l_V7>AK#~lXaXwOdl iHۈ? bP(60?>c UEۈ^<?0kc&=!~ 0.XC(dgO"?U6Xa%QLX/;e-#~SxzBcT7&Wgψ֘JX,:V05~? π / uyut8PKut8PWuoPWEh9PW%4PW%4PWe)PWe)PW (ntPWërR?j,:-:ҙ ).oPuu Z }JJؚr.kŚP^u ::P )uoPùùuMBauMB'uMB'umPQw傺\PߗߗߗߗBz + ꚱgԵ&R@];Bcv@c6Rum2oP׌5./P/&ʀjB &BńЋy=_P Z&E(Pׁu(_BQ2RueQuX"TvkB]kB]Q@]4 4 * &ԅ킺P]P׊5.@?uUěuUu8Pux:uX"4u"x}uE)PW"uE)PW]P@]#քx}kzALPW ɁxA]=ք|/ V ua5ߏߏK {A]#քkŚPJ&K&ˁ&K&K&ԅRF u.oP׎C3\@]\@]WIEW/G>XOGX)CJkR.6:!1.q}̗#|̷ [P% U~U!͊z#[Q+wkRC4 ǚ/z,^;#9';>>=҈kJ'.iE5Q?֫xkԳxlԻue=\7Kimh?ߥ'x/iJVϧX{''^G?8ҚkJoP\ut IiB%ߒ>`5 |1%KOJ.iuz^M|%uIwt#H_xD7.ї|%ͧH; >tJtI>uߙbXyz0_{Z!N[%Nk)=|q'S{5VG5FWOk߫=Co'?t=+ =@g+>ja|wN =G@C4/B/A)VZ}B1*4רo:zÄы0?zRԛГf=zGR=L^P/z.M~ =[^[A}Ϗȇ=1=+hͣr蝨"sR珞[Q_0j(_|D-Go@)el|,vW"*u)W!Cn-p:nhs7x)txk4ejbwz7۰zcA_%CtU#p:Vƨ4d}>y@& |q051 LC"ʲqcl,Vu;AkLʎ'rD5nv͖lxg49Ǽsz\.л=~_7C,vi~iu1g1 6Sch#56s / o:9ڡ2WI9z[hd辭`W͙if&o;# x;aDhcL*XPKm+xA[MK J Nͽqyip ^ϓp8inĝT[roX$$AkdvcH8ZiU%cH$mҴ9&iJ]34*:kvutM]%V84؉!FHԮ3h<z9 O$WY윅EO}n$r&8=Pmtf% MCk-{K͔0,S;/^ c+/Åi%^ id58I^_岔|`l#pl8#`68zQVv0OT}rKU͡ENP&fͩvο&۽R/{A_Jڍ`ԨIG`f,cHg/^d#Ԗh W)=\5lv(ݻcWzǵdCKTjRc8YdaULx@oy >u.XxA,F/t-T1%36QY+ u;i \rhGa)gܨDexߡKW(%(R3DCo4;,ܴ;h[I 02eOTjHA1̓3q#y38X,;[ + 5HTAԷ-],`Xxi ̐c! VGd߅תaET4>Bu@S<əv9'aqdH#s{(Ce#_*B3^HԂpÊ )aG YdPL-A.1CN4hT: 0W]jZ clYTV5¤CI>&SNz5Y)ҏHhp|Io1[lv1I>9MKd*&z,ݩ4uc~ @tUy2p&1.'աQh=θMz 5'y0Nfԧ9PV%ІJ,Uƨ`JcrCjFQQXJ8ƔU GjU&MO6rЎ!'!8@MRM.51,&ur⏱ W ,4+rU-TxAajsmMt:-.p1*[fZpJƖhL x -9 ƿASSxCy'Cm HtwtE- M'\[@Bi7ϯJ_)hQᘋ?UAnI T";Y<3S~H kjH!3TnGYUI*Qk2l*tQX!,za'rѰqhȲ_Zr8" [;%`RBOsIVO%9ECu I(rh7e1!#\ 걢ɸa YdsIg'N:|\1Y71EhY))8R}[T*,Q9` &FH~QaЫ90Wb8ot)ޫ68 ڪRbmJvG^RD9|}ߕC,q=bI,q"y`KrHa2s߱`3fy`NTϲ܇E+Շ{sBT~50qi 8ɡr* nk%$g4ԐrAQ޷I1K؉6ׁ{zS(&c4{_jFD8 6Ew.6%]U ̔RqUSlMf_݆lLEusߛIDY,^ei(l~*L YW7Rx1)f s.ɲrr fKMjD%fyL82ڬE  %ߚIUmŦPvM +hHV;w4Ha,^X8<3JM0ʹ.IZ>i֫<6rZg8jF6]H`=JJ bI=G˹݀^ -G^:C›k$yզ\ڥJ}a@›5Q,rÌHݫs_"TFL"zYq3dhEGT)'!gO uZs'۩? {V;3 mKKYM-x)<(p*EP5y:wO/+o `]oqK 鵌q>}l~ Y5D4ZA I=Tv[ĕQ5le_ L B*Bz3ֹ$I.ONT$^54IK5;5IN$ISꗓU?B~U P+$7~'K,B ̋Dt61قX1"ʎC iM$p XRhŠ\h=O2yWoyc{OHU' |H8 F< U-K&~?Sc2N-ury# {.w]ېVsL˽1(,FCI-{*Om0E8 Rg=KXR\6ECsd5pHnR{Ψ&mI7jLT (!ah4nXc ܿ;ݼ +{H]ӽG+KM*a)# T-uZ ck]Rg$I̸_`.ܢ[` /Y =wV9'ُ+NP)oUcMESoBlώA4I/Zľ4PʢuCU˜koSjĸu6N^!LעG|B#_F*zL5Ka$Q~;W~sفVmFbә^կe}aI nNjC;Oi>Ȧn9nOF'TZU0`6OV<#b*n9we -p0qH fJ/ӿr5Rh9UMD3ˆӂ!aL31uCUڎ2O5%ls&Ay+a-3K[5B{nJYR0kLڹF> q\ %-.ŧ\۽R@Ν\W7 Ht 7 9T)!p;N|wc/N xwM2Zh:vՐЗv,!^ Cտ[ӛ'n8RT1k}K f&z6KgלaNDžxMUj&_yʷ&b$9ҩJp!SI3X4И q0^u뮦ZQd *oڵՄeWn+Lӱqԍ|@ں_#\![SȗcPodl[P7Z vQF#zKǜ*!Q~ iWV0OR̥NX^ԩ`IYк Qd{,ɖ٧^}8庻W53a^_{$1 ݇7*S;m+n*i'%)>CGmh N""-`Lە QeUأ 5I7NUv0 }kڔ>PVʊt֊jpnWKW zS~NA^ޚ]֛n P|͔zB@ HtSH$ϊ4I&C:iBjMzhwMrua}VjG6HGG,?'Үv3(NʃAFTj - k0v<(胓R`8Q_8 &1}H#rڎI]s٭* ˖0ȖFf啞5}YZyԣ26coZPI,bNr΃,YC*nku!^"K 0EMW+\aN5Oܓ98Qi$wW;6KU`6(#ƉL,AlhFaS%zCAE!ZK,bD˃ܤ6iZUl8Jgvo}ZQPj֪à e㬪ۙ|,fC:8[L \ ꘩>٭%`c/66dPB(cy̑F<6=Hj^c3lZG9F誕5 Ͼ3EnVU٧f׸}#X䡛25Ω͐Ȑ ;T9)ugMM ׆V*.NwlG#Qn1qVRC{@`HQJFhC*Nm1h (9D3 @E{ c/KNZ4ݞc3܍\b*4ѧi<  9 QTtAȘd@1%K_ 0աitl8>68j 3|φuW)!QӬ]L AM V*d{\7aN2DHT;019/YYM:ZbԘSUlE`R+k9 Y` C&1ԇ"V eKjIdp¢j7J5,ܐ6ٖn*̔.\Ni+ĐRH߫gUĻ)2,ҐsE20w?gjnxKM?ְoɻ( ܐ0:xq0 לlgR^tƨ<7ѕ:h=Fq}=;Go+Fg/ (l 4:/%}a|1?`jdC}~Dk/g_#}ۏÏfVks__,Kfqiٟ}i%CafO.7osW s~<}o~߽/z(N򧏿yFO73q<@?{K NMw/o9ٿby4$?pst HO~'?ɟN{=美^{:5OLO^0BQc[=Q %)32ɏZJCjZT7mHElMnKm]xzh&+5&-1ȷ05`}nt,Ydk +3dS"^Mk=_kHX7f%D.0 (&`\nkN~ck48Wzl=BcL8i2+lKzbM.!|';s R1iVt>o][WXoVflZL%lAxnkJ+֘:eQkNTkkNV2r]~3wXkX/HuW:czkCjlXMWR٭`uYkZvBŹWp<ďb<ǂeĝC?l4N , +u0~^: s2cylA ߱<ď TѺ*%x,9c!`knm6Nď@ԉakʙXCKV'LN~?LDׅl& l W]^<N?l=y?f"?lQ*&1ךf u#~z֘^7%JO5ᱍa&#GX%[$D%ďIevK=hi ֜L7єcUrF kb4g[F*?lyk(m >ozIoV?fȠďYgc ~L3lcA#ZclUfzKi zlXK&X1+Tt8v^9m/}V'>oc!jv18akNCym hdk?h?y3~ Euh?͔:]hZgh@P[g耾ZgUٚ?z #kנC?ov8i5?:5mV6?: 1m2~tATXCۆw=Z&&1>c\m3~mƏ#l7&Psی|0z'ms?&,lz?&zbDŽ6 []'Ə9:Dp,φ?^ G !~ж'#ǂBJ=3~,`83Y6fXO|^4k ?"0^[7gauBݶfaaRzSr5l,{a r kL?6QFze= ~lՕc`[b3[}ބQb=W 5aBcM ?l"hGd?V*ajڱOow&ʠkgGX +{ְ^ +);J4m"l=vPT?lyNcetakcen5,4@ρ2X/|~ďŦ>?l=y?+zO[[IE >LO[ &uR1dωakcEakc㭄uq9>LhXְc-֣Ga)\>oa !ymc[$(~g`SbfXy6^u48PKj ( PWQPWM,E u/ Sn.&ljV z ꪉ2X*lPẄ́fxԕYԕYԕYQ@]]ʋiR oJ@[~me|^uB!uB!uuuՀuՀuUuUB5uUuUBuUBuUBuUuUu(PKut8PKu5Bu8PWuoPW#4PW#4rA]F`q     }}.u Bu BuPWu8PKu8PKu п@] 5"5/܀ZꚄZꚄZꚌ7uMƛr8P h@];,ƛRu>B]T@]{@]E@]uj:P&B]j"ԵE@]QZE@]QZԵuuoP/|IPf} NjG%^x}0@]-.kŚPPW#ԕu>B]9PW#@]wA] Z&ԅ TāHE: )w.^߁x}ڱ R#(5R#J3@]5uX"4vkv 46{zXj,j,j,.kƚPJ B)PW'PWG|>PWgPWgPW'PWGu.ԵbM w@]w@]#;B]#;B]#;B]w@]uXZX w@]]@]ˁ&K&K&&uM5cMka}.BwV@w׀׀k}k}. ~. ~ ksԵ Ե Ե Ե#Ե;Puy^P׎I'>OB]=yϓPWO|z"B'> B|.ķ BƁ2[@]#PW&4PW&4PWyA]ԵA] UuUHUuE⁺X_ԅA]ԅPWuPWPuUޯ+kB]_ԅPu5Bu>PW *uu5ޯ u:PW:PW'tPUb?P ;Pu/Px@]ぺT65o@Mt5>@]P.R"p.RꚨE*@]5 5A];֛^0u1Ե_kak;P׺ hj}k k k kc*u8Pujxė2kPa@c7>o>o?s@^ }{Fޏ)s?)u8{xǴߟ׈XyP[g? _Owqʌ:pA~}xKċx:x>xvB>>=@߄4b]3^1ސ=TW *(-:txglP )<Fq}5q5;U5-^"_8T2C19TC2o^ *_F /THW"Jo#Kq}R\|R7Ě(ꭋ:E=|X3G|mRg&|m֋̇f=|u\bMjE='K?;֬PH <O=F?^;ˋϱ&u;vɜzx੗zx⩷fg&&Kp?JzpT E )Aԓ#O֛#S֣{ԫ#[ֳ)zI?^ҐS_S:|W5֔f!]-ķ Ga#R/i%`JHňǕpC$vkێ-ǚҷ/́g#]ϤtGJx4R#Txk |ˑ65RKڌ2_zI_#4:^ೃYzM>p1q_Gԝ|a>Hi}cF[_I<𙧕`Vr5gtsOKkks+_5S?_\|r!օ+_zK /#0֛"g 7Ǜ!>aG C&zD<//g =ɣ y_=7=HZISyM У&*W+ }[͠wZѠ)lMLٗf-m RӚFii][ֶel}[z8ֹEB-.ޣ5o~kݛNk7Jz)EGO5 ({_&|u'<3Xp w<_{aX5GpwsAB8Yf<+;nb IO6vr/S.%)CF5ݝA`/ ^k5+ rk*j_*|R `VN|d^c~S/ƹ1Vu&V '2ɜFvdzBeϻglrklvOein0tH_(Db;'?+P °bÿI`P\& UGuKʘ덦$ I E^c(;t2a lɁ2nV;šiÕVwXt6PQ= Hqɧ@ee et@t*} dgP{Baeeݤ"G!L:EFVFUs 1B޲DX+] Β"-vlDz0C=c YcRVv|#qwWly嫣NnjpjVolѕ7HfmAYİś4H j+wc vn33|pto8c&s!#K~.2݀WgCR+`A0$v%u>To@ɿWi>1N7W&EtC,7~Yŝ42u;֨5'GNT9i4dr4DU&|4htR 󖥦) 5衟`h-ި 44JؾhjO ?(; b]"#FDSg}ϣ˽1Uo‰goG%IBFVVİOYNPeJᳰs0]ꐣL]XIB W=({ΩLM!VhT#O'KavEdnWy@0wRg%Pʲ59v]F퍞0:MubLu%|.d|FetlMےF٫LdeYg~۸=>a' n|Ո ˟ I9w;cа]:`wIG= IbVe^/ȑm&EeP&&IG$ΓCf;&"Gr KaZnaQ=G-U8=@qBFng92(;TqÄY$ iZn>e⧆$dRX F/w!|2թ; QwlV[s˨̥vlqp9>Wonrd7aqU&h%TtuȐGF{V[Idk;gx ʑO+zKْG6a=}<$T#Ʈ;,0)#AEFG9pSCL+ETC sy(fB$7(IM.5pk0ӯiB #4VD8$V9%:ylYo2 (*5-`Yue"ҞYCg&Ϟ#Ib7! Z kߨ!2!5~n#$rUJ ]C .~wq](ޡh֧7Dd 6;d޾8˽Q YS9mG#xU9ϛpZ)~ lH2F jG+h3xg\[FbۉJX-)x¾2 vܾ&ZV VYT-IeWA &ⵤ`cn"G*?h^'hgWe ]F:3OS"j!W 3λM .ZkȟF57y,@6bq)R8!*UlUd)ց$dH$"? Te*>?W$)M"V).d-Zr7~D?gxK(nרȠHKYzS2hȘE=#SDd캠+鈄vHu PX ] 23eh#gm[.ΘPn ȫ( Gr(X*G-W`|N=1.~X'Mnf-XfUI墶ҊWY|®NNj7hۤ;N Y,hTЀRdmu=Y'jn2޴ uZDC\WU|椄U,7ȜaE?#yhSBBiwMQkm#D;lOyŷt4^,PC5TI~0G(aN;U^zgt9|[*Qn,2@wq^JÌDTY~UaP5KɑrY!ۥ(WaV=wͱPڨ%)T!#Za8|PXb–z*%2aCd0A Q: .fKl73'{cXEosLܐ+SU6O%bmL\(0Y==)t`aRsƐU!'0|5TN3) K姪f9ˎH^-_ rk56c: 7 ΏfՎ]Hf*BܘHݔⓝ!J6YrعFϰL(:7C 2ʂ̈46)E[fвtϡ->/:z98ߐ*t*C-Wh,%生&ųf|4P"a&>DIkIHY6bZr*xk󦊉Qk XUfEv[<3W~O ZϺɀU"֥|߾K4Ј9.(۲sm3/ 8!*RЃTQ% tRf4 z*@Qe)7I3dEh,M< ,iS58\ 9]#2h(+~4 |Y_7ƓvPVw/GíVhbiRjFzAVQ3&w3ZB[PO.~ȿkH͙$ sImW]{n>8~'kTF'3f.1dJkV,Їq$Xj7moh~-[,ֹr`ɸ1kI>ЧaUC$]khmƦVziUc w-K@1(LRWUvͶD(g<9eSaAi[pMmܲU4>tCVq~UcV4~2if[*VR ~>7|ET9L\l)4SĹˌMPV*gQ4U˒hjCwoNA~@Z WpOnK=e$$ IhCvnJN3kLҪll[G4|d.ޱ`,U<"( 5͸Xh4HW,uٺd1'JrN vUvL;0=KJsv" DnIn77Ƞn3#9 Qݕ?nPla.tWӵIߜ-ڍh3ރ46pƩ] Β:(xro@8Iu~UIP笧a֥JC/Sfz[yUGo ,@ rJ,6)(Kg̜V߷}ʎK+`YP*K]7DnTD>e7϶;%mfZW`å&*Z9P&R?6JGQYɉng%_ =Tamɞ4YJέmٔrv#'^v/[ȁD?L5,$̔;ViW3( –K*ΫzvN 0Uk fj nr`d#mXMggfաߐ#,VMX@A6Zmay7%dW+I^cŘe9l0U-y>ۓܱb[ 6)4 P߈a%mˬ^vfX(oW\aR5?0Lɸ-*W4cD>O}۴"%̿8MRe}Yf}Oh?K4oqP#^vGDfJcnx78HhՒy>w -rh0-iӆQЃo}"Z;itqCk-,gJ7 ݈Tey'7)?ٰJEY7`.ȵOX#Cd vX\ =vct317\;F6IܬD7ni!bxhZ k,{nG284֗O'}t4R">Ac3>0t2Ѹshގ'c65YV=ɟ*nW:z.VT]Z1B!' `C>}T2NQ7%seH;O1 vnO1t m4U G1R=ڿIֵ#i/"gHɞbEsǰrǶl(ȡV[ᓺgj"ҭWη$ `^d$L%e_e|$o\TK?:u V&Nms閩qf3NaIy辞r% *.T/ R5">b0$]HZIWМ moO׀O4mCpr{hǏO]3Ҝ$0e)qvZTxWp*+_շ |& c[{N0|'|= r2&~N7.%lf!>Kޤ)jД*zfR:3ڱ"HIoK?NAu?5bzYhaK Nڭnn*"v97g$ضS_8-ӀtSISOIiKg W4~AΰA;ܬvgC>2E;Z3]Sq|Xz}($׽Avؖts!,-eЍސan{~v3oTZ fqLr$ng>B"=2CV6H'y91)!#T!7_O݃>}w.6t;z4h6݁!p҃\Y`:Lj" "B71жВvSn*>/04Wr &1 t}=ɮQ$?闚%GK2gV_J9tQ zpZ')3A$[d~ X><:bltP ٙzjZJ/C!;KLԣpS7Ѱi{l@ߥ;AIu=uòY}(딡_Nƕf8Ѩp#O.e CZ LXN.xU9r{B\b{.?j) B 2ùɂolO9&( Q27dOnݮtְ+t͖gT'5 cP5H޾,~fA}]:8l.0ckmؾ! b0' ~kqOL`|u~ thӒN?͕-a4Qo^-zr;|[|^wYOoGPԐ-| Oc>!UL&d&rW_ay xsӟ%>}X<4[.װAg"Nk;Rg> 7kFᵮ ,S?~OO~۟%z_{<~䏿dO 9#6 Om^.Kz;ϾB6~v9o~Z>yO{%eR //gt#>/ε  endstream endobj 139 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 145 0 obj << /Length 2757 /Filter /FlateDecode >> stream x]s۸!7ٸ5㞲 #2ھH(H '3&xxxT~Uz׿\&*H "@@Fae1NW<S~60Mpu<#2|*!-'q^ڑHx],w7]:ld.,/fk[ h>"ʴP^΃9FLsl\k:huzF 4",d,vx<+$g:4LnznYWR}6.g9s*$%FWC>RzB# ¬g&pajVh7b6a 7O4&GU99kU`+ȮʴpGMjbh򭡱fnix$0}04>{g+(iSEjg;䡼W#Qi\`wtaR;vku#\euffV^x @)o ]}p I~ZO=u]\Q`mWx|b쇖%qGUg}Q|ڲו*UU,AE?ݽrjUU(C 0n`DAcjT*5lT "b[&L--}|?XRNRYuf7 >aHry&6vIU U0m>񤞐34Qq"H C& |B+ $5 k=%S'~*Ф&I(u'qEw#s?z!D UGQVYuHh5J0XB6>=fm7c%y]nlx|qRc_4̂i^~]ߏmOCCJG#U[όp6+iDZ}'mĈob0p dsӢrvqw^{5G^"BoЛ1=wZd?\_G\KO}y1)&<_ib"6z% y9ңn==RUp$[DCpEW dggGrfa #'=YoK;TOTS=mMג/U]4ԦTRJj_6qYd2d)ەK4;sh*p)pb%r*pJ,rT*‰/I T тwt T*S+cp*oNͩ97Sis*mNͩyfԜ#-e0' ]A$X݈lN7IŞsT W(2P-gmt(٭'nj[vC^VG b N]f8{(Rw[b Lfh6}~OXogC1PeQ`+P<~i0hpǔS0 rhQ!6C8=@G:dXk%B)sr@e}دi G+fpZPZv[:WIzv=`b jQ4/ |[}'guȂ&~9+͇ |6mGFHU}'.hgݙcI6TkӶ0Y3(p$- ?P|Vm6[C rQ&Y[B? y, )c.+CaeK="ɅzAca@uku `:< "UyŴZ՝UnFS uD0'tlT{tDtDN(̪^JyE˜' SV9tIK$]{L2Cv]4W`m.8oB =s=OgnO\1 Ma:M @dHLbH'GKT[cj;ltke̽j~ _˰P'<1Ӂdð_lx|||!Dn8nV6lCsLn~3'F:ׅiG>QUhc皧:zսkahp/E3RWxXPp*)˜t0mM0` v Cn.춡@<aNg)L]k(vxfsO06lƏX f`č$Zu endstream endobj 140 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/5t/8dfc_yl10yl9j91v2lc_jksc0000gn/T/RtmposLYxE/Rbuild2d0830c1263/effects/vignettes/figure/fig-contrived-4a-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 146 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 147 0 R/F3 148 0 R>> /ExtGState << /GS1 149 0 R /GS257 150 0 R /GS258 151 0 R /GS259 152 0 R >>/ColorSpace << /sRGB 153 0 R >>>> /Length 104560 /Filter /FlateDecode >> stream xK,ϒܷ^rӌcKB"@@WI_! +#O/.gD.#OuwUeFxg_>?;^z߻woϿo/r'?__?%޽~{^+/xyӿѿ^%}oW_y޿o>?+D_gW+}?׿|oi?Fn{u.!#??믟xH_߹sGJyǏ9׿~7}{]1j\{\wqf.@)y]|5,"}>x?9~Ŗ~)֏rNKY便g/y=.hВ}@?~w WUw/ ~՜wO?7׾Hj{?fwKzD-=*-e1~w#OGV>?c/Ǐ9~nݞx+;=Ǩ-}e?.wvC߫r<~ůʏ=ct:尸.o~\ude~.]_On#s=c$kYcؽleNTnn]~]v?n;\Ecؽι)OT?wO ?~]y\~lqw?wϓq~=nuݿ>O>~^?Y+ͯlζg}uy`kտȏt߿,~w|>-ٺq<<~Vf7ޮ߿zi~Ĩ6'H߿'ZkO*~0}B|iYy]NT~?"b\߿'E`u"c7 ~Zo㺞X=1-c\zY~u"d\"'ErdqN~hq2 "RuyYʲ:X˲h˸'^˸'^9#^u>t.'^u;4'^8T^'^>+%x˒x˸'^ORIbP2&[d+l oM"~P&[od+ћlEzgo5TVĿ7*~d+lE<}o5TV7ي&[ClEbMxbM|ybM7يM7>d+ο7Xdkykܯj܏yy}~}~q?j|sj|s?k|syTY_ϻ*xCUzjazcUM?s]~jzJ^w)-{Kc?5 +?[mc?6E}s-/Z/'(Ni'E"?>B{7㛏ȿO_|潎|E~&͗ɧZ'z#{#_k||n|\||||||||\||Oבoבu:sO^G=pϩ<{y9+u3g=z笷Sxꥳ^O=^/O=vo?kzS/xɳ_O٢;ߧ^=Գ-SF8pq{6`t \Nޔ)>)SG<@SvXh!M,"@)1΀=4 _2J/>}!ObmC^?^s<ϿlΓ=>e>Q6ǫy2=C=nߘZ5]$mݟ?|>vFq/U|} 'm|>ųOF`y7,?'нH['J{)pRjzWK79iZ]8瓧[;x5 aweoϙvU75 v">%ńe6{<(y{lh喰dP, Ik55|<h8m4:>TS,# 9}sjHߌxJ, >Qhi=kO剎ŰlҾ)-/_SB}mA`ڪg0J3x ;[5E! 55e_S{"/8'|_h`egXVhՉ72'p*c9(n*vQd]ڛS߿P0fDχ $B&^lAVԓgϠ/e%7Qyv)[vsXMRܔ6I|/DvsDg ў`o1˳< -/a֩~abt?K O-?|)< {AgT|ى?ǫS Nq3l'vZ_''30ف~IkS'ZX|~$+՜{^jҪٞy>w/x/rS)XÇj6A9љl{{y!TgߨY+=~X(+,fXSS_"嫹6xk(~8eN*)CL~8\bPᤷkZTxş<@Nȋ1.{{2&Xzެx5X6!ekT ko В/>I3϶=ZJ\t# Ck!;KH~SZ-y.&֙T: g(:]ɲVBpuSbL%e'fߵYUBmXf~^_ kao'5Ŝit-`;_hWU=g#?<4F>z6*'۳OՎ7#t.([kQyhм}:MZ1q#t"zR `$!618!%-uʷ':,bXv#!TOie.x Bcgy7_ݾ*2)fp\X< jX 7( ]chWl//?-z2ݺp Yz.ƊI-cӮ3}N0=-F=jA̦`p݄;LIyi:T11;+n^7CTAU4¿t~jŒQoTuM'@mȰI,f̞ uOLSs =l߅.=&>UL<X1]܋'NDh]獷..!Pu5jMkrZqlycd~,w, B'ϖY`G$T"'m۪ sgXqevz+يJԒ>eA_ҡ6XCɥ~]ʸC1:cMg_!yPWp)QC|L|գE3J!K3}xْ5,*V zS6+p*Ըf8՛ZIo+'WRvA7QNPMQ_SG5(RgU$),U9ѸT6\DʬȪFnD6m S"iBAl ïgzSsb0>P{G*B9j~>.D65:k]ӴǓD߳*@<+v[+ cDfߙdHOxG ZG =7Ş mᦁ⛀B >-bGkP_CܥcGPNG,/HvQ*$#lת^HJXڇRC{Wx-pZR=zMo/B6A#"ѣ*۫>ԘWP'wlDײtlkl dlF9^xA>x0#۹}vg^N:HkJJ縛ӈ4E}Y I$ }tǣw5 5Kv*7ŠytRBfFVOwg$+/=tBR}T>^wGeS,%5uW4ߞ;佽LHJg"',LwcQH̕s]щ4"R LId }>TV{7+6tmjwjTQ;< :fzna˭bT:ު*)lqW۳56VOB3BHym:OSjt"c,OǜK 7is)X<7(*Lםp #":`g< 2ѪY1tخ2>(]T4QN-FotfKpA@б?!DqC;)[ϯAs?c--%YBq*ʨ}H!3JF*'^hB6InˡۃQlu0GnNY<+_ّ6TG~H[ {v7H.. }:#ٴNr$n*7)x ΖdH4ieXgD )f̋B:=̍A$Jez%J }hUmԽ7k "ύmznqԔ_Qܬ'4_ zi=z/Pqg4^wE"UV&vt _m,;=!M1G'v}\ +vc6CC\8 6 $:҂b%})uTPE? qΧ4 65uS]@ =̰_xv-`c’]}q3wb.t]uOIO@­Ck+Zuǁ햧F5tTeS'"m%zu̗wdžoitC[ U:#[:ђAlw^}Eܓ645 Tq[?QP=gi" AXbBL77h}Gx;.?T-x[l&&OK:j9]Q2#=ԧ`'5L:sO")uI{=bMT5Ъʎ.Wr݌0?GZxI$FN["X\69-1#"|!mP-=uD =62>{ʍfъN=3! 8ntaîZ~ FFUu%oX!'-TA dفEb'-4k2\.$,s=9`ؼuE~Z,\2N+QVllY6 ]K`_Wnn> k6ݼVVvv~Iy|b >` tIG8LQ[gjY4iTy]:k$!L8ncɩjf^YU>E=",,W/-PJjoCOH㠠su:HHP׮s u (+gu':rglw}Bǁ@C*BjxMe2n"2Lo(O!Yj}&?P`* $swc_4I/Ɇ7l-lTL;d1 qNOW(VzbPn8%X ۋ[SlR">\E:b\0e5xR;HdSp(b9/Ca!ڱPjՊTU~清l"C-X!v4ms# :oQ}-(Blºu9x"FKr  aCi ;{[DR "F;0D6m<]ʉd*"]sPcc-WIгNxYV~M`2 8`zM-! 2_,ؕ,tCin:DMgUX׿K5$,&0NY'$p*v"(<+"~篘 Dž壃ϰN4r#k^ 68r{h#m+qɺcOaiF8GX[90%10-:ǵh)\ecge4H:MvUiJvw)/vSTn ~;[ݩyml[6弎£v 1MuB>5A\Bȯ5MFd&ly|T6ޞH,Lg>I4V|y@5K ;h>c {B7r)Q4`jv@^>I8Uƣ r6vA*w25U,7[ݗ#j}*Zg4i~Nj1x"Fx4v ո3WMMZ$ܵJyb#\'!6oF#8eMLX KM /%;3d:ꉒ`?>`??kfyKKhg65Uާ||yj/6:9[l~| ]CȨ#qKG+H$gftͰ|h)r/CU1`ª!ψ>LKFwpȒu[d9Ph6jkQrDVt1ĶΆC8?QX'!9$EE)54l~ty-`߼4AoPƼmy1[E {k\U mnCwcZ#~ApvQkwYa[, JG}^84!u3=ig"upo;onGGi]EgEj'\4aeөq"c*քAj U3D2;mX3$ =]l%O/up֜"j5q*}Hr3ZM΀s r1XsA87|H>Y.ݫ )oFA|3294 e,!BWv*{xb:̒eCFO D gܜ,?% 6{8aqq WoKC &4 7Жߗ8/N1d*?7!Y$Q:: _Cێo̽|шbF4 1j^yLc\ICӮq@N Y !Md?KMnbĞ6>lM1RSC׽HGcvi*+Oc^PQ foWJdUPhϝ)GX"Ȳ&;xvJGm<-wǴQcՔLrg3:onhx…J42U:Gݰm W<ČI. [ԦLK kuK!:Fh(bhM'ˆRVDFH73"#L^Ys:/%!ey.[%eA> r_xc#Lt|SC_2ҫMܤW&á@51 IŰ-uVMPJ8'gCs_HsҢ aʞ`=nEHlz[ıUJrۻhz %ܕzKa+ ^g3^=b'ZdΚ: .RP{<4;{]Є%>b ؤWlskۻ!3@63lOE,Vse2Hrj?XT㎫.4ҏo$Q |*} a}NëS*>P_ SO&F6ݬ`ylN&Ԭ)l{2V@#Up$B]25nɭ S8|I~АA&CR8`@->VÈb8Jopbw&BuGM݂2xU4_.:eH֑lAݾQK3W4':/~2l}%P[x(e_k*;ByT3a{h~(ĘX_YS٤-BЉ 1ٗ496kì%FqC?5-4 Y0P4s$D2%@mդ4f|사n[:Hώd" rK8 S?}{umjQҸwlkV],tްA6b!=#TO6N16%Tԙ) .6N8>;ZtX!Nf=aj$o&3gZFMY{o!_S@LqD~t"k$L @-ΆZw^;Q<6W2R8T"xyN=F(YgrGn2D mAP37OvSwQd"rމ0ֳt`4 _j5t;XZMy66y 23N&_ݘK3S((L. !&ncg,e\h$ ȉ0.н8bMRvkSDG$z%&{ ck ̨>vfCrT(LDء +7Iފ@2bGe-E d lR!և.(~Ԫ$D [MoGE;V\VYy #3Vmi)SSqL',{9}#y'^Qc4M u?!J8Bzf9Ӊ0I> T( ڳy5<̇SMA9gk益dH'9 aǪ_ZquEr;&a#ȱuf\^?'FNF:GƂd*g dBb!t$.C ^ǦdFC]6'e"ᯈȽK!ʭ?6e{iٌlMB{:VP!O:j 3C~#p"Ucg'_v0]c:1O[v~Xc*y|[Ǟn,_Iqs^4t>D‚]m_I<^DZmhehp7T\e]8܈*~;\/m2&?kGJ`z;@2ʟ1g\ϫ/b7gGpٜ5/; >pjl>buEtZngogqZC]M,}}eJXvIȄI?+~<_EoNQ A`mW|G25C7`. |jz_8D/,bBP[UrkpgJɁr CۃW`kznXFqLZV)4tpNlC(rt(~\bKP%`}eY-rZH+zu<cQ(:EszhN6u3 v&v5]Ďl\w,iqlb5)\B˞!(&++EKyzhuAa=d9VXb%}q,һ$vgHۂ6"'ud?YTGњsqmDp,d D^ jIUfI<"i*Lؙ܎1b2me*X/稯Np<6u,tVi{euta; GKEr@[0s+#b4bFtU[XlKX,?* Nq:Z3GQ2Yq̢5@q'l> 9M;yΙPt.h|Q!F58::zoY89z2IOA3%RїJ}Y5Sd\*VT d.z47%tq*FRY]fg.6aP!k\58nr=LVtgLO|hV(! y9$= ӌ&u kr> CIyؗ=zdI7ՌYª&SB^MSCEE=(71D#*_  7#] |k쩂;(: &Kx3Z[Pdǂ.+3DвpK/(qp3э%7#1RP)p&UsXRYk4̩E;l3:7 ߨ*[:*|7C:X{˃xÔab4T(_xKp,jz ^g=߼BY&s41|&Vy0A1%{:'InK 4PQwÍ+I, i3G m]6;; y8pd2u I(UVYͷH 3mxTJDCUg,wZƖrI{mV= A)Ev؟,Χ0_rsMI seF7W;<*|o:k~YLq<G:;/}∀$I3ޓDRSƲGS72>vvVo4(γeIȚl|2>q)Sj ЪZjjq>*zYS geAȐpm3/ZQ[nG#a\qjfŴ; >q;}tVT4M`htդCImQQ-+Bd\=jX{c J +eC.3NR"Dfh OKMBƳ5av|$iK"΂j1dτI!'!Qzev_ ["̫PCDrAE/9<`hGڅ'jߟ5h {.vwU? VիO ZR5Y{F  1/ӽ Y%7UtԸr&jgcU4TOY@1d]Mbqj.Zt#3OĿPM#UQ uV4o"ַ:yoHXyI0v 1&` dbYHPNAp(T(ב1zw@fUщ4|(& 3W"2+QZWWnL 5f,sD;%eܮR yݗkjSj 6g@vNQp@f!O!{njl Z_AR@]%4kvq{na;*F=.29)$bIMVYYVj TmpɕK-/"̉9[E1vq<>-9br|c*RԼxǝ;Jv8:mVq dSS,)"|/|Ub6M1={"j&r$dymK/0 C&8%hPBryY6m ;/~`:^CŮ [IDMΰǸ7>JxT4O̭YrZG7?^q!\YwU:41F2lCJ82zwَ;~ONL{:#E/ȾfVx kdj\1Uu_qzgLYB#*δR؛}Mu\ؿ$f+2sF\%w^ ]"LW*PON*"ޛkBv+kX8Ğ'!:1$A[s/IME6M>>{zQ+m<}9c9uJ^v \$M"Froĩj >CFD5I;W;ϤĊ_]mR9]!U~hRu [ ^f1"=ʉzo[ta\8̓2j<+L#YD]XV7<VnbDL6t†u1aa`٥;<#(s* 6zUBH4RpXweFD]4b%4pAFq=qJ84j" EΈy'Co6e\jlg?:vl +nJ\Y]4oѴ#ޑFp:6iم2zk;Gf}LBmSjvKv]q$D\@>fgrZ 6EyuEn"XD)4^r;‘ec e6^> Vpx3\[2&S9S*71Gpv*OR/]ڤ=3gWO! 7.ǓRomeTdЫ)CX{m,xfؙBUd;WK"(fzf&"Np,Dv.^3^ZBIG=Y֎kF0h$c0Qz-5̤u$>̇XY31d>yR&fdzb.,w'3ϐ| º.eԊEgԐE$' M++Wڱ'$crC-EVߕ!llh 4MvpsEa7X O2Sy:1Lil L9uJ7?)DG]H"@z~QqjXyG'NӊʨqgSrq;ӻcLB!Wᣝn&Mi9,)Z:/䐥U:gt{GE,6n+I5%na_m](#ԎUt#ceԥJ|t3M}%*~O0OVD)n p1$]Pz=!^w 1ȊD~׾dgOހ5lN<z{ʇJHf`e Ei4bc=Ge̢V˴ YKWV_. +'~\VVЀ, 3?4U B$*c/lIvDc)Af$XA ;y}@,-eIZHGZ0,OYr u,Ӯ<`k)پkGa;pH(K㽭WSa2Pl%䒠Ljd?3E25|/[('rIrIi+#ML[BK50ӅTQOZK-PI>6by, UسX)-efQJa v6>KpDtYhynu&y|$&ܰPYbr[HV'(ƪ&(3cGACI?a&dcT_å]ŚNޜѪfG $ڲYvlbWbX̳꫈& &l3% Al qr-ǻndIL'n),3֦dqIW/ny(.}8GIN2j V=4;]Eۿȓ[Q6$ܐ)sIDCU'16eN#^j>*tFWu&ZXW=&ѭ:í63œd/xl.,tAc! knaC*rK T|ͳ_Z5 "h =^{|JumY~JM-$D"ux:aӯˤc#'Y0dAa{g!i+FD&N!Ft ɠDAyQvgSԎ :` NjS,K8Wcڏ_+G3bmnC{u^TvoAkΙ.w%v ς J7cu`[wyJ{Μ^>Ve#'b`maLjt*pCdov(ޝQ>0 j9E5d$KXdT4,?j)</1YR~Ej@AGCmK ^ j)b|NsÏ$ ^s9EhUFSVFJKgȫt5ѸcmS-xx $K?#"hY#TnG .t±x>%6t+ԎW ZS L׃|H,dVث [,كIl$`%+7_>JdYYno|ݰSbXNf\g8I]Jt+C@%&2!vm)E[3IS5,s\3 1i8k}{?ztHRJHyLU:Q1V,F%G !#)15yB3h t1$b&r c"i#.Ls}+F4;:E ?UTS켽%}/ĭ"UM]4鸵RbQ(5^3uq#9D`v?+fzrCͧ2Vlg*b\jEi/,da-8"в_\4ʖm 4R\i\OCUL ˀX+-hM1w,Ki5×Lgr( ' q7R݁t,lmBɝMaݒ"0mb}y1\jg 5%Ju$O@ A:cM} eURk \lg46D aLuFY’jSSƑBk9 *g0cW.?m_wZ7Вzٸ50^,`u=-{ܤrYPycg8H$ ei.)U6\4ΐXId-+JV.hӪgh;ġܱ*(ua`\x#Eo[Gb&ynK5CW-6}]If@CaO:tD1c9rq7Çt\$p=h=WFawz;$c}>MJm#58`3D-sy<^k"1M>eT.b,AXrd2O1~Lz*1D}20(QM84ϤHL1%iRJ-M.Qó9"[d`MBXGIlv>Z| FL6gC$9eMqp̣\;XFf'0y<:p\5*b@O~~c.П)]>9-,&#AO%NٙP.ya7CZCǮt dnu1,6V[MIK  /񘨪R,OO~*" MQ&v)m: (KRgVr,M+lB{$6?>wN."9jgZR蔌%c͡ <ˇ,&xJG`Ђ1Go"u],x j Q]m>}s2SD*S!ϸ#z,`Ց{ahQ9;*x7aO4r z6'܋K$l4L2iø6RpO,q Tm$/$Mg_?/hۖLN]|{~lK[Ya Gƈyxa)Y1q{^TXqHj&6C(w2\ X][lьrMT68vpv ZQݪT+FO4qQ4rzwgkDq470%vr8R,UT;c@k/4r#ZFUIHCX9 5]\r ]qbU N(tX3wh[PIbƱN^.z=q,bHm&0CdA61ykS/;}3RwMy1pܠ GO Hl#zg-5qL#bV.aY.F^óAR14m_J"O}+R'쒦 =Gj{(dP9P$ϾtLJ+D)ua; X/sYQ 66OR+V˹!8z]JDŽ#{\=BqrB-' ļR&F F2T3!,pgaRBZFkijݬ.32uT//\Mzvat MhFt+ l{7|au34ԪTam'ϣ)j3 W; 3z;2ݰis %;DJ%?R.Hv Gq&2<,>\w.Q׉gf$MDAQ"1ŒKe_HE/ XXZTS3]y=K.T"m1صL,b}|Hh8,@;k<x*dT0Jmë1z3P@:WՁ *LJxTe 1%&rGyJ}éR"ԙFM N{vE$gp{i Yv'(T`]-h<.] %N%iӡcdN.P`)Fjq!)l U}ƙ[C9c@&dKj ]ȹH9PQ. ag_u-5-y#:]/vetqbaMU G &GFJfl?q7JsE|bQpo=p"4=ް.}(P]mZtOFײ=ANJydEuwm1ir *&Y爺rT1ԉ4ڈ8A~dCRiCmx С=+V86R!s-#cs1Ժvr=r4xlIW﨓+*/,p6 )Ѓ;:XL3 8;YOt%́e Y*9O<Ȳ6VTYǛ{[5l^X)}ZeV||,8~HA+y{̾򘓀.]rZ0 –C˜";X_ `Ρ 6흒ћHQD `F)dFu5DUFZ9H]~lw2jAy©V>i,As)`lmF9w}[8pxo4|[Wk/M+҄=R,X8%La ^DҦSW5AN?>sxяI8mKߤ$t1 ڱ1ie\Fkaׇ/d,ᕃ<@GDbf\ဇSdjdVr PH]B50p5r":U[p%V}٢6R$Qf1fԐئ͙Ԓ*|tv6fu$EM@'V3̍XM.ZE l%!MaN]ɳ6y[3pE= n}Il<, [@QUO, 96@ Ɠ.drXt|Wk94uZhgd1[a}Oс::]qdȚ YGyS}J31o%B!=]cqp[ /BCݰ)D\SלXPjf6 ɖM݄*R%I긭YtŢ K&C ޠ\u5u& {dj%(ͬBV'0|rSOYGdT@E~jLj貑4j)ұw5y $UVq1K&gTYʚS7릖 LjQàٴblؒu>_%kG#ף?}<!Rj@#6%OCP442k3IM\"$("$Pۍ~5%?~WcZb>AA*Y8{).x{3o9"-u.C{%JX ,r' ]inVɃP-āu/mY :;x|-o"3 l/4#3H j]hQTQr@H~VdJmKHS]0_u*5\tiuLLEUZ)ה r3I?2Uxp)N56&Y %vFf~}[VV\NO@Ǒ#cӇ_`97]S,QpS,\^>7VKDQXSanC]p(mrnWa`QYXƇg;j CK5g@V 犙*4bᅳXk\T!uglzX;^[*ϯXMܰG ! -?k<%S#>g~ip*+3bxFmV< 7j-6%mYyZ6KUeJwqټCU9>%O֯ec8jwhdNHNTWZ\ .(r44r1!r /dT*6'qpw3R5mAtp‰k٦l4V0_&02hd[gZ5i>rIE{oHF7/Ih\w!Ґ'ԗP W.F U wuNS c]!p1!` 슾SVh%r9+bi %ZAa 9`tϭQz; d`ã!⥝˾ Qh=&NEN8:״CCY.84# J>d0ߴ1G<$''a5QzsbSu7~u-Swɶ9: n } elvµԶc摝pEi= x>w)}#VtbStp"0)ju" u]52G,b')BKi_>@ס&ڕ ڏOr,Pz9ƒ_(AU;4Q $,m(gL%TL--J7}4X[/\!cM;yz٭YEo'p쐑Df}Ι"=Ch~0V3JLn*oOmɬ7|"bUjNJҩW> sxe_\>F}by;&M};fL.-+j/Uv+=A],h<ҷ( 6_4"h7H|2o 2@ռFvИ9 "USPhsd^_4tp#,IXV1܉wd2-cw4*KD b~()uv\JLJH@-dJX>$OY$ɤ#Yj t!-ܘtvƀ ]Dny]CM9{ܢ/TL|vV4/#_"\54qPW&ywZ#K|"HCp(7UsZt; XΠl3~'L9RƭlHHq7gtS-]dmL]4Fw{5D+=!)w'/xUTkB+Kb-l35k;kR#ym($Ot~*ldHƖQ$oꥭLC] .xoG5GEM sL[] Ɖ遺v6߱;[1z&2.n& Q1BhV9AKҌ?Vz&}i+gY9#yV/Ch\p*6âcUԎ-qZ=C?%f0pp^}9.Y ' _UD9oc7 M7龤€8xlaS≹B13jԢh{sލ>Kp:'&Y1nv ~a~z9;R44 1yJ"q !I!뉰޸jr Y-Es̡H"l: )]C^"ZM2„GGF&Y9&tNc߈#>-7Q'#<+CԉE+Gaҡ^&3}kXP8m7Mu*/6j bq8#ȷPYL&Τ$Yт=dyȽCr\ݕ0cczUE l[֋-:A69X&5fh 杛D&Z);w֩NyUcgv1 ZpI\4Őse'aiS5A55bCwm8|lwi1z.tuBk+Ḣ:^% B,~1f3 BNhNG4+Yd 6Wa h{8qx!g8r8 'Xlm~۝mt2/`OS܍Vb:D" P ۆ0&5(Z13̩D~{ϖ{(K :`wPTkx&@$<ۋ9!lqhD{r1 C'S#`S- bHx0zh֛i 5no&Gi1."J:FEÈ4枖p7vqK b="#= i;^|bghl]/|qN!i##abؒtɸ.,xR$h<#hu峃d ~Lrd`+H }?>R$X!.Θ$xx+}߂Y&iW/.pw(0tqj};[5b2oϔy"a[r"4sq6O4q%A1h߿s6)T`dpC K:v&"HuATU M!o'LXC=sqšgfo1b+^503u +,."1T1fIυ,fzKAZXX7jE(ܙ"j:{wh5 61;?ڈ ͪ@)=~I'CYv22 #n}WЦ ؄Ij ݣ_iZ4ʋ{oC]f bc,1K-5:c L3-5;S30W?tUN17 6ɺbf qow𚬇(&bXˉϰ^rJ>0\,y~LSơU4iS=:,{M_f' R_iOŨGˆOFV nwg6^6SAƩKwYN1_ʯhsOƷMN]&K0:}گHZ:.~+Nv[A7鷿˶l S*Ua^RbxAWBe?2߱z|$WmU|{.^heV|{eO[u:fҙ};:y}#!:.oͥ}\v8%ӹmąg˿ÿ?_5+}/<_KwyM~~wy/]B/g߾/AJ|׭oß~k5BBEU?﫶~<_yC^U~׎|=n9+_i_y+ߦ\+yY_ӭ%%q]/Q_Q͏Jϸ h+ma?K~?ħ:J?=N#?o_%7]O?///hqA?X/OiE8Mh-_ mW0R ?}{B{] }oŸr^W~z㯼/|_n]Df/|sǖ|ίiU\5Ru PVNIx|*%idbr st,PS6TюWuǵ,vx:w-vퟯ#vOYjYfZTPaի_m׳_<\Dv~Wϯ/j{ϯ/꩜ϯ/qK?zD[8ݚίQMs-3t~t~,s:9۵8$Y6 k JZՋt^u#W`؈b#S8O)6h>؈b#S8O)6(>؈b#S8O)[Eb:Xo)^G)[:O)^Ӻ>{]NG[m]u=UW[Ebm]u]W{=U[b>M]R콎R콎R܏SQQ{J:Js}JN)^ZWb7Y/{/g*/Jr˸g*/z2g*/z2g̿*zˬҭ׷{/<{KxR,{/}xK^{=~YTz_fEQ:eQ~/UjwU)[ o)^_~bP}^xx߫qqq?y:_~WW󨪷UUϳ||wUz]/UໞwUza^w=Wիz*F)}ޗyj}QFpyk*}ڜzOZwi/(imcl5V:ُ[gnQ/E}q9Z' r:OZ@i(yբ:Yzw-sy::i 霷-sy:y AxZ@s[ooO=^izE}|㩇K-SOE[ucjZo=[SFk֋{O+u9p\*_ջ|[qAmu~ʿ{]^(@ z]u @q]@!qT~=sz(&jtO^uk7\ c{f}/tK_o^ϳ_ 8{~95gCN?K^'4A/^_ _9xE/^__Z1/Sbz:s^ws__<s؏_<t"Ew ݊L4TV;<|pB*_(ڭ1j;#v uDpm|/aW vlCWV'[XuNz6V.-̈́)l1VDo+lS,EDm ɀĖnc;>si*+El#Cu5 j3W D i۠<.v&P,$XL6sMhNJEAS!uJ}f{cahb]mДA U)M9Ff^;ݷ9=ls*mGrݥ߫%ɫ*fгIN?1/^9c~f%t+2ɢd^ޢhk֊ogG78[NevJNXj ?#3=_T:Jy+KKE- J)< zgٍn}m-ķ-gʱsiu_x} oY*:pjxk1jH?+2qZ(~|ױ& D?:W*fXB jSIX{tVVtL=]$v(/Pĩ/s;xWnuccywAH[}Nc}A %CM;9t󭘜lB@kȳb D#cCݪ.-niL2vmSԜwDyQ(( N3AyGQVزjhjgGSkDT؈TpTOxY%ӭikoRhhy ᮼ*V htu] ?k%C(oO掅LMr lS؁Ȕ J8ghƕlˤ6clFnB |.0 4bwCH?poT +~Kǯ 'x)Hxz؁} ?2lp#:./Ortapk'?scnQJ[8s+l{0и.0һ% 6ר,6 V}maYQأ,lLY.Bxƒ}њa $~=oZ{pCrg@rdDPi7<\o߰Q li9f*kY <p}#7%;i fjQkPi 'Hr#gZVm0l#ψhFбЦ gnH0 L){$4ՁGۭP/L'xw kG;[,qq*^J.mroNŧ(<*{_/}-YTTut2 ,l K:F;fU"Nc HښQˆhAa&~`?x h }AZK3{ljzUNgyZVph9͂ Gur/ mᬍϓiu;j6EqR=Q}tQp[.Vl؇q8!vKkx[ېk9kt;}2>Z0uוoBvTGӎ.&bĵz{ ݺmp:FCq6?M:X{!Un)hK[qHJpXaԢDHxr[>nzj[49GejǖhkMb@K- ]Ip2XY6pLAIolRvOЪ1q ¬ہф,x`aYn_w yXp"W;w1Fm0]]s˰mϭ2'zK ضG1pZR"6yE_P[C$~̉ÑckrSV]vҟ@A\xQ3c۳pj a(0 LyY# js}Kj>gmU#o` Bn%Xۖh഍1wȈN FMi/`Ƿ&CSFDN#:Ś`JcP\B8Ύ8+>b\k@@U }布RW^ff/7d/LH@)8ayý:{Exly.9j41X{dH.JcV,Zafx ؍ @4}(q"{E&yf1Ή^KAG'oD&)Rە>.d0J!٥,&,'])bq~0=w}ьVERԖQOe˫l+fư|iz;(j'R-7A=ԉ9V.nt_"2trs4*T: Xޙpm/+*jDʥZ+(k(& Dj,|vPv3j"sǶlI7\0FF)@~?9N{4AL Ld93Dc0נeл*ŲQtƯ̌Q;b[֠QeHB"q%Qz]n/aSG[Iu&64 lYI-?1)PM3Z_upsHV2[JHX6}1`Q :YcP| $cQwNܘZ1JdG ꁿ׭ (z&î?Y=&s"^wH C{@JF!|tS>]U72?Yjoo06 Mé ΛiI"V lB9"7Yp;hKQ"ue bxgUԳNX $E/i9[$+$t% v&ۨ -Ki--Bq"veqְ P`f;&ȶ&S{ j.lgz̖7 R{\UN> uZ%VTn-Arof./UXa)pPk8܋jZyٝe\,{sVLZ]݃q % Bv,v g mlҸq|hdaz_1t%i <- d \u\GvvvYTc?>_XbA"۞*g6ѰWd2]|qF>QnZٛ`\Es%57S$I1 |tn",rxƽ.:̺"Eɭ$jgVd`6%-Ɗ2k%[h(AN4( *ϕNTE֚E[;Xgc[,8w*BJ 'c傴!g'Z ڄnH! qvXdAɝlV7'6/(hbkyqFY`Q2˚c<ʪφGn9cȶ%Ϟ9p5烅&ҚhJR9D#9T&l>Y#u1]xI2(kѠ܃.eV6voğ<@MN5[.&1|/[>/c1 XT~r)W$3{lܵEU{a7rVlBW8dU 1.Y(SV,bjbGê}au\\BµNK;JnixPV)=&TDfCe.H̗$B~om=@0D_̉4'΍:#u=KqC|*= .vm3',o6A"[.Noȋi3;4Yo*g{uJRz< M%fSދZ UTqkwoF[vF ) 7uR[R dXj6׫azRd"Uf\NyW;D;L)}Amd}-:+z!īk^An3N sٌm + )E[BfՒM fK >Lÿ%aK>p*텪7xcGPVu3*Eb)X`Tu{8FP[*&l%D؈xRY>0K![Wuŏ;\Bh. CRiwےޞ)F7j6pa)Ў22+F 83 GX.D֥{8JX3p?jJu,\ avN=x nSWܖ@`xEB(lp gMO9[ڏHW_F9٧bFvޘܑ*}8z}}47&+?TPMٝnjxv `lnI?OˆB]Tޮ)y-f U辉G WƜcUJA%1FHV2]{*ʚ¡K)#wB$G"|k|Z3+ef_hoZ#=JqqLկ(WsW-Tw nɷHM+ eYp_P#==E( AM e瓇eU>Vg8;*Wxjg#Td'mJFU3lrD0c .6Bp=;Fy{l1|^5>ȰҎl "׉٥PSP;;ppW6d8x*+gqſtUtϨ qs.SY#SHy!W&2@f7FG:mub7UB.~Il XwDz ~&p ]wu'񌵫yhX#f'4*JbѰpXl +}=Oz E.k-; 6K䡈ܔo.H İ]4쐾*^aaiU@`h ^"ޙ[{MVlT:3T2 ur.&?fVp'Ҕq"ބ7-(kke7t Eh/ɿk*V9U4"RgJd M 3+MoL >>GƖG,qC{NwbHIWg{{zS$znBZESRYGi5ٯvVͰň>5)xeʼefNbmc܇b8b̚bv{trLS⼖z*$0/KXfrrr@Fkђ٨76 <^0gUM焅ΈϽ*O:sj-a`{6a蔃%OAǺɢUNmX$G\$ǎ®*1%DKG\(+UPC^ m,;sJCŢ!@)+H]JLn`eR{U pը8gq 4JN'lyq/[Q *HKr]f.`})3oQ*:(ޣļcZHJJ/_{Hȑx ekQn0 FF j83;k90Nv38] h| ʋ%8ϣ+ $eWDUٟ+~$#Ԕsa6)LoYYEyI22yX0/W$cB=W,6rBf@>0|%L]Й>6ȌAHbʼnCzYFꦝPNFs}CPkEU3Eؙ1UZ6۫L{NXM9"ΉCʟ<ѐ'D xӱU0N6\bU 7%[=MT.qdd& `q;LhiLV. ,!_jrĖS9CB`% `H2IwyU%RS-{)Kf7h`%YdZI#30I (J̍*(&;LUlbTY~,/L\pƮڮNj,uFs S8<(G䘫|+]lj*oE= I&R :w@y#J#2a mȭ`dХB6%z//Z1ܟBaн3Nl! Gfʷ2.94K!uLHHq.ĬO3NV&ݦJ֦x|SֱaK)n\C 0 r#V}74oJBa~i4cc]c74#!c|1^RrMuUXvAbG2MqHlV辌n?Cr5VZYRxpHrk"Ьf6PC*y8~|_9#M)QTxl(K,a92]ߪף~Ha"_3M~ty*3I?wVP Gd}ZY]sNWJۏWNwC"lwkQNfivxUegՋbfGF2Uy߂ʧza(o_w4EL53E6MD0h^RH:vNa d0 }bd)-, 5TXI/MFtzȮ JK{voX0)03ƾZ\H>6nj.mv~V r_!)RdDj{}CvrlhSÁLקQ" Bupہi/5m8Lyds, 16<''&wRhT$cYz$@|9e[upZ5G)<I2JHs7d^PD_Z$lL٧d%aRw<"{ ZlZQpYnT@@t.L4 rK71zB6TS'Tn7n^d ^p\j^o` r7\(^2[/&h9hFwç=SDZlB&2mi:\|&#.x1'au "*}RA×e?y 'p3yfBq8bzW]T.$j,2J_ߓ90) K(MP::&[>b=T/Qa-ٝv] # O 'T+s}sU0žQd y!uT;lMFw#nbG132nܯL3mmf@utXm 9ݘ3e0ыֆNV Ǚ&/!'NqA%pjF޾є:;aW巶g4?uxNY .KdF,zw߯^=[LE5TW;jB10z{tl"-\?ݝ@:uq%Ry)Fb hq%ړΪT/'lsA FGÉ"_RtWena VN4cD0FXBͱMRobNIS~l4ZeUwh$3S&MK₎E:FuQ &6~&E"jikFdƸ DzN8FBlg'Erh0!ϢV0LԖBvTD M3,s?}*ln [7韆%g&qp/[K{q(\Y0M\)+뚜B7DpCᖶ'Dk.M6魕{LgD'P- ds|qf96|(bψ/$bN%)S)*d@3d jj:NEXx8fe7>C`[]' aܡ9[Gz{QX1h')4li5y'M%LlrO<9{G UC(ǚcbE´ML*ts# I`g4H %R|P1f*h4%_H_)S1ōNѡğovM5琪[ȆJUm ZvK."Tlx'[i=֑VZԓK7U{K,d0qhϖC fMِ5i zzqCTܙt%NZLw4v}_]E}` bg[R-$ԫL-Wl"q oQ@\Qg[ƽsREPmِ(uu>@_^BtfX*nUtɱ*@>v ?u4FA үq[D X1/3"LE/VK݇9.n4/D gT$mIK0ezmp@kR ׎)Σ-~ gk!;5?L]0ljeu ˢ8]f)H] YbSQ%PeLob UtuHsbdu>k *c~V9%ܶ7RnjJۘgcȖU-oA'G bmQȖ%wtjB9%MR5DM* PmP#Kȹ懓\lr_j]|U)k['s{]e2o|0br܇ǰ>o~?E<;`z0c3T!v}5NPDkEiۆBy~~#5&nx2Ru8mM?R71f3D%bG֏liDsAc,,tq[2Z1*oѱO t@$r~H>#K4.x :楢(fI3 ]JƒC/갴[TQ( %X%KXؕ{ ..ʹR'ktOZE*LbL01lOj-;$K=ֳm>;`XRwa&M4sɀXY vX*;{nLp]W*QЍz6ɩMgva^mMdF{Yϗslv,P%zBfqv.vϭ:'VN`*DobʃG쮴 v(;TPl@oʳPűwM3G'hw]Cv'pk\8%wp*>|c Kwm`(EqY ú档Eι [ mMlaqEy \DŽjRuoC?5R'*>s]NU!%MlXtյrw>{4" ei1JHuׅPmU;ĉjḞ}f@5xìҨ@ȁ'9>?NLO XH5.DB7kR'P%송2cNY ^rT]& \B-K8yLVYcWd~R@^r%=?Y?M!ôj<8?Rrnra֤"_n)hd kH1cK]@"W\w+10Ж y^UCYn&]>DN*r1HU^+$VT**Kl8uJ#tV(YT]y@9G*6/l$. N'{ENPغl04>ffOܔWCďyvtpN|_zFH̆E̯99WLPr|]*–< /py0v-:69Extv'(̹@ G̉[HUgY" NyK/.]$=v 6IjS>np_P6hEG@'jkzGt)IZV 'Iմo|.S6OmݹlQ?5"d`nc?F+[]8cj\9opjVi1ƭD ĭ@*1 l\`]Z؁OЪ 2)ǚ㋽N~7VF8 9hPAZ2 OĹV4(/io̊)',緡U6{~4xl:Nk2=4=(9C =P# I;n%({aQۨ[&$6;I@Ox N[qC5]/9} w+hJw3-Y<3&1m`5 [ } >1B{wRli"}T(s]_9~^%: M Aw2aMɌ^=paF.wY:)EgŹsqn]U@=p܅KfNj-nI^# (7AֺV ґ<\rH^Ǟ'>MvwD_[o 8|vDt)>}v~$g'ĉZkoS8vB^mlѼc3BHd.rE<iNHr,{b"[d$YMK|7FHb]ޓ3Yzs94Ҭ~F4cIȵj*x|FCEF}Z%i4:L:#S{clǿpɂY'?FHQmsrC+⸶&ĝ+1sysB&BeBbcd:9J7jEm Z;]@SrINwh6 U^UtgjڌڃpP݌O szP#T&.&@됡Dg@H͘ EK4wHئXi>NQL%*djqvk^ή7rk5l p9 o$%nvFC1'[~nrSKŬRM̚YBdYwRĊܛ";S  ׎W&<D}m0>'GC ;acW`x8Xw|j?.Sy8uV[8/N0({FTI;p6PVnnf%N@2eu澶}ʼn;99t2-hicU2n߷lP0? %MNcӫЗt*{MORV|TEG7+QV9kmJul i250l)G%*pxM9,fj3ͻ@˧GjDk^6g)ronG)gh >EIRCmYCzTXG5EV3x/@ZWӈJ-Yp`ӪN&է%rIDXȪk!dmFd6\$V *P&j^AG8l [L} !.ZSJ Fws{QO;K!e^`:ۙ דKAQxi(M6 -mAuɾ#mQj@[ϱ\}ԡkz7ŗıDUH'Σb-T% xIp %BEPpBrhch|D51Zr&^Y_*>bbj;Vl%)XfusrR$2a)eUv+1}~F(\32_NJ]%%:>Ghэi rWin$c CXm܆#ڡrn;CaR_ 5YlZEXF"{g1]-fNDw;TqձR d_ut"N'(6" %Xj[VCj6v5l5>lfOLQ6gө1yi}G¶Ľlvi0"P2X=ۈ+BV^eً? :0Z5.r?3! Pg%EAGGFD #ϩ"fX|IU֐Jћ!ÄӦNdSI} QDM!>GfjTIYbIz9%a`Bv} &,ZBB wX%;H[+B +Bd>\?'OZZgz UB~kM>#v&UiBYˆBm|8*7eW0jP76YTPT f Fְ [J(Aupk×xS ey6qB⩒78%)4׏X#Q ZcxKQbZ<1_aD7#kD-Dr3gn:qVHeͩ AC9;jIc&Ed iJTl@-:E)gd^pm?arF)he72n¹OUdtPRХ wR :rޅN~^NGK&!MѺߋWō8Sv,qK2xgxu5aF> D 㤁f@5NgåYcZFeC\YRK*Z‚+7WʡcHuO.gfc,[H}f{F \ˤtf"Ž_;.#F'KI =c`)ĶKR\nP8lKc/5Q`$&JRY`’alǡ Wo[ i}Ř5-o&0B<uqoᾜ14OV7X d!ڳs&/8 oQD֥5t#Ynv]ЇêTȋgeYWp,/ia`a(k_nzQb(.OKْcuzaDa8 ȇLC6c"%~KU;OS Y`ΰԛ x Tޡ|~1 WDl=U.@Gծ0}{j/>TR\,2 qK&JtZN-J=]CYL8$g -yT8C%,^pw<4e#{6KJk.v 8I<Ƹ{ayTs\*NIb+\PmIٔ@p!%"}ޒ?Қj$.oY'R`)E좪(vؾG|ꊳCiD2{^4?%IrR\4%! R7Us 6Io0;Yu?oOp7;v\34|Ԥr%(uYR%[=}V<`x+H A] 0lP%XXA]"nC,ٺ =¤.ogp>ݩ<C0Oa a)N L4){QM*M@ \JUS54ղ]cgB`ݷ858ZVnhx0ā ?X$ )^Jéi,ȍ%)'YJț;8V3M@?ԋ,S:`oBE0 D.24@P ?1+l,KR9u5I1+؄t{%jDmNGޜEdO+YcD9Sܸ)gQHǭZ^3Yw61fK; arXDc"^+`%Pfw"N\_Jj ӄugK1*XWɡb RQoXµYٗePpcs42Ɗ{E{v̟FD!lR8cI1ut GftD&{Eh];G!O<9En:b"tL mO!I+kH*X6kQ4#9 HtU;X'Ձ;+6=)$zwt4MahW;= !'WDT|sRXCNd/cݶ% Z_8_S\ ]SPT2Q#5 faqw{U=sps{Ǿ2#z)y2VX9$%=+TهߠuoW= *mMnPz#_\#P{+bm/nS cȋVi(sH+k%Ug#.: b⿘D6Z z7 rp ot:@%2^$%}xi:}:j:8yyn9nBSm;GhѹӐ* Lxc&mC\:pn65fC kOBWoiM=!S[/aj;uFΪ.vxNz@=*oы 'x>5ӧaus|N O1 +~lTI$>_H9mݨ^gY e,#Y&>ׅpbjhB;Ջ-hnP}Ouvbߙ;oGg-2qvkݾpu80nqC2 #@= o]c/[jךSIdj`8TdFpn;G!|bé-78TFv*d]U}Hvxg-qOf({AzFT 2CYUnwлUsK3م:r+#E*a*=vvD ͦnbRIU;]Ivvj:p+@#lUGgg+9r`M$Wͨi1T K;VFq4S*Q^b=_8|¥02)n.,eLj&/clK[zkj5R7j'쮻EkqK[KP$#xuLԕ,-jDֳ|Bxڙ2~7眊sغ&4NJU9,ĩ`yd' )c8=cq$cq{Y.XH+>7stEZUۢc$a t,ːqRpnRx|P5L{)cy<49d08t˘K&8Y2 F'kR/q$,횢e7h 2T/VQsrAߐS4iVd"]0UBJelf<aĻ&PdAc*ԇJI8G{U*q`mW-2y@W d1MċFуlv*E_5S9-.sbРv:CPE(,elzrR6*S:6;3%f!P#FȎ뒻!;$[""gmZٍAICC xqGBrW̯[d\i.F1Gs)`=f .ؓH03 -"Ye97 --i\'v BerCk>0",HE2('Jިl"G7:̈́ͯȂ]G7Mh+FBF_x.,C nl4Y弑颐M!Т{flZtg֩H,C\Du˶&Z+Ҙf`(TX761!cay :ʶN+[Ĕ41ID7#nG t˙o ns@.zOɒ5ajr ʲ*s%%s?g*x7eC3.G:DEyHE|^86/ lk'Ze;@M:a6mu{4mcjGo)6~-j,L1Ґ.x,P')~w(Az[;M)NHRE>(y$#cSQ+_ZԤ/"Nƻc9LvْnLTRmzG\2 d/*j ҋv$c|D%K0^JJ/Do ,N%1[%NY7pdMjx i;B57WeH!àm2 l|i#S+h{hn/ݢ%c(GIs zWyUKxiش [IاPsX;3礍]v'?{)VPnh_NdrUEHr\(޽{]/4X[ly4E;r35_U\K8Da3WJҚ_1]2!=uZd~p=3hh8<&pMktdw1<ԁYQAx{m-}0;"Ov:A=,gDEgS \2Ո3^D4CIKAjom )b->A541?^c`5qk,4:)*qkŲYC r $FR`jg&Ce7) Ò }5g'R5ndL*99mg,h$rvF;B=Ad;!2{hOS>Yw+f{*BCY*a:N*Y.EK U^Ѵt”tG݆':EQ"4'E!ncJ큨M'x!Uɪ;wΚ3)ǃ`uછjoX,rr֤|xX7dD||k!?UeTE_I'ɞ6ζA!emK[mIh]|u^6:(XYDDjDŐ.BZ&Hx~ŖmHNʶjY9y[Q8=m˩jl@,8DXQ(Ɔ(_M;vELxT!р9Tp<Ur Ւ~tpfxC?O<./u)X9qC^f@s=!A콗qyF,lHOoJk;1y͢-pKzwaW>x6JTPlINk.c#ޑcp,SQ?UmR/htܙEK7P4k2l􀨑6CcZhlfLRd-=$miq#@M6J`[kq]DbۯG @,Z4tctO!;x+9v5]6+!!1Ꮘ +WAQjg0k(AOg`Drޛ56PvOq>7p!gˆNx^dC;[VlTR;EߝyPE$I鲞;Q -kdz]Y,|v,w.iuD"9E w$VMd&Zt_Œ,Xi,KQm(.aMKc[X+'mv!e6,  -3l`ەA r7Xn +3ȝg,$!2:c,^ |xSBYLzF&/;HlGi9 UQ7D|LnSd5:0)D e -oϔ%c4w_ʯzXMlv o:[ L;ӈPҐ0a`ʙy?tQyQieNXupdvF4t78:Kޛ.,ќ]* WbSߒh$6<0TGS򢠩 3öx%F'",s2ر?Xrcs{>ny36rnjJ>;hs`cqBJ2(Xs(]# q́Fv6:oˈ-r*Z u#)hs'Qh,7DS]g^o-뉓F8'Vc0X/NUj0c&DM|f6О'3}/nhcSO-Ia1CsOR6=VΘ~6RmbDϯW 3F7#!]8Q>˕p\GiY**v<1q>3^'Zz}IAOՆVî,bAz`4#r"?ǹ eEƴgQIȚ&3K|3 I-s8w fD{O.!7.z6.m6 , + Wճɮ|1jkЊTRkȻj+󇟧lt&dɠ w~9' w>o_Į"Mςoc]8Co1PX/U4vw̡2m>Bfiqiuɲ(hY\t}ϫHrf}Qelۻ=ш+OH?u}'$IρFs"ȻbwBsBdԛoFyfGRg:Z a賀ɚ\tNrl[Fr crs4fXi/'*/z'!xcm^2VG+.]O׌j9,>߄jp5j#>>KA_NxicCV-{miɘu1gQ¦]3پmH{@)#*TO;6,5< RDK;J$0mM>(>{9AP%2U"<4״&SFڍ#itzOrjٳv)L2Ml5%3ufT<.reu?]cW79^dIDq-dLcי74r~5EWKft4n!.ɏU|3c/[edpsq{ֈd3M.тI22ɢL˜5ȋ}~ԓQol(5bU|K J܋آ;ɦ nqB\H+|CU"E6dږspjnDÏA6ŏTgyMqr+mV]9ޞ91XાśfYUDos:6֑`뺀xw?LWtlU2q-z ;lW.GGN SE 󒨸t2sלg*A4كɘU_!XEc¡ѡMUg$,4BJlL0̢>5 %|UW/~sB zNj#k$]yԌ`0N>1˻W듕Ch,SS鎣#v@DGL#iĞ[ CtKtb-oT8߫r}>#{/O7:[UJ쌌&vX95G!B"j?.QK%B2CJVq\8T F}Y꺆%9 H%7.@?]G1s. 6)B15BjjFeUdp "Zz]>t- oO 7ɂ(n@-_/QAMͯQ:&Rs~?{%__w??_???}7OUdcnoK왟xywۿ}毾]yܓןS/o/8_o )B/^_Oax^|oW?վP2Oר~{!s#)<{~~4}zX[o/~[[oY&K߿-?j/{_ ;7qoQ[t㷔-q︪Grt_3?layaNҿOkvrt)n2h?/%'] byoA] 7oZjk_}C(cU?kN*gN3]]GQ_7||Ǐo၏oyn]O`mɻ@[^"='KQy1Z>=%鈬TR֏8%MshDҜYoךʠܮٵkI[|Zcs]KsmD#b1k9oU#v-FdׯHnk*9ѮMђ[S?1n w]Kݴth|:Vs^rF]-X4ص&K]j=ZvoIԺJܱ۵Ajs.Gz^R-Ws])ҮV6Zl~wfu3ɇu@3uvݏKD3WMYZ-Nsʮem.x, guxv`3k.u] k}\l2#Q)odiNEefS[4*Z8Ps]3*m:R__x믯j"ghH-ZY5el]-3b}UՒ*UZ-rZv{[صQNuS ѯuӴ>z=__S`R.pԮKO3͹]-TQv=_z] xήAևg{ @7" zjqЌusL]4^s;3]m]Ŝ9+ڮ59®ˮb>Gb_"*zcӺ +^sݺ΋/kϋo_y1:s_y1Aϋ/ϋ/{ϋ/{ϋ/X)ϋg_yR;+4 +Iqfٯˡbyr++ +,a__m +CʊkCʑq3t^,ȩ >?/VQV:/VT ن ^ӆ΋U_&6S_XX/ԬXK1wR콎Rl(xK-(ņ:zRlhzKs}J-ņ{:Rl|K:JR,>ڷ{[bqR콎R,n[ŭKs}JX*o)^G)K-(b){VSRK:JqJ(()((Q|K:J:JxR콎R콎R,{VvJ[϶{ǻz[{Z⺜%Z⺟%gkugkI*Z:%ZJ(~DIWb^R,[S|KXo)-yyKxR,-yKR,-bzKR,-FʧQRlDi|J)FQRlDi{J)FQRlDizJ)FJ)FQ:RlDxJ)FQRln2J}Kj4+gҫ2J~KVQ:RlDtJR-ņJ*mR,wo)6y=،b3Sx>N)68،RbS-Ŧ׷:RljTkbS[Mjo)6>RlzKbS-ŦZZo)6RlyK-Ŧ[Mj5RlxKbS[Mz(]/u޻XMXC@^MX?>u<>A@~^~~{]S+yz(/ߝn*z9w??g eϋPh h=B\^?{@q"x^PK-OOT~k.yvy/ݷ׳_j4pӏ3~(5F߭1:9pQkjN?]cs`GxkN?_ctuU 'T/P^_x_DKvtU:[6?YLɉAg2> U]i54VAuk1-fTډ5kiR ыx8oN_C9d82ɝlrNf{|Zn¬rEhkm4QT^J_"ݽPh-Yf۶MQ͉!e@Z2#;3E=ˣEDUI ̃h |]*{M_*/&>S&3s jqZlo;pMfD7 )LPg=]ȭ1T99,pӱ Bo K\zCQk\(b-$k0v4>Є{Ko_kcekC[Ε*)J]P"w@7mc w9ɗ Yr 5*`|EmpX`s@z=7iϡd;SbbI[m|o<6N5fj^X~Arvo.v܆ y/d!P K h]8p--/ }jr}OV{IgOUHoWXP;8ɢ#\/NgҷTlfYoʓ֩98gS q $D5gWn<Ȭ2Ίh(Yc97 B_ᘾ1=ɨ]}" 0Bm{)yזvDZgT'uC"4 ςԾP"upm]u4-_C"@3nJ680haYcS!O+JDM|PT*K}V^#H$@S_ꉩlkhls;8T`|>8,$W>g8%l ,;?ZAzO# 0ԡڹ^)s9˾Ժj_Rpftb{U#몏v-muc5i;#+e9TikKj6BGxʚMYRL+OzDt*@چ'JT/f&p ֆך.0g}%SSCX-=`N;^7q.5oWCh?$To^8f<wczQ(jB9StayevE7wD$BDQ[9,C%!nCY1zZq7mctt8&f lo{WqF`v%IU5#WӉ]&=mu)\U O ,xmqȍJ4 nEPTXxǹ7p@#;yuCK'oEgކ|`Fq"&8l0NT0Ŧ~'EZ'xnL !3Do?O*rL z͜v¿|5}к,`}uIBY/sE)XwqD6iiHq.ja٧$i(<PE:‹Ā‰T&6FAI_mNVO3vژ! .!"|+ƿDW)87XY!d :Е3sS'rp$#(Ed=,/l5 Z֔\f}ǨH}YZc+!V/u@< Fؒ̍I]ru3#D>Ig,\^@O|BGȱGFДfdgMMɽ`X`>CŎ-K3X2K,},ZL,-l0 qBzڙs.• o&sӻ;bz&d9DFCB|aWڇʽ юzfpX:ʱ&AӒnZ$! `C˟:S&wj^1`WA팿8 R&Bv:G4YDT1vKwv2Mz?^.N RnҬ2@\ґRP[!A6͞ϼÅ {YF ]`KN8C:ODCç:QP>ZzG2}ߐ`c2'Td?}A!@n[6:H~F5GɭqSnW9Ǝ$fjX+m,0KFP~yk3N,|m;|7W~!bq_r4C rM3b"z  V.w+嚬K5&ѲiۼrHCJ'yUMO(5q zCYOc];1t76+bZnd(_ d @*7|>}ϡ|+j~'uE !Rg} l3 Zܚyibj= ztX'r0^xd(,zp)FS/Ƶc)Zi;uUfYɐB]nMf9hj'v 3Ƴ̏qWO4Ww$rQ뵩:uOwDE;7Y/> q pZ8'aHNgs;JvP7P|qq}zHǕظ/ >dU ypߑc{w Pnl Xa" fCȫ`c@yb(km1gU'eBNg͒a9WlWd[HC >ɓADC.Z'G/:^ iEaGVH8y)LFez#|2ZYՄR{VN\#F<ۢۡ!9dߖNTǃ|bW(|n/Nˏx<+#ٞDMQ v'Z8Z1C֤=U WG+rl?@@qH;$JI ?I*VH#֊=x-v:mm]F:o4b :OڂKNNV$=(1/kn!:xulM&f[;[iÚ*4CЮ;)]m@A'Y;b{uӃґ2z=GC s/bUe-GxKEFjuWdU dSUA&vgƴfbcB J:cx\˹+#dtj:V8‘#fŠta륊: F;a½nrXbbx ƾNq:KF߷d׸YIF<yh/ T+֗YքǼ'ȃ$5%3kƞE\ns4Y|f?,x8X3P)wZ4q$\5uj8pֺؔ{'K8[fV[jntp}l)> A"7M۳Fd\;|K C^3]Rɥ-S7C+(|_"[6rh 3|&mcѣ6T8< yjk ③ۓ2zUIelG+'li*ژp:Z.#86O[C "s>ɤCAC;FGKC*U)mj. 20er710)5s^U^]. cKv@bXWz#2bnЁ]24 +n,V2\Y-@g@~U;HBK@6HSVm Owogdū Px^A~M13ze]j8?oBCzD*Kl{)Y ݜF(;aаAI.c{hFohg95L2ilB }odi_c;de2 *,݌&tĶI)k|jM|F2tꔚ44@E6Cg:B("at p#Դ;ځ[d'qmm:_ RUuAFIUXj}5pj({ڜiDڭZ8_M~J\j" s&zp܉:" .0ϜC `l0 "ˇr,,'d }MԆ5=DXMV 9< ǵHę-Re/+*sJU09sM~UrTrOReψ|L2V:"n&e.1n2Wk%bɭ#.ܥƹ 8y({\E:-DIlmQ.oI n^%flJ!us5SK֙ppm 6zn:AdEZ2iS坵Kܗcr+ k?"%5(JGe"")o)p+OA4d8eZɗ'-01 F|OtWN=h2yi.԰ QCj!k":dVnx~[j muigG&gnA#҆kd{8aQxlPjze~uM*)>KUJnbd` ?զUV)T?KvOO(YeE3g ĭʚ(ugx]9UPLP:4FeMQTtr56V .H-[6ڷ~ G*(FpZkG~= 39Zqw+cylwPf[lwu&XM40ARUA)hTx6[#,,1!p)>>I|u+y򒯂ZYv(Dk ?ˏ%)F5l%2aqo8")UIo[iXz# & ݭHH! b2,Tc]iR6#;3^<ۯ$Cmn3\"{H:ݫ+l1DQM(J|2\f\,S|MZWU{ɋt2h˴ F\?<Ǜ.1wCUA4+9hե|چ.ú^K۞pղ >X+'{vԖH.t,ALmtL*U܉˘4S l=gft -'dF9 hotuI`p)(_,&Vu!%6Lv 85ec!d4W52ٗ^\ojxzk̔"I7(heĜoc6' F2G:I|?0s͡6[hݲn{74assM/Khav$;kV@Kct)\S8pcLtN2~6asVe<gu+Y#tp8$<94Hm`Oo Rv熃f74irdɀER1E]hghTPQpZ5h.vx~x gq[QGm|) @mv†h*V$.!yek6릮&ZyDkh!KrBp&X9at*72$E U TR$ĺ2O?TLk$7L_3Ru1Պ,ǔ \ gY*[]5fX|n kr~ĈR|_.TiY髦unP\8>4#!gLHAucÎd] RA#"?Ocj'{૤.RqA(0!f_hktG.VEnYxY0?~UP#y'TkR㛎! Z՗?wuْ zG# P+ܺpr_.s8pgĵ^ 'ܖ`>{Ed%ATm.=;Ҭ:fY v34KˊqDP:0.g`}.E8㢂ޢ71oH#cIN4^XNXՁAVD(бa6=Jɨ8#&܌ӣ"Ag;ҥ }Et :_ 3_[S)f++E%`ǜ"ғ#sxW~aG^k?F{O6fki;g`(A&UXfWW@8)F4{G%T0sD ML+ \V(u,5p>p,夋\e}dngg2+s9GEeL.D$:Cj|$8ʂgBCAA@ɲi ^0F |!S(<ʇlYֈfjN a|I" j3ZV%'cZIBlǃvH6fh$;'dBʤ `Vv+:uN.bn e=kڎ&Ǫ} qL힙Kt1=2R$lBCQ>K`ڜ('ٰ$E A 4p# (/2 "AMDHXo,m9P3Aנ#/ ,w n;ڵDAMl&z`&FVYV2U*FVDwNc+IhEذᩒ*"/i2㺬hQ|V7244@,NK8gD_10!%T}X^$ vRhK:R9} x Vcn%N6]J!WHYcqU%!E+=E{{guEKs0R,J?X9,>6!IӁ9&" ?{ͲȃJ̭KP;tB8&";mJhwq8RHxg21*F&.5 O{Au,2mAMD(鸋y'Aᎁ<o^tRF $0ی3>)W>?d%gCL[n/6۪+.Q:Y-5X@9[ ['DNv`6朡aͬxẃ d 4Z093@G83S P_}ѯ5R)^KXqO@yCux䰲q9i0Kle"/Ĺ kؒs1 dG ECPc`<*n] r)O݇<Q>zөx͈P NeGYp24Ys vxl= Pf_Mm&64("30DJn4j1y̘l1Je8]Zi_lT",[y/N-!*D\%(zȺK# Ol#L4UT4WBz׊k@pC ~갨|rw7Exk؋_F=eK==([**DWx/bY0Eup 6ArQ3:Av$X>ãPt!}կcrA4tjTDy\B'kB>w7${X :cbqxVOpNjѣU4kHwPwVwUf9UVKQgSn' z#32|Lj`)ݖ@Č4vy8HASSYe(;0!R:mF)At%S1LjiI{F*e}Eb3FJ' W$ʼnEHrR$N%[8O2f?EǤP, Hk-!i$'I.nC { lelxv#ު-'@B$!_Y}kJfQ9!B܅&!1h[e~ʵ͋"D6 u{)IdrT C3Jy#'rQ.QE!ƗU,&ggɺo&L]i1JŐakʳX:3 ܫv3( %+IgsH?qx&nȌN\(4$ȣq%r?@J&^S{E;Vl㿫|Gwݴk=Ā(tw$sdJUF, ID|VS=9jI;'iZvONWAuc3ke3h@{dySs ~v$\g 9N]E(()#lx͒}m_5#aq +ڣo*qxZCڥ tr/2BP^UѲSѨt8^2\, eKAn%+^u{$B*4ml$"ٳͱ6/*c+ƣ6 Ϻiƿ% LX > K?[PL";Rf+yt1;9&k ?8p=~e2Q N4_'CU; | .C,v3p\l0"ɪ)lv3%rO Z#! ,ۆdZӳ n HU ^2ksrM$Ξ$WffEO'C)uֳE+1ۂyMgpȰ_Zn ⾜]!hKrY2ٖH5XdTSD@A6njH I<=EPw{tbo+!VwwN"zC 4Si;^|H;d+"~q=;܎QN76nv˯ۯa)@}mMr~!rrE   ^_'bEg}F]];khgQ01ʇKA"_L);u.ItzMca5zP.%J8:oD(7#hC3z#tdt.𿶬J,7r꼰4B@:*Y Y1QۅjELh#)>є[+CO JK3}9%a%&S]DE6²4_mi~u u 3#IZrApNEL-06_(aq_e&Q%! x3͢5ⓑil'{歁17\"u LMtbN׀ILiYvuL 3*.LVXRŨ@_Hw[ܖ1KDqMQ@qGT4U%D\nl̳ATZ\$o9l'ArGJqN)XBOW5+i~W}tt^IIy69nhVtoY]j9Y~eU$AJuJx΍J(=+a]Rc 3m j=4D(2guxǻu0)t$0wd?~L[gf.?aȍ.];D lFhMk\=5aH|$ŢCEo)G8sUd,Yn ̏/j§Ob ~@:&6A8|DGe>`k:Yd7f5MzTv FxK ]TlO&\KΤ}$L6r_D% <얌mƷ`-SҚqկ S{l!} mGΎq.&j^L)MP죿%O L)Yt7Wɫr1I%&kԗL$VUcՈd{41!YP\n8b5n` QJm21tq|G#w=JGt6<&qmsʺ>9eI܅:GN %)^[O)8^ HKWpˮ{_ ˊl>Uov4]~-~9OZXIj;*.Au7fSr޻xop#4c$cr0^8_E8*S.%c{N.>%X7=8-S8F8^JIe:0= WX_; 'uc $9؃ըB!EU"*BvA3 ]ѵx^Š~ޙ̜{"-seH7{a4m=fR{/vwyĊE dAD_lckٸ2,vcf&#Mwi0 [d&i84sA% 8~pӲqH:}P[IEM {vSkkФ%u%}&Pi:!ZphY1Cb?ZT,A(3VN31'3,p*`-a&Gp hƂ:D:xB1W”#aCpͣIq( jk88rjȽbtN#Ab):qw1bF9$L܆aYj'Y4\RSUNd&3iG<CmwX+[#i^1UfUR*E_*,Z`眖)yn|tzYˍ=Rg<δw/t\$`VUb~!ޯu9vSLCNJ XhbGG}&\,#CtBőa?{kv oa@I^d rzċ|NG,)K51giԻuhnU,2&]BX: SȴZvU2{ 눠QQg{HC"ak!56A;(312 m1T+BN65:%| oںB+l15U uSJXW[>)rD:f= cSt[("g7XCk ?BQb}7 0b>RJܘ2ڭ`?+zM۶~oE>ht^evx+|ULubmZuw1 M 2OgaNWnCd@W댛BZ:)N&O*χS敀l:ظBn%3MhYDe.k/s Ĥ:&`LjF=X( @D%42\ѓ4MHu&Mh?(}4#6aLB&a?t>1@{ GN3Z>%^hwjؚ |&oh@S1+oA_AC1G n~./E4H2u(Y)ΆW?ϟEaIu#&!>J{6R8A}xb6ʟG {5&'ZHڲhW_ aw& 2D)F|2s~@-?GYG2s 4캛>D)tm8dcNB$sGm7CES_AAPfs c"C"ކMD횬 tc`)I&(L .dH'jsg^OJz~=a9U)F)b?w QQ4?0T Y@m8DmTd@@mTF 2'b ' "{@䶠DĢD* Z 1]T}<GA  ߯sh2{E$Fޑ}'"d=;JHB^shb"2會*A+`Ѷi0lP}CٰFN#SWP]I~̈$rY7:ssf8 M:gSFƴ ԅL*V U,~u\؏!_*%oW&-nnCӓ b#DBRۍh{&}Ww~Ds](qkJ0Aٕ:_9o3X 8mz+9AAd-@"7sZL D 7(xǦLlޙ3aAZ pV!ˮr2T[L"lUEw%H|72-%iHW6tu*mՕRrQy=_"j^rd"]\QTr;dFQ1zƢ (x2gd:qn\so߾_ˑӄQN= G(Wjr7!#-o "G, N-)~}i&.׉/% WBt ߏi awKd퇥K yʤ{ %bj9#eo1T'} #HTJ?UME~jG!~[~T4š{Iv3oV |m1\b? 3e -$*2(a|T@d`KPCAy8?|4P,");^<#9kgk"cn4Xb3 všh7L8EFn'[Py B5C^>'yE>2oH`͊usOIC SتvMLkň֓ Dh ;'7YQ ґ2npքn8)O]2شn[&Xa%DɵoHE[ID[|FSd1?tY_>j 2%%}>]s Vƫ)cNdPe,frv[9i0/+i9M{Fа_g5ڂVxIYsRa%v>u]r穓i߼q!疍WgC#O WYb)R.JF`V4gγ -hS~MKtTzMyo ٢ONac9et I5ڧ9-V*=Foao0b->/ZgrH~j.+m\X!`0m)"WXgLlP6Z4g UIh 1ܩ ;&Ly.l%`vnK>?-7-v0 ˢݖO"a?oL.,hIsD^'c gJQyWSc_]ZmOE_}A $XhP q8|}׫t2K{%= ^Y9QF!fHGJIrhD8!D~g>;j)|(f!g;k/GۨقMP/ tJNV* "NucE*1*1F8)ٳJSEFck._nUL_6ļVZ6JhԊ8J6Ӌ4)*y<9ZKJ zdfomvcCOi=WˆA@I˽I'v&^*Jo}9hN &2SE}ok:MYo 5p/KxVC*Z/Yp-tVg ~g#?fYP<"ɺn/8QjcQނ?xntM 9Tp"Dyψ8*'t]d9E1i^0qH81=w U@|p|MGOO1;6t  $9$Ă.?^iߖ+x%X!2Bk+TL ĺ BVYa%T3=FNyE#bhNFEv<+C|uE7HoECe՞a%V "^=P^bpBS0O_c0)KVƈFfh_#>*۔btV!AYTi^:Z+cδX4R;jќLTk5?iOV۴b[|q=uE>ȸpX=zBǤ={*z8?U;j ]3rf͵S4$dtL/S]039/AO!^srZ:tD2b WW Uh¸YBU_u16#ʰKq?P 2Nΐ9G'4ds$o8 ^{ ʼ;rwcQ iU+[Gþ%ur$f"llR%-1"NDYOr[b^%$/g߉<Ka0JTfPd{im4$WxKUh6*^ٛr9Љobr%ׯOjqE@3/|e{9$۩p;% w pȥΗHXnd6tw$m'VzXw*[]~"l]9`dh4&HrJY78w?EGMD-|HLʧR'(LhH(3|24TvE1B-:FCBf$٩)BqN8WAͣLLd0iIQJ$q& sVQ QUe۫vyXvdd^ǝ>R0FE.i6KM4 w $:cQXKӛ.W8j0RЪwJ8nT5BF9;i#{b-|}itnɥACӪ.'U"Y~/W?ybRa$}g#BV'2 Fbs3DZ26ꪔ՛w>itgLnL wGTz`اWWd"ܘkho95r]OA;NѕED?-#k*L5.}jFZ85@.ioôWDǷɳ}S+ޕI3,kU " <:5)>iB(S3dVձ(nAqY+H>ųIy0\1 C67mP9o"RMR2FK`uaWT{&7-:+%P'5PK+'I/\ 6\\LC{0-ù N+3K٩Ѱ42T 7tz8 V-֠q9$CofL{`A,-zG[}9< 04)F/elX& 7Xt4r<>.dj`lzVCV^Jyfdj* crAg]\[ J|= 3Gԑ79٧%؊GbS ^5;-w$Ec)؉PD R˦ReuZTHX1#`F寉RYW gfe~tȥ`h3+Qs6mՐ1%O^d-:+!pPhr(*3ފ$uCOBsYQ=&%Nmۙ!B__1{-xXtCnG"\2xD|n|8X t8|.Zt< QytL RFm' -T2R8ĩt$|4e ^YhRuUiHf1(ue4lXWх&bԫOcU-u\ \;4 DNӁ iBY9|}!thHR K g@/qyqcD~$EgU ;ý mO=>qۍ!c.j(gΉUzBߦ?Z&y\ ,b;EEoֈ1i|s1<\K2%:24ϦYE?H}V9ܮ;PcܮdaEvOEG*sG?acV3'۵ ?\l\6,YXB,Zw+?mx {+O(q̃yK$ϺU'a U{\ 4ۇYNr6@7B[ų}C(bkb05y%VߡHZ16Wr1螱d5Sqz &>ҩ(J #旃,> ~*zu%gB5sn#inO:HMKNCN>&_s_pƊΡ1|rf2!bj0W|4# 3g":/$m-5PyGメ Xq)UOu\Ηz}OP s\o|r/q+njM%9EGaւ>%z *U7gG"ZW NMGOgHs9[tc;. _{T ߹tpP3;[D.y,Ȩs ņ[-4r^Zj3oaQ70ԟA 1Doc+9U taKW G阴#y q Hm,%Oי\-(ce`%Aٸ"Dte,vxD/np$קv%4yVI='jjmf'2DRXauζ%vlP22y^'\Mc34%<˩z2Ž(^x3'}I*6*1tب@o촲XLmgHZk"yض1*Rb<(H]Ĝ)Yq/ W8RUsf=I [ '?는h8R1Z֯A?O6C o ?L%{2S!|b&7nkJ톭R4بIz/2 r&8selZ& x=L^)"tTc!,V~fnTf8&' aYR$*ii?AyOp*q4({K띗߄\yu*SeW8GZgⲩɔy !y]+uN뺐5E0Қ]-?v gͭ\zVS !~C]8}G\`TiN_Q$IH?5QtWy>wHڑ+Pm4}>1^ s7!8RTB;I?⽢˻d"#p|'p4}* Xf9MkzVE0Mֿ-)txQd#DJWG^lg{kL<_? sJOCk(s~[v5v:.+GNP_َ!ge2`=]Luh'!TL&-Eb% P ,Dy "+`]HZM;& nhabP_=sOa@ݗ/{lJ팪4 h]OK[цs נ10&S9Ho$ßUճBQK vD+lƃ6>:;{၈Q64ʴ}nOrgƥhi4ŁDWRyT"xAsTC= Ae#} ejyS XFQ9qcG*`_W/ĕjd55 G#.[vpE~i3}u(HcEcSsϡ>|FlgڣhPaD:+8=vqg8VPvtҥ֯X0U•hGl/jDE7 5K'"}3SlVU9ƫ* q<&ïk/2IǃU)—Q' }XƬlA:I 7ZH;1"yi @ïXT+dATkDh!yJ$ z%-FCWU)n+JkCxYv\<ʦMS$_aQ\dTh?ʈ[4ScCMW)?yӮ(z` @/:BWQ}S!ρφ~j$`.3炳hNwʟWc`џ;hyn)&ESΙҵ1GPǑJd!]u_"t0cS2uZp{\s&2ujhqLrtg8ͦ&A+fgEr}yQ4D251y6$r[7Zasv_hj&FoAw˜ɭ9DאbHW7^G3GOSQ:mbs|Mxmą>Wg MaVNZYp7t{Ì^oη %G,tVu^vc+}; Z,wɈG}RffzxCUS;=s~mABM ԅ/v/o<ց^OPk!60]GmqUwx$oEStO#zQbI(&qJ^tar&cj0-5w{CL#S.^qnrpN9.dE}mHқA~* Y@@"kG0SgbH橐gU4`88\@uLZڵ;B4)o!7GtٔY{4oH_+C4l}P.%r4HwRoLB[-\pf6b%Bv(">sc|8yT^kM)ɼLklg5F=6KC*e as9t'&0 R=0$AVLPZ?Ue 7ohe(|y/N4X:''UiiX4k5W|,rRGN.+*b1S}9_l- RK}oC+\e|6˸HwJԐya 47f'UЧ:n5^lRRrK~qUL~XHZi0eyQ&/_ZpAPWn>3f BBRIHsxZ)8S1681Y4#ESNp5u-]i$Zq&|$G'_S\T$M#F;+FAaD/H>6-& z8Ɛt:|>SRxo IW0rdb xi(ۈ*?tUæ9]/BL"c֪nOG/Ps7E{Sp-<'VT1s!X8Zt|hǼX9pn\sq'3!/n:ք1ɥSEuUApЮ Pbt.vΪ;5d(]cs\\߷1GVBQ,|sxz3~ . u*C*]~szC'L]|eˆAh|6yf|4Ɖ3K+3_Ƀf:],sz4mh9 Ad`>U'aqS^URrO?~G֮`XSD`>C_ R+rԫ&NC1eRCӗQMvsέ.O3Zddb|=GԐ4>td2G@DJ1cTŪ5L7]>\ ]`8֔;V1]f(֒M7Mȣ;y-E0"-oUvqb>"U;:r2? T(v%-rɛȹ?F46;bՃt\̿MBw'[x~8~ݴ&ZW1;8ͧqVa7Pݶ?p}91ьٯ-G=/K`H'ʍT;$'b>?b"RLo(sfʎYwBU4yWw8bzg@+O2 8#4)gȌ[,W9:;2"x'}L1)YyK[A@\p@ir#^SlCX8pp/1 _68pS+,"-''Rh6,QھƗcF$Тxol)4On!/i'{ !yT_~}dQlNlblDVRhPGŹ")k?%H7щ/]Ju;6.YX]XNɽ.OTQw2w3iNVm;:.k ga;/g>u](ݔix3tgઈEάn!w&MoYG0 ;^ޙE1[}*۽N%򄻑M]4+Żo*}Yp eV -N5Kق<x;r0DpMƹZkٰp(28ś"pDRm[LX٫]]yBlc4XQQhQC5pJ 4J&վn6(ܻc2?UEwi|~,LT͐dTz=ʖyߑ,}6T@_6QfL)2aiHng0+z0^s*OKM ˾3-tK^S~3$05,r"bEQC Za(Wn2'y:5[,6ET+'DnzMyVkBUӡ&W]^?xz6i\y_֪|@5 ?zMA֯ah2B"VN⺩,P)3Gc㓽h׃L*<,w+zpR y^qYn63p}so2Zt]˝v౱>+m&b~\eن>یho CkgF:oL:85m]2cb@]DD9j\C$w_EhCHשּh=*BC gzSY~SW mn|tt]?$Gߟ߬06o9V ~{]+n*dZTZP5]9woh ۩姓ahr|ߤLWf #S3VQ qu|$fnj*LOChg)XPN oњd<7,r0YcrBA`Y"Չc"(00ՒN2r&U'nO}QdD q׏(N*o!Ժ80GR }VԵWFG 'n. #c[[:YADQv=~1Ï24`sck'-)!r-~t'MQODr:Ȧ?1שz?z[)if{?8p ?ooI/DP]0uߺ}ߙS>B!#-F>?'s?7m?oO`*Ks$)|o) endstream endobj 16 0 obj << /Type /ObjStm /N 100 /First 816 /Length 1263 /Filter /FlateDecode >> stream xZOG~bCٝ@MDj%弐kmč EX}3;Ĕ#x$'H&SԎY-Y1SYKzr#Tkdql&ْcbы)lY<#}1q<`M .|rГ3<<5p[2g&!ẋpk''Pb){bO3A0h@OZ"@ @8B^ޣ`~&gNLNCit\%@4p"BXv0)qrAGrIYVBeU'DrB# Cwca+YQaY%D'e9fɌhL-lrD$/ʆA CW,3B=\@` ك 1R@44{ P z4)Vl%6KǬK2/`8qb'lF&&cupPRRnܗq?%Bz_e&MA[.XcB>fsRA|9|۳gsͯHsNVd\ C$b)/^Id/L 6z7c>zEcdZ6^#mDzw/}4Vqu8)uv㣺/OF㔊&k{ n\CדsL?{sDYS&>]djЄJ}}2ɕɚԋzZKۦq KѮn8//z0ωo\ljp޶aX9<o8šW^\֎ &gkeXN{9iԠC@VM/Eͬ/i'lt:,oFu3Ӥ`DAbA v]?(j۪A6Fz֫?VM릜 Ŵ|X_ O\Ԣ[9blzVjqER-o'1cK̠wXrۛ|mr,<,:Zt1wjY|,oK1ƧY)mש}RLyט}W%fλ;pݘ 5fʯ}Ý/pK݅GSwi}c޵gio+z9>Պ4۹ }؊4.;Mܴ.7QO,ZƋbp{w D!6ܨ endstream endobj 156 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 159 0 obj << /Length 487 /Filter /FlateDecode >> stream xڭTˎ0^8~=TRv3@ShڿI4j 8s86E-SBde is I ]ִCf`Xݥd R%p3t1꓀)r1Rt,S1F^;ķS98SfhFS?ǹjoieb3p?b('*D$%ʀ-" -5(Db(|evR7|Ξ|oDjE(EXU:g ;/㼭0|@v+9/Su}=ƨ:s;3oT Wu%:_bAZwFfI%k'5CY9cH wvҤnq6pAwa]&w ۂ"@U|O.SuJ[s>2Vp׷ڹ6fq?M@(h$ X<_O8 endstream endobj 141 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/5t/8dfc_yl10yl9j91v2lc_jksc0000gn/T/RtmposLYxE/Rbuild2d0830c1263/effects/vignettes/figure/fig-contrived-4b-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 160 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 161 0 R/F3 162 0 R>> /ExtGState << /GS1 163 0 R /GS257 164 0 R /GS258 165 0 R /GS259 166 0 R >>/ColorSpace << /sRGB 167 0 R >>>> /Length 51393 /Filter /FlateDecode >> stream xMdKr_q]&$$@zЂ"%49#9f7n%4C-V7d8o>?۷~_-}O)}ӷ;׹Qfǯۿsǿ/}7ͯs ?[Wϧǯp뢿>yE_{Mn>~藿Ͽ?}-?~mݷQǟ>kǏ_y"|%KJJW|I%Ϗz _ Sz>*s^;ί/{^/J1+6_C뱈{,Zq2|kN{{ooO}aazo&V||YRc/_RQҿO}?}{ǷQ홿|L, G^x K%ʭ_o8/k?apqÙ.ؾW^jvna78t eL t~oaO#\ {ye~Rp 2;/p Zf5ti:[ \aev^;Ls?;ʽ9GKٟ+/aUi:[f=ti:uLgfs2;g+ض|q L鸇 GXq3xeׅ7Ҿ5n7^:.a΃iO;\ÞӞ3;ǞÞnLK\͉/q 7mbړ=G3-bړx==ߏ=wi3~AF9ԉS#K\Þ-Qaړ=Gô'<Č'W; ~A?|nσ @8o\aσL ~xx" 02<__~_wq=.g%`yp=tvxw 5n<<&P|_R ?RTQAVU{>ɪ=*0݇888t8S8B8!888΂888{8j8I H bbOb bbb b; b 0Ȫ2Ȫ0Ȫ/Ȫ-Ȫ},Ȫm*Ȫ](ȪM'Ȫ#L[LU;JUFUAUUOwUAV m< ,|Puޖ ~)?ym\7|'9A\x=$zs!žkӞ O\ž /ąe'^sk??W6 _?@1I=dzZ_M`q?@7>pE| '_?|} O$'HO8=)HaO?Rk~a8%$^I?[Ra'ϐoH!!q0bV'KS.L{ >&j==`AcEeIN.L{o _|9 7D~8%L/>`vθ#naOg\Þ==znL>61|+>|%E>" Ӟg}aړ{ǞÞ+_H#?|}^G'ϰ'{L{" Ӟ-|T;.d;qdLH# Ӟ9x{{"4==DZgž_UK/ SlA\Bq08{{"==ױ'30#=/c>3<Ѓ˱g'p>NǞÞ(ǜZ,Fn杂ןb/6yłr/0_%RgTBD }~LkU!`9e|dB4 0\ )'LץB­ D"0_MLc:0zL>>-K9"CPCrn! t1qLGD0L9י9%v~6̾=ﶘ6ls }}})] {Wr~~kq=c;z}Uwzt4[?u ~I،^NMAms^G/Ej`$lQ_}%7X> |O|VPӗ)(X%mi?_Ӓ`V\w7z}jiwf2*/_w,pW375Wv:r?h/f#ޗZvDVd0?3ןcب߿5fKjm,J|1.Gg#З_x x3",~ luXN/Y>a#-j?Ǝd\? [?kϚ h0Z ^r;i+eopc_5G"|}?N?קã&Z"*H 7~dc ҖCϐH)iNȼOm:UdLw{~~ Zތ#+ G Z.|#ّyGq߉Qbosj g38٧WTwz>u{9yzߍuNY[ (H1Os󞟱1S߶- _%gMؙҰpNp~3{Q+b#Y҂[=: ̚j2?MSdz/(T܋=[閻=NxOܹrR^oSթds(J-.4ϫ\얕q,;UyFDdO#d6YЅF' ' yޅAls\YAd%BPC_0[{vyo}(U Fv#4i0|WxMuey :6Ͻ.S*qFy>ij=ο8}NJ/l,w ^ME+Rq[!Ȳ?޲8&确C;Z ?uuldZ."X'XQ)Oa,V(/vER:uj`#QƱԱq⴪,ck.} 'W=p؞3M{*$#9M0jm:zUY8`!XȞT7\֨ eE+<[^dB 10 "ڥ%H%:rxgH,)|ZT*Ulj˂[ ]g JnAaw?]zŮSsܘ TU DU3% f@xQYgՄ^yq.wZ2(2KT[ݭReB2Q:(߇LP":_`Jԃ0I]6n! ;v+vbh&zuKfMԞhÛ.x~@<=༅i[@z#Kڻs~U؞h&<0XکHdh_HHdZ4%A:yWMOh@-1-)r{U[0t^joo u@HcU(_Ue:>qL!ZF V4U.J6$V'U?ﷷ0yKeΦ5i|HkW*#SeD?#:ByRf 埽ʹejy$\&Ğhjpܨ"'iTDn$>[YNUvpou=ig~zO mMnTGȂ_cZbYE6B[K7(ϡi: _"#7MEŋBe[DP8GUAzV٬J6Bԥ%s-loZ~`7YVaW|N|M!$(E/1t)3 ig0d [X; EIFER Od6EZ[໘NHhYu Z&Wd4Th!o҇ Gl'uGeo'Ix[%6 )焚^+$Yo}=_7ڽ-8jsr!^o,Ue bRM0]]I-Džf#!^Jo(oBPCreBGSvlJ 0!A6kj &9,znt'5zV"jZњh~ro+2~$YW+Uݥ^ fuh|$Y2;2e.x؛X_$ 9`ci- wn ҒB-y}V4T|'c5qw,g\i]Z2V]"z5y̧9q<ߣX6⺈4zVĦVl!2LsћO;A,T7}!ZĝUmRH*7cSXHU(YW%Fdh~,+J&JmnNUKS+2JLy!EQ`kݠEhM*bVE*D.9VV@]ueV;wG<7k (U&wVgbfIN{Ͻ/G\Ve|t.2nʸw]TvCB\ܔ8h)l&|@V$>Δhr1RK6ڄ=rԜeSF-NҝҞZ WQZ+C,h'x't[8/U!g:e60\UK 6kD2kkcgӒ#_B 6 Eo7-f3+"Ku*Z2OR{VUV"L!َƼI%=+Њn4bp'ZVbauy֡-{)b5iػ˕]Ҿtm5&LؒlRgID7DXVϪx4)0Q|]ڙ]o}+Z5F{U4~GěJV""Y$e^22A2+϶błŸ*K Hp@M=.ȧ /l+1RPAp#z=& !X20do8oH;P u5C G3v) swcoΠ}KBɅ&][-8 ɯ!(}O{Ьh *P&y#-&zZ-^"SB7k-j-~8ƺZ.Pd OKM/;k05)7q!~x.Z 2dµjYlb =&g):,زzmfdKwsg`$wZ>ɥLP.fteI=挾R6ڒ顺dXyK)gCJ{A U^?X[hxW ZnuM>5$U-;ON'MY&Yއ!VhZ8vLA`BKz3BVn`^BR$Vfڨm>C|vc{D{hޤ*ɧN%]~ FWr -׷lĩm]rDnI6)jwFTkFR8cmiV;79D\`{C-#f޺j dNZ!}Ju$/оzҹOi-2W݄ʷ %;GɎ6h&+V~vfCz D2r`{Iݳ<' odB +?>qU0XhLg*[@*|#b ^uɸ|Mj m!Q6&eVPM:nm'6]+l}3 YEEQZZ*(S_Yw'*+ey '-C(E@P"t6IS3grVlrxơK6Zk[Vqj4/iw!lDMvh9| }.&"ˎ ܋5YFիJe M}8$TJPБ倢oOr$3yel(8ee!2D"[ 5T(QҵG=JF2 $l/eƁ#?P1BВObkۂڽeIX23i52GIV8x?wS' B&mpTq4`J@37 c,"gv~6GRў HV뜨/AUj)9EY8 4!Xt4Z0 MwZ WgNۧmQgI>)$}oW,s,ҍÂ\`:bvgXZ[fiGh[|ㅵtvTK mdr~ ]m2ݩmC|FR(͗t2ܭ4s& &2( r?q($++)\`}YXӗ폨Q'{BJ[;j-'@TUfBdM6AV5dQa=옆|G\7ތ2=sG/хR9e׻b‚=]#R9FB%un3,<,GLr`%Ÿhs+T|M5gd o+͒Al%*T~y RXk6؁.)MFǺ*;,hԎ3|DFVE-2׆A$mLڱ""lx#Vt#8@9eBo(rD%/2)ESt Ҵcf>C29޵4e;Y66)b"Y1 ad_wo}dVHC3Jv{ihnѤ[)I9" >|ƚ7?cd܈TKO}$.Q΄2*I=W9jd}ި.b1e(oo݃IqlkYU1tG+2e$ gZ_0B%?jѿg!3-}OU숺}E8IeEzUJZ<Ϡt+F>P2UN= f}W(WhVgɝn%ts !Nisw;dC$&r>ڢm⨶nrToo;vT+eݦ.4gf5i "Kpc)k>1,]W톞e5אÝlYnJ[ 0Hl;}2{krdB%%Bej j1m}[i[x dTOl .Vs6I9"[ ` SkMNM: JZ19հ؈EZbHJD&kFk} GTK )(J)4J^Plm]3\eϔM3ɮV _Rñ=:w!i,Uڐ|^RaߌWvM7ƄR-"J)bR$aɖ(=߰Mַc7։g2e?y,(xφ!AvRV4jr8F\eC2LMe|=bc.3RS!VU TݵڦvA2ӈ%+.6>8VFO}z 9Z"]nľ&'ӷ7%(,o˴Mr$F#ep:<:-XW[tSG}v!I|(+X[7\ɡuyvd ֹDg=|\hV-(rb՛;N9, G]qB,hPmv)˝`L6$ 7S}FsG4zT=XkGp.Y=P:868ǝK"{߽e7ю%3Awˬ2z)&Ҷ H&RC]:{qܹ!&g~Kse}ۄjɓWN G($i,Ms>s­ڨv sHw@z4e|n&VL但mrCไ+괴5o1̺P|S sb-+e%;uáCu7GG XRt)jC ،Y&ݥ@0tHa;Q̈́z1+RUUҭГ8{N77=r@1Ɛb&5Q)COMcX  g ^ Bp TN B$7<ӄ Cleb̨NNc"iv7%˂ MsL$\Nmre<ZL}sbnLzť U)*8|X}g>~^t?O?"~C/+?ܫEMXGl js^u_76~زwG$/)|*nrr qX?7!Z+t՛ ]_੫.Q~2_{H;ݞ.4)}ēs~@b:~}i:gcw;g;;TmQ듽^W~8 RMr wc Mᮊ,rdžkK'ħ#RwS5k+?|7_<<?|/ȵG}??o~7hHjf4f﾿JF:_ï~o?Y`ODXO/?~ _nGO :nzxXG  ~&1ܗůMz=_ȱk = C}Uo-~=x7~t>1/VUo"|oZ[N^h7Fe|-pV {Oiv}왉D&bxn :zӞ-1IÞ ܘ$aO83ٻѝI7^ MnE>³߸=\$a_-y0I܏=~qxznƻdS-p 87^;EA D+='q {s[v {L{zP6SÝ( (9 b}+3 L{3^…iO|ca{3r`߃ʩH7vAÃc< #~cz`n{%65#=>/];F&Ɠk+]xLjx=h-7>aO&W\_qx{(30%G [~? A7^۟}>q{L{.e==gs(+y0-)jv62={caOu{=u=~"mc%p6( /^Jؓ==ߏžӞzؓx=WĨMQohgధߏ^=Ӟou<~?:,FML?Ǻvo^Af|b19~$aшiO<~?F {Rz/VYo č7u[|ᰧߏ=wسobxg1sؓ=&Y~pJ'ԙAƨ~$aވiO.O8_`qx|Ac':_`/{ϰ-&žÞӞ-=/0x8G<0S2D1Uq.PTBO 'ՅZ_P< o\xP]00t0400g'B۠ C٠ Cՠ CӠ CϠ&UjUZU:U*uaaP]_P]^P]* * ݂* Ղ05͂* ł:TWaTWahT#*)WSP]QP]* :Tu * u:TWaT-& Ӟe0P&IuQtIu TWz jCu\ÞӞTY {L{gU6žycR]..W´'pP]ougP[aϠžET;y0ٿP]fҝ0* _q]!#-J{`JK R#m:ҧёFLTH?WiSJD|[9SD|_~^Ұ)#>Ҳ בLiZHH2#;\KZ);$>ҽ<)$>ƒS&fGxpHsaM 9)$>̓),໏HCGZzpr#M%>ՃiO#}=$>򓴶dbJoOt6tH{i2qjOis{~J%>J\l#>~)'>Hip= r#N!H⓯pHCWؓx==ߎ|=y0IBr01ȏGҚ)e"!u:R(#8yc.61Bt0Q_җR6|8cOg2o=|eD D:'4Qz9QӞ+;ײUkQ2n0QuZ2nto+}+XT>Is+cYui4$˿DoaɁ6YUwSz Z5DNӄvVX?e;O[rjue$J\c a_m6*;[thj.q;{шs9–痐\zNh~0&Dj}څbEviI;n5jKѝU;_Fx:>U_-G+U 0"9Hogk{hVْ_Ov]Ro*]2oͽZ٢k[K͜.8ն)iķ"SeYԶVՔK;lۓJX:^uW6JLeCcdLC},ߪӢCo+YnՙϹwYv4egE-1p|FXL JL2v,="Ig=D#Y@G=Ѩ.͑P,۝{ -S%IVfl9hStmʝ2i l XGLrKnمί0bQn*ϐgsg&ՊGVzW,mЀXv9̘?i{U*_-zZ*le"o8y1G䱤%V#pC~aMje4fɞۯnO0>#.#iă E8f/8"4*"WNYt+'Z;f꽘/w9W-x{Ob2j㦿M,SĨSRTwbU_xS2 ݕ}4y!&ʘ9zeU?L"l#j2C߅U&;3CD[A͌%)'BŻdSIh6Q. ͗EHJ≢"_OV~&)y~EW\ wQU5ip.`UZcgwݢ*?5T8F{`wxmmAlq'kcS{nlóRLT5ťaڹ&k)  MdxH-y5QJݢQ$!rk3|RPEH7\:g_#'>wQ1Aw9;5Pond[ ա)|N@,'1_\62fCs_dޛ1XK{\&N|l_0,[Bl<- "0Y̨$Yr"uE[6sOKQotb5#S,wfY0ͷ"_PxE9DG cٴЗ((opY6 GPji$rUx"$]Bb=zi(Ȏge+'.J5rU9e Iiٶ0}6IgngŇeX=jo}v~L^;[ ]5 Ugn*jC]&nx!-V'_>e'C-I ~=ʐ Ak n[)3bע&::[F#mSa^@ɓmVGՄ.+YI=VIK39[WG'Ĺ"Mie&>'b* ǘWŤ_yTb֕NCRmF˕#JF`*flA0ۄBzZOD++H$njW$4׻ܤD'F{Hyx$8OzY=p ݵ9JVWȎnQREPua[NCͦ67t#ԁ9v FA]l77{ t&GtIZu. LGSzg)T"Uئj7{Fk䢸#2ՀT(aBHEbI81ȸb:PmhMiY[W޾k80ױ Cv$>O0j%zI.lGI'lQ$9:$!訙Hɰ*oڒZ+&VAm1¦6~j[MX]gL%k2jTOP%oQЖ4OLS˛sHVNC/Pz;uN>\9F1xwi'6 lNnTIZ$m&7j{ RCq~o.^QA7-Ɇf<)vܱ GScmy= BB|H>X5c mWd]\*3ېy^?]cк^઻pj!a:βY%;R`^JjsJ*t$|BSt~4z%Ŕ7B.TM'YhJwxgݧ&Ds)}rŰw6jUe$tvx嬗\Ϝ/,pUV 8q,9FU)_Co.3%F|,TnAg:OG2[ EMu}AL.RO,U.N 2l8d 7d $ x>qov;_liow~?SwvP~{+2;3zdJc-Cf " K';x\eiCiWࢌ-5A? (BMSG1w^+r*T)w=-Y1wOPWBIƞQa%-y̠dscK/} ݽb$ODOz(^ʗdUg5.QPϵ]wMxCoa4!Ye0m>Zz3htÌ.jqT^u Kz铮l?d%9k2r[lѲ_hFEj=IB o^ t[R4zkI ^]Av7iQmfGҭmdMV,Zgll@u`͗LE7jl9)[3(k*g gD 0Ъcǘełf Deѐ^LUR. 1/J%H1٢B#LU=.oGlRFYg-/ u6ts.kMb|N'vEwRC|U-QOJ kxw]'#˒f Ii0gH=  Q&6``ögN*#jToC`ۊgw2Kͩ+mi1;tY֫ TlS)j7_}T_Ɍ, #8: |Щ\G4SNW v9N&_ (ҥ7x'`,S~>Rl['[IȐ"^i3f16@]icV0x*۹,9NIuR@ҖR['' -{RVj } 9t^@ĽsuaKG=btrShASUKzȐȽa@ݒ$]/,gͲ7M.]'N9㞵͛ MĻEN/O/ e-XΦ 502bQ2<+k}#]Bf(bzzv1ibJ^$ȃl`!5k֫FA4p5>6u:L0('ేcV@okÒZyŀLUwMlЭ+ ky> Qmѓ@*vr~3{s5Mj+ֺ+'nnM^Fߊ&jiU놻F=jtՆ幼:BH]R̡̚A>]'k 8qo/!eAPnÂg0dޖ8',(wY!S j *+e!@q]etma/B;s:8`%hT4 oT%sIn]Lt$xrwV 7i=ĖMSe1a37n`F_r XHE$y\5ԉYj|iH66O8[X2YQ-0o%$eRgm裕|),ER`;7tbΫlQobf"by[TPL9NB7Q< fYe0釬C+sM^xRy.iHN[nre;],vŲ!x@gjVV7-?8HK<![ $)TjwkjR0A)$O*RoXXrLӱƄࢃmk*?o~Lxsi9M! pC^M׳/aFq:gshSbZ`9Kѕ7(!PW.Vס/٦eV>gW;Yp3F02'Bjh 1ywNf#np0:A33'kOXg7s+q8˓'=&'m<jl\RÑR!Oz/ҕ>'s+pMA ߧ՘wHK,cM[vϐS~?HUT5n>հų??76S 2:b_=j"tb(~<#. 8Fz$oK s.?o{Q@}WN?*ڭm- y e,0,/s?ǿ_ _{o#}oo[Πy\:0p#nފĞO'>.g?mQJF+ j/wqy8\ï~o?{5sJb?}?׿ͯ[;C|Gyu[RxOk~|<߮mo%K/Y.=| Q1yI%j׶L~L(yx+X>5?*+lIJ^#755 {G]%?w IrBk)bI ՏBC%Ӄq6_un<+:yc=Pp+o<{T/Ɣ*0437^Ƙ0P]jo7$³x*`Ѻ0!7=[سY>zn<׺1t&)_1Np iO=3{{cO{{CV Bʴꁰgw6Ӟ?6& r`ړ=5׍VFiѿj7ǵIѲƓsy8 =k{{: B9yڅ׾qJWnEg'=Ӟ#YAG{L{'|ÞӞ:ܘ`R bΙ7^^v\C={{&3px=v<ÞӞOe{ժ@/^o8HoL{==[c[7=?'1z8ޘ&ߏw15>Txzn==Kc^j`39Q7F½ν@z )y0d9y08/\ÞӞwˍJ/^ϴ'fW Og+l vcnuV^Gk5y=ѥƓlmoLvs9=b}~t4DG!nxzGaO3q-bړx==۟>{L{. >qƬ npLFƋ1Xyp {JL{rxu<8cO f;ubʞ~?N Ӟuuh}$aσiOaObHlj7jx/޼ߏ~wn\žΥ5yp=g"yD|ՀU^;}&-mWxٻm4 kma:^`6I{?ifӟwOٽmtJfw2 `qm+ß{HO3xmrK PwޠP,βI@]RB]PB]e:B:B:B:B:B:B:B::::ꄺ:Ruu\ ulPWUPWUPWUPWՖPWՕPWՔPWUPWUPWՒPWՑPWՐPWUPWg-=875420N4N4N(4N3Nh3N2N2N(2N1Nh1N-/Nh/N(/N.Nh.P*K:Bc'I ~B]=$TUßuuuuu@E uu@C uu@? uu@; uu@9 uu@5 uu@3 uu@/ uu@+ uuJB>62*"b?gPC@]B@]A@]@@]P@@]BjB&ԅT u!~C]HPR7ԅ u!}C]HePWڄf.o B&4T u!|C]HPR7ԕ6T u_.vo JPR7ԅ uM Bj. u! u!uzC]B􆺐. u!5zC]B*􆺐꼡. u! ++T'.kSnOً:@en1B]iٛl?i9iӟOu]ß~?'ԕ6}JP>|=@e3 {?B; ?a_ϰOJP^n(}nԄϴO36I{?i7 uM+mB]7{P;zJe7' h+u=ӟPW+ {G^9k3JPJ{D1;}w@]q>uJjG@[}'n9w?i(oeB]7^3JWz%ԕN>ϰßm?? ~x$ԕv9޴>KfK{?aA]igO'V ;. ulƿ[Ŀi3TPW#6 5W3msϴO'J+-W@_,f3x,[Ŀiӟ%ԕHP~Z~A>W _[O)7鏂|5E| M< |^u>ς;7i׹ \/}?[>?Z/z.r /xGB2[!Z~.^cA!E!4I!M!4Q ? '$^ßy^8oAyޖ_JD%J)+R t3Ÿ)q׸ {[w]އ_ޗbާdܷgDžiׅknps uwy#|+~3x@;7yKoxxxψxxxm8+/f!^h!j!l!>n!~p% ]:.-zgKӴt ]>.}?{ƁK紳^>J]/f)xM ~S ?z ؛ٛ@;#߼٤^:fjnM~M ~SK@%|SON߇7j xNL%5iӟ TNNhӟ6ف/$uZ+mRh'5)mR~Qh')mʔ)IJ6I;]';cԲI=vN> ++'6ʛ]?^xgC+K&z˸فǦ}ҟaZ~޴W3z37M<:m7}^6gO|3?6ipyG="힥yGf?aG=f?QҟgO;izQ3=KuIӟ[3'U5 ?~n6oF=/ԉIUB{Ѩ7=ҟa?a'-vvMh-c/ i^ޛML7=Ÿiӟ{wlRhנMjRM*QϿ'ŸG =ҟWH5,mRP>D5gizKĿf?ag=П5#'L䫤݃vŗɇI;ojmn6 ;:wsO;~n6 3i3="ob[v7'O5 ?jh[5l[ X9gBHöy!f;Rb~I`ːWJ׹zM%g39wtf)=Y%wB &*B"l)\WngC[ČwlI)ro_(R.׎1X4؆ҝo:EGx>kS@< /GvwP@I#_˥3$ؤn+J\!gMF%D=PTR +޷B>Hu`e_3AȆљªDgK R}bPBPSN#wRF;!#A9Qö|(YWߝjh+u9WN&u/9Y̎ABku6ըqUmB^}wW2t^BsHiNLRiR1Pyo‘ !<)ݧ/cpOnuH37팍DZԁKR-؞ SJ EFk ^KIYxJmopf5)jЬIR }2V^mlPǥʬ!Txc6$X=bnR3 f!DgSS6Lt%!j=?$PH= tUάXJ#+BpNY*2{{Wv$jձ *1a@B[r5]r R-+>ZA<@+I2j*J官鉖͟ \YQTXˮ ([p"pK^ κȶrյbD,OVy56E&g%%am>QWDrg1V?Tt5,Iy!Ô<}iբj{jz9zӣ_κ+2仨x0-ؐ"]{jbMeR>([k)`NL:u;1ɩn( 0!~?j|#u-45Wڹߞ<!: XLgm_'eUK]NpqEp}/}KPQ|F>v)byELcR_\C!f94,Vr>RbBQlWϦR`>zvU K*yITkS+PB16ql8' sA] Ӗ-t\ޮ؉y5B%V|P=˧VIjQg"EH,Lɓu*F="\yeߨO4\rl|ϪL;=Jg4; lb8ط]dk;b@ͥ+s{k)q\Ib] NVѯ]s]mIRݚAݍtДc,ekrr>A<|%_A'>\d%{ԇB_@^9M)7G4 QrxxDb}#kXQfM/+PYZ78Sq7ƽ攃;[jrqejAѭiQeȑsQ)[*`Q%j ONvU[q y/J7b=_ ֦`+xh.6$6XYOךTq"ȮpURc?^.dYP0vWEwL1kw 2[%j/ hZ(NϬAʿM䙓 -P [r*:9@´W~~:쯙n"zNv00>%׮^姪`a!N| W0TzSi.q h!2l+UH]E?^c2$3Uz=]ղ ֌DV W8ASO_pͷZaFcxlg spAPkp) DZE骭UC 6:KJKVXDkCHX!y@٫:'BU+'MV:~% 2"S3K"FNrdjeUMhGk׈i8 Ce@h9 T*цRo<.h;~k\h_K-}!sP"T2] tAØex̲QT 8RncP/8t<ݪ,-Z, H}}JXbL&wcۨ#szw+{|dP٨ H*%pF&ꦪ28thnD!2 K_shZn\:J^t"|I,{Q*B(*~5SI:^ SCk~Ax>A/x~%N,|P_|I0N鶥nVxt2B@OvYB桋ȧG7(FRp)Yi6\:QW ͊ ,x9CPIrvlFC3u4MglW[d3ȈZE+?>xߡ63vup)g0?oAݡdDI]awel??I4e);i-#sߒnOOѽkɵqmK\>2]r.c1;XT{n* u@s^]ӆN>db]P+ Au_ר" rv?Vػnm;D$*YYN|8⺊Y9B?M3 8O0f=ؒbı[n, =x#R.lk yPe˶lm\`#2Nj*M7-%fTR; U!ƌkjJ2E9Nv#CB.bo>*"&_uوb0!/(2"y+}*M*mk5֔lϪS Uq9yҺ XuGѮЩV9aK%B+otE4"r ׻awXWn`;o@/ɶS]AD݊W}cKIq?ѕYÍ((&WCW?v9אԥ2H=C]o,[IO >Es6SSOQ4pxv9T&).)jяN +Tj终;C@G9'Jm>(۰5b+} ~D-@4DLH/[rhO`|LYOe+V"/PIrIH FsIn6@^ɷ#R5 ayd(+hZPx0K/) `wUKr [ ymRMcpBW첗e5LK*E~/[ [Fb իPtZ#^P!Uo$ #eAnK+d.b^Whf)rIvÉU-rjz0jWTg(~K!(/efUIJjT:*ASD YlѶ{V! C..BݠP|mчB?&:5\C.:vʉCα5;)4,{X~uA=վɪ,l+`1[,_(ɼ.uP'`\>bt 2ȶ֢M5 -|"񳓷=dXuZmH ) VPdWtF[Ȣ΁@ؖ/[*a${)B&$aL, 4|u-و~T4{'+ bJJ((Ԣ#G\OKPz2NoM [:}lz^`i4+#MkVЇ5P7>P/Mc lz|c2-\gd?5TnN0͔P_Q]}z ak ڤ~V ڪ ;D?nAhNZ|2L4&N+pH>:srN8s0 `AHֱn^H0C)2S,FʯpzEjNttpAr^*HĨυX-STXCwOlz$w a*BjeJYl@4VhCڗKlEA}o?4_hz 1n54c'"!d =s㉇w!<$'$gP^JIe^#R,)ןQ C}$]ZgxL|PARyuveψ6@A]™OT5(ԊL.n }:V1(D(Y\K޴$ $8fW>ll 7,/t`D)nr1\K4W?Aj@\G),|0)2 l]W]M&U„nnRR2↵/+9znPAҥRc=q4-~dLFQՊФ7jĴ("-!]&U2<i8]C'2ьsb$<žMR V^rpE%}EKnm:dQ1KWn]% Gv#<fmlq񕫨k4=lozJݎQdrvZy4@k'Cԩ1jH+%.\(26Gv~P;qQw0Uy7T:Tj9mG ^ )zs£gYdxzzh<`^ZcwL=3 3fUkO{9/nGO2&p/-Ǔ7bmq`Tup4avqA?[ڟ*f1/ފYwj̞|ϺA Y._q6lM~g/D{sst=̂ςȘ5O5Z0{ìɅaڢ~=|o UaOu{,߸%tMοu># hAir1!7 3dޘMlWN_c79@ǒ e,_xXM̟NGA̿O IB k|qb}ZԼYЦ=HMJ;-̥=i@EU)n_ &6o}~7@tgF=Rnn| O=70f~ Ni|6{z|8?Sh.ˣw?}߿?C{h׿?_Ͽ?Eѓ#>ׂ~_lkx-W}trWh~eC.%y ۯobOU-b|I7747-}?t7~|\;<%Vs.Bk+h(h~|> ç¼.?~e_πǧ3^žzϧWG`q;vu/ 6I6*ؖӾKlo,nઇNa~{}z~UOL} ҧjxݾzmBiga^Oث?z`i_|=f*q n6!p {Ÿiӟ˟O'6bCݦ?mׄ>|= ozɐ ݾݞO+vӟO'Yh?aenSr8~P^?F3ݦt=ŸiӟӟǙO+驕'L8hnzې j6I?ࠦ=ҟvLMz*.h4jxo0i@ۺhmo ms,kv IßGs kmuA\~۠$vfyOhn_O)`v]ӟ[_OT~WRFQwT)w̘MB߆O'X۷}?a6I?Ӿz<~o㮻@ay y4{׻ҟvN>OOͦ?i_O׺Tvn_OUҟa~ 5wrTn=m2?Ӧ??e?Ӧ?igu{?Ȑ y^S0;nvEWcßiӟ:ŸiӟgF{Bw:wz^p0>ftXjOkϰß{ӟGϰ7^CۆH^x= ۅ6D*C%M:^pyw`[bo ̰7k0u k0U k0 k0 k0 k0 k UKk Jk Jk UJk 5Jk Ik Ik Ik UIk 5IURRRR]t|+*[@]|B]zB]yB]wB]uB]tB]rB]nB]lB]UBӄBфB̈́BɄBDŽBÄBBBBBBu R u N u F u > u : uu2 uu. uu& uu uu uu uu uJPWTU.F8:8754*s@]WaB]y@]Py@]Px@]w@]v@]u@]Pu@]Pt@]Ps@]7PW'PW'tPW'4PW'PW'PWPWtPW4PW-msJOVRJB>JPWԙPWPY uu/ uu/ uls~@]MB]d$  ԕ6N(0N/Nh/NLOBw'Ih? ]OuuBouuBkuuBiuMtF4FF+mB] }m/PWC['ҾŸJ8Y׺ۄz@Oz@K&Z"Z"uO@GuuBCulPP@]i':nC+mB]N@]irnJ{?ԕ  fӟfJPL@]i_PWuuB/ulv z +Pͦ?ԕ6zu싯(PWڄnJ?kϰß&E;.@1ovB]JP7E; u~C]jP턺h'ԕ6. uyC]iꢝPWڄh( f?agOWPRIvO5 E7ҟg3' ; {?ag(_J^n(}nQ?PWß uy'ԕJtNDς|&wA R/z*ȧr_o69}=sU R?~*/s䟹 ܯkMv? (㾠I~MQB>w>'<(Ӵ{񣼏KzZd?i'KU%RWi3(,E߿K,fvVY+KYM1K{F|˕V7Pkx]Gϧ]C;c7H`>QF&Wn6|9g V["?|+bʴUϥ]cfX7D>yO' "՛M|fyg?|fW]i3_ٝ|ͦ?i'*yeiӟHxͮn/īOm17@jO5vvIoҟa??]M<+bT6񲴉' ; ?/wO%6I|xc}SNϬ7 &U=Ÿ{3mv Үϴ/z7}v^7; {?agOةnK?GesԞ\NĬs~2pS]\kh*RI/[}fea9]MIdlcJ82ʝS2L!?_fpm- C)XrS2g[e7dl=!piLT}("?V6 {}ɕQ!ԧ;eЮmy)qvM-lFewJǾhU^gv}X6=ʇUMpd8[ζ,݅0FSg\t;4:Y^SZ6&y #~,}`O[sALȃlnrm,(nY-eĺ4$Lqm)dlPJRPR}tzOozUȢ 뙱xJvYku=wӲjWI.J1Wr&OC0\*jaJ+H:b5})?WL Ӄ Wht%mw39HK\)v^M:qz~{ֽՔJNr#7W:U\CNR*V(N_ų @7J\8:bV }E^mGmM(S{Av9vhcy셩6NKjd_ZjɎ(K~ Lڷx\iu5[jBGBxSәCmT2Vl5iٝ=?aȷeT s,A~8kQC&ZQ^s~ZV1U yNښw0jII% >HN\9JƮ Tm Q2V149W׮o:bڐ~=B[1s˫sPϖΪ?錡f=p7nUJaS+.X/#$t4k@hP-+dv-5r xWώWA&/I 'f_#vWY[*Fzd9Ç3T"V@lԔյ`ؘiu[8`qaxi7֨(nAY(D>5#1gn5B*(Wح`5sX; KRZ.*'2:n%kƤ1lM9!&_e4IS3 &K7T X"]u8ئ.u qltyl9e)!VF:8?UT%n*B|1<_oÕ"}tӸW/A.X7'g|Tu?W\󠗌$4i,Bz&`+8,r iםrܤC"ulNİy oBDŁ}2܁.VjKP- $QQ[φ}q9.}?3ÖrU}.Ui]Rsɻ`^Ҕ']0 nF+^sL2.-St-Kޠ8ߒs㌡临Ķ˟^x u! J2rLۡb3 O:yV)FR{# pk RuKB[:G- r$jcZfU #'AWۓ*I ۑW['`kF틞;_1E TU,bX/tj`]ȹP! +P._"tmh#/^UɒHԕbT \1Kv l"ǰ]GT9Jm1-(IMː.GYiоiDYq Yj`dbzj=B$|UlAU%0?d6'WXqY)O)p͒Ё^]G9J&%f;lDԵ$pPCr.xy1k´f N ᨳ,dGy-^r`"vBs D2UQ{}:`G.YD3!W$I\yV&w”$cW8g0o]]wFWaH~80QTf`' + b@"1` Rd'C\YZTm&n.ӷE9/9 ۟kNy+/=DuI(Z'VœACmx_ ZQk[vTTtsGxb18g}K eRʛFo n&K89 |O<$0&祱Vr}{zK^}C%VI~'8裮ĉ]t iy%0xgXؠt_AjPǴPkُ;~|f > vfk ܬE^ ^3d"i=:[չac(YvJNy7w"rܨGL-kU:[L$㡉lXi"?#H‘KmФ R kNNz5qt8!z{/ږqgOPf4KeaN[t2u8Y[bl>\|ÏYe1Ai2oXã:Kg1'@t$E%y/UpBĕsL@Ƀkp{-"XCeVl]4Nk2#-_Tf4b:V|,; ŰSoY]}| ֻLV".Py֫,wb +[3W :{4lmrld 8Béqy|5N~Bg58U݇ ֺ zyeNI'o*(h{QU;(Sեz /6=Ws}7Jq~>«6y^#.2oU W콕}ILئi^["2Ӣ%{9URsR -E)1$nVdj^Jg f_^S H@JN90E!q YxSl.nX񖔮MB{ݨ-$~2Xd cqwEҩ Yumo-耐]FZ꬜ֳu,UUrc]ݎz "'ꇟ/_S35Ļ-rY(SWg]"l~zV "8} Gt8{"ZdQ֯is&s]&[xIlʢ sÎqM pI_y\E|,)W>H,M]8jKչ}ΎCxSnqCRHdL>EH#hm*Eϐr*:(hAmP[K~}.2س(GM:N] z-  МC;R >1@0^;*Kz';p V]9X2UP9PhWE *\2j_WU sP6H VV:&aڀZWOߙßT-,+>/UŒ:TArX@:$90p{5pHSu${MBG* й+^ M涞鎼b`EiK^xNY:b6(9HW娣ءD"[p^,-:oD:h2`yn6ײ:-P/+~K]nضH }!RT\jTw@T3]!g`~7ɩ RAT\HlAyY!=;:8T+ *INNv,pz~D2YC7!PҼ8pOQjӾ_@xfUqb)4@hC4+CgRG z# MhF2G= 2]PvX=}bs`аǐ[IuB_{{o8UCM8WᴾɮP Tdf]u[n+E@MVs@O/G.]!["*W>Ovp]&r<\F.JYd z>ڑwD4s NJʣ/*i}yJ%li8M&(O%!$i kOi;RzTnF:5Zԭ7P.nW[:On|*t\2-% M#EsB0\]fu ;h!عZ8e>7 ؓܽЅN*f&.2T{AH$rshg '%KӦLd'ͩD[~ u;lPLUݾlK *3!Hi x[z:6H0Jt*{D[mWAE^q;MNSoPP*zL\Dܾׅm~ 7.D Tyb,pb8T<`%Q+gBdvɎ1PBWaq V o/VW SkaMU61]R\M}/'77b*I.zףP$Uģtaȝ2!Z3~ k`mKku-:t=XKF?[&oGd.##k;:ZRRbgMY6]L;˕J }tS rWBFŔ[p\_0_%Pc@JIpn<$ Sh$rz @f>U4) [T37z- )T?ݰA.p7n jE[5 ViOԼ1/H(ݜ?d+Z^P6%BqHS !ҢVNA Emw;_뿛gyG ]w|J$uX\!Rgyބ؜qcpuj aJsL2z<9~L&7!n8˰ͤNSUVA]N[H;gX9K&kEg&e%JkLiW$~߲P6я1<YpCmHmI.h GD&1+*h>e<7Bfny&*շ~,vYeQcztϩ,Ӧ`,c@lCv+#4ԇf*q 6{u؄+Cr^Q"–TɋhE NY` "s|r!U۲XRʫanS<]W~=I{ y{";8xx,,\ .T2x6,BRk1KU *zÁ Qn1P kI1^~g@"-s,|5UF#գJ2eB\HG eRk,94 j!Am1t9>4uv(x1bKn.(=c+.Ԩh?X]*{WIT#4u&N7}V)tЙL5v{f|e`ν>MM._O[H)i=Y tgӝs1jmIC]@" g,&h{!ZVεQoV(D<=ɂWILtEݯ򠊋|>bQHF>zCjYߴɢی90x;p|U0%?\ВD Bs JSJqL+fqsZ$3w}7LܗVd0$fR Qw䩱d&ڣ!=,\C.v% 消@QM[>%`!qOT/\zlEtvϦEGw͎)>ON!h`+k2Z~<5"׫RcFͶ"Ir.{%jJtfaƣ i慷VFӎN!96e١P#:ؽt58s1~l~bS4< 5icA˳W$>N@Ҫg_5ؙWa;NV3rCWxtxzYWqXx ֤+MNY9MȞ]QMPZnCiAZ[Hk5 [^ Λsnr Q7MSG& }E\25=2,[8l15䎬zSFՎY^W- JR𑧜{iٗ6oOҴ8z`UOYU|єr>gГ,(= TI99d^}|zLz|m@Z]bֽ _كqV*ա}0>k?:LdY j"I<=˧*p\V@&/mNp%W`C|V 2=ՌrPPz+UA6[yIv HS Az{[A}Σ6$VZP}B?.tِ`k~$7RE'kyws`Olj+(Q#]@ =d )~ў<8ekMdPP1Σb] :څFK8 8җxЧ*Z!6 ~Ztşm׳9eYl,N"Y8Rh)OFd(C=\Z#W^l#^>B 6)0߯Jn|m9>|%&)KvqLxti-_CAg8Y!&#Ov'\Ӥ;xMy_W@Z:zeS #:;2gAÝrƲ&5Hk~~sy5J~hSO+_i#sS7J)fT>^(h@W:\ZpbUꇆv(A6vh4{lI]>{Wu}]UqHl1ԊUYƣQGqxE2S Ħ0nn}_O6ItDU;8V'4]A?Ӽg ^,˻mþfY4K"W~F~D'@9. i!NuRTaa^@|S&PLz(Q6 sMN(SqeZXzGu5b#}v=]zZn$qh(,eydU7=0FܭE&IR}SkܞHO$mg†h b6?UUy3tO:h{ApPcvњBy`u2#z4gF`T9.2 ̦@(Aޏ揜 *$kl{9Dv8҂N8Рzߔۂ#6 ymɲ@GrM6(0/-j$VgtN֞DCTQV í9+ɾ(]aHեӠ;/%,t> oYYQoρIJ}|5Z@%!F/ SIZ#L#Q fgwƲjm]O4pbʑY99BFq;*Ek8e4oK*T6nBҰ) կRR9;ʖ>FP:K&a*a~BOFh2:iƱLO5*u &ǟOˎGg`l__\Ÿ=ol=gq"\q 00SJvNn_c#]uB|fY̦"z}>wp/J~봘~> 諴6[K1U* mB͑oT$pXm}oO!7C %n.6J}AH7Bw4B^|aKvHwu{s2%ƛz|-7tp~F?H\oaǎ #,nC|mߨ[ڰ1{&Lo bͱs:obw=t'o߿U_ߪ|c-QYwl/_{?G(͒9h})_"<ۋ^l vW?ǿ3zr3o?9 endstream endobj 169 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 142 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/5t/8dfc_yl10yl9j91v2lc_jksc0000gn/T/RtmposLYxE/Rbuild2d0830c1263/effects/vignettes/figure/fig-contrived-4c-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 170 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 171 0 R/F3 172 0 R>> /ExtGState << /GS1 173 0 R /GS257 174 0 R /GS258 175 0 R /GS259 176 0 R >>/ColorSpace << /sRGB 177 0 R >>>> /Length 50641 /Filter /FlateDecode >> stream x}Ktm5~?ll<0<m%9"Yni'[Z}NU7Hǿ~_?oou^}/:Gݏ2~|/=/~z~O~~ٟ[s˗UXcO??\诎*c\#-}^GMyv]m=~|cQϗKJJk<_|>^bx_î~~}Jse /5 H ߫2Iُq]UE$qd/?^#\t_KyN}sN__`),/ n|mx-ZX;>ƿ~ZG񅙟5GO=>V=?\|obےjm^{钺~zI]rzm~~Uyp^_&G?p}) xTm^?=0Cpk}BV96>jyqRp03StM'p03SX>]*}1G/pvO8t Mp 0B38^47t94.7],~3?a6Z_'y"{nx0 p :va3FaEft<ljTqU=(^'βY).Kӱ==[3+aOnO!Gx% _u ݞe+.nfOi=R|g98Wl4ݞ5==ݞ͞pu{v=]Q׹_'^z {+ Þݞ[ {UN'ҁCnaߚz']cqVWӱx==u_Z'Ng=nd/x\(8_pw{nfϬߢ= /xt$䁯N /˫3{nnfOu_x=z%ׁ5|îrj~.aOnO]naOnOtz=xyx;٬̡>c'p{g2aOnOmآ}[ӝ^6{&]g@g` lL/'izBc=4 kx؜]ix=a'{ ÞͰ  G 5 loGӱx=Wسv{ﰧcp!e?.6ps7%nOaOnO {f1#3=o`z?z'.+Yy`g{8=5;x!Ox_`OJ \žݞ5ݞݞ= <O'y^ o cݞŰ8=Kӱ=ut<ʉ;qWOP鉿o/ߩ'%ԡUA?ɪ*ߓ=ɪ*}UUzKMy)<* dU=ɪ'v)YNNVU9dUIV94*dU$zUU'Y*udU$t{UORʊM7PfkIV9nqU,=*M7IVC$;OʡUU'YדrhdU$xOJ$LוB[n?a"'~UO8pfT1uʡUU̥UNH'7NVUpNV9\n:ziRɪ -ȪFVUjAVxzʔYUjnfWfW~!OFV69dՁ]dU^v=;FVU#[:pu{Lq*ps{qfONV6YdU`#NV6ʱU'g''l4\ݞ  žFVU  ldU`ɪFV6Z0dUvfONVi= Yu9OldU`#NV6kx= /g~! Yɪ9BV6*UFVx\Ȫ#BVaOtaO뼞U:qA l~KAVxww} fO\U?dՁ͞22Ȫ_ *p Yu`AVnO <ݞYx{,Q_*NVYdՁx"* 7 \ݞYu`:AVAV9LdUa Y* ꂬ:fjO'ڳְ'ps{jdUp5Ȫ v::iYu`AV.nOレ \ݞYu`'4O(dUx!x};~^~'aI_M=nd~#+3~;~!%~ծ7lly!ˁ͞xyKny]ndٳɞG/=${|I|~*Yadσֿ﷎}?N}N}?O}O s{z/|SjOWn.0\]L\#p:׏c'; ž38Ϗx>z6,aOnONaOnOM0A v8]8t5yawz쓞mԓkQa 43frVtw\ hB;{\&DO`sshn:=4]f:%MpavXáI90٥Ta2#LO St8aSb>^( 9sI*tg.qttIs8t)Daw9L#Ճ| pa`Q\2 SKY8o׻L0cv7/_.,^E|Œ'[/B<1sp~*x[Z ,/ЄyFewAдڶd˱a#o[Vp|_xp""n|k_NY"8v+e%mLCoo01x*uT„~o$zo.Jjmܱ+?4L7|_$0RW7o ´;e:SV8.z_]_ovc*%2%εrml^;C%wgf._(axĈNFa'WYBi5<d\j^p,{d+{ݝ9^~lײJ ;2hjhf?6Ѷ߿յ>tduRdAZx+@L'?g`Tpd3pj@v&M%m&r\, ,*p>{Xv{ j#}+qx2䠜F.S qiZz+[NFOg *Oٛמ@n~B$!;7CI\/^0@]9MFV^gv2Y2WQ$NlJ{+,}~ |ZЗVI6*؃5Ur~;2`3~ ݸJndKM &oELqm~*'ˢ^0qw#wg&(jEұ`7,Kex3̎|ׯѹ~&xVWF$N|9䄕k:F[7/EOb͞ɩytͲeZ8gЀv9Ͷ6 q%)'v4Aԟc?cFN.HN̵ k/;r4}3o#~+,a;@J;A7 ğ"+ )JOqwW+Qu_!e3\&3@5f!94~iF 8&%<09^Ȇ9R¸ͼofSW(GSpƞI"`Qq?98[m-4,ֹ„^^Wc|bɃ믅8sS3u׏aC!0{p.'ِr޷5 Wfِi e6 8fI0PW[bۖc`Inhv֩D]Tg lWCձKQRY18Y]]Új hV DDTM'T#1iWlLs@B|,.ϴ TJ޿"$" u'dPGޯ;D ȲU!DcW;UƧ`-FD6 &Xy6w"1Vg[ĠJ'KlApnPywTFꢘPO2To 6ih-v+Qnpz5͑ZUB*#$/[OLImހ"8ɶT'* R- )tŐaxL 5?7jN۬KQ\& 1LOցYX#jCڠX}YLzxdbCBӜ y q :~[KnpI\0"Yh>#\j& m#L"%^ A&jd\^QfZVX0KNU4ͅG LiC{=d+fv`NNT^ɗʜ:#\!2 z%iO?Nx`$Y F Jl1ek8r.緱t6!)e=cq^mm; vY2}!-&k#MŤmI\'m2COF&w4)(ON+C~$)=:mWܴfEXqD.Ɨ{.d4OydlK;k{Q?FRp}DPBUe&ʣ!ӤLDb=l“7y*A'#Y?_()K2{g (%@$Y[VѴx D;G$hTsJ[Bb_a&*G%q֓퉹WJI٥,Ov y'&Ym#BجuL12!^^I 8A>WKaUaY:se\ނx2"QҠwlW\ nIU'T9T.͘kS!ewI5!@T,*P£ ;79XdSL? "LCʭgKYÔrrOxoOvX4jΉr@Z,=]B,a55;)N\2c5`|(l v{!mȸP̲S.M*+Q4iԛkNd_n|P *yvX\=OVgCWhLt(⁕wPϏ¿1NmI-A C~n_FUfz Hf'hT\Pi\,!9G%E=plKqMBeO,Њjo\tInڄۄFʖ("vPCy>KT/\e F(e"5@Ēox*Cnt]tHXI2e$@ &pZ? phqW%(;I[A3wdh:Kt6cA6RW7{TIZi&v5ȼ$U/ٛq2wM֫qNg+SH;#Ũi91\ K&M,g fL^_y[J+5U 6~b*g2}/+|!uM2i")$ăZk[ϰDk&vBBd_QGIr hD| =rd'f_ 5s:(N*N61Fq0@}R!4X3!4 2l4*3im ;]A6*ʢeHX.ڨX l SfD۽Sgў e%Pʐ1h Z[0zW5pRPאm\Y^^idǤlWH^ 8NqY;u8.5Hw΄ [kƘĴZƔթL \2M{{3̠JL,)θ-AYuS8J57~̚8;MRn+J17FdϜ[=XG7=;X87lD?~YP+,>UޗFΗ<,~|`a*_ bRi K 5:CME7LLǎV{ҚW2{0C|sCxh]Q- ѴEDHN$-QVhܖnp$c e5Lh:0#ҧ'ALN(FHA2>Ba`z۵ܨs'mQhʹ+U5Ãbq%tÛ3ě[ME7f#QLi,GYYewU ȨJwZi;9#Ym΢= j$h;:i>OZt^)nSvwM7Di5"HiTkVspu8zWϔqVfa?lے,IKe'F:t|I$FXl`(mӖmk&66 ӶЪufi_ mDA\6^6o)+wo =che^ J׶i`!J%U}@xMB ]8,GKW"emk,@+-')aO4\dA m7e07V+}d)d"xk2CIi׋\9'^I \$FiO㭪TA̒R=Fق m(C={Q:`ǚ8#9M-tu#O,ީzOکdhF|GW}X#l:Oe"MY7d>K-w/v6ǫ^+l_j؂>0;7W~)Rxϡ4*L{UhPsG ABh_"DƥR^K$\Bqn-E SW}" etܽ +a3m#KB1{ƛ٪豃nGҭٙ0#~Zɩ6= [ie"O%S_il]:'qkk馭C'$.*A#f Kʒym,Y9OR"Y#v. 4)NȨOoU'T4hT'u-#;LI'n681<;"tU'h1%r׎OI]{^;՛' oeSo.ΐaI„鸺vЁ(oι > t6|6Y!Q DFC][Kk߿ĤBi9ȥE8s#I%LعLZ}SM]f_1qvjt(֜OKcC FaT *<阺\8G79Ctϓ($jJw6P4t'JCkte= eŮm/['JYYs5 a3 NjȄC) B,ϐ62 NpJZTαV9|ǭ*ZWh.t ݴi!+y L?­m| L$kaRl I VI MdT)oVC!+CH }X-6(܍>YV-d\I\iy$DLΌC-p{TU>S/Diy|b5,D LhVF3]l9Yr=]eG6/DUj.T[1΅gAdϏ51^Nj=޻]k:H)ͮ(S\׌%UM*>[AOg#X35iNWޛPco6z(f$ˬ"٪jPdٚdo4Ѭ.rqCY)o)+N=^&4tK %`AkL1nmI6^ԡmhd;s#&/4mi/qؑu!q۴t:ۡ:Igi`6Re zH{3T4`{ %]hP#LӨ3鷑P˖D c}N(k͂`L**' yTNg&;U̢8I F85%|>?d?tͭ&rlIh gehHKAMPJ>,g't3ZrTkG'Wl|{BBrfj+0u#-uȵa.ꛉ,bDj*h3-xOwW6O(|kqitz"MycC scrJnl(6Ԉ֞}\nn57$%7k0i r+tf`ESU֗x|+ʠt ( .=pswN]N'fwȗ<7-]i4um!aGӖh!u($Y(Y\W#C5O,my>53_Dk)k޴YzU`wupOvٟN!CyQm6(F& Bu-1z=\L4jCMfM/`LCg%FJed2ҖKii*߶0/sAR6x(D1VLVXJګ sz72֍*$_3&jʤ.>ldHshا6Q\yC6}0Mhi#+eN&ȴzؑ%MDhU%V7]]QDDho{Τ!B12BV; W4.Sv"u]ZQ]]Z[NLJX\F0QZY? Ґ9Ktز7Q(vhmlQ,O MY|3 0L烲R2?,h->SaEBwN"o&;vЃìb.r~F˚t!XJeehs~2څ*6l /|SJhl),ks 1јNL݂iUݰ(5sm.z={0sR| :l3͞t<ݶϠo %*nyK7D Ei31z;C[q8kЊSzM41iy6XS-nIYIVeݤ6 OSx` P &~ n݆Y :4EY @͒|LB9k k ũ +#ԹG2dFa/ 7T:~߮z! ?(YO D0t,M=k:qZ* Jz?%ІҧNP=Om4 ħXU_]1o>7jI'z,7b}BO#2U6@^LoK}j%q+o2 4O]`}?աR}~'!NJY1ZDHZKg]ןmmv8EUğz(ƫ+jV|ǜѱmH{{xђחdcޯ`^#^.`>uwƑPS+2~l/ٗbu`gL+z|jگ( +dD0\.t{w9-O*g?#=[~߲[o]ҶTRI<,ב{}p';~3p7_Mn|_w_[DCkoqJ;QYYvÏ_{?~3nН^nУt~ҵHLJc<|\߮&5%ϗ4-y$/1|Elw_cׯt*_?}s_ޜ6v8H?[ۈo0|ۂX]X̱uk_`|VR|Qx"?ɻI)Yϥ6Ѿ]?mG\"{:>]Yp61Q'vx nzs{&%!O~Z'&ʆ> @'^^xﰧ}^Owī#xbg+l4ݞ3Sbxya@O'^v=qʲ <3Sj=={x=OeMۉ!zbHOz7z1rbKF՞{V{i{xO&S=”_^F[y`4tKHznOtaOݞ=p(i3_w91=1ȕ=/ݞ% \ÞOzdŁ< 간͞v{6{TrJpv{.nVk5 zN<ډ1kx=9ݞ͞3{_)xȾxt/ >'F+'aOnOfӱx==ѣvak~N:qKF=[==utaO`qM]`:pxk=R\ݞ͞3pw{Ωx=vep8 Ũ79nh'p {:v{cgSOF*0zԛ*wӱSqIaOt,Kӱ=1FĦW2kUx='FnϤx=wӱSqMaOfϡfaN+(6/0t'ix==k ,]Opc߃}aե+⠺`եZ^ǩ.wP]y/TpP]{>^.O ޓBh ՅPIu!TzR]B<2TBuR]pݟTW`?.O++5Iu|R]ꂫԵ;.AuMPmAu6{NPgAu/Tᠺk~&&5A%ب.upP]zTᠺ>.AuQ|P]͞zTRAu+Q]*9.Auji= w8 <ܞ#6{nOFux@u=TW7Iux˰ps{6{nO٧9O< a<ꉍ::TWmIui== װ'p {:^/3+Q]/3zFu6nONuaOnOjOװ'Q]qzSz^ ž;ԖTWt<ǩ.:8G۩ix=88;S] OTxҩ._:{snO]Nu =uĩ[pT/'O|sfO9_=q:u`y(|R]9{ eBP]z[ר4GjnOJu/TWq*m=[\/O6WlwAunU= l\/Tׁ͞ TZԹs <] U9u`ܞsAu.OP]kK<TAuOAuj|TWx(# fBuY|Tׁ{je`P]1]7:ǻjemP]umS{8'~"_%}c: |K# {%5af'G+/'Nb=$Q^XO |V+c?5?|`g{yx^xxxx^xxzOo؏د/w(~~~~>ܞIFy*Y*ϳd?i絝g;oӗ8}IM%?oڱՁ>p>|xzSZSv{c'p{K>±+/OTz</ <ݰg?\ًK6=o2ОẌQJV|&m{oRI$nHzeuA{u8$}+Su]b,dUd&2Ab‰ru0AɚT mt ^/zUFufz.OF~o "Q@GwGa OuN{F<{ Jzo"}^fs9dW޸t6XM֕0HF{ze;*ޛFo}a ᥽\dxQ ǗI}ytЦ #` $ OLSp$Ѿ6Kؓh8!tGb<ϕ4/"=$<) O+6W>J׆di c=Y8BX[Y(k:ԇFRwi[8( vf,jɄĄl9fϕuMT~yZ6&itcƔ!rBf ftvbFzfy@I;sM*x@u YWHѩbrR1뤺Dl5141v][HTi=Ā3ݸ o:Ilyowf)WJ#es4` ְY}'k,aG,? >@V6Ņ#Y9lXȓi1ԉ{DVl/kYNIs);aW#$ ;ag; KJOUzwYuY"ueNo`.A*÷ 64Oڊ \a43Syݵky,{^f,miǮL7~5sgԗ`D+ i`M:.JI)Y>(TKZ X- A j FQ3啉LAJ  r2?jbm9fJnaz1UÔ?Y7KɉlVUG_QՐYIܵpnbߥmt" $V`wt8(Sn*{gٶ18o* 1b3u(K,}+NG6Wmp a(epz(0X"Nƈ(rD62O u81ې0gu]:/ YJW,)a|Eu$ce&sYT ERD_g:KrHeV9l:fsՙꘑ+# &sS%C]1:Ʒ\.;ah(Θ9QnGJs'DkN>jC73:$@3Cbt%\E!5iU07qvtDb1hd6̅G YmY˺6X }D)ѹdd5.^tAYPO-Q&V@vB (I-)љkpMHsz!'$$-e'kcM)NYnҸT ҭ irDhs%TH'_ ni:PDjD(ͩ(e{كN/R[6q#;MKLH\BzS"D6e@;gpl%Pc|\[& 6M 6:DGJp#{'h^(;D^5A\$䷩Ph:yp:HP,MJ¢S=cTpDɖ %C Tɽ궞`8:S딘x'[D1go.ۜѮ7)Zs4dML.aLێ ,I{* %F]S o:*];Jg?x!MP:Lh JMtR _6-wwz ڇVl'5Lӣb &S<&xS,z(3'd`.\t,L['CM$Ϯ^Ȗ!)kw%e{{?& !x[F0B5&eml1wLfC.b9dˆF2U;QvOO,*K,Ia^eIvfʠrSZmKёܛYNJ.tlhu|L`oWv@$#7ل&tD WMš,"[ ?e 3yBRKJ$Aׂy[zP#(6ɕ%3dHf0^لbdGJGwYÆkŒ=V,9ѕL/4>$CfuQ΢W3&n>)nN O9N ]p6<~ lpHLF;Qe&zÄPBN9LiSXʖtY o2+Q 'U51bhΝ_*SY*@;Iu[D"K=IvӇNhUxp'72MM`E+Y+%/rPg@2+4onζn*qۛ!E SAj0TTLs`xRl݃烑$3reSUJ(MԒ$i 7[M!BGn+n.'hFr V] 1-`M=5;] G4`lk"_9 ?x*daӢuCfZ?,dF+Q]O9X ȝ3bҪy-.EnNTst,PԬZVhV%٨d[ѸlVi\P癹\,yWt.:.\J|4;SՌwW^G'.&{\9tTplQ%;x]BVyvt6)#kSCg]xl@fޔ><[CNAxU3(t4Uܰx }q`ym"MV]4ҢkH6ܼ郲!*(FkEdhˁ^rSsmD\/)~4m#1''m3 *Ulo =P{d ݦH94TIR0lurZX(S VN ߞC $QiZm|[¦U,CNAzR1mjJ Bcʶ,mu.8«1qt2친¥MJ&~(Յ1+noqhPstPK]gV&OWHڦab>s /i(b?h&}LF"gzΓt61J&9k.wYe 'p5&N^ߍYnR e`CO."gWor(:M>ۣy2MCKTƞ:ڍhSgQ+b\x4,NgLaV ͅWjޜWl cC!K5A,o4]M bzNJ@Yc}0r bZd^F_^)Ѻ&SF=kcHyݻ! 4zʼeDX}7G{rX:/PgsћTO,PA)ĞV[Vb͉!]T}y bm#yɓ(B5 &QʦIeM4(ZL c1ۚDô̫X0A%0IPM Ӫ2v@VOi64i©َ:JHߠy:D.i$o[r EJw FNAФ&Weَc{Ď㮾I[.0MpknREJ),F7vc8_6ӕD(IVa1m )! +I1*0c]wDN)T7mO#U(|TSȅ:H02xSjj`<5?iVSx1CE53Sz1r'mL N]սvmީ)Yɒ1׳W Z.+WmQdR *|Gȁ9镐H!J\QZ-R52 7bg} 316$J+dY1L}R}Ot֏]w#"`fLU0MNlיe0zL$U AO#7] 4y=Y PqADq0^En§RTINyuHs^m\#]6SZPBr](Z hZg^t~qu]@qVJ0Ы][gGvmrNAdeHX;|4,u$4d$9_6"=“k"npXg>~8r )ڏ m7! ߎP/o\t]QBiTj uR˭xwavE f\s6lMv%!"/ۨZ"腼i~GOF42ײxV@i74f=`i͒BmzreؒԆXV]Kn j' Fl3zt^ ܣ%ڿS=NEh2ZV7ͤ|4 3r>°krVwr!LZ攗?yEOj>=כ6~mSn69*_nW ;,1i64R[k~>hS."NԘͥ(7hU7ڴiBb,ŒD<$9%͓7rB͉%h5 }]XMELq7C`JAiE+hlXTV !T)D7 ahW)ِ貃ۆ46 ^TskDztTPƨh2^ f*~Eߪ}x ,EoS2\^OďIt'a'm$LFfiSm(d/TVmӉ)مm DN&@mS% S͵C`h*>1)):`#))U^Air)*AQ f}BnXQׯe(:U]s+b?m??uBvPQ''`~f)|JB,)? 8?czi{1eZBxRi*>o[&'3V\4TwZ`Såf w8toSs0Gi=ĤZՁ2njt}sݟ~oxc?#=[~H,斵J>?>ɟ{}E'_~W+M6Y:.(q:.}=~##_Z h ?>~嗏~OGwxG4so~u{,Ep,ō]D?_bxIoZ/q|dKFiKL&z//0x6^x~Y/|T,_Ų?^!0۫#}ޥޟ~c3ۅ֮S[j\.4m mϗo:YIϢn<6/>|O=O'.^6 D}=aOnO+=sӱS*aO{a/O<|bN<Þݞt li8=[}HLxPOfOi8:6{.]{= fO=Y7=eWFj+*cgSÞݞ# <ÞݞU {:c Re+Q,Ņ ݞ5'p{:v{'0bI',;:%i$J gg`4\ݞ͞s)nnOx$zStѰ%&͞3pq{an O'ή qb}jLnOtoqOÞݞ% 5 <扑N9'z뉡:xϰ' {:v{g2TS8=rbmqW:<1?1''^ix=2l4<ݞ͞v{*MxX dd[O6~VԀ࠺4tP]<.KU6 KT% lTf"mTKեf<.KեAuiꪖs"mTׁ͞YS]~tAuUK9Uc<.p"MTWEZ44hP]R]Au$T|P]5KZѩ.m\tP]3AuU]F:UuTW1ԩFu>*F]:UjtUTW1ϩT<'gPoNuYZ?*_TQ]*N-U,TrEOj Xة㠺 }* 2TWߩbS]BozB_Nu =:S]B?nNu^nObNu * 9u`WǩbS]6{XhTWTW1ܩbS]**;Uuۮ߷hةW41= fj= wgۆq{qS۷ضWP|gNa  R_#!6`@|o2HVc =}мU\ `vN+P?vv@A%nOJۡ?˞z柀.GX|PWu]⇄. ;"vZPWu]3u٧ܶC]ih~%WLŝgOJ?v6lC]i;uFLßW3'}ҟaJۡ˞uZzϰßG3'ҟas+Peu~>u]vvKA]|.; {?a(cԕC]}PW췀.{1ksҟa?a/u]SܞAEyPe~;5ޠ8 ;v ݟ8J?v>+m.{~ =u{E*v7턺. ( vz+m.{<K@]iψԕ ßJ?ߡ OB]n/Ā._J{?-K+x1wsA]ŧ u]"x6kƿ낺nl u=ß'ԕ 7+Dw>PeG>a +/ u2?3uّm }>'/F~W'}vI !y |(_ rIWzuWYp_zYc? o(*_r? !σyCqވqq^9?39λv:T{R_J ?҅D{R |B! |]|_435K̗.y@e8ϴݟԉt9^^ڞ /۩O_Ԋz!ojIݐ|i;:ZSO )n'u%mQ_vjIzEI۩"n'5r; ;?i?a'u7HN=r;Ii;u6ԧßSn'*'f-o.vy{|N[OIK[^/wn'5/zIs;i|SӖySNjbOIm_X_H:S+NInNN꨼aSONjjO#ښvvRcN,ΛojIu; uW~-yM v;i?QIIMN'|']ǿnqD*mg}.}vٞO~|Ql[0oyO[v z}?t["X^Ԩ^ǿF߲ޜv[sGv]"@}6iKĿF=#EſY8iZ_ \g'Җ+O>D%u)Җ'8O\o|v.9Vggx|ˎ5+.i׈'+%ߴ=썏buYvŸ|LZnO Z} Q|"mS-O7? ZMTc0SPumG[<lZ9T[DsLI39F^Q2Z5 43uK:Q#WhpU"MԘ"$'z+4,4BRPȋ!`D#J42*p~J/g>VD45}Epg3 UWL!^+)_S$5{FV>^>^[ =emqŚ"|׀4i!ĚXң"io3"gi@*UvsiX \cJtkh("̩Bl^=&Ty ys&Y7-&ixz*qQ:_Me25*C">h)j.Z5 Q PjmJs&#WZfzCE AVqS{0Q(]1]8V:2gxyk "5g/ȈPawƔipRB',D$p:+ nӑiak] (YX0уoUQP]tXvP u]͓|~;;%1υIPK6b,{:Xa`27O_Ȃ'4ܟ :n@u%޳tb+z% OХXCO }SxLs ~艳1'ݫǃh_?UӍ5,gThLn8a}ا1gzl`+, m>6U?]l./Q]EF;&PicpMi>4ǴY͎XI>죾b#ٿV:*]_j>T TW0]E/_t)ɮfdP?envSTA 4&m9T7~#HJh압fbЇEFg$``>h Ƿ0;Euħ⠳c#=,V׊a7]e$L'Ѕkc`\a\91X].P`נ>(l돘ȂXT s.lxUXБJI[/ iѯĿYY'3B m4pcex( #f8)ouD:عAi + -d҈F>}, ֓Ht#;uIGэPC = boPf'?HepC#&OjI.{\Qzfw(FIm;[C+3 ̍dwM:jX7}ës A~:N1si#%`5U f} o7NEҩXJQi5Ǥ|Z6U0٦ Zb+HBO>#d%9D'H _?٢Ӑ<Γ#vII|0ͮRWz.ˢ0P1 (a~Lp^qd nFG* }*p^g5 rG0i KRkAJ'1X,,Бx ڮT3aT)7z0Q[B5cRs5Jf^ϗ,SSuPJVo/?YSoycft#TT}Z;du ؑS^PcD Xm D@bGus\E@H](s (ewf*;QmGakF&o5e(QLrDm>Ss6ؚi'2T::2T=h@}W6vV*6 9VU&h,BG84H@Y 7ʡT׶z\u|_z]I c{;нQ*:{h4N=ިMu7T~Y`>,;=6R@V7 ]iu`-g@3(n-@1m}_Eedʼ^z)Ma>mVouib|xg|% ,g@ ԕ8++ꤝNe_Q#u;w](X!fiszO-UNe%B)T D:({9;S% {vkMQ[AfPU!qx"GKTWw)SchV!gwG 6N eNkIm嗯 XFY1 F7q0*Omw7\XF(8YuOXQASm.+8w 9;h sg"}<' 4ܨJl"@Hq C؆F؅袘V8gw;TQ>|Cj^Qzذ뚣 m8 ;U٦GͯU}EN eHF1Uۅ7@x٭0J;:7.bTUB ,<^l`bOhPrmwEX>2˷i%X-Lސ;S=aĠt+c! 6tj$'lRZ2EBWhkꥻKʈ1kIخBкO0UnA?e`Fp`P8]( }F֨VlKRIsUlr( SڞSE(~XiT'燺Xaw˒ ٯgd]< \ ʹr36rXI%Z T)eR"'` WP/t[s`wˑMFj;=a O(ި9$-5/r4ARb2 r\ z#y>4ݢ7{eeeT!`]5F30?L3 H) < ߲_| jҭA95' N4a-IQ9 T_K!eۨX_i.FRx@=݉vn֋_*<  R+q8MZtQ$d ebv+8 &ztJ0_ψ:5g r  :O2 8݂%Y(ّJW `1; T])5P-9>tѾ$C렦7ihi%d T*Bu5@ªd5aefE;ͥ T,҃ {X+9FoAUVGV!#zXsh~ hWA5(P:SC Yuzl8|54/Pa7+*fWvhQo՛#v/ Vm!*Hv+!FӇ4 NKؙ5YwllyjIЭpKxѸl9^YH=Ei~&>9hbT>$dUNm>z7Cbn.i#L-WLWϢz K>Rw"y+5ǚ&P !~(Dcߣ0QZ puɫ Vʉ+oSư Tr2`6ÆOuԷXm;j^giN݀˩T O"4j֬܅*>TAwm:aI-؄BL4 i1_| &`> u ѼS/ `6,*W6~4&4Sԓs0r`Y' 1vDLu>*f:.‡X4ζ\Jw>uC&ǬNuu'8UzB1`@=}`޷qSGCp맶Jjx[Ш@pV}̛ ?>3NG;!9QҥbhY&{=Tv40p*qr Jtb{S{dJ| 7jN9XV0ݯg@`$7> 6}cׇΣ6 i@R>( OoDQ|l-n9(4njb`zϫ<؀en| ,cǑT}0(b;lg0VZ e7aZGqۍ՟kiu:(h&}2EΉZ[a\Ĕxh/PՊR/4kiD4h8V{"ٞvEP<;aLJt,/?b7`ꆲUǗ|o_GG/Dt~c}=|MrNH&_?Z-`gӣL?﯏O b_/~UWS?=9}M4߿6Z!1}jvm毄} _qL"%WELO<;1r6Чؔ_ǫ_wZ?X 9װi_y7_:_y7~4W1) `¼pWF,]orl_πǧ_V5k=7>W_kدC^顎sOf`O B׺휝6hH=m%t[Fmn[lS FmgO'igw; ?>Rv jn}=7^|۳LVßWN}ҟ 鷍Rmv)ݢ >yn=:'=ßt{?ϴݟncR3)/[WmVmn=D(g3m+i m׹ţoDƞvvMvß[vO=ҟ'l;m༷mh< o{?.bvMҟ{3'fC}:۠W} ė^jPݟn'lOyOKslk3mېof@|[nܢovit?aW  ۮhI^7Gmh*=ӟa?ag3{?>O׳JŇnymM{o94'=ӟa?mӟa?a@}z,VA*]no?vv[= i?Og3mA!%vf۠ ׳? hmdݟngO[?agO# ;\ǿn>ReOI.ϰßk3ҟ{3Uo"}l+ߴ=u{GIO?.O5َkv|DڞOtԸ֌oOw3mgNgOKAj{>vKְ=uGȎǿn' ; {?O'i ˻%|-ߴ:ӟG=ӟa?a',n?a'"O%_+M5_[3'҂OGL|nwi{>7mab[3m=i ݟn3=p{E>a=u{G7maonK3' ; ?=n'ܞO=^oEk=u{GI4IÂł0ł2u5 *%$ռPWCPWCPW՞PW՜PWu5\ u5\ u5\u u5\M u5p5$p'ԕvɴ7MhLhKhJ˫ u5 u]Ÿjؚ u5lFB] K;PeOܟ|]PWC9.k󸠮*kB]iTY_e u5Tj^U +muA]v_PWW=uO'1^P5_Peu_>@]v"_PG\PWCU>vMc'*tB]+xA]֏|A]i;U:H PU怺vR.˫ uu]D{ PEԕC]UPJWJۡ..cA]P^PWuU/U'uOꪀꪀJ? ON+m*鄺*儺^1~kA]nB]~'9I3m4TŸu&uO.g7Pb@]U ݟgONPY@]t諄?>zoPWE9Uj@OuUJ{?ԕ  ݟ^ ;PJ@]i;,v+}ԕC]աO@u]B@]igO@u]PWuh z߀nϰݟHl#ޠvŸ lWPloPeo7+m.ޠu@]ig{.T:lWjoPesz*Peuu]ҟoPW5uUOJ?ߠz3v }ҟa?ßKvM^ϡzu]~{vPe37ԕC]Jۡ> +m.{L^O@]u_ 5>+o+ {Q@]}-w3uuyPe~%ߴu'ԕvK hr=Ÿng/_ԕ|o u}"M\cB]~&uOk넺.vuA]i3u"낺}"낺+<_ԕv ZPW-vZ}A~߷orz毷Y|ނ|?׃rٶxB7ސQGzM׳.;r?Żr? o%c5 ,or <ŽBy"lMy^ <.<[y^^v{;oYigRPoiKr/w>򮅼L7}'#>l;}v D?.O/Ҕ?=xB~7қR(y<;L|(⩴[Uci'.O^vx2"B>hϦ=ßn'列OoŸn{]Aϧ8esّO oӟWxE3i# #{3m/oXڞ]v{.[=_ ;Iq'ʹws嫗o8pڞ/es۞Y_vke?Oq7Nڎw\vy{=Kv<9sz5 ?–' ݯxezgxe׷9i.͟3~gw6ygi;y^?gxez}}vOn7V~sjB}L.9mǣ/Eٗ-yxx#vϣ| <ßϿl˨ˮ8qϷze?q_D=$LO[~zL^I9qE'/Ө'v>W3zYK{?nW|/QϻlQze?aKѓ ; {g<+|^n'[_f6L >Bԃ/ ~BԓÎze?_ze{>>CԻӞ^7Ÿ?D=?"t[ŸopٞO8bg~vgSݞ:bFxϒov5I2?]3?d~vg/ohQ|WĿoە?'ݟw'#P% ?Ot|wNk *_$T4|C7|/Q&Ғ:) UŠHY:YLT)AB6>k1sg%/\!PT.M3M5h6>PV/:VIoeZbٿ6RP~RB0;6zea{3»>ChQ/otpBV Sj; kH:= R&/Hw`Mg5WAwQ&4gn`gY^2#p<-H3pKvtәMアcAFiW&R+k4 |P VS.#F#od="ΨRbEfg*ҩjXZ6 YPJoy[)Y.tT @3QhT T-:GawzJU) D \ !+2 hA&}!ckVH2ќ<ۜZ-j T%U}QȠDMHd\쐜aznEgx+D[{`.t>^E'JΦ` !O40 49Y[fb ̖icB Em%J ya[U~ʱԇaA&bM`7bJqtّW6t@@cmY2׀ @C}O+SfcWוy")8p6xXStue\LJs}ZIc6A*@ne$3.dW`vhXikOM}6{A?Rk?w*mj )AYiQ_m?'{xA鿣x>JN&1OÄ&7#)1^( vI ֐۝;8D<4Pʾ`4e&7A~S\(5"vEKiԲ}RE_z[9>Sb'/hXdEG0ҠcM48B.m7H-bэC/ W[cto#mqՅ#݆xm+ŖMqc5݀YM|5UeNl\mQf>Ta6U7>џjBzHv:ij'`:|('19 6asYs&͛Efu2B(@# CYHggڇ!7,F g|ij-rmř9Z@?kc/Ί~E~W+A6vJK5Clz/Ećhy AzRH1dԬ4Sm:Q zlZ VZUh8zN O;jB,XhtzB:$;pa)*èE6i >^P7mL&nF1xwNZK\oFW^:3*t"'T׷+-')`4tJ[ ZZk`ULSdxX]N~jd$6A:zHj(77iOAqٴUq_͠}"旂{Rgz1 ;`q\ !tE.x=!Ū$k{Px^w>\eA0lj-bgςζAG'+`ŌvHFj'GsR/K3=oxqöi4ᕵP}!#a{UʉJ\_@pxQͲCb&m8atmUJVP7 Z0jv ݟG(Lעj ȇo|iNcmZǦãD>"Bg./bk/0Ţ.'kqR,F Z)DCd²*T [bO۷J0 Y} W.[:U1/sQO1bŰ~mFw=b\Vh].Bc⍙tE `픗c5b*9QF Eg:jƍF}i@+Fxe<0 Q2>{ -FZ<_Th l<3XحPp=Ab[Nݾv 69 [nd;Yv[x@뾡+IJY{OLY;&-,@ g-I*:r(k1J,)uRpz߬iڃJA_hV~cKC&9^z8h JJB3dw! 76OamXy1tk0~~M:\~rր_SiLCW>|somR𒡀X7+Z?>")>6v5uh xը81hV DMJ0`P]ZnX*'&G;m(}BRv{C_4IBASBh`FO{[xnj0R#G}eޟcDhJ6y"3JDCnm' 5lCS*eru;4z-d5#iuP4 Tk`TQhq8_Ў7>{PO(SZ] "-PpFǑv96$d!Mcr6lݻ8cÕx[u!=!V:hNlCb`Xh,)ڏM,.S!v ½ ~{YPvkQlQ6X)$JsCu#kD^$Ohp_ , рR -COv9b lZs6E gA iVi#=goԂ@H)U;ݾ pKEOLQEݙv2X@[Os_J2AȚ4PGT-nCʢZ,!k6R~Z%/"(Na [VΗV5܃q6Hqv)2dC\s'>dmj!ge8pޢٔis CK_& Xb@x$<t[i5coSpAcU+:cTm8Uh8.hݘ_Z U0xQH pO~4.U=*^@$BI z/dA3X3J%Plκ!υJc_OYFn/)bJ55- R3Wy?gl\bS*p htvAQ/ q?Ў]catsyh4&P R U(<Z\+Ք‘gP ި4B=W}Sxϩ9@Z5C~FpFtCB qͺ^}um[(n.v{TPJ6gf}1#'폑 XZm|fÏO5OgE4}Q{ӊk޳g;>kWtgfyfOY@8/%^Ww*TNi-*YB&Wm-.v od``btiB'M`X<9 ^ڝib&MF0Pz鉙XvCyΤ|6*uxߊyq:<8qxE \fzj]Re@ܮקr COzlWk&({ɺU .9T Cz>NPvІk8;jÑU\^*Hpatc t`Pr4LXyN ÊxJ*BI )yғw!-5(s-.?ڎQyPL¬R3AE@C08Qf0 zlMOxЎix{dT)OP\k|VX+Ett/ttAIkv;xwAyDP'k"~#q'GdrgWJMU22 U,Sf F 'W@&yIwݼW dT`!wG!>֎b9V(;2ⴹDA dh7N537rRdX'a DlօJLԹ'M4u:`(r@4DY`H5X9$rirfT lt -Pv$;T`싳={iwf\[ J3osq(BW PVx@,.<) Ӆi9 an>MRr/jQ\(mc91qQ ;;<{$A3?ؤrl9} OК hf@|ڱPtΥ/3Q043֌ѐYhobF_l6inDޙ?d]ê[UOSA*v*xepκj`EBـLH &e ! 9\kw˨_o"!̈5<ގ(YPrn>Q -=^kV%¶PmQcs>\Yhb ū'0ҳۄ2nՒ_W:\6Ӣ$P\xTP._ 9mR90Q1uDzqަ?8-(Ig/.oyAҨHҰ 416e~5 )?8=+Q|`Q9\8rOAckUA>8H8 ʑCW`T)0k?ۙXC ]Z!d]uT3gM\{I+GWc xۇ>с99$:%jww20e#h x^1R N%|zStAF|,#|XF]}},#e,\V4r]J[.VV4=ޞ_|Vxν4lA27 )啨M DBy *ȱ\@B) [X|XlGr{l~v ZąC4}WJW}+"4P' !md^^*>Tiw:VO ,yO笡!@y<٨>*"~(PKFz~'iuB }#*`U9Wg=Wl#Mm؈O 7),w:ni!& K^:| 44$R$F`L[+ōReM7].ܸ1U>`J4XThwJt2+ГD'rhSL}w? e) 1xoTLg aK}`hv O F 7KyEzǒ&NXQc.Wl}v&?wڞZCS{H-;." <ڴC7ՙy Ѕ"V8 VGG@mn? Brxm S76@Q[T*S*\ɍ YL]N 1t i['fS]֍w>fii6)fMn օϭǸ.*cRq7'ji[\EL ɀt=@1>їٿ҄X.l %mLB6 {z<{r:r9gl:D5 Sxʍ)IohiXӘ&J ?47*,nsAg~N@x( D! & CᲕhJ~FyH/#Cw7<447KHAS/& '}0z32jl5LPd3Zg eЮcmf4z mzHXq#΍(VH =q9ao:3T;P{}f'je XziN+(Zt%hγ1)]I"l~U b\8o.kT[ TЅqQ g B t`yϵOD\X91B:B !-h6Iih AFa:Pǫ#x".LL as#&Qn·,!*iP':c_XP s|5؛q@>a}ZC*&qA)M[L̓LM}j ] R.  ᛧNkc?PٍҒK+?gO/ywQ+DR%h|77$|Z|1_>O̍Dګs_E ~Kaq%=Ĭ^2` D!:}Mh8hUĤ(t'6O- p@UzAefO&~\S)+z~:L+ixR}?bO4x#ri!Qp什q36'*n${vP4,'FKLFO`[3;B ?* dlg[=,?iinԟF?b7`2!OKb\{m7'>ڶn=6kYh_Ѫge~٭]/C^_{o,l ^+i_~gg endstream endobj 179 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 185 0 obj << /Length 1128 /Filter /FlateDecode >> stream x\K6WF T$뢽5pOM,敖-E[^>:,0 S!g8 9$!peɫ ID"0_A"*| ^͈L5Q@!S w\QO (GL?YqĪ)9@0X@8hZm^_NCJEgEd~Lٚ^CK8 1ku?~p>7 HP Ecc0A6SrbFZc}E-<\آP \Zх{U+-$0, vgTV5Qgxi e_;N*W'⼝O>MrO0cb@h:T4TPg`9}.)9MtittiU.  ^*x>'$.T&z8 `V5EU;×L[*{ ǀkBt%jK{n6+"Ur+,d+]Jd_2.PtWEٺvU&].t|#̉l7[|Rwu0 lݣ;]:kFS_q?n]~A"9yor57țTli#蔖ullSn:+cCO GOj$O.'B'?כ*)nv-qJ 5)HD'RQ"8$[(mu6Z8o&|(Tȶ̻C!w妽Z/}: Lg-=g],I %Ǖz+{\yϵ8ŕǕ=WVWǕ=y$gGG=Q}Q˽}M8ĪD_G7-ղo (AW!mTۂ9#RU@t+K(G6R`WMeQd5N< dȮBR< 25ic fʬZt*}&kT-MֽuM D J;u0>ẝOlƐ endstream endobj 188 0 obj << /Length 629 /Filter /FlateDecode >> stream xڭUn0+xЈcG{+oI$l)ۻ)[/@\wgDF#v6~$0R"{QqSt<xz}˸[Uive&Lzq/gOethʝׇz.w!볻Z(d#BQ89[x<-.AdTUHc1,Y<,JG9\|\&rU5cu=v=)qk_0[ٴa nBdxǥɪCqshr;4];)&wq*\2m;= 89y:zp(#(?ƨfhZZ{3vMǭ\XX}٣?u7M{9fEIaP[PӷPMpo };NRJwN, Q)G0,/hn endstream endobj 180 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/5t/8dfc_yl10yl9j91v2lc_jksc0000gn/T/RtmposLYxE/Rbuild2d0830c1263/effects/vignettes/figure/fig-contrived-5a-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 189 0 R /BBox [0 0 360 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 190 0 R/F3 191 0 R>> /ExtGState << /GS1 192 0 R /GS257 193 0 R /GS258 194 0 R >>/ColorSpace << /sRGB 195 0 R >>>> /Length 37628 /Filter /FlateDecode >> stream xM-r7EŁ1` `6/M HYϩ(^K{_޽̈X֊W_?O?|?SJ_??}~Ow@\_eݿ__?o+?_?ݟoZMooy[ןG*{\wϿ_}~wiMc_}/ۿOuGGO?1_ݾ\e}ǯ_9ן_)}r_~=Wϯ7ƺ㺯zG+8_iq'RtJv+/ĥ*l{V;,"=r߭ҟv]_s_Jn_kRֆ9+>Y/h޿_E{~\~~!s'_u'_??kβ)ٝ?kvε\1pW~l{GǯC[k) =+|]j\?>?1w~]^;]Wd/Se3_Kzr~]]]yݮ덮/w-zh^z#[o}]VS}{>ި}]np5^{EFŎc%{]6+ntkWlVv]eo\͖]&n(muyn1덮05O]Ͼe^<ޯ=ҿNz6<.,~eK2/W;8s>}x/m]w_; U=.}m ~}!]xW)-k9e_J-wk˯/뺤ԒAN͗Swu~T]W~N߾gۥuiqmN':~^|]]Y?,~Ѯ{nG]gW,uڏ%mu.myզe~\S[~]]VXZ%vGk캮ut|]wݗu:/]Vu[/Z:鯷?TZ׾Ez~uv>u<%۶o v]맯cO_Bv]w_Wk׾lznm]׾}t6r֏A{f[uqmh[ovu=}81VjEm׹_VS,>umZ:@m]Izzr[ouO_o0†:ێF_s Iۯ|xFhW|Vj+z~Wܳv]]׻_ JxEB[o׶zv]9T%\Z_7j2뭞sK[ofcUc*eC[6ka2{כiz? ׵TP#0*cV>vG[o5ʿ=*SBU/Xڧޮk+^6y7[ۮ=u ׵kk\u犗l[k[x>\X_y/ 6]<qm뭝0h_z>Wt^/ /[m3]g_o׵mٶ⣭ZuUXym ⥭Zw{ji/m6{*[y_ꅶtصoRnu_Imת5zzOmȧz H(|zf ׵_M=u<~?W`i:֧zK[o}⣭g  Wv]{؇CCV կ~Z"iߢzaDn~-C7UXU`S14e!}%p@t+ `M`M=` `  :9մՔG+Ҋ`UX+r`e93TՓ<)XKΚ`M dXSnƯVC9VjՔ)c?VݸJ*o+T@N<V `EqX;`x`(>Zg75,iX# գ X*jQ, +k`XU+ VN`ES~, K/,Kx) YwX[Xv0},KVqX+ ["{XS%X#F<`P50t>zV`7%X-Zj:V ` XHj`U%D7Uc?@z_u `i?},ݏ%X%Ώ`\ `UP>V9RXHH(>VQ|X%?K`i}%t,K 7` ` `oK`,k 0,k @,ߏ?߿+: D n)MU9뭧Vć `-p0*j NA>V^7jq<V XX- +9VT~,5t8WX#>nKX3`M7uR7~X+`~k+o(nkXڿ`)X`ՠc++t`?4 KjvZ:Xg=~,`X?f`oKz9֊tk+_X-~ @r,: `E}XE `XUk`E=pXP<V4o+gnkw@k k*~:YXAokk}#`D,K{ڸz*_n+:nn X75OT5~XKΫڊ7Xױ8^bmֈ `eŋ* ܯ`z^?)~Ɩ?>ϡK݀[n@no~}߯w~xuy KìY?xR4'zwr' ŏ_%J~'ߺ󷻡XRgg|`1wwSiȟOOU'|wFz? hG>="<O4y> i5NO@rWiz$^i̩Nb?}AZ:ݩ&Lz!z/ HDXzç GKSa!CC~:^OO}iRo8oO=#!wNyq^x_:vT0<xW/<3?{?|}7Ÿ!Px0v^"/UxoV}qȧo<? Xބ `ބK}ÃrA` ߄RG>S_c}O? \wBlQ 7m <3hAz~O8[Ncp,⇐\uS'~ш!D9|Lӏ:ӯA`!h' ~Mz!\#mwӯ3<~^:tLPC!:ȳ> !7NKN?_OG/ Om:"tOy~> h\ߏz!߻AGN?>!A:$ h~!ht?GВ~dŻC'v!-!X+Puk!ܡ@s$r]!WtEC3yhHc>xMSL҂.TPR{4TX$(.94AzS-䙸ZS&z)!|(=]!yz@C~zD3s ѭ_HJ=lAaRvm?0Q_'b2bUͷZ2!׆0;~Ֆ >j(>uE9X6U0l{~V!+PTϨݡw{3?8*VyedǛZ 1>,_<u2lN'%0L rmgܕzd|4dj]d0JÝkE~z^C"KJ!ȘiU4nrl8oVQ 2by R#;7J ١{>%Ǧ5CL0'Tuҩ(w$T^Ea B^ JWsj$x߭tfJ Gs9Oם%*lkgmYlAYթtÉ%XXӳ97&@ڮOr0n>D'fςhXxOSCVVK9q&ec=n—9]JI!WgjƊŚPW'I5QR0 YQ|wk٭Q l)䠨X0 TvT#>f4nxڈ#̫6.lzgDGE:(EWC}ˎʆ!owk %::[&\:B/~>ATʵ|mV+*GJUKr|1n /V."P%9R"5 %vۀs= 6~^ZtwZ6PȇfxQ6Tv8 sahєC,%q?U1Ϋhe4aEsLATo!!M6w[.I%e.F#^@Pvչ|ui3[v蓫żxo&d5?r^T`SD?z*Yx}Y#ؚuwulR{h×+,OrؕB6fg ĪZr|~[mβ(M觺i ^p]Zzۭ1 4_!X Egufrėqr'2|rIZ (3S0kc)B TioXpXjL(;zT\JXw2 HX>(-ejK㚻M0c~ 2#Lm`Q<|-#3T]]b94'跰w>9l?UuY\E0~7J`J#̽Tƙ; ZU{ތ[ץ>!"ԼN)grڙUVU= 1HxN{=n=wyH68'JJ-4Eb nTg`rP:kWJ{L*ZD5=I*B Irz~q[$W&1ݗg@ [fu5Nc3:g4(pL KBqHɜ .o'%gd i'"7S;sl}uR%T6[ˠ JA ߵ+;3yӄB65L7# YE)q'|$n,iVC tt(877Ӯ **-0:uPd03>okxlw^3 Ya_|3 !BF 01ԈБ X{zAbCVq:Mۻl>Z`nVn ԰#aR-#d)KSuQ30GIќ*Hvlo|j 9->1 d\!|?qv`̍ cP]TQa24[(!'nYP8E90wB~v yҡpcH!~UlV%KJ/,'ǖP6<yGAMG~aGd[c皾bZ>W?6CҜVcZļAcA%tv gC/x.)IDnI Jn'&WGr~8- lgV:R@?=ѽKj:T*㠩³FlE^^/z:h U!+'܆Qp F%S _K8Dz= zNYg_sR1Z&;z5^00ϷLQrഝ@XX@ޛ4|`*?cS;9/h{?_B@f22D)~G 31nZ_#;SNFF(m>ܤ!BNBG?dάQDN;eY4D썭ӂ)sDzŠulAa(4+Muxb`H̃ˋO|eED3Zq//"BѲj\񈁐eRC8J )gLBb0K[3&sW3GCݔXwbdiVخo>w!x13Ȋ㞼6oQE 3#&EVcE⽄Ku_jr 2ަr:Kr{,XNbסhXJF4POv.e/+@j.m*B^/6{)Y&eӐcgK*v̨hJC28OkW#~ts.~>b+ΟMp0% ǒRDkne&IX;ʮ8ȊF FۂsC#=j3^!~hFsAa!%Ã3+Z(+rFcSc#ٛoklfuJ=/9ސDO\H"RQ%l\13=V[MA5>p+YE_/<Mڤ{8Y^DM n$TUJu>Mez99JNUnƱo"3Ā*j'3otc&C-*=uEX 8N~+O3#?.>1[Hb̒6jWUT1t i|-qVM9P_c—z pf֍a7 =/\zDY {s}du`!^@J%jEg/g >^ӓ}ƻí垝)h2u'{l%/#lWD~Z%`<_.p:Y ꗴ5~FQFZA3ٸt{X][5w p OnmskG^@p:,hdixˌ!vu{vڿt t.B%D4^^)nyyX[G<)'yb]o}$#_G!pYDY04G8yō(&0(VOrih%iReG&Ec;.kg*&:7jJ|y |D J9$--ًSt.I9%1B5]Btd:Wd;gbSuOlZ 4E$;cS<|gD!Z<5!YX}1vL3g,KHBN{z^Lap,E)1k֬ZCR $H7(Aej IJ j;]2(vSH)Wfgn_('svS {"ag.}c`JM-g424o.8A8 '=3fb>JT ='EH\lY0fdQ^:C%L{05;5 ?l3G]= ugG67ɗBIv(%QE 3 ɹZVI$FZܲL*p_OfdqlXy7THO`Ai?tiV]}/V .؉m*NFCxXVhj)hm6u'NYgt)\:<&gc234l|+,CH]и{Qa\NՂ}$a]5!~ё>\b(c )xҎ+{J6E\P7䗤y1P&8od憭mkzhV6cPQE*LHޤlZdg֢ x,72oyH*J8>Tݮ"SLhGm60}d9ŧ,@ÁĻdAz;IMS \Xff61[Irn ǻGMƗ۰C۬ ۇl]MqUAsX?TzF*kG&.|p2eCVAo/{Ž34w2 :B@/*>7i\1Q47=pģ[ {hM:|^V33m.Bi#vuц$pV8vTGQ֔IRCc)5ɢ_w68 /"]G.M}5]ETmaaw>łАth!vbG{RZSU$H:;Bg_F93_C?!QlWTeo FV.%ypO)hN_&$H̋1-%#\ng 0VM@>rWo3NXc&VgyD eLC텩T۩ɡNOwX61$w[FKGBwfmXϼ+E/a9?*;`lI͙tQ =TD?s CJD/2>37·& <tGx@LbrZ[ncܫ*I偦nZ9ZBǮ\.\& A*{e\4'X,sy.3pfgt6ޖKg[FNΌ,%r`yI2Q0{6,mCW8_]Ԫ0wj|OEr˚] & E0ᴑ ,1m(Uv#NNGN ,Ƌ-C!Rb': hP߂5S`f=jzvVB[m;<(r9 6h(`ˁ\O^V.$K_ #F! IM~ ՄXk,Zы';bgV+Xv=r,9jFW/8z foo) InF<2f5s8,eYi<owQ -݊^[Y$˅JUi+P*r~`.+&&mh Uzo cETX1ȎSlD>X^wN:Hؽ_a}RR<4`1{ M%b,Oqr~%|&$+ ;T̳ ¥9A6CT"B{Z YaziRJxt8dk $%렾N尼\tc o1`S9cL9Y&aC)!+UbH`6Y_E'$>:9aB,l{l&~lNH'[`sԍCߩ]9>3N3oz'Ekۼx(F`M))eoM&ëCc #koزQX$qXg2$X+Tg)2WxIՖ" 3Vqe@eb^3rmVg( 'W&fw k+0ٍbhmYMʸYC#t*10a;Ш2F~pJ^`7S3j"z'{0'­K͊?M*_JQ7j ' %v{TDn´y>pmZT6c;&Aq9^wm//WO|[.}ℊ::5%XiocܵL3F.s(;۹%Y;ƒVOsxa+mQl9eBu.*q@(oR-Ռh9"^M[o4ӭ,,`q緍kftH-T&pIIY(IT0tJCA5=St&tZ\Uk6 /Rhrl2CoyPL*`*Vl;gXdK "|bHŕ1m!:׻Khmh9Ɖ-.tDRfa._WdȼUcRTC27]Uևg`sIQ, su6j-W>LJdžoB{EHKuGsf%QU*cZpFrK&Zu\BSJ#og|m16*|bO0ڰrp:»=1Mp?O!idf!Ms%m <2JyS֯ro-f7O ,lc axkH$M#}2Ĥl2*y'󀕔aCM#jjG=ZAdkf4D+;yTiJTa/v1yDl9U$\3ΞCZ)2!k12VbvK-hDp^dE3A=0Us;4}|t fQki+oH CB $_4Ƿx~*K~ Z`/8ѷn7bޡ*QܾNq(2:4!f%g?,'j/?`Tc47KT-۴eVAә_uV`Nb_CrLۦ@@.eC[ kM(#]*q kLwm|>]X^w)RʱƃS1̙[57 wUIw(M˕>IZ=؏RA'8me*k[/^S\F-R T-؞B/O'a Qkg[et|JVƤx=]LaMKH18#iF{s`6[U-S^71fĶs-v*WB]ײÖT-cO1[A&X:3Är(wȣ27r7=+p$;tǩ4@0y#̹pHsĚ@es mkW̻D7HuV+(5'Io]<Шb VsЄSNdYV%zǾ쥳7uӠCBnCHdq ٦۸.VD樹 zN! Fr9&UE@{2jB|3PHU=\FA^mLw@rK*yev6:h7'B臂ag>)tE-J|ڸ4x+7!->˪J_\B N0H|fB΄*ᗰ9U (NfͰ4*ճZ%[ $-wLj,=a+E:P>:$!U7(vȷrvK7d͝U"fvUԠͻ`?jl3n(? {oVK)#O5\-A{f"x`,7%x,_+7N1z W`Ma/#҉d)AM4c`P.]BMfOT ILg"$ 3>Վy=L^^<3|rܜQ=1B:xg?kFmY '9vM-1=!*U .o[7;aɁ$R&a[D0**/luŧ0JK\|ʆN:/A윻T,d]Q UNXgSOd n. ꞯhu2WKeqeUpwM>;[\DaK3ylcN2{ `g4lѴ֡i:#*]%|Y<̨PAѶ6"M( d۽rr&v6m4fD%U/[v>@qv33YcRCEp@PrkYvⲳe$~Tc4B fW9$T[wńۓcɉtlB/gjĆ/KZ@ÈR[o*Ħq>S` }`/sJfkN3nMcܘi)t4 δS.1!:'ǃ{ y7'6)4K{hEٿQ$rPQUJ2$60/2e?R8LEZ0a3D|P$S%̃,z-WV5MJ8Jtp+;`I'*|䢉[<~ y2Q8W!h) oVVUa&*:NvA`$?ݳ PFm"nFtNM^JO<:`X|h՘hHP`reYÕ`TcA#T ˘+XqB f5pNc!Shm\@\ _=㯖׺Yπa"װnn<rڰ`-R*H<_<#qL_fݫ* !hgHbPO %dQ6#11Nˤ- nN%f^/E/lW)-sFg|+Ѽ1FeJA!}NAϴ֍"c.vcN] Z.)O\T@"mØGl1RZIE7>75q7:YkxJ5\MmruJc [\U$.R9TDRפ1c1Wh2OT̅L? /iq5mچepi3rZbpcLlƌRK}(KvlkbFM,UKcӨi!N-Q_˿%ܥ9e7 꼒5rȢߚB.zx1yy[jf:buhX.~NyfSbnSq渏NnE[>m,ؗBy m98_$ojhR"}4O"nv3nPrwXPFH$=yk/u%ƀ2QT˼ ۲ŔI滂ք-K2SaWIBb2vP&^T6SO[vgYZKJeA'[V\@ٿ&L*. ܳ5L]/&LAfpDuTqA$\| s!d%c^3ŶG9$v(z]~/j436?3gk*ޠa"QyH`ZfbMc7Ϝ.s<0tM((;@٤?G=+M0(5wUV|4V$0 uäc׋6=-Qh0e*R1sjS~(J3DkqQ"-a Xe$3 gvDhW=ސ~=]6E[Fڴq&BL7о ֍M;3^odYp 8&#W׊7jߍ5FN1jjU^p :򌿼i4T`M&-^PVF}C뙞0ȸogA:Uڰ]72DUC'uS$kz#W_F\k:0ۀ yLO;$C3ZE3e*ېwp+ nvx$=1?ʱ]6U"E`x8ΠyOr<2$L߯g#!`RBGMIVb6QJa5O4=t\4<5+޷p9n~F;PD [/=fјn2>j$Y8d*2jf*vEz/  o+hGkyE5lveGf GUr >9"B 1bHӆ4be LQb(r lG튘8O1mmCz=e hZfy̯{jP<ЬB;+q6O - um:_r9Tw5+bYN4h2a*Lj22s5q){ HYY&)Pګ`0wz"єSP'6GE8dpKJv*;D`gc`7<<0ߤ2KubI0 D" `b䉽ɥW%.LR VYSlb C0\t6E8rdjM}5X0nm&V-h"m«ۋ}~zYZ$v};53*z ^eo-m1]Lˆlj f{{E|$ۢq\gm޳;/g1V+ 'Ƿ:28Lk J딆!m#Յis?V:[]\$QK@[#o\N I"QplNCMQQ^tς0, o-a7E#z% i'7ª^b}z*hX̢ ϶0 sWe^2]5xb$W5ztys;yLHQaA20yNc* Bl'-IӒTvlkvqK/[aC!~vFU.'@/uPR%LlfS!"edޘW d73#^!CK1*K n!iy|ۙBAՉmLbň{TA JEaa|8uXKfYB ѮhEڗ>wLA $B2(7|+IGZ^ mU~:yZF!kd\]ܷ0#p5$TOB:}n]Ϛ6 >ұEql_wem!X<&gG r>sgtQc9d4[&dfC0cq4Ӆiӥ3DM–ũ6xSO06 eH$ +Վg ZJBZ]r(g+8bʏN0&(|zn1͸A l1#^ D4lY]mFAcHlx`z: ΂Zºbb8 ۼu9  d~nȘ<,5#ck2z P,cFeXnf>TzB0lU$5p8 _RKBs8 7竳+o0bfʘx⬑ EYq驚rO : Q'܄F;wjxhg!CFtcq5ۻ󜶤@|F,v],ݞF^7YN껆bh!'f[7lؖFL.{ XTU۟y^OVR8q)%Q{3T6nPyL"4{5FgY˜*a"a,5\ @p}&QBkj4ErU&>DU,2) W='Ify0 Ie!<)D Yν&o&#({릆ny]2Tk(䕍 `gQRaUTL=zߡܽuKŘynf:2n$] vR*-HA3BM| F,6ゴWфx1vm-ln;ev]\iCm})-#lf.TZmg!frʋ ͨyj4ғZR.Zz=CG:o"4lq OV]uAע$~AG&inRۥI%om̧F :[m)S h^{hq U!`Z. f?¾Z5G D,cEuM$ wUTC7#%N;jmݸuWqb_}f&']rg$|'aҵa`SD\zFaHQjO5ɀ Qߨ"l!P-Y:{ ]GΝ# =7i0zl@ȮU.DH 5SÂ\gT)Y$5XE I:Ng09, 3aSbP/$ߺ NJ2i[̭Y֤̖yQ̴uG0,u='L"-EFڮP+6xWzaȄpY߸`j*,;l;TMe PsbuƮVJpQ3)Ϲd6N|$'Dğ!/Y 0*) ]*IďoWUeS絈l^C6ؑrUy+4Hы [UǮ9Kx"U 7iE4c2o2lr-L\jOkbfS< !XK: ݊|3K)qd@AANAIyY?s+$􏟆-2JJBs:KFl_Ґ㿧:vA^uaLl/mqBDϾps٦<'*Kjr"+@CЬKTDGl@GZ('bwLnp}V@BU0251y/z%6CU 1 >.Yxe>~l1z>;tɏ,xjJ (bgɘ-<ѭ F}UN2%fsUP+8+gɃbѺMM'R*_IZ#d)AE\f :z,E-.,[ "9DSz37N? aOtx~egUc[MCȺ/-5HP W&eeAFW,0*w5YuB-dN+lVy96+#<~+ ԏ6 d<R+IW '~uя²| ?ʈ5GVE !ľѝ?xTE.M 3>]cq-Յ`ϗ\'VT,$WCц A/U!OsU)1p_rc*a!UwSTq9x [4k<;nt[g2>߰r Fp RqI Bư`蚹Hz wcTsP'V&T N- [-r}g+h dDŽi~yQ S?E] 8I;?>eNMzHͱ_ijPY䋨cE 70K= TPFM~I#lT3i'fcM;]-p:ĤsXGvȽ| f&UmaN'yxZ9=^D0BgAOHJ gb+hޖ]\G_cA `b@3ꠠOg.}14ggפ7g dzKotQitȀh.,06Hהřդ)EffW== )IwzPՎoSiJgr=ju q{u4htјl)'ap82*\/TΆtہ] I>[ tg uE56~ԆeCCOs^q(\pEeCK銇f%#RD\}ԡ9PBMCK*rg6gT|[6fsq tΞ: 3")kisf ;F:dEH!څCd~,sL]{9OۊvHM4㴍RCg.))+{V-!E<MNZwf`,Կ y{D$'ϕj_\CS@4AlӚcL}'zv+PPll!9BUVodNhC(~jiBUawo4%6#䛪|,|6GVXOKhxCs5i^t$ԨqЦ,bHɍTI1r> *ϧӲ?8v?9K'o61n=*r0 7%7Ud [*jT'Chh >,t6sz6sM=Y:|:.Ř<*[HUphUjh#! Y}mgw*= ckQo?;Jd2՟٬ZbpfzMUDB^M*X\^=(ihuaoG:N}:r0|-DԳMآ@YPZv4pdiR*2p/%'c!a>2u10㵠W7KB}*|W2\ rY^>'^=9W(D+7h12>3Nvr<ɭ4^\{~+| )Z-$Y.K퇋iĶ<kbBU*I^PX8b"qXв7 ?!sa6ⓁhfHE;.ڈdTQO}rq)|!#Ï<&i=|j#L: |6ы0-J d<48oJ$(҈BMUۏS;{W3PG/,Sn~ިxƴ{A bT|7iF:c1$y˙pxDY9B H',ILwAnbN6fax{XN.U:0=`j19FH\pXEE "4qVdXK#Hr#eV|cO,E@]_x疰lTL uՋOLK.y)4na>9RKb]q.? 92ƒô@-DPq MY}|gUď f*.sy5WSZ9i*zJ+K[$F+ E"fwu^r4Wcdjw؂*ؙ`WЛ2 k]ā l q@+:攮D_ڂІ>[!Gz6f$QR.*.CEX?swS/ySP٥TL P]TB;Rwȟ #ava$NY.`b:gMv^aP*z#p'9vDs\Of|&Pޘ[>tWٕ }ΐV Y<|IJ)C)a1WyM4(|޸g ƻL$ hAcUjߦk{, _'CAo 4}+Zl&҈Ic*2*! j eԖl94UIIo6K 8;l^hl*>VC3GY=G%`Op*-a,7ta@2m6riӌ =kvD~\h$DɸI=(gtbhyVv.A!QVdGn~}K Iݼo\ $际dAn֫ɎaI@Ab,z!:1!f^m ߻T~z2 >f?$4$ynFC!ycn; I GC] V +05_47ѳV*us*h_aDCr?oAEViL)X|n6z(Ƞcϟ3ۊٱ0Q,٠UUkxTTv:nrOI)LR21C8:JTwý|X'B[aė("5' (г-@GΑFg:Uq3^qGVns]\7[Gؠ!M,V[زN!!v]rgH;ii^?>Gikr S$\F$Rb܄2Fq(Z98,LO9Z`I OTW+ .b<7Wz8/Qݬ-‘R-!BNТŧh=(a+A~ d;t握g]W1b̾?7V ~t!(c@)aqL ίi$  DДn58NNfߢReɺ-}N)Ѳ?j;GէM׀8+`EP^+( <*t4{LxRnڋ{6~OQaan"8ƽz݅H}v70Sh7p84ѧh {p:ڏ`| yqr8D! 8:ly!BFT"p/||k'`Wx5j woGfu&޲^=.BHgŊ>H4lr>Z:*袄T4+%Rn Og)%angdU0j L+DSXT@V@U"eS/^DJ N cYϨh 3Hĥk8D?݅^D\b{IܰM DDZkF%ߎ-X+87pME> UTJWΑ hQ-~Ve/GWW(3Ln*[xWTVLZpNy3]' ״xeoEqF~.Eʼn_8zz 죔cDW'BTmwڐ|t n˦uQ)EEB;Ef&Y㎊Dn^ZRvT?I  NAKG 2x/HGkֆ-ま 0lt7&ea}ɯ,1T~*j+ GV4C*Ԝ k]Bv n=C!A+2Ԩ]N+ ]|i[·b,њ[ ;%$&.Cnhԓ<iDd!ap݈ݳ) {IM>(q||qG"zH'S=*g;te dvj|0sk?RąTMqg|xRyYHG@OQ|T0d1|H'] )kGf !FyIh# hF8+6]/UьqyJ @<5O?\JReDKZQCz4\ɸJ *Oҿg[E,(|ڐU8O_^2wkPhc4n$TLF_r9==%]Kνݱ#r' [,oD <d[@A G|0lh߃9BAI3`(;xC7q={M66֏E3sYe7Q5(}޻u$ )3BY?dQ`Mhj9X,M/(z4q]5 UIݰI?2rxޟV4r%?"`~TͶMl!K#\@h.!7ّROgx́LNGG'lm4WX8Y'0f&[HqЌh)%^˒vrI`몔[̲s:qx~}p%G r1MMWٰ)heP+B#7xѺ?Z;sb{$xŴӅL[,.ђV1ϓiRf4i_,, S([a0Wdh-p4݌*u MdkcJ"A[¦SlXMA'!x6oeo7F(jkS:kc.rWBk:WԎmW*]hm5JwkEhPPI1m.iY@Q!GZjׇa`;<_qrdz22TMZ\b~<>1 2*dΗw9ZчoCx ULhsq^Cխ>KTGT/gwu3:8bf ܞ,r,10,ݮuI3*u6xh F#hØxlu!k=ϻ}Ϋёb2/BT)}+)c\UXilJ]e-4m!AA ^Oa.8:Kņ{tJCq_ ؽ24 멃sK³gOxDb&ɑv ):?gAּ; pQeAz jFC ^I.e淴|&W;羖1vyڋd) BrKvE3.wÝAu-eg-!,ּzE(Ob)0HJjv]U9:WΓ]JFc$"1W5[LMlGr얷" .=2tDb:tH I%D/bD:%d.0e[)o}׭"0]a}9$1-% :[NKjCUeߋ:1[OvD&ָ'Ί@w kf[j6x [|`BR?Zܾc: ҈HUETTI1;ESf MIJl#244PXJ f2H.Uh Ψt3ieO> [ܦ͏Z: U0,֮*myӻ 4ZU\NMH hhzhmhљ`֣]fʋ{咧B~>rWFC#+jKԠmfNϑ.cB}wGzU Si[Ed#GR™AAY음R(̩ZyU!Ãh8M0vZetŲHdoxcI=۩y@@>݉{ VU=XS΋hn}pGF UkH֌Q^)am*Ad |V_؊3)+iǗKC]G^Gҁ]Jh"/#ʤpSUSPOb* S }ݛqee瞎O[S$עq]V˒Ҕ+P Aby;ծ}leTVTvwEخDi٭"g瞑oNrbn,OFՅ8tK%x#}Wۅg{Wu<^CzTCq\Eʛ1O`Swe8&O=@욙&,+ǎRՀ4 ='ď#7 Cur. u)ΓѿW%cҬhն-df3֫V\% _1=aRi`ͅTv ]db8?Tt 5dҘ*uP FEOCqMMϰ qUPf!b@IERltn&)QepDmI׸iBUeX* mq֎Ŷ|ƓwtS,Xt:Mvty؈ީ/{3ol +9#/-/Z|a "e|y > stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 181 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/5t/8dfc_yl10yl9j91v2lc_jksc0000gn/T/RtmposLYxE/Rbuild2d0830c1263/effects/vignettes/figure/fig-contrived-5b-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 198 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 199 0 R/F3 200 0 R>> /ExtGState << /GS1 201 0 R /GS257 202 0 R /GS258 203 0 R /GS259 204 0 R >>/ColorSpace << /sRGB 205 0 R >>>> /Length 54112 /Filter /FlateDecode >> stream xM,m$:߿V:ZS 6` x`x$[ڭ_\YgW<еyvUf%s-.2$7>/ş׿|O[J?z}=r??\~(?_=rzտ?Ϗ?޷|˭o+?2uן=~.{m\[Z~O{覇۷v}]_0~ѯ~_?o?F֣-k?ү_O))}[H.秏P~_䉡Y~ݥoR{9oeS|@ >`oW饒b5.n@?~/g\|_KyNrN__`)cJ,-;`ٞ@|m|d >}?2쏖Պ_Wsxn[[g֌[o]fˊ?[ɗ%ڼ;%u)%%u9۲Ϗ?|w'wqn~׏.i~b¥J8pߊ]} .^ 緞]kV{8S_VAlף_^*^k). &{Y쵛 [8q◺KqRmǷ\aJ.v{9~{.[܏brU|~e%f.kvuaX+čK%=ºl iaua .rsUU]]EWݵlؗ]uMu8v-p.& qRv}rRV%V[_&qm\ V .}=žKL:?r]Gئ8./#\˵P޸X^._;WKbf?a K ;Ln6U8s6ٕ8sb7Kb sxl&>vysgdr>pȮjKq]/1]nx_2&Dyz+s9ٮW츇˯W2Yq}lyCq]?)Ʈg7yNʳ'N ]2A[=ds }gj ?r'؃˗e؃Kӫ)sy%eg/h>%>A[nV >-sp˛θ^'{0P3[ ˰7ßp k\ֹ>+%> g=dg/Yx\< _nq#ͬ\.\^.hṙ͙>3%>3>lg=dg˘g>ϓKv}&'q=؃˸%O\zױegK^2Γ3}^2Γ?d؃3}^2>혭M1c>gZp M6}^2Γ8O.ς;\_`.gϜ4Flޭx%3˒'_L8OJ^gyṞ.Bق`X4A1 sYFV媩ӂ{epn LiKҟ/]^bf{&T¥)r/#&^ V;}]St=QV^)ŕ~)?BE~)?A k0|R`⥿=D. g*T'G_.:/wa{pl_b#.,/gFi~\"%:w|?:GMu!NӢ4F^o][3cӻ\8:Lt_r!*nj`E=E=E=5kBTEK  uP:@m TBI FB5(@=վ T T T]"UqUy#P7: &&+QP7 FB(@MuP~2oD7@ʼAwP@J TG-BՄ2xk<Uq (@(ƛBm(@ڼABu@(PAZX B-_@5454545 5 BHVP4=  EP}B}BuyBS T8uBѩ; TgPpP j j2j2j2j2T A&PTU JUUU B@j:Aj:Ajj b b bEEo B!e֠< jTUXP%%e @ hg܏7qP7 jq^Z\B-zA(&OP'@ jr B ` ` TZBP  w BP |BA(؟߁P eP @F{ T ' Bd"Ud"Ud"U :Ud"U~o AP J>  T Ї T P}BeBe7@L/@L/@ TA(%AYP9%aBojp^ {P!@M Ԧ}j>u@B"zzZB1< Ptrjr5 (@O\OBMDB aP0@AP/@H59 n'= Tg PO}: BЋ B5B5"B5j1UP TBU B1: BB\p@( UBB|B_: B>oP TЍ ABe>oP8JP  @ >ߠ >ߡŰ@QL|^QK0jv@F:-(:NF1`cb*0EL0j F->"(F0j FM> :$P-(FjFM> P(`RQIF > H (2f >.U"Íjh55HFJ [ixh;UFmTpK8u| >_wЉrtb\H( E8FX#Vp2.orKbz[cčqfV3(6α% ˤu`b 3fұZN!F@  Z~P=mlw )ȷ4<{ xo߉?{uҳn-!{ {3i|x9K܏A y#q?5GԸAGnHz"IEғY? ǿ#[>%)y?=G~o{$ay?Nf_A ;H"/If/I=H"G0~/f܏$^Ɍ$:&⃈:IcE$$K.D<ܼ㿴?0>L.?Kۖ!I 51>61~71^819<@I D|DIR>3?3 | pH,{LOEo~G7IM>Jু })9N%&!!>IJ$S i}GJ"tHKħ!=:C"tHZğ>m>I _IfnH?⭁/ڷ>&a$;?'cAj trJ`Hsn!w J">$E&AoIX?7vw|a"Rh"?Sq? IsHrF/O+N~x_U7[wNIIoZΙ#Z֙kcDBI #؉'F~1u|^'~;{G7 (xiOE~O_DrنH2qWQf@' C$e x"R讦pi]O)rìXX?Q㱰|]O/%R L$ XlwKz"D;@g;GR,tdv1jXe $CG7ɾ~u R *B/Ox(8>}Z$¸8!Ş#)e}ʫ:?.|KdCѫ% V&\K#^,3o4/i⻨vxc3@2 5i@VEg)lGGX"A*Kp삈yGpFKAI'8.$%1T]퍇fk/o5tRW|/ɐa!6P<4vLn2H_{B0q3g g_ #4Ha|,۠ ~V6,\ϱ>N,?4Zl*I]N*0odz^o*6=_/ S{Sަ+cVKQ_ΎުH0Lȫ[:i Q¹֢dRxbf,F و{PjO}8/uVr8~C.2~Oȅ?uyqfCVN"q*7b㸩7J (O':L%Y=$3u6 $Ֆ]QDf^nTeo @jI GŪ!|D;-rG9&HJ3UbCrZk LV^x b95թDB80f/_v@`cΕM`|ݓ8JG¿,\-Kq-݈Nl ύg\nT l!.|EV<󐫴;濇r.7"iKɞA5>I&uLCҼ*nD=8D>qSU ?B M&,β%! vSi83&4Q@jxVX[:\xXY@%/J@2LS*[e5E"\JxWf/pez&t-w3Թ+kC/$HZĽ,Rׯ:ٵ$p= 3y3M9TI=2B<'$8l4&Ƅ34|ްJ +0V:H'wERBo+xCR~|iK5KVQht䖸B XeX.ELy=LM:\k<G>ZySBT)GKg ;5GSQvyӧ @IDHXpG`!W'dKL@ֲ^'_=G*Q@2}N# .DB6w>U׬*ѲR@x%_k[A7 .ʩ6@1>{Hd'>hGJ5l+5*+=u|gZRizIuGED. UmjIpQI&yBó Y 5後l>͖V ( 0+0йޖ"'؋]}x^}Ż1KT)w7jUidFW ;赹60qWY2^6ъ:[$Q؎%[d"U@0*LGmctDeI֦xV^FV$ AJޛc뀳$.7WeC6ੌ֗-QGt_p{"OkRhZSa62>,jV@3u3,V RmӃ_z>G 7awz@ɢoT0hda:~3gX" 7qzڕ৿q',upTwtʬm`-D[x=EfIJcU9 ez ?%\Xj/C[d72t&kS_:77OZS,snC I Y="LeQQՔ!|FoҨͪ [Hk3iu}]{zԾ.3/C-^ڭ]y2yw͜vE5 (rc/@,=#'߸WW.N8霣Տ00Ghp\lA.S& HȮ~UӎRD >1B&cdr:8O 0D0B&/*2 Vh]z7 lȺaI+?)ZoNM-vJB*NdVk!j-Xa_k.Uj@$gZ+R1ޛg]%^54ѧP>q USvS7`[LR +}$896MDYzGHP\%l[6Z167;&st{kiȞssJpRQJӔ],9g$I/]܀V$!oY"76Ypim"/aCXթ]'d`XѰ1klTQ YA3* IK DU!jݠ[i#q)]E {J4#TV͖}ymTSV1@>E~p,ZE7{ʼXhPtXTvy\7M4[h1` UY<2f4MZ PV)"J.!n[ EijUIaa~Xĩ>;}T-] `.Dd+k͍Ъ+^ }1NYQۛTh3lPn>IZm2 %DSe?M*Uwʦ%(foNc xd#6 $[X$*'~l w9h'|HJ]ӐN9R,2XEUvu7wqYMRS$;髎jk,ដ1$F9.A,HTP+l5Q=)bW.1Uo?QYFvRq˒];S}x\fPILj譤^;$S=AwN] &' HՈeKǫk%I)(JMh\$iWC3. fVr 81;M5uKXe4,MLɩ-STR>[~G*,x}5+!#IA B!yM`,4ىNf H{,2(lHTܕ)pim$DILm|dyԱ`bIovovEw$c̠©ũYWTNt<>AfuwYڝ:"O4Plmy)btBO_$%/E#,(.2'.z:F}ͮ&zDyC u0 "Do2j5X{600m!< J?{b@vy6fȧĪ !ڢRA>m]c$5elYkRNfTWՆ#84>NikjɖXت"3B!egXߪ.t! ;,/I8L[̄zũ.WTTgd˙iԅ`y96H(a. XU6 ՊBi:fNѫR5*a1,;s$uVpt3N)ES;ƬRWdP,J̾bϓ1] rzR붳6*ɪ(BР.2\ʔm<[wD}pWq/&esT9A!tKT#&;E=GXKӞUs4m2iel]ޤ!U ٻ[@'21 [Y IEys'05~e~ :z dSc$\U>Q8*ύn)10uFTL55oN9{|*0E[RY|[97I,05Kz[  McsMU wMkuઽӊqX|4@!p5zoM43ZAP޾l*9 t Y3@M/6ޘxcUU&x6nzxYѺTD7/LBd0ᚺ6q&YXMոzgs 6myTuNm[Kg+).[Ԉt O`w%OGd9Z2XՊYKnMlEG/nR,W[8u&% /u4mEn2QR HMj~ikm$r&-8>GEF5tgQ%u8 tgzy?_ 6x]r:Q_@((roD@)†cK63Z hmRjsdswZä֡4MAs+܅)ptOn=0%yy=/LLZ-ɒ9K7pYױXyݮkѥx#XUOM ].Q5kpU)T` Nogy$Y;K}w$MdYwyoZZK!qޘj.DDҷ}CF=k*DeJQک ֝3$%۷c字A(@߉!jMY07]޲M6Rk#n]@\|,Ŗب، sr*J2"D \^b"E e@IV_ɽvT7ůqz=yu FS2't:s~Fޅs^턓m%+ȋWad[,p2&}ۘ%S|?>b d?ԃS*Ȏn1ZwrƊΔ7q)+YAPͦ$Dorf}ĶuQ--@C? MgEiāWȞ0 ^8 9I-f0)-qJ,N`2 j`=O-0Q=_VYzt Vi;XJ9h2Qy8&''Jr,l7%[$7Fs,4@'50EH4eفhs“n<׿b2JYQ`$Ee'3D<΍~Te fќGV9ieE]e,-kƠg`o$Ѕ<_i Tw@U wDE@.1I|8p f CUKMƚ!{$?=;J,{vOKv= ~+Y7 3.S*T,ٙ@^дyPHP zPÂ%Llv$Y›I{PM~0"MrsKi.f&=r`CtUL,ٿo%^MÄ7AKF;,muXԞ嚌F&'IإP Ӣ>і:BJluC 2Y[h1HK'f|(go7hsM_0wh TtJl`ϣ#i6i[kY%m-{Z.[(U;Ui:n Xbx[҅7dgΤ֭ Wt}IK2k-|N.7U/:$E44jd)LУ $\DPWn=M,a&}~GC4Un67Ͳ_R2gLS*7r4XRz-x`8PQ=0WؚK2ɮՔt畨C}' Uw57mbzbzq*̒a7f'U.dE,]ůȏ8n_o^juӝea^BPdi#q)^铙q_kwk7zvH[.;[> qoeb  >xŋœzWDzͯϼ%|z:D]~Ic\FQf~o>(WL\٫=3lb6ȀޟNohݒ~2zYFMc{Ht O Adk 'i=ܓ^}OgDO?yRP;Tw{V.z^xZ7Z;5\mL6]ڜ핯|\?_>gkǗ??_>7~ۏ@FasH}3ް\e]?}OeD?|Oe|5#V3 xuny/\{GvR:]uG?N ߽Gvoҽ^#B?ׯ@#!?(#?=k{G{joߣYR}xKG~&'D?9/EG_n=ܚ<|] ,ym(>+| >}(>@?}Ii:؟ ݮYPcT84 BtH%;6H eoʁ9fN82 :g%m(X4*nכ{G1b89B  T1yV&j*~b8kB^ e&ߣj~' aG&AU2˒ F<C.(%@'g2_+F藣< 2yzC$7K<ض<(Z~GM+$wqGg&W3m. /&fC^`fkA (/S .\HA&?\Y2[@m_vj_tw[6]Y]-wglySbrKww}Ժ gO̜mqkvdNpFG ~+{(\(nw (Jsd'Î5.#br+;Ssyw`d?JNt+)2R\\UJȕ(\-,3Ww6T;eg?V/Y߹.yPe+H*9RL rk.*kбdTmg&{P }|r?VŹPT$K,"Y f75 F~7Ȓ y9Pss?V7te!c31\߻[0?;_.WʮLnL_LC#MbfoE2 }.c3Ӣ~o6-cbLdZo?#.귡OF? {.=A]j@]K@]um@]PW@]%+B]%+B]PWokEkEU U 'ԕI?@ 6(ʉ'ԕԕO+'؛@TJ::P!/ʤvԕI+'PWN?x 7tPW@um?.R=@]Ե62y߯Go">=g>;ߞ_ww?B:$5@+} r:tOk]_Ze;5ݩ#;(<ΫHEy'λTE%s:m89ω>R;;B'"uFݎTpOܩ%ߩE|c<s9!Su_${I_H2KfR͌_NĿRˈ73㓚N]#{SHDF|A7J_G ㅈW gx'㈇ coZwԄա./oR75:AVqjyS7H%aSÕL˕@ӕxRWW3J}F_" "^5)8@75MAa|^U} Ҹ>i\>xNxPP/ |"C=Jϓ?YA"ԱT#RVP@_Ļ5,U1eZFbRԦ@s"/D>(‘/\ϑO q&s&s&s&EXzaNlI{s1}vC75M^HROr1LS'xC}b|bM,,4aE +,m`|uJO<,8w wiwwiG~·G4r|B໐/qSϥE(KXtJr7X~]ڄ|A| xᛤkO*)2;Jw]o>L1e)4Q|( >!^w<O9ȗ P".KQJG~)#KXG>SKV}*U >×"^zTSߊ eJ7-5^TXjb񆏪CLl7x׊׻ݲ⁃U4 ڿ׿p .qK9L@dgd#n{ eDaQUN3ʦAmMi5%!(jQۄrER^siTᗏ3ōߋ7tiBW Thhggibl0C9k8+crHMOz:O^Y"6 fGbCb)j-`m<¤׿z-=Jɪ B,{YNtpm^XB^dy]&8NNFFxZ=(Mmbij1hkÇS*N/~* Vu\-z+sSX,fQL#ז޽yGO~^X2C߮s˦lq\z k?_Gt;(deRq.nR(SepLB$ϒ[ #lyG;(%,-˱gY|wapU_{Sheˌ^iR|u5y52-0}ѣkQ9oy] їgn?v8֩f>} EVMgg8eR[Rx70L!%5k*h] 4T-+ZF|T"R~MI`Yvv$>sH=ٲdP9^?`r"f׿Ւ j|(CCle,Җ=] m-_.9İIb[T ϣrb SН v-B'#V*\ZLFTG(y*L;W$gBA 7Vdm͏AX|C32V|>)c~g xX@metY 10W[x Jц-g#D߬b:62nPR+ ub-UGXfNWGv-KI7WvS!BTUotcAucQ''gk+1Q##(U R |$'@{;D{/;tH9c޴9k5~el\}M^!,|*Kd41^+{vpRUm(|1Unn[M#JUݝ]R$LCScMf2V* 3mDԔ\8|jӧ[L/U +}^Y2 -z&=}%-1Ą&g`ׁRͦ*C0we%.VB`~-v vet 1Snِ~$`ʹIQ0-:'9BJɜأҘ(\V}Ո'#kmpճngLw>Fer ^aI[Fd]0 34DkǢ)ƍ !Tec{Eebx%gم7u"|`婏23_]bt'SX&EXw^o&r< EFQ.W;ſ+mK栿.Q3ɐw4_l`IɪٿY ~X5T9;˕NϒC^e^%+M. GoPOSӽ]*1բ?Jmb#́]j _\!|45&zB0c$uɤ(ybjlt*d4K= V,A>||uĹ]a+N4 *$m K\TfV<@2 F!˗k^F)@uD~Oo~]_*r8m?KE&n%H{/ƶ9n"GY"(P ]1zfW9Qtlbk2IQSt?Qe6, UQGd"F_ !u5L-MgsL^SEuYU>ktf\pSIȬx-Ro\9*s<8Җ=KFCj w2@j͐ژ,PPY‚+4$ۥauH0KN4DQP aijYbfyz[2I ƅ˿%uɀPe#@e^h:WF!K f8tW(J v}0Ԗ-fرBگJYbK.O eob,㲧3iltsReYm@ՐGř=$ZH2h/j!͢} Z-j1X Ċ$4G/58;)cꜲUȠJ?V$U R7TT/o2OO7X44Gi,8^;M*W2l9:O3΋٣[m1]C1MS@Y:HFVhp%kd IeNQa/Ʊl3Ѭ9=E1X΅UwF ׄ$qEzdH-b@1RQJ@[N(\6gSJdySXJgbe6_d"N YdCpj V%OGLXeC!ɯWDQ7 4>N %.H+Renel +Y(MƀV r"*XNv_7ؿ"mN7T1YAez2̷ִTr*tkH4 :A7u(+nY5TǍT+h+2ShWU Sz)~UCK;j5fJ,AT!BtS,%ѽW<{:sSI搬y݊PXNr>R 2 }36B|/  InĈJv,YPbxMDi&'VԍJr,Rfv{G֤fJʗhh*F|U @yH< o¯ à(r]Ei1dy(FS(Y /FWlq]_++0XE"7T n6PzYԓ( C*3 R ZVԟq93թrƬ0VPQBE $Zչ]8^%履r(+w259mc:eh,#`h*. 2N4W$ҏGdzy3b x]^LWVsT(MG/"J$WUi$cUix>]}*ev5,1ʄJ$mԪ|*_G(7I{1h|ж$ ߕ'rH ZLjb?)vt+:K^* -B-*4~W㝘X[WYE49Z" c' zĐ/CZ 쪮g)cl(ZW/f5qA6߲D1$aBUt+?&Rmtb *4op6K\VWt\lΎ~A[77XoOWR~ 8 UFrBtk bJ_T)<`$g/(% E*d]{XxˬK3Z#J`h 's:v FL3&ZX0uH9PBnTrS(.lD&WIFqG]Fbipـ`\ *OYY2zTYio_ɥn.,v!GcI$D#yY~nn]F1GE<}<KLPk:wPe3M?ІDs̿@X1ez5k ?iwF1n6 :PHҒi:9A0  hRY1Q !H.0nKxGJn1Xf8DȐ[(XDfË:_/ڑa+"B-}z%/YoiYaͮlAc+V. i\r_ו&FlR%7#?}u?a$9,,Ŗ<3Hd!aAq,{{ǰ7͘j#ITM0nҶv*$ݲegԚ95ËѥU5#I<}t8;_๤ 60Y_5W*R]tѐdmKvHPP侢ZE2hhf~qA*|&yWu/sĻ/Gy^TPuf *U60,5;iu!Hřyo2t_n&O5Ihȕs}HCt1$nP%yf%dkSLnq@MkF4agɓQ1ܲ#oZ˺")^mN@L`y;}] 1nR%5*ct&K[KsP^EЪ6i5أE[n,O4:-s <]YBNI(R/BM? RQ\ 2l7=Uy}LS9uwaڣ$2^NC*Dx<[`v4UT%ߴIH %.I2 %ƲG5ٵ0ANP(grUcm-C{ztM'o!Aaۿ">YR}_GJ^O{+֔m*YвTyELy)0tqZagmr;dg?>ѐYcdy]KREJ`[RխHU 8ma E(Von GYЍ>c2+BI4tWN\If}I -J+it@(&VȦ*5٧7"af 7m?0d դ>[hHCSObdi:Q/'jԇT',rK];֭S>LmkOh3=,N9d唆Xk?oIf-9C3\X'aޛr{Dm],pΪ\p"_-\W UHkUYψPVS?|UШJ#Λ&T|q:9-7(5i~_OȲwŶWRA/r䆷凛(EP=PZDecFp~lbAt,Eo5L%!tFñc.|̚c| E-ql1bK`-70cVU(G2 N/MeJ̧vpn#tEĕ`E>^YЪ ti=J՟ YQ5>@H7 WLoǹt wII7(]VP+WS9HWƥI vgz7q(ʻy|:Cҏ;NO6t1hdVA +-kH}?ïD % OHȏ\9ݲ=@7HyۭxW[_-~׏Voa?O?ɟ֋iqyT1<]?~o=~52{9g?w=Z~|/ZR>/+ty͟׵#>қGB~r姏-?GB~jK*?*@xO(>O{>|ŧzVWnX<~~y [?/7v2wOnNh~^wwyb?zIw˗m6ۅ֮W5Pc/ߨuM{ vau x?;[4y'䅳}>m3S^Ʃj7q?$҆ ݘS\&_HO~ia!oX,xTa>-aooi2v{}uLj_IyWL=;WmtD}33LFdќokPAV4Fq={HN1 О-M{As [{WD5Jg6dt1yQZ0 ^wGB9!:'B^#g{h8}/ 9#0y ?(g2';>oA;GEBh B}ov.7{/nvsI7B}[% =+7ф .r|*1埍]mBے'@n“]3q-rA0>Nظ|bk|WHsG+[l<90A$XF|G+w1:aY?n蠞]a[ #Yw/a-niGo@;a;j|#$1b>1 5gyp/wcDŽ,w4ʃݡcbAſOA^Bhzq {?w؜Rƃ|w\̃GP(o(ȃMk(ò}X<8ߖϐYu>o1G$*%.{sSb+ '{ 5O`p 7l.qLIly3$1cx=$ #6ސ M;0Y-{G| 56FUab.I)c>1ߦa'j ͔|[%Ibjg%; 6YEɋӼ -{cq|/T^p ʋ}Ym;|1s` Kva7U=kpVXyswG>k|{Cm5|81+70ߠ/|C1|A=Zhʸ1*y>6$||bcm5yl״a <;h̒06: _0ߖ&ȬqM6!0wnşkp)>676!|[Մ*1>b>q|f7Wژ+2DtxmRɜGCPeB.lN9v%s+"F <20@J}ϫ;[1ηy%<'1h )! 32u킺Yԕ^]@][%̭PWV =Q/8C@1C+ h4()h>.+'Uu儫8.du "v.Ba*|uH}U>*|u@]3-B3xԅqA]xԅqA]xuU*G@]#PWPρj@k;@=uUuUuUuUuUu?PWehPWe(PWe({A]H.Pہf@_:\P Pu퀶u1()4%f昍2>Zo@mj?PP@]PP@] ǁPЁ7k~7kZ:Pתs>>@]PցL5IcB3H-l@]PWՙZu!B]"u!B] P@]PW_PF@_05"ԅ.@Ե|.<@] kp5\uy 5?k@ft́d>}5x5x5x\PWhP5"5DŽ&ua_Pu퀶uaW_ @]PyP|59uQukr<ꚜ&uM{+ԅ}A]#-B]cpL / /k~A]>ZZZ:PhP\@] P@] P@]PE@] ԵZO/ / / ua~/ ua~/ G@]P5x +67̀f̀fp^PP@]E@]PyP/Pua^Pua^P .@Em4Cm4Cm4PW@?uu!p>2؀ uJ *_* Pf@]0lZk͌oPuoPԵA]<@]?'@]ҁuQ:pz. h'v h'.by@] RuQ*p.ʄ*/k:P sA]?/ >;PW@]Ҁu1/ yA]EhGE61B]c 1d|Pځ~{r<@{/1J8|&B16Wx y YĻz!vވUWqg=;=~ <hHu?S*m|:w*/E|P <P<h]|<ycqy)݋8SuMynx9w{A} uRQ+RQ3xuqQ;xqQCxA-ƟA-EӊԊ"VPyA}BPOD<Fċwj#Y#YO<(AGu|?]#5P|>\('xsʌxt=dd~x9G~1PÓvӑDP/E>DCZ?SG |kp#"|n|/#?|1'#|3G|u|g__-_\tk=i|>KڒW  # "3:{?T%=xK_tw5%]t%}|_ҨxR7oxTWoxVwoxXxZ-/ q}׸k<l\߁6'676Jl.i#^qI>J|Rzwi!GzH)&/b >/\ρ'{HUe^]y~]9wWxy^9Rz{Kڊ??X%/^[5Xg:|G >|pRR~)9RRpHAHE>u8.5·Kn?W.7KH32? /=|`fE#Rgf3zQ*q/|)8=&4*]^*m =d)9|27!(M :E)(m ;#): ,;Jy~ >?Q|| |UZJoϠ^! (QRyRA>Vq)}C:Zs(Ϡ8zǥHoC6ԋ$⿡'ICovC)e~Ez]zt~QrJRgtlq>lq>SFi)]cwJ3JV4ns+B,c~wJ3JGҽҾ&8NA.¨</ZζŸ"VPamxI]yNtHXDxOXX;XPxEY b !1|ה-iis쭜ٛnˣu"|-qT})Kd7)8]ya(FC *gYN/n}Lҡn񆈑nwNa(b&ڍrN|D̀;s2X`-ġd7;K(%X -5k?/RTN-aciBK^zy_SΝ=lSG`]5vPWDڕCb'ÿ`wͰ& !gjݗptXqs(-}Жɣ=w$nt+kGOOݹq+*ɫs`Ԥp5Kg]iC\-7)3NO&= 6{ ֥Jذi*{&%:0qW{h͟.YEd4+k:FW_5:*OŐF@ey`fJӷʥ1"| =t/IDn쿤>y@"f OZuG)qbq~&rpP0P9q\Y8(i*~{-j=Z  ζl_ e\ϕ9ZCƪm4؈[TTXSbUOў w`E< G+m"; DBv9qF=]JqMYn"꓉)Ҙ&r񮃡ˢSGELb[hZvGѧ+,xG`NyPEƍ,*x5& VSw&*֍M:^AlM O\S*5ilG+}?'V qdӮJdLJDn1s:W<ZLU7UA6nAu%Ct4`4sI.Y8uݩ5g7uKBeY<5tO%geSWQsiQu0_\x Ji! @7TeKꂚZ5氣EH\Ullnڀ-!,Pc7[˲eG;:%u@D5\pKK ݥZ{LH DS++aJSO[RP7rt9 8Iӵx3:ZRWAH&}u l,y@,יZ1fs,N3Bo9j;h{ 4F#_EL 4-:ڼlM.5Ir!B6%J%TP۲PAi 7 HTQDR @*Iv.ɰ;C "K['(.[.D%/uMhSx𷻧z~!֒2ȫܮIɷGجhpzT8/6%Jܑfl/z_IV+3(t MkL)QB//aR|gWC7TTK"edҕUNZP\kr$g5C~/2C ee_Y4v " 6CF@wF+Ƃ`\ynFnGsfIl^(U{EC2l®EkWjAj[Ψr*=ԕ05hJޥCm{t' iٌd(JqT+NJRQ Y舚4d4ЀyZ%|IRVWK-&r,ONPE).=Tj.T0N$EZ0=ULQXD iD*%e+>5I2ݖrcλ0HU cH RGTԿ&Dt;^)nh\Pe+k:B&OUְ&U,UcqRW)Ԯ[cEi:RTdMv(COY]5Ro*}ԡkJ>N{%&gzT5߉3c/0T2ݓ*#ϲnKr&&?`,%w¨XR̻$;J܋c( c`Ӎ붛i/Sk.l廁yalyl+"Q( `-[^賱D:˷HqbH.MąaWB Sˏ^w[edTQRz>j>KzP z /kj<,FlWtRkai(h*rިMV]P7Bn+E>[GۙukKe$yZO՝Cij6z;ܱ\ ko//*J;U^`oU̦_<Ƿ`zJ dI4STDu XɜSU@d4|uV՗PJ,eTxNv ]L05 eG<'֤S tʜP)` (v&\n7ٝ?W'ayr-JbŹ$M5_Mmf7J^71K*ע4slQr(:6 )I9촷$YN>a˗ֆYAԙj%Z:G w&xTXOGBOEsL!wSX,ݥJ)Rb6PuvO"CWEl4+ˋܧV z5c%WeqrzuKa@դPjS[m4iq $:4P#ە48a%J/fXw$7H|LK4UjeXH%[>;\ I*B{I5BsTNm_<3̩J(uKKKSrfeH"dO`ʚJX|9>@|Y> tCZjDUVFn*C$"&Xf57л_fh`N{*ǂM7H൸-TeԞUӁ&ZT6pS̰!waW,,GsS@-KMdԺfN[fPro]Qd0Fj z8ɻ@=,\ K/{JTLux)禖83[tC!v۷J6tZ^Fti@.S>(FJTq =mWM02hwaK镣["vy#q)̊5L8*fI[ͣ 2[q=(멫XZM_!*,:#4Ҩo)28HӀum!h mѥV˩-!]EF*U)jn@`i;J r;+oHS̃6fRV;w~o˺N|sRifd%~W[*,Kﺁ{ݸ !jQ*>w!Tg `8hlmO|6GYd'fq0SKQ&$ ҐVl_CP̲SJ.,1S6PbR^Rn/wN-VH|&9|4DpJsSF݈ JS&63>L%N$kVq=*ub2Ľ.E[χ. J@(Z9l) \qcf$JLJ|ΦJy>Y6(VlEZA*|,tIAuN ݛ"|/IsHe o{dZU$`Yf]Q&meaIn٦yU݇LO7IyӤ8[lCR{k=dڎpOeF)Y[B5Fa\HIC!PZ.ڲ$DL/iq\UXKչNH[6 o޾:M4UD>ua|"BkíY'+0Z;# TJ>7%OB5"+XbV|cqx*$0cU3`Yʻo5PR$U3A}Ou.^)7hZumqj'6`Jȟ{z;Epy^X:X6KNse սZt֝jb%EZӛZ )L?$@["gJY[$v Q([twTh}C0sAc\Β[krlb^6T>hoc@6?il^O36=oQnlWW_2vI_'U]rI_U׿\h.p/f/7%ѿazy67'}G\˿ɫ:K.,泸:u/+) _WQ: ~%q K/d;r3狵gq0Ͼg k^%]`CW~=cQoC޿ C6y?=yhp:jhtu̶Q uݫwQcCur8+:?`Bwvrx :y'B l"P->h`/>hx}ڰx=ۿг`ن?KexN ªB>u;w6t DI)+[ 01LSeպ)qkJ|j'=wfƔ?dev)\Vσ%'=jD'x1(󀿧'jax9/H(IO[9ڜ%/xO [pJ3i̱ϧ6ܧưM-g&1vW&%cypH-M>ߞx@CAti|R6 ͞1Pyl,8y94 !tð:ytslTX\9x^ɣ6 k! :6FԴyЬ% c9sҎ-A\97˜L'qӲqXyD8Ǝ}a=&=i gG`mL)qal础 >56A{<|L3sƾv BsCR?I1+\r**9m 1On-f`%xdϻ"8<.1x;@&'&11@I1<Uy/2/|FO|^#h3VC5ٯ17@?@ϣiϜ :xahc.|JH2;A-l9yy%o>M:~hC.|xZxtSд0'#X0+`/|2_Zde2.*%|2_ZuMZzeq_.r/-O[>Q[< ̗]t >!-ge*EYedcXVK6d ]* *%O|%p/0 `Y `Y LL\` Bp`Va`/* ~*|f1X{&fX_6bv`Y*fU/` ,x`V#`V#`V p`V p`V#uYX?E+†>:S  ZK//̢Y`f!,$f9`ϟfM0 dl?), 0ks?̊07^`QYaY%yYp<`Varfyfx - r/8o*|^Y%w,>Y|Qz 0fU*fy_,* " "t, "D0O=ff`VpY` `~0kpKYq\` ^92yYnvYn_` `y`y`"9`"9`pY${ڼڼ̊x&g$.0 ,4<`YpO7'j}K0 u̪fhIB`f Zl""f1~9`V~;`V~;`V?`f0k*fUfQyxxYTY;( EY$xYWՐ0#>:`VG|}Y̗RY\"տYYY#A.`0f ^0kr}EY̏Y&GY# ޟ߯ϘO~>q^ӹv{;3O|1~=%9<:q}l}Sb=z9`+S z?}z/~(O~do$~$YvktsF<~{ >:EqΓMΣ ||O_γ9s&yD09D"y^^ ?r$ O⾸'%퉏a]Ӈlf}hE>#iƳƻ/bkEo{B9ϟ9R&T&q7qA">H;"Kw#K#L/&Kq'?.qռ?f fgr/ۗ8$G~Mx'1~.q w/x%I/!GL>/1KS{#Zy[iq">#N*K)}?O?xRo|GuK|UYoae#^văyxmyxn R_^%x3G;xu xv <4N_ĝ%$ <=*JoOO! ^B B:[ ǖG?|nS|L:|6fGf|r| G~{~#po/X'=:||zD~|ޤA/6N {\;]P59`Nh=XC#}9pwRQG$|cf;!`2d#!2琜 n\ R@B:.CR(!5ڲ~"QyNKxsRXDOh(h()* PTR(e|):UjD(!tHCy?_J:󩞵;xQ_ػX~GX;ǍeL0Xn=+7C,Մy4FY5}!N3T5{zKhA'Q%lӶ%[Z$YNBVPm/c&8({iSQҲhLMUٺ~E${jY]R+}j&T+9q8~.LA KDKj3<5U+$tbYIՁ$bRNȥaP%`uvRP"L~@A6 jzJ [\5]nfXl ujPe!ڣ'I;~+8ϡy̤hتemi;4aqfm+1:Wj֢Fo$ℵu%רQS. .Dh#5a]9&)'W_{ө}Τ{V7@*;zуzG QߞKO5n}ì ෻P]jV-+l_-lpkŕ:}奱.a $d-ʲ=֢[R\ l %*XrJ"Pg@K?Go 0US5N+[qv/,AqZt '&'Ez]v\}k`9㨢}8V֦*1&W d4k4 s@'A-TOYӺ"$PS$ 4(xl5: )?y(g]7 \]Qڂ )5$*R`W]n!Ou)`%V76JQdtlE^v';*n\ƑB6~H"I{G)2N9$XՉcSÁGnen8@4}QƶgŪOF-S*@tAΑO귐\;y\ߋ[Aγ jo As. ,YbqzͰ44ЈuZ ;?dK[fDC#T1b 맢E'*r6@$]y(0"-zfkKP](f٫sB’9uv{d!GU}EFl57XzBYuTdBGL<*zmo}XFUv&"*Gu٦n\ m'L &ٺbұWkEeXPQr:usNTJ2VQC!@03&i-3ԐGkp#S4ٷm۳[A#ڦ(v`rtāk^sht&.4:etlrRk&zDk'l"J`'vA.}Lj#uiml.5!>^:?) rlgd+z 5IAI);n.*)/~]$7\@ C-DW8S?]5bʶEw wB qMV@]6MfFZCiZ4iV`ib' PЊZ \LQː@S2 rF1/ϝ~4Avm&ԽmZ m\6W~קܨ˓dmk| ;wy.4_IӪDj9$vTɼIhy+N,l}-`H8ꮛ&>+=̡Nj& n\2ZoD2[]zz& (  {RO8`mQ]RWK@ H2F%fp*UKhKu o"ejXZQĮjG?AZ66s8y.,mU鱴ln" VWڊh"4Ih5D[h7wq$:Jy2"8"lʱ,M/sA&[z:)[]7Mvl]Hbe;\N*)5fPZ^=9LE$5 Y=`.'0MG =dD^k(]yiIɵjd WMuFwbSicPV62UKE&!wTc;nya4ȾkY/ )XL`Zku~ _TE mnT%*gF,Ns5YOS6Z4ة M67cxFMO+jSG(\4%K1)rXXi弍GjEEJQϮ8tҗ_,Ù_%y ߮t/ 3HfE CN$¹xK%Gw=I-=Ul@7L򨞭I68']_PPT]$4d:HTSBUu( 2Y67t}A9;4h]U%7ThǂƢ6*"P:j pZ{8q ZSXDM3RGf;c|P$F=uۻ/M~3u"(S#+{^5Kn+$zsS-%ЊNX e .&T}}z#Ne(],Ȩ;$L`Vq"V]C:NI,L>շ|D`*CӦjNvjTHmnd:m)}PqլL^7ft*+edU\gZV^M0ǐՐn͓~K#%r5/*kPq)Ց2P_$E3oag Y'0dJZtRTsGWiM^̀uПHz|lcs 94?P]Ek# U#揮Qj $^D,hʶeY49%]^W!{UG:0T"L JUK 8TӼ@;']\~UpdϴEhZԊ½]ZjpSZ,T(Zj?wKA˂ XRh,M$LChjܻ+#bu=oK.D~Syb#楱!U_Vsn**9ӱi^)a'e*45SG5:CB,\n伭PnDK(K Fq+SsU!亀],NRY4I?=$1MNDHW&ᨅ*r --y"Uk3YTVy£ȡd\ϡ0-_W{#u˩L&Cak]DJ:5mRdg)ߴe[X%)ՠLաYGnMܠcߙ=WՒuŋt5(oyZRt0[4@iy@HUpk} yu* (p(7t8ʗ`Y%,-$%zJ8K(tɚ@ DU8tx^jkYP[߸6,}Kk!iEbMDNɩ+$#={ABRB͖NNf < (4փ_5eaa"_IՖ5YYK~#ƯY.JP;Z){t *x%\ڢ#z HS*fq*sIrvr\˪HcXeUmgqU%hZM|/ܘ^49պ ?%I8) x%C7$ x%뉃*V"Iz ɘ,@AAHFs oќ 2+Ҋ6ڹr/B#<ь1KE#T\_o!<=f['pN~[*U}*O =eW?HH>W&tfhS^58D];#ue(Sё}U Cs N% }94{@Io_2-jΤ[т_JrtH knXХr;5([cT/b݈2:Be4&K")h\,T,G?Ul-]熚&%5oڭ$ـVwTªX%YaBo9pW-+x,ygGE,bNoeѓB|R߹#kdІ8EǢܺNiJ8ķӕ~.J1;Mʴ~yZ*X n7Y)` `T&00I]nZoXtt?5qat gO)MHJsvzE"*;ew$vS%X)XaVV]nAߦG(3[{F^[hV,1I郝We5$s :ͨI4E@=-QAtYf "y lUI_ tVKgI{>MZFy}'>8%Uj4l֍hJ4@ZdԮ59V_j٬ӊKR5ScQ[|,Wf]}J(!4Ricߪ;J=iyXv. ,d\&tU+~jGwZ NnC>0TZZ4QQ!&LOY.ރTJ9"pRxբMz]t/8Z_V76J%^UCU뻭ずF,l+!L!([L1= NJMm];t(nTjSA?z lڢ 6ۻ(5אPpEM%-7=~2x׎' xnEN'U ta0r#ZNJ:)e =٤oc#j+MC֭$UT74-)l\+î}YIYULINl,MnX*@\(:f]I^em*A#4,ލU@h}"WizIz`"IqZk!I3M=14[Ps6ɭ j6)p"Zf,z$͎";&MЂ2OErV9n7itZl9uD#N04IΆ6A :MNfSo,՗64A,c+$_l[LLB1Sw Z2XtT83]h+ҒDPWEv [ºl;l&J^lp+h2m*~d(˵cN}'T\HIf Ewnj ";ZnpVruW%A&4-49fhXb}Tw;e4KBv3*Wd_:@`0UxᏤ0Ew7KA ,0eqܘֽivzȪ$C\uŢn:ف,p4=Ȯ3Idc(;Z.YZ)X^uYjK,H )VU]:Y u+${Y: Jd):O(z'+Թ9ӔPnrM/+6JFZ0QdX[:&i]7}n%/>s+SGݦ5ks`}&U= TJInekik$W]ldduӛn FL[YOߥt/M.VpfiH ՓEV&}sh];8kf4)I)f"V@.]2XW{tZ?AT_BYb]`;>1c.M:[~ 2b|Q %,*3TQU~׉*a 6Y*]C++5f{@dy4Ȳ %ґ2IߘAm4$29U}R5^]H/ɲm'UiXAP6aݦS_` GDD11vyKnъƪ(rTam{ ?]u]u_܋7lg?jwnн>]<z=viن-?!i찘I>\(ק;fr}$8wGR@N&ss#Mv!o^]'Hiyr+,#}<{1Q;uCh/Rg`77&*C|;|7- d w?-n8c' j0)O}sbyDuOq&aOX$wx0;ϯƯ^?=/v|l|=?$ђ};:V8azXsq߾W~W+f}__-,Hb_>ǟ?~?02*c'ܣ_?oxm endstream endobj 207 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 182 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/5t/8dfc_yl10yl9j91v2lc_jksc0000gn/T/RtmposLYxE/Rbuild2d0830c1263/effects/vignettes/figure/fig-contrived-5c-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 208 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 209 0 R/F3 210 0 R>> /ExtGState << /GS1 211 0 R /GS257 212 0 R /GS258 213 0 R /GS259 214 0 R >>/ColorSpace << /sRGB 215 0 R >>>> /Length 54062 /Filter /FlateDecode >> stream xK4q$~E-1ޏ-  -(q!h8tMw3sʊӚK-ISss#?~oO_>~o{J?~7{ ׹(3Wǿw?{~Ϗ?_w˗u}G^&\?{?Oo}\{ZyyZz}ø_ __gGz˷e6y>XRO޾O))}_H.紐P~_䉱~Jι/:o@ޥגDvw=Jܴ=ě_ƿ~~~mh{xE-jN{?=}Rw3{Fw>nw˗֒/[y{[ZuvremBjgĶ b&^7sY6l_b%Av}wX뀸Rn&N[~{5q}\ Nm0&ףV8||ף'9Ctm6_jmX.-R wu3ygOhSע\bއ/5墯%Ru}s]bXturіx]bm.6\ʾt7ytZ[N^.f{UT{f?hbWwsN\{qKw^tt&]J/t/}t|ɏ%و\mpy_\. q'~?d&].KW%]Źt-%6+}_-]KwxmcoKdK/%\Zwi.t7]ɩN695߯7_Kh-%r5, d[K*6I&O,c3y\}oXj YK.~KU油./hm9r +ֳdz f3&zfV]v \DL/{Q&7yg]qM O>p!h2_1+d-lsy ߮oLh<eԆorEJliul=e};e?<~ӯM\(zf7)&_*d7&א'\>/p;̃]^.OzKzKqymFsd3Ge ze|؅\_v3z/^~~_^^^~]qd_I;;s|]4/a|~']xZӇ>/P_vʾs|r|=UȾuy}.zǗgAًL٢K.(7tڠlm覙옙xmxL!kȑz^r0%Pq0CbPHsɶ[W~oOZC"%[\fr/~CV:,7X`!DUZ6I8`!*>bU\Xաj!U ?J`U BXUX2mUf0Kj N8K*߂VmxV j_ jAX&laU"*FJV "7Xv$*:`1\Dp7X XE!5 *CX"pU~N VՄ0`Y`~6*`ՆGpUؕU )6+U6rqU V!*8kV VL }UtFX Xx|XXXEd Bp|Up p+n .n V7GQ ؏g ` V/X5 Xu"UtX5VMX5 XuVA?` `|j 0)`*: Z+o V~ڴV1>` K6CU;V:`*3[;VYXUo * *Xyt*CXUh?*OV"V7U9*< V!X|XX?UnX"Xo^O`XErbU3OjbUZЗZj"Xu'UdOBOr?XeQ!W*|?V<`U p(k 8 *' `UXՠo*~`UG|*&OX5~n_`;Z|V-VmVmU>,VeVe2V1~=`UVU$sXUz*V8`V<9`V V`V-K"ULnɋ#|s>d^=&+tø9 }Q~^ٜ,|ޅ׋qFF}>+?g$'* lmO+ess^&9O#R7<8=qN4{N}h<OZ|"^zVǟ==W?Kw;$Gzd-L{#y~ӌG^"}L~3 q⍈"Y:No?2^"\1d2' <6 \P>sD7"^dC&~;>#o顟o&I.%Oށ 25E>䃓o}gs'H|F "#!a_'ȿ{an05fA>'o| AyϿS>)|SQ :>G#_i#79& < el~SInzF>|c%HsO?"ٸ^ }v|jȷy|l;e#idlU 92u)W3R?iI$vbP2'PfPI" b@^"^i&hRA4$ k0[T&K$%BFD I>X ""9P.'rnHlUXR A8AgA0_A)S>y*tE|*B UDAjP$A ""aA>jR sAk"'";Sqe>%n$i~O˶r_wa " |%r)V_bgi(H`_]@2-3,LMկ-xzno0I^_`*I?K؋U*y e9;jzņmaj, MP?n*`<ۻ嫗C۠i0I}n@z̔>sZ[Bu"*! PU@ x"6+QrKZTlt*6wvnBGĖ JXwv{vZ}B[MhOPХ:LrWOyӈD鍼ܓ>nZ{E8]H=B[Vꬦ_řI^<-M]ƴ)g8uC1ekYQD"ddy=C9pD3iBfx ^ˬd[5| *ʨHNocҗ!:9zïVݱ7A3:bC?W ýūr3 4a`au^/̶}j*BVobImx4L xR5L琵dzy;YJLbX<p.C+aip=_߭-%uJ7YNK:\ p㕎\*-Fګ%@UӺwr^>CeqYE`R迦j=xW%f\Fju闦qc9?.=TmD2jY0_XbJ4y#TaG# PsK5Y As}2l jzy DhnS;G(_A 8#M`޲A55  PV Y0 (fp(njz- 5"J4ԋ((g-يK{xW Pp$I\O-k Ы:{Uٲ ]7A},FXޕEoVד&(D("PNE_x5#k \gPY!˹(UI]9vl<l%(PpIې@\KrHT.*-kuS4?WXITWQ,@%fMN3eHdɂ\OE0>)з$T & Vu xeQLW[4AԦ'U I,0$/h?3o8HcVJ"OnWThЛ2QRJ ]2Ullr)C2|kE^jDu29)Iv7S jd=739<|&YTaxOPSWEL |ld'nh2U:q{oUU䑣XCSuN}=}cqRX寧DCF]0a~UJL(qk+Jƛ K2v`Bx52x)3'8tMM{anM:u^KmnָDn邎~p8sAMX %6r##<,Q3xt{aB:k?!44QH6Wl" t(lC'lLplJ(<(G|.cA~gIZ 4& ԞVVTeN.-̖i1BbAbo峢uZPw͂da =3`m3W$+ K V%i lO"Z._*R5F(4,'82I&Y˒ Z {BBɭzc/k*O:A5h7w\-#V1x֯j̬Tif JKO 4/ eY{5nz]lX^SSoVqahF//|`Ht2(F89+jJRŴG' = &^tgQa hߝFA+äHjL[I$. T >v :2\=gTwEj2Œ]A $7%2s L=vk&y.+xk#z<Ӈ/ٲ"M]ak*#x7*D[rnOO)YsD ULT' &=IHHnoN8x.[ m\~ܕ-L#cd{˗}P߶Tl7$[Д t]K\&5b/vq }+vP݆ckDP48O'YFa 5x ֬~w rzI:x֗r7*kY d0}m"h4>}h(x+Ⱥv z9'z,ߐ%K$STwius) V0_3-)OEE$MܒPwZ&doJQFO?MgM]!㒼R8MyXf7Ho5PdENsSUuh5vj"T"MgMBDQ}VD)&Kݲ E:"j`j[jfɰ'׫<恚^4Y7U𘵋T-ӈ"Ml6XEwnBǞA׍D|-fRbvFdxX _`B'C L<2Df[#Euj^=j DEÙE]xy{swsTJ%f6^DK*-L@kd6lijK!jgy WH$J),BlN1OP%&2z^XEc(e^ -uӫ~z@48s6w+lee`e;@yTV)GSF9Iam7So*Rc$.;dqZe6^{.MOu +Ӧu\a$+VΆPn]x&Ƴ7z=0 U6w"aW J茨+h:9I%NCLp::Wr}˽J)#l)@}ʻ*}n%5n {5jp0\ڦ`W"~G:MB3U,}2KT}X7m{`J1{M5:Y~\8!jB_2=;HPQ/0U**;q-Ze b=ЗEj.uw :97ɤ0Zy33u"n׈O$ GzBm~]`L;V2 Ͽ!ĔF;r;eh7Zp+26=TXfoK{:ԡvųQimMd*Z5K? FWߎ2Vl;ݓ}}Fմ!ja{ Z> oF)Q&jJ0MR^ 'nYʗ )a1/eCKPwԆFӢ=uTLe`uU\薪 ʷ'{՝ĪKXiTStZSc'1](+,[ױVcaIױnx@xVzLKx M'ʐ d jUvibve.YEve#Cwp:{#${)$aR'!Mv&Ũ05Vt]R!cQ.`uu@ moM[ `ir lƧrxiU"kP'Cv 0#Q wigMd(%40h;^$.39ȉD]f$\%eؿE?_,I&94+|T*`dYyͬ~ӗkghFէU(S-B8iJ&fY=EoDIE^0 ޼1,0\Eعk#I2Q'mUt,V8\vBƵ6$6F/)o)ly%|AŐ^ e.p @&  z:|h4Sֿ@T oKW]Xbk0Z dz!:J?%`DS&dɲG@w3#cHe>IqvfHzOreh$Y3 4%Pd^r<T Mc=w Wmԍ1:X3DB)X2(UNF!/;:9Om2P(e " R|\U=G#KWtwD7 YJeU٥hרT^.kOpݔ!FTM^['֜ 1E͛r2ͩ<\~,N+E'=3ZT=,aõ>e+ RObХY)o)XPsNr%K#*,whTy8(Z,.IjrǬe80Nb>E쀖tfԢ]2=^il(:aqcYoEyo'J:Ze\\<<%SzdHhB'M3&{L`q|M{[b*Wr*OvJ#SfY_7#\]9WHjk sUp{߀;0B\B[Q,]S% $P34@ vfH75?^lJ odAj:ML9%ߑNJ,C^㘎.!oE܏,73c뮃JwCAQue7RIhH=IlӠn7*7| 6/I޶ Ξz"|Ս]*Mkgbe9HF4 mgTkju$e(SaU&`qkJ(B:Y}:%fzv?HVޠӰ Lhr%Kl";ЦKTrgoT?f]?{e~Ϣ3"nu=D%T`~2X5̺# d`B7 ^.e; Q%^:HME3Rh #XՔ'I"8fIg{ dM[cIZ{L$or $ov}@ $ā~K͘mt5#-Axm*3oyhoǒ.8gLV&qvaBYʭ"Ѹr`.74ylF1BZ~SVR4#EN!?]:vga?̲{+Rc|s ̎5mMbU4}x(HTCaaEeԗL` ~zZ(].PPq"0༭F Dي Ʃ?Ècrr$'h&W`yPz`>09bn*vuϜl#꟟@W}#6o-&.s.]1aKB2dfqsqõ^_e4*NLݤ}&)16vDQV %7*׷4'>ş׿|o89S䄅OHߺOqn7u ?X.%{~~p?ξ~ޙK;ݼ>MUAwh^ӵ_s$wq(?{o z ^У٭oZ^_n,#'q]M; #uG?B# $󑐟>b/U`y/.άy[G~&ӿܽˏӿ=xOfI _^8?t>G>]~ޮIěx5mܯ)07y DM4d>st.y>ޛ2Kh^j2)M 4A&oƭiw.Oh8C^*~ 7M>hlæMMc;V[^D²n8WŊтz(3D\9'ȻF=oRpMpd'&TgΔl`<&JghV^̉]pJ? z {!72wLFcJgx\-v\|$#21\>-,w~g=w^we ]I^&3:- =y0a23? F}#0ҹ_7zSdgM(2]LGJ5%rb~L ɫ eoQ*,@e:L< :&%S bDa.f5h|SG5c.Y">ێ2 79pc1Hԅr>J᜺1(wC̡ :2jA3 e%*/Zg7 %*~h\ϧŋ~~j"@2qʱzcM}r lgVoVt׈aGn+ 44iL^#&ޱϔ(OG6lC?"8/mN& :TbbCA !y#=H%y2ՌELg.`ʟ~w49O(ue`z>zZuR.z-ӗds eoѣDyz8_}E;Y߱nio%wg{0<)~ˌq& x/\xt9\Ig2B,>yh^y0׿ `ɛ~‌v\ H̞Vl_:ŗ eؚ"PG}P }06dޔ' f޷?4y%N J}Nllk"Q`(A?oA6z*F!hhї wcZŒx8_-!U:r2K `r;;%r-(LJ-ȋ-Av0YK {Q,_clC+ZhB1; F׌cgq-߮Dy`X/3S`Ccd:Lވ&z L1t0hQTu}od]TVP8^VZ$󢛦 g 8Ҧ.gk9_M  {l#HxBA]'5 y' PWPMԅ +u5Zu| i P؀ \uց2s@]PW&{C]3dV6+LuW VԵZ"Eh P@] @]ᆺ7OP (Pu.*kw.지:]:BC]p5"zS.pmo u! h4 uu.uuPWwC]B(PWhPWf(PWO "4v.BW*4uǁJ}PB|C]p}\6_@]PUPՁZ Z Z\uѵ}7ԅ翡.ρ>o PG@]7PTITxuMJ k* uZ;P uPBBuC]|>B]te5`59P׀=Pt.ڣu Ɂ+ $}x.uP +92u +'߀y +#Xb=k0 +W@];Z h)ApC]Ч75zb?P u}.:S@]=@] Ե>A]x@]#uk uEPz|M񦣯7}F8KcˀCrm&t:f~y"6a̾'{QvBRPjVRZ* 5i= ?cQO:SēO<Ԛx@g<xA'(3O75~.w,ȇ,?/Yg7u|Ǥ*#_|NwMM}N"5NÞE䃘J|b|D_Ї˴/cri9{ZC&Fn0)GvSs |{j>gFM;m̧ߥ(u|*ɷF]lcIz*M(|PqF _dROԑ OiJ'"t?~|ya|tL"TZ|]zR#}(e9-( >@1/IBQJsPa߁TҟR!%Z-ȧh,KLjүkt賧%c1~jcX߻4*}("$QҬnKRa0;T&?|Ï1y>*M#5y2[} b UUURx+;|&[9PKjb3\1V~*̧J SD;]# :Az6NU]ꠌ[@Rj!AoM}jr>6XʶY63,R 8!1e+W7׬ʛ]/~g3{= lVe[U3N{pޕBΖe.2ja`$ [8NVQRyoh78HJﺉɉI )v]:tBb BRapYZ[u6zK:鮰 | vACs#0kt+m:]#f ^w;pfE'`9\IVȮe6h76CH )"[Y r|[] Z06W*AWخrkJ,`--|87֡<` eS(FE,Tٌv2FǢ{ȇ 3hdClo@3Um\Svn7S{֦FJ+77mߔMS xE‚Vd0=Qvd̟TB7 IPu~9 VXA[ xCL0zKkĆE0ۋ mb9fN4G5rn2[ M|jxŔqNQWۊ!DV@i<0gMSr % h ܐO3p9r |ӻ-1׊M]eMSH~*1X!l{IbK6V4G{?.zlT.n )aV:Xҡ4Us[ kfxe, C 껛}oQuǛ}R ^ W@(Vw8cg?vY 2C"(RW$DLarUI Yj&z`J4j6f VU >R !Sc(-eŶrjeSm'z>nX_ѮCWKU($cNR.@8t*vi m#;kɨINгJըVoDH,j$Nu2㌲$3A r&+3$ Ʋvb&S e'2,!qƤppU.GQp+f[nՎ]]:}IZB,]y%)P-Ɂ! 'ې ޴NwKORSd5c_A{Q#4w`yWFbLKmc{YI 惭:w+5 6ߔ$hoK>Ђ#h>-<[kX-ha`:껼e=.қt$x";X$!F{oiPwvJZj"5"-zaV [(*,- h k>bCt2lnBĈ$,(a|'S9t5幢7P1H̫%זq!2u˛%h< X8~;blqL oh' kcm9Ŭ66gf*8F%H#bdj8BT[*+ɱ(.`Gp4d^(1X/ 7$%PK{u$~tr-MED硌C5 d*(YT ntR‚brʜL[6|6[dl2=Cra(IV;9;S ؜,AKG~w`ZZ*#b;a7ʎ*[Qkn^'a:iwEE 5zzstYhh.;{`rnduWurgKVy./#lbs%Sh8EBc=R`@ _.FŠ[oINN]wMERX%߂]V@I:-^ ȷ`D{s]f}_MogT&%; ̧BYmFߛx"1ھK7Tl;k9el@["EUt|a 2MB,v_!\E)g*N1G["SVXi2A7j|" kјMnpn!we'ߵl*7]gt7$@UWJLQD:ةLIB-%G7) V69!Tnꑖ TP7͛@s!<`!Q0Lc_7d2óMSPMө_ڨlr<* -)*]cMoĬIΩ۱7-[e}qz]oo u:ed09iѶ^ , J ap!DWtz9bojOkmEO =:)D'j۱*A %rq 8HS*q֞@Vy0iA'X'%b i<|yLqea߼뵿 A F d:wԌ9X(SxUj*lwc>SPXj MzQd:k[Q6ܲ ȺX.ݔ.l"  A#gV&BF$jRoH`֤ӽsp}t  k f nDzQӛdl4F]в[ކCɃyT&hh|.-)@fjjr2΂r|‹߳ a}+*Db M5$ìHlyg+wP0ƈejNE.ɯoMdco!Zk4$IuL99I 7DR{u&i`*#HȲ5OCg06.7o߷ a1JNHa> l=I`S; $K)!.Ti9ѽe/"̯CYct'}IB)] ȾjHfoJUkR [7U$VX=J*2VCsw[۔Vp]1]Ρ05o)#IZ/%; @ Q>1^P7Qdh@rgIS#,H&[iƠ{4럔:Tekriu1C A:VĊ+BMpԔ ͐Df']Օ 7x*%鱲#iCѨ[&~ۊ/uDFad鈪e4 8Gl .TemJDO.;.*Cɺ|A$ >DԕLgFGT CN雭hsyen} q2K5uP$"W~>[Wb}sh;I2[a}6 C$tI̵X܈,$mȘmC2XLt߀$ʐQ3UPcrtV!IJB7Je^C}Tm~H`[$jh+[u%u-2t Fɜ {CdVVV}ӄ{0/p^y-D1G{1 *cp|qbո3zK:ff M*SW#ļ NH92rQ>S?\+Jmr0\]SU|P{~7i3:*ʮqՔ̤ft,Sӷ2T֖jLjMq7%PLx+@Q4$W/i׬ʠtIi ;:}ve #UW|fMK3:* v1E5TS]aP^$kA**(IЬeG T)*d4eɇaAt-M+8a:l$qGvN=/_!,ٕGGh,I2lG]y H*KO/:4omݪF*cjW}&oL$i[ASw=+0̫)ŒZY7V&FZznƚ0XYUUnNֱdbz`2AӼRۯ-p-a"c(#8~MO~wd=_ɆO !"L{3bv1"U5F,*ZgH\Hg}YI lAKzxPJI5Q-kFkڡkMh(S;5dmr0Ruw u8 9PMˈjGͲI)_+"S{ߒ«+3t/)4yo^߂ۛdsy3vKvLQan@gU޵I  ;@Ÿ -|if淝X)6]5e5uLu&(H( f9t 3iĀgfZ[HXs'} x;5 iʹD^9s1{9bPp9{@qν=/|<&[;E,^ ɢds=(cie*f~ }3Ar-*<1o=3>7fdhHpzmVs Pa&ÐzpfF %y|.g/jA/LhᅈNxߞaQl0oL|߂f=O#S} ⇗ M~[úMu95 SB2ocQ4G~o7'/W?|!z(υGz˷eo!q^86޿_\7: ־~'Zhfd˧y}⍀Ǟ.o{G#ο WTPˏx=~[Oњn/?euWx0Gfm?G(?}7}>GO?B#z|$䧏<`t(8>o|>gP|gu| Pgּ'mm|hwcO?z3 ֱ>Orݟqcۍ.gĊ\o4o7ڊҊ?\26D|Mڢ"Eg&#m> mZo:&4ӄl^s%BLޠgXS^C^_o; VK<@rߩ Li@Jli&(+̓S}j LrdsL&ȿ<I:>cwz +مv1X;S(-{ g.k/k@AGA,1he4T.[䍦&OP2g2˙v =ZW&b]mBv6:'-@b|claI8]=HF!Xar=fwbYn&gVy^7{z S&shezlZb$7|BFDž-MFt)&GY"ebw}=3ֻ'F)zRtd/蓞5Xrw͋ϗھך(zr}lKH .+#k$|NfDV{;z\s]] ^i 0?=tCƓ_x_Xf=[Rczڸa>+QL,Ɠ2c7C@*\=cX-g{H6}UJ1ϊ΢/ZMtD[~2 b1ۘwG&^g`4 wg*db3gd7?/zCmIwQ'؆ q"Ex:k|p y|~ۊzn+sv'SmvSO*1xp<`;{4K8{Gu#q e?;%Wq/=l3bMYM>v cr|TAzp<'m2t$m|YQأ {lq?7w '>fT: d21tKлL/߱"g2"/ڇ*F4b1VyqNe'K`󹸟'o艞7ɄL<__`{;uGysӆ %q=Mԕxơ=a/ʙ%V󽐽7,g,sAޯ *2b?Vl Y07*`5 R!EaԸ?bǕ}s}HZxm`b a/v|vF 2W6њP)m#X:;AaϨW{r}kz^*߰“G7=zGæ_`4AO$Z~Yeֆ7~Q쇍Q~#>밇#g<%ғl<#mMyks[<0ǚ",~hlύRB룰y; ZYR{( rAYq ZyرePҽU֒rkAS>k 7r "@ JX;*5 &OOG6y.W}6Lǁ:PW]   %.6p 1PWqpx̴T@]сW Mq 겥VFGLف&ŀf@mʀĹ*A]π ]P+F(t@+Ե@]PW@*PW!PWPkr~\uѿ:PC7 Pu.@ԵbL 9PW@u-ϧ "w.u.@eumڛ6[@]P. 9^<w@]V@]%~\PWu< 5 wA]Xԅ pUb* 1&ԅTA@]?;PWhP ~q{A]|?uhp5x=H\Pלg_ԅPu-oP4u8_E5uؽ_ޠ6Ƅ+cA] 'Up>ڹ?ޠPP Pu:"E@]-u::ԅ  ぺA]πk9P)"u@]eԗqA]Pu/PW&PɁ ?||PWZ@]~b@]E@]?O\'Ը_yx^R1|T3]b=}2/g&xAx?^zI&VI͉XhvWz_r?0vK@Tُ~b2U~3Sgw*w4ǞWRARI"R/&'s^aW꘩ZFS=⏓O_RN`O<T+5"aԕzRO4#~a!EKbOɧlP}'1P"|:;bWL<9hy=p?ߩo5:i7%!|UyyQ^nȇe{/<"o!|^|$} +5F~q"eKE~i;[ [iJ7"[鯞|,o G>ԝxJ"LO~?>/3滯)H!oD>=ȷGVzR"?_|>㡷ҐxΠt#>BaIJg z@>×hQZC>÷h|1:?| Rd >H4]g!$^M;&>N N1ϓɿ >yB >xoT >Wjq=ÇRK+O5D~5?oF(P;wU](m5Oĕ-Tмf@mL(w")%:%mRl[U"شX#-Mݕr̂jDomRU 5@Tq )Ph_N-Jjq 5 ]EG`V-Z tPWvGM_(يܰ"ڇ% Uugbvȼ[al[`Р(q*Q Q/ØxpNiuZnn%MT=L#i[ju~Z5fV"WJ 3|M7,5 H͢ky杄]eVU'&,C*/+EFK6ڮ(<ݲa'}3$ojy@&4fguDq)]N$ăH&ק/߶ip<:Pjx L%^E `-T %J[)F*ns5h `oj(~#彇<7$Fpn Љ4&6 lٰw\yNaݖ[7U)bߐKx54NQQ!lj&4b8*yj9Wt{Z&K{N>Zj~*`*A\wYE5t$TfCf*"!jپ]IJ CohCoHX)? m)+uW${{Z1,ZuGh!(Z;*%R ~0J@`rݢd ۯ&s(/q“")l&t&Bnv!m@ㅁ5ҫh`/S3d o*9щvD6ޖ3h!-Wn̬C&!_\GH(ۃcu'8 LgR:[fw)y{E#NI,RQoH"%;n0EԺp7ZԮ<\߾pم *U8ׂjK' B'ݜ LeW}".8d0g mlAjHv/}ƤS7hE-(E}&@K< $\~Ea ΞHHQ6Nڣg{մ _I{]pDuK6Sz.e3KTzު줻f\=HQ/OEhJݢE .)T[\ES=g,#vCfJ#=jyO!O+;𫃽8$5Mꈚl$Khk&O s Zvd't$uﭭ(Zuv.Wy[-ڔȈT41{ Ս(k7i82HK`BG J2-*PkrFsc*>?"8j7[`M 'n5bI}+GMK o^ʲ\h-jD2 U@m"_\ҔNC\ݾjS< %(\W^́GV nXTKmn*5u8딋WYwL3֭* 7k:e3vOm#ɕjBdlbOg-e &0ulo}-Ob:Ep2 4栦, lߤ@źid\GU95ʔE G/"jQD6[Xnjm`h*mEoț'*; @AbHIC#bd2W^]y;#.lsΩHI)8@OSEJU2S4":CRNeXٱR%i #Wm|b@vVҙ34r ZTفӌ抄[Xh[$dbʻ3Jp–9E60%~jQYv dŠ/,+^QTzуF5Ct+)ST2j`8:/תNuK D kTCb 6mC2p P VNG[dl!Rq13$3HL|.MFvzRI"Ie~RAA3vʈJEP ~%_MM(r?iEg0GPxЭ/ǹ {?RÔ{d$b۞}=W1ÊTE U/u qu,VX F^qT*Yf[ "M1m›CN#wwռcR9#Yͥ)&zeFX}fsb6qy zUAQ-Db Z4θjeʹm,b_`yO[)72l!+hbXֱIĸtYk5Rp,_@^֥(lV{&kz7E}1R4MBNIdVϐ*sRȧճ{)>P6lXOǚE-5$\%h{,Iz0,Z^o՘3Z+ϴ%4&A ,/Ft%37˲.6<2cWH!NnUAykrdMg'0P\ȗS̡pNlX)e$V|)`N%X>k&NsYT줸f1ȑijݯ\v],׹Ƅ%aayP2}o'Rs#~5V]P"qץ%9Qg!)Pa@}T4W@aLp@m8VQOɡC Iqޖ,{WB±LE0peY3 h5=7 oSZrEVb,6e= zŁ\L7W!KjF?.K')RWh~bu9x@rd 8ڃkD kPh ]}xTyEz}Z*p؁&+L&?C 5]70IsiAa]v Q!4p_TُImKBɂ[Eg T27fk5-TA 7f;IeGx*d< ' ms X嵋f e}Q9M%dSUDnDoυ(^G H*f)`戍K0Cg El]bO+3P|@ӜNFCNˠ3Hu0d결١z\,`HjbJob18rՅJ+_+ S,vɷa4?HPp MP} C \S ^C2d3R~"kF8n˒^t}E;ۦқJ9+ B*BrMYǢ-RzkS0S{8}f]PZt2bTmy[UPuY]9muhJ!475eEUbͽB֒A?M|3rSU$}-(NIK+kHZ $)odnuv:>3@:.Rf4#ӄ@v34ρiQpTҔKryξ?CҨ#.-:MPT{%d{֖$N@ɨ)Ka)sJaT$Nk-)u vWٲ'A {oCN4 ݨAz|w+9ү@IV ^wRvD=89n:it <1IttwM@*W7fb5l6g&%eJ)wugosaq,niM&? .KB^d) EJ|EՕQP]dw_;Lgszpb]|^;/Y3y;LjRhaV(! u^ܠ  n<Ë 9 4hoZVeUV܆WUz귫3` I^1`}(Hfy /5!R=w+6%u+vk5IpR% SwLr٭e$1E Dso~+r7:wT!Α]'͡p;RYM5!_hQ%#F0ړ sU,U_eUP lZZ@ki)dW-<ϫAXtyWY]qP '/$i\HW22z0 ò$IPQ߄_떩 O.=Đeϲ[%gFDS֞W,7Me1i&s t59ߘ *e`M#Dd˖EFC)|A[lq"(eEkd?IF.20i]!809w?gkj_0ϿG{R0u.vfh6HhǻGcYnzn8ctP v.6]5H=F )nҗ+ۧ' 'vFC0Wۛ7g4!=ڵl ١Q ~?ѐjo/^YZ[=oqG+9{3|Ϗ+ D2 D>=Z 2Đm׳t@ۅ[~V~:[sM?>хv׃`~O}?~? !H#5״l[_/׻?{įGc񭕌7;e~z߅[XyO߽~@ot؜dp˟>_;z/cX|x?htG# G8~Ȭ(|$p}㷏,#1~U77XkO׎/4߿//W~_˫:HۊX]Xgqu0|WR|``_>}R^hl\Gz,]~/\?ۀǷ^/boǥ~8H悴գ.wm^xqذFWĶ;G< y;ƣZ!;zԼB8:cp c',p]#]62\O:ZtbqsmL ]Wxop} v Hڛjر籎nvxHcթ+W x•qWl Q$W ,W]% -4*oyk5pkԊ˪aNi1P]1?c`܂!c ]N)Qm ׹xA,871^P6r|X]9rpEDK*g ƛ5>6=B(Th3\ w<@?HC@W8K_zx`xCU/{\9R٩c>7*^fqP57 ;| C&PjxA}"Wؘ󽉒eطBh[:΄\Ix3|j㹯Pt&$l icvݘOTc cyؘc`a&Aּ&[dgx Pi]G56Z'6^5>Hxh</>>`8ap nxz͟bf\ϟmE@V"c072~U'1Pߟˆbq=?&{D1/Aecf|5<`fAai&̈́RfO1!g~RvZk\ѽ2_1, 3l{_йz10b}Wr!'̬3gڿaO'F;* ]oC±qcڙ1O؇6b>WǸ?Țm};lc}C}K\ng/xwƛ"| У{85*<E?f%>_7>O^6&t6!098 c@d~5ryr?G@>G ~y>P5>o_ׁԹ dp~=;1`o'{vm$t'2!O %h'U^ݴ1GoR2~Njg< ؟ 71ʟ*x4 zTAU*ƃתU՛C~ 6D QϿ50 Hj>BZ!bxcxݏ 񤿊SՌз-(#_~]N,;)뉬lnlxPP1 /J[j[V )俷jnR5#5?^ ՕTσ%6ꬰW6^5Ml<5Jh+lg=>mkg2+3uȞ5/rx ~@waBPw$y6CՀ"4+*G@]4]ruulu5^@]#u1B]#UjUU:UuԕU +%BZL߁jks~bx k1+ʀ&&Ȁjk5"  #Nh N(1F3}UUy?uuPWԕ +c+s>/kxhP8: h @]P\@]i@]邺|uy7kjԵ@]F|P׈k u1:PWhPWh@]b[FB[؀Z@Q PW|Uq4J ԅPW!tPW 7 e@]h@]tUE(@]u.> y.4O\oz@R_:C(c}!zI'c=Ս2[o\uKhvt.ha<>MNpT2SǘۇjEᯟx|&U-]y}I-<0 ~~EJ׈_J#xh2xi2ވxj~xlP7BFm爯A-x1'7cEwE uP;JI5ꢆтxUg;zx^5 ^>O_ow C ޾=9R7jEE Tks9GWATx<1 1<1 ꌉg1q'v~x[oq!:RoH%o)CRW\9P5.jSߨwj^F+_N0P/W>xk~ <6v6aTZx$V/xtPGsP`as,wG;~x5颮b"3#0Daިߩ_A|Ǣ= `V}j1zωS9ZZ|TnD*a|V|ܡv#G,ȗG-J.9򥑯+q= +ߓ*Ӌ5H*7g2"|hyuQT+'JcOTГM14|'g3LgOi_'_DiGxq z_-ғ4%gO'/pJ]'|( >B_x3( "ߡ^5/<%Z;ȧ|u-NPxsR$=>Ȉ'_:OrJ7R( Nf|9TگT1|$ېZz8/CNV} Dǘ|BA*7|#5_)WS'(Pçb>HFל?[i>ۙڇRNgx`ЃPUJBvrdّ9FzMjSkw#%&Z  NLU]6.4Pez]l$e:n}d[iZJ}]a>1u+ ZSxVYz>>zM,)CG[2KgrQgkfCAHȬ \: N:@- eRAY Zڅ N__dI{-A/g@ND(f%7d*TBfnjŸVtDF(H @$g>eVh P gÄRUQ&:𤮎HGhw(x$L%Mdm/Ҧ:e2kh6ͼZrY-~QwG[`IUzn>e<,[4Ic ĚO@+VOdf;t2EGWUY:*ԥ^"٘ݘyl8HmziLAS%3u%!*M{ɜ`./o 4}qu*%y1ϛlr-A܌XW YtU9v跈{vv>h3ZVO*=^ȧ0tWo jk%T@K>npt"gPECPeG#S _lN%,^6G:K.G[wZ\fɗY.|/+' =_fr Oe ce6x8WŚuaj6,RU#"l:n22Q09q^_w~&SaK8{]RWԨÌL͈,hOt#Pl9{ۥ˗XO wS(;Ej@U05`X8|DJꔙ*kVIPz9֓3鐬`F5 )Δ57wC곤0*df"*ҤM`*:"ej7胲b`c i{t|0XmWh ~NEnBuLϚH Paه-䲰j#0a6}.TS&عO $gBFcI!g-ʼ2߲ o臚t$Uc=a [ (S  dh@֕eJc(%݇z脿855kJ*D&\%s@'<MT\BB&}V*5ȳӵ l5f(m_RЬjk7K,mVh T]A~ЏSad]$5e1$ܣ~V)|whH(2{fUpײ.!ҋZG;\(uwTGmXBO[cmԩLeYݯoчlwBdYJ}"4!%b5#e:# oGB٩1UV.,B1.Ś,m Y(Obߘ~{^+CD!gdP<ii!bz ` j $uskۧS%I׎N.63*`3|P|*8ʝRfYAgّGUVMAkLD ('g8#@`"R35!ebz.۵Ko) 3|pD֩lSgI3eF _h+]B`Urdk|t ۠@OF ɴH*q:2Ҽp,7MCf,x.{2 GQYz͹ & #)3hBKuW\"`sB$f1؀gk~  ;ȪtXxBd{H6T(Yb5+Gfq_8EC:Cm*H tȝ5Av`XKu%%0s" Y_Fv5WaP,d)θ*`T*e}kݞ:]iOpy@+פ밓T1 #c_d\<%»QMpf7c9@uՖ+f0\1SxVO!$o0kўRuEEWį&Q'_ Йr]2m(гx΅OI q*삫$޴\ LđDkP8t hvnG*}}<Dj,OK†}w/ PWghE.SƅԝV \FcY\W{ڝf]g[$B!?C%&Ɛ.A.󨠠+ q:ը8􅐂`@Ujy!`G j=o[ZtxelR#ٜuS^QǦ"M!|0krS5:eJ@Ƅзb=-#IsRXo5?YUV}U * m$L_?ki?Ha_qT7,&T+,!V5Q<:x"jw]T1H s>* )JjZ2k;XJk%IJި0k7frV6) +ZV˻®FC0r+ TM5@C)B2q-+^{l>wM#@պbKWnl* wdH ֈߕ5eEOYDPYs.*}M/KfIEjMF3 ͒3\(H@/E[@Q.a@ɗHQQ~RlL [my3M*[ґ 2PnԸrz쿠Uݶ-Q,8hVXW5k#HRpyyس8Wq`J7Yjji{Mâ6p6S{7Kְ,H0B&X@޵*4,S @62Gm7̹vawzb@8ai /(kD%=O݋a.%VlKU!Ldx4ĎUjD[lS Kw= ,[mo(rbV(-9ϓ}=H0T{]ՉÌ-=ĖnNFe>2ݯ 1O-|-+%j6ב!Hϩ=-+o Po W{ܵI:f- sc\))K*ʅ4hB A´yZh$A ;m˔.ZRdnȅOǔfsXk 9 HfO1ҳEZ^n>OE'lY;QgTPY[ &[ț>ײʵRdbz\ITXGQ^O4 I >A63s]:I1I.[w&j6KZ!`hCALu-WP }dLZD#%MYW~bDk4U%#|Tޠ$m &̪.J }Fd+ʐ/0k 4Yce%kJDoB9&@,&DJߵk 7?T#f~v%'XЙATA^Bҫ4}lUgjxx,> -,߶qطj.P^u_Dž,IBe>P~pȸ?Yp,l _JEIm൵]XA:{ۜͱ.BrY~Pi;LZZ̝͇y$~ӧmc~lU! gQ5m2G7HkUIl: zTW(:@4 StjcS-T*.i!L辰K˒Fژ $UI0g-QMn24mIUY@V|"TV5ll,myeF^Pg(E 宑>TЬu[ ZZEhd^B_8 "?4*@ ,:.ၻRCXW$t֐|6-d15>f׫:UP4a7X aQW5%YEV-ń-4l(\,C\&(*:`)g2\/~ւj؇;2^U 5XfFM}֬;%0mm(–@ }wU1ۣ4B{ ͳjs# SF, cgחEXD>ռ)[R'ș[GIS{"(P %i?4ݖbXBcLjW"I( {bbd!8C-r{U{Y;fN'+eQ(z媋sjP:Hl`a,T@u$1]cU2Zh5s‘ImM5pZЯmtϤ 46Y1OZ RZ.4xdG@N WjmVo6vO-fYWMɴ@Bg/u'.OJMR$XFB_誝nҍ-qV$ Syaedbǭ^F{<ʶd+/TH^XNO;نoZapQ A1euS>Td;"Ik?5j6ﮪ>m/>nR D=I&&I"L6] P PsbV&ޑ9 UKS vQFG>,{֛|QT -Xym(؝vA,e'ǘU:tuO8C _duxe˖L8T9$\&VdGuY2J:5UuӖvA_(Z8xpU-j")\E Ij&@eamW~8o̦ŝruj5 ʪ۝Y`UŜ{[DAeO ~@?Iu_Q.ԃ u!Vg^Nmu#YZ6RpZEt somШVafqkZܭ5&[B$<$ Q:udz R8uW"%,n-%~PJ/ܠ7β󇒀fWWwRNKW)ܞ*Jvv?Ч)6$К`xi) /-CA|ߥVfPiA,k:2u/ٵY\xg! Ewez *<4õ;X#eb^ьttًH˔[К(k j5TSJ6<T.+G4eo}&Q_Ao ;Ldx,tŘ=MÝ)Ȩ餭I3l?lZp#r``eʆB6/i;(o~MtD-:##P]#5*E+tu%uIunQ~cX݀fy.eLH=u)j YJ'8BNtM&9;CHT1?SYX8kQT*YxM7XruaAte5^u:JZ}Nm|dRue:י< +%}w%P ^>b!P+R3cꇾ^VMqXm( /L~c0aoh#$_OK~a˯Uϭ>vk6x/Ӹ1tE)sHKӃ a c/ЙG̨q_-g:ʲdsV*BD QO܃1p9>kx~saA$A找OǴ&~o~:WuɞsFm}m Y {>6.Ԇ>ym=@K!OE)~  zM>gzvaMְ>m÷ ~}^+}=> $in?>7۟`kǿG_쌍xmdc&7MQa5byM2n[+d{mhܟ.,xy(]_~^˿A~b;ZY%;]?}?w4_ї_beq endstream endobj 217 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 232 0 obj << /Length1 1391 /Length2 7995 /Length3 0 /Length 8951 /Filter /FlateDecode >> stream xڍwP.R[wI R )ZhiqbݭHi;sd&Zϲ}o& 4:PKȪp8y1tpG?~ } /, ?G:PqsxDxE0l P@! W Y lk#ي#,,' :nrzht@ `ÝE<<<8NP ; h\A0w5 81v`׿:P<:V c'Ͽ'heurB[ x @+1;-F vr1CeNN |r`ܽ\eX^͙Kvq)ytag ^pss @.^Π?A|5@~`+@~>;lXlWtls?ҏ'GYC!^b.EyiWWPF x!} >>gM 9W2 ksgd9@XYK\D7~mM?)7$O'^#T:Q  cp!:Fd [Ez4߯7ep}Q! 6t}{:J8CDkomTGz-qIDxv. ֛rPm5^dkFUw> dYSfn-1v}5DxapZ7ʼep $pO:R!jXPuILܧ7/\:zvi:39|tBcЦQtO[\SW/fbq;`? 7nx &HmR}b:Ej^:rlZM{?ZBw:jx}bt SH)Sy*J:ƩP?Qf>f?Qx:C d↖v-,=B- lB5_fbW*HZ]S׻(&QRK膔m @Iz^yZR(Ss>Qֱ0- 27㊃#2=곑%Yp<+F-;LR+?Vn(|_$սz\By8/V9(Yިvfcϖ{e /֓rъԼt0Fr<+:;et˝ YFT~ 1싟u('HsB6&58uq=L֋0kQ);Ab>w@HYy`Y.IXE\/=X5ݻ5nK ;[j+[ʱx[GV5rZTVjEQì^GIoqX.P$VV2-;Q:kYa U}eHsdw0"8`G6eMہ : bid=.+LH9T@kKQV> =~iK7e2{0?wpNA \i\/!=fۭe\I$ ޖ|($>MeWJ1f Guh;HfMqD8(3O+~#kl{If4݅ me)\6E")_T8utplÓӾکk/þ^`yٕyl8 *c^u/}A?D3bX)_LNZ\*)R o͌~·ԡTH# DX\| v4 dr`,!n_Ns!Sa)8Z?f=^P:l30sjrK+s,}}*h5{ل-tvV|ߓR&ms* 0fӰ Mt rge2 j Nzv e@M*L8Ǹ->$FO!"2T}Y͛wOmCmVˋ4 zdMv '3U-9y쀵Քo/IGM$ b!\QX5%NKi,i&^8hQ9w'&RA{#*Ny7Bfc-cr;aAܺQgEF4yǹǍ.H26)feñ"ڎc@,Un:]ޓ%v_u #jhWV@*F ^u'§>P-< {]!Bk1͖οB1 ܆W0g?c A% 9ua~v|vxJBa83{Vh=n>RMiCU 2]nM fһ( P&OP(`] LKUÞP.{9];΢ޞ6mX! [woO-uYpphVIx-V?ߏgp\_8#T[vУq:VĮ n6&S.!'@q);>םE/?oDy, F\Ŗ+uMd{ANʜ !(Cm, o>BD#;15z+Ίsl% 1 :"oaXr۷pkM”hR╇.zoi9Nf!=S5hN:Oh#Fşzug6]c/s*,\DC.'IQD?ptTs7$)Ӈъ+Kiw*zAiCp8C'-i|BԅJ%lqk?A`8K oZFU"ZABxBxI;LF:n1U͸zBkhV^kz9ƕCUqܡ@CL[-!tUbX Ay%xG2v 9+&R0s>k׻WwsQ: u`߁k/1ObKkrAu]F!5dGj =xfBZ,YʮQmv5p)DK؈I"$λX~D\>G?qsZ$mmDKEnc|vduO[ X8P&n]s"X!%oxǯW<4.k6`5)aa06L ҉!"XEdrG`kZڛU^dJEЧ-@ܫyXA\l5@mn #{٪ WaBaQ@tcMa90n$PÑyb.ñTS)G(M3C;w#Em*-NEa180$(СhQFp`^q} 3U}= 2ƛybRuie{غϲ5\^\! ŪQF5wAPۆ~/WfV3< AM3maP'U Zttr:nR(•LH'֋Ֆ+3^x_%&4M7pWNڻPihM n\ğZWZcӡj n| Hu<=u5eL*[X7p]Zpj Y{Vxc~ y-jۢƲ'vv( %l:LƌX3$V]XY(?DҬtTwK1QIyyi'z?d8yΜUiJ\"F#a$gM^K /TpcvƮ0utT7XPgn k,\O|D}-:SX9ɱm% ~aC64"f 5bI=3Ps_6/#sO-]M). Y_R/Oؚdq+P7eSC˶1+.]>F9O֨C>JBsg.>W,؋^?.]PLt=x.j5բ҈7rwm47egSZ*IK*bͼ+Kܐn'gJ JͻO3 x3e"՝ŌGqH߃zDt߳h8\vE"$ {D i-t1>)o^Egݸ }8<;-#MoQX&S^TWbXѤ|L";ѥȩ]%(ᘈ&ȔdX Z+ ?oQVb;-4F3SxD22DG~Fٓ5 Z%l7, ϝfUssBHecd9w`7*[gO?hwr$&BE! XP,&S|VQZxڮt^JOY!VS&B0&$+}sIX\R1A y!WL贀4o W~ˤ] -O/+ eu?B*dtdžyao&کJ3&!4fXgAQ4(0í)1ל [Ύ˯qmd6鍡SK$w7;rs=)i؅j] lHe9"RT4Jm t#eқW*.o{]Zʳo?*:p{ UW|Oޘ}4!%g|YX,B|'̤=r8ii)ͰOdhE:Cp<Kf*iIɧv{!+j; (X@ZŖQS]lt5:%E O)|5y8olBb۳KVeCI _O-?`y%-VuAJ&-W!ƾTˮrţ)O%uղW>`]+']uZM P9򜀲ԯYd/dϚijfzǽ)$awr2U/Fd1X 11(.FhH;RCج l;;#YyBD[f}WHB\^p[v: R<}x:DncŽH-w><cbL GH""oE)[ezftrbËj+2$<: `)R=uPZ~f嫣Sn|)`կ檖=,/8WfIqOe&I9d9mdP7umBY?>*w-:Lk2|V"\ފw;X&`JPƲ^R3 ^(N7HֈG^HɴHXj8P[c՘l}6\%Ĩ I-㝞bl倮 /R#t\7aMc"  ̡%*wlTT VJ|I |V7B…Q|-{ػB:TS5/G4 {2X43;~"|)ɧӾP^U͇ /(`!c;~X+Y:ͫ?2̮NRӍc%2yo:2qHI*X7EqIvb&DԈG8}1c9%NV:gL'A%o^M^hstHRL$m*jd X|OkO xtrFP,]mYI ƀ\KT{+ v"t냥34 +b +|-~ccY|rĽ0fڦf>zNl6Rh꽟D F,i6mI-Ug=@Bp0+"F2FC)^?h֣ӏB MHsVR 'Ǥ=/#J<@JZ]eQZEeԫ>Cyeaewo(vͤ:58R=W"3-R,|i讘b;mG%&RLJFqio %13!>ѓ4J{DWfR{/^.轴T:Ya)8S endstream endobj 234 0 obj << /Length1 1715 /Length2 9789 /Length3 0 /Length 10888 /Filter /FlateDecode >> stream xڍTk6LHHK# C7CtwJ0P%-HJKHJH4 9=}Ykڽ}{ =%, usqp T$<=?r z]0u ?ʤAGC#@psr  H\!"A/uAmy ``p p  G nvxhhA- ``Ý@7773f-pm`g0l 2@5 z O { \A{cl89!{8fGK)>i l8w_kus8ZZn yVQ qrr o`w N?\ŏ=x9AVm} V3 \>^V7XB,s5b՟aw!#f u#kK*ɲJII;q|;:W*8ZAB8ZfR>2 `F|?\t忣_ɺg9@=xd q Tz?WWjo:8q$#YT-l˟rߋfqC!;'p~*wJG -`0#^\h v #xl`a>Q~~P$*@տN@?H h/|/cdȿc\cCԏɜy%zL/8?u>F15 /!=,~]/kZsEFB"o~M՝nc ZXSFiz3(qHD7ʧگ6x!7")gqQ%rsVc0tj]c_ d=ZQ@}y$) *w;~b<+^4O2wB6s;)%9V"ɴWXШV&Sb_pAoxfEJFVHMJpBc-4V%ZI L05Z7=&2`Av}uԯ /ϙQ[¶gr 3$<6ρvxܱ[}FF?iEsPgD5]`'H^=d;XUîE+,7.3%ౘ4[a'J7ZveJ B? T@¬ /)kƊ1-+$-JFBMUp?i2?%Gp )rOOPhԊHJU{>$cѦv\ղܻU<a:j!U;ntAʄ)sGJze fkGT򳡯fB.N1꫽q.)feQ^ٜ(B* EÞ:,C?^n^yk#M5SL q#po*!s%}_)-_@$&ODZ5wVgr_r8`K#+,r%st'Pֳ5k3P )-HaUq} Fv.8aOf$u=- Ǥ""D fg۠ xaU} ,{$sGV$K(i Ix[-A"( P[MOq|1'8T0sTZVeޏtt +;S'攒j+rr|]. vK(|A A(o۾6ʒXl| igjL)J[ Pmh>)4LʲXMIݨp4䃕+Ǟ \:|o?bh9JTL}]6L ef# .m7RΪHrMf KDM޷S/X3E_'B$rY섦#a﹯Z Ù\⽳obGbW PigciEMﮅ>ȴ3u{ą^1 =/$]-Ai#=җJGyxhfX?)EMy=K kZv1 >妛=R=祑͖\C_kj6/>98ìGhB<^$h]ںUlTHoXW6>c+$I좠>pF'2 (y+X՜MdXM:lE/T7ly 2>{IDWto eyB<5z8O@ (6%`ƖM7SR.:{_JI=uca学[,oO-RbCj?1cWӜr8/,2&,9sTl~qZ3F9eYӬE_)9` SQ(wڑL9Ѡb̤; lݼ$p-DD]}q Y"%Y)uqQE&j9^[3}jLrDMt83PX}`ѺF񹈀IV>yh(OnrhI"碬2,j7{pkN*PA\SӹfE,YeƿFRwL擟 j(|lW3ҡ<9IJtIdy[OS[l<~ӒfJ4/|H,ƮBĽDp!mRLKH~H#e2fu&WhrkD6JdzhXV Eccjs6A<v%$L8P?`cͯACɋyVt!DOR3g4}`]zABߦL?i1 b!`DyFJw<`u:QW^~z{₥㭶=XgXBcn\0]X k,n7x[(;%_i+ ? x+zB҄]9*{@}ʉ0F,D_h#m2:!ŎgO1f7<_juSQӎvVL o&bkw.Y|x _+dМۓtl+bYaOJh3G*p&p %t){N,V.95&mdmk0=͹ʫUX{hJ3 ̎LE^-)k:5DDH?8~@1?-y4R4|/ϥ$<$V=O W4*623_Y2?>IH sdJ֭i*R @4k ϸ7 wKߤ%&epFW,!7iσl׹m{Y= u;/!#3aB䲦>,ܝc_3hCpkUi\7ҪLYK|nYA K]bT9- o(t [:]{ٝE5/|XkH$FYN_ά+yΛZAT0y #vm7|<1ǜC#'~FLْ<-ZLWz#a9nC%쩪Aak]Oe-b\7 qQQ%d _(ľLbB _ ];VMhЃPZm Tf>GsNr[oW _Rߟ֪u殪R}!m5_xXoFȞxlT3ziD*&i`m\yyȶd(cY)GY5N`gڕjIQC^0qW$u7UqEMi v/t@5z ͚',Ak'i9BT.ڙ;i\uXT ,(|UB`և)ZLaL8K-O:nj427~G'_Eq iB9 axyF=[&a3xZ1d m3_Rқzxկ{@n"ًnX其%| =C.71[UQ2,a!$o:u,^~,ShkvH5*g9ż پs,bRJftJ\}q1o*k$#3KQpE_~)uȭPgXVl.2(jr{]5 oxVSD>>Ű9q*c?昦ⶮ/݇vpFM/=0¿3+]Y0a;UF)p88Ns-0g4Ls/ X{>eFLRg@ج@B@*Wt#UVn8Rz*K3$)仟`?~V̪?#FG8}`37ֺykyBod*SbQtwaTfV$&]dҋ^KZF} ~VF1*Z +Rg"~aUxQmt!(W:L[\;Qn6qdQUwAF\zR1ν{PkaC3~ ,_<1wkP^ZØ$WȆy;P~>G@Rg77 0]as2ۖXi?4:ebb}L ܤ!8UM+}l,(DmK|=FfEsE!&e uͪO6jLzlx`F΢p[zu-49ƻ4vmLÈyi%OgQV^r"J+M"C >s3w?m% :$uuYnJcDL_Ό\|J]姰$G :ZDGpcrW/+|gUMqMj?3jZFwy0Qrc N>cM7&pNKyˬlnbbhO? j^p> Z۵F2]+|#䛉ChиX5p.[Or6]i>BøҐ} $xk(ozxG/&އl,(5iӻ8׳L5CgY'S~b/t"vvbŹ0bKM4Οz zF;7b }EEgr-d>B :i5H&hf9\&~g *Ύ?]]?d_RryɾJ`>ajV$-VR¶ʤѭPvZ7ټ (.ySiz$SPv۸њx*A-&yY7 3Vff/DUIO6u3Oogw[o>6#teD%OĶ$z 't@zNd:P J2" gwJ9mmkG Oz"vG"U"j9v(D=6+9iT酤{Rx{p\uCo2C򷓨gg^ H(\G dhwiLFs蝷.]hH$TEĐV<5BۍVnD*Ŋ"DLOxeH67U,HqsƽTlY_@vB0E0~G_A@Kd^zdvt9&v5]F/Spr4?pu9{x|%;`P|a}>8Lynw;m`-"!N1N+levL!(KJqJNxob@e76uڜ44ol _jt8Z۾RONh{ǍnY¶<:}oxT>-ɗJt4QsW\2T -Ív! +|.!& Z;c*Bn]O=!c`ӫz(=oP[5_-ћTܿzV}kgnyRl`FфQT֐UoRc|Cʾ!fs3!Ru6H#:50 ʢj lA C2%ÿ2q|XDNs@ˣ0!ڳ˫".Dw#hpJ@>X)ldw~BP'q OPhZ,Z70}p auyg{"%r^[8QO-J} c))OWC\[vLao=[E1 &\L=ģ~F/Z/B>7[d|sD3!Pr_$]:S6T5C.ͷr|S^VSLáo(`N*0ԛ$ M!o~;Ҧ-gL *W>l{ffҪC m"#-N'pmvk-x \,̀M_BNćjFroqb# L7Yw!pHb`y|y6MR(ئƀYcX1j[:K$ )`| <<ܺa\n5Z'xfr%}l' ?OfP8ˋ/0vgObDGژP[<hU w}D hȠ퓸SV+i7$3FERw' D#Or-=8!H3J8ehkWKm35ɺ`K3A߫D_b*dį1c22/0p)Ws\_h>x{.%YbiOI@et$tZoDBXFoM_L!f8#^osϸֻz2|{!M}&u1vdtRl6&WT륮#K hfՌ;W|&uIr3 h V7T/-\5*D| 37yB?S-I{e?vq3+2K$Ȯ={lqVgw,Ŕ%J={ڛП"#yWCѴa>Dz;VzK BˆԷ+Mxa5Ohqtc另~H|Uۜ3n+(;VQtjр<:CE$%wDU-0xVK1'DHЀK@qRmں'&jip@u^C?$OqJ 3ci '-vo) %'gHNP hx#ƿr#LI`w' V.&O o:8TFp:+* HjY e jlB08a ]"P`g3e o*5t/#͗̐- wȔ3I~Tp|~Mf⽠"xb9-G!PjS(j/d NאKSZguNmƒ(m4>̟;_HWS ي§PvF5n@  x0.`WvWuv]uрV3(?i7Ww%@%@HNHe#S51 p[#8oHakѕF= LvہdߑΩ4u;mV*$:,Jj)=dgrcdGU*gZӵB ?׆HO!w5ת@T6l2kɭ9~q)Wb%}Wޥ4,%gV3S5Eū=VHۺ۠EOR,}>߫)5geUo04;߇.st܃":%Դɗ?tPon eu/l^+8$~\Zx^ξک9fVKc;Ey[x9h f-V߶)KFibWJBh0cba !t(I=Q H 2&C9R9S  )\?~i5m8:H{Kl4ZGc390 endstream endobj 236 0 obj << /Length1 2075 /Length2 8105 /Length3 0 /Length 9356 /Filter /FlateDecode >> stream xڍTTm6Lww;twJJw 00HIt7H#!R҈ ! 7>}k:s׾3-yxܼ8`_!B0pLGXj@!Uw'OXOD+!&PzmU(,uDlD8A0 @Έ6@' {'" tvr+Bl  W} `xo [_Dl]x `Wwc";=\ /_)]@|~.PlB=@8` A`]tdF 0EL ߷'!B2"?>z"r b.;(@jmbyo,M(bvAQ7A<ߜ-I3oEM@p b! KvS{lp39! m%pblb4@-oZE ׺ 01QBBG-0x!P8p~G/$Qx0G_$ѽC;$1C?"x"ͿH:!DPWxlA@DvwEځ=#$w.rܙ r:U`a@ r~"֗."4<л!_?".wjDH}q|KňrAl'C [k?r Q+ADܜn ߥAL3Dt`y2ظ࿯-Ħ@ / F"黐*9ZO!Na[{8N(ToisND2+P5PChE<pc AQᮑbzI**)kS޻GeԄYZ~D/J@n᪅APW1P2xWK_GcUipX VUS3GBc8wִ&oE[?_:ɶ"qDfqMgbޢ.ֈk,^EM~r|MOxdf.vCBv%,7gDjs_Ԏx6WS7;ip$]D'FA<'ЛD@"*-b9T$l)U80͛Kzޥ,cz-\f6 (L1ax~ĊǼ"+kQ]OYK]ᇹ?FnrSLb8:R S;ؖzVxM>(~r/Q,gX;5AqW?Ł֜"q&9׀7o$%\x %7mosfŃ޸%z SphXXU LOρH*VٳU^C(9^ ܫIȟZY ,0~nrp yQ9I.Q4O3i<cV|IjV\#S߲ʨJ\r@ϤBQi91f"C Qi8K\X@OE"iC>&$<Te;bVв"QOGD&Қ:A'Kw~ά`D95Yp?zcQ6sZk(eb-_mrdZrg`"+WӱBNh96Qz8 Ӹ)XVQ#̡x+L t[S!T~0rO4mbw;4{}ٹTI2aRyKcgq蓃փU+2N|>7f drJ;˔#+Ы}&E s:dP}r^ѝ8\ImlO>}Sz,>J<܉ M.céǕ5Eyj.UcivHos.dO„hQ=P˰QRlAviơj<-Jd6xU?hIgLqt/9 Nϛr6Ha81'AU d_7]w0Ezx熙TK{r?>;Uj4q5gT1ēHCgGUn sxl7+!,|ge|SREV<UȄFLgpO[s9ګۣpUӽYľdmM$.fUEGT{.ZQLɏ>$QA?oLC0q^acƿey]xS2$݌o@,]┃ֹMcRoXu9A,C3 bQltzKVrĵlFhSӱ)ҕD鑣ձt<՟dtl`WuOY:VۉjCN.h1 7 tgXӘ^E' {top|]$H#T&&qm ks^ltBf+tklaFX`Kn0zs_0@tѻs2$Kʙ\+:$'0 +Ҥ%QR:UС{4Yk C!XQ8bG6 }] Z!2E9;9RFyK{lX݋ut4B)E)&'i;S&i )b5ZOAMRܷv"cb>8ZBo- Vt)]]{ ?Ujf}vF(w{ͣr4伡:Ix_#9 8-}9 Y☽QsL̒`U M`Th͓i皥~Ys)&!ŵҜL ~[-lBܒEy:,mIYA\\[ƶjYvO:%ϛj|O˅#`>YZpmaN`6g1TϽCm2$7%!3J /0Z2h ~ܢ]"IUk$BR ^;>Tijhw5f.tfZR5k{_+o M :O$6EkO΍}'iO iBøIޑu`$"je!]fMt,Kĉ9ns%P|{\HYNihjnpǠK+(U:η33T& tۼi̒?>aU v'.5ՈV* eJ?QU̷?2_e܌ZNKf{㰗Ѥa %~\QlN::0-YIQw#!|!y6䁗O}_朙2R{19Zy:*Z(YW?J=um݆^^&뜤yn^Y& H[5E9,վm+ưfkچ_9&|[ҍT(*aHg)] !NcFj<: C`3z)?FS BR2~]T ],]e@,;DngTElidd>EH:W-h urD%=5>!}6`[ Lrf<ۯ#2+eB58|^qjV _j02i̧8AQ,J8d:MfDodJTfP/@=d`\"|i%aes3@$̧>^K0>_x#!ϕJdE%@F{rk!Sΰ}H{F&jA#ę[5oeIP,Bfc8v=9QgȓbĬJ#BWjfi$=d'n&좲f{*)Ud)_fȠ6#1c7\qKz_;̴kh2N\]rg,Jǭ)ee+iz 70>0a͗s[UL&nЕubn05! 1<\ROI"#{g= \+OW'^DF=)(r쬎!?rПY 日mZ;QfISC~L>CT,,*Bq1MRגs &lW-! {Q{UX%4X[llcsD=Pf6 > ?8Op&!tTjQaLލZ83W-sb7<,s+#fJdjG=;TQr./~P^=g%U^ =xg ϗ\̤DEV6M||דLlN"bAL F 8Opr%ɫDZfۚ4ji:FO ogb-V'H)! Kr9Y \Sn6ZntLX-82 !\'Z Ӹ6 9ތ,}h@"? [ P<ez$e.zd'ܢY'&crLC/Ίg OO޺oi c h25$,oҘzjh0:eA:ZKQ^qC 9>qyï0IhNgΝ~\@Ƴ1[D;ύ¤?[yl>kjwX{nad4ϑ?97$KWd.*PYN2<ƒ"P=,)u#q∷IVS.W|Ш#Us GJ-9% ߴGq2}֥$2i3+;< Zwp=r=XvEݨ\; '0,b\elo@ Qy9͡i_ff/m}%oۃ)ی]06 nq:4G=Rp> ;?2 #GbWFf*g.g̊x+@$hkg ߣ^8{jOj(%^ N3q G\HmUb{}6swԊJ ELx4v>(\h?PZL>Dw,X2 )/ #waqa]* tt3dإدdg[ -|U5pC%25|Cb7`q2*_&H]դe mjG}kK=jJ1`BnO>ylѼ.nFiѴM[kXzs2_FdV7'v\ԏRL:z4ı]uokL²Nݲ4OWcJClĤmXL9 uF6=G"BںmCU麜!i*`Cj(G]("E3ZWk=ho YmFl}{Y2rV6'B$ްƒ5g+ ;LR!ZVdYAx5|X z7U…ۯe!!܍6SHFі\Zx9Z\ d (bJ5Kk&=_, (JJΏIT54KhH4#C'!&9a{BԞ0J2Fib ]{Tm/'Bz0Oy{ 3apSVnmXO:z16}WW#R_CRzEQKJyuV |YO@m?ǛSPj۹WKKZb? 5gvM1gIH#L ~T(^nPBtˤ9xDud=G!XaGgRm-ڌ9F9ҵ1Ѻ&^"j\? endstream endobj 238 0 obj << /Length1 1529 /Length2 7529 /Length3 0 /Length 8559 /Filter /FlateDecode >> stream xڍTk6( Ƞ 5!Ht!RJ 4Ht =}k֚׾ 5wFsy@"Y55e0@D,,0#oED"e!BLO\`>XP,$xA‘"9xwXdO$%͊~X;@ YAj Aў &fF#D@www`vm( tZ~ P8ACеRm$aVPg`v(4P翌U29p9vXYgO-h(=\/C# A`K!i-SPVHAsֲp''3E+?9j9wO:8ݝl`6ʰvEa.Pe?6Pk]O 덀#620(qHW+-k` 9Cm1G<& ЯVfYÝ=1b!矒{xܼ / ,|G*;sPl&`p un Ya|G_QLߌ\2!N0G?꺢1c @]55hfm1a(Z6z Մ`?:̔Y9` (ȡ7 տw[>^Axa`̘ZC=~q1.L;8W% v`brð GpV@D`Z+"xb<&Uz9'}nۭb%ۇ|tM-d{l7x{!+"dn҈cJgٵovRz\IHh`&+(v뷺jqEmme{sRE]t3FV& ĽC,!S[v4:X#Ƕl& D=t^ PZl/$O!}i2!:/P|#11\O, ă2[wg/zd7 re86jMtڧkG9/WV(驤s+^Ü,%&QkWywD(ZpNrzܻiUIE_pZ ϛUHY%?ĉm47٫\gvhr{W%^\7򶻾+ 2,)䴴-Ѣ}7󛺳Wi_.^KsdX؎jVTi1",7>Hvb=n*E >=+FbE|Kmm1?I6fA`0{8 4w`8~€jU#}R~l!=C aOjl{˾8eZ㹮}ؕgF7T,;c1cTy5̩W&&*~KՇc*QJd.lTql#Ი@IT[\I Xr>cPyiT `_=#F-ԳݙJ%[gt\J!j6s&64j|,?J*H\J+4:Lhgo?"RbGj3h =ӥTJ 8PkҸ {H'땞9d\}lŚ''id#'aVq|hЕ%%ɼ?Ԩ00tE9 jZ+2sCKrQ?jJ'm'yOLl&Iqs% ~2lpIc$ &'z<ٞ/hAeՋ%AIS$5AyK8vF@Ö{:ymԝ*Mm^?ߑygCI?< T|S|7e7+;u'Դ_}{pFR7(8YkčHKݬz]G\PV( \=g2}-+Kyr=8`J*[MRg%AvI*9GCUCtjDó=  2mz=xؒ9LOffKGFKP$]Sс_yU8MJq6,jK^AVZc.)%VFĮ4P&?+e ]Af($jJ"=do{ /ިܯp7ϗ~ӸeYJ4!g:37WNo8 SIkh=׺]]J5h|q;b8^bm9U/|D*7 vJ/LYXۋkc Y8L4Ȭ-%Llj ljF1#p_wnw9a'ٍ6=ԆQK}+"wh%٭gӀDrK70h4rt[#?}xXU:^䅱QN?%H~ʸ `A )S,_ž@5χW^^e82X<~ʦ?\7~:*ɠx2/[0BaS)SSk;'!Ƒ+(tg[?p1CvigQ6uy_LjεgCk oB-w#d+\XC~VHE4{6nԂBHLTTf|_]2lw8p8/H6eB!)lӀף4F>z? bz>hm4iö+B,|HrlmR`ݐ ȻXAg,8)n*M1F|DDO4[~v58F\JeceobDَ _W{st؏>Y@yCkqR-EXN\|F- }}TV&w)rB|;jOl#MJeؑ,CO~?NݿMqBOQ\eZRlM.# <iKl9 1kj%" (9&~'@nџ;:YJ9kq jE9gLJzTRM5EE_7a0RTvB^} +{Rފ8!K\h3IDCvmXnBQi-rJ4[9S~lz͔O n-4Ry])]| /k\ { Dv,dܕj˫Xq,gq:CP r* skh;$=Zrx8s/{P—+qMORN0y,?g7{_7?MjLePV;^J1T5v<ƋCv{/fy|h9:8I̳g^¤B:HkH seHػd*5PCʯӈoUCGA)a>#[\>*$ 5r=j Zz"I_'Lx";DҔx.qezxob:^ jL/ KKὉƊ7yq)8qɠae$:ǝLb.Eq XΓ^TZ; V]UVAud9߽Ȱ3TiC& ^+rwDU/Dtl7p = }:N^cMO[ݓ·죯-W9(}Qt\Vc cnU~;Vyx,%#cM~ wqL3/@`lYu9._{O6H?-OXz.Mϧ,, F 5cUh] =~ fxu/N hrmU)̿j&^{C0>|V}֎I]\KnysA־jQDwkZ`ٶ4^Z"*<[f':"/(n.IγLh[^LãS7$"IS 5J > .8AiOͦ!Fu7YWopkIp  ٵn(;|n$EKa uRӢj 0E  j$]Wl_l!:mqzw㾩toy6t60wI= d2^$=Ыܼ+xu94j3c*{ dyZ.یڑufBלH;RMLr"XdX,7) j ?Kҿ&8  y#+4[9ypQbG/jTB@ *ߒ>s6JI@y1W44wp_;hscv'Mۆ,\ymn@n˩;#78v+r+NNMX {XC;&.]x*"N:>Rul9&{f:fQŷ~is h}'K yVy&64Ir6w*gN39\~jv-cK\+XA^ADIkxNq6[I~uNg/T3SҀ0u\jBy:&9ANhPXA3]d7bkm:ruK4X+%\"8`[ܭD]9nZoY_SWF:cY]1/'rnZLHFdc-6 Sd\Ύ U:x}tM X':n/[ 8 ǛUރӝċ2kEVӲ}Bϫ&O8VS-ɶ9i&dT IҋwH\K´M9O7N9weHLB,o`~(0h3WnxDFx% [WLWd@@W4/s@%A`[XOPL`b,l.9#{>>iY}C @ A{C0yڈ|XLT^b{!f*B!+?.Pgn[ դ4אH,5wHx!P&!pMҧg_K.q8p!PӀ<0j"KE6VO~mu-!T߾j(Vztt:͝77jmk_ȵ~!Pa@=Y H|f8yڕB7ANOQY~':y$K#&}XTdErZD%kzg.8%f^"[:~y`%~ܤ`6"D +r@ksIq*{U~ 𽙊Q18V'h' Yz!|NboȖ!-J荂@{I¬ҩn+9jZaV|k)޻cX Uw(ʊּr7Tmu)s%'AUJYHT+n^g3Z_B"( +>5pHtfiɻʱqdSNTgS*F?9OD͈RG }H@Y z'ͣ9%&:RVSUT<g"*kE&i7n 1q,^;:l6R@)Kl>76]Qˑ`Q4ۥCbi~(Rg>D<ɟɩFIYTy0rʾ6Vz\,]scjD~:0a}}$d^l 0BxLUVr\z3@DE⫧&/V299`wCb#yLrtsm{(c4zK(s2C5E5ۈ+,<0dSk|AOO]1w8l_O 9s킕j?~O--8ѐD0StMZc@-c*$d-8e֜wծaAWK?*R`Y1oI.*{A$+(E sSBs,ˀ.\d48mQj1~4 ]C/7PA%U8t1Nj%y_S>VpN] endstream endobj 240 0 obj << /Length1 1346 /Length2 6029 /Length3 0 /Length 6947 /Filter /FlateDecode >> stream xڍwuTTm>]* ApaA )$F@JB)nAѧu:{_}?2 = Y@UOO[ @ 1aH鉂m1c=@Tp'N!0h `IY,@21XY@ ⍄zm Aq"Wo< 8/4 pm] @v0pz Dv@W7vH0 h/ C!H];P6 lEyz{ Qwh*U .O1>hE Cj&rtk ©(9= (wP'_)L࿍_j\n7kDq 7zo `H'wD)S8 `5@0}ő AͿz۪%)!߁ !? _m4HQ/O$ccp$^3+N.I  Hߟ}\t_Zה/?.s%L0AZZ2AxrVskco=jHX.G.3ol\q9Px.ɤswԮpzoR1yG0Fǰ~] IR=%7ntKŜh[~ Z ~)-CSsE< ue<;u;vt(ďk ^2Do0v'*H/ }vm~-j`v A vbIg{?E}T*4(L("̋T@r@H"۰Bit;JD,M:;޳gIk竴v6C&zO>Jk `{)Z˔^W`b. \qKLfuȬw< `ZMuF!%^>{d]v?kU9JDi' ! )6*2ω%za+xw.P6uiW y5k7j%h!iߙ~z;^Nn`$Fg&Ċnl7w-kA+Ɯt%oI_'؉W.K  5 SGV<ƾ=upgCuO=҈֓WW9=j0D!;GvlDL>Qn &sؚ@t QO(&A\]L曭3,/OidlnZc_L'7:nPkJ }7ƏƏדU&YVVj/͌-eg)lm;`+ ͮ0.r$bYbgGVYswYVNUoAŚy #t?2%gV5ڻ&B͌vo$8yv}aE(/`H;UZ 4?6o4v8љ~Nd6V^}i^'Ǖ0HR4vs!BL3RQe׫DDQk _FD[HŠ&rmsX뷭cW)ϰ&7ZV\SjM+B5A8ZuXcc)Q+,62EE||i|6A)e|hdAY'pǏ )I3zClN,:݃?H|O݌4Y;ؓqݦ%ᥤS_pk|γ:aa1Ij- y婄 =9"y@'d7TX+~DyۜnоQg;}]Ř" K-ȴvF/MhLVβˉ)'zmHzC.VP/wpfrvO=pb!ym$]D$[-L?mV zmж?I},II4)ܻX-6vDŽǘ/x:F-JrSlߧ|5&xjDW\A$u:m՘(Pf_:%YLbؽG%.i:~qC56_+CP6{3-O($|2}]|u=Bf`8> [Uiev-9e x;uBޒa}uc ͝Ypeܰpeprn *X`|z\8ei~sӠ'^h)hke1 yg^8(!Mi2B#ZX䍈[Iׯ?y1\ (aSuw]9`4 3w j1]sغ [^zͧԧ|2|kPFgS"=~G3 n?gh`jzg^%БS7w#YAҘb 'VBJpa ^ V5eW̫lZhң Ύyxq&UP:&DTϺa`=o=l3 |Ć5}|<۟4+f-XeYSW E[iXpOFUmwfSYy)::7R X-d>kW[oV}v=ƺ^32ֹ>ik~|nLc5.' ݹ1j>'!6,AGYj\.AZ3%w\^w$^<̢9ޠܽrq5Q3/:Qf/4Sn5LD[ KMs+n=c:ѕ:g48.9T% v~ӨWGBm~X叜Ea\s`9z|Ӎ^=fijiUTNSA7zÙ6s HG^ f1̛j?xnMI+Xņ-fh)\ *ڴ, :X֮9%ܛlZ%1ٚʮq0<ؤdP)b:(fwCdAŌGnngş9p/0/6/ x\]d9$ 1Ym('Z6 90~)y- ~VS6j)OVm<7a"$RJRI497 J9:? Jȧhחj[b3I oߡP#wae\]1.z/&;vhRŜ>iOjjkηd ߵn[ o^3Q/IfP;y()נlndƺFX=kbәx7gG ?+f7'ԿFPBe9/Gi8흎PͧNrGR{*r:%.ObCwW9wJbsȸ\1EՇ Rt1u_Q'ܴ/(h4#61)zqT\dGx#:L8MZ]woxdfaJ5bmC[[S-JF #o&cV>^Ω:2zEa Rsmb6 [b ;G?P;d*J2̘ljü1[.U~QjvY)?&bCx5iH5Wy^֊8"nSUI&uYp>YّyBc@) <(Ta핽2Z|`5!L%W~fO8g)xZ KC^g$JU;ج\mQl-o>ҏג ީ\9z[|96=9<,hiDŽF@{k,\5 muVZUN:' H2u(͂gd")O_Zr8U|rs[%Qlylnwk@ٞK,b9QjhasOLXV9Rt؋f qeIK@]dÚj›:SzO$`bƱ&3ȓH@C^"p";V5']ÂQfT?P6>M1*AQN$;QHm, |.L#T\#;Ӊ.ɁWZD/߹mD%T9QsP{'tG!*;'oNntx UijE[镟2+N Wf>Pq,~$=7ȑX36Da)y;*Vkx;ù\icJFo۷K5'FT(KJϘ4K7>PVtP^U%*>:fl(u67KcI82F'@{ΌKm|91)&^u@S)x^p3*aLXQ 5s~_22p9f_9Rc;z#ݜj~QȐk[Fu6/^H؁ ^|BsM+4zT j˕R02s"ٚX\kVQl=[t&Os8lea}/|6@ZkTHV?%-:;&N+#/G_w7h_R%=6F>1ִagyh170ZB7up45ܔKbsTU8g*u'-QH󵇞JJ&i8Ȁ2rX\TZ//W@/ :Y FV-ZYPhm…~@, n{OCwQow H]W|aq5ō !rnj8Iϫw(Dk& LBc7Dgyg5|9z<ԽuͯD'+U3_cZ'f_/Ze;IȻ3f6:D"L?m\}aZ31OBYTՑGښeoDo`Zl=!ri@]hJ CE[5nN4Gq⍋1Q‹}JFdѴ[1,z VU*-ߔt?^%%gUק;Oy ?6"c*nk9lAp.#kS@5d' N,s$|G' U 0#yv/)Qbd׍Yg0_H a I6[džbйa^D6NUŪhdͱizkk)9ekԳw _f5bUfw2-L;vS6v3NԎv>qnrHsQ/:% *Wʬ#GAq÷n,>t畊ۚz! endstream endobj 242 0 obj << /Length1 2375 /Length2 19604 /Length3 0 /Length 20986 /Filter /FlateDecode >> stream xڌp.7bll^QcN۰m5m;ic1Ov?sdfe]7"'VT23:330D䔙LL LL,䪖aՁNv<8eFvrvik3+ ?v<Q#WKS@K.bghinLܜtr-MlrF@&F;KQPY8;021819 P,-@'+` `NU̜݌w xP(m1ǀCoDr62175YZ t#[߆FNvFFF .0z/98Z;;18YZ.7{lMEllNt݃~s7055]= PJ&"?2s3tM,ӫzd-~`^ pvtxo 04q-maf;Ztw?˨"&#EO ۹٘,LKi,_Rfv}odqPK}k?Kdr,% X[KM/Gmdciouq~?93ߦVhjbRF dkn6Z:[M-M,ٖjhdYпOR/Cؙٚ>1v;MZb# <#r~AF?(q83Qb0JA,rQ?EzS{j;;2#A;|fQiNfbg> {l? -WzU`4 YC׿"۹8Enb|OOe. l|刺{Oa6ތ?﮶8?ɼ;?w2'=9_?`{o_{kj{'`mt}$Ndmd{n2}-Pg79\=w gׂ{=-;'P8_;?_?@;vy΄7ت6Zύ~w|W#kٱ7M[o=kbT7+D/^uZZ bw[a0&󏅾ӫ y8x|o&vpBTEwp_:W!\:CEn@yq<6 3=4 ;,jt,-/-,N]8d87c^X^kK|DYtIk ,iUQ5c;xh;5%$ UQh5fmfVI+3sZM^Ou#wI-Í#>E?⛻1ӈYD$A:uiБV\q=Cy^ ?2gb?cSQ!߱5h톪!fܙtqc*fJ&M[ *eتd- ɾt9HV&%ѻX9ap^ÞDsE?~P0$}kzLXN-\xUe.' (»^cSUaWbh$ Ug7R)Qrʂe~C0e%т^jÄFv{*t{Íꗯx*[ 3ģd^El}M^)ֱċ6>GE6m խפ 7O I?2 LHK(7d h3~zf>E7W:nvim~ W;{5.d;XcYEI8 +Ur]GM,D3% do}6:RMU,8euJQrVDzDڹ׋*4@}wx~Ar/Wc8{BۥJ8w[Dܴo_!3S7t_y]RưFvfš?t}}uuaÏ81 Ʋ!uurWcc'JY"ۜCa3#B/%B ypvlemU(Jg2%<(v^ڤ-vPಮ&6]C$r'G6}6kLɐ4r7nz3XrxՅUeJ1JE262y+FH[4!mšH@APTv 4.^d f4P6_cH T!ԅ5}թc TV-qr6ΕQ10 [ſ +f0BLCbLh` VʮBPU|q ~ٿ9Y?6Ż`^6…*-aqJn*N{⨍cTgh1Ҕ ~A4Z/ Pbq~T˃3V/zASX Ii4[Dny< 8z_Q.J" rK\E;$8ɤd-_)⅖~ZsxID+_++|q ۘΥد]\X e `2ZX.ϸgr y Igz0\d7\wfr(̀daSYb1vK58q-EjIR }wxi9uqP~J꯳Ucg5'J8"nD>c6\raB{LKsn֮j3|))eaUY}l i`j]~e:D;! 46vQ; öIKBϹT d|\L5h,o^\u#g_[? L_{NA*7i" sm;urKD#Zlc(O)F #+i'femS^>Ji]Ap⸢#Pp24{3H$eOBZb G6ǢqV2pmKP62K#XhQY&|8AW[8M隥*}yAaP~ w*hZ唅ǂ!~S-O[>|AݒV58Xɯ2A]H)k@'vӻt9(:-&l3kp(VzT{/)56Sm lK`AS% gNVxɈo^J3=<5Ӄ^5WmzGuy.ֲ͜Lh#v gו&8MJ+݈ͅ]W4Q 4v9-ܖ}b)m\,}'j5woZ#p_bĠGkZaʑksmP`Gnz5Apm`Wðݖ?Bsh z^dTm+Kdcx}x] \@GB#af_wCRdL9q"Ԅ]^SUW#Yd9u;NOx "e2n=tGJjzHC[(>ea}ea#cًZ;QS"*]y̽a0q82DoTdЄ-a]F{yvNP`7u҆QdbŖvl5b(t54hַ#9P)9,§4~1)=<(; 1PYR-@_W#vD/!7|=i,-̨Avi*\XޠaQI\m' G@D=OI+}U|+Wjq4ƏR& *|omqg@W[. @|mR_FBm<&yƓr ?|X7ӎG I$JQ*)䜦?ij<76iч[$$8R|Jd{V;qS56@olC)*`K T:z!?Ck; :9h(G"U)[-/UCVok0WJJ)ݺ眛YŞ\(s {}%cOgi\.kdW뿾8Ҳw{g?ArD>$bJA|/L_CNŨ4$\>6LN0JL&َp|BO0(<<)ķ6+dv٢R.zo .XOџhj=1nZ_h_ʵy&&ә;]x.`'D ku+xgOF9C:UȆ3cby=nݐ'Fx9{WFX>V#ÂOy>~H{ RvmÜ&3 z!VY.m5JiȞ^vb( \P`XWLc{9Tuu@_9&cEiGYj[Fp ̗"56_GF;_c\ijSz4=֛J˧io>jİK-^wO9jӓNMq PJk)$9 Ucdq~~p--ygW> mmPS(yqT/ 'b׊a4*̲Ё4 p7SuQy烙M$"!!83伸E^H6Y҉XFDG}ܗ;xp\p8.#en_ ǛRT2e1;iW"_D*c:y! 8>~轢Kk1 +0MNVF;҄_#1*+_qƤ]{dAaB&oĤ&?)mukC~4%ߪ9o]Va4w/aqF?4*U- T5F}tybNJ^-P ,$^!S)ZAs;ƏyzpW4> W)++E)h(p2$_L:ǭڗ\i%w^[ieSmFiB &5e%xZJ8!4#ކucjw`/*(ɪdsvn BS? 2Ή]W܉9lF+R pR_Τq"!,W q_[G{DBCɳt%`Y QryZQhW´c>ϣx<"rb:#QhHq e@){iy0pCJ?k5WKU-iա(H ׷ș5:hx\嵽xo '0[td^*weߌt: 3uM&IJʑ^LN.MQM[nY,bvј»T^dWGZ7xz78י%m~&Nz0 y vq5Sv!`~wȋZ>}g `'RLW#~/ cM:p೔~Fm[%\ݦF`́ܓ+.b`? n P=!B/1$&7X?$ZM'֯IX)<UfmQ(KZUJ\>1|b#dcސ!%/8ͬ _%}%t~.dĢ35"\N~]V M{15 c2[~yP2ȅUm#`PҪ 'Nt&dJMI$x[PP1A*y dĞʁ.B 7SorUi-u |%خl]4W[$%Ƨ!2Il q\V* .5~킅$f0@RQ.=eH- @FZ5+U"H7=B;n}%K/gͱ\}=V=|ƣBe1vbG~|o{f5?^A4dLZKt)PK3 Fz}8 G}KPm5NC!q_ri':(l&G IXΈQ 6N9vW~Ǩ½EDTX3SBWGG7V] ]/>ÕGB(%ηٙ)c 2 <^O:CdYQ#z]fA{dR)!~Drca_c,HYt/Ku|؂WRS8]OcΦ zNz{0E.rb5 V}߀qG8=.XmSK~A=U ק-L[k5F|+ 1*v8LַyψP<ly|::F.AUFgTbv`9S62瘘0"َ[8h{V%׫c ^VX&;usLX?q-laQbKHx9SϟBzm~<%ZQP |?Aʃ3qtWoJmKk=K;E6n>?P q>ARH_Sn8# DBR֟ȤF _9sS4ț%DL9Mm?k׍o|=+,v uZBVKqx0cr޸ {>UҦE0ť 'H4N6eޯqY_ZiP8 g䔚ᕕUK5xF J *1U$rI ,i/bxWLbm5h%+y5\ޱz??GT*["*D# 8JU6/Z?~a |\pB!%+rB21]O|`vHnier(ĔxtY#5QWtS~Mvә'o {H>(lF~ ;U0ljpU,T?"$ycPjIл8QC iA#d('WW'\ĞhCoF #_XP4N>qf}.(~fo*CDbʛǞpyaZVl*5da#~J(=# k}r`P%H:͊s

}l *as&쀢K) p?5_X9iT Qf&hK4q Aj+gB#O"Mwa흖ќ6wO-+-+fX͠" V4۽֝J{.mL7 ,-A}M*ck]\[mlxPOR xqLB'r.{j>9֫f!~l}2iT@#B̋O%NZ$Vr9'b?:Fhq >zqL^sqvT,דC|>IaïZRa=v 5[-u%01& mj x'o;{;&'$v+16ϐۤ W!-:IǸ:Zcv` zuFoL ~`j}P`? ~$jW@ۥv/pI D~G5=9M|B&97<1jp2b x`phJ$`韅LhM&.TY5#s?A,'BEmJ|)~,Csm ,aLPZ{$s?]Eذzni١8[Ob|֢yyuR薢WD[GY%! M{G$o[53;avP.k'*c#D} PH2WNz.Ql˽ Fڹ[1Xi}mkp5sgzS)r?ɬϽ1yw3pB"xLrҊ:>PuOQ?grU{7tR39B,'[ZxW(oai*J*[rFPOn'X A/=,ղ2:BL}.D ;Wʧrdf'G/t}|*S@װB108X-r9-A3R+zZ=زġLjq!d;ꗚnwԨqM)^^SI$ocv(ۧSe=2`d7}:ta :ܞ?rWxRyzu8߽̹J] нLy:^_f Yi!>vQ[R^>C$WTiBޒH(|ʷk]6-D&`zYa#OZ!v]w6 -$b^)6R 2t ~b x1{0r'>?qDb>+ܙJ<;,lҍAVScI%H^*5"tF:{ٴ4;LƵুi!|Wg&$pD\e$uJu>-:ᾠ&N5SnSXHԁJtJA0Wr{L4͞?}EL*{~/guTvCl4ąR$2.ʷ6nj焔/?d 4%wAh { wͺ*:шdqkD3=Fq96X _no[%yio%"Z+!S,P(b8ş/ש0{jzsB48O8*j^thkۯbQ+t[z.OQg!ľ+#n o{_+ˊjյvb[J&CHQ%r)*q[V8'ĉA$m<6#Fh;bԳl]+㴾N=Қ9n=5)dي"j\[MH` _纇}.|ʬ~Ge삢 -^;) ^RȷgOj/辒W~|_CH]LΛ\1hFi=gCfYBg^!M';jvaͷh>rx~ 1(j׿u *-.'c({h-MQqp<>SSUhcOכĢeFO;t{KŔ=fMBXۇ;/i,F4+)3Ej-D`+k[GCX2 w_~YDzO:ͼLӁ*W2\®hN\qKMk2.3DW{͉m]`br*VH? (-7D V2*7i9D@HCl3J 5`y?wUq6)<:+c~h<>dJud}jħMaU=lfRv)BϮ<{;8ٮo]@~o8*xs &#ԙvd n9꫍nrwF}0ZPCεYЭ *3eGj+=0 cOh #=Գ&9]`\#톐}CYK=A3Nv/Q:gPE/뱷3ҖLIB);! JA0  n_lq4an$/S'<V4tô+tDI\‖YՅU :"K?iE5y!lY=XH dĎ@4,puJ5ֆ{k*^f|~0DG*ņz%RW0<)r?KL3K6̓~dx5 [DKx ۺ9UOFǯt.,3x9h!9)?nN 3FK=bn<)뾚GU;x@$Tqk7kSZ>RJ:0B LLIuL=*Z63@VQ|E8F+,Vd }Z/[8F.$)]/<[;̵qɵI )UEE!V 8>c]aUUίaƬZtF, ѫfx)c4tGx)D{pХhp&Fh{y6>& lIhABpS)#o^~MȚk7j:0L{خ=: 0%Li46ūI#U Ju>Y #bE_) ֌  OwB'֓8L$ȭ'+}?yDž`[7w",ܸ,6uoi _ŠFPt׉1z4|ê՝뜗l{/'=Z r"02YU: LF7o(}H^O/ATn mOKrX]bpHNq=r-fdUixᇘ_b$Dkc_^ lJ9 t+eN3#>U@Kwɒ|GUgxx|B"o96fVv9b^^>Jً O#FybTiBW?-P1]s$k3 ?h.$,ﶶV;=29C͈<ENOO4ꩯF`-x֨hzg{YGI.>cq2!ޙw@fg@J>BA?;jlkgjyFdps[pJw7CB`OtHnx_jI$`U&4T5gaAByR|c .v}MZ&YmӞ'+OV"W&Rvt);WĿ"yz9eg& -ЯjEixl7g[OĚz*^Ra#۳;2gAr"m^@A V[N΀Ċڕ1s dù4li[qf99Z>5逡q]y׳8y2w1a[#d*X]Եepigd."˿(?L#`Rl67p90\}FsR'ˣ3^Oщr@궘4; h`:'XLP_JKM= 23g41;MDSkLc>ưlEt76/w=xp;I4{ _fpb?x5 {;(0Ju}%)655T蛫 <}H N+t"_m]xiWM:yj7vӫDDqF#[G fӲOȊ ̉ QRrefiT>-XT Rmc}Dgu]1t1r!a2̈rV59}; # 0nFCDZ?D4覞:H)}pPA=i9U5PJoӬN<`'J;Eߴ·+!D4:v:ٔy߮1_WF 04s|Z&- <1wb|꼧52Ǟp!Dc._S4)yoL9@{ b閬wz3DvGջx`CT^H*|H6SPNk֠7>(x(y)զ܊8GqG6AAQҰa>4KX?CQ ^9o(蕛ˆk9γz!Ԩ6@Q?Ł*NιۅQU sdg5HyM x&|Ng\b(7.ANcNT,X#I˩C&9L+50{7^Pc>ʀxɡ+S&Iܟ~s,\VϺ rbx> X{@h%A5iڍDh8hq\~aD2 tG]rLn6%"P|@vLixF_ާ^ٻAGGJ 834P`w+`VsDN*Hg~PDJr#R o$|vߟq&ZUWyC?"ӝVycDSGf5vf$3[\<[1y?! P㱁|X.[!nbbmA41ү2&QǵU(fo9"c[kuϸ>vOpn zsמ#Lެ(X<<H$z:NRHKzW]7u}.I* [DЀR*z\ќ |<$/RՌ/"aS^2+ [DXǿՊ7zwJB+.ot͗>I+o z-,v+";s@m ZGr]ܑN E1UUӸ?BuXA44qě; y >vF}:OHf+6ҴLs`0iz<מVHGvd+{!?S`a\vt^9*WVy LV7 HSsiB\(+VEsiW)CuXxoA"&<Uɉ;jY80r,kdW۱"g96tT}S&% |BPS#rÎ\T#UD!!y (#`7vByЋ^=4> xMK ݇X9Iaȫ9BmԇK'@2Y0' ,d*N6g9T]b߹8I#/|*jX.J}G#Zo=P$Fbq)jb)*Ce^^" $2ـ#.Y 6;d۩E\?pF%1H傎qq:GKMY*+?|t&D8ƛ6噢];O"d9GL)Q`<8$ŝ)K !H/{SM< ts29oT4]?5DY`¦@:`)L2my*q=$D" \ӈƨf͉sψm5JRR-F_"p:)aHpty}3{P1TpDcZlZ-]˲Yf$y\~cz YXIنEdrohJq\_UNor 5eڏ1N f}B[V2Nwr*~x9/!yC\eX!\MbLo*e%CoHH)T!MCsLxRRw c=b/kzD|2?0?p'Wel#tdX}Wʷi3 fEVbc"ϩ $wS=##cxrF_%7ʚn+Ӈ0>2WqI֌y endstream endobj 244 0 obj << /Length1 1683 /Length2 9910 /Length3 0 /Length 10999 /Filter /FlateDecode >> stream xڍTk6L 2tݍtt 00 5tJ# 4Hw)) %9=}Ykڽ}{ #.Hȩ@>. QKh] 2,ev.#(#$ x@D`:@rbszvi `fqq֖=1@ r,PQnn///.Kg7.$+ n` Π?;bكغ{Y@Gq{؀`]5&XO_g;_޿!8[Z[8C-!`h*q9߆Nn.`'KG?*(h,=7kv"0sqvAݰ~'ݛ:B\ [0w6Pn}"ɣ D Wnm;7_ `l z|aYz0xx6`kw 'd'~> ~2} ?mPώʺ|N^0@H(Z࿪uY)`Ͽn;#iA8nZ??3?Gm vWwy jU-@b1pO)dN`H Vp{,kǛ푑@) .67W@` Yzc+ y\E ...0Dnտ0[$~7yD aw6<nп /_1ݿc C~G x<}-nE_yc ~#習=;?xx?X{`78?AZs u fyw=:+x v!2teK\z[kzD[v/[Dɝv$d18w\ [;U\=q ˣs;ڻՂϱo˧8ccLJfYeϒѡsRcf/ r'hTٱ]|u"g 7"F>'dKU%--Z͒|p~ⳣs?1cbe!'F&Ry֦\BƟ}W9jrL?h: `t졳E@z"sp# vocIWM|!jlPniUEvx>2s3鹿Dttf2й;fLn,WӖ+N>B">%+#Q {ܴn6kf^{UdQ~Luep~!2z|u3RƘ QU ȸ{=cOpŹtep4h&~'@i&Kt/Z "Vpoo`)"|NciaM 8=$**G`weKv;"?;Ж2G~IҬ]%^L+)utJC3_ 4/${WTsberYs߾0Dk ʠ֏ꕸCK&pN }sԢrB4h+%LfN\,&LtWy0lЮ )"P6@8_.ETX1kGE'Lv5*Պ\$j`E$d阙Sv*VaK X%E̤gcUk{åN3ɂSƘks{el:uh1 :ͿϦ& `ZAr6Ԝ`.);.`W'8?V!g$M6-^A=4"p-o]%Qm #[i!~l~$. 1){fh;C#df6*"6zXŔm/FkR%[il; W *s'4,) |Do$Pc[ E&فFᒅh|6eD%LgtfD0Xy)na(E-L}gGx/ցmSֲ49F{qz%Vn5#EKsfA )\9jr}<;Q}#ťtbaX8G޿Q&ƔI h!?_CK'~(>-j#1U!dayfx2+ ^RU "`>FjirSZ3sASToV,pXLszt8Y*˨򹉢dV FqPˇ4&c?sq-_KDDNdIjwF0R«v@vF;ʕغ\L trAg{ e纰sp2ʃ=w-r_<^fTLp{XӮȥ>KV!!X%UIygWMت&dc+Aۛw9Q 9sNF8 cz!3S۟)5:CgFZygDk֏Kr޶vp3!+۪J;3E'A5'Te3;$JDkh--0G4r0 v8YiU>za~(5_j ,&8BOWk0-*WTs?}- ~g7VŘ9LY;6.P6ќ+X|-ИpNHab~;J)}cQԀ44o/JpMSS I 'NvJsVQ\f7,-qKZ ^'iBߍ [Ym3*^ʰ3'Ef`PTH)@6,]MY?/R]5{͜kр;!9kФSevB4 $@ D*Z ]/%;үWyIuC{7ƒ{6Ihy}6:ߢ[-)Srx>|_}w1TLAK45& +۟ydkOЫn!6uPCIIc"q0UBFjt)g*aWW\es>ID6Tt|E)hე4: 52QhnVbvb9D\rW,UB -R1D>ߜ m[$t3)( I5Y?%Ý"‘[NL\d@T\C?> crǩ4LD'{oAXBm\f\h.Kþq^YK5Y\=A Y1ށk^d&W/+]6~Yt ^#¹["ҧcVְ4'ˉ/(xpd LCmbzAk@9Plw;-5VГ\DzJn94꒳Œޓlf4R8Zq-h?_R8r8zIe0z~݄e@ܙQpt.a,uT.zև~U[FSv+H3'@M J`8qrpVrGoAS5ËAoHt<\|orpv ˥]9"%~c?`F)O{\ׂe#=D1;zƮ#:*g]t.;~=6DC>x3RHhv=)uo{ni99!ӷ$}1P|jJUm7w[f/򵟙9 ZM?޸dbs @>s%KW)2Ku$oLmd=ZX3fT~|ԍ\:1ϥ5|#z{i[ݷ:w<{'4HO/z}(046b(_լly/({1Jq ](\S^wr;ބ_z(Nh<ָUHaۉ%m)|~)Qc&džz)CCogۖ!Y2|R q\:OseqPwP'4OJ[`Q U)3Gf01) #I_$%BVO ժ |g{Ϝ ljI̞T|Fb蚓2u^n QҋB225X76ksWΎr_F Cß<уIǛᇌ 恅yR B4He1~Z2vJ9Pv\|O2W0T6=4d#ő('5er]yeg,D~vm-C@=#Z6X;ҤTD!5iY=e+o=ET"@HUx~AP,$SkPvkG֔1^=( ugɶC}\nF#tDsj "51sߑ2 'd} @zȵ6Ѫf b8W#::;`[BUwp8d>`6,?+H7}T CtIߤiWՋwEEb$/i,X(LgSm=$¾Ś) 2^"k ʉ&~lȇyqS3iծZUJT@5NьucUwa*LyttU3?O=`X<*o,+<>pwaѰ\o1AuhF Lnh!Qr>CƳ&:=KHfvmg5!_\H#_D^鴞U'w2͛ >[o*F_,Nl(#Dgp쉊!S&Ft?} y PȪ*eq#2,N)(&a2"'Q2+,C=6?t+|^5uVO6iNPJ"1'n-JڍQ53xӖ7wӂCתv%&#o- Χt%;q<& ƾ5)M:gP_r]TCBPoJF:uhq@TY1 wi4dH#ЬC[^R}t8g 6?4p=ois{S3h xA #kŭ=Z}%{` S%U^HBb'}YI]ښ̈́,__~d84US p6iw4Y,6xU|͐`JL W'I_|Ӹ=̓|5ˣRȃW>s@M2~:d$ԜJ8St{c--%>%w1" &( :Q(-UemmVNbaA8cA#&!C kWQxfB6*RYV"FC dl#كSk!O'NzTF_RyE;Ǩx362*C1 dTJ>*;X)x.>|<IJo:.5wJP(GY`GvsYčt~LvB5VVXg߭|=:T$\BZ<#C7˩-n)y7y9:>n{a9+͛x<A\RƎ^1eĤ  _R\@ho]˾& 5J4=#-6[lT7ETw2It&R-DǟÓ1B0X{GЅHv'l c# QBc@8"q1Z:u39gI I(jg0XeKɉ3@k,]ϛ PA&[Nl)܇CJf ʨd/$2_Ϸa9vw9K;*oPe%vJiTnJz=.~4Q 1.cdqQEwZW^gt_3 'w fs-5niMe?w#NG1W5JQd=Vwl2u >,1]B$uZBg+oDibIՌ|i HWɹ@EWfhE&jJ`]A :ZNF/Ŵ`>׎1C^2oAhq0@> ~^&Dwp^yV3q+0\?]KEuޣ >as:},d3gZKk`$n h}eFK. xI-68Uuf-Ġ)tV۹&T~oG |ԠTV|2=4~XUWP5!ϪAFP6R.Ho%F:ZG1-@3uFl,Yk87N Ey[lm^<Aa_Wd Ϛ_)CQ1ľڤuyj^G L3wInm [aj8]h4&mqShy AS;Ķ8\ĝa(+i[ӾXh-ЧSlٮiٺW'5.}vmU[7/VQHӃ3>0rJFy}Zۖ*NK_١)? [o?NL#Ps쎵ַ^FǢvQjmK0Zsm .C"f?kfed\<1q ؔ/L@i- PL1*,@;_N/QA"@\MD&_; jtVQj$'@pxSPl1,b '7& ÌD+-ʠ -AROyǒLDQYY&Ry}i9W^ [liN񕭀+L}YwL!1}v"o6C$Vd0]Cu_1j,X[}+(OW0|kK(2)ukE}DB57n!oCu9*Sa/ra-!8(o|QV]0ˢ^@> stream xڍPضCqwwwN4ڸ!\N\w瑙grWW]E|.4-́2`7fv6;/Z fGL r a 4s{I); {;'GW ?.)3w%@"SK::ym^O=/wda(^2Z4-@@7 A'd$bb-B4@w%w3ߝ Sl@5<\=v}-.My%LpxlfadV { @UFӍ `mhfon731r3:sp9;)K-%`7WI\/ځ=>li K6 Kc"BWf tps Z^N/89:^/_>f@  ` pA`V廀<l/`/t{kJk*1tfNN37(jf`UlؗSv߱T_w ٸ,^?O_.;mwA2{t?j3?/3 q{eǗ-oS; AVe9F hr{Xk^2{ e,^^חK|YN) pa<33/dA%^\/](M|V*cKVi/DdVdZ\V?ҋR_/2D.K"?t_p_9^_ - ../_k2@'yaB0Զ.Fȃy{Lxz['gr:+xJPҦ4ݥ"٣ϯ }L5&ې#yE̬%mg/ y>4^YgV(xjMe8"vg4ĐElh's8JuG=hSZ3!=˯g k8O"dz{;ؔ UĻɜw!vG) u?ɲ8^LVEfpbR#4}ZA}ì2G{^^δ# gT7=UR7pU9\Oo͚|4,3vanF2=P_=o\9N`d !+<=/EvL^":(j%`glF}mQ>Uڤ)O[·e}lBT6ћv.J p_fkު16nbψfRhgQ&W1ML/xcۭ>LTszXVr򙼟RWBAg՝b2.:^T\J |^\T۷㑭u@{&nހ?ަy/$ tYVAuljmL' j,fNT~n~8[^ņ !Su Pdr#6a&+DŽCYXF1-sBőTFqZVQerA#&HQN/:,FۏVNw-8FNBV%d\mAXaB#K_Y/WOyyj;!jrbj? 7ij2$Hcӿ7#eHN6rbuX[S?#SoPXa0޼-yв^ \@Nl9C%A/Ч\,{ӭNdq?\7)оJK4{ldSНysѸZXLO9(^xR#[ȩں 8&cqͽ٠t5Z1bCLff;78>|{ 9Yܺ,vٖmDSO6ԿrlKrPE.94w*m|,F/#|1RMJ(2K*C$&M3o-<GmGu#@ xdG!ͻVHPkI]v~s(50ک٩q2}43t0܄zyR_wgQ^smnM-eĮCQ]"Ф4O5*Vbi%1[?.B9v0^^>%Gl!ó&uP(N:n*VriDܧ& X$ޙTd ܂ ApI6E]xx9T 7\U|CRۆj揜jM*0+4kS޴^LM8NnɈѩoDUơtjx*#Z6-)qF$xhZMڮ᠟E@Wxt*tY>PSf%z%!5P?wTݷ)^« 3UaZס Эbu'86>:75,=jD-?JўotjgP*@mD'Mh)#$ԯ{ێ«2),} .=}Z%yxzYV2Ͼ0W3=ۈ(R|L Ǵ;#eVhԍuosR9jKI?`pB9╡PSN}ߊS4½%}Dy1ZRlȲxz753sufa&M MccrWs V i }.D\U|P܃fjROf+K&TW$ɌxMo-*T鸊hu4{Y_76q1;Iu_~R 1Pa0}gm+ӉH b\f`KR ld`mj^WpӖ፝dzȲ3fp.ӦjFOM/l]?lQ+C"CJnl#.Z[#qj$+SRoP R=9 .(5>xtD*xxBEZ֟@<(?pϔCo.h6E{IH[ qimfzܧDvX!$\I7Hb%s[U8Ż-'#O"4Xw Ϥ'^Z=w <=zXUi)d/7& SRY V̪I-fٻyAK@'٧K 1"C=ȭކ~9 [ g2ó3u{Dw• ˙,ٶ"spV/3qתτ@C۞R VeN)2?Zn+(haI>vZ=::GF5ԁr`L8C$3мcD5)&_j ~َ#ͧ;+ cyk'0̛ђܝ'=*qe*X|c^.Ld放u5P*RTyך'A{Y[3T:Ff9B42ލX^T\__Q$1i"RbKC5oƈ#h:L 4⦈ytv_؎#^9PmjO QO㒈ϩv&W=vs Vk난\*,{W' &Yʏ@f_+ģMfCR;ErڂGi<]iOf$`+OD-Ƚl,Uҟ#\o1-""kvR,OjnuT)Cxx݀z#NOQ[()`GJ$ւ, R/p'lsԩ|xiNI g:5iYbOaj8HpFM +>ųOݯ#fፄ_'](}s1ɪA 9'W62O?ӹ]+? Kw{k*heQRLkU6X%`_|0V|u֫%D\)/P#QщQwph/ҹ .fbj8O T1A}O=Zk 92+Ն4#ʉYķ^)@g'IꢠRA#r 0ݲkltm"4b9:7|&ZKVFW~ؗ՝oJ)h+[ڱ<߹s]ϵ~)cGxƘAȍ :GgPU?T'ՎT5! d,ͷ۬ofl=#؟{u=S6$Ktf%yu$}?l RR1q[蘨W}rߚt6˵2}.:u=PEmɈBP$Zһó!+Gp53[P)a0@KE1hSs/'Z|MF8VL%ۖVgT*8Xt5F# WYY*fZʲ+3=1ZNrZc G6%8a.?pBi֜+_IsaQo\20r?5KJقWvW-eǝ bۆqt(Q.?>t(P`ҕOn rfBMgU3NS2F=܆gI(R߹" vʌ*zC菀^쇷x\o!DYoP&`*;i;bp+Y../@( ݫH5NW[D =:e~ "C;|i3 Q1c2MU⽫cD^ӂ *x흒 V vOCNBqZ؟>`X&b3oG&x_ZT.Q\8?"6!UG8k@>KaZE%/:DZ2[Ͻ@6g-!a*06F=D/3 Ey?u> ;d6n8IlE_2eh -' L#;Cxݗ4| LZb6h\B1CzCj=V q}9ak6k\wX-_~,}UIGvinM0OM@2H\j&PpRӞ)Є/VM{?gN=ɜdj+?v3˦\2ŵquJXIcv~ ꬂPuIۗ.? bA˱MΕP!v.B$}SPZQaN OrBGw6{rT m1c'Kaje;e$3,u;ۨدl A?CWhѷhnG?Q?a_ ʪQ"5G'3rS`^+]wCxYK?!L-/B} iVc` >P%cac'gJnx֒`=Ⱦ#ڗWlHDO(8 W(Dl(8$!weBZ e+O_C1v(U"㫖5^Qb^2WA"?s {ve?WJ9GiF},(#胡9@HU yR5ꃈAMcyV9ު/R䓎l`*K;d{ϧ}ER}0z߃Ki}_=HiVL}7W{<=v Ƙ'Y]x'L-{ =3Q0mH\$'J"$({Ff{zX,R@肿#2' YU~{\y6H6ƅ7zUZ9A+h}talqS,RJT{{)ɵՀY6Cr<J5]p\KkU6|ҙ#O/C\>)̺hئ$cPL{U;(şlUw)),V&&_`mj}7l`Ďċ/'- 7N$ fauBb)>gÛ+|τpS<!uń^dB<8*QG67Cn_\YBj6!ʪ .f NgkKJ O4?'qqİ: 'I#W2'jYS.l{* -᫩]H5{x0di'%Rx~K~-o4](.zfB4J7bt?It\统 QG1 )1ɇ!q[h y 6֤W™pM~xDjak>]o[rd 4"S!~ģ޹rom`"|/XHt!s,BRyKu ZZFS$"߉D "\!aXSvwI6zz;zo-n_k_=j BA%&OIu_)u0f M( >"+ՈԏH1+FvR {[iN.mj^,Brk:Y~΋9ͫoQ*f<#Q1v MgngVeu' f_A,amAYN86sDmw 12ʯJ: +漍Gx$ԅ6i$2()żϽMu ̅6 jk298lh88ٶ-bVhݖp4;CuDTI͇TJNg̫kزk|'nM'rXI CYH~h[sKJ񄈧ZS?'vf^UKL-笜)!)3K8ȶ`H`/23H|~W&{"{9W҄B$Y滘^Iޥl(!sx~r_Y(JETI#2`L+pVNԸXK\/c|hLXrf&/s0 HY uP0Gm$Ư Ve he`/2/}u!* s3P"Y"?Et+dY?r˥(!Ꮄ<1% #mx:H#Nߟ;d@Mc }e rR&huEHc^k𓲋>;zL4>EAEu+h_An9U't~E)r8ϱ > stream xڍvTl7CIal#;0`DPJ@x($C) TR$?ywu44QrB;(D, T3`Ap7_z cP,Ljx!@,DZ 22DcdP_POF*h _G ?LTB1ԃb]H0 CDHoQ4E^@p/ \> ](h~P <08rc&Z@O8ꏱa߭BD!@og( FzBQ b@(!BPGġ@u%# _y0O7W_aMVC9H8 *=VwsvF 2C!|Z[!08( e@s n <ў@g| `3yC}@,ߊJ脀ap xGO}}s L4,UU~o2IPgC(,B92w_ =}CXh>Dx6YW=Z-,J(7᭎;"0?TZ0 nFzP"0t o<j(vIJ 41^ 5tf0$Bc.@|y@g4k2@Ya]1߲m (#\'/p`j 7ǕJl~"rODpS>Ԥ)21GJ)}9/p5MIFgA#̀^n*Uw g1U\ 2NxU76a.ñ_uẇUWR:%Ebm8g" ;<NoʼnOgLżXxXoSHf+ʟ)F`2D.}7xJ⏭V~FTt˵ kì;%uZ_J<$}UN/sxڗS~S%fӈJZ&`A<争(nJ2Sv睓;% kە>bc! 31~d#߯rw-%t3xk|pҚB?`\I(q$̤ǜ m7 ;SbR;AOL(RRjIÂHWW-]-;+^;#n½[*h$sO|=54Y->pOlpp[qhKmW+5@|أpSw~>ng;ITjϳGՉ1bR<ވ(M9Gr#ȿciq~DϬX$ǥEiQFy^IUg!xx/2ѣO0wR{36`=-[4-4]9?D;84\pl_N۸z3|fu&?s|x·|jStT ĴVX'%|L+z 3ok`hha}cw 6rŹ*=qa.Tyrb{0@I*΁Ir!/ Joh%[ۖZJ}-j^OtnJ'Dy8ٕ?Ot0"!,f9LdZjO{WNV-]D毶94zB8b01!0NH_6[~(*O.A}{'C '*2[, B?S;v$8/ xu"I畃/7vSk#eJXj <7 lWaSɘ;I.AJu5  4%Zm 㜵(ob:M:$Ѱ^>?ʷv[%Ok*2V<,g%uSRd}d\s|N)$WB{!6IOgfX5fmz%e^? FxBHϲC޷m3G)\AvV[m"cRN[d | "gpϝO0c lG5e`.3wXt-%naLPb*2xb@CB0EyAfYYY/7a:f&AXJ~/$?{Z7?qԵ)*bS|_J VVV7QJٍg Qt- cK?#Cz8X5kfmF  '{vy=%gGoȟ B^՛>+Mh=eV}s"As׊97is=!{{tiM5:A̽ot;oHǔ, 6. du*$eV.]x/V6DJ=GsEqZ)*J-*بlh8Rd=wME&KRn ravS[cޕ Y')*{Z]K0s5緘9I}jagn"Z}J}K0f.*$;y8@Gz F!crC+t=V<(YasF/dw ܒ,ˎK3i7m$ee,Fn1.ܶ^ E͡Q*D/6v26_q ,<% $HY/I~Kcp\:˓YUйSzݲdͣXmS,"֖t:Y4C7sǩD^i7,RsԃKZ(Zȏx ϋe> S(F:}Gr\iXt[$yZA[z?I(!zkJV8\Nޛv.(J@}pH/Q a(TB2DA0<'3e$dV@Xt:Mpѝf;UvJ?])Rk w=^na8Nɞ%oY atw>XIa 9ُ̌&$"/b')\g !Z}pUTD ]ވuO̪ 3f[ph(8ɕfqƏH #P/' Xt#Km3mlgK *`cOh>_~o f[p|7Q,9?=w lUj iUƾ'߹W_δ `bTɇj6*΄&oHh6AnM5ČPE+!!sfޙby[hnѶFZ;5r /͸ZovY2/ srx콬܋†kV9b c^s\3h,J1#AXZ$|gI鳽 =#[*.V =ROx!OPkN4-;5J= Xa(>Pˈa o0t8]˚7dIEC}*{JW[O 4w]"w;>_hmIcj3G|sh;B<'ѷ(Zd/qҦwu,& 3ms] oL ? >{eiT9=`4Uv 1:} bW[iDU@bI\Y|YLOС0r@Be{mrϦTXRA*v!:s/?YLPOJc7=7g,HX7} ɬ} lnQИ(wrCuwqӵ떑C 7Ey^ufYy7@35g]3C0w_bI5_+VLO^ u]aZw3/;D@KDXloBD*S3uǽ0=/0AXi9r` H4{ MENc=B>'4=|]B2uN}Ht8ֻxQ$FTmrnnoSg\k:IT޽)oqp\s׳M؏)o3rEU*#疷}F5]&-kWwHk48{@p 틷Ҩ^i,h1ORvkJN{2PscŰɿRrtgSkȁ-u"1Sݯ,M..:X\cC^gT!`,T)UFٛ%Z8UPQsFoZ1]Ϲ5TwP" μd#@ٓ۞a"4 r5߻U+'HgGd==dϪp]W3nˎW%qjQ .97k陋0Ktޘ& IXN3>Z&{ ԹW[pO{ rt:Gf *CO!Dq)H1{SqWkߊ|o5{fceBRYW7?g'?-cVM%9ݿ:1y<:<:P (Ыm.QoxuLwZCel`v}Q痝ۅ˩xS 94ewB ("}=A>z8wn%4sv6oRf"a rN\L)MhΙvPMu aizNYy@YkszJBϮ)l0'ea=bM.NYH=w=Π|X-J`OD/._6jW%T@f% + &a"99t PRkRX~rV]3z_]OX JaT~"3X%i*H8. XJr!X"W*Fr;I_zAgs|QUg{;A endstream endobj 250 0 obj << /Length1 1493 /Length2 6618 /Length3 0 /Length 7629 /Filter /FlateDecode >> stream xڍxT> "]JHww7]0004HJI4-!%- %4 {}Ykw>gf 3!y$Zf|>>A>>\ffC e6C0`($D Zp/MI;1veVA<?@~qqQyG 2#A0!ؤW ^^///;A A8`7OWm Oi<CG_=  (#]<`v`72;@] Es8~+]\0`:*<oEBH'"  r"y!_5 0?W+Y8bF~=8? \ ;:F Cʏ'K0Ͽ[̫X^O2*(~nq>??@TT8@ȟ}:ks{˞4g@ G* `П ogvWU#(/c@>Hz SG쿩&FW lpo:yRB<|Bw7N9p_pwȯ_6䐁;RM` 32 5l"kJǏJ;o1xy`p1`wXA/Y3_8?pP=?`?_@`&x]@C<ܐߢC-{A3pd۰yj/ՎHa+?GMLɧ 6v^ΕOSs^z?@Q]W8~Lgr}N-QÂ5dhV7[{@C5"V>c*b QE- HܥB[ wu}/O 4E*I)|3%S'f?~¢ |XHYβn#c5_УA[1γF:tn Fw^MIQ\5/P.ӿU B1(XuwZSK3MgV_^f& XJCVхҹٛ,HHIuѵV=q'ζ> vEi'L3zvߩ _|"6PAj;sr1t[;T% g 5PҵI<"" u>,Z~%$*lqUIo?v^wL[#^+sGbmH^ͶdrO@kҒgOcĝo5|34FtN[m7I?Κp}qDj;*V-onQ\#2j5u 7}㷸vn쩂uzV^q >p!D`ƃh߈X(س`zM\wztMDRKt^"SW^S>g{[&OB"̈́VOÛ ⧇ Lu4o֭W6RpxOR vyP.Mi3SN2~CU(j;WѩUpF@,E]l8a4PNZ{uPYr$aU~W2 O0281ozxO1e"9|! 1\L:uU^PpSq*QAff"_U&Yǰ`<_e,^rѳ%w?I.^2%Vz WXzqy&0=S 1q) 䬹r) ۝I(bm[WVheu^EvjlKP tFu~#TG̪x=?ďY7kdɗP O&Ze{zh13qѨXKnOv5ٕc&Lԓ`.{*a$a#(:1p^QDh{X=~IfT\'&=="Vr|&Q:;po>]UgyƺjJD'\ }JU#FYGr#@Rg(ג.\h28Dq[,0`_^۞zo ezyzbI,Mx7am͊=p'Zq8?^Jn/zab+/|! MX [0\ǩ̈kc|>qYJjɋ597 7&Bz[ 맾Lk|sdv^s @i]~CYa1 ,ʹ<ۖC;8ECDt"=w V z>$P_6\},3Ow!hPKqR]$;QgKYV,e*22 kFDb ukk>hnЎ{ /u/8. b:f<7T=bccAC cpy,MO-Nsϱr.|R{GZ PqIcnmHnYϲj/J%odjM1HBB\:k4?PVKq[^?`[c&Cw kE%܁§> QmW'/xғ||&'E׍ux9/D8oLXdZj]BH7n= M؇44fr+MaJхF^sypR`y5Aj*Өw{Rf߰6ϙ*Dtzk m#O!I*%tFao'C9M%;d2%8F5iFbɻœXIN~|k48vM5Y}Oi/Mwg$,judjj3CV~gxJ1^ƃŻ/&7?".׭͢2w鵌)GT(qXQm*GDL)lm|` naI{/OQ74v}aO$T-Qe+FwfiX,i8D wR+o^^vMPԐΗq*Ke2Xw-oig[L!@-ydYO;4y+;t$}O +Zg@iz~Z v=W~I䃅/)W3yȍWLLB{G jVE 49/]zկfDaخ󺞢61L~ڡ2!asZ8G E#ΏWRj3+d":)͟Sɺ`Ll&]fVn SW՘u{]oф>hsdH(\f0^hn2(Av+ p:K'΃qNAjZg͹:ǡI*"F<5|2[Xhg5('wB-WgnDtx^! ׆J8+ UT3rɬ)I6̋QQusX3!fx_,uIlcN,.~~5 Dq xv|e9j٫6l\"U Oʣ{RNd i$#x/@OxV`hMb_+{<|K H!8mjjG.Ω,Z{a#kyҜAy(u6ЎʓZ8YOz/+NCrn,X.I%cd蜘yø3I+xd B=`LVvu?m>ҧ3_ ')Ԫ}؝i@#w@.=wӺ[n+ 5q5ljA*ˮ|TG Vz>a+4| U3D (}Z@;UO "%ߩ,۟a n^fcZ y\Xԙ|g#@l'(\ޣgjR*s#E>GqZp461''@}]tg/͜: L"JGxEw#̫zBxzOKx%RxX5cL.{m˹A'rZUd]"Q6,69/K"㌡.g{1*w=+dyNV4 z^o6-_/>BKfW,:O ӗ߷a}. c"y!sX#h_ j #)[R(w|\iħo8vOPFо2^z3, ૏}j*!t;k"zB{8z8g^ kmYe,ۣ _tu'ʳv\JauY޿LMvF! .0o_-Ͽ/c|( N왯q/6?a!m.>OeJ{HD!ZZ{CD,?:lfBykl,0I,NNo$ѼDdFN=W:B:?Zx@MNr3ssc{$)f3/>r WTSyeo3V-<[o [ w#҆tT_]VtN<햴=l\J9Yd]%]۞#>46;&p ;ɠ*F\96ĵWg0/,6Ξآ)OPRxW$wVƨ'Jd(J5;$Zw!3,j@V3]MpnUSϩkǓ1 ik{ ?yL 6)~FVY^vn`gS+ [|AT06$USPMdpiGveOɖmBnq̍Fiqb۩֍QƟr&NZ2ao|: :3$-)k VfC2ޣUy;$s8~yqPa<ξŐQ:j+?e67CL!\Ca/inRayA2FEi[3VRg&B4%p穡%*qq$)-5 ~GT핫2)+:EŮZ%K踍eAӦ9YG_8ak1LcD)/=5dAWm(&M,w˺V9_] L, %‘bXbXs*QfJMBֽ6Io%p oҬqr!wy5$*]J. D+t*cY.=P3κ[! lxDr*7N AC[yTK.J_  endstream endobj 252 0 obj << /Length1 1436 /Length2 7762 /Length3 0 /Length 8730 /Filter /FlateDecode >> stream xڍtT.! J 03tJHJw7- % (t燾޵]o}m=H spr4Ux|ܼ `#?&!BD ! }@#P 9x<vZ=(= qg] 6rP''ݟ<dx^\_DzCllaeT<0¼ im{}/gП o ~>Pg ?-tn ?[V ;0_ ۿw{^r?ҏ+G@!^b.y]m#Gߠ,'~YGUB"xN7 ?kiB 0֏oIw'#E7G?qGv\7 4Z7t5@6`7j=2/?h/o9! m( yأȬ_#5@} Pb]]^wh |xUiCf' L<bX!.t)1%k7WG}cd0  yUzY%ԃ/?Nq)ѦN _nL5=ޢFcRnUߔhQ҅V[ v B=|;҃&S,d.Ggw*.И~rb#D a#ɤUVLMÎ~%I&Sg*K90I]pCH8RmOC{njCg#qQX~.1eI>ÂRQz5%g􉵧ZZ79 tVyKK,kskZ=/}/r񽧚nTC͖ӊxse@ )ƽ⟛iըs.^,IURL5kY۷u~"*SRp`ۙ1vd5z~r77R |@GHR_K:{U$H{l=sFݾFN 4Aؾ.p{vSK(1-gIk-&aq_Ӿ(] *0AatZ6zf\_D݋Xy$T"0Ɔ!rtVSx|2 {bP| D*5˴;};|>P nzɰ7b&pS!]e&W#֨^j|eҾK}duSbT?uV\Q͘hycf S`‹Mo5"J{?> ~..c_Βe)Jŕ\WYZ: 0+>X86f Ź&EoҐ-Eإmk?6#ʳ~2h!)xѾБ8:,gQ&JEh wmn5(j"̏y)ⓨgwx/nPSזS]|ʯ#6 "7q> "d&kqM(Lȅ5]㕤d6ÝDq!)Ty#M ΀I@lM B.l^H:SJCVo&.:ݧ$ÎɟM3 ]߁^[= 8lvR~rRjK?1;j~V;CT1usJ"\PzW߼}d#FyXyW[lf;+@Uӎz%ӊ5o q\k.Hk.}Mڼ}>=~ HGG]hhX༄m6?~&@ag? 5ABz;gJ#TX̞.t;UL >{h&t*R_E*:rqr457Ef73Rc)q3.ϖH en96(x(i$%Aɏϛg|1.:UAyg);zeW4 KPoFDrrY0Ƌ,% '2#TGm K%vn*YQX!hfZ}N1= p;H #ߞ+ҿFtɮreflqg.lµBG|ބzY<XI3Lx%w-g=N^ؒ"V$DЕ񠶧saS(Rb NBA7V&L7Yʈcr i^W:8I$'M6('E55&p>qƽ=buy/3؝$ټï)[~ܹǛ6s.k\HS{$~rkq c1%a[#YY0;rM7](͇ia++g>/2~3HU]2[j J]`UAE:ߪ+tە(5R^^{Vd\I,sVv?'il)<d4GZO7^̘L/i]x$Puj#""Ћ3ah=z2AOPK*y:&VpdGqyQi/+xPkyg͔TPJYV(?7-բË)yHѰR)Oٯu L0TovBjevPT][_XaUiM(X,(N4n>g~ :}ߋ`b$R  19&=}>\0g6[S I èL$a/o7/Xr5Z$G] IN6ƨYʴX@N{ 9Qsy<$}gqTo㚶'ku&|UlB|ǰ#_B|͞We Ҳj忘nLKjY'u-#_;,JK.%E}FA~{eQb/psz_`)co̚Tx&->Rp UJ3T>at2NPx>8(K5edRwMprXAx{,BF1c-eP()1 +0_V9?p{ &SʤR`١BKE\#?C;[IEa$:+c!"Z?揗}\LjaN#c^g}&үy+Ub\B1Mmuځ9WF:{-롳0/wt,0eI.,Rܯ_-Q>jer)o0_ T7RZ<2(C"^b;1krXi ZǃعvR zepIgݛH&@2A1Q5nܡ|T)SMX!芍Z>&ԽwA۸r嫾 -^ s2jF_ _Ilj 6X'h:yۙP7 ,ҟIh$0 a񧜬 MRt@s}t KV*1{Jr܃WҔJfϞPźzr[(z?]̥sEHvRp?kx$]+wM5MۏnjRz3*[잭z#R쩫#Pz*!.q=9IwЂyg0C+9!}f4aF~5w_x]Y3d c*S̟)S,M7^)5IxƨI~1n#D̸ Ty:.IV^%XgN+(~(!kK?{met1-ȈVi΃ol$V$[bl2;?W`6Oga $4"fpVY#i7~z7}NF1ںCMLPtA޷LySJ&Y@n*ou^;|S+q>cUlŇHp6흋ҠĈܗf&m.z^I)DK}~1%0-Qu@#K {׼NP=GN)cO:;Ub3oݝN[9#cTtzd7"O%m3aI4&=_37H4&u9$1#_ضw6 0ۢN.҃c;J=@$zD5VcvOZ щ@BcE_oN*jyx?F,&gArOsUX]nD(e\z;lot8+/D:?=:FKcK}pr?Eށ+bc[39S)LK!2l|-B<ޕ 2;ם;F0GX)4~iym)Fd ^k6ށ,Z,f ;=N9+ w#>@ZjWi˄dTVA;ݨ!o'R_s[A֚rH˻8-q(ei)#AKeX3Fo.<$jg /e2ek3߈t3*k, -PU4fӞ@(FɸeAĚ;]ssWr˦uGٳEo>Rk& It [ '$> stream xڌP\b 5иCp !@pww g}-\ɈUL팁vtL9UU&F## =##3*_9: dg/ G3X&j 6HXXLL܌fFF9rD\A9z- Ldn >_&T&..ڿB6@G-@h>bg:{%=79?- lP:])lF@P9Gbgf P(mc,Z03Co"_F&&v6F [sPwvwٚ64vnR3;?'Gw ie5:;!O4݃ZڹzlM~abϠf rpJm!l,nbU{_Jbp>^v3p@pvtx[ ` 2qAb0 w#x0S;[k?ADXMQFQ ۹Xt,,6;;Y@G/O)[3;W=s Ps]F6Faߌf_zl@[rvM,bRF]5 'q;TlblG{ϬA@E;'@t2NK(fkbg{ɘFFIbfcx1m.pv>3;G-eg0q0A\#Ab0HA`'Rb0(A?̢T pj82_`Nc#?jpƎF&V@sx& 605[bc'`dojgm ßm HY*u(i%  ߆;Ҙʹ{xm.\k_֍xm#la4 >9`_qvyZfzZO﹫|;sAA+LNQA6U^JgwI\mb4D;S :iXө6(HD¹rZ˦Um'rahi#afÌ6jG_cFJi1,mj 'Bb㉍#ϋBa=AށMyʬ9\^2 [ihZG\9]^/b4WeZ1k뻸/E|[:#z5}F<jh|>$Gom!o Q;it=gIo<Cqv/Fn-nhZy,VU* 2.Ɨx{3/F.ovl# e!h,r^?m>Wd7v-ͦċJaqbr=*(DĮGKӀB5ksx|r0,4]*?}o_j/̏T`?q+}ae4Les7%#g7]ybjh8estCUzWE(RӁ"HRbRHfw*I`EUl@q}hcijOIߗ,_~4xMgd T-A4*\ V&ko[W ' qp{?׉+ e'g_;`g?FCQ33w2~eҭ\6IVY9\HF&wcTG u%{a/Ht #ɳZ w´VХ~cb$.mZeh ɕ62d)sѲ6i"UX$Qus7~ckP/\c;X˽|4*/uYR-1ʐ㪅162v#JEiw VJ6p  仵%ESnX IUJFw о&\m̯(J Q(`*Zn*":'2(YBՓ9@C48b"}An3p#6n@u$<-/ǺWZ: KPI]ᓈ+`W#N+Xy܌Dզ'V% C;\QMC8,3./].fbOnSvIư!_ഺBϲp"Uͅa0cԞŏHuz ۏYD/tu%^Aq&zuȆ ?@%SB#V>èP8`_ ?FxYB'QY(B|A,&%13jouRvRf u&]3ik-_&K:t`½zwC(r[e(#}bgu,#vT_Ru $hK}' מ.AQ UCetrǮ}|d#X8ܸ~L*G*o jRT^O~}֙x7!.Uj38G2-=%7ByE>}T*YCg?~COw%/Q=-vƖ/Β+"d ={RLv^|f]M_H)w>AdQ(ΦNؙ"&Mm%l~ =_s#( |tm=c'OAq# t~4Pl.|҄XZض_1&ƽj޵=q~Q|:Ir*(vOV_ޤ6tY} #j,";la{ ѝu &jXqcQ8W5nFm@3`T/h8̓mcU>$#.h<\f*Mމ⭡My|4!) ?$6ayo8A#*%nJ%N+!5,a%wt;3Xݴ XCOU8fB)x^BaۡY~_n8InjUSH,3g-4ny(K'4;<&х D57G#27MP%":+,c7M ,Z7gHwo˯<Vc49T h%'xN1}+v8BhPM,G86 wSOPȰQeTE%$^͓CxØjz"!Iyi^4Hv(ݱu>qV޴<;iߵ 5 'jLl§zuXI13ac埱#VY-{ԧ%]SS x= YAC~MWr}:mme ; }O`Yw'1 [a-Us4%Zl|U܊q(3⶙4ILTBs(^w&A5y*J=~+R[˟,cXaB}s1/~ϸȠӦ`OjB ^mK`" a88c&)_$cV[;Dל^:_daҎ/Mk=} 2[k38ZZ!?I&b 5s.e$hر;gyʢآQ zs\qw$'1]FӒ@o- p B\@&{N;n&MݘoHEu& AAS$u<X>yojh-KIoRbet)^`*|d,@3[%~ Eky s$DANs# ؛!X'$ 7C#*!77ΆOXRɯ#r>GY8T& +o~drl s _A&nu wEiVe-'hϱڜ;OB 75 ~h'F൑hq0g/i !d:,>խ}jBRqBRmqD_4+YZzWnO~CPrtۖ|P Ow _`3,>,3MkP6rEC9 =7JnWD *q1)sLEjgcQgqFM6iM M{6I )c4yTtZxyz u0$Mi%֊iϸK"ts`kƾ]*~in}ДY^(/DBh8m.jޗms!=(1NfCpyC{ؒwc[  :}<"zF۳_iE"! o"N" K 7-Jf.18y/ǿuRu~~iܙT,'jel')g;lm֜%{6r w{*svRs}pz9UuFP/Ilեnhĸ]"INm&ck! ֎ c.H6@}m zK3Yz#E vX>Ɨ/os)M,Y͘YDDyP]Ix:gŒza> ң9I})k*ū'iB@gVII "CM$tO(Z_YZ~R:d:g *LGn&Mf4R9q#E1L'&K;f#l,"6~U?ݩu;W?UΫK,sjsrUxۙwIq2K&b/nL933ޣBmѼ1(L*R 6Ǘ }k(b;f [A!4c*I+ j|>퓜 O1jm$tG b P~RD+~VM=.nPC&߽|wX.CTi,f%T>Ҫ`F,S)1yIu9/7_ȳ0x|lHFJPDŔRw,LhPP*{!>sz:_;ન[O8 %c^^CTtXoܺ95NHJɥ{Ur{Z1EI=@"/*PY#%Q;𒔠UԮoUłOWķnJD|(Nu˴nB_/#I 2Y*l}NE]{/gtQmY)!u|8lm?;+>s}xsSrbj{ FRyk~-<,ޚo<(QjBz5 Mq[>aFv M4C(J&=6֥@"5TQ n2vڇ#?Fcdakk"<θE͠63c'ae\͡Wf5) 216K 9#)> 6A}]$v"ֿ? ͨpKGv4[Cp Ow9SGriu[M1T֯a]=sc 2yr8B)6 z6,#uzLZp;hi*.>Z-шE4:7 ug*rz溞 ?O"(%}3(;CnD0gePc& y0fs̈kvVׅfI'ѴtxŃT.Z6 r;(0^PUq^oҪv߃mqtV\5)n{8(C̞0"l` J`$gg xNv4 u0zoE5oٜͱ} %i"F/\ 5y3aYkx% .(N}=3O ͲBM\?(Q1 }\HV0k0d6ę K)чT>?uﵼD b}:9]+0 vLI4|P ;w-s . aH4'U1GlGV#_-ijx " M34"٠6([M!cnq e B(Y޳Z0|a':/eFv9A%nB=\[z" h"^~SǨ!b l:pȨ\:xx/k[)ޢ0ٜkEeo٤?Q ?̨{i{vF$BU| @,mp@d/^% 3:5YœaV9:!"iS,4q25\IO_jT\bvfӞFkiw~v 3#ܬ>FEIN`ZFմyu>,9ޛW"h?V_=\ 6L]3/bulUI1E5xK[ue -)~b>,xs:N^SyQ8y?;J=F|K´lu#a!f8c5g'Ue]*'No@ۥAi3Dݧs+7BHqe9C󬜫ҙ:ؽM e+%FmQ.:2y>M]Q4WVl$zD&.B( NlVV}EcCT-f_aXkDj&L  ]N#ܗ3׏[Q'tsR<|tbkho Ta"JgF'gܽP i QѦ`^ANsnJĊ ,&1Ÿ^K45t*̉S]W.A+WH;mIk+ͫȖks!+thMD8]%I|[:>LT7v3޾N3"&1922\m!& eElB=.vUKvшBJcʋ70Ϊ-CmXKjN)<7W0zn:Tn~L z]9mٔ@灓Oq|Z@z#9iT)Ģ͇3B겏VȓZUX F*n6Bd`M6.>DՖs[2ZhA⭆HHF!.\`߽d $!D%֦DC3,r0ݳH{Đ[זּ.A  xR|"q2 --98_;Ja&N9qJKށu'C}<؁C+>78$_gםC/(&h23vL.u`w1BU?Mgl \x3C^ O+V Va3Qt{W]   BiAh27ώ ?n"G q) J)VOi ,Fcܵ.˨%*7\Ln-d3\Sޫx||:4tTnoCYPo(SVn?;a6Vc-jNVeٓunzu닣ٳ3GA}vۆROYS]{ @!5{bBcS9%q.o``Yd2%69 ܒ_W]irV_ /ڏrɥZsDʑ\5M{`f϶}-L߇n {;_ql^_vMqwe'*d\oٸRn/QqTGWyKdYų3;p"I^+_gx?ws`R.g=jt6಩SNi-dˋJ_pSR]X65CpCʚyB8i irA 158[APO)n\7zYuB'\Iz{L3|/D"|"}ߙ<4|ﲰ ?Ku&6>čHN􋞱kJ]VMg'l1n% 'ȉM Cs7\.~%<ܒtBr".=p/?] 6aw5@KT;GL$axc;@u):|Eg+_ςfl>Fflbedecſ$KSQ#I;OyدvB+>kw~Hy)g<F1%54Y@OU$V%%CL_%sts0ĹGU&թ_"85oZQݡhzQQ1յRe EKT3 ͪw yHq'7WK׎^G!L?me+gڗ̦G]7"?20ԎcmQ`-A7C'#=R'yk>5HvB1V _=֤ʘ_*[ſ]Y+#TM2cn#% Rx4\"fVOꉔ5o>M/)9i# 91\}@y=`L{'B cmu=>q=Xϙ`h,sa@;D ~vu0H-Cݲ 7)LG5x?s?l[ %*zq@ƒ۝ݭF d^O2\WNrzP*r$zgF寓ӕP䮚V: $;\D+5uGRd4q& CYF΍yd!(MI@= oޖ*`x*UdozCyitwk6jSP:mJ)ڔ\Z 7nnyߧ`i%hl8y`fq%#=d\阶^7+bKf j02WMg^Y7+\Kdn8a`Ƌۑ.]b+#ڄovHI Z.hJVb>Qmeqø%#̚6ά Fmފj1 ᏀۑC)[T+ S3* M!@a Lujj s$,v2t|2r@ 9da;C}qo`JW kXM;5.ɤ,"l ѳt )X1# $a]vY>UtwFh#̐8#%5 WVPxenx<:[:31F)a1nY8/)pEO=Kgmz5&SA؆tC[(g#'l_ɨo9Or{ [Fwd5S(h?C pZ1܋"]<"u1N意fzȞ*k#( eH C}ϸCzRDž ryy]nmוd|6z k"WC#iT5QC&|c1A:h{]R%#Vm[v993"7bUi\#xBqZpb3}E%i6gHhm3I v4" ѩav>ȆFvWǐ0LgMw[t! y#cECn-$a3C }{Daƺ;tX%+ḣ\XA4xZ7&d 77ӧ5[꧸;/E>Ll(II/*"aU.ъ /4PH crou;/Oֲ:x~G"91 !U [SY+Yrc .P,Z+Ά*VleAM.1m5R+=>[u{ͣSXlc1A Ky^C/קFF\菷 ^MK0aFɺ%z_IRd[=uh.lOP!$XsyP}+uzVUכ!0}R8 0r =Q1rd }%pgcbYrނH3*&[_Z75CԒs' C_,2XE sitgzfe6jTnw.vT&.-{ 6P[0rAv- ?Fp?QQYgm!)'ʛ6w\3;{̕8r͇i7 v%%t QzVǨ䄗<=1,Ku|8)%:J 8}"HR׼K31\I9'i}o,*g"-½mVj"OB;cA|#!+Umo5Qi+j=#N[4PiZAS\ ծ~`|ZʍQ5 @j-yf3?,@܋Mߪ}.j02-t|Mf+ t623MS1}z&Y{)C8h:AeI_4țdQ,vSLf$pNQ׌gPgdCCW3Ieo$#?ʢb0pxbN:f?Cg`Tí>|_:DHM\3;͸p4Mr!(I9zx{Ϯ?;֮S;HwDM\y_?-XWP"a[lO !}TG8ܲ!꧹^}/ft S7VN.'%@2Ň$g|%AFj.6!t楘NV=C6iq߱itƶvkCCXjsRsVG\>KXuUA60w\/ˎlu]^$RfNaƿ%n^'=pκ^+bs MSĕmC [Njs4mezbD!]"Gl&q3C&caۚLx~[/Zz XN[yuлgwQ"0Rp|mA/i4had/y &,ҒcVh%:phi]B &cwyobay P-j'eɻfӷvDF58=HKaIVz4iSwTΜX/ H|w:%m}O'j^bWk:T.tWj>\o Szѿs!_M15<7\r,Ƴ9\03kg!nKLpYs\v>eM[G(䔨'-)³i:"A , O(٩aɃj?SCt& 򐩮Spu(%X;{M*J+s/l%-0̓02\]m!5P[tOwc&QjR8l1e?g4 *֗Q%N:Zk EYu%!dL2>N3gM;9*~F,֢EVK5AhS| O`{Eʪ(cR'4G G_%dYcc1^ygH]?$a-d}!]h4ϝYRt+.ԫd(hvLbW/8"6F7f_QMY%fCnrEʙgZ.= FH^PMqV;=jlY/{sjԮŃDьrcrA;_ZZ$8 HNJE2pgnnz{*c;A*kdKXaT;5|!YNR'Jz,kө̇BRvpf{P}Odb7 FFos2~Z4Y}H#v;֙/_N>MHE ]'EK1Z r9 "\j9?BY̧g+3NWlivV`(3ym*yc ԛ9鹾mMRI%3SDr?7ۀ2ڙ ݽ(org=*Tn(e--'}$:>'_DR XkBCʒĊ!=^ =ZER K.v yC!vÕ`Mbھ:ТRTjZ>D^mY} T+N>G ^llEцsփ>Fae:ѹ J8Z!ΠjPvv VbIR48M_7A?Xp]eV5ЊS!_y)UOIVދvkh~ *l }]tŠIu/TU=jg %9b%lQ@TCvK"~jDmv}arF}=R>#=p9n!r 6b5-ƽLXEx=c Ɵ5s<ddxOs7?߾(Q7gث{EȜm.D*3a_h9!|`coA^iw~O$[.eyz\ W"AXƵKӗճx9`H}]}R爎( >|!igpMR_@T̔ 8=%QMI7~bd4Heķ;249XuHFTX7=%+|t$^tY3e['TF,'*R+jzfmtiU2?$;vW 1^a\?%ƴȇU m3?VP5^Fh_eqy0 $Ё$re>k6- *Gc %$ЌI3G!ns̪A? nDDQL$-DF\r s.cO[uؼtI 1K]Ei Ђũ:v}]YgpCrAF";f'o f!<٘gŹUaWB׫#ԂIU:&] HW5˂Yhqh )WJYlNSV$( S3s,?jS[ C=l r|CfUPK{+ umXdc}Gc.\x0o7Yҍw^HCt=Au#!ۚgPc3LvVIvt~! i!9439\e+}۞ ]8{|{zLs@, endstream endobj 256 0 obj << /Length1 721 /Length2 4672 /Length3 0 /Length 5264 /Filter /FlateDecode >> stream xmrg4ju :ѣ D%.E13 3ѣN"D'щ5DF^7]Zz>쳟˥A!0HDT`n `P<V2`pb 2^ `@D!c ȹ*➋`+\7"=`tBTʹ @F`N6NH@ CqA- p'0h8oM8?Ю,Z-A t4x5â>_//u'!p$ A!dM m<?wt-w p f?wrCQ t1p 0YP_z9 $N醀#VB- ]O?ڏcN;z?<50 ⯽bP? \""X7Oa#i|žc4׻9$ #d |r o Y {igKX /(lok} (V{"B-XOΞuZjuӘ'OM{$ަ,}'OίmE3;1|KyzI!TB3`eda0$3;6/3?=KqrytnEGu2rHtn%MbԈpsڧ BJ ;`e`FX(8WD"Q/]*\ұaRƨoV@~CM…bԙe3'3'>]}TJT!{QyŦr؞{ } 2%.Evpz#J, Jc9u}-*;\pf4ѫ&wϯ,3o;!@ LGl** 7$WWpYQ5Ϛ5# o9-ͰEq?sHf =R=]q'b."_{88  8ixxs=e26R>-MԜy$l$Hr*ReK\w:(_``M:ǦBԲmhR@NP >ѝU%' 13atLjgt4O ")<u@VoYA38IG 4_?)o~[u.ᅬpLw$,ttQ[ \6Qb})Ŏ72K@w>T8~5,N乁c-Tlv#$I2<-fJLZ摳lru^Pd<=.m1MMf+km(=[3/71,(m}!\.·ڔe=D{ωM^ E2 !w/3+H6= M4A'Z,Dƞi*s\F. ONޜՍ 6 ۹,W!#%Xfo߷90 )!Us*@>i}ޟ|Gv-z C-d9Du1N,tA po%ǞMݩvIeʾ&Ĵ6flVk;;v^-YlM.#&l^D3 KYOhlu9ZM:IQtf\jwwŶLaG|-;+qm@٧ N4 8$ZTcg3-KVn*?CmY;S^cyס8'"R\R.E(/^,j&Ny[뙧}x0Q;>vdJKo7f>!ʏs5hr\TesnX͈S)lY,W%!%?b:I9;D>b60*/꘤p&8y\/+5D 8ǒܚsϩRXKIHdݢxN m& V}ih6{͎Q z|yń'<3reh;Xy3E ="A`.jbZ_+2f%vI^ف7Ҥz3q|Po_-g畈 eWGߚ&PJ/$/32pDqDwu&:`O#4) =lp7X\~\m+r-]hQ"eG>xTh "#Ud5i\*!' xAE@}oU4gnş5Y,tl:/IZo8io'"v){gdXߟ;ٺE+u7{</&Uiѝ*v|0l (kN1S#k>w?{Y9Ay|'?8*Yf dW(jP ]~:e!=0iټ౱]PEf-|ѝ6%~R)'ryhz`v,z5bphѵ1[$1ʪ{Jb~Կ s;_<9|9t*ʝX|Jy~>M۩^L(ݡ ֣KHڪzԴDjt³ޘy&m=t9+r[lS3΄QDgy+3f^x_hiޠdd357hm Oڻ;=F!}7;\+9n"jqK5T灁?"(l ,A]Dn,,fhaP)Feɻ3o52i@{;H8dg%lo VUÜ{#gZ#K 2f}{UZIݴzEW1M;7I^_w󱛍^1cŐ=!m endstream endobj 258 0 obj << /Length 741 /Filter /FlateDecode >> stream xmUMo0WxvHB!qmU^!1H__myݷDULG^͹t߷.k4c*S'ҵ>]g,yݔKeF$mS3&qGRp`I_3[dE4ݹn'&9綐7UaL)l:M z!YU0rўo>ν9},lj'}4>2]ݼ[ivjs92V+Vh ~y8&X-MmM|ŖE LS7Њ~& U 2X(pm XX(W8X&LR4=zukTGEm7h8Kc`Iu(!a <#G >n-tJ!]O2`̏S#',<ؓL%qO8\π: 3ht ,+9ugCwËpD|ORɉ#ɇW m藒1NwH=8! 4DCp&q"pBCT/9!ɨ~B }Rq҉TFIܨύ|nTs|neEA;~<6OIystg>O:yұϓN|I/|yI>O:yҹϓ.|R T<띹_mKz}K=W7"V{/@̪X endstream endobj 259 0 obj << /Length 741 /Filter /FlateDecode >> stream xmUMo0WxvHB!qmU^!1H__myݷDULG^͹t߷.k4c*S'ҵ>]g,yݔKeF$mS3&qGRp`I_3[dE4ݹn'&9綐7UaL)l:M z!YU0rўo>ν9},lj'}4>2]ݼ[ivjs92V+Vh ~y8&X-MmM|ŖE LS7Њ~& U 2X(pm XX(W8X&LR4=zukTGEm7h8Kc`Iu(!a <#G >n-tJ!]O2`̏S#',<ؓL%qO8\π: 3ht ,+9ugCwËpD|ORɉ#ɇW m藒1NwH=8! 4DCp&q"pBCT/9!ɨ~B }Rq҉TFIܨύ|nTs|neEA;~<6OIystg>O:yұϓN|I/|yI>O:yҹϓ.|R T<띹_mKz}K=W7"V{/znb endstream endobj 260 0 obj << /Length 683 /Filter /FlateDecode >> stream xmOo0C@@8l[jWHL7$Q!LUzSnffonh/}f}emy9f|vrvx}[(mmMyTnrlnwwVqTrvԧnfx Wŷ?yQJ ySN2k1ꯑJ.g%мFw66XͿS>r}|oݥNrl6rGىǼ?;'4>+JV}}Ⴕ.Mۻ:ɚx\_h`:Pp/ *,}!$B -fu[ǘ6LQe }ĭAk2$mAGs AI:םJ "ʔ43:KaCg" s rJ_i:6dPtk69u̩3ȣ" P݀^R/z0cP_Y̰*z~ʟ''Mq_ uWG5do9JOpH+8QhfgBfg"fg$fg,e@yɟ1S3SS0S+UjfjCfj#fj&.]1SkԦf44U44 Kx׆_|0n:8pw{]Ap^N3^?'y endstream endobj 261 0 obj << /Length 696 /Filter /FlateDecode >> stream xmTMo0Wx$ ! 8l[jWHL7IPV=M̼ su;Uٛ=w]yil;<[[j<=?׾+v`&ߴț<^*;~&Q>MS >_P{=s@dkx;`VY`s4JaQܡn.Uu9\Y6><ٴ.Z.4>Dӗ}~r:-d0VWk,8yLһʮӮђ[*mLr?q 5F8@=@)& 8Rx uD\j2HV0CzL] bctI g$`htы0\F0s jd< I6zg W qȐ+#k .bsrbmXK7ǵH7Gnb>&jؐu1VljOu$՟qWS/%1{\xB!K(hHTЖ枃Jρϯv=k2UKς_:~$/ ~E+7ˢ/ l(/} -+ZXukoԝE?ZKq endstream endobj 262 0 obj << /Length 696 /Filter /FlateDecode >> stream xmTn@+fa؆!XI^9w3.WwWwA?zNtD=saݥ/$;EyW^Vߞ_{ߕ[;lozxrM[/Y?@AiNʦO8턃YGPFilgιmu &9Gӫ6ꯒ#!YUƭ`M{M?ʧhW/xͽ^NƣՊUJ˦?y#}~,,+mkl|ŖEl[ݽܧ#7u\>Ǘ# PMH EXdj @b)<:@"].5KCPh\!=.|a11$304ENc.#pF ҍ 9up52$um}\l>p@ )9r9b_ia|F-(:(($,/0 >7{os%\9"}u[]8)cC֒qfHWp[eWs'>ՑT7^Jb18BOPАR/-=Jρϯv~i*g/tiK΃_F"_ˢ_ٸDQ^:Wt&p .ک;!>t 󋧷"# endstream endobj 263 0 obj << /Length 739 /Filter /FlateDecode >> stream xmUMo0WxvHUdCmU^!1H#x?gx]OTm$|͜s_Iss :L;<Sz==׾f`*_`ɫڟk3'iѴ}=M;7rfnj-eSӵOLg~8 )ok A8 $`I\3`Af<Z]! xNky"7 _㓧q H`nḱRONH=CpB:# =%888QA~!*zƜАT?!~> tw8y*sύ }nFE>7*QύR>7G];~<6OIyktg>O:yұϓN|I/|yIg>O:y҅ϓ.}2 L> stream xmUMo0WxvHUdCmU^!1H#x?gx]OTm$|͜s_Iss :L;<Sz==׾f`*_`ɫڟk3'iѴ}=M;7rfnj-eSӵOLg~8 )ok A8 $`I\3`Af<Z]! xNky"7 _㓧q H`nḱRONH=CpB:# =%888QA~!*zƜАT?!~> tw8y*sύ }nFE>7*QύR>7G];~<6OIyktg>O:yұϓN|I/|yIg>O:y҅ϓ.}2 L> stream xmUMo0WxvH UdCmU^!1HDI8߯-@=ۙڽ١=?w]pwdV^ڑݧl#oxdGa0NiqF?Sր'YNR}{f{x2A! u xk={Exo"}Rɑ#x۠_J B C쩁b8!=%p&r"D9 Qg̑Tu+gGNN8O-(7ZRntH ʍ(7:hEњr1+w(O:͓.ndm'#Ʉ'> stream xmUMo0WxvH UdC۪TBb B8߯{ .@=/ۙڽs{K;K.k6/k+[M'ҷ>dyӔKe'$cS`vfSfK}fƁVGGf\bu<19w|擬CTAW $rG]IyMsh$aW7y̟u? sK-`θtJ!'c83?NaO<Dg!;IX 0z)rЃ@kpBQ]^Z7! / U <ɉ#W m/%]cX! gȀhID8QN~ACT/sQQRs 穅ύ>7: F+}n4eE=zG~<6OɈy2kLd>O&y2ϓQ>OfdV>OF<dR'<>O)yJS*}𗏿tx>z{O->tՍ]*3>cC~ endstream endobj 267 0 obj << /Length 900 /Filter /FlateDecode >> stream xmUMo:W5?$R. d9M eCkmCp;;w~>|3E_?O]5߶w]Occ]=~?}Oyh9%?۹׬B|Ɯ>);vw%g43>\ 6 EJ78 1{~`W(-;]%=xe_,b+-O;q\L}UI--=BKE1p[! Mߊyu>.N5K)Wb٬8i[_uʕMzQ)V(Txޢjy!Z2P="Zd0\ÃGR\).2*Шa!U,H`+j.5Nα@VK-x%3%AYӀzΚ>kP#5m0Woþj.ZT$X/)n)#Wo(oRZ $Kp4Z-b\1ܰJ P"GXQi/8k^Zq:Zs9dB )sL-7xJ`aɽ)f$1 dъcCZC<73JgznHȰYɚTa,_-O87}KԴܗLloK+gJ.GZyVc48Wt]:P~`rZq.n1] S/Pu7Ue:?&?!d&1yHn5)yғBx#1ޞ]Go׏M?X endstream endobj 268 0 obj << /Length 750 /Filter /FlateDecode >> stream xmUMo0Wx$*B!qض*jn$H$3Ch<~3~~~ngjv9{C{K;K.k6㳵ችm#O7٦4\ =؏8ݿ߳4ւ8͌>sIvdXC6OLx9im$l6Dl_7ڞhz*{pɲ2kAʶC+mk>lpfIQTT?LA>J e .1PbpqH I$\kL8Hb،Shąr =z51XQg_s2Ē+ sC:CQ}.'c-BbOEu+Xg~:?aj B.U $,ĨAA 2A%%" 19hM_)ELN 1sR3fg =傸aCYjV^w&L= 3nqFyDŽϠOL5'pZx?i^x?IGO:~I4ϼt~3][gF~Qgf}fB3y,h3cL}f23{,g>KYN0`^ay{7)q W7:*ሟS`R̯ endstream endobj 269 0 obj << /Length 672 /Filter /FlateDecode >> stream xmTn0C6*drضj^pHA@Cfy'n`g#govh/}eg羋򶺜m=Ooٽ[׌uRۉ=Iۏw{VQҜ8ߛIߞ3d_ ~~hZ# W c *'qU;HHV7xwuɻa;zopO_`_ݥNd0m6G_?[6vLClw6ZsaD%!p%blcä  PP[ u_g_x4$O<X^\NB8 \;cBbMx y%P 3jok:E q:/d48Q4A2="\šY+ːs(5$Y r~+A\HȕWr{Nxo $TL~K//p1sQ*GG-G-GzA>|)3Q/G""&!uN>|%h8hh$hb,n~ᰏnˣ+p]h \2 M endstream endobj 270 0 obj << /Length 719 /Filter /FlateDecode >> stream x}TMo0+J6*ħöUSEj9߯ IVcf͏睟ݛ{)^؝}]u:vzyu|CW$nmmΑmq5)M{`qjS5үxO%r^q &\TƦkw(:m>8+>4m="${Jљ8=tz-/nqOR|-M.nTSXlDmqb]goo*co߭r#el[⌷L @ baomBҽ$`$@B)@p@)p2 d Ί?a.e8s`Wg+`#)S%~8NTҌYE, (6*3FӪr44P#Yf͞hhӰCkE88+j"7G9~PpC+R2C#`p˜1q EE5=F]=7z&`qp&bð| _/cSMrΤ f/%m Ȱw \ԉCb֓x5cfw(:Kzgqf1iXg3Np y/hHS>W#/5ferTapC w=衡xz* endstream endobj 155 0 obj << /Type /ObjStm /N 100 /First 890 /Length 3766 /Filter /FlateDecode >> stream x[Ys~ׯGRT|EUl ,P~K{@`>#iI .7UQYuHXBTX(R|L;]hi @;[hOk h~,\JvWEXuŧ)R|Zhă_)\ySDTSGښ`h%9a4D+]aORPhi d#v 6KK[ ,#Y*'C@ JXx|!`A^)FFQ0ђv +ԅXhG=ӜTG Nh`8 W$C5HK 4AjG.á"Q1X *h:.l *x+ $!'FHIM"shgx#ЌVI"xJ"(4̯{h=uHH@C端:쏛G#NNߕ4f:bW4Twդ^G<tzpɑ)n}|;yr:)'UG<*nY=O,7,H$$y{A#mh.xU b~Un5.~Hu=t8 W~5rTDٝN*ѭG~u+&uW;Ũ,)j0[ 'aoѭzu_;r4Ӊ^կЖonu>3 端0DkN#74@54*;c ?`*^KL VOFi5u0SNeyupHbx8m)3rsh]oi {H۔„AB*'pp_ ю {[jEdT\qtr3<`zn5Qԃf!u=XA7M;^|\qS>6?!}>#Zy0ʣ9LpE!%=ξcru둖I~ )|>/c姁FEw?MqTsEhWZ.l,CV*-C8EpugԞ*2V_^j|U؋zO7Z28n?g<] bKsizJݥURJ^۲;0fslEOksƩFᙞrOnc[JQn VUS^jږy+dOA,h"qI( ǭ|.|)ZIS# j-,@ҌlĞ ̋Fose9Ot_k#Բm$Im Wy/4B;"@9xDˡey ؍}3r1^biFnQ֒"3$EnNј U A#$@AJ ֍!rO N7+1H{P-x,C/M q1tq>+)nTYya"L/ƲL;22Z=CsmJ!ҒA{p2*F.U|Rß<' ݞiPmG~iҶemҁܓu̴K<%j8Pu(yʫ:RAzyfOnq`l[bnd{mܿxmW6O3[>bf7l=_yxXf2'VO}y|藗C狇yG<c4~N7T.چ*~hb>xPCыK ~dqLX a)r[ޖ[Ŵ߯V镒h(wyeB璩7: Q=OH#~- Uݛ\7??6d3}Uu\ʴj~CxS51Æ NOT1lCguv~g0 E\])/u\.ʾ76kcs|ȍp endstream endobj 274 0 obj << /Producer (pdfTeX-1.40.27) /Creator (TeX) /CreationDate (D:20250729085148-04'00') /ModDate (D:20250729085148-04'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.27 (TeX Live 2025) kpathsea version 6.4.1) >> endobj 272 0 obj << /Type /ObjStm /N 2 /First 13 /Length 88 /Filter /FlateDecode >> stream x327T0P027V05ⲱ,HUHLO-w/+Q04L)V64*R040ѱ\vvHzKsӹ fL endstream endobj 275 0 obj << /Type /XRef /Index [0 276] /Size 276 /W [1 3 1] /Root 273 0 R /Info 274 0 R /ID [ ] /Length 752 /Filter /FlateDecode >> stream x%kWd$9{oZcԨFc%ު*vS*( " S RЕ]IiEbQq9d37o!ɅA!TBcv6a'쁽 >|ʾ)߃tzP/|$6BB1ECk)Pnc*d10xNM C LV yP~Z _0Q?N3`&̂0ڕXO_X"ХX ˠ X =ЫŸW  *m}S^??հa-X*·@ܨ~a 0V]u~cW$Hz#9F4jPw(_A hG4M3ҳ65?LFFFFkCxouUTgTgTgTgTgTg6B> .#.#.WUZOMGaO}ӠQYO}ڤ|ڬW}ڢ> z[jXYw>(cP|+1YbʓE~8e ':&^L,O/^ڢF|V[`o endstream endobj startxref 1201132 %%EOF effects/inst/doc/predictor-effects-gallery.Rnw0000644000176200001440000025156615037504444021175 0ustar liggesusers%\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Predictor Effects Graphics Gallery} %% vignette index specifications need to be *after* \documentclass{} %%\VignetteEngine{knitr::knitr} %%\VignetteIndexEntry{Effects Gallery} %%\VignettePackage{effects} \documentclass[10pt]{article} \usepackage[left=1.25in, right=1.25in, top=1in, bottom=1in]{geometry} \usepackage[utf8]{inputenc} \usepackage{graphicx} \usepackage[american]{babel} \newcommand{\R}{{\sf R}} \usepackage{url} \usepackage{hyperref} \usepackage{xcolor} \hypersetup{ colorlinks, linkcolor={red!50!black}, citecolor={blue!50!black}, urlcolor={blue!80!black} } \usepackage{alltt} \usepackage{fancyvrb} \usepackage{natbib} \usepackage{amsmath} \VerbatimFootnotes \bibliographystyle{chicago} \newcommand{\x}{\mathbf{x}} \newcommand{\code}[1]{\normalfont\texttt{\hyphenchar\font45\relax #1}} \newcommand{\lcode}[1]{\mbox{$\log($}\normalfont\texttt{\hyphenchar\font45\relax #1}\mbox{$)$}} \newcommand{\E}{\mathrm{E}} \newcommand{\link}[1]{#1} \newcommand{\tild}{\symbol{126}} \newcommand{\Rtilde}{\,\raisebox{-.5ex}{\code{\tild{}}}\,} \newcommand{\captilde}{\mbox{\protect\Rtilde}} % use in figure captions. \newcommand{\Rmod}[2]{\code{#1 \raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmoda}[2]{\code{#1} &\code{\raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmodb}[2]{\code{#1 &\raisebox{-.5ex}{\tild{}}& #2}} \newcommand{\aab}[2]{\code{#1}\mbox{$*$}\code{#2}} \newcommand{\acb}[2]{\code{#1}\mbox{$:$}\code{#2}} \newcommand{\C}{\mathbf{C}} \newcommand{\betahat}{\widehat{\beta}} \newcommand{\bbetahat}{\widehat{\boldsymbol{\beta}}} \newcommand{\bbeta}{\boldsymbol{\beta}} \newcommand{\xbf}{\x_{\backslash{}f}} \newcommand{\hbf}{h_{\backslash{}f}} \newcommand{\xtb}{\x_{2\backslash{}f}} \newcommand{\xbfi}{\x_{\backslash{}f,i}} \newcommand{\inter}[2]{\mbox{$#1$:$#2$}} \newcommand{\cross}[2]{\mbox{$#1$\code{*}$#2$}} \newcommand{\N}{\mathrm{N}} \newcommand{\fn}[1]{\texttt{#1()}} \newcommand{\ar}{\texttt} \newcommand{\pkg}[1]{\textbf{#1}} \newcommand{\proglang}[1]{\textsf{#1}} \newcommand{\yx}{\widehat{y}(\x)} \newcommand{\lvn}[1]{\mbox{$\log(\mbox{\texttt{#1}})$}} \newcommand{\vn}[1]{\mbox{\texttt{#1}}} \newcommand{\level}[1]{\texttt{"#1"}} \newcommand{\class}[1]{\texttt{"#1"}} \begin{document} \title{Predictor Effects Graphics Gallery} \author{John Fox and Sanford Weisberg} \date{2018-12-19, minor revisions 2023-02-20} \maketitle \tableofcontents \begin{abstract} Predictor effect displays visualize the response surface of complex regression models by averaging and conditioning, producing a sequence of 2D line graphs, one graph or set of graphs for each predictor in the regression problem \citep{fw19, fw19b}. In this vignette, we give examples of effect plots produced by the \pkg{effects} package, and in the process systematically illustrate the optional arguments to functions in the package, which can be used to customize predictor effect plots. \end{abstract} \centerline{\includegraphics[width=1.25in]{../inst/doc/effects-hex.pdf}} <>= library("knitr") opts_chunk$set(fig.width=5,fig.height=5,#tidy=TRUE, out.width="0.8\\textwidth",echo=TRUE) #options(prompt=" ") options(continue="+ ", prompt="R> ", width=70) options(show.signif.stars=FALSE, scipen=3) @ <>= library(car) library(effects) render_sweave() options(width=80, digits=5, str=list(strict.width="cut")) strOptions(strict.width="cut") @ \section{Introduction}\label{sec:intro} Predictor effect plots \citep{fw19b} provide graphical summaries for fitted regression models with linear predictors, including linear models, generalized linear models, linear and generalized linear mixed models, and many others. These graphs are an alternative to tables of fitted coefficients, which can be much harder to interpret than predictor effect plots. Predictor effect plots are implemented in \R{} in the \pkg{effects} package, documented in \citet{fw19}. This vignette provides many examples of variations on the graphical displays that can be obtained with the \pkg{effects} package. Many of the details, and more complete descriptions of the data sets used as examples, are provided in the references cited at the end of the vignette. \subsection{Effects and Predictor Effect Plots}\label{sec:intro2} We begin with an example of a multiple linear regression, using the \code{Prestige} data set in the \pkg{carData} package: <<>>= library("car") # also loads the carData package Prestige$type <- factor(Prestige$type, levels=c("bc", "wc", "prof")) lm1 <- lm(prestige ~ education + poly(women, 2) + log(income)*type, data=Prestige) @ The data, collected circa 1970, pertain to 102 Canadian occupations. The model \code{lm1} is a linear model with response \vn{prestige}, continuous predictors \vn{income}, \vn{education}, and \vn{women}, and the factor predictor \vn{type}, which has three levels. Before fitting the model, we reorder the levels of \vn{type} as \level{bc} (blue-collar), \level{wc} (white-collar), and \level{prof} (professional and managerial). The predictor \vn{education} represents itself in the linear model, and so it is both a predictor and a \emph{regressor}, as defined in \citet[Sec.~4.1]{fw19}. The predictor \vn{income} is represented by the regressor \lcode{income}. The variable \vn{women}, a percentage between 0 and 100, is represented by regressors that define a polynomial of degree 2 using \fn{poly}'s default orthogonal polynomials. The variable \vn{type} is a factor with three levels, so it is represented by two dummy regressors defined by the default contrast-generating function in \R{}, \fn{contr.treatment}. Finally, the formula includes an interaction between \vn{income} and \vn{type}, defined by multiplying the regressor for \vn{income} (\lcode{income}) by each of the regressors that represent \vn{type}. The usual numeric summary of the fit of \code{lm1} is a table of estimated coefficients, which we obtain via the \fn{S} function in the \pkg{car} package that is similar to, but somewhat more flexible than, the standard \R{} \fn{summary} function: <<>>= S(lm1) @ \begin{itemize} \item Interpretation of the regression coefficients is straightforward only for the predictor \vn{education}, where an increase of one year of \vn{education}, holding other predictors fixed, corresponds to an estimated expected increase in the response of \Sexpr{round(coef(lm1)[2], 3)} units. \item Even ignoring the interaction, the log transformation complicates the interpretation of the effect of \vn{income}. \item The predictor \vn{women} is represented by two regressors, so the effect of \vn{women} requires examining two coefficient estimates that are interpretable only by those knowledgeable about polynomial regression analysis. Even if raw rather than orthogonal polynomial regressors were used, via \code{poly(women, 2, raw=TRUE)} in place of \code{poly(women, 2)}, interpretation of the effect of \vn{women} is complicated. \item Understanding the coefficients for the main effect of \vn{type} depends on the contrasts used to define the effect. The contrasts can be changed by the user, and the default contrasts in \R{} are different from the default contrasts used by \proglang{SAS} or other programs, so the coefficients cannot be reliably interpreted without information not present in the regression summary. \item Finally, the interaction further complicates the interpretation of the effect of either \vn{income} or \vn{type}, because the interaction coefficients need to be interpreted jointly with the main effect coefficients. \end{itemize} \noindent Summarization of the effects of predictors using tables of coefficient estimates is often incomplete. Effects, and particularly plots of effects, can in many instances reveal the relationship of the response to the predictors more clearly. This conclusion is especially true for models with linear predictors that include interactions and multiple-coefficient terms such as regression splines and polynomials, as illustrated in this vignette. A predictor effect plot summarizes the role of a selected \emph{focal} predictor in a fitted regression model. The \fn{predictorEffect} function is used to compute the appropriate summary of the regression, and then the \fn{plot} function may be used to graph the resulting object, as in the following example: <>= library("effects") e1.lm1 <- predictorEffect("education", lm1) plot(e1.lm1) @ \centerline{\includegraphics[width=4in]{figure/fig11-1.pdf}} \noindent This graph visualizes the partial slope for \vn{education}, that for each year increase in \vn{education}, the fitted \vn{prestige} increases by \Sexpr{round(coef(lm1)[2], 3)} points, when the other predictors are held fixed. The intercept of the line, which is outside the range of \vn{education} on the graph, affects only the height of the line, and is determined by the choices made for averaging over the fixed predictors, but for any choice of averaging method, the slope of the line would be the same. The shaded area is a pointwise confidence band for the fitted values, based on standard errors computed from the covariance matrix of the fitted regression coefficients. The rug plot at the bottom of the graph shows the location of the \vn{education} values. The information that is needed to draw the plot is computed by the \fn{predictorEffect} function. The minimal arguments for \fn{predictorEffect} are the quoted name of a predictor in the model followed by the fitted model object. The essential purpose of this function is to compute fitted values from the model with \vn{education} varying and all other predictors fixed at typical values \citep[Sec.~4.3]{fw19}. The command below displays the values of the regressors for which fitted values are computed, including a column of 1s for the intercept: <<>>= brief(e1.lm1$model.matrix) @ The focal predictor \vn{education} was evaluated by default at 50 points covering the observed range of values of \vn{education}. We use the \fn{brief} function in the \pkg{car} package to show only a few of the 50 rows of the matrix. For each value of \vn{education} the remaining regressors have the same fixed values for each fitted value. The fixed value for \lvn{income} is the logarithm of the sample mean \vn{income}, the fixed values for the regressors for \vn{women} are computed at the mean of \vn{women} in the data, and the fixed values for the regressors for \vn{type} effectively take a weighted average of the fitted values at the three levels of \vn{type}, with weights proportional to the number of cases in each level of the factor. Differences in the fitted values are due to \vn{education} alone because all the other predictors, and their corresponding regressors, are fixed. Thus the output gives the partial effect of \vn{education} with all other predictors fixed. The computed fitted values can be viewed by printing the \class{eff} object returned by \fn{predictorEffect}, by summarizing the object, or by converting it to a data frame. To make the printouts more compact, we recompute the predictor effect of \vn{education} with fewer values of the focal predictor by specifying the \code{focal.levels} argument (see Section~\ref{sec-focal.levels-xlevels}): <<>>= e1a.lm1 <- predictorEffect("education", lm1, focal.levels=5) e1a.lm1 summary(e1a.lm1) as.data.frame(e1a.lm1) @ The values in the column \vn{education} are the values the focal predictor. The remaining columns are the fitted values, their standard errors, and lower and upper end points of 95\% confidence intervals for the fitted values. The \emph{predictor effect plot} is simply a graph of the fitted values on the vertical axis versus the focal predictor on the horizontal axis. For a continuous focal predictor such as \vn{education}, a line, in this case, a straight line, is drawn connecting the fitted values. We turn next to the predictor effect plot for \vn{income}. According to the regression model, the effect of \vn{income} may depend on \vn{type} due to the interaction between the two predictors, so simply averaging over \vn{type} would be misleading. Rather, we should allow both \vn{income} and \vn{type} to vary, fixing the other predictors at their means or other typical values. By default, this computation would require evaluating the model at $50 \times 3 = 150$ combinations of the predictors, but to save space we will only evaluate \vn{income} at five values, again using the \ar{focal.levels} argument, thus computing only $5 \times 3 = 15$ fitted values: <<>>= e2.lm1 <- predictorEffect("income", lm1, focal.levels=5) as.data.frame(e2.lm1) @ To draw the predictor effects plot we recalculate the fitted values using the default \code{focal.levels=50} to get more accurately plotted regression curves: <>= plot(predictorEffect("income", lm1), lines=list(multiline=TRUE)) @ Here we use both the \fn{predictorEffect} and \fn{plot} functions in the same command. \centerline{\includegraphics[width=4in]{figure/fig12-1.pdf}} \noindent The focal predictor \vn{income} is displayed on the horizontal axis. There is a separate line shown for the fitted values at each level of \vn{type}. The lines are curved rather than straight because \vn{income} appears in the model in log-scale but is displayed in the predictor effect plot in arithmetic (i.e., dollar) scale. The lines in the graph are not parallel because of the interaction between \lvn{income} and \vn{type}. For $\vn{type} = \level{prof}$, the fitted values of \vn{prestige} are relatively high for lower values of \vn{income}, and are relatively less affected by increasing values of \vn{income}. The predictor effect plot for \vn{type} uses essentially the same fitted values as the plot for \vn{income}, but we now get five lines, one for each of the five (not 50) values of \vn{income} selected by the \fn{predictorEffect} function in this context: <>= plot(predictorEffect("type", lm1), lines=list(multiline=TRUE)) @ \centerline{\includegraphics[width=4in]{figure/fig13-1.pdf}} \noindent Because the horizontal axis is now a factor, the fitted values are displayed explicitly as points, and the lines that join the points are merely a visual aid representing \emph{profiles} of fitted values. Fitted \vn{prestige} increases with \vn{income} for all levels of \vn{type}, but, as we found before, when $\vn{type}=\level{prof}$, fitted \vn{prestige} is relatively high for lower \vn{income}. These initial examples use only default arguments for \fn{predictorEffect} and \fn{plot}, apart from the \code{multiline} argument to \fn{plot} to put all the fitted lines in the same graph. We explain how to customize predictor effect plots in subsequent sections of this vignette. \subsection{General Outline for Constructing Predictor Effect Plots} Using the \pkg{effects} package to draw plots usually entails the following steps: \begin{enumerate} \item Fit a regression model with a linear predictor. The package supports models created by \fn{lm}, \fn{glm}, \fn{lmer} and \fn{glmer} in the \pkg{lme4} package, \fn{lme} in the \pkg{nlme} package, and many other regression-modeling functions (see \code{?Effect}). \item The regression model created in the first step is then used as input to either \fn{predictorEffect}, to get the effects for one predictor, or \vn{predictorEffects}, to get effects for one or more predictors. These functions do the averaging needed to get fitted values that will ultimately be plotted. There are many arguments for customizing the computation of the effects. The two predictor effect functions call the more basic \fn{Effect} function, and almost all of the material in this vignette applies to \fn{Effect} as well. \item Use the generic \fn{plot} function to draw a graph or graphs based on the object created in Step 2. \end{enumerate} \subsection{How \fn{predictorEffect} Chooses Conditioning Predictors}\label{sec:eff} Suppose that you select a \emph{focal predictor} for which you want to draw a predictor effect plot. The \fn{predictorEffect} function divides the predictors in a model formula into three groups: \begin{enumerate} \item The focal predictor. \item The \emph{conditioning group}, consisting of all predictors with at least one interaction in common with the focal predictor. \item The \emph{fixed group}, consisting of all other predictors, that is, those with no interactions in common with the focal predictor. \end{enumerate} \noindent For simplicity, let's assume for the moment that all of the fixed predictors are numeric. The predictors in the fixed group are all evaluated at \emph{typical values}, usually their means, effectively averaging out the influence of these predictors on the fitted value. Fitted values are computed for all combinations of levels of the focal predictor and the predictors in the conditioning group, with each numeric predictor in the conditioning group replaced by a few discrete values spanning the range of the predictor, for example, replacing years of \vn{education} by a discrete variable with the values 8, 12, and 16 years. Suppose that we fit a model with \R{} formula \begin{equation} \Rmod{y}{x1 + x2 + x3 + x4 + x2:x3 + x2:x4}\label{eq1} \end{equation} or, equivalently, \begin{equation*} \Rmod{y}{x1 + x2*x3 + x2*x4} \end{equation*} There are four predictor effect plots for this model, one for each predictor selected in turn as the focal predictor: \begin{center} \begin{tabular}{ccc}\hline Focal & Conditioning & Fixed\\ Predictor & Group & Group\\ \hline \vn{x1} & none& \vn{x2}, \vn{x3}, \vn{x4} \\ \vn{x2} & \vn{x3}, \vn{x4} & \vn{x1} \\ \vn{x3} & \vn{x2} & \vn{x1}, \vn{x4} \\ \vn{x4} & \vn{x2}& \vn{x1} \vn{x3} \\ \hline \end{tabular} \end{center} \noindent The predictor \vn{x1} does not interact with any of the other predictors, so its conditioning set is empty and all the remaining predictors are averaged over; \vn{x2} interacts with both \vn{x3} and \vn{x4}; \vn{x3} interacts only with \vn{x2}; and \vn{x4} interacts with \code{x2}. \subsection{The \fn{Effect} Function}\label{sec:Effect} Until recently, the primary function in \pkg{effects} for computing and displaying effects was the \fn{Effect} function.\footnote{The \pkg{effects} package also includes the older \fn{allEffects} function, which computes effects for each high-order term in a model with a linear predictor. As we explain in \citet{fw19b}, we prefer predictor effects to high-order term effects, and so, although its use is similar to \fn{predictorEffects}, we won't describe \fn{allEffects} in this vignette. There is also an older \fn{effect} function (with a lowercase ``\code{e}''), which is a less flexible version of \fn{Effect}, and which calls \fn{Effect} to perform computations; \fn{effect} is retained only for backwards comparability.} Whereas the \fn{predictorEffect} function automatically determines the conditioning group and the fixed group of predictors, the \fn{Effect} function puts that burden on the user. The \fn{Effect} function doesn't distinguish between between a focal predictor and conditioning predictors, but rather only between varying (that is, focal \emph{and} conditioning) and fixed predictors. Each call to \fn{predictorEffect} is equivalent to a specific call to the \fn{Effect} function as follows. Suppose that \vn{m} is the fitted model produced by the formula in (\ref{eq1}); then, except for the ways in which the default levels for predictors are determined: \begin{description} \item[] \code{predictorEffect("x1", m)} is equivalent to \code{Effect("x1", m)}; \item[] \code{predictorEffect("x2", m)} is equivalent to \code{Effect(c("x2", "x3", "x4"), m)}; \item[] \code{predictorEffect("x3", m)} is equivalent to \code{Effect(c("x3", "x2"), m)}; and \item[] \code{predictorEffect("x4", m)} is equivalent to \code{Effect(c("x4", "x2"), m)}. \end{description} The \fn{predictorEffect} function determines the correct call to \fn{Effect} based on the choice of focal predictor and on the structure of main effects and interactions in the linear predictor for the model. It then uses the \fn{Effect} function to do the computing. As a result, most of the arguments to \fn{predictorEffect} are documented in \code{help("Effect")} rather than in \code{help("predictorEffect")}. \subsection{The \fn{predictorEffects} Function} This function, whose name ends with the plural ``\code{effects}", computes the values needed for one or more predictor effect plots, and by default for \emph{all} of the predictors in the model. For example, the following command produces all of the predictor effect plots for the model we fit to the \code{Prestige} data: <>= eall.lm1 <- predictorEffects(lm1) plot(eall.lm1) @ \centerline{\includegraphics[width=0.95\textwidth]{figure/fig14-1.pdf}} \noindent The predictor effect plots for this model are displayed in an array of graphs. The plots for \vn{income} and \vn{type} have a separate panel for each level of the conditioning variable because the default argument \ar{lines=list(multiline=FALSE)} was implicitly used. Confidence bounds are shown by default when \ar{multiline=FALSE}. The resulting object \code{eall.lm1} is a list with four elements, where \code{eall.lm1[[1]]} is the summary for the first predictor effect plot, \code{eall.lm1[[2]]} for the second plot, and so on. The following equivalent commands draw the same array of predictor effect plots: <>= plot(eall.lm1) plot(predictorEffects(lm1)) plot(predictorEffects(lm1, ~ income + education + women + type)) @ If you want only the predictor effect plots for \vn{type} and \vn{education}, in that order, you could enter <>= plot(predictorEffects(lm1, ~ type + education)) @ Similarly, the commands <>= plot(predictorEffects(lm1, ~ women)) plot(predictorEffects(lm1)[[2]]) plot(predictorEffect("women", lm1)) @ all produce the same graph, the predictor effect plot for \vn{women}. Predictor effect plots in an array can be a useful shortcut for drawing many graphs quickly, but can lead to problems with the displayed graphs. For example, the horizontal axis labels for the plot for \vn{income} are overprinted, and the labels at the top of the panels for \vn{type} with conditioning variable \vn{income} are larger than the available space. These problems can often be fixed using optional arguments described later in this vignette or by plotting predictor effects individually. \section{Optional Arguments for the \fn{predictorEffect} and \fn{Effect} Functions}\label{sec:peopts} This section comprises a catalog of the arguments available to modify the behavior of the \fn{predictorEffect} and \fn{Effect} functions. These arguments may also be specified to the \fn{predictorEffects} function. The information provided by \code{help("Effect")} is somewhat more comprehensive, if terser, explaining for example exceptions applying to \class{svyglm} objects or for plotting residuals. \subsection{\ar{focal.levels} and \ar{xlevels}: Options for the Values of the Focal Predictor and Predictors in the Conditioning Group}\label{sec-focal.levels-xlevels} Numeric predictors in the conditioning group need to be discretized to draw a predictor effect plot. For example the predictor effect plot for \vn{type} in model \code{lm1} consists of a separate line, or a separate panel, for each discrete value of \vn{income}: <>= e3.lm1 <- predictorEffect("type", lm1) plot(e3.lm1, lines=list(multiline=TRUE)) @ \centerline{\includegraphics[width=4in]{figure/fig21a-1.pdf}} <>= plot(e3.lm1, lines=list(multiline=FALSE)) # the default @ \centerline{\includegraphics[width=4in]{figure/fig21b-1.pdf}} \noindent The numeric conditioning predictor \vn{income} is evaluated by default at five equally spaced values, when are then rounded to ``nice" numbers. Using the three values of 5000, 15000, 25000 for the conditioning predictor \vn{income} in this example produces a simpler graph: <>= e3.lm1 <- predictorEffect("type", lm1, xlevels=list(income=c(5000, 15000, 25000))) plot(e3.lm1, lines=list(multiline=TRUE), confint=list(style="bars")) @ \centerline{\includegraphics[width=4in]{figure/fig22a-1.pdf}} <>= plot(e3.lm1, lines=list(multiline=FALSE), # the default lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=4in]{figure/fig22b-1.pdf}} \noindent The argument \ar{xlevels} is a list of sub-arguments that control how numeric predictors are discretized when used in the conditioning group. For example, \code{xlevels=list(x1=c(2, 4, 7), x2=6)} would use the values 2, 4, and 7 for the levels of the predictor \code{x1}, use 6 equally spaced values for the predictor \code{x2}, and use the default of 5 values for any other numeric conditioning predictors. Numeric predictors in the \emph{fixed} group are not affected by the \ar{xlevels} argument. We use the \ar{layout} sub-argument of the \ar{lattice} argument group to arrange the panels of the second graph in 3 columns and 1 row (see Section~\ref{sec:layout}). See \code{help("plot.eff")} for information on the \ar{quantiles} argument, which provides an alternative method of setting \ar{xlevels} when partial residuals are displayed, as discussed in Section~\ref{sec:res}. The points at which a numeric focal predictor is evaluated is controlled by the \ar{focal.levels} argument. The default of \vn{focal.levels=50} is recommended for drawing graphs, but if the goal is to produce a table of fitted values a smaller value such as \code{focal.levels=5} produces more compact output. The focal predictor can also be set to a vector of particular values, as in \code{focal.levels=c(30, 50, 70)}. Used with the \code{predictorEffects} function, the \ar{focal.levels} argument can be set separately for each focal predictor, similarly to the \ar{xlevels} argument; see \code{help("predictorEffects")}. \subsection{\ar{fixed.predictors}: Options for Predictors in the Fixed Group} Predictors in the fixed group are replaced by ``typical" values of the predictors. Fitted values are then computed using these typical values for the fixed group, varying the values of predictors in the conditioning group and of the focal predictor. The user can control how the fixed values are determined by specifying the \ar{fixed.predictors} argument. This argument takes a list of sub-arguments that allow for controlling each predictor in the fixed group individually, with different rules for factors and numeric predictors. \subsubsection{Factor Predictors}\label{sec:facpred} Imagine computing the fitted values evaluating a fixed factor at each of its levels. The fitted value that is used in the predictor effects plot is a weighed average of these within-level fitted values, with weights proportional to the number of observations at each level of the factor. This is the default approach, and is an appropriate notion of ``typical" for a factor if the data at hand are viewed as a random sample from a population, and so the sample fraction at each level estimates the population fraction. A second approach is to average the level-specific fitted values with equal weights at each level. This may be appropriate, for example, in designed experiments in which the levels of a factor are assigned by an investigator. The latter method is invoked by setting \code{fixed.predictors= list(given.values="equal")}. You can construct other weighting schemes for averaging over the levels of a factor, as described on the help page for the \fn{Effect} function. \subsubsection{Numeric Predictors} For a numeric predictor in the fixed group the default method of selecting a typical value is to apply the \fn{mean} function to the data for the predictor. The specification \code{fixed.predictors= list(typical=median)} would instead use the \fn{median} function; in general, \ar{typical} can be any function that takes a numeric vector as its argument and returns a single number. Other sub-arguments to \ar{fixed.predictors} apply to the use of offsets, and to the \pkg{survey} package; see the help page for the \fn{Effect} function. \subsection{\ar{se} and \ar{vcov.}: Standard Errors and Confidence Intervals}\label{sec:se} Standard errors and confidence intervals for fitted values are computed by default, which corresponds to setting the argument \code{se=list(compute=TRUE, type="pointwise", level=.95)}. Setting \code{se=FALSE} omits standard errors, \ar{type="scheffe"} uses wider Scheff\'{e} intervals that adjust for simultaneous inference, and \code{level=.8}, for example, produces 80\% intervals. Standard errors are based by default on the ``usual" sample covariance matrix of the estimated regression coefficients. You can replace the default coefficient covariance matrix with some other estimate, such as one obtained from the bootstrap or a sandwich coefficient covariance matrix estimator, by setting the \ar{vcov.}~argument either to a function that returns a coefficient covariance matrix, such as \fn{hccm} in the \pkg{car} package for linear models, or to a matrix of the correct size; for example: <>= e4.lm1 <- predictorEffect("education", lm1, se=list(type="scheffe", level=.99), vcov.=hccm) plot(e4.lm1) @ \centerline{\includegraphics[width=4in]{figure/fig23-1.pdf}} \noindent This plot displays 99\% Scheff\'{e} intervals based on a robust coefficient covariance matrix computed by the sandwich method; see \code{help("hccm")}. \subsection{\ar{residuals}: Computing Residuals for Partial Residual Plots} The argument \ar{residuals=TRUE} computes and saves residuals, providing the basis for adding partial residuals to subsequent effect plots, a topic that we discuss in Section~\ref{sec:res}. \section{Arguments for Plotting Predictor Effects}\label{sec:plot} The arguments described in Section~\ref{sec:peopts} are for the \fn{predictorEffect} function or the \fn{Effect} function. Those arguments modify the computations that are performed, such as methods for averaging and fixing predictors, and for computing standard errors. Arguments to the \fn{plot} methods for the predictor effect and effect objects produced by the \fn{predictorEffect} and \fn{Effect} functions are described in this section, and these change the appearance of a predictor effect plot or modify the quantities that are plotted. These optional arguments are described in more detail in \code{help("plot.eff")}. In 2018, we reorganized the \fn{plot} method for effect objects by combining arguments into five major groups of related sub-arguments, with the goal of simplifying the specification of effect plots. For example, the \ar{lines} argument group is a list of sub-arguments for determining line type, color, and width, whether or not multiple lines should be drawn on the same graph, and whether plotted lines should be smoothed. The defaults for these sub-arguments are the choices we generally find the most useful, but they will not be the best choices in all circumstances. The cost of reorganizing the arguments in this manner is the necessity of specifying arguments as lists, some of whose elements are themselves lists, requiring the user to make sure that parentheses specifying the possibly nested lists are properly balanced. In addition to the five argument groups that we describe below, the \fn{plot} method for effect objects accepts the arguments \ar{main} for the main title of the graph and \ar{id} for identifying points in effect plots that include residuals, as discussed in Section~\ref{sec:res}. Finally, the \fn{plot} method for effect objects retains a number of ``legacy" arguments shown in \code{help("plot.eff")}. These arguments have been kept so existing scripts using the \pkg{effects} package would not break, but they are all duplicated as sub-arguments of the five argument groups. The legacy arguments work but they may not be supported forever, so we encourage you to use the newer argument groups and sub-arguments. \subsection{The \ar{axes} Group: Specify Axis Characteristics} The \ar{axes} argument group has two major sub-arguments, \ar{x} for the horizontal axis, \ar{y} for the vertical axis, and two minor sub-arguments, the \ar{grid} argument, which adds a background grid to the plot, and the \ar{alternating} argument, for changing the placement of axis-tick labels in multi-panel plots. \subsubsection{\ar{x}: Horizontal Axis Specification} We introduce another linear model fit to the \code{Prestige} data set to serve as an example: <<>>= lm2 <- lm(log(prestige) ~ log(income) + education + type, Prestige) @ The default predictor effect plot for \vn{income} is <>= plot(predictorEffects(lm2, ~ income)) @ \centerline{\includegraphics[width=4in]{figure/fig30-1.pdf}} \noindent The plot is curved because the predictor \vn{income} is represented by its logarithm in the model formula, but the default predictor effect plot uses the predictor \vn{income}, not the regressor \lvn{income}, on the horizontal axis. The \ar{x} sub-argument can be used transform the horizontal axis, for example to replace \code{income} by \lcode{income}: <>= plot(predictorEffects(lm2, ~ income), axes=list( x=list(income=list(transform=list(trans=log, inverse=exp))) )) @ \centerline{\includegraphics[width=4in]{figure/fig31-1.pdf}} \noindent The transformation changes the scale on the horizontal axis to log-scale, but leaves the tick labels in arithmetic scale, and the graph is now a straight line because of the change to log-scale. This plot has several obviously undesirable features with regard to the range of the horizontal axis and over-printing of tick marks. We show next that additional arguments to \fn{plot} can correct these defects. A more elaborate version of the graph illustrates all the sub-arguments to \ar{x} in \ar{axis} argument group: <>= plot(predictorEffects(lm2, ~ income), main="Transformed Plot", axes=list( grid=TRUE, x=list(rotate=30, rug=FALSE, income=list(transform=list(trans=log, inverse=exp), lab="income, log-scale", ticks=list(at=c(2000, 5000, 10000, 20000)), lim=c(1900, 21000)) ))) @ \centerline{\includegraphics[width=4in]{figure/fig32-1.pdf}} \noindent We use the top-level argument \code{main="Transformed Plot"} to set the title of the plot. The \ar{axes} argument is a list with two sub-arguments, \ar{grid} to turn on the background grid, and \ar{x} to modify the horizontal axis. The \ar{x} sub-argument is itself a list with three elements: The sub-arguments \code{rotate} and \ar{rug} set the rotation angle for the tick labels and suppress the rug plot, respectively. The additional sub-argument is a list called \ar{income}, the name of the focal predictor. If you were drawing many predictor effect plots you would supply one list named for each of the focal predictors. All of the sub-arguments for \ar{income} are displayed in the example code above. The sub-argument \code{transform=list(trans=log, inverse=exp)} specifies how to transform the $x$-axis. The \code{ticks} and \code{lim} sub-arguments set the tick marks and range for the horizontal axis. This is admittedly a complex command, but it allows you to fine-tune the graph to look the way you want. In specifying nested argument lists, you may encounter problems getting the parentheses in the right places. Be careful, indent your code to clarify the structure of the command, and be patient! \subsubsection{\ar{x}: Horizontal Axis Specification for Date Variables} The functions in the \pkg{effects} package, such as \fn{Effect} and \fn{predictorEffect}, support models with numeric, factor, character, and logical predictors. Date predictors must be converted to numeric for these functions to work. We supply the generic function \fn{levels2dates}, with methods for \class{eff} and \class{effpoly} objects, which can be used to properly label the horizontal axes of effect and predictor effect plots by translating numeric dates back to dates for the axis tick-mark labels. \fn{levels2dates} takes several arguments: \begin{description} \item[\ar{effect}] An \class{eff} or \class{effpoly} object, created, e.g., by \fn{Effect} or \fn{predictorEffect}. \item[\ar{predictor}] The quoted name of the numeric version of the date predictor. \item[\ar{origin}] A quoted string giving the origin date (see the examples below). \item[\ar{evenly.spaced}] If \code{TRUE} (the default), the tick marks on the horizontal axis are evenly spaced; if \code{FALSE} the tick marks are taken from the levels of the numeric date predictor in the \class{eff} or \class{effpoly} object. \item[\ar{n}] The number of tick marks; if missing, the number of levels of the predictor in the \class{eff} or \class{effpoly} object. \end{description} Here are some examples: <>= data("airquality", package="datasets") airquality$Date <- with(airquality, as.Date(paste("1973", Month, Day, sep="-"), format="%Y-%m-%d")) airquality$Date.num <- as.numeric(airquality$Date) m1.date <- lm(Ozone ~ Date.num + Solar.R + Wind + Temp, data=airquality) eff.date.1 <- Effect("Date.num", m1.date) plot(eff.date.1, axes=list(x=list(Date.num=list(lab="Date", ticks=list(at=levels2dates(eff.date.1, "Date.num", "1970-01-01"))), rotate=45)), main="Date Effect") @ \centerline{\includegraphics[width=4in]{figure/figdates1-1.pdf}} <>= plot(eff.date.1, axes=list(x=list(Date.num=list(lab="Date", ticks=list(at=levels2dates(eff.date.1, "Date.num", "1970-01-01", n=4))))), main="Date Effect") @ \centerline{\includegraphics[width=4in]{figure/figdates2-1.pdf}} <<>>= eff.date.df <- as.data.frame(eff.date.1) eff.date.df$Date <- as.Date(eff.date.df$Date.num, origin="1970-01-01") eff.date.df @ <>= m2.date <- lm(Ozone ~ Date.num*Temp + Solar.R + Wind, data=airquality) eff.date.2 <- Effect(c("Date.num", "Temp"), m2.date, xlevels=6) plot(eff.date.2, axes=list(x=list(Date.num=list(lab="Date", ticks=list(at=levels2dates(eff.date.2, "Date.num", "1970-01-01", n=3))), rotate=45)), main="Date Effect by Temperature") @ \centerline{\includegraphics[width=6in]{figure/figdates3-1.pdf}} \subsubsection{\ar{y}: Vertical Axis Specification for Linear Models} The model \code{lm2} has a transformed response \lcode{prestige}, and ``untransforming" the response to arithmetic scale may be desirable. This can be accomplished with the \ar{y} sub-argument, which has two sub-arguments named \vn{transform} and \vn{type} that together control the scale and labeling of the vertical axis. There are three options for drawing the predictor effect plot for a numeric response like\linebreak \lvn{prestige}: <>= # default: plot(predictorEffects(lm2, ~ education), main="Default log(prestige)") # Change only tick-mark labels to arithmetic scale: plot(predictorEffects(lm2, ~ education), main="log(prestige), Arithmetic Ticks", axes=list(y=list(transform=list(trans=log, inverse=exp), lab="prestige", type="rescale"))) # Replace log(presige) by prestige: plot(predictorEffects(lm2, ~ education), main="Prestige in Arithmethic Scale", axes=list(y=list(transform=exp, lab="prestige"))) @ \includegraphics[width=.33\textwidth]{figure/fig33-1.pdf} \includegraphics[width=.33\textwidth]{figure/fig33-2.pdf} \includegraphics[width=.33\textwidth]{figure/fig33-3.pdf} \noindent The first plot is the default, with a log-response. In the second plot, the \ar{transform} sub-argument specifies the transformation of the response and its inverse, and the sub-argument \code{type="rescale"} changes the tick marks on the vertical axis to arithmetic scale. In the third version, with \code{transform=exp, lab="prestige"}, the vertical axis now is in arithmetic scale, not log scale, although that may not be completely obvious in the example because $\log(x)$ is nearly linear: Look closely to see that the axis ticks marks in the second graph are unequally spaced, while those in the third graph are equally spaced and the plotted line in the latter is slightly curved. The help page \code{?plot.eff} provides a somewhat more detailed explanation of these options. As a second example we will reconstruct Figure~7.10 in \citet[Sec.~7.2]{fw19}. In that section, we fit a linear mixed-effects model to data from the \code{Blackmore} data frame in the \pkg{carData} package. \code{Blackmore} includes longitudinal data on amount of exercise for girls hospitalized for eating disorders and for similar control subjects who were not hospitalized. We transformed the response variable in the model, hours of \vn{exercise}, using a transformation in a modified Box-Cox power family that allows zero or negative responses, explained briefly by \citet[Sec.~3.4]{fw19} and more thoroughly by \citet{HawkinsWeisberg2017}. The fitted model is <<>>= library("lme4") # for lmer() Blackmore$tran.exercise <- bcnPower(Blackmore$exercise, lambda=0.25, gamma=0.1) mm1 <- lmer(tran.exercise ~ I(age - 8)*group + (I(age - 8) | subject), data=Blackmore) @ This model, with numeric predictor \vn{age} and factor predictor \vn{group}, is a linear mixed model with random intercepts and slopes for \vn{age} that vary by \vn{subject}. The response variable is a transformation of \vn{exercise} similar to the fourth root with adjustment for zero values; see \code{help("bcnPower")}. The predictor effect plot for the fixed effect of \vn{age} is <>= e1.mm1 <- predictorEffect("age", mm1) plot(e1.mm1, lines=list(multiline=TRUE), confint=list(style="auto")) @ \centerline{\includegraphics[width=4in]{figure/fig33a-1.pdf}} \noindent The plot clearly shows the difference in the average \vn{age} trajectory between the \level{control} and \level{patient} groups, with the fitted response for the latter having a larger slope. The graph is hard to decode, however, because the vertical axis is approximately in the scale of the fourth-root of hours of exercise, so untransforming the response may produce a more informative plot. Because the \fn{bcnPower} transformation is complex, the \pkg{car} package includes the function \fn{bcnPowerInverse} to reverse the transformation: <>= f.trans <- function(x) bcnPower(x, lambda=0.25, gamma=0.1) f.inverse <- function(x) bcnPowerInverse(x, lambda=0.25, gamma=0.1) plot(e1.mm1, lines=list(multiline=TRUE), confint=list(style="auto"), axes=list(x=list(age=list(lab="Age (years)")), y=list(transform=list(trans=f.trans, inverse=f.inverse), type="response", lab="Exercise (hours/week)")), lattice=list(key.args=list(x=.20, y=.75, corner=c(0, 0), padding.text=1.25)), main="" ) @ \centerline{\includegraphics[width=4in]{figure/fig33b-1.pdf}}\label{corner} \noindent The response scale is now in hours per week, and we see that hours of exercise increase more quickly on average in the patient group for older subjects. We use additional arguments in this plot to match \citet[Fig.~7.10]{fw19}, including moving the key inside of the graph (see Section~\ref{sec:key}), changing the axis labels, and removing the main title to the plot.\footnote{The code shown for this graph in \cite{fw19} uses ``legacy'' arguments, and is therefore somewhat different from the code given here. Both commands produce the same plot, however.} \subsubsection{\ar{y}: Vertical Axis Specification for Generalized Linear Models} Transforming the vertical axis for generalized linear models also uses the \ar{y} sub-argument to the \ar{axes} argument. You typically do not need to specify the \ar{transform} sub-argument because \fn{plot} obtains the right functions from the regression model's \ar{family} component. The \ar{type} sub-argument has the same three possible values as for linear models, but their interpretation is somewhat different: \begin{enumerate} \item Predictor effect plots in \code{type="link"} scale have a predictor on the horizontal axis and the vertical axis is in the scale of the linear predictor. For logistic regression, for example, the vertical axis is in log-odds (logit) scale. For Poisson regression with the log-link, the vertical axis is in log-mean (log-count) scale. \item Predictor effect plots in \code{type="response"} or mean scale are obtained by ``untransforming" the $y$ axis using the inverse of the link function. For the log-link, this corresponds to transforming the $y$ axis and plotting $\exp(y)$. For logistic regression, $y = \log[p/(1-p)]$ and, solving for $p$, $p=\exp(y)/[1+\exp(y)] = 1/[1 + \exp(-y)]$, so the plot in mean scale uses $1/[1+\exp(-y)]$ on the vertical axis. \item We also provide a third option, \code{type="rescale"}, which plots in linear predictor (e.g., logit) scale, but labels the tick marks on the vertical axis in mean (e.g., probability) scale. This third option, which retains the linear structure of the model but labels the vertical axis on the usually more familiar mean scale, is the default. \end{enumerate} We use the \code{Blowdown} data from the \pkg{alr4} package to provide examples. These data concern the probability of \emph{blowdown} \vn{y}, a tree being uprooted as the result of a major straight-line wind storm in the Boundary Waters Canoe Area Wilderness in 1999, modeled as a function of the diameter \code{d} of the tree, the local severity \code{s} of the storm, and the species \code{spp} of the tree. We fit a main-effects model and then display all three predictor effect plots: <<>>= data("Blowdown", package="alr4") gm1 <- glm(y ~ log(d) + s + spp, family=binomial, data=Blowdown) @ <>= plot(predictorEffects(gm1), axes=list(grid=TRUE, x=list(rug=FALSE, rotate=35))) @ \centerline{\includegraphics[width=.9\textwidth]{figure/fig34-1.pdf}} \noindent The \ar{rug=FALSE} sub-argument to \ar{x} suppresses the rug plot that appears by default at the bottom of graphs for numeric predictors, and the \ar{grid} sub-argument to \ar{axes} adds background grids. The \ar{rotate} sub-argument prints the horizontal tick labels at an angle to avoid overprinting. Interpretation of GLM predictor effect plots in link scale is similar to predictor effect plots for linear models, and all the modifications previously described can be used for these plots. Because the default is \code{type="rescale"}, the vertical axis is in linear predictor scale, which is the log-odds or logit for this logistic regression example, but the vertical axis labels are in mean (probability) scale, so the tick-marks are not equally spaced. The next three graphs illustrate the possible values of the argument \ar{type}: <>= e1.gm1 <- predictorEffect("spp", gm1) plot(e1.gm1, main="type='rescale'", axes=list(y=list(type="rescale", lab="logit scale, probability labels"), x=list(rotate=30), grid=TRUE)) plot(e1.gm1, main="type='link'", axes=list(y=list(type="link", lab="logit scale, logit labels"), x=list(rotate=30), grid=TRUE)) plot(e1.gm1, main="type='response'", axes=list(y=list(type="response", grid=TRUE, lab="probabilty scale, probability labels"), x=list(rotate=30), grid=TRUE)) @ \includegraphics[width=.33\textwidth]{figure/fig35-1.pdf} \includegraphics[width=.33\textwidth]{figure/fig35-2.pdf} \includegraphics[width=.33\textwidth]{figure/fig35-3.pdf} \noindent The first two graphs show the same plot, but in the first the tick-marks on the vertical axis are unequally spaced and are in probability scale, while in the second the tick-marks are equally spaced and are in log-odds scale. In the third graph, the vertical axis has been transformed to probability scale, and the corresponding tick-marks are now equally spaced. The predictor effects plot for species would be easier to understand if the levels of the factor were ordered according to the estimated log-odds of blowdown. First, we need to recover the fitted values in link scale, which are log-odds of blowdown for a logistic model. The fitted log-odds are stored in \code{as.data.frame(e1.gm1)\$fit} using the \code{e1.gm1} object previously computed: <>= or <- order(as.data.frame(e1.gm1)$fit) # order smallest to largest Blowdown$spp1 <- factor(Blowdown$spp, # reorder levels of spp levels=levels(Blowdown$spp)[or]) gm2 <- update(gm1, ~ . - spp + spp1) # refit model plot(predictorEffects(gm2, ~ spp1), main="type='response', ordered", axes=list(y=list(type="response", lab="probabilty scale, probability labels"), x=list(rotate=30, spp=list(lab="Species")), grid=TRUE)) @ \centerline{\includegraphics[width=.55\textwidth]{figure/fig36-1.pdf}} \noindent The separation of species into two groups of lower and higher probability species is reasonably clear after ordering, with paper birch more susceptible to blowdown than the other species and possibly in a group by itself. \subsection{The \ar{lines} Group: Specifying Plotted Lines} The \ar{lines} argument group allows the user to specify the color, type, thickness, and smoothness of lines. This can be useful, for example, if the colors used by \pkg{effects} by default are for some reason unacceptable, such as for publications in which only black or gray-scale lines are permitted. The most common use of this argument group is to allow more than one line to be plotted on the same graph or panel via the \ar{multiline} sub-argument. \subsubsection{\ar{multiline} and \ar{z.var}: Multiple Lines in a Plot} Default predictor effect plots with conditioning predictors generate a separate plot for each level of the conditioning variable, or for each combination of levels if there is more than one conditioning variable. For an example, we add the \code{log(d):s} interaction to the model \code{gm1}, and generate the predictor effect plots for \vn{s} and for \vn{d}: <>= gm3 <- update(gm2, ~ . + s:log(d)) # add an interaction plot(predictorEffects(gm3, ~ s + d), axes=list(x=list(rug=FALSE, rotate=90), y=list(type="response", lab="Blowdown Probability")), lattice=list(layout=c(1, 5))) @ \centerline{\includegraphics[width=0.75\textwidth]{figure/fig37-1.pdf}} \noindent Setting the sub-argument \code{type="response"} for the \ar{y} axis plots the response on the probability scale. Setting \code{layout=c(1, 5)} arranges each predictor effect plot in 1 column of 5 rows. See the description of the \ar{lattice} argument in Section~\ref{sec:lattice}. The predictor effect plot for \vn{s} conditions on the level of \vn{d}, and displays the plot of the fitted values for \vn{y} versus \vn{s} in a separate panel for each value of \vn{d}. Similarly, the predictor effect plot for \vn{d} displays a separate panel for each conditioning level of \vn{s}. Confidence bands are displayed by default around each fitted line. These two graphs are based on essentially the same fitted values, with the values of the interacting predictors \vn{s} and \vn{d} varying, and fixing the factor predictor \vn{spp} to its distribution in the data, as described in Section~\ref{sec:facpred}. Concentrating on the graph at the right for the focal predictor \vn{d}, when \vn{s} is very small the probability of blowdown is estimated to be in the range of about .05 to .3 for any value of \vn{d}, but for larger values of \vn{s}, the probability of blowdown increases rapidly with \vn{d}. Similar comments can be made concerning the predictor effect plot for \vn{s}. Setting \code{multiline=TRUE} superimposes the lines for all the conditioning values in a single graph. In the example below, we reduce the number of levels of the conditioning variable for each predictor effect plot to three explicit values each to produce simpler graphs, although this is not required. The \ar{xlevels} argument changes the number of levels for the conditioning predictors, but does not affect the number of levels for the focal predictor. This latter quantity could be changed with the \ar{focal.levels} argument, but the default value of 50 evaluations is appropriate for graphing effects. <>= plot(predictorEffects(gm3, ~ s + d, xlevels=list(d=c(5, 40, 80), s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response", lab="Blowdown probability")), lines=list(multiline=TRUE)) @ \centerline{\includegraphics[width=\textwidth]{figure/fig38-1.pdf}} \noindent In each graph, we kept, more or less, the lowest, middle, and highest values of the conditional predictor for the interaction. We also added a grid to each graph. Multiline plots by default omit confidence bands or intervals, but these can be included using the \ar{confint} argument discussed in Section~\ref{sec:confint}. By default, different values of the conditioning predictor are distinguished by color, and a key is provided. The placement and appearance of the key are controlled by the \ar{key.args} sub-argument in the \ar{lattice} group discussed in Section~\ref{sec:key}. When the conditioning group includes two or more predictors, and certainly when it includes three or more predictors, multiline plots are almost always helpful because otherwise the resulting array of panels becomes too complicated. Suppose that we add the \code{spp:log(d)} interaction to the illustrative model. The predictor effect plot for \vn{d} now includes both \vn{s} and \vn{spp} in the conditioning set because \vn{d} interacts with both of these predictors: <>= gm4 <- update(gm3, ~ . + spp:log(d)) plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE)), lines=list(multiline=TRUE)) @ \centerline{\includegraphics[width=\textwidth]{figure/fig39-1.pdf}} \noindent This plot now displays the lines for all conditioning values of \vn{s} within the panel for each level of the conditioning factor \vn{spp}. Compare this graph to the much more confusing plot in which different lines are drawn for the nine levels of the conditioning factor \vn{spp}, obtained by using the \ar{z.var} sub-argument in the \ar{lines} group: <>= plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE)), lines=list(multiline=TRUE, z.var="spp", lty=1:9), lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=.7\textwidth]{figure/fig310-1.pdf}} \noindent The \ar{z.var} sub-argument for \ar{lines} selects the predictor that determines the lines within a panel and the remaining predictors, here just \vn{s}, distinguish the panels. The default choice of \ar{z.var} is usually, but not always, appropriate. We also use the \ar{lattice} argument to display the array of panels in 3 columns and 1 row, and differentiate the lines by line type and color using arguments discussed next. \subsubsection{\ar{col}, \ar{lty}, \ar{lwd}, \ar{spline}: Line Color, Type, Width, Smoothness}\label{sec:line.color.etc} Different lines in the same plot are differentiated by default using color. This can be modified by the sub-arguments \ar{lty}, \ar{lwd} and \ar{col} to set line types, widths, and colors, respectively. For example, in the last graph shown you can get all black lines of different line types using \code{lines=list(multiline=TRUE, col="black", lty=1:9)}, or using a gray scale, \code{lines=}\linebreak \code{list(multiline=TRUE, col=gray((1:9)/10))}. The \fn{plot} method for effect objects by default uses smoothing splines to interpolate between plotted points. Smoothing can be turned off with \code{splines=FALSE} in the \ar{lines} argument, but we rarely expect this to be a good idea. The number of values at which the focal predictor is evaluated is set with the \ar{focal.levels} argument, and it defaults to 50. In any case, more than three evaluations, and possibly many more, should be used for a reasonable spline approximation. \subsection{The \ar{confint} Group: Specifying Confidence Interval Inclusion and Style}\label{sec:confint} The \ar{confint} argument group controls the inclusion and appearance of confidence intervals and regions. This argument has three sub-arguments. The \ar{style} sub-argument is either \code{"bars"}, for confidence bars, typically around the estimated adjusted mean for a factor level; \code{"bands"}, for shaded confidence bands, typically for numeric focal predictors; \code{"auto"}, to let the program automatically choose between \code{"bars"} and \code{"bands"}; \code{"lines"}, to draw only the edges of confidence bands with no shading; or \code{"none"}, to suppress confidence intervals. The default is \code{"auto"} when \code{multiline=FALSE} and \code{"none"} when \code{multiline=TRUE}. Setting \code{confint="auto"} produces bars for factors and bands for numeric predictors. For example: <>= plot(predictorEffects(gm3, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response")), lines=list(multiline=TRUE), confint=list(style="auto")) @ \centerline{\includegraphics[width=.5\textwidth]{figure/fig311-1.pdf}} \noindent In this example the confidence bands are well separated, so including them in a multiline graph isn't problematic; in other cases, overlapping confidence bands produce an artistic but uninterpretable mess. With a factor focal predictor, we get: <>= gm5 <- update(gm2, ~ . + spp:s) plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE, rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto")) @ \centerline{\includegraphics[width=.75\textwidth]{figure/fig312-1.pdf}} \noindent The error bars for the various levels of \vn{s} are slightly staggered to reduce over-plotting. Two additional arguments, \vn{col} and \vn{alpha}, control respectively the color of confidence bars and regions and the transparency of confidence regions. Users are unlikely to need these options. Finally, the type of confidence interval shown, either pointwise or Scheff\'{e} corrected for multiple comparisons, is controlled by the \ar{se} argument to the \fn{predictorEffect} or \fn{Effect} function (see Section~\ref{sec:se}). \subsection{The \ar{lattice} Group: Specifying Standard \textbf{lattice} Package Arguments}\label{sec:lattice} The \fn{plot} methods defined in the \pkg{effects} package use functions in the \pkg{lattice} package \citep{sarkar08}, such as \fn{xyplot}, to draw effect plots, which often comprise rectangular arrays of panels. In particular, the \fn{plot} method for the \class{eff} objects returned by the \fn{Effect} function are \class{trellis} objects, which can be manipulated in the normal manner. ``Printing'' a returned effect-plot object displays the plot in the current \R{} graphics device. The \ar{lattice} group of arguments to the \fn{plot} method for effect objects may be used to specify various standard arguments for \pkg{lattice} graphics functions such as \fn{xyplot}. In particular, you can control the number of rows and columns when panels are displayed in an array, modify the key (legend) for the graph, and specify the contents of the ``strip" displayed in the shaded region of text above each panel in a \pkg{lattice} array. In addition, the \ar{array} sub-argument, for advanced users, controls the layout of multiple predictor effect plots produced by the \fn{predictorEffects} function. \subsubsection{\ar{key.args}: Modifying the Key}\label{sec:key} A user can modify the placement and appearance of the key with the \ar{key.args} sub-argument, which is itself a list. For example: <>= plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), rug=FALSE, axes=list(grid=TRUE, y=list(type="response"), x=list(rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto"), lattice=list(key.args=list(space="right", columns=1, border=TRUE, fontfamily="serif", cex=1.25, cex.title=1.5))) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig314-1.pdf}} \noindent The sub-argument \code{space="right"} moves the key to the right of the graph, overriding the default \code{space="top"}. Alternatively the key can be placed inside the graph using the \ar{x}, \ar{y}, and \ar{corner} sub-arguments, as illustrated in the graph on page~\pageref{corner}. The choices for \ar{fontfamily} are \code{"sans"} and \code{"serif"}, and affect only the key; the rest of the plot uses \code{"sans"}. The sub-arguments \ar{cex} and \ar{cex.title} control the relative sizes of the key entries and the key title, respectively. Finally, any argument documented in \code{help("xyplot")} in the \code{key} section can be set with this argument. If you use the default \code{space="top"} for placement of the key, you may wish to adjust the number of columns in the key, particularly if the level names are long. \subsubsection{\ar{layout}: Controlling Panel Placement}\label{sec:layout} The \ar{layout} sub-argument to the \ar{lattice} argument allows a user to customize the layout of multiple panels in a predictor effect plot; for example: <>= plot(predictorEffects(gm3, ~ s + d, xlevels=list(s=6, d=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2))) @ \centerline{\includegraphics[width=\textwidth]{figure/fig313-1.pdf}} \noindent Here, the \ar{layout} sub-argument specifies an array of 3 columns and 2 rows for each of the predictor effect plots. \subsubsection{\ar{array}: Multiple Predictor Effect Plots}\label{sec:array} If you create several predictor effect objects with the \fn{predictorEffects} function, the \fn{plot} method for the resulting \class{predictorefflist} object divides the \pkg{lattice} graphics device into a rectangular array of sub-plots, so that the individual predictor effect plots, each potentially with several panels, are drawn without overlapping. An alternative is for the user to generate the predictor effect plots separately, subsequently supplying the \ar{array} sub-argument to \fn{plot} directly to create a custom meta-array of predictor effect plots; this argument is ignored, however, for \class{predictorefflist} objects produced by \fn{predictorEffects}. Suppose, for example, that we want to arrange the two predictor effect plots for the previous example vertically rather than horizontally. One way to do that is to save the object produced by \fn{predictorEffects} and to plot each of its two components individually, specifying the \ar{position} or \ar{split} and \ar{more} arguments to the \fn{print} method for \class{trellis} objects: see \code{help("print.trellis")}. Another approach is to generate the plots individually using \fn{predictorEffect} and to specify the \ar{array} sub-argument to \fn{plot}, as follows: <>= plot(predictorEffect("s", gm3, xlevels=list(d=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2), array=list(row=1, col=1, nrow=2, ncol=1, more=TRUE))) plot(predictorEffect("d", gm3, xlevels=list(s=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2), array=list(row=2, col=1, nrow=2, ncol=1, more=FALSE))) @ \centerline{\includegraphics[width=.65\textwidth]{figure/fig313b-1.pdf}} \noindent In each case, the \ar{row} and \ar{col} sub-arguments indicate the position of the current graph in the meta-array; \ar{nrow} and \ar{ncol} give the dimensions of the meta-array, here 2 rows and 1 column; and \ar{more} indicates whether there are more elements of the meta-array after the current graph. \subsubsection{\ar{strip}: Modifying the Text at the Tops of Panels}\label{sec:strip} Lattice graphics with more than one panel typically provide a text label at the top of each panel in an area called the \emph{strip}. The default strip text contains the name of the conditioning predictor and the value to which it is set in the panel; if there are more than one conditioning predictor, then all of their names and corresponding values are shown. For example: <>= plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response")), lines=list(multiline=TRUE, z.var="spp", lty=1:9), lattice=list(layout=c(3, 1), strip=list(factor.names=TRUE, values=TRUE, cex=1.5))) @ \centerline{\includegraphics[width=.85\textwidth]{figure/fig316-1.pdf}} \noindent Setting \code{factor.names=FALSE} (the default is \code{TRUE}) displays only the value, and not the name, of the conditioning predictor in each strip; usually, this is desirable only if the name is too long to fit, in which case you may prefer to rename the predictor. Setting \code{values=FALSE} replaces the conditioning value with a line in the strip that represents the value: The line is at the left of the strip for the smallest conditioning value, at the right for the largest value, and in a proportional intermediate position in between the two extremes. The most generally useful sub-argument is \ar{cex}, which allows you to reduce or expand the relative size of the text in the strip, in this case increasing the size to 150\% of standard size. \subsection{\ar{symbols}: Plotting symbols} Symbols are used to represent adjusted means when the focal predictor is a factor. You can control the symbols used and their relative size: <>= gm5 <- update(gm2, ~ . + spp:s) plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), symbols=list(pch=15:17, cex=1.5), axes=list(grid=TRUE, y=list(type="response"), x=list(rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto"), lattice=list(key.args=list(cex=1.5, cex.title=1.5))) @ \centerline{\includegraphics[width=.95\textwidth]{figure/fig315-1.pdf}} \noindent We use the \ar{pch} sub-argument to set the symbol number for plotted symbols; you can enter the commands \code{plot(1:25, pch=1:25)} and \code{lines(1:25, lty=2, type="h")} to see the 25 plotting symbols in \R{}. The sub-argument \ar{pch} can also be a character vector, such as \code{letters[1:10]}. In this example, we set \code{cex=1.5} to increase the symbol size by the factor 1.5. Because only one value is given, it is recycled and used for all of the symbols. We need to change the size of the symbols in the key separately, as we do here via the \ar{key.args} sub-argument to the \ar{lattice} argument (see Section~\ref{sec:key}). \section{Displaying Residuals in Predictor Effect Plots}\label{sec:res} \citet{fw19b} introduce methodology for adding partial residuals to a predictor effect or effect plot. This can be desirable to display variation in data around a fitted partial regression surface or to diagnose possible lack of fit, as the resulting plots are similar to traditional component-plus-residual plots \citep[Sec.~8.4]{fw19}. The predictor effect plot for a numeric focal predictor that does not interact with other predictors is equivalent to a standard component-plus-residual plot; for example: <>= lm5 <- lm(prestige ~ log(income) + education + women + type, Prestige) plot(predictorEffects(lm5, residuals=TRUE), axes=list(grid=TRUE, x=list(rotate=30)), partial.residuals=list(smooth=TRUE, span=0.75, lty="dashed")) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig51-1.pdf}} \noindent The partial residuals to be plotted are computed using the \ar{residuals} argument to the \fn{predictorEffect}, \fn{predictorEffects}, or \fn{Effect} function. For the numeric predictors \vn{income}, \vn{education}, and \vn{women}, the plotted points are each equal to a point on the fitted blue line, representing the partial fit, plus the corresponding residual. For \vn{income}, the fitted partial-regression line in curved because of the log transformation of the predictor, but the partial-regression function is a straight line for the other two numeric predictors. The dashed line produced by \code{lty="dashed"} in the same magenta color as the plotted points on the graph, is a loess nonparametric-regression smooth of the points. The sub-argument \code{smooth=TRUE} is the default if residuals are present in the effect object to be plotted. The sub-argument \code{span=0.75} adjusts the span of the loess smoother from the default of \code{2/3}---an unnecessary adjustment here specified simply to illustrate how to set the span. If the model adequately represents the data, then the dashed magenta line should approximately match the solid blue partial-regression line, which represents the fitted model. For the factor \vn{type}, the points are jittered horizontally to separate them visually, because the only possible horizontal coordinates are at the three distinct factor levels. Smooths are not fit to factors and instead the conditional means of the partial residuals are plotted as solid magenta dots; in the current model, the magenta dots and the blue dots representing the fitted adjusted means of the response at the levels of \vn{name} necessarily match. The \fn{plot} method for effect objects has a \ar{partial.residuals} argument, with several sub-arguments that control how partial residuals are displayed. In the command above, we used the sub-argument \vn{smooth=TRUE} to add the smoother, which is the default when residuals are included in the effect object, and \ar{lty="dashed"} to change the line type for the smooth from the default solid line to a dashed line. All the \vn{smooth} sub-arguments are described in \code{help("plot.eff")}. For a second example, we fit a linear model with an interaction to the \code{UN} data set in the \pkg{carData} package, modelling national \vn{infantMortality} rate (infant deaths per 1000 live births) as a function of \vn{ppgdp}, per person GDP (in U.S.~dollars), and country \vn{group} (OECD nations, African nations, and other nations). The data are for roughly 200 nations of the world and are from approximately 2009 to 2011: <>= options(scipen=10) # suppress scientific notation lm6 <- lm(infantMortality ~ group*ppgdp, data=UN) plot(predictorEffects(lm6, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25), y=list(lim=c(0, 150))), id=list(n=1), lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig52-1.pdf}} \noindent The predictor effect plot for \vn{ppgdp} conditions on the factor \ar{group} because of the interaction between these two predictors. Several problems are apparent in this plot: The \ar{id} argument is used to identify the most unusual point in each panel, as described in detail in \code{help("plot.eff")}. Turkey has higher than predicted infant mortality for the \level{oecd} group; Afghanistan, in the \level{other} group, has infant mortality much higher than predicted; and Equatorial Guinea is clearly unusual for the \level{africa} group. In addition, the smooths through the points do not match the fitted lines in the \level{other} and \level{africa} groups. We use the command \code{options(scipen=10)} to suppress annoying scientific notation in the tick-mark labels on the horizontal axis, and instead rotate these labels so that they fit without over-plotting. Log-transforming both the predictor \vn{ppgdp} and the response \vn{infantMortality} produces a better fit to the data: <>= lm7 <- lm(log(infantMortality) ~ group*log(ppgdp), data=UN) plot(predictorEffects(lm7, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25)), id=list(n=1), lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig53-1.pdf}} \noindent Equatorial Guinea is still anomalous, however. Rescaling the vertical axis to arithmetic scale produces a slightly different, but possibly useful, picture: <>= plot(predictorEffects(lm7, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25), y=list(transform=list(trans=log, inverse=exp), type="response", lab="Infant Mortality")), id=list(n=1), lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig54-1.pdf}} Partial residuals can be added to effect plots for linear or generalized linear models in the default link scale, and to effect plots for linear or generalized linear mixed models. \subsection{Using the \fn{Effect} Function With Partial Residuals} In most instances, predictor effect plots produced by \fn{predictorEffect} or \fn{predictorEffects} visualize a fitted model in the most natural manner, but sometimes in looking for lack of fit, we want to plot against arbitrary combinations of predictors. The more general \fn{Effect} function is capable of doing that. Recall, for example, the additive model \code{lm2} fit to the \code{Prestige} data: <<>>= S(lm2) @ Plotting partial residuals for the predictors \vn{income} and \vn{type} simultaneously reveals an unmodeled $\vn{income} \times \vn{type}$ interaction: <>= plot(Effect(c("income", "type"), lm2, residuals=TRUE), axes=list(x=list(rotate=30)), partial.residuals=list(span=0.9), layout=c(3, 1)) @ \centerline{\includegraphics[width=0.85\textwidth]{figure/fig55-1.pdf}} \section{Polytomous Categorical Responses} The \pkg{effects} package produces special graphs for ordered and unordered polytomous categorical response variables. In an ordinal regression, the response is an ordered categorical variable with three or more levels. For example, in a study of women's labor force participation that we introduce below, the response is not working outside the home, working part time, or working full time. The proportional-odds model \citep[Sec.~6.9]{fw19} estimates the probability of a response in each of these three categories given a linear combination of regressors defined by a set of predictors, assuming a logit link function. We illustrate the proportional-odds model with the \code{Womenlf} data set in the \pkg{carData} package, for young married Canadian women's labor-force participation, using the \fn{polr} function in the \pkg{MASS} package to fit the model: <<>>= library("MASS") # for polr() Womenlf$partic <- factor(Womenlf$partic, levels=c("not.work", "parttime", "fulltime")) # order response levels or1 <- polr(partic ~ log(hincome) + children, data=Womenlf) S(or1) @ The response variable \code{partic} initially has its levels in alphabetical order, which does not correspond to their natural ordering. We therefore start by reordering the levels to increase from \level{not.work}, to \level{parttime} work, to \level{fulltime} work. The predictors are the numeric variable \vn{hincome} (husband's income), which enters the model in log-scale, and the dichotomous factor \vn{children}, presence of children in the household. The model summary is relatively complex, and is explained in \citet[Sec.~6.9]{fw19}. Predictor effect plots greatly simplify interpretation of the fitted model: <>= plot(predictorEffects(or1), axes=list(grid=TRUE), lattice=list(key.args=list(columns=1))) @ \centerline{\includegraphics[width=.9\textwidth]{figure/fig41-1.pdf}} \noindent Unlike predictor effect plots for generalized linear models, the default scaling for the vertical axis is the probability scale, equivalent to \code{axes=list(y=list(type="response"))} for a GLM, and the alternative is \code{axes=list(y=list(type="logit"))}, which is analogous to \code{type="link"} for a GLM.\footnote{The logits plotted, however, correspond to the individual-level probabilities and are not the ordered logits in the definition of the proportional-odds model.} Confidence bands are present by default, unless turned off with the argument \code{confint=list(style="none")}. Numeric focal predictors are by default evaluated at 50 points. The plot for \vn{hincome} suggests high probability of full-time work if husband's income is low, with the probability of full-time work sharply decreasing to about \$15,000 and then nearly leveling off at about .1 to .2. The probability of not working rapidly increases with husband's income, while the probability of working part time is fairly flat. A similar pattern is apparent for children present in the home, with full-time work much less prevalent and not working much more prevalent when children are present than when they are absent. \emph{Stacked area plots} are sometimes more useful for examining polytomous response models; for example: <>= plot(predictorEffects(or1), axes=list(grid=TRUE, y=list(style="stacked")), lattice=list(key.args=list(columns=1))) @ \centerline{\includegraphics[width=.95\textwidth]{figure/fig62-1.pdf}} \noindent For each fixed value on the horizontal axis, the vertical axis ``stacks" the probabilities in the three response categories. For example, with children absent from the household and \vn{hincome} set to its mean, nearly 30\% of women did not work outside the home, about 20\% worked part time, and the remaining approximate 50\% worked full time. Some ordinal-response models produced by the functions \fn{clm}, \fn{clm2}, and \fn{clmm} in the \pkg{ordinal} package can be used with the \pkg{effects} package. To work with model objects produced by these functions, you must also load the \pkg{MASS} package. The \pkg{effects} package can also draw similar graphs for the more general multinomial logit model, in which the polytomous categorical response has unordered levels \citep[see][Sec.~6.7]{fw19}. The details of the model, its parameters, and its assumptions are different from those of the proportional-odds model and other ordered-response models, but predictor effect plots for these models are similar. As an example, we use the \code{BEPS} data set in the \pkg{carData} package, consisting of about 1,500 observations from the 1997-2001 British Election Panel Study. The response variable, \vn{vote}, is party choice, one of \level{Liberal Democrat}, \level{Labour}, or \level{Conservative}. There are numerous predictors of \vn{vote} in the data set, and we fit the model <<>>= library("nnet") # for multinom() mr1 <- multinom(vote ~ age + gender + economic.cond.national + economic.cond.household + Blair + Hague + Kennedy + Europe*political.knowledge, data=BEPS) @ There are nine predictors, seven of which are scales with values between 0 and 5 concerning respondents' attitudes; these predictors enter the model as main effects. The remaining two predictors are scales between 0 and 3 for \code{political.knowledge} and between 1 and 11 for \code{Europe} (attitude toward European integration of the UK in the European Union, with high values representing ``Euroscepticism'', a \emph{negative} attitude toward Europe); these predictors enter the model with a two-factor interaction. Drawing all nine predictor effect plots simultaneously is not a good idea because the plots won't fit reasonably in a single display. We therefore draw only a few of the plots at a time: <>= plot(predictorEffects(mr1, ~ age + Blair + Hague + Kennedy), axes=list(grid=TRUE, x=list(rug=FALSE)), lattice=list(key.args=list(columns=1)), lines=list(multiline=TRUE, col=c("blue", "red", "orange"))) @ \centerline{\includegraphics[width=.9\textwidth]{figure/fig42-1.pdf}} \noindent We use optional arguments to get a multiline plot, with a grid and no rug plot, and to modify the key. The color specification for the lines represents the traditional colors of the three parties. Interpreting these plots is challenging: For example, the probability of voting Labour decreases with age, increases with attitude toward the Labour leader Blair, strongly decreases with attitude toward the Conservative leader Hague, and is relatively unaffected by attitude toward the Liberal Democrat leader Kennedy. In general, a positive attitude toward a party leader increases the probability of voting for that leader's party, as one would expect. Of course, the causal direction of these relationships is unclear. We next turn to the interaction between \vn{Europe} and \vn{political.knowledge}, this time drawing stacked area displays: <>= plot(predictorEffects(mr1, ~ Europe + political.knowledge, xlevels=list(political.knowledge=0:3, Europe=c(1, 6, 11))), axes=list(grid=TRUE, x=list(rug=FALSE, Europe=list(ticks=list(at=c(1, 6, 11))), political.knowledge=list(ticks=list(at=0:3))), y=list(style="stacked")), lines=list(col=c("blue", "red", "orange")), lattice=list(key.args=list(columns=1), strip=list(factor.names=FALSE))) @ \centerline{\includegraphics[width=\textwidth]{figure/fig43-1.pdf}} \noindent The \ar{lines} argument is used to specify the colors for the stacked areas representing the parties. Both effect plots are of nearly the same fitted values,\footnote{Not exactly the same because in each plot the focal predictor takes on 50 values and the conditioning predictor 3 or 4 values.} in the first graph with \code{Europe} varying and conditioning on \code{political.knowledge}, and in the second with \code{political.knowledge} varying and conditioning on \code{Europe}. Setting \code{strip=} \code{list(factor.names=FALSE)} suppresses the names of the conditioning predictor in each effect plot; these names are too long for the strips at the tops of the panels. From the first graph, preference for the Conservative Party increases with \vn{Europe} for respondents with high political knowledge, but not for those with low political knowledge. More generally, voters with high political knowledge are more likely to align their votes with the positions of the parties, Eurosceptic for the Convervatives, pro-Europe for Labour and the Liberal Democrats, than are voters with low political knowledge. \section{The Lattice Theme for the effects Package} The \pkg{effects} package uses the \fn{xyplot} and \fn{barchart} functions in the standard \pkg{lattice} package \citep{sarkar08} to draw effect plots. The \pkg{lattice} package has many options for customizing the appearance of graphs that are collected into a \emph{lattice theme}. We created a custom theme for use with the \pkg{effects} package that automatically supersedes the default Lattice theme when the \pkg{effects} package is loaded, \emph{unless the} \pkg{lattice} \emph{package has been previously loaded}. You can invoke the \pkg{effects} package theme directly by the command <>= effectsTheme() @ You can also customize the \pkg{effects} package Lattice theme; see \code{help("effectsTheme")}. Finally, because \fn{plot} methods in the \pkg{effects} package return lattice objects, these objects can be edited and manipulated in the normal manner, for example by functions in the \pkg{latticeExtra} package \citep{SarkarAndrews2016}. \bibliography{predictor-effects-gallery} \end{document} effects/build/0000755000176200001440000000000015042141755012774 5ustar liggesuserseffects/build/vignette.rds0000644000176200001440000000052015042141755015330 0ustar liggesusersRK0κv O"޺C7"kּn؆$?K^'рCTS#iv klb>j7@]셭U{7MQ5n0'F[Iѹkwڈ -NCi|LKŤ6{BUh[T> 3\W= e dԁ'{%CS].;~m3$3wN8lkG`> effects/build/partial.rdb0000644000176200001440000000007515042141730015114 0ustar liggesusersb```b`aed`b1 H020piּb C" 7effects/man/0000755000176200001440000000000013771700052012446 5ustar liggesuserseffects/man/effCoef.Rd0000644000176200001440000000346615037501321014276 0ustar liggesusers\name{effCoef} \alias{effCoef} \alias{effCoef.default} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Function to get coefficient estimates from regression models for use in the effects package. } \description{ This function uses the \code{\link[insight]{get_parameters}} function in the \code{insight} package to get a vector of regression coefficients for use in the effects package. It converts the two-column \code{data.frame} returned by \code{get_parameters} to a vector of named elements. } \usage{ effCoef(mod, ...) \method{effCoef}{default}(mod, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{mod}{ A model object with a linear predictor representing fixed effects. } \item{...}{Additional parameter passed to \code{\link[insight]{get_parameters}}.} } \details{ The \code{\link[insight]{get_parameters}} function can be used to retrieve the coefficient estimates corresponding to a linear predictor for many regression models, and return them as a two column \code{data.frame}, with regressor names in the first column and estimates in the second column. This function converts this output to a named vector as is expected by the \code{effects} package. } \value{ A vector of coefficient estimates %\references{ %% ~put references to the literature/web site here ~ } \author{Sanford Weisberg \email{sandy@umn.edu}} \seealso{\code{\link[insight]{get_parameters}}, and vignette \href{../doc/methods-supported-by-effects.pdf}{Regression Models Supported by the effects Package}} %% ~Make other sections like Warning with \section{Warning }{....} ~ \examples{ m1 <- lm(prestige ~ type + income + education, Duncan) effCoef(m1) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory (show via RShowDoc("KEYWORDS")): \keyword{models} effects/man/effSources.Rd0000644000176200001440000000357213761730141015051 0ustar liggesusers\name{EffectMethods} \alias{effSources} \alias{effSources.default} \alias{effSources.gls} \alias{effSources.glmmPQL} \alias{effSources.rlmerMod} \alias{effSources.clm} \alias{effSources.clm2} \alias{effSources.clmm} \alias{effSources.betareg} \title{Functions For Constructing Effect Displays for Many Modeling Paradigms} \description{The \pkg{effects} package can be used with many different classes of regression models beyond the basic models described in the \code{\link{Effect}} help page. The \code{effSources} function is used to tell an \code{Effect} method where to find the information to compute effects. Details are given in the vignette \href{../doc/methods-supported-by-effects.pdf}{Regression Models Supported by the effects Package}. Unless you are trying to extend \pkg{effects} to a different class of regression model, you will have no use for this function. } \usage{ \method{effSources}{default}(mod) \method{effSources}{gls}(mod) \method{effSources}{glmmPQL}(mod) \method{effSources}{rlmerMod}(mod) \method{effSources}{clm}(mod) \method{effSources}{clm2}(mod) \method{effSources}{clmm}(mod) \method{effSources}{betareg}(mod) } \arguments{ \item{mod}{a fitted model object of the appropriate class. The default method works for many regression models for which there is no specific method.} } \details{ \code{Effect} function methods by default expect regression objects to provide certain quantities, including a model formula, coefficient estimates, and the variance matrix of the estimates, in standard places. \code{effSources} methods return a list of the necessary quantities if they are not in standard places.} \value{See the vignette \href{../doc/methods-supported-by-effects.pdf}{Regression Models Supported by the effects Package}.} \author{John Fox \email{jfox@mcmaster.ca}, Sanford Weisberg \email{sandy@umn.edu}} %\examples{ %} \keyword{internal} effects/man/plot.effect.Rd0000644000176200001440000007233615037751054015166 0ustar liggesusers\name{plot.effects} \alias{plot.effect} \alias{plot.effects} \alias{plot.predictoreff} \alias{plot.predictorefflist} \alias{plot.eff} \alias{plot.effpoly} \alias{plot.efflist} \alias{plot.mlm.efflist} \alias{[.efflist} \alias{levels2dates} \alias{levels2dates.eff} \alias{levels2dates.effpoly} \title{Plots of Effects and Predictor Effects} \description{ \code{plot} methods for \code{predictoreff}, \code{predictorefflist}, \code{eff}, \code{efflist} and \code{effpoly} objects created by calls other methods in the \code{effects} package. The plot arguments were substantially changed in mid-2017. For more details and many examples, see the \href{../doc/predictor-effects-gallery.pdf}{Predictor Effects Graphics Gallery} vignette. } \usage{ \method{plot}{eff}(x, x.var, main=paste(effect, "effect plot"), symbols=TRUE, lines=TRUE, axes, confint, partial.residuals, id, lattice, ..., # legacy arguments: multiline, z.var, rug, xlab, ylab, colors, cex, lty, lwd, ylim, xlim, factor.names, ci.style, band.transparency, band.colors, type, ticks, alternating, rotx, roty, grid, layout, rescale.axis, transform.x, ticks.x, show.strip.values, key.args, use.splines, residuals.color, residuals.pch, residuals.cex, smooth.residuals, residuals.smooth.color, show.fitted, span) \method{plot}{efflist}(x, selection, rows, cols, ask=FALSE, graphics=TRUE, lattice, ...) \method{plot}{predictoreff}(x, x.var, main = paste(names(x$variables)[1], "predictor effect plot"), ...) \method{plot}{predictorefflist}(x, selection, rows, cols, ask = FALSE, graphics = TRUE, lattice, ...) \method{plot}{effpoly}(x, x.var=which.max(levels), main=paste(effect, "effect plot"), symbols=TRUE, lines=TRUE, axes, confint, lattice, ..., # legacy arguments: type, multiline, rug, xlab, ylab, colors, cex, lty, lwd, factor.names, show.strip.values, ci.style, band.colors, band.transparency, style, transform.x, ticks.x, xlim, ticks, ylim, rotx, roty, alternating, grid, layout, key.args, use.splines) \method{plot}{mlm.efflist}(x, ...) levels2dates(effect, ...) \method{levels2dates}{eff}(effect, predictor, origin, evenly.spaced=TRUE, n, ...) \method{levels2dates}{effpoly}(effect, predictor, origin, evenly.spaced=TRUE, n, ...) } \arguments{ \item{x}{an object of class \code{"predictoreff"}, \code{"predictorefflist"}, \code{"eff"}, \code{"effpoly"}, \code{"efflist"}, \code{"mlm.efflist"}, or \code{"summary.eff"}, as appropriate.} \item{x.var}{the index (number) or quoted name of the covariate or factor to place on the horizontal axis of each panel of the effect plot. The default is the predictor with the largest number of levels or values. This argument is ignored with \code{predictoreff} objects.} \item{main}{the title for the plot, printed at the top; the default title is constructed from the name of the effect.} \item{symbols}{\code{TRUE}, \code{FALSE}, or an optional list of specifications for plotting symbols; if not given, symbol properties are taken from \code{superpose.symbol} in the lattice theme. See Detailed Argument Descriptions under Details for more information.} \item{lines}{\code{TRUE}, \code{FALSE}, or an optional list of specifications for plotting lines (and possibly areas); if not given, line properties are taken from \code{superpose.line} in the lattice theme. See Detailed Argument Descriptions under Details for more information.} \item{axes}{an optional list of specifications for the x and y axes; if not given, axis properties take generally reasonable default values. See Details for more information.} \item{confint}{an optional list of specifications for plotting confidence regions and intervals; if not given, generally reasonable default values are used. See Detailed Argument Descriptions under Details for more information.} \item{partial.residuals}{an optional list of specifications for plotting partial residuals for linear and generalized linear models; if not given, generally reasonable default values are used. See Detailed Argument Descriptions under Details for more information, along with the \href{../doc/partial-residuals.pdf}{Effect Displays with Partial Residuals} vignette.} \item{id}{an optional list of specifications for identifying points when partial residuals are plotted; if not specified, no points are labelled. See Detailed Argument Descriptions under Details for more information.} \item{lattice}{an optional list of specifications for various lattice properties, such as legend placement; if not given, generally reasonable default values are used. See Detailed Argument Descriptions under Details for more information.} \item{selection}{the optional index (number) or quoted name of the effect in an efflist object to be plotted; if not supplied, a menu of high-order terms is presented or all effects are plotted.} \item{rows, cols}{Number of rows and columns in the ``meta-array'' of plots produced for an \code{efflist} object; if either argument is missing, then the meta-layout will be computed by the \code{plot} method.} \item{ask}{if \code{selection} is not supplied and \code{ask} is \code{TRUE}, a menu of high-order terms is presented; if \code{ask} is \code{FALSE} (the default), effects for all high-order terms are plotted in an array.} \item{graphics}{if \code{TRUE} (the default), then the menu of terms to plot is presented in a dialog box rather than as a text menu.} \item{...}{arguments to be passed down. For \code{"predictoreff"} or \code{"predictorefflist"} objects, the arguments passed down can include all the arguments for \code{"eff"}.} \item{effect}{An object of class \code{"eff"} or \code{"effpoly"}.} \item{predictor}{The quoted name of the date variable in the effect.} \item{origin}{The date origin for the date variable: see Details} \item{evenly.spaced}{Should the dates be evenly spaced? \code{TRUE} (the default) or \code{FALSE}: see Details.} \item{n}{Number of tick marks for the date axis: see Details.} \item{multiline, z.var, rug, xlab, ylab, colors, cex, lty, lwd, ylim, xlim, factor.names, ci.style, band.transparency, band.colors, ticks, alternating, rotx, roty, grid, layout, rescale.axis, transform.x, ticks.x, show.strip.values, key.args, use.splines, type, residuals.color, residuals.pch, residuals.cex, smooth.residuals, residuals.smooth.color, show.fitted, span, style}{legacy arguments retained for backwards compatibility; if specified, these will take precedence over the newer list-style arguments described above. See \code{\link{LegacyArguments}} for details.} } \details{ Effects plots and predictor effects plots are produced by these methods. The plots are highly customizable using the optional arguments described here. For example, effects in a GLM are plotted on the scale of the linear predictor, but the vertical axis is labelled on the response scale. This preserves the linear structure of the model while permitting interpretation on what is usually a more familiar scale. This approach may also be used with linear models, for example to display effects on the scale of the response even if the data are analyzed on a transformed scale, such as log or square-root. See the \code{axes} argument details below to change the scale to response scale, or to linear predictor scale with tick marks labeled in response scale. When a factor is on the x-axis, the \code{plot} method for \code{eff} objects connects the points representing the effect by line segments, creating a response ``profile.'' If you wish to suppress these lines, add \code{lty=0} to the \code{lines} argument to the call to \code{plot} (see below and the examples). In a polytomous multinomial or proportional-odds logit model, by default effects are plotted on the probability scale; they may alternatively be plotted on the scale of the individual-level logits. All of the arguments to plot objects created by \code{Effect} or \code{allEffects} can also be used with objects created by \code{predictorEffect} or \code{predictorEffects}. \bold{Detailed Argument Descriptions} For more information about these arguments and many examples, see the \href{../doc/predictor-effects-gallery.pdf}{Predictor Effects Graphics Gallery} vignette. Maximizing the flexibility of these plot commands requires inclusion of a myriad of options. In an attempt to simplify the use of these options, they have been organized into just a few arguments that each accept a list of specifications as an argument. In a few cases the named entries in the list are themselves lists. Each of the following arguments takes an optional list of specifications; any specification absent from the list assumes its default value. Some of the list elements are themselves lists, so in complex cases, the argument can take the form of nested lists. All of these arguments can also be used on objects created with \code{\link{predictorEffects}}. \describe{ \item{\code{symbols}}{\code{TRUE}, \code{FALSE}, or a list of options that controls the plotting symbols and their sizes for use with factors; if \code{FALSE} symbols are suppressed; if \code{TRUE} default values are used: \describe{ \item{\code{pch}}{ploting symbols, a vector of plotting characters, with the default taken from \code{trellis.par.get("superpose.symbol")$pch}, typically a vector of 1s (circles).} \item{\code{cex}}{plotting character sizes, a vector of values, with the default taken from \code{trellis.par.get("superpose.symbol")$cex}, typically a vector of 0.8s.} } } \item{\code{lines}}{\code{TRUE}, \code{FALSE}, or a list that controls the characteristics of lines drawn on a plot, and also whether or not multiple lines should be drawn in the same panel in the plot; if \code{FALSE} lines are suppressed; if \code{TRUE} default values are used: \describe{ \item{\code{multiline}}{display a multiline plot in each panel; the default is \code{TRUE} if there are no standard errors in the \code{"eff"} object, \code{FALSE} otherwise. For an \code{"effpoly"} object \code{multline=TRUE} causes all of the response levels to be shown in the same panel rather than in separate panels.} \item{z.var}{for linear, generalized linear or mixed models, the index (number) or quoted name of the covariate or factor for which individual lines are to be drawn in each panel of the effect plot. The default is the predictor with the smallest number of levels or values. This argument is only used for multipline plots.} \item{\code{lty}}{vector of line types, with the default taken from \code{trellis.par.get("superpose.line")$lty}, typically a vector of 1s (solid lines).} \item{\code{lwd}}{vector of line widths, with the default taken from \code{trellis.par.get("superpose.line")$lwd}, typically a vector with 2 in the first position followed by 1s.} \item{\code{col}}{a vector of line colors, with the default taken from from \code{trellis.par.get("superpose.line")$col}, used both for lines and for areas in stacked area plots for \code{"effpoly"} objects; in the latter case, the default colors for an ordered response are instead generated by \code{\link[colorspace]{sequential_hcl}} in the \pkg{colorspace} package.} \item{\code{splines}}{use splines to smooth plotted effect lines; the default is \code{TRUE}.} } } \item{\code{axes}}{a list with elements \code{x}, \code{y}, \code{alternating}, and \code{grid} that control axis limits, ticks, and labels. The \code{x} and \code{y} elements may themselves be lists. The \code{x} entry is a list with elements named for predictors, with each predictor element itself a list with the following elements: \describe{ \item{\code{lab}}{axis label, defaults to the name of the predictor; may either be a text string or a list with the text label (optionally named \code{label}) as its first element and the named element \code{cex} as its second element.} \item{\code{lim}}{a two-element vector giving the axis limits, with the default determined from the data.} \item{\code{ticks}}{a list with either element \code{at}, a vector specifying locations for the ticks marks, or \code{n}, the number of tick marks.} \item{\code{transform}}{transformations to be applied to the horizontal axis of a numeric predictor, in the form of a list of two functions, with element names \code{trans} and \code{inverse}. The \code{trans} function is applied to the values of the predictor, and \code{inverse} is used for computing proper axis tick labels. The default is not to transform the predictor axis.} } Two additional elements may appear in the \code{x} list, and apply to all predictors: \describe{ \item{\code{rotate}}{angle in degrees to rotate tick labels; the default is 0.} \item{\code{rug}}{display a rug plot showing the marginal distribution of a numeric predictor; the default is \code{TRUE}.} } The \code{y} list contains \code{lab}, \code{lim}, \code{ticks}, and \code{rotate} elements (similar to those specified for individual predictors in the \code{x} list), along with the additional \code{type}, \code{transform}, and \code{style} elements: \describe{ \item{\code{type}}{for plotting linear or generalized linear models, \code{"rescale"} (the default) plots the vertical axis on the link scale (e.g., the logit scale for a logit model) but labels the axis on the response scale (e.g., the probability scale for a logit model); \code{"response"} plots and labels the vertical axis on the scale of the response (e.g., the probability scale for a logit model); and \code{"link"} plots and labels the vertical axis on the scale of the link (e.g., the logit scale for a logit model). For polytomous logit models, this element is either \code{"probability"} or \code{"logit"}, with the former as the default.} \item{\code{transform}}{primarily for linear or linear mixed models, this argument is used to apply an arbitrary transformation to the vertical axis. For example, if fitting a linear model with response \code{log(y)}, then setting \code{transform=exp} would plot \code{exp(log(y)) = y} on the vertical axis. If the response were \code{1/y}, then use \code{transform=function(yt) 1/yt}, since the reciprocal is its own inverse. The \code{transform} argument can also be a list of two functions. For example with a response \code{log(y)}, the specification \code{transform=list(trans=log, inverse=log), type="rescale"} will plot in log-scale, but will label tick marks in arithmetic scale; see the example below. The specification \code{transform=list(trans=log, inverse=exp), type="response"} is equivalent to \code{transform=exp}. When \code{type="response"} the \code{lab} argument will geneally be used to get a label for the axis that matches the untransformed response. If this argument is used with a generalized linear model or another model with a non-identity link function, the function is applied to the linear predictor, and will probably not be of interest.} \item{\code{style}}{for polytomous logit models, this element can take on the value \code{"lines"} (the default) or \code{"stacked"} for line plots or stacked-area plots, respectively.} } Other elements: \describe{ \item{\code{alternating}}{if \code{TRUE} (the default), the tick labels alternate by panels in multi-panel displays from left to right and top to bottom; if \code{FALSE}, tick labels appear at the bottom and on the left.} \item{\code{grid}}{if \code{TRUE} (the default is \code{FALSE}), add grid lines to the plot.} } } \item{\code{confint}}{specifications to add/remove confidence intervals or regions from a plot, and to set the nominal confidence level. \describe{ \item{\code{style}}{one of \code{"auto"}, \code{"bars"}, \code{"lines"}, \code{"bands"}, and \code{"none"}; the default is \code{"bars"} for factors, \code{"bands"} for numeric predictors, and \code{"none"} for multiline plots; \code{"auto"} also produces \code{"bars"} for factors and \code{"bands"} for numeric predictors, even in multiline plots.} \item{\code{alpha}}{transparency of confidence bands; the default is 0.15.} \item{\code{col}}{colors; the default is taken from the line colors.} } } \item{\code{partial.residuals}}{specifications concerning the addition of partial residuals to the plot. \describe{ \item{\code{plot}}{display the partial residuals; the default is \code{TRUE} if residuals are present in the \code{"eff"} object, \code{FALSE} otherwise.} \item{\code{fitted}}{show fitted values as well as residuals; the default is \code{FALSE}.} \item{\code{col}}{color for partial residuals; the default is the second line color.} \item{\code{pch}}{plotting symbols for partial residuals; the default is 1, a circle.} \item{\code{cex}}{size of symbols for partial residuals; the default is 1.} \item{\code{smooth}}{draw a loess smooth of the partial residuals; the default is \code{TRUE}.} \item{\code{span}}{span for the loess smooth; the default is 2/3.} \item{\code{smooth.col}}{color for the loess smooth; the default is the second line color.} \item{\code{lty}}{line type for the loess smooth; the default is the first line type, normally 1 (a solid line).} \item{\code{lwd}}{line width for the loess smooth; the default is the first line width, normally 2.} } } \item{\code{id}}{specifications for optional point identification when partial residuals are plotted. \describe{ \item{\code{n}}{number of points to identify; default is \code{2} if \code{id=TRUE} and \code{0} if \code{id=FALSE}. Points are selected based on the Mahalanobis distances of the pairs of x-values and partial residuals from their centroid.} \item{\code{col}}{color for the point labels; default is the same as the color of the partial residuals.} \item{\code{cex}}{relative size of text for point labels; default is \code{0.75}.} \item{\code{labels}}{vector of point labels; the default is the names of the residual vector, which is typically the row names of the data frame to which the model is fit.} } } \item{\code{lattice}}{the plots are drawn with the \pkg{\link[lattice]{lattice}} package, generally by the \code{\link[lattice]{xyplot}} function. These specifications are passed as arguments to the functions that actually draw the plots. \describe{ \item{\code{layout}}{the \code{layout} argument to the \pkg{lattice} function \code{\link[lattice]{xyplot}} (or, in some cases \code{\link[lattice]{densityplot}}), which is used to draw the effect display; if not specified, the plot will be formatted so that it appears on a single page.} \item{\code{key.args}}{a key, or legend, is added to the plot if \code{multiline=TRUE}. This argument is a list with components that determine the the placement and other characteristics of the key. The default if not set by the user is \code{key.args = list(space="top", columns=2, border=FALSE, fontfamily="serif", cex.title=.80, cex=0.75)}. If there are more than 6 groups in the plot, \code{columns} is set to 3. For stacked-area plots, the default is a one-column key. In addition to the arguments shown explicitly below, any of the arguments listed in the \code{\link[lattice]{xyplot}} documentation in the \code{key} section can be used. \describe{ \item{\code{space}}{determines the placement of the key outside the plotting area, with default \code{space="above"} for above the plot and below its title. Setting \code{space="right"} uses space to the right of the plot for the key.} \item{\code{x, y, corner}}{used to put the key on the graph itself. For example, \code{x=.05, y=.95, corner=c(0,1)} will locate the upper-left corner of the key at (.05, .95), thinking of the graph as a unit square.} \item{\code{columns}}{number of columns in the key. If \code{space="top"}, columns should be 2, 3 or 4; if \code{space="right"}, set \code{columns=1}.} \item{\code{border}}{if \code{TRUE} draw a border around the key; omit the border if \code{FALSE}.} \item{\code{fontfamily}}{the default is \code{"sans"} for the sans-serif font used in the rest of the plot; the alternative is \code{"serif"} for a serif font.} \item{\code{cex, cex.title}}{the default relative size of the font for labels and the title, respectively. To save space set these to be smaller than 1.} } } \item{\code{strip}}{a list with three elements: \code{factor.names}, which if \code{TRUE}, the default, shows conditioning variable names in the panel headers; \code{values}, which if \code{TRUE}, the default unless partial residuals are plotted, displays conditioning variable values in the panel headers, and \code{cex}, the relative size of the text displayed in the strip.} \item{\code{array}}{a list with elements \code{row}, \code{col}, \code{nrow}, \code{ncol}, and \code{more}, used to graph an effect as part of an array of plots; \code{row}, \code{col}, \code{nrow}, and \code{ncol} are used to compose the \code{split} argument and \code{more} the \code{more} argument to \code{\link[lattice]{print.trellis}}. The \code{array} argument is automatically set by \code{plot.efflist} and will be ignored if used with that function.} } } } The \code{levels2dates} function is provided to partially accommodate \code{"Date"} variables in effect plots, as long as the date variable is on the horizontal axis of the plot. The date variable must be converted to numeric in the fitted model. The purpose of \code{levels2dates} is to reconvert the numeric version of the date variable to dates to label axis tick marks in the graph. If the argument \code{evenly.spaced} is \code{TRUE} (which is the default), then the tick marks along the horizontal axis are evenly spaced between the minimum and maximum dates of the date variable in the effect; otherwise, the levels for the variable in the effect object are used. The number of tick marks is given by the \code{n} argument; if \code{n} isn't supplied (and \code{evenly.spaced=TRUE}), then the number of tick marks is taken from the number of levels for the variable in the effect object. } \value{ The \code{summary} method for \code{"eff"} objects returns a \code{"summary.eff"} object with the following components (those pertaining to confidence limits need not be present): \item{header}{a character string to label the effect.} \item{effect}{an array containing the estimated effect.} \item{lower.header}{a character string to label the lower confidence limits.} \item{lower}{an array containing the lower confidence limits.} \item{upper.header}{a character string to label the upper confidence limits.} \item{upper}{an array containing the upper confidence limits.} The \code{plot} method for \code{"eff"} objects returns a \code{"plot.eff"} object (an enhanced \code{"trellis"} object); the provided \code{\link{print}} method plots the object. The \code{[} method for \code{"efflist"} objects is used to subset an \code{"efflist"} object and returns an object of the same class. } \author{John Fox \email{jfox@mcmaster.ca} and Jangman Hong.} \seealso{\code{\link{LegacyArguments}}, \code{\link{effect}}, \code{\link{allEffects}}, \code{\link{effectsTheme}}, \code{\link[lattice]{xyplot}}, \code{\link[lattice]{densityplot}}, \code{\link[lattice]{print.trellis}}, \code{\link[stats]{loess}}, \code{\link[colorspace]{sequential_hcl}}, and the \href{../doc/predictor-effects-gallery.pdf}{Predictor Effects Graphics Gallery} and \href{../doc/partial-residuals.pdf}{Effect Displays with Partial Residuals} vignettes. } \examples{ # also see examples in ?effect # plot predictorEffects mod <- lm(prestige ~ education + log(income)*type + women, Prestige) plot(predictorEffects(mod, ~ income), axes=list(grid=TRUE)) plot(predictorEffects(mod, ~ income), lines=list(multiline=TRUE), axes=list(grid=TRUE)) plot(predictorEffects(mod, ~ type), lines=list(multiline=TRUE), axes=list(grid=TRUE), confint=list(style="bars")) mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial) eff.cowles <- allEffects(mod.cowles, xlevels=list(extraversion=seq(0, 24, 6))) eff.cowles as.data.frame(eff.cowles[[2]]) # neuroticism*extraversion interaction plot(eff.cowles, 'sex', axes=list(grid=TRUE, y=list(lab="Prob(Volunteer)"), x=list(rotate=90)), lines=list(lty=0)) plot(eff.cowles, 'neuroticism:extraversion', axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9))))) plot(Effect(c("neuroticism", "extraversion"), mod.cowles, se=list(type="Scheffe"), xlevels=list(extraversion=seq(0, 24, 6))), axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9))))) \donttest{ # change color of the confidence bands to 'black' with .15 transparency plot(eff.cowles, 'neuroticism:extraversion', axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9)))), confint=list(col="red", alpha=.3)) plot(eff.cowles, 'neuroticism:extraversion', lines=list(multiline=TRUE), axes=list(y=list(lab="Prob(Volunteer)")), lattice=list(key.args = list(x = 0.65, y = 0.99, corner = c(0, 1)))) # use probability scale in place of logit scale, all lines are black. plot(eff.cowles, 'neuroticism:extraversion', lines=list(multiline=TRUE, lty=1:8, col="black"), axes=list(y=list(type="response", lab="Prob(Volunteer)")), lattice=list(key.args = list(x = 0.65, y = 0.99, corner = c(0, 1))), confint=list(style="bands")) plot(effect('sex:neuroticism:extraversion', mod.cowles, xlevels=list(extraversion=seq(0, 24, 6))), lines=list(multiline=TRUE)) plot(effect('sex:neuroticism:extraversion', mod.cowles, xlevels=list(extraversion=seq(0, 24, 6))), lines=list(multiline=TRUE), axes=list(y=list(type="response")), confint=list(style="bands"), lattice=list(key.args = list(x=0.75, y=0.75, corner=c(0, 0)))) } if (require(nnet)){ mod.beps <- multinom(vote ~ age + gender + economic.cond.national + economic.cond.household + Blair + Hague + Kennedy + Europe*political.knowledge, data=BEPS) \donttest{ plot(effect("Europe*political.knowledge", mod.beps, xlevels=list(political.knowledge=0:3))) } plot(effect("Europe*political.knowledge", mod.beps, xlevels=list(political.knowledge=0:3), fixed.predictors=list(given.values=c(gendermale=0.5))), axes=list(y=list(style="stacked"), x=list(rug=FALSE), grid=TRUE), lines=list(col=c("blue", "red", "orange"))) } if (require(MASS)){ mod.wvs <- polr(poverty ~ gender + religion + degree + country*poly(age,3), data=WVS) plot(effect("country*poly(age, 3)", mod.wvs)) \donttest{ plot(effect("country*poly(age, 3)", mod.wvs), lines=list(multiline=TRUE)) plot(effect("country*poly(age, 3)", mod.wvs), axes=list(y=list(style="stacked")), lines=list(col=c("gray75", "gray50", "gray25"))) plot(effect("country*poly(age, 3)", latent=TRUE, mod.wvs)) } } mod.pres <- lm(prestige ~ log(income, 10) + poly(education, 3) + poly(women, 2), data=Prestige) eff.pres <- allEffects(mod.pres) \donttest{ plot(eff.pres) plot(eff.pres[1:2]) } plot(eff.pres[1], axes=list(x=list(income=list(transform=list( trans=log10, inverse=function(x) 10^x), ticks=list(at=c(1000, 2000, 5000, 10000, 20000)))))) mod <- lm(log(prestige) ~ income:type + education, data=Prestige) p1 <- predictorEffects(mod, ~ income) # log-scale for response plot(p1, lines=list(multiline=TRUE)) # log-scale, with arithmetic tick marks plot(p1, lines=list(multiline=TRUE), axes=list(y=list(transform=list(trans=log, inverse = exp), lab="prestige", type="rescale"))) # arithmetic scale and tick marks, with other arguments plot(p1, lines=list(multiline=TRUE), grid=TRUE, lattice=list(key.args=list(space="right", border=TRUE)), axes=list(y=list(transform=exp, lab="prestige"))) # plotting an effect with a date variable data("airquality", package="datasets") airquality$Date <- with(airquality, as.Date(paste("1973", Month, Day, sep="-"), format="\%Y-\%m-\%d")) airquality$Date.num <- as.numeric(airquality$Date) m1.date <- lm(Ozone ~ Date.num + Solar.R + Wind + Temp, data=airquality) eff.date.1 <- Effect("Date.num", m1.date) plot(eff.date.1, axes=list(x=list(Date.num=list(lab="Date", ticks=list(at=levels2dates(eff.date.1, "Date.num", "1970-01-01"))), rotate=45)), main="Date Effect") plot(eff.date.1, axes=list(x=list(Date.num=list(lab="Date", ticks=list(at=levels2dates(eff.date.1, "Date.num", "1970-01-01", n=4))))), main="Date Effect") eff.date.df <- as.data.frame(eff.date.1) eff.date.df$Date <- as.Date(eff.date.df$Date.num, origin="1970-01-01") eff.date.df m2.date <- lm(Ozone ~ Date.num*Temp + Solar.R + Wind, data=airquality) eff.date.2 <- Effect(c("Date.num", "Temp"), m2.date, xlevels=6) plot(eff.date.2, axes=list(x=list(Date.num=list(lab="Date", ticks=list(at=levels2dates(eff.date.2, "Date.num", "1970-01-01", n=3))), rotate=45)), main="Date Effect by Temperature") } \keyword{hplot} \keyword{models} effects/man/predictorEffects.Rd0000644000176200001440000001614313761730141016236 0ustar liggesusers\name{predictorEffects} \alias{predictorEffect} \alias{predictorEffect.poLCA} \alias{predictorEffect.svyglm} \alias{predictorEffect.default} \alias{predictorEffects} \alias{predictorEffects.poLCA} \alias{predictorEffects.default} \title{ Functions For Computing Predictor Effects } \description{ Alternatives to the \code{Effect} and \code{allEffects} functions that use a different paradigm for conditioning in an effect display. The user specifies one predictor, either numeric or a factor (where character and logical variables are treated as factors), for the horizontal axis of a plot, and the function determines the appropriate plot to display (which is drawn by \code{plot}). See the vignette \href{../doc/predictor-effects-gallery.pdf}{Predictor Effects Graphics Gallery} for details and examples. } \usage{ predictorEffect(predictor, mod, focal.levels=50, xlevels=5, ...) \method{predictorEffect}{poLCA}(predictor, mod, focal.levels=50, xlevels=5, ...) \method{predictorEffect}{svyglm}(predictor, mod, focal.levels=50, xlevels=5, ...) \method{predictorEffect}{default}(predictor, mod, focal.levels=50, xlevels=5, ..., sources) predictorEffects(mod, predictors, focal.levels=50, xlevels=5, ...) \method{predictorEffects}{poLCA}(mod, predictors = ~ ., focal.levels=50, xlevels=5, ...) \method{predictorEffects}{default}(mod, predictors = ~ ., focal.levels=50, xlevels=5, ..., sources) } \arguments{ \item{mod}{A model object. Supported models include all those described on the help page for \code{\link{Effect}}.} \item{predictor}{quoted name of the focal predictor.} \item{predictors}{If the default, \code{~ .}, a predictor effect plot is drawn for each predictor (not regressor) in a model. Otherwise, this is a one-sided formula specifying the first-order predictors for which predictor effect plots are to be drawn. } \item{focal.levels}{for \code{predictorEffect}, the number of evenly-spaced values (the default is 50) for the numeric focal predictor or a vector of values for the focal predictor. For \code{predictorEffects}, the number of evenly-spaced values (default 50) to use for each numeric focal predictor in turn, or a named list, similar to \code{xlevels}, giving the number of values or the values themselves for each predictor individually, to be used when that predictor is the focal predictor; if a numeric focal predictor doesn't appear in the list, the default of 50 values is used.} \item{xlevels}{this argument is used to set the levels of conditioning predictors; it may either be a single number specifying the number of evenly-spaced values (the default is 5) to which each conditioning predictor is to be set, or it may be a list with elements named for the predictors giving the number of values or a vector of values to which each conditioning predictor is to be set, as explained in the help for \code{\link{Effect}}. If the focal predictor is included in the \code{xlevels} list, it is disregarded; if any conditioning predictor is omitted from the list, its number of values is set to 5. The default behavior of \code{xlevels} is different when \code{residuals=TRUE}; in that case, it behaves as in \code{\link{Effect.lm}}, and is effectively set by default to the 0.2, 0.4, 0.6, and 0.8 quantiles of conditioning predictors. The \code{xlevels} argument works similarly for \code{predictorEffect} and \code{predictorEffects}.} \item{\dots}{ Additional arguments passed to \code{\link{Effect}}.} \item{sources}{Provides a mechanism for applying \code{predictorEffect} methods to a variety of regression models; see the vignette \href{../doc/methods-supported-by-effects.pdf}{Regression Models Supported by the effects Package} for an explanation.} } \details{ Effect plots view a fitted regression function E(Y|X) in (sequences of) two-dimensional plots using conditioning and slicing. The functions described here use a different method of determining the conditioning and slicing than \code{allEffects} uses. The predictor effect of a focal predictor, say \code{x1}, is the usual effect for the generalized interaction of \code{x1} with all the other predictors in a model. When a predictor effect object is plotted, the focal predictor is by default plotted on the horizontal axis. For example, in the model \code{mod} with formula \code{y ~ x1 + x2 + x3}, the predictor effect \code{p1 <- predictorEffects(mod, ~ x1)} is essentially equilavent to \code{p2 <- Effect("x1", mod)}. When plotted, these objects may produce different graphs because \code{plot(p1)} will always put \code{x1} on the horizontal axis, while \code{plot(p2)} uses a rule to determine the horizontal axis based on the characteristics of all the predictors, e.g., preferring numeric predictors over factors. If \code{mod} has the formula \code{y ~ x1 + x2 + x3 + x1:x2}, then \code{p1 <- predictorEffects(mod, ~ x1)} is essentially equivalent to \code{p2 <- Effect(c("x1", "x2"), mod)}. As in the last example, the plotted versions of these objects may differ because of different rules used to determine the predictor on the horizontal axis. If \code{mod} has the formula \code{y ~ x1 + x2 + x3 + x1:x2 + x1:x3}, then \code{p1 <- predictorEffects(mod, ~ x1)} is essentially equilavent to \code{p2 <- Effect(c("x1", "x2", "x3"), mod)}. Again, the plotted versions of these objects may differ because of the rules used to determine the horizontal axis. } \value{ \code{predictorEffect} returns an object of class \code{c("predictoreff", "eff")}. The components of the object are described in the help for \code{\link{Effect}}; \code{predictorEffects} returns an object of class \code{"predictorefflist"}, which is a list whose elements are of class \code{c("predictoreff", "eff")}. } \references{ See \code{\link{Effect}}. } \author{ S. Weisberg \email{sandy@umn.edu} and J. Fox } \seealso{ \code{\link{Effect}}, \code{\link{plot.predictoreff}}, the \href{../doc/predictor-effects-gallery.pdf}{Predictor Effects Graphics Gallery} vignette, and the \href{../doc/partial-residuals.pdf}{Effect Displays with Partial Residuals} vignette. } \examples{ mod <- lm(prestige ~ type*(education + income) + women, Prestige) plot(predictorEffect("income", mod)) plot(predictorEffects(mod, ~ education + income + women)) mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial) plot(predictorEffects(mod.cowles, xlevels=4)) plot(predictorEffect("neuroticism", mod.cowles, xlevels=list(extraversion=seq(5, 20, by=5))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(lab="Probability of Vounteering")), lines=list(multiline=TRUE), type="response") predictorEffects(mod.cowles, focal.levels=4, xlevels=4) # svyglm() example (adapting an example from the survey package) \donttest{ if (require(survey)){ data(api) dstrat<-svydesign(id=~1, strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) mod <- svyglm(sch.wide ~ ell + meals + mobility, design=dstrat, family=quasibinomial()) plot(predictorEffects(mod), axes=list(y=list(lim=log(c(0.4, 0.99)/c(0.6, 0.01)), ticks=list(at=c(0.4, 0.75, 0.9, 0.95, 0.99))))) } } } \keyword{hplot} \keyword{models} effects/man/effectsTheme.Rd0000644000176200001440000000451115037506112015336 0ustar liggesusers\name{effectsTheme} \alias{effectsTheme} \title{Set the lattice Theme for Effect Plots} \description{ Set the \pkg{lattice} theme (see \code{\link[lattice]{trellis.device}}) appropriately for effect plots. This function is invoked automatically when the \pkg{effects} package is loaded \emph{if} the \pkg{lattice} package hasn't previously been loaded. A typical call is \code{lattice::trellis.par.set(effectsTheme())}. } \usage{ effectsTheme(strip.background = list(col = gray(seq(0.95, 0.5, length = 3))), strip.shingle = list(col = "black"), clip = list(strip = "off"), superpose.line = list(lwd = c(2, rep(1, 6))), col) } \arguments{ \item{strip.background}{colors for the background of conditioning strips at the top of each panel; the default uses shades of gray and makes allowance for up to three conditioning variables.} \item{strip.shingle}{when lines rather than numeric values are used to indicate the values of conditioning variables, the default sets the color of the lines to black.} \item{clip}{the default allows lines showing values of conditioning variables to extend slightly beyond the boundaries of the strips---making the lines more visible at the extremes.} \item{superpose.line}{the default sets the line width of the first (of seven) lines to 2.} \item{col}{an optional argument specifying the colors to use for lines and symbolst: if \code{col = "car"}, then the color palette for the \pkg{car} package is used (see \code{\link[car]{carPalette}}); \code{col = "R"}, then the current R palette (ignoring the first entry which is \code{"black"} in the standard R palette) is used (see \code{\link[grDevices]{palette}}); if \code{col = "colorblind"}, then a colorblind-friendly palette (from \url{https://jfly.uni-koeln.de/color/} but ignoring black) is used; if a vector of color specifications, then these are used. If \code{col} isn't specified then the current \pkg{lattice} colors are used.} } \value{ a list suitable as an argument for \code{\link[lattice]{trellis.par.set}}; current values of modified parameters are supplied as an attribute. } \author{John Fox \email{jfox@mcmaster.ca}} \seealso{\code{\link[lattice]{trellis.device}}, \code{\link[lattice]{trellis.par.set}}} \examples{ \dontrun{ lattice::trellis.par.set(effectsTheme()) } } \keyword{utilities} \keyword{device} effects/man/effectsHexsticker.Rd0000644000176200001440000000072313761730141016411 0ustar liggesusers\name{effectsHexsticker} \alias{effectsHexsticker} \title{ View the Official Hex Sticker for the effects Package} \description{ Open the official hex sticker for the effects package in your browser} \usage{ effectsHexsticker() } \value{ Used for its side effect of openning the hex sticker for the effects package in your browser. } \author{ John Fox \email{jfox@mcmaster.ca} } \examples{ \dontrun{ effectsHexsticker() } } \keyword{misc} effects/man/effects-package.Rd0000644000176200001440000000632215037502364015753 0ustar liggesusers\name{effects-package} \Rdversion{1.1} \alias{effects-package} \alias{effects} \docType{package} \title{ Effect Displays for Linear, Generalized Linear, and Other Models } \description{ Graphical and tabular effect displays, e.g., of interactions, for various statistical models with linear predictors. } \details{ \tabular{ll}{ Package: \tab effects\cr Version: \tab 4.2-2\cr Date: \tab 2022-02-16\cr Depends: \tab R (>= 3.5.0), carData\cr Suggests: \tab pbkrtest (>= 0.4-4), nlme, MASS, poLCA, heplots, splines, ordinal, car, knitr, betareg, alr4, robustlmm\cr Imports: \tab lme4, nnet, lattice, grid, colorspace, graphics, grDevices, stats, survey, utils, estimability, insight\cr LazyLoad: \tab yes\cr License: \tab GPL (>= 2)\cr URL: \tab https://www.r-project.org, https://socialsciences.mcmaster.ca/jfox/\cr } This package creates effect displays for various kinds of models, as partly explained in the references. Typical usage is \code{plot(allEffects(model))} or \code{plot(predictorEffects(model))}, where \code{model} is an appropriate fitted-model object. Additional arguments to \code{\link{allEffects}}, \code{\link{predictorEffects}} and \code{\link[graphics]{plot}} can be used to customize the resulting displays. The function \code{\link{effect}} can be employed to produce an effect display for a particular term in the model, or to which terms in the model are marginal. The function \code{\link{predictorEffect}} can be used to construct an effect display for a particularly predictor. The function \code{\link{Effect}} may similarly be used to produce an effect display for any combination of predictors. In any of the cases, use \code{plot} to graph the resulting effect object. For linear and generalized linear models it is also possible to plot partial residuals to obtain (multidimensional) component+residual plots. See \code{?effect}, \code{?Effect}, \code{?predictorEffect}, and \code{?plot.eff} for details. } \author{ John Fox, Sanford Weisberg, Brad Price, Michael Friendly, Jangman Hong, Robert Anderson, David Firth, Steve Taylor, and the R Core Team. Maintainer: John Fox } \references{ Fox, J. and S. Weisberg (2019) \emph{An R Companion to Applied Regression, Third Edition} Sage Publications. Fox, J. (1987) Effect displays for generalized linear models. \emph{Sociological Methodology} \bold{17}, 347--361. Fox, J. (2003) Effect displays in R for generalised linear models. \emph{Journal of Statistical Software} \bold{8:15}, 1--27, \doi{10.18637/jss.v008.i15}. Fox, J. and R. Andersen (2006) Effect displays for multinomial and proportional-odds logit models. \emph{Sociological Methodology} \bold{36}, 225--255. Fox, J. and J. Hong (2009). Effect displays in R for multinomial and proportional-odds logit models: Extensions to the effects package. \emph{Journal of Statistical Software} \bold{32:1}, 1--24, \doi{10.18637/jss.v032.i01}. Fox, J. and S. Weisberg (2018). Visualizing Fit and Lack of Fit in Complex Regression Models: Effect Plots with Partial Residuals. \emph{Journal of Statistical Software} \bold{87:9}, 1--27, \doi{10.18637/jss.v087.i09}. } \keyword{ package } effects/man/effect.Rd0000644000176200001440000010102715041245175014174 0ustar liggesusers\name{effect} \alias{effect} \alias{effect.default} \alias{Effect} \alias{Effect.default} \alias{Effect.lm} \alias{Effect.multinom} \alias{Effect.merMod} \alias{Effect.mlm} \alias{Effect.poLCA} \alias{Effect.polr} \alias{Effect.svyglm} \alias{allEffects} \alias{allEffects.default} \title{Functions For Constructing Effect Displays} \description{ \code{Effect} and \code{effect} construct an \code{"eff"} object for a term (usually a high-order term) in a regression that models a response as a linear function of main effects and interactions of factors and covariates. These models include, among others, linear models (fit by \code{\link[stats]{lm}} and \code{\link[nlme]{gls}}), and generalized linear models (fit by \code{\link[stats]{glm}}), for which an \code{"eff"} object is created, and multinomial and proportional-odds logit models (fit respectively by \code{\link[nnet]{multinom}} and \code{\link[MASS]{polr}}), for which an \code{"effpoly"} object is created. The computed effect absorbs the lower-order terms marginal to the term in question, and averages over other terms in the model. For multivariate linear models (of class \code{"mlm"}, fit by \code{\link[stats]{lm}}), the functions construct a list of \code{"eff"} objects, separately for the various response variables in the model. \code{effect} builds the required object by specifying explicitly a focal term like \code{"a:b"} for an \code{a} by \code{b} interaction. \code{Effect} in contrast specifies the predictors in a term, for example \code{c("a", "b")}, rather than the term itself. \code{Effect} is consequently more flexible and robust than \code{effect}, and will succeed with some models for which \code{effect} fails. The \code{effect} function works by constructing a call to \code{Effect} and continues to be included in \pkg{effects} so older code that uses it will not break. The \code{Effect} and \code{effect} functions can also be used with many other models; see \code{\link{Effect.default}} and the \href{../doc/methods-supported-by-effects.pdf}{Regression Models Supported by the effects Package} vignette. \code{allEffects} identifies all of the high-order terms in a model and returns a list of \code{"eff"} or \code{"effpoly"} objects (i.e., an object of class \code{"efflist"}). For information on computing and displaying \emph{predictor effects}, see \code{\link{predictorEffect}} and \code{\link{plot.predictoreff}}. For further information about plotting effects, see \code{\link{plot.eff}}. } \usage{ effect(term, mod, vcov.=vcov, ...) \method{effect}{default}(term, mod, vcov.=vcov, ...) Effect(focal.predictors, mod, ...) \method{Effect}{lm}(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov. = vcov, se=TRUE, residuals=FALSE, quantiles=seq(0.2, 0.8, by=0.2), x.var=NULL, transformation, ..., #legacy arguments: given.values, typical, offset, confint, confidence.level, partial.residuals) \method{Effect}{multinom}(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov. = vcov, se=TRUE, ..., #legacy arguments: confint, confidence.level, given.values, typical) \method{Effect}{polr}(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov.=vcov, se=TRUE, latent=FALSE, ..., #legacy arguments: confint, confidence.level, given.values, typical) \method{Effect}{svyglm}(focal.predictors, mod, fixed.predictors, ...) \method{Effect}{merMod}(focal.predictors, mod, ..., KR=FALSE) \method{Effect}{poLCA}(focal.predictors, mod, ...) \method{Effect}{mlm}(focal.predictors, mod, response, ...) allEffects(mod, ...) \method{allEffects}{default}(mod, ...) } \arguments{ \item{term}{the quoted name of a term, usually, but not necessarily, a high-order term in the model. The term must be given exactly as it appears in the printed model, although either colons (\code{:}) or asterisks (\code{*}) may be used for interactions. If \code{term} is NULL, the function returns the formula for the linear predictor.} \item{focal.predictors}{a character vector of one or more predictors in the model in any order.} \item{mod}{a regression model object. If no specific method exists for the class of \code{mod}, \code{Effect.default} will be called.} \item{xlevels}{this argument is used to set the number of levels for any focal numeric predictor (that is predictors that are not factors, character variables, or logical variables, all of which are treated as factors). If \code{xlevels=NULL}, then each numeric predictor is represented by five values over its range, equally spaced and then rounded to 'nice' numbers. If \code{xlevels=n} is an integer, then each numeric predictor is represented by \code{n} equally spaced values rounded to 'nice' numbers. More generally, \code{xlevels} can be a named list of values at which to set each numeric predictor. For example, \code{xlevels=list(x1=c(2, 4.5, 7), x2=4)} would use the values 2, 4.5, and 7 for \code{x1}, use 4 equally spaced values for \code{x2}, and use the default for any other numeric predictors. If partial residuals are computed, then the focal predictor that is to appear on the horizontal axis of an effect plot is evaluated at 100 equally spaced values along its full range, and, by default, other numeric predictors are evaluated at the quantiles specified in the \code{quantiles} argument, unless their values are given explicitly in \code{xlevels}.} \item{fixed.predictors}{an optional list of specifications affecting the values at which fixed predictors for an effect are set, potentially including: \describe{ \item{given.values}{\code{given.values="default"} (which is, naturally, the default) specifies averaging over levels of a non-focal factor, weighting levels of the factor in proportion to sample size. \code{given.values="equal"} computes unweighted averages over the levels of non-focal factors. For finer control, the user can also provide a named numeric vector of weights for particular columns of the model matrix that correspond to the regressors for the factor. Character and logical predictors are treated as factors. For example, for a factor \code{X} with three levels \code{a}, \code{b} and \code{c}, the regressors generated using the default \code{\link[stats]{contr.treatment}} parameterization for a factor will be named \code{Xb} and \code{Xc}, as the regressor for level \code{a} is excluded as the baseline level. The specification \code{given.values=c(Xb=1/2, Xc=1/4)} would average over the levels of \code{X} with weight 1/2 for level \code{b}, 1/4 for \code{c}, and weight 1 = 1/2 - 1/4 = 1/4 for the baseline level \code{a}. Setting \code{given.values=c(Xb=1)} would fix \code{X} at level \code{b}. } \item{typical}{a function to be applied to the columns of the model matrix over which the effect is "averaged"; with the exception of the \code{"svyglm"} method, the default is \code{\link{mean}}. For\code{"svyglm"} objects, the default is to use the survey-design weighted mean.} \item{apply.typical.to.factors}{It generally doesn't make sense to apply typical values that aren't means (e.g., medians) to the columns of the model-matrix representing contrasts for factors. This value generally defaults to \code{FALSE} except for \code{"svyglm"} objects, for which the default is \code{TRUE}, using the the survey-design weighted mean.} \item{offset}{a function to be applied to the offset values (if there is an offset) in a linear or generalized linear model, or a mixed-effects model fit by \code{\link[lme4]{lmer}} or \code{\link[lme4]{glmer}}; or a numeric value, to which the offset will be set. The default is the \code{\link{mean}} function, and thus the offset will be set to its mean; in the case of \code{"svyglm"} objects, the default is to use the survey-design weighted mean. \emph{Note:} Only offsets defined by the \code{offset} argument to \code{\link[stats]{lm}}, \code{\link[stats]{glm}}, \code{\link[survey]{svyglm}}, \code{\link[lme4]{lmer}}, or \code{\link[lme4]{glmer}} will be handled correctly; use of the \code{offset} function in the model formula is not supported.} } } \item{vcov.}{Effect methods generally use the matrix returned by \code{vcov(mod)} to compute standard errors and confidence bounds. Alternatively, the user may specify the name of a function that returns a matrix of the same dimension and structure as the matrix returned by \code{vcov(mod)}. For example, \code{vcov. = hccm} uses the \code{\link[car]{hccm}} function from the \pkg{car} package to use a heteroscedasticity corrected covariance matrix for a linear model in place of the standard covariance estimate. This argument can be set to equal matrix of the same size and structure as the matrix returned by \code{vcov(mod)}. For example, using \code{vcov. = vcov(Boot(mod))} uses \code{\link[car]{Boot}} from the \pkg{car} package to get a bootstrap estimate of the covariance matrix for linear, generalized linear, and possibly other modeling frameworks.} \item{se}{\code{TRUE} (the default), \code{FALSE}, or a list with any or all of the following elements, controlling whether and how standard errors and confidence limits are computed for the effects: \describe{ \item{compute}{(default \code{TRUE}) whether or not to compute standard errors and confidence limits.} \item{level}{(default \code{0.95}) confidence level for confidence limits.} \item{type}{one of \code{"pointwise"} (the default), \code{"Scheffe"}, or \code{"scheffe"}, whether to compute confidence limits with specified coverage at each point for an effect or to compute limits for a Scheffe-type confidence envelope. For \code{mer}, \code{merMod}, and \code{lme} objects, the normal distribution is used to get confidence limits.} } } \item{residuals}{if \code{TRUE}, residuals for a linear or generalized linear model will be computed and saved; if \code{FALSE} (the default), residuals are suppressed. If residuals are saved, partial residuals are computed when the effect is plotted: see \code{\link{plot.eff}} and the vignette \href{../doc/partial-residuals.pdf}{Effect Displays with Partial Residuals}. This argument may also be used for mixed-effects and some other models.} \item{quantiles}{quantiles at which to evaluate numeric focal predictors \emph{not} on the horizontal axis, used only when partial residuals are displayed; superseded if the \code{xlevels} argument gives specific values for a predictor.} \item{x.var}{the (quoted) name or index of the numeric predictor to define the horizontal axis of an effect plot for a linear or generalized linear model; the default is \code{NULL}, in which case the first numeric predictor in the effect will be used \emph{if} partial residuals are to be computed. This argument is intended to be used when \code{residuals} is \code{TRUE}; otherwise, the variable on the horizontal axis can be chosen when the effect object is plotted: see \code{\link{plot.eff}}.} \item{transformation}{for the \code{Effect.lm} method, an optional two-element list with \code{link} and \code{inverse} elements to transform the response (see examples); an alternative to use for graphs is to set the argument \code{axes = list(y = list(transformation = list(link = link-function, inverse = mean-function)))} (see \code{\link{plot.eff})}; the argument must be used for transforming the response in printed or summary output.} \item{latent}{if \code{TRUE}, effects in a proportional-odds logit model are computed on the scale of the latent response; if \code{FALSE} (the default) effects are computed as individual-level probabilities and logits.} \item{x}{an object of class \code{"eff"}, \code{"effpoly"}, or \code{"efflatent"}.} \item{KR}{if \code{TRUE} and the \pkg{pbkrtest} package is installed, use the Kenward-Roger coefficient covariance matrix to compute effect standard errors for linear mixed models fit with \code{\link[lme4]{lmer}}; the default is \code{FALSE} because the computation can be time-consuming.} \item{response}{for an \code{"mlm"} object, a vector containing the (quoted) name(s) or indices of one or more response variable(s). The default is to use all responses in the model.} \item{...}{arguments to be passed down.} \item{confint, confidence.level, given.values, typical, offset, partial.residuals}{legacy arguments retained for backwards compatibility; if present, these arguments take precedence over the \code{level} element of the \code{confint} list argument and the \code{given.values}, \code{typical}, and \code{offset} elements of the \code{fixed.predictors} list argument; \code{confint} may be used in place of the \code{se} argument; \code{partial.residuals} may be used in place of the \code{residuals} argument. See \code{\link{LegacyArguments}} for details.} } \details{ Normally, the functions to be used directly are \code{allEffects}, to return a list of high-order effects, and the generic \code{plot} function to plot the effects (see \code{\link{plot.efflist}}, \code{\link{plot.eff}}, and \code{\link{plot.effpoly}}). Alternatively, \code{Effect} can be used to vary a subset of predictors over their ranges, while other predictors are held to typical values. Plotting methods for effect objects call the \code{\link[lattice]{xyplot}} (or in some cases, the \code{\link[lattice]{densityplot}}) function in the \pkg{lattice} package. Effects may also be printed (implicitly or explicitly via \code{print}) or summarized (using \code{summary}) (see \code{\link{print.efflist}}, \code{\link{summary.efflist}}, \code{\link{print.eff}}, \code{\link{summary.eff}}, \code{\link{print.effpoly}}, and \code{\link{summary.effpoly}}). If asked, the \code{effect} function will compute effects for terms that have higher-order relatives in the model, averaging over those terms (which rarely makes sense), or for terms that do not appear in the model but are higher-order relatives of terms that do. For example, for the model \code{Y ~ A*B + A*C + B*C}, one could compute the effect corresponding to the absent term \code{A:B:C}, which absorbs the constant, the \code{A}, \code{B}, and \code{C} main effects, and the three two-way interactions. In either of these cases, a warning is printed. See \code{\link{predictorEffects}} for an alternative paradigm for defining effects. } \value{ For \code{"lm"}, \code{"glm"}, \code{"svyglm"}, \code{"lmerMod"}, \code{"glmerMod"}, and \code{"lme"}, model objects, \code{effect} and \code{Effect} return an \code{"eff"} object, and for \code{"multinom"}, \code{"polr"}, \code{"clm"}, \code{"clmm"}, and \code{"clm2"} models, an \code{"effpoly"} object, with the components listed below. For an \code{"mlm"} object with one response specified, an \code{"eff"} object is returned, otherwise an \code{"efflist"} object is returned, containing one \code{"eff"} object for each \code{response}. \item{term}{the term to which the effect pertains.} \item{formula}{the complete model formula.} \item{response}{a character string giving the name of the response variable.} \item{y.levels}{(for \code{"effpoly"} objects) levels of the polytomous response variable.} \item{variables}{a list with information about each predictor, including its name, whether it is a factor, and its levels or values.} \item{fit}{(for \code{"eff"} objects) a one-column matrix of fitted values, representing the effect on the scale of the linear predictor; this is a raveled table, representing all combinations of predictor values.} \item{prob}{(for \code{"effpoly"} objects) a matrix giving fitted probabilities for the effect for the various levels of the the response (columns) and combinations of the focal predictors (rows).} \item{logit}{(for \code{"effpoly"} objects) a matrix giving fitted logits for the effect for the various levels of the the response (columns) and combinations of the focal predictors (rows).} \item{x}{a data frame, the columns of which are the predictors in the effect, and the rows of which give all combinations of values of these predictors.} \item{model.matrix}{the model matrix from which the effect was calculated.} \item{data}{a data frame with the data on which the fitted model was based.} \item{discrepancy}{the percentage discrepancy for the `safe' predictions of the original fit; should be very close to 0. Note: except for \code{gls} models, this is now necessarily 0.} \item{offset}{value to which the offset is fixed; \code{0} if there is no offset.} \item{model}{(for \code{"effpoly"} objects) \code{"multinom"} or \code{"polr"}, as appropriate.} \item{vcov}{(for \code{"eff"} objects) a covariance matrix for the effect, on the scale of the linear predictor.} \item{se}{(for \code{"eff"} objects) a vector of standard errors for the effect, on the scale of the linear predictor.} \item{se.prob, se.logit}{(for \code{"effpoly"} objects) matrices of standard errors for the effect, on the probability and logit scales.} \item{lower, upper}{(for \code{"eff"} objects) one-column matrices of confidence limits, on the scale of the linear predictor.} \item{lower.prob, upper.prob, lower.logit, upper.logit}{(for \code{"effpoly"} objects) matrices of confidence limits for the fitted logits and probabilities; the latter are computed by transforming the former.} \item{confidence.level}{for the confidence limits.} \item{transformation}{(for \code{"eff"} objects) a two-element list, with element \code{link} giving the link function, and element \code{inverse} giving the inverse-link (mean) function; may be set directly via the \code{transformation} argument to \code{Effect.lm} or inferred from the model.} \item{residuals}{(working) residuals for linear or generalized linear models (and some similar models), to be used by \code{\link{plot.eff}} to compute and plot partial residuals.} \item{x.var}{the name of the predictor to appear on the horizontal axis of an effect plot made from the returned object; will usually be \code{NULL} if partial residuals aren't computed.} \item{family}{for a \code{"glm"} model, the name of the distributional family of the model; for an \code{"lm"} model, this is \code{"gaussian"}; otherwise \code{NULL}. The \code{family} controls how partial residuals are smoothed in plots.} \item{link}{the value returned by \code{family(mod)}. Down-stream methods may need the link, inverse link and derivative functions.} \code{allEffects} returns an \code{"efflist"} object, a list of \code{"eff"} or \code{"effpoly"} objects corresponding to the high-order terms of the model. If \code{mod} is of class \code{"poLCA"} (from the \pkg{poLCA} package), representing a polytomous latent class model, effects are computed for the predictors given the estimated latent classes. The result is of class \code{"eff"} if the latent class model has 2 categories and of class \code{"effpoly"} with more than 2 categories. } \section{Warnings and Limitations}{ The \code{Effect} function handles factors and covariates differently, and is likely to be confused if one is changed to the other in a model formula. Consequently, formulas that include calls to \code{as.factor}, \code{factor}, or \code{numeric} (as, e.g., in \code{y ~ as.factor(income)}) will cause errors. Instead, create the modified variables outside of the model formula (e.g., \code{fincome <- as.factor(income)}) and use these in the model formula. The \code{effect} function doesn't work with factors that have colons in level names (e.g., \code{"level:A"}); the \code{effect} function will confuse the colons with interactions; rename levels to remove or replace the colons (e.g., \code{"level.A"}). Level names with colons are perfectly fine for use with \code{Effect}. The functions in the \pkg{effects} package work properly with predictors that are numeric variables, factors, character variables, or logical variables; consequently, e.g., convert dates to numeric. Character predictors and logical predictors are treated as factors, the latter with "levels" \code{"FALSE"} and \code{"TRUE"}. Empty cells in crossed-factors are now permitted for \code{"lm"}, \code{"glm"}, and \code{"multinom"} models. For \code{"multinom"} models with two or more crossed factors with an empty cell, stacked area plots apparently do not work because of a bug in the \code{\link[lattice]{barchart}} function in the \pkg{lattice} package. However, the default line plots do work. Offsets in linear and generalized linear models are supported, as are offsets in mixed models fit by \code{lmer} or \code{glmer}, but must be supplied through the \code{offset} argument to \code{lm}, \code{glm}, \code{lmer} or \code{glmer}; offsets supplied via calls to the \code{offset} function on the right-hand side of the model formula are not supported. Fitting ordinal mixed models using \code{\link[ordinal]{clmm}} or \code{\link[ordinal:clmmOld]{clmm2}} permits many options, including a variety of link functions, scale functions, nominal regressors, and various methods for setting thresholds. Effects are currently generated only for the default values of the arguments \code{scale}, \code{nominal}, \code{link}, and \code{threshold}, which is equivalent to fitting an ordinal-response mixed-effects model with a logit link. \code{Effect} can also be used with objects created by \code{\link[ordinal]{clm}} or \code{\link[ordinal:clmOld]{clm2}}, fitting ordinal response models with the same links permitted by \code{\link[MASS]{polr}} in the \pkg{MASS} package, with no random effects, and with results similar to those from \code{\link[MASS]{polr}}. Calling any of these functions from within a user-written function may result in errors due to R's scoping rules. See the vignette \code{embedding.pdf} in the \pkg{car} package for a solution to this problem. } \references{ Fox, J. (1987). Effect displays for generalized linear models. \emph{Sociological Methodology} \bold{17}, 347--361. Fox, J. (2003) Effect displays in R for generalised linear models. \emph{Journal of Statistical Software} \bold{8:15}, 1--27, \doi{10.18637/jss.v008.i15}. Fox, J. and R. Andersen (2006). Effect displays for multinomial and proportional-odds logit models. \emph{Sociological Methodology} \bold{36}, 225--255. Fox, J. and J. Hong (2009). Effect displays in R for multinomial and proportional-odds logit models:? Extensions to the effects package. \emph{Journal of Statistical Software} \bold{32:1}, 1--24, \doi{10.18637/jss.v032.i01}. Fox, J. and S. Weisberg (2019). \emph{An R Companion to Applied Regression, third edition}, Thousand Oaks: Sage. Fox, J. and S. Weisberg (2018). Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor Effect Plots with Partial Residuals. \emph{Journal of Statistical Software} \bold{87:9}, 1--27, \doi{10.18637/jss.v087.i09}. Hastie, T. J. (1992). Generalized additive models. In Chambers, J. M., and Hastie, T. J. (eds.) \emph{Statistical Models in S}, Wadsworth. Weisberg, S. (2014). \emph{Applied Linear Regression}, 4th edition, Wiley, \url{http://z.umn.edu/alr4ed}. } \author{John Fox \email{jfox@mcmaster.ca}, Sanford Weisberg \email{sandy@umn.edu} and Jangman Hong.} \seealso{\code{\link{LegacyArguments}}. For information on printing, summarizing, and plotting effects: \code{\link{print.eff}}, \code{\link{summary.eff}}, \code{\link{plot.eff}}, \code{\link{print.summary.eff}}, \code{\link{print.effpoly}}, \code{\link{summary.effpoly}}, \code{\link{plot.effpoly}}, \code{\link{print.efflist}}, \code{\link{summary.efflist}}, \code{\link{plot.efflist}}, \code{\link[lattice]{xyplot}}, \code{\link[lattice]{densityplot}}, and the \href{../doc/partial-residuals.pdf}{Effect Displays with Partial Residuals} and \href{../doc/methods-supported-by-effects.pdf}{Regression Models Supported by the effects Package} vignettes.} \examples{ mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial) eff.cowles <- allEffects(mod.cowles, xlevels=list(extraversion=seq(0, 24, 6)), fixed.predictors=list(given.values=c(sexmale=0.5))) eff.cowles as.data.frame(eff.cowles[[2]]) \donttest{ # the following are equivalent: eff.ne <- effect("neuroticism*extraversion", mod.cowles) Eff.ne <- Effect(c("neuroticism", "extraversion"), mod.cowles) all.equal(eff.ne$fit, Eff.ne$fit) plot(eff.cowles, 'sex', axes=list(y=list(lab="Prob(Volunteer)"))) plot(eff.cowles, 'neuroticism:extraversion', axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9))))) plot(Effect(c("neuroticism", "extraversion"), mod.cowles, se=list(type="Scheffe"), xlevels=list(extraversion=seq(0, 24, 6)), fixed.predictors=list(given.values=c(sexmale=0.5))), axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9))))) plot(eff.cowles, 'neuroticism:extraversion', lines=list(multiline=TRUE), axes=list(y=list(lab="Prob(Volunteer)"))) plot(effect('sex:neuroticism:extraversion', mod.cowles, xlevels=list(extraversion=seq(0, 24, 6))), lines=list(multiline=TRUE)) } # a nested model: mod <- lm(log(prestige) ~ income:type + education, data=Prestige) plot(Effect(c("income", "type"), mod, transformation=list(link=log, inverse=exp)), axes=list(y=list(lab="prestige"))) if (require(nnet)){ mod.beps <- multinom(vote ~ age + gender + economic.cond.national + economic.cond.household + Blair + Hague + Kennedy + Europe*political.knowledge, data=BEPS) \donttest{ plot(effect("Europe*political.knowledge", mod.beps, xlevels=list(political.knowledge=0:3))) } plot(Effect(c("Europe", "political.knowledge"), mod.beps, xlevels=list(Europe=1:11, political.knowledge=0:3), fixed.predictors=list(given.values=c(gendermale=0.5))), lines=list(col=c("blue", "red", "orange")), axes=list(x=list(rug=FALSE), y=list(style="stacked"))) \donttest{ plot(effect("Europe*political.knowledge", mod.beps, # equivalent xlevels=list(Europe=1:11, political.knowledge=0:3), fixed.predictors=list(given.values=c(gendermale=0.5))), lines=list(col=c("blue", "red", "orange")), axes=list(x=list(rug=FALSE), y=list(style="stacked"))) } } if (require(MASS)){ mod.wvs <- polr(poverty ~ gender + religion + degree + country*poly(age,3), data=WVS) \donttest{ plot(effect("country*poly(age, 3)", mod.wvs)) } plot(Effect(c("country", "age"), mod.wvs), axes=list(y=list(style="stacked"))) \donttest{ plot(effect("country*poly(age, 3)", mod.wvs), axes=list(y=list(style="stacked"))) # equivalent plot(effect("country*poly(age, 3)", latent=TRUE, mod.wvs)) plot(effect("country*poly(age, 3)", latent=TRUE, mod.wvs, se=list(type="scheffe"))) # Scheffe-type confidence envelopes } } mod.pres <- lm(prestige ~ log(income, 10) + poly(education, 3) + poly(women, 2), data=Prestige) eff.pres <- allEffects(mod.pres, xlevels=50) plot(eff.pres) plot(eff.pres[1], axes=list(x=list(income=list( transform=list(trans=log10, inverse=function(x) 10^x), ticks=list(at=c(1000, 2000, 5000, 10000, 20000)) )))) \donttest{ # linear model with log-response and log-predictor # to illustrate transforming axes and setting tick labels mod.pres1 <- lm(log(prestige) ~ log(income) + poly(education, 3) + poly(women, 2), data=Prestige) # effect of the log-predictor eff.log <- Effect("income", mod.pres1) # effect of the log-predictor transformed to the arithmetic scale eff.trans <- Effect("income", mod.pres1, transformation=list(link=log, inverse=exp)) #variations: # y-axis: scale is log, tick labels are log # x-axis: scale is arithmetic, tick labels are arithmetic plot(eff.log) # y-axis: scale is log, tick labels are log # x-axis: scale is log, tick labels are arithmetic plot(eff.log, axes=list(x=list(income=list( transform=list(trans=log, inverse=exp), ticks=list(at=c(5000, 10000, 20000)), lab="income, log-scale")))) # y-axis: scale is log, tick labels are arithmetic # x-axis: scale is arithmetic, tick labels are arithmetic plot(eff.trans, axes=list(y=list(lab="prestige"))) # y-axis: scale is arithmetic, tick labels are arithmetic # x-axis: scale is arithmetic, tick labels are arithmetic plot(eff.trans, axes=list(y=list(type="response", lab="prestige"))) # y-axis: scale is log, tick labels are arithmetic # x-axis: scale is log, tick labels are arithmetic plot(eff.trans, axes=list( x=list(income=list( transform=list(trans=log, inverse=exp), ticks=list(at=c(1000, 2000, 5000, 10000, 20000)), lab="income, log-scale")), y=list(lab="prestige, log-scale")), main="Both response and X in log-scale") # y-axis: scale is arithmetic, tick labels are arithmetic # x-axis: scale is log, tick labels are arithmetic plot(eff.trans, axes=list( x=list( income=list(transform=list(trans=log, inverse=exp), ticks=list(at=c(1000, 2000, 5000, 10000, 20000)), lab="income, log-scale")), y=list(type="response", lab="prestige"))) } if (require(nlme)){ # for gls() mod.hart <- gls(fconvict ~ mconvict + tfr + partic + degrees, data=Hartnagel, correlation=corARMA(p=2, q=0), method="ML") plot(allEffects(mod.hart)) detach(package:nlme) } if (require(lme4)){ data(cake, package="lme4") fm1 <- lmer(angle ~ recipe * temperature + (1|recipe:replicate), cake, REML = FALSE) plot(Effect(c("recipe", "temperature"), fm1)) \donttest{ plot(effect("recipe:temperature", fm1), axes=list(grid=TRUE)) # equivalent (plus grid) } if (any(grepl("pbkrtest", search()))) detach(package:pbkrtest) detach(package:lme4) } \donttest{ if (require(nlme) && length(find.package("lme4", quiet=TRUE)) > 0){ data(cake, package="lme4") cake$rep <- with(cake, paste( as.character(recipe), as.character(replicate), sep="")) fm2 <- lme(angle ~ recipe * temperature, data=cake, random = ~ 1 | rep, method="ML") plot(Effect(c("recipe", "temperature"), fm2)) plot(effect("recipe:temperature", fm2), axes=list(grid=TRUE)) # equivalent (plus grid) } detach(package:nlme) } \donttest{ if (require(poLCA)){ data(election) f2a <- cbind(MORALG,CARESG,KNOWG,LEADG,DISHONG,INTELG, MORALB,CARESB,KNOWB,LEADB,DISHONB,INTELB)~PARTY*AGE nes2a <- poLCA(f2a,election,nclass=3,nrep=5) plot(Effect(c("PARTY", "AGE"), nes2a), axes=list(y=list(style="stacked"))) } } # mlm example if (require(heplots)) { data(NLSY, package="heplots") mod <- lm(cbind(read,math) ~ income+educ, data=NLSY) eff.inc <- Effect("income", mod) plot(eff.inc) eff.edu <- Effect("educ", mod) plot(eff.edu, axes=list(x=list(rug=FALSE), grid=TRUE)) \donttest{ plot(Effect("educ", mod, response="read")) } detach(package:heplots) } # svyglm() example (adapting an example from the survey package) \donttest{ if (require(survey)){ data("api") dstrat<-svydesign(id=~1, strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) mod <- svyglm(sch.wide ~ ell + meals + mobility, design=dstrat, family=quasibinomial()) plot(allEffects(mod), axes=list(y=list(lim=log(c(0.4, 0.99)/c(0.6, 0.01)), ticks=list(at=c(0.4, 0.75, 0.9, 0.95, 0.99))))) } } # component + residual plot examples \donttest{ Prestige$type <- factor(Prestige$type, levels=c("bc", "wc", "prof")) mod.prestige.1 <- lm(prestige ~ income + education, data=Prestige) plot(allEffects(mod.prestige.1, residuals=TRUE)) # standard C+R plots plot(allEffects(mod.prestige.1, residuals=TRUE, se=list(type="scheffe"))) # with Scheffe-type confidence bands mod.prestige.2 <- lm(prestige ~ type*(income + education), data=Prestige) plot(allEffects(mod.prestige.2, residuals=TRUE)) mod.prestige.3 <- lm(prestige ~ type + income*education, data=Prestige) plot(Effect(c("income", "education"), mod.prestige.3, residuals=TRUE), partial.residuals=list(span=1)) } # artificial data set.seed(12345) x1 <- runif(500, -75, 100) x2 <- runif(500, -75, 100) y <- 10 + 5*x1 + 5*x2 + x1^2 + x2^2 + x1*x2 + rnorm(500, 0, 1e3) Data <- data.frame(y, x1, x2) mod.1 <- lm(y ~ poly(x1, x2, degree=2, raw=TRUE), data=Data) # raw=TRUE necessary for safe prediction mod.2 <- lm(y ~ x1*x2, data=Data) mod.3 <- lm(y ~ x1 + x2, data=Data) plot(Effect(c("x1", "x2"), mod.1, residuals=TRUE)) # correct model plot(Effect(c("x1", "x2"), mod.2, residuals=TRUE)) # wrong model plot(Effect(c("x1", "x2"), mod.3, residuals=TRUE)) # wrong model } \keyword{hplot} \keyword{models} effects/man/summary.effect.Rd0000644000176200001440000000576413761730141015702 0ustar liggesusers\name{summary.eff} \alias{print.eff} \alias{print.effpoly} \alias{print.efflatent} \alias{print.efflist} \alias{print.mlm.efflist} \alias{print.summary.eff} \alias{summary.eff} \alias{summary.effpoly} \alias{summary.efflatent} \alias{summary.efflist} \alias{summary.mlm.efflist} \alias{as.data.frame.eff} \alias{as.data.frame.effpoly} \alias{as.data.frame.efflatent} \alias{as.data.frame.efflist} \alias{vcov.eff} \title{Summarizing and Printing Effects} \description{ \code{summary}, \code{print}, and \code{as.data.frame} methods for objects created using the effects package. } \usage{ \method{print}{eff}(x, type=c("response", "link"), ...) \method{print}{effpoly}(x, type=c("probability", "logits"), ...) \method{print}{efflatent}(x, ...) \method{print}{efflist}(x, ...) \method{print}{mlm.efflist}(x, ...) \method{print}{summary.eff}(x, ...) \method{summary}{eff}(object, type=c("response", "link"), ...) \method{summary}{effpoly}(object, type=c("probability", "logits"), ...) \method{summary}{efflatent}(object, ...) \method{summary}{efflist}(object, ...) \method{summary}{mlm.efflist}(object, ...) \method{as.data.frame}{eff}(x, row.names=NULL, optional=TRUE, type=c("response", "link"), ...) \method{as.data.frame}{efflist}(x, row.names=NULL, optional=TRUE, type, ...) \method{as.data.frame}{effpoly}(x, row.names=NULL, optional=TRUE, ...) \method{as.data.frame}{efflatent}(x, row.names=NULL, optional=TRUE, ...) \method{vcov}{eff}(object, ...) } \arguments{ \item{x, object}{an object consisting of fitted values and other information needed to draw effects plots that is produced by functions in the \code{effects} package.} \item{type}{fitted values are by default printed by these functions in the \code{"response"} scale. For models with a link function like a GLM, fitted values in the linear predictor scale are obtained by setting \code{type="link"}. For polytomous response models setting \code{type="logits"} returns fitted values in the logit scale.} \item{row.names, optional}{arguments to \code{as.data.frame} not used by these methods.} \item{...}{other arguments passed on} } \value{ The \code{print} methods return the fitted values in tables. The \code{summary} methods return the fitted values and 95 percent condifence intervals, also in tables. The \code{as.data.frame} method returns fitted values, standard errors, and 95 percent confidence intervals as a data frame, or as a list of data frames for the \code{efflist} method. The \code{vcov} method returns the covariance matrix of the fitted values. } \author{John Fox \email{jfox@mcmaster.ca} and Jangman Hong.} \examples{ mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial) eff.cowles <- predictorEffects(mod.cowles) print(eff.cowles) print(eff.cowles[["neuroticism"]], type="link") summary(eff.cowles[["neuroticism"]], type="link") as.data.frame(eff.cowles) # covariance matrix of fitted values in linear predictor scale vcov(eff.cowles[[1]]) } \keyword{hplot} \keyword{models} effects/man/LegacyArguments.Rd0000644000176200001440000001174115041245500016025 0ustar liggesusers\name{LegacyArguments} \alias{LegacyArguments} \alias{Legacy Arguments} \title{Legacy Arguments for \code{plot} and \code{Effect} Methods} \description{ Prior to verson 4.0-0 of the \pkg{effects} package, there were many (literally dozens) of arguments to the \code{plot} methods for \code{"eff"} and \code{"effpoly"} objects. In version 4.0-0 of the package, we have consolidated these arguments into a much smaller number of arguments (e.g., \code{lines}, \code{points}, \code{axes}) that take lists of specifications. We have similarly consolidated some of the arguments to \code{Effect} methods into the \code{confint} and \code{fixed.predictors} arguments. For backwards compatibility, we have to the extent possible retained the older arguments. If specified, these legacy arguments take precedence over the newer list-style arguments. } \details{ Here is the correspondence between the old and new arguments. For \code{plot} methods: \describe{ \item{\code{multiline=TRUE/FALSE}}{\code{lines=list(multiline=TRUE/FALSE)}} \item{\code{type=c("rescale", "link", "response")}}{For models with a link function, \code{"link"} plots in linear predictor scale, \code{"response"} plots in the response scale, and the default \code{"rescale"} plots in linear predictor scale but labels tick-marks in response scale.} \item{\code{z.var=which.min(levels)}}{\code{lines=list(z.var=which.min(levels))} relevant only when \code{lines=list(multiline=TRUE)}} \item{\code{colors={vector of colors}}}{\code{lines=list(col={vector of colors})}} \item{\code{lty={vector of line types}}}{\code{lines=list(lty={vector of line types})}} \item{\code{lwd={vector of line widths}}}{\code{lines=list(lwd={vector of line widths})}} \item{\code{use.splines=TRUE/FALSE}}{\code{lines=list(splines=TRUE/FALSE)}} \item{\code{cex={number}}}{\code{points=list(cex={number})}} \item{\code{rug=TRUE/FALSE}}{\code{axes=list(x=list(rug=TRUE/FALSE)}} \item{\code{xlab={"axis title"}}}{\code{axes=list(x=list(lab={"axis title"}))}} \item{\code{xlim={c(min, max)}}}{\code{axes=list(x=list(lim={c(min, max)}))}} \item{\code{rotx={degrees}}}{\code{axes=list(x=list(rot={degrees}))}} \item{\code{ticks.x=list({tick specifications})}}{\code{axes=list(x=list(ticks=list({tick specifications})))}} \item{\code{transform.x=list(link={function}, inverse={function})}}{\code{axes=list(x=list(transform=list({lists of transformations by predictors})))}} \item{\code{ylab={"axis title"}}}{\code{axes=list(y=list(lab={"axis title"}))}} \item{\code{ylim={c(min, max)}}}{\code{axes=list(y=list(lim={c(min, max)}))}} \item{\code{roty={degrees}}}{\code{axes=list(y=list(rot={degrees}))}} \item{\code{ticks=list({tick specifications})}}{\code{axes=list(y=list(ticks=list({tick specifications})))}} \item{\code{alternating=TRUE/FALSE}}{\code{axes=list(alternating=TRUE/FALSE)}} \item{\code{grid=TRUE/FALSE}}{\code{axes=list(grid=TRUE/FALSE)}} \item{\code{ci.style="bands"/"lines"/"bars"/"none"}}{\code{confint=list(style="bands"/"lines"/"bars"/"none"})} \item{\code{band.transparency={number}}}{\code{confint=list(alpha={number})}} \item{\code{band.colors={vector of colors}}}{\code{confint=list(col={vector of colors})}} \item{\code{residuals.color={color}}}{\code{partial.residuals=list(col={color})}} \item{\code{residuals.pch={plotting character}}}{\code{partial.residuals=list(pch={plotting character})}} \item{\code{residuals.cex={number}}}{\code{partial.residuals=list(cex={number})}} \item{\code{smooth.residuals=TRUE/FALSE}}{\code{partial.residuals=list(smooth=TRUE/FALSE)}} \item{\code{residuals.smooth.color={color}}}{\code{partial.residuals=list(smooth.col={color})}} \item{\code{span={number}}}{\code{partial.residuals=list(span={number})}} \item{\code{show.fitted=TRUE/FALSE}}{\code{partial.residuals=list(fitted=TRUE/FALSE)}} \item{\code{factor.names=TRUE/FALSE}}{\code{lattice=list(strip=list(factor.names=TRUE/FALSE))}} \item{\code{show.strip.values=TRUE/FALSE}}{\code{lattice=list(strip=list(values=TRUE/FALSE))}} \item{\code{layout={lattice layout}}}{\code{lattice=list(layout={lattice layout})}} \item{\code{key.args={lattice key args}}}{\code{lattice=list(key.args={lattice key args})}} \item{\code{style="lines"/"stacked"}}{for \code{plot.effpoly}, \code{axes=list(y=list(style="lines"/"stacked"))}} \item{\code{rescale.axis=TRUE/FALSE}}{\code{type="rescale"/"response"/"link"}} } For \code{Effect} methods: \describe{ \item{\code{confint=TRUE/FALSE} or a list}{may be substituted for the \code{se} argument.} \item{\code{confidence.level={number}}}{\code{se=list(level={number})}} \item{\code{given.values={named vector}}}{\code{fixed.predictors=list(given.values={named vector})}} \item{\code{typical={function}}}{\code{fixed.predictors=list(typical={function})}} \item{\code{offset={function}}}{\code{fixed.predictors=list(offset={function})}} \item{\code{partial.residuals=TRUE/FALSE}}{\code{residuals=TRUE/FALSE}} }} \author{John Fox \email{jfox@mcmaster.ca}} \seealso{ \code{\link{Effect}}, \code{\link{plot.eff}}, \code{\link{plot.effpoly}} } \keyword{hplot} effects/DESCRIPTION0000644000176200001440000000306115042206042013372 0ustar liggesusersPackage: effects Version: 4.2-4 Date: 2025-07-29 Title: Effect Displays for Linear, Generalized Linear, and Other Models Authors@R: c(person("John", "Fox", role = c("aut", "cre"), email = "jfox@mcmaster.ca"), person("Sanford", "Weisberg", role = "aut", email = "sandy@umn.edu"), person("Brad", "Price", role = "aut", email = "brad.price@mail.wvu.edu"), person("Michael", "Friendly", role = "aut", email = "friendly@yorku.ca"), person("Jangman", "Hong", role = "aut"), person("Robert", "Andersen", role = "ctb"), person("David", "Firth", role = "ctb"), person("Steve", "Taylor", role = "ctb"), person("R Core Team", role="ctb")) Depends: R (>= 3.5.0), carData, datasets Suggests: pbkrtest (>= 0.4-4), nlme, MASS, poLCA, heplots, splines, ordinal, car, knitr, betareg, alr4, robustlmm Imports: lme4, nnet, lattice, grid, colorspace, graphics, grDevices, stats, survey, utils, estimability (>= 1.4.1), insight Description: Graphical and tabular effect displays, e.g., of interactions, for various statistical models with linear predictors. License: GPL (>= 2) URL: https://cran.r-project.org/package=effects, https://www.john-fox.ca/ VignetteBuilder: knitr NeedsCompilation: no Packaged: 2025-07-29 12:51:59 UTC; johnfox Author: John Fox [aut, cre], Sanford Weisberg [aut], Brad Price [aut], Michael Friendly [aut], Jangman Hong [aut], Robert Andersen [ctb], David Firth [ctb], Steve Taylor [ctb], R Core Team [ctb] Maintainer: John Fox Repository: CRAN Date/Publication: 2025-07-29 18:00:02 UTC